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ABSTRACT

Variational inference is an increasingly popular method in statistics and machine learning for ap-
proximating probability distributions. We developed LINFA (Library for Inference with Normaliz-
ing Flow and Annealing), a Python library for variational inference to accommodate computationally
expensive models and difficult-to-sample distributions with dependent parameters. We discuss the
theoretical background, capabilities, and performance of LINFA in various benchmarks. LINFA is
publicly available on GitHub at https://github.com/desResLab/LINFA.
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1 Introduction

Generating samples from a posterior distribution is a fundamental task in Bayesian inference. The development of
sampling-based algorithms from the Markov chain Monte Carlo family [1, 2, 3, 4] has made solving Bayesian inverse
problems accessible to a wide audience of both researchers and practitioners. However, the number of samples required
by these approaches is typically significant and the convergence of Markov chains to their stationary distribution can be
slow especially in high-dimensions. Additionally, satisfactory convergence may not be always easy to quantify, even
if a number of metrics have been proposed in the literature over the years. More recent paradigms have been proposed
in the context of variational inference [5], where an optimization problem is formulated to determine the optimal
member of a parametric family of distributions that can approximate a target posterior density. In addition, flexible
approaches to parametrize variational distributions through a composition of transformations (closely related to the
concept of trasport maps, see, e.g., [6]) have reached popularity under the name of normalizing flows [7, 8, 9, 10, 11].
The combination of variational inference and normalizing flow has received significant recent interest in the context
of general algorithms for solving inverse problems [7].

However, cases where the computational cost of evaluating the underlying probability distribution is significant occur
quite often in engineering and applied sciences, for example when such evaluation requires the solution of an ordi-
nary or partial differential equation. In such cases, inference can easily become intractable. Additionally, strong and
nonlinear dependence between model parameters may results in difficult-to-sample posterior distributions character-
ized by features at multiple scales or by multiple modes. The LINFA library is specifically designed for cases where
the model evaluation is computationally expensive. In such cases, the construction of an adaptively trained surrogate
model is key to reducing the computational cost of inference [12]. In addition, LINFA provides an adaptive annealing
scheduler, where temperature increments are automatically determined based on the available variational approximant
of the posterior distribution. Thus, adaptive annealing makes it easier to sample from complicated densities [13].

This paper is organized as follows. The main features of the LINFA library are discussed in Section 2, followed
by a brief outline of a few selected numerical tests in Section 3. Conclusions and future work are finally discussed
in Section 4. The paper is completed by a brief description of the background theory and reference to the relevant
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papers in Appendix A, a detailed presentation of a four benchmarks in Appendix B, and a list of all the relevant
hyperparameters in Appendix C.

2 Capabilities

LINFA is designed as a general inference engine and allows the user to define custom input transformations, compu-
tational models, surrogates, and likelihood functions.

1 - User-defined input parameter transformations - Input transformations may reduce the complexity of infer-
ence and surrogate model construction in situations where the ranges of the input variables differ substantially
or when the input parameters are bounded. A number of pre-defined univariate transformations are provided,
i.e, identity, tanh, linear, and exp. These transformations are independently defined for each input
variable, using four parameters (a, b, c, d), providing a nonlinear transformation between the normalized in-
terval [a, b] and the physical interval [c, d]. Additional transformations can be defined by implementing the
following member functions.

• forward - It evaluates the transformation from the normalized to the physical space. One transformation
needs to be defined for each input. For example, the list of lists
trsf_info = [[’tanh’,-7.0,7.0,100.0,1500.0],

[’tanh’,-7.0,7.0,100.0,1500.0],
[’exp’,-7.0,7.0,1.0e-5,1.0e-2]]

defines a hyperbolic tangent transformation for the first two variables and an exponential transformation
for the third.

• compute log jacob func - This is the log Jacobian of the transformation that needs to be included in
the computation of the log posterior density to account for the additional change in volume.

2 - User-defined computational models - LINFA can accommodate any type of models from analytically de-
fined posteriors with the gradient computed through automatic differentiation to legacy computational solvers
for which the solution gradient is not available nor easy to compute. New models are created by implementing
the methods below.

• genDataFile - This is a pre-processing function used to generate synthetic observations. It computes
the model output corresponding to the default parameter values (usually defined as part of the model)
and adds noise with a user-specified distribution. Observations will be stored in a file and are typically
assigned to model.data so they are available for computing the log posterior.

• solve t - This function solves the model for multiple values of the physical input parameters specified
in a matrix format (with one sample for each row and one column for each input parameter dimension).

3 - User-defined surrogate models - For computational models that are too expensive for online inference,
LINFA provides functionalities to create, train, and fine-tune a surrogate model. The Surrogate class
implements the following functionalities:

• A new surrogate model can be created using the Surrogate constructor.
• The limits (i.e. upper and lower bounds) are stored as a list of lists using the format [[low 0,
high 0], [low 1, high 1], ...].

• A pre-grid is defined as an a priori selected point cloud created inside the hyper-rectangle defined by
limits. The pre-grid can be either of type ’tensor’ (tensor product grid) where the grid order (num-
ber of points in each dimension) is defined through the argument gridnum, or of type ’sobol’, in which
case the variable gridnum defines the total number of samples.

• Surrogate model Input/Output. The two functions surrogate save() and surrogate load() are
provided to save a snapshot of a given surrogate or to read it from a file.

• The pre train() function is provided to perform an initial training of the surrogate model on the pre-
grid. In addition, the update() function is also available to re-train the model once additional training
examples are available.

• The forward() function evaluates the surrogate model at multiple input realizations. If a transforma-
tion is defined, the surrogate should always be specified in the normalized domain with limits coincident
with the normalized intervals.

4 - User-defined likelihood - A user-defined likelihood function can be defined by passing the parameters,
the model, the surrogate and a coordinate transformation using log density(x, model, surr, transf)
and then assigning it as a member function of the experiment class using:

exp.model logdensity = lambda x: log density(x, model, surr, transf).
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5 - Linear and adaptive annealing schedulers - LINFA provides two annealing schedulers by default. The first
is the ’Linear’ scheduler with constant increments. The second is the ’AdaAnn’ adaptive scheduler [13]
with hyperparameters reported in Table 7. For the AdaAnn scheduler, the user can also specify a different
number of parameter updates to be performed at the initial temperature t0, final temperature t1, and for any
temperature t0 < t < 1. Finally, the batch size (number of samples used to evaluate the expectations in the
loss function) can also be differentiated for t = 1 and t < 1.

6 - User-defined hyperparameters - A complete list of hyperparameters with a description of their functionality
can be found in Appendix C.

3 Numerical benchmarks

We tested LINFA on multiple problems. These include inference on unimodal and multi-modal posterior distribu-
tions specified in closed form, ordinary differential models and dynamical systems with gradients directly computed
through automatic differentiation in PyTorch, identifiable and non-identifiable physics-based models with fixed and
adaptive surrogates, and high-dimensional statistical models. Some of the above tests are included with the library and
systematically tested when pushing the master branch on GitHub. A detailed discussion of these test cases is provided
in Appendix B. LINFA can be installed through the Python Package Index (PyPI) typing

pip install linfa-vi

To run the tests type

python -m unittest linfa.linfa test suite.NAME example

where NAME is the name of the test case, either trivial, highdim, rc, rcr, or adaann.

4 Conclusion and Future Work

In this paper, we have introduced the LINFA library for variational inference, briefly discussed the relevant back-
ground, its capabilities, and report its performance on a number of test cases. Some interesting directions for future
work are mentioned below.

Future versions will support user-defined privacy-preserving synthetic data generation and variational inference
through differentially private gradient descent algorithms. This will allow the user to perform inference tasks while
preserving a pre-defined privacy budget, as discussed in [14]. LINFA will also be extended to handle multiple models.
This will open new possibilities to solve inverse problems combining variational inference and multi-fidelity surro-
gates [see, e.g., 15]. In addition, for inverse problems with significant dependence among the parameters, it is often
possible to simplify the inference task by operating on manifolds of reduced dimensionality [16]. New modules for
dimensionality reduction will be developed and integrated with the LINFA library. Finally, the ELBO loss typically
used in variational inference has known limitations, some of which are related to its close connection with the KL
divergence. Future versions of LINFA will provide the option to use alternative losses.

Acknowledgements

The authors gratefully acknowledge the support from the NSF Big Data Science & Engineering grant #1918692 and
the computational resources provided through the Center for Research Computing at the University of Notre Dame.
DES also acknowledges support from NSF CAREER grant #1942662.

A Background theory

A.1 Variational inference with normalizing flow

Consider the problem of estimating (in a Bayesian sense) the parameters z ∈ Z of a physics-based or statistical model

x = f(z) + ε,

from the observations x ∈ X and a known statistical characterization of the error ε. We tackle this problem with
variational inference and normalizing flow. A normalizing flow (NF) is a nonlinear transformation F : Rd ×Λ → Rd
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designed to map an easy-to-sample base distribution q0(z0) into a close approximation qK(zK) of a desired target
posterior density p(z|x). This transformation can be determined by composing K bijections

zK = F (z0) = FK ◦ FK−1 ◦ · · · ◦ Fk ◦ · · · ◦ F1(z0), (1)

and evaluating the transformed density through the change of variable formula [see 6].

In the context of variational inference, we seek to determine an optimal set of parameters λ ∈ Λ so that qK(zK) ≈
p(z|x). Given observations x ∈ X , a likelihood function lz(x) (informed by the distribution of the error ε) and
prior p(z), a NF-based approximation qK(z) of the posterior distribution p(z|x) can be computed by maximizing the
lower bound to the log marginal likelihood log p(x) (the so-called evidence lower bound or ELBO), or, equivalently,
by minimizing a free energy bound [see, e.g., 7].

F(x) = EqK(zK) [log qK(zK)− log p(x, zK)]

= Eq0(z0)[log q0(z0)]− Eq0(z0)[log p(x, zK)]− Eq0(z0)

[
K∑

k=1

log

∣∣∣∣det ∂zk
∂zk−1

∣∣∣∣
]
.

(2)

For computational convenience, normalizing flow transformations are selected to be easily invertible and their Jacobian
determinant can be computed with a cost that grows linearly with the problem dimensionality. Approaches in the
literature include RealNVP [8], GLOW [17], and autoregressive transformations such as MAF [18] and IAF [9].

A.2 MAF and RealNVP

LINFA implements two widely used normalizing flow formulations, MAF [18] and RealNVP [8]. MAF belongs
to the class of autoregressive normalizing flows. Given the latent variable z = (z1, z2, . . . , zd), it assumes
p(zi|z1, . . . , zi−1) = ϕ[(zi − µi)/e

αi ], where ϕ is the standard normal distribution, µi = fµi(z1, . . . , zi−1),
αi = fαi

(z1, . . . , zi−1), i = 1, 2, . . . , d, and fµi
and fαi

are masked autoencoder neural networks [MADE, 19].
In a MADE autoencoder the network connectivities are multiplied by Boolean masks so the input-output relation
maintains a lower triangular structure, making the computation of the Jacobian determinant particularly simple. MAF
transformations are then composed of multiple MADE layers, possibly interleaved by batch normalization layers [20],
typically used to add stability during training and increase network accuracy [18].

RealNVP is another widely used flow where, at each layer the first d′ variables are left unaltered while the remaining
d − d′ are subject to an affine transformation of the form ẑd′+1:d = zd′+1:d ⊙ eα + µ, where µ = fµ(z1:d′) and
α = fα(zd′+1:d) are MADE autoencoders. In this context, MAF could be seen as a generalization of RealNVP by
setting µi = αi = 0 for i ≤ d′ [18].

A.3 Normalizing flow with adaptive surrogate (NoFAS)

LINFA is designed to accommodate black-box models f : Z → X between the random inputs z =
(z1, z2, · · · , zd)T ∈ Z and the outputs (x1, x2, · · · , xm)T ∈ X , and assumes n observations x = {xi}ni=1 ⊂ X
to be available. Our goal is to infer z and to quantify its uncertainty given x. We employ a variational Bayesian
paradigm and sample from the posterior distribution p(z|x) ∝ ℓz(x,f) p(z), with prior p(z) via normalizing flows.

This requires the evaluation of the gradient of the ELBO (2) with respect to the NF parameters λ, replacing p(x, zK)
with p(x|zK) p(z) = ℓzK

(x,f) p(z), and approximating the expectations with their MC estimates. However, the
likelihood function needs to be evaluated at every MC realization, which can be costly if the model f(z) is compu-
tationally expensive. In addition, automatic differentiation through a legacy (e.g. physics-based) solver may be an
impractical, time-consuming, or require the development of an adjoint solver.

Our solution is to replace the model f with a computationally inexpensive surrogate f̂ : Z ×W → X parameterized
by the weigths w ∈ W , whose derivatives can be obtained at a relatively low computational cost, but intrinsic bias in
the selected surrogate formulation, a limited number of training examples, and locally optimal w can compromise the
accuracy of f̂ .

To resolve these issues, LINFA implements NoFAS, which updates the surrogate model adaptively by smartly weight-
ing the samples of z from NF thanks to a memory-aware loss function. Once a newly updated surrogate is obtained, the
likelihood function is updated, leading to a new posterior distribution that will be approximated by VI-NF, producing,
in turn, new samples for the next surrogate model update, and so on. Additional details can be found in [12].

4
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A.4 Adaptive Annealing

Annealing is a technique to parametrically smooth a target density to improve sampling efficiency and accuracy during
inference. In the discrete case, this is achieved by incrementing an inverse temperature tk and setting pk(z,x) =
ptk(z,x), for k = 0, . . . ,K, where 0 < t0 < · · · < tK ≤ 1. The result of exponentiation produces a smooth
unimodal distribution for a sufficiently small t0, recovering the target density as tk approaches 1. In other words,
annealing provides a continuous deformation from an easier to approximate unimodal distribution to a desired target
density.

A linear annealing scheduler [see, e.g., 7] with fixed temperature increments is often used in practice, where
tj = t0 + j(1− t0)/K for j = 0, . . . ,K with constant increments ϵ = (1− t0)/K. Intuitively, small temperature
changes are desirable to carefully explore the parameter spaces at the beginning of the annealing process, whereas
larger changes can be taken as tk increases, after annealing has helped to capture important features of the target
distribution (e.g., locating all the relevant modes).

The AdaAnn scheduler determines the increment ϵk that approximately produces a pre-defined change in the KL
divergence between two distributions annealed at tk and tk+1 = tk + ϵk, respectively. Letting the KL divergence
equal a constant τ2/2, where τ is referred to as the KL tolerance, the step size ϵk becomes

ϵk = τ/
√
Vptk [log p(z,x)]. (3)

The denominator is large when the support of the annealed distribution ptk(z,x) is wider than the support of the target
p(z,x), and progressively reduces with increasing tk. Further detail on the derivation of the expression for ϵk can be
found in [13].

B Detailed numerical benchmarks

B.1 Simple two-dimensional map with Gaussian likelihood

A model f : R2 → R2 is chosen in this experiment having the closed-form expression

f(z) = f(z1, z2) = (z31/10 + exp(z2/3), z
3
1/10− exp(z2/3))

T . (4)

Observations x are generated as
x = x∗ + 0.05 |x∗| ⊙ x0, (5)

where x0 ∼ N (0, I2) and ⊙ is the Hadamard product. We set the true model parameters at z∗ = (3, 5)T , with output
x∗ = f(z∗) = (7.99,−2.59)T , and simulate 50 sets of observations from (5). The likelihood of z given x is assumed
Gaussian and we adopt a noninformative uniform prior p(z). We allocate a budget of 4 × 4 = 16 model solutions to
the pre-grid and use the rest to adaptively calibrate f̂ using 2 samples every 1000 normalizing flow iterations.

Results in terms of loss profile, variational approximation, and posterior predictive distribution are shown in Figure 1.

0 20000 40000

Iterations

102

103

104

lo
g

lo
ss

2.960 2.980 3.000
zK,1

4.960

4.980

5.000

5.020

5.040

z K
,2

2

4

6

×10−30

7.000 8.000 9.000

x1

-2.800

-2.600

-2.400

x
2

Figure 1: Results from the trivial model. Loss profile (left), posterior samples (center), and posterior predictive
distribution (right).

B.2 High-dimensional example

We consider a map f : R5 → R4 expressed as

f(z) = Ag(ez), (6)
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where gi(r) = (2 · |2 ai − 1|+ ri)/(1 + ri) with ri > 0 for i = 1, . . . , 5 is the Sobol function [21] and A is a 4× 5
matrix. We also set

a = (0.084, 0.229, 0.913, 0.152, 0.826)T and A =
1√
2

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 .

The true parameter vector is set at z∗ = (2.75, −1.5, 0.25, −2.5, 1.75)T . While the Sobol function is bijective and
analytic, f is over-parameterized and non identifiabile. This is also confirmed by the fact that the curve segment
γ(t) = g−1(g(z∗) + v t) ∈ Z gives the same model solution as x∗ = f(z∗) = f(γ(t)) ≈ (1.4910, 1.6650, 1.8715,
1.7011)T for t ∈ (−0.0153, 0.0686], where v = (1,−1, 1,−1, 1)T . This is consistent with the one-dimensional
null-space of the matrix A. We also generate synthetic observations from the Gaussian distribution

x = x∗ + 0.01 · |x∗| ⊙ x0, and x0 ∼ N (0, I5). (7)

Results are shown in Figure 2.
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Figure 2: Results from the high-dimensional model. Loss profile, posterior samples, and posterior predictive distribu-
tion.

B.3 Two-element Windkessel Model

The two-element Windkessel model (often referred to as the RC model) is the simplest representation of the human
systemic circulation and requires two parameters, i.e., a resistance R ∈ [100, 1500] Barye· s/ml and a capacitance
C ∈ [1 × 10−5, 1 × 10−2] ml/Barye. We provide a periodic time history of the aortic flow (see [12] for additional
details) and use the RC model to predict the time history of the proximal pressure Pp(t), specifically its maximum,
minimum, and average values over a typical heart cycle, while assuming the distal resistance Pd(t) as a constant in
time, equal to 55 mmHg. In our experiment, we set the true resistance and capacitance as z∗K,1 = R∗ = 1000 Barye·
s/ml and z∗K,2 = C∗ = 5 × 10−5 ml/Barye, and determine Pp(t) from a RK4 numerical solution of the following
algebraic-differential system

Qd =
Pp − Pd

R
,

dPp

dt
=

Qp −Qd

C
, (8)

where Qp is the flow entering the RC system and Qd is the distal flow. Synthetic observations are generated by adding
Gaussian noise to the true model solution x∗ = (x∗

1, x
∗
2, x

∗
3) = (Pp,min, Pp,max, Pp,avg) = (78.28, 101.12, 85.75), i.e.,

x follows a multivariate Gaussian distribution with mean x∗ and a diagonal covariance matrix with entries 0.05x∗
i ,

where i = 1, 2, 3 corresponds to the maximum, minimum, and average pressures, respectively. The aim is to quantify
the uncertainty in the RC model parameters given 50 repeated pressure measurements. We imposed a non-informative
prior on R and C. Results are shown in Figure 3.

6



A PREPRINT - JULY 17, 2023

0 10000 20000

Iterations

103

104

lo
g

lo
ss

1000.0 1005.0
zK,1

4.5e-05

4.7e-05

5.0e-05

5.2e-05

z K
,2

2

4

6

8

×10−93

76 77 78 79 80

x1

100

102

104

x
2

Figure 3: Results from the RC model. Loss profile (left), posterior samples (center) for R and C, and the posterior
predictive distribution for Pp,min and Pp,max (right, Pp,avg not shown).

B.4 Three-element Wndkessel Circulatory Model (NoFAS)

The three-parameter Windkessel or RCR model is characterized by proximal and distal resistance parameters Rp, Rd ∈
[100, 1500] Barye·s/ml, and one capacitance parameter C ∈ [1 × 10−5, 1 × 10−2] ml/Barye. This model is not
identifiable. The average distal pressure is only affected by the total system resistance, i.e. the sum Rp +Rd, leading
to a negative correlation between these two parameters. Thus, an increment in the proximal resistance is compensated
by a reduction in the distal resistance (so the average distal pressure remains the same) which, in turn, reduces the
friction encountered by the flow exiting the capacitor. An increase in the value of C is finally needed to restore the
average, minimum and maximum pressure. This leads to a positive correlation between C and Rd.

The output consists of the maximum, minimum, and average values of the proximal pressure Pp(t), i.e.,
(Pp,min, Pp,max, Pp,avg) over one heart cycle. The true parameters are z∗K,1 = R∗

p = 1000 Barye·s/ml, z∗K,2 = R∗
d =

1000 Barye·s/ml, and C∗ = 5×10−5 ml/Barye. The proximal pressure is computed from the solution of the algebraic-
differential system

Qp =
Pp − Pc

Rp
, Qd =

Pc − Pd

Rd
,

d Pc

d t
=

Qp −Qd

C
, (9)

where the distal pressure is set to Pd = 55 mmHg. Synthetic observations are generated from N(µ,Σ), where
µ = (f1(z

∗), f2(z
∗), f3(z

∗))T = (Pp,min, Pp,max, Pp,ave)
T = (100.96, 148.02, 116.50)T and Σ is a diagonal matrix

with entries (5.05, 7.40, 5.83)T . The budgeted number of true model solutions is 216; the fixed surrogate model is
evaluated on a 6×6×6 = 216 pre-grid while the adaptive surrogate is evaluated with a pre-grid of size 4×4×4 = 64
and the other 152 evaluations are adaptively selected.

This example also demonstrates how NoFAS can be combined with annealing for improved convergence. The results
in Figure 4 are generated using the AdaAnn adaptive annealing scheduler with intial inverse temperature t0 = 0.05,
KL tolerance τ = 0.01 and a batch size of 100 samples. The number of parameter updates is set to 500, 5000 and
5 for t0, t1 and t0 < t < t1, respectively and 1000 Monte Carlo realizations are used to evaluate the denominator
in equation (3). The posterior samples capture well the nonlinear correlation among the parameters and generate a
fairly accurate posterior predictive distribution that overlaps with the observations. Additional details can be found
in [12, 13].

B.5 Friedman 1 model (AdaAnn)

We consider a modified version of the Friedman 1 dataset [22] to examine the performance of our adaptive annealing
scheduler in a high-dimensional context. According to the original model in [22], the data are generated as

yi = µi(β) + ϵi, where µi(β) = β1sin(πxi,1xi,2) + β2(xi,3 − β3)
2 +

∑10
j=4 βjxi,j , (10)

where ϵi ∼ N (0, 1). We made a slight modification to the model in (10) as

µi(β) = β1sin(πxi,1xi,2) + β2
2(xi,3 − β3)

2 +
∑10

j=4 βjxi,j , (11)

and set the true parameter combination to β = (β1, . . . , β10) = (10,±
√
20, 0.5, 10, 5, 0, 0, 0, 0, 0). Note that both (10)

and (11) contain linear, nonlinear, and interaction terms of the input variables X1 to X10, five of which (X6 to X10) are
irrelevant to Y . Each X is drawn independently from U(0, 1). We used R package tgp [23] to generate a Friedman 1
dataset with a sample size of n=1000. We impose a non-informative uniform prior p(β) and, unlike the original modal,
we now expect a bimodal posterior distribution of β. Results in terms of marginal statistics and their convergence for
the mode with positive zK,2 are illustrated in Table 1 and Figure 5.
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Figure 4: Results from the RCR model. Loss profile (left), posterior predictive distribution (center), and posterior
samples (right).

True Mode 1
Value Post. Mean Post. SD

β1 = 10 10.0285 0.1000
β2 = ±

√
20 4.2187 0.1719

β3 = 0.5 0.4854 0.0004
β4 = 10 10.0987 0.0491
β5 = 5 5.0182 0.1142
β6 = 0 0.1113 0.0785
β7 = 0 0.0707 0.0043
β8 = 0 -0.1315 0.1008
β9 = 0 0.0976 0.0387
β10 = 0 0.1192 0.0463

Table 1: Posterior mean and standard deviation
for positive mode in the modified Friedman test
case.
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Figure 5: Loss profile (left) and posterior marginal statistics (right)
for positive mode in the modified Friedman test case.

C Hyperparameters in LINFA

This section contains the list of all hyperparameters in the library, their default values, and a description of the func-
tionalities they control. General hyperparameters are listed in Table 6, those related to the optimization process in
Table 5, and to the output folder and files in Table 2. Hyperparameters for the proposed NoFAS and AdaAnn ap-
proaches are listed in Table 3 and 7, respectively. Finally, a hyperparameter used to select the hardware device is
described in Table 4.

Table 2: Output parameters
Option Type Description
output dir string Name of output folder where results files are written.
log file string Name of the log file which stores the iteration number,

annealing temperature, and value of the loss function at
each iteration.

seed int Seed for random number generator.
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Table 3: Surrogate model parameters (NoFAS)
Option Type Description
n sample int Batch size used to generate results after save interval

iterations.
calibrate interval int Number of NF iteration between successive updates of

the surrogate model (default 1000 ).
budget int Maximum allowable number of true model evaluations.
surr pre it int Number of pre-training iterations for surrogate model

(default 40000 ).
surr upd it int Number of iterations for the surrogate model update (de-

fault 6000 ).
surr folder string Folder where the surrogate model is stored (default

’./’ ).
use new surr bool Start by pre-training a new surrogate and ignore existing

surrogates (default True ).
store surr interval int Save interval for surrogate model (None for no save, de-

fault None ).

Table 4: Device parameters
Option Type Description
no cuda bool Do not use GPU acceleration.

Table 5: Optimizer and learning rate parameters
Option Type Description
optimizer string Type of SGD optimizer (default ’Adam’ ).
lr float Learning rate (default 0.003 ).
lr decay float Learning rate decay (default 0.9999 ).
lr scheduler string Type of learning rate scheduler (’StepLR’ or

’ExponentialLR’ ).
lr step int Number of steps before learning rate reduction for the

step scheduler.
log interval int Number of iterations between successive loss printouts

(default 10 ).
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Table 6: General parameters
Option Type Description
name str Name of the experiment.
flow type str type of normalizing flow (’maf’,’realnvp’ ).
n blocks int Number of normalizing flow layers (default 5 ).
hidden size int Number of neurons in MADE and RealNVP hidden lay-

ers (default 100 ).
n hidden int Number of hidden layers in MADE (default 1).
activation fn str Activation function for MADE network used by MAF

(default ’relu’ ).
input order str Input order for MADE mask creation (’sequential’ or

’random’, default ’sequential’ ).
batch norm order bool Adds batchnorm layer after each MAF or RealNVP layer

(default True ).
save interval int How often to save results from the normalizing flow it-

erations. Saved results include posterior samples, loss
profile, samples from the posterior predictive distribution,
observations, and marginal statistics.

input size int Input dimensionality (default 2 ).
batch size int Number of samples from the basic distribution generated

at each iteration (default 100 ).
true data num int Number of additional true model evaluations at each sur-

rogate model update (default 2 ).
n iter int Total number of NF iterations (default 25001 ).

Table 7: Parameters for the adaptive annealing scheduler (AdaAnn)
Option Type Description
annealing bool Flag to activate the annealing scheduler. If this is False,

the target posterior distribution is left unchanged during
the iterations.

scheduler string Type of annealing scheduler (’AdaAnn’ or ’fixed’, de-
fault ’AdaAnn’ ).

tol float KL tolerance. It is kept constant during inference and
used in the numerator of equation (3).

t0 float Initial inverse temperature.
N int Number of batch samples during annealing.
N 1 int Number of batch samples at t = 1.
T 0 int Number of initial parameter updates at t0.
T int Number of parameter updates after each temperature up-

date. During such updates the temperature is kept fixed.
T 1 int Number of parameter updates at t = 1
M int Number of Monte Carlo samples used to evaluate the de-

nominator in equation (3).
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