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Ear Biometrics in Human Identification

Abstract

by

Ping Yan

Biometrics are physical or behavioral characteristics that can be used for hu-

man identification. Security plays an increasingly important role in our daily life,

and biometric technologies are becoming the solution to highly secure recognition

and verification of identity. In this dissertation, we propose the ear as a biometric

and investigate its potential with both 2D and 3D data.

Our work is the largest experimental investigation of ear biometrics to date.

The data set used for our experiments contains 415 persons, each with images

acquired on at least two different dates. Approaches considered include a PCA

(“eigen-ear”) approach with 2D intensity images and range images, a Hausdorff

matching of edges from range images, and an ICP-based approach to matching

the 3D data. Our experimental results demonstrate that the ICP-based approach

outperforms the other approaches at a statistically significant level.

Furthermore, we develop the first fully automated biometric system using 3D

ear shape. It is a complete automatic system starting with a raw 3D image,

through automated segmentation of the ear, and 3D shape matching for recogni-

tion. The automatic system achieves a rank-one recognition rate of 97.6% on a

415-subject dataset. Our algorithm also shows good scalability of recognition rate

with size of dataset. The results suggest a strong potential for 3D ear shape as a

biometric.
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In a biometrics scenario, gallery images are enrolled into the database ahead

of the matching step, which provides the opportunity to build related information

before the probe comes into the system. We present a novel approach, called “Pre-

computed Voxel Closest Neighbors”, to reduce the computational time for shape

matching in a biometrics context. The approach shifts the heavy computation

burden to the enrollment stage, which can be done offline. Experiments in 3D ear

and face biometrics demonstrate the effectiveness of the approach.

In addition, ear symmetry and partial ear shape experiments are investigated.

The results indicate that most people’s left and right ears are approximately bi-

laterally symmetric. However, some people have ears with recognizably different

shapes. Experimental results with partial ear shape suggest that minor hair cov-

ering does not affect the performance substantially, but large hair covering will

certainly reduce the recognition rate. This suggests that even in circumstances

where the complete ear shape cannot be captured, partial shape has potential for

recognition. This lends support for using ear shape as a biometric.

Our experiments use the biometric database collected at the University of

Notre Dame. This data set is available to other research groups.
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CHAPTER 1

INTRODUCTION

1.1 Ear Biometrics

Biometrics is the study of measuring physical or behavioral characteristics of a

person to verify or recognize his or her identity. Public safety and national security

enhance the needs for biometric techniques, which are among the most secure and

accurate authentication tools. External physical features such as fingerprints, face

and iris have received wide attention. Fingerprint and iris are generally considered

to allow more accurate biometric recognition than the face, but the face is more

easily used in surveillance scenarios where fingerprint and iris capture are not

feasible. However, the face by itself is not yet as accurate and flexible as desired

for this scenario due to illumination changes, expression changes, makeup or eye

glasses.

Ear images can be acquired in a similar manner to face images, and a number of

researchers have suggested that the human ear is unique enough to each individual

to allow practical use as a biometric. Several researchers have looked at using

features from the ear’s appearance in 2D intensity images [12, 14, 37, 38, 72].

A smaller number of researchers have looked at using 3D ear shape [8, 18]. In

fact, the ear may already be used informally as a biometric. For example, the

United States Immigration and Naturalization Service (INS) has a form giving

1



Figure 1.1. INS Form M-378 (6-92) Asking for the Right Ear to be
Visible.

specifications for the photograph that indicate that the right ear should be visible

[INS Form M-378 (6-92)], shown in Figure 1.1.

Researchers have suggested that the shape and appearance of the human ear

is unique to each individual and relatively little change occurs during the lifetime

of an adult [40]. The uniqueness of the ear appearance has not been proven,

but two studies mentioned in [40] provide empirical supporting evidence. The

medical report [40] shows that the variation over time is most noticeable during

the period from four months to eight years old and over 70 years old. The ear

growth between four months to eight years old is approximately linear, and after

that it is constant until around 70 when it increases again [12]. The stretch rate

due to gravity is not linear, but it mainly affects the lobe of the ear. Due to its

stability and predictable changes, ear recognition is being investigated as potential

biometric [8, 11, 12, 14, 37, 38, 40, 72]. Generally, ear images can be acquired in

a manner similar to face images, and used in the same scenarios.
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1.2 Overview of Our Work

Before we go into the details of our research, we present an overview of the

different topics, as shown in Figure 1.2. First we considered three different ap-

proaches for ear recognition. The results of that work suggested two routes. One

is combining two or more of the most effective approaches into a multi-modal ap-

proach. The other is to pursue the most promising single modality, which is the

ICP-based approach on a 3D point set.

Figure 1.2. An Overview of Our Research Work.
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We decided to focus on the single modality, an ICP-based approach on 3D ear

shape. Three aspects were explored. First several enhancements were investigated

to improve the accuracy of ICP algorithm. Next, in order to address the time

limitation of the ICP algorithm, we proposed a fast ICP-based algorithm for 3D

biometric application. Finally we examined the accuracy of the approach when

subjected to real world constraints, such as earrings and hair covering the ear.

Our work demonstrated that 3D ear shape could be used for recognition. How-

ever, there were still several manual stages of processing the data. In a commercial

system, these manual steps need to be automated. We chose to address the most

challenging problem: segmenting the ear from the profile images.

As a last topic to explore for whether the ear is a good biometric source,

we conducted two additional studies. First we compared the fully automatic ear

recognition system with a commercial face biometric system. Second, we looked

at ear characteristics as they affect matching.

1.3 Description of Our Work

A biometric system is essentially a pattern recognition system which uses a

specific physiological or behavioral characteristic of a person to determine their

identity or verify a claimed identity. Therefore, a biometric system can employ

the methodologies from pattern recognition. For our initial experiments, we con-

sider the use of both 2D and 3D images of the ear, using data from 302 subjects.

Approaches considered include a PCA (“eigen-ear”) approach with 2D intensity

images, achieving 63.8% rank-one recognition; a PCA approach with range im-

ages, achieving 55.3%; and a Hausdorff matching of edges from range images,

achieving 67.5%. Starting with the general ICP algorithm proposed by [5], we

4



obtained a 84.3% rank-one recognition rate on a 3D ear biometric. The promising

experimental results of the ICP-based approach suggest the strong potential for

3D ear shape as a biometric, and encourage us to investigate the ICP algorithm

further both for recognition accuracy and for computational time.

In a biometrics scenario, gallery images are enrolled into the database prior

to the matching step, which gives us the opportunity to build related information

before the probe comes into the system. In this dissertation, we present a novel

approach, called “Pre-computed Voxel Closest Neighbors”, to reduce the compu-

tational time for ICP shape matching in a biometrics context. The approach shifts

the heavy computation burden to the enrollment stage, which can be done offline.

Experiments in 3D ear biometric with 369 subjects and 3D face biometric with

219 subjects demonstrate the effectiveness of the approach.

Three algorithms have been explored on 2D and 3D ear images, and based on

that, three kinds of multi-biometrics are considered: multi-modal, multi-algorithm

and multi-instance. Various multi-biometric combinations all result in improve-

ment over a single biometric. Multi-modal 2D PCA together with 3D ICP gives the

highest performance. To combine 2D PCA-based and 3D ICP-based ear recog-

nition, a new fusion rule using the interval distribution between rank one and

rank two outperforms other simple combinations. The rank one recognition rate

achieves 91.7% with 302 subjects in the gallery. In general, all the approaches

perform much better when multiple images are used to represent one subject. In

our dataset, 169 subjects had 2D and 3D images of the ear acquired on at least

four different dates, which allowed us to perform multi-instance experiments. The

highest rank one recognition rate was 97% with the ICP approach used to match a

two-image-per-person probe against a two-image-per-person gallery. In addition,
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we found that different fusion rules perform differently on different combinations.

The min rule works well when combining the multiple presentations of one sub-

ject, while the sum rule works well when combining multiple modalities.

Extending our previous work, we developed the first fully automated system for

ear biometric using 3D shape. There are two major parts to the system: automatic

ear region segmentation and 3D ear shape matching. Starting with the multi-

modal 3D+2D image acquired in a profile view, the system automatically finds

the ear pit by using skin detection, curvature estimation and surface segmentation

and classification. After the ear pit is detected, an active contour algorithm using

both color and depth information is applied, and the contour expands to find the

outline of the visible ear region.

We have found that the active contour (AC) algorithm is well suited for de-

termining the ear region. The ear pit makes an ideal starting point. The AC

algorithm grows until it finds the ear edge, and is robust in its ability to exclude

earrings and occluding hair. When the active contour finishes, the outlined shape

is cropped from the 3D image, and the corresponding 3D data is then used as the

ear shape for matching. The matching algorithm achieves a rank-one recognition

rate of 97.6% on a 415-subject dataset. In order to demonstrate the compe-

tence of our automatic ear segmentation, two other experiments are conducted

on the same dataset. A comparable rank-one recognition rate using the previous

manually-assisted ear cropping that uses a fixed template rather than the active

contour is 96.4%. And a comparable rank-one recognition rate with everything

being the same except the the location of the ear pit is manually marked is 97.1%.

This dissertation is organized as follows. A review of related work is given in

chapter 2. Chapter 2 covers general ear biometrics. A review of ICP related work
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is given in the chapter 5. In chapter 3, we describe the experimental method and

materials used in our work. The preprocessing steps described here are relevant

mainly to the methods in chapter 4, 5 and 6.

Chapter 4 details three approaches we have examined for ear biometrics: PCA-

based, edge-based and ICP-based approaches. In chapter 4, we consider each of

these approaches individually, and compare their performance. We find that an

ICP approach on 3D data performs the best of the approaches considered. There-

fore the remaining chapters focus on developing and evaluating this approach.

Chapter 5 addresses the problem of creating a faster version of the general ICP

approach by exploiting the biometrics application context. The “Pre-computed

Voxel Closest Neighbor” strategy improves the speed of the ICP algorithm without

losing recognition accuracy.

Multi-modal biometric approaches are discussed in Chapter 6. We explore

multi modalities, multi algorithms and multi instance on 2D and 3D ear data,

and all improve over the performance of a single biometric. This is consistent

with other multi-modal biometrics results. We also consider multi modality using

3D ear and 3D face shapes. With a 174-subject dataset, we achieve a 100% rank-

one recognition rate.

Chapter 7 presents the details of the automatic ear recognition system. Using

curvature information and an active contour algorithm, we are able to locate the

ear from the profile image. The algorithm demonstrates the robustness of the

handling hair and earring.

In chapter 8, we discuss the ear symmetry and partial ear experiments. In

order to make a strong claim that the ear can be used as a biometric, we need to

quantify its characteristics. We chose to look at these areas: How much of the ear
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do you need to capture in order to use it for recognition? Are the left and right

ears of one person symmetric?

Chapter 9 gives the comparison between our ear biometrics with other face

biometrics. The results validate the promising potential of the ear as a biometric.

Conclusions and future work are presented in chapter 10.
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CHAPTER 2

LITERATURE REVIEW

As we mentioned before, many research studies have proposed the ear as a

biometric. Researchers have suggested that the shape and appearance of the hu-

man ear is unique to each individual and relatively unchanging during the lifetime

of an adult. There are several studies that address the question of uniqueness

and classification of ears. No one can really prove the uniqueness of the ear, but

two studies mentioned in [11, 12] provide empirical supporting evidence. In 1906,

Imhofer found that only 4 characteristics were needed to distinguish a set of 500

ears [35]. The most prominent work is perhaps that done by Iannarelli (1989)[40].

In his work, over 10,000 ears were examined and no indistinguishable ears were

found. Iannarelli developed an anthropometric technique for ear identification. A

total of 12 measurements are used in the “Iannarelli System”, illustrated in Figure

2.1(b).

The system requires special manual alignment and normalization of the right

ear 2D images. Here is the process as described by Iannarelli:

Once the ear is focused and the image is contained within the easel

boundaries, adjust the easel carefully until the oblique guide line is

parallel to the outer extreme tip of the tragus flesh line... The oblique

line should now be barely touching the tip of the tragus. [The left two

9



(a) Anatomy (b) 12 Measurements used in ‘Iannarelli Sys-
tem”

Figure 2.1. Illustration of the Iannarelli System. In (a) 1. Helix Rim, 2.
Lobule, 3. Antihelix, 4. Concha, 5. Tragus, 6. Antitragus, 7. Crus of

Helix, 8. Triangular Fossa, 9. Incisure Intertragica (adapted from [12]).
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short white lines in Figure 2.1(b)] Move the easel slightly, keeping the

oblique line touching the tip of the tragus, until the upper section of

the oblique guide line intersects the point of the ear image where the

start of the inner helix rim overlaps the upper concha flesh line area

just below the slight depression or hollow called the triangular fossa ...

When the ear image is accurately aligned using the oblique guide

line, the ear image has been properly positioned. The technician must

now focus the ear image to its proper size. The short vertical guide

line [The long vertical white line in Figure 2.1(b)] on the easel is used

to enlarge or reduce the ear image to its proper size for comparison

and classification purposes. ([40] pp.83-84)

These examples indicate that the ear is possibly uniquely distinguishable on a

limited number of features or characteristics. The medical report [40] shows that

the variation over time is most noticeable during the period from four months to

eight years old and over 70 years old. Due to the ear’s stability and predictable

changes, ear features are potentially a promising biometric for use in a human

identification [8, 11, 12, 14, 37, 40, 72].

Moreno et al. [54] experiment with three neural net approaches to recognition

from 2D intensity images of the ear. Their testing uses a gallery of 28 persons plus

another 20 persons not in the gallery. They find a recognition rate of 93% for the

best of the three approaches. They consider three methods of combining results of

the different approaches - Borda, Bayesian, and weighted Bayesian combination-

but do not find improved performance over the best individual method.

PCA (Principal Component Analysis) on 2D intensity images for ear biomet-

rics has been explored by Victor [72] and Chang [14]. The two studies obtained
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different results when compared with the performance of facial biometrics. Both

ear and face show similar performance in Chang’s study, while ear performance is

worse than face in Victor’s study. Chang suggested that the difference might be

due to differing ear image quality in the two studies.

Yuizono [82] implemented a recognition system for 2D intensity images of the

ear using genetic search. In their experiments they had 660 images from 110

persons, with 6 images per person. And the 6 images were selected from a video

stream. The first three of these are used as gallery images and the last three are

probe images. They reported that the recognition rate for the registered persons

was approximately 100%, and the rejection rate for unknown persons was 100%.

Bhanu and Chen presented a 3D ear recognition method using a local surface

shape descriptor in [8]. Twenty range images from 10 individuals are used in the

experiments and each subject has two images to represent. A 100% recognition

rate is reported for their ear recognition system. In [18], Chen and Bhanu use a

two-step ICP algorithm on a dataset of 30 subjects with 3D ear images. They

reported that this method yielded 2 incorrect matches out of 30 persons. In these

two works, ears are manually extracted from profile images. They also presented

an ear detection method in [19]. In the offline step, they build an ear model

template from each of 20 subjects using the average histogram of the shape index

[48]. In the online step, first they use a step edge detection and thresholding to

find the sharp edge around the ear boundary, and then apply dilation on the edge

image and connected-component labeling to search for ear region candidates. Each

potential ear region is a rectangular box, and it grows in four directions to find

the minimum distance to the model template. The region with minimum distance

to the model template is the ear region. They get 91.5% correct detection with
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2.5% false alarm rate. No ear recognition is reported based on this ear detection

method.

Hurley et al. [37] developed a novel feature extraction technique by using force

field transformation. Each image is represented by a compact characteristic vector,

which is invariant to initialization, scale, rotation and noise. The experiment

displays the robustness of the technique to extract the 2D ear. Their extended

research applies the force field technique to ear biometrics [38]. In the experiments,

they use 252 images from 63 subjects, with 4 images per person collected during

4 sessions over a 5-month period, and no subject is included if the ear is covered

by hair. A classification rate of 99.2% is claimed on this 63-person dataset. The

dataset comes from the XM2VTS face profiles database [53].

Choras̀ [21] analyzes the possibility of using the human ear as a biometric. The

paper explores the dimension of 2D ear space, and introduces an ear recognition

method based on geometric feature extraction. They claim that error-free recog-

nition is obtained on “easy” images from their database. The “easy” images are

the images of very high quality, with no earring and hair covering, and without

illumination changes. No detailed experiment setup is reported.

Pun and Moon [60] have surveyed the comparatively small literature on ear

biometrics. They summarized elements of five approaches for which experimental

results have been published [8, 11, 14, 37, 82]. In Table 2.1 we compare different

aspects of these and other published works.

In this dissertation, we will first look at various methods of 2D and 3D ear

recognition. Our work found that an ICP-based approach statistically signifi-

cantly outperformed the other approaches considered for 3D ear recognition, and

also statistically significantly outperformed the 2D “eigen-ear” result [14]. There-
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TABLE 2.1

Recent Ear Recognition Studies, * G=Gallery, P= Probe.

Reference Data
Used

Dataset
Size

Time
Lapse

Number
of G/P*

Method
Applied

Earrings
/Occlu.

Reported
Perfor.

Chen &
Bhanu [18]

3D 30 × 2 Same
Day

1/1 ICP NO 93%

Hurley &
Nixon [38]

2D 63 × 4 5 Month 1/1 PCA NO 99.2%

Moreno et
al. [54]

2D 28 × 6 Different
Days

1/1 Neural
Net

Not
mention

93 %

Yuizono et
al. [82]

2D 110 ×
6

Same
Day

3/3 Genetic
search

Not
mention

100%

Victor &
Chang [14]

2D 88 × 2 15
Month

1/1 PCA No 73%

Choras̀ [21] 2D N/A Same
Day

N/A Feature-
based

No 100%

fore an ICP-based approach is extensively investigated and used as the matching

algorithm in our later work. Thus although other approaches to 2D ear recogni-

tion may perform differently, it appears that ear recognition based on 3D shape

is more powerful than based on 2D appearance.

Of the publications reviewed here, only two works [8, 18] deal with biometrics

based on 3D ear shape. The largest dataset, in number of persons, is 110 [82].

And the presence or absence of earrings is not mentioned, except for [14, 80], in

which earrings are excluded.

Comparing with the publications reviewed above, the work presented in this

dissertation is unique in several points. We report results for the largest ear

biometrics study to date, in terms of number of persons (415) and in terms of

number of images (830). Our work is able to deal with the presence of earrings.
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Ours is the only work to fully automatically detect the ear from a profile view

and segment the ear from the surroundings. Because we use a large experimental

dataset, we are also able to explore how the different algorithms scale with number

of persons in the gallery. Ours is the only work to show the effect of multi-image

representations, and is the most extensive work on multi-modal ear biometrics.
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CHAPTER 3

DATA ACQUISITION AND PREPROCESSING

3.1 Data Acquisition

All the images used in this work were acquired at the University of Notre

Dame. In each acquisition session, the subject sat approximately 1.5 meters away

from the sensor, with the left side of the face facing the camera. Data was acquired

with a Minolta VIVID 910 range scanner, shown in Figure 3.1. The technology

of the VIVID 910 scanner is based on using a projected laser light strip. The

light reflected from the scanned object is imaged by a CCD camera, and 3D data

is then generated by employing triangulation using the known geometric relation

between the projector and camera. In high resolution mode, 640 x 480 individual

points can be measured per scan. In addition to 3D data, one 640 x 480 color

image data is acquired nearly simultaneously with the same CCD by applying a

rotating filter to separate the acquired light [2].

From 497 people that participated in two or more image acquisition sessions,

there were 415 who had good 2D and 3D ear images in two or more sessions.

No special instructions were given to the participants to make the face profile

images particularly suitable for this ear biometrics study, and 817 out of 2,709

images were dropped for various quality control reasons: 381 instances with hair

obscuring most of the ear, 74 cases with artifacts due to motion during the scan,
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Figure 3.1. The Minolta VIVID 910.

and 362 cases with poor image quality in either the 3D and / or the 2D. See

Figure 3.2 for examples of these problems. Using the Minolta scanner in the

high resolution mode that we used may make the motion artifact problem more

frequent, as it takes 8 seconds to complete a scan. There is a “fast mode” that

has a shorter acquisition time but only 320 X 240 sample points.

If the subject sits still during acquisition, the 3D and 2D scans are registered

as obtained. In some cases with slight subject motion inbetween the 3D and 2D

scans, the registration could be manually corrected by marking the same point in

each scan and translating the 2D in X and Y. We used the “Incisure Intertragica”

(shown in Figure 2.1) for each ear in our experiment. of In cases of large subject

motion, or motion during the several seconds of the 3D scanning time, the data

had to be discarded.
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The earliest good image for each of the 415 persons was used to create the

gallery. The gallery is the set of images that a “probe” image is matched against

for identification. The latest good image of each person was used as the probe

for that person. This results in an average of 8.7 weeks time lapse between the

gallery and probe images used in our experiments.

(a) Hair-covered Ear (b) Hair-covered Ear

(c) Dark Image in 2D (d) Subject Motion

Figure 3.2. Examples of Images Discarded for Quality Control Reasons.
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3.2 Data Preprocessing

The purpose of the preprocessing is to minimize the variation in the acquired

image, while keeping the characteristic features of the subject. Different prepro-

cessing methods were applied to 2D intensity data and 3D range data.

3.2.1 2D Data Normalization

We performed the 2D data normalization in two steps. First is the geometric

normalization. Ears were aligned using two manually identified landmark points.

The distance between the two points was used for scale, which means that all

the extracted ears have the same distance between the Triangular Fossa and the

Incisure Intertragica [40] (see Figure 3.7 for an example). Similarly, the orientation

of the line between the two points is used for rotation. After normalization, the

line between these two points is vertical in the xy plane. The second step is

histogram equalization, which is used to compensate for lighting variation between

images. These preprocessing steps are analogous to those in standard use in face

recognition from 2D intensity images [7] and those used in previous PCA-based

ear recognition using 2D intensity images [14].

3.2.2 3D Data Normalization

The normalization discussed next applies to preparing the range image from

the 3D data for the 3D PCA and 3D edge-based approaches. No preprocessing

is applied for the 3D ICP. 3D image normalization is more complicated than 2D

normalization, due to z-direction rotation, holes and missing data [8, 14]. Three

steps of the 3D normalization are 3D pose normalization, pixel size normalization

for the range images and hole filling.
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Normalization of 3D ear pose is required to create the range image for the

3D PCA and Hausdorff edge matching. In this study, the pose of the ear is

determined by the orientation of the face plane connected with the ear. Three

points are marked near the ear on the z-value image, as shown in Figure 3.3. To

obtain a more stable result, all the range points inside the triangle are used for

plane fitting (1). The normal of the face plane P is ~n =< a, b, c >, where

ax + by + cz = d, and a2 + b2 + c2 = 1. (3.1)

Figure 3.3. Three Points Used For Plane Fitting.
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After computing the normal of the plane, we align it to a reference plane

with uniform normal ~n2 =< 0.199, 0,−0.98 >. The rotation is around the axis

( ~n1 ⊗ ~n2), and the angle of the rotation is arccos( ~n1 � ~n2). At the same time, the

two-point landmark is used to correct the orientation of the ear in the x-y plane.

This rotation is around the Z axis < 0, 0, 1 >.

Rotation is implemented by the quaternion, represented as:

q = w + xi + yj + zk; (3.2)

where i2 = j2 = k2 = -1, and w is a real number.

A rotation around an arbitrary axis < ax, ay, az > in 3D space by θ can be

converted to a quaternion as:

w = cos(θ/2)

x = ax × sin(θ/2)

y = ay × sin(θ/2)

z = az × sin(θ/2)

(3.3)

Compared with Euler angle representation, quaternion representation provides

an easier way to concatenate several rotations. Given two unit quaternions, Q1 =

(w1, x1, y1, z1) and Q2 = (w2, x2, y2, z2), a combined rotation of Q1 and Q2 is

achieved by:

w = w1w2 − x1x2 − y1y2− z1z2

x = w1x2 + x1w2 + y1z2 − z1y2

y = w1y2 + y1w2 + z1x2 − x1z2

z = w1z2 + z1w2 + x1y2 − y1x2

(3.4)
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At the end of the orientation normalization, the ear is facing at < 0.199, 0,−0.98 >,

and the two-point landmark is perpendicular to the x-z plane. Figure 3.4 shows

the two rotations separately.

The second step of the 3D data normalization is the 2D x-y calibration. The

images used for the PCA-based and edge-based methods are cropped depth images

taken from the 3D range data. In the raw 3D data obtained from the Minolta, the

x and y values are not evenly spaced across the image. The spacing varies with

the distance between the subject and camera. Thus one preprocessing step is that

the x and y distance between two pixels is normalized to be same in all images,

so that the size of a particular person’s ear in pixels is constant across different

range images of that person.

Figures 3.5(a) - 3.5(b) show the images of an ear taken at different times. It

is obvious that the second ear appears larger than the first in the original images.

But after normalization, the two ears shown in Figure 3.5(c) - 3.5(d) have the

same size.

The third component of the 3D normalization is a hole filling process. There

are two ways in which “missing” data can occur. The first is caused by the 3D

sensor due to oily skin or lighting condition, and the second is because of the rota-

tion of the data. Before rotation, the intervals between the x- neighborhoods and

y- neighborhoods are almost evenly distributed. But after rotation, the interval

between the x-, y- neighborhoods is distorted, especially when the point of view

is changed significantly. From initial experiments, we decided to use a median

filter to fill the holes caused by the sensor, and correct the rotation missing data

by a mean filter. The window size for both operations is 5 × 5. Figure 3.6 shows

an image before and after hole filling. The problem of “missing” data after a 3D
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(a) Original Image (b) Rotation around the Normal of the Plane

(c) Rotation around Z axis

Figure 3.4. Two Step Rotation to Normalize Pose.
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(a) Original Image 1 (b) Original Image 2

(c) After x, y Calibration of (a) (d) After x, y Calibration of (b)

Figure 3.5. Pixel Size Calibration.
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(a) Original range data with missing data (b) After applying median and mean filters

Figure 3.6. Hole Filling For 3D Range Data.

image is rotated to be viewed from a standard orientation is an inherent compli-

cation. In general, matching techniques must either “fill in” the missing data in

some way, or allow for subset matching between datasets.

3.2.3 Landmark Selection

We have investigated three different landmark selection methods. The first

is the two-point landmark described in a study of “eigen-ears” with 2D intensity

images [14]. The upper point is the Triangular Fossa, and the lower point is the

Antitragus [40], see Figure 3.7(a). However, we found that these two points are

not easily detected in all images. For instance, many ears in our study have a

small or indistinct Antitragus. In order to solve this problem, two other landmark

methods were investigated. The second is similar to the first two-point landmark,

but we used the Incisure Intertragica instead of the Antitragus as the second

point, as shown in Figure 3.7(b). The orientation of the line connecting these two

points is used to determine the orientation of the ear, and distance between them
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(a) Landmark1: Using Triangular Fossa and Antitragus

(b) Landmark2: Using Triangular Fossa and Incisure Intertragica

(c) Landmark3: Using Two Lines

Figure 3.7. Example of Ear Landmarks.
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is used to measure the size of the ear. The third method uses a two-line landmark,

shown in Figure 3.7(c). One line is along the border between the ear and the face,

and the other is from the top of the ear to the bottom. Unlike the two-point

landmark, the two-line landmark promises to find the most part of the ear. In

our experiments, the second method is adopted for further ear extraction in PCA-

based and edge-based algorithm, since it is good at blocking out background and

avoiding ambiguity. The two-line landmark is used in the ICP-based algorithm,

since it is better suited to the ICP algorithm properties. ICP uses the real 3D range

data in the matching procedure and the two matching surfaces should overlap. The

two-line landmark gives the opportunity to extract the whole ear for matching,

but at the same time, it always includes some background, which increases the

background variation, and affects the PCA-based and edge-based performance.

3.3 Ear Extraction

Ear extraction is based on the landmark locations in the original images. The

original ear images are cropped to (87x124) for 2D and (68x87) for 3D ears.

The reason for different ear size for the 2D and 3D data is due to different

pre-processing methods. The two-point landmark is used to calibrate both the

orientation and scale of the 2D ear data, but only the orientation of the 3D ear

data. For each extracted 2D ear, the two landmarks are mapped into the same

locations in the image, and the ear size is scaled with the template size. But 3D

data is in an absolute 3D space value, and the ear size different from person to

person. When we used the same 2D ear template size for the 3D data, a larger

ear background appeared in the cropped ear. Therefore, we shrank the template

size for 3D ears to reduce the amount of background. The normalized images are
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(a) Mask (b) 2D Intensity Ear (c) 3D Depth Ear

Figure 3.8. Examples of Ear Mask and Cropped 2D and 3D Ear.

masked to “gray out” the background and only the ear is kept. Figure 3.8 shows

the mask and examples of the cropped 2D and 3D ear images.

28



CHAPTER 4

PCA-, EDGE- AND ICP-BASED APPROACHES 1

Three approaches are compared in this chapter: PCA-based, edge-based and

ICP-based. The PCA-based approach is experimented with using both 2D and

3D ear data, while the edge-based approach is applied to the 3D range image and

the ICP-based approach to the 3D point cloud. The ICP-based approach has been

extensively investigated with respect to both recognition accuracy and speed.

While we were first investigating these approaches, we had a dataset with just

202 subjects. After more image acquisitions, the dataset was expanded to the 302-

subject version used in this chapter. All the experiments run on the 202-subject

dataset are rerun on the 302-subject dataset to validate our conclusions.

4.1 PCA for 2D and 3D Ear Recognition

4.1.1 PCA (”Eigen Ear”) Method

The PCA (Principal Component Analysis) based approach has been widely

used in face recognition [13, 15, 56, 69, 71]. It was also used previously by Chang

[14] in evaluation of 2D ear and face biometrics.

1Sections 4.1 and 4.2 are based on the paper, “Ear Biometrics Using 2D and 3D Images”,
presented at the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops: Advanced 3D Imaging for Safety and Security, 2005 [77]. Section
4.3 is based on the paper, “ICP-Based Approaches for 3D Ear Recognition”, presented at the
Biometric Technology for Human Identification Conference, 2005 [81].
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The eigenface approach for recognition was first proposed by Turk and Pent-

land [71]. They used PCA to create an eigenspace for all subjects in the database.

The PCA subspace is defined by a covariance matrix formed by the training im-

ages. Each image contains n = rows× columns pixels, and these n pixels can be

viewed as a column vector v. A set of m training images T = {I1, I2, ....Im} thus

can be represented by a set of column vectors V = {v1, v2, ..., vm}. The covariance

matrix Ω of V is defined as follows:

V =
1

m

m∑

i=1

vi (4.1)

A = V − V (4.2)

Ω = AAT (4.3)

The eigenspace of the training images is spanned by the eigenvectors of Ω,

E = {e1, e2, ...en}. Usually the eigenvectors are sorted by their corresponding

eigenvalues from large to small. In order to reduce the data dimension, only the

top x eigenvectors Ex which represent the major variance in the dataset are used

for the “face space” or in this case, the “ear space”.

The PCA recognition algorithm is the nearest neighbor classifier operating on

the eigen-subspace Ex. Given two test images I1, I2, the similarity of I1 and

I2 is measured by the distance between the projections of two images onto the

eigen-subspace, I
′

1 and I
′

2.

I
′

i = Ex(Ii − V ) (4.4)

There are several possible measurements of the distance between I
′

1 and I
′

2,

and a detailed description can be found in the manual of [7]. In our experiments,
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a standard PCA based algorithm is used. Figure 3.8 shows an example of the

images we used for PCA.

For each of the 302 subjects, the earliest good quality 2D and 3D images

are used for the 2D and 3D ear space galleries, respectively. The latest good

quality images are used as probes. For PCA-based algorithms, eigenvalues and

eigenvectors are computed from the images in the training set. In our experiment,

the training set is the set of gallery images. The “ear space” is picked out from

the eigenvectors corresponding to all the eigenvalues. Starting with all of the

eigenvectors, we drop eigenvectors one at a time form the beginning of the list

until the performance gets worse. The we also drop eigenvectors from the end of

the list using the same procedure. The best rank-one recognition rate for 2D ear

data is 63.6% when dropping the first 2 and the last 23 eigenvectors. The best

performance for the 3D ear data is 55.3% when dropping the first two eigenvectors.

The Yambor Angle [26] distance metric is used. The Euclidean and MahCosine

distance were also tested but gave lower performance.

4.1.2 2D Ear Data

Two versions of the same gallery/probe datasets with different scaling of the

ear sizes are examined on 2D data. One is set as the actual size of the ear, and

the other is set at 1.25 times the size of ear (see Figure 4.1).

Figure 4.3 shows the performance of PCA using regular 2D ear size (Figure

4.1(a)). The performance is lower than that reported by Chang in his study of

2D “eigen-ears” [14]. Looking closely at the images created from the eigenvectors

associated with the 3 largest eigenvalues (Figure 4.2(a)), it was apparent that each

of them had some space behind the contour of ear. It is hypothesized that this
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(a) Regular ear size (b) 1.25 times regular size

Figure 4.1. Experiments Using Different 2D Ear Size.

space caused the decrease in performance. After enlarging the ear to 1.25 times

the original size (Figure 4.1(b)), there was no space behind the contour of ear

in Figure 4.2(b). The rank-one recognition rate increased from 66.9% to 71.4%

when using 202 subjects. Using the enlarged ear, the performance was 63.6%

when using 302 subjects, as shown in Figure 4.10. Here, in our eigen-ear results,

we go from 76.1% for a 88-person dataset to 63.6% with 302 subjects.

Chang obtained 73% rank-one recognition with 88 persons in the gallery and

a single time-lapse probe image per person [14]. Our rank one recognition rate

for PCA-based ear recognition using 2D intensity images with first 88 persons is

76.1%, which is similar to the result obtained by Chang, even though we used a

completely different image data set acquired by a different sensor and different

landmark points. Lower performance in the presence of a larger gallery is a well

known general effect in face recognition [57].
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(a) Eigen images of regular ear size

(b) Eigen images of enlarged ear size

Figure 4.2. Eigen Ear Images Associated With 3 Largest Eigenvalues.
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Figure 4.3. PCA Performance on 2D Ear Data Using Different Ear Size.
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4.1.3 3D Ear Data

Due to the range data preprocessing, the absolute distance between two pixels

in the X or the Y direction is same over all the images. Therefore, no scale process

is applied in the 3D ear extraction. Also, pre-alignment uses the landmark to align

the ear with same orientation. Two different experiments were conducted on the

3D ear data. One is using the original ear range data. The other is applying mean

and median filters on the original data to fill the holes of the cropped ear (see

Figure 3.6). The rank-one recognition rate is improved from 58.4% to 64.8% with

hole-filling when using 202 subjects. This is still not very good in an absolute

sense. One possible reason is that the ear structure is quite complex, and so using

mean and median filter alone might not be good enough to fill holes in the 3D

range data. Applying hole filling on the 302 subjects, the performance stays at

55.3% rank one recognition rate.

4.2 Hausdorff Range Edge Matching

4.2.1 Hausdorff Distance

Hausdorff distance (HD) [39] is an appropriate metric for 2-D object recogni-

tion and view-based 3-D recognition. Given as input the binary edge images of a

model image and a scene image, the algorithm computes the Hausdorff distance

between all possible relative positions of two images [76].

Given two point sets A = {a1, a2, ..., am} and B = {b1, b2, ..., bn}, the Hausdorff

distance between set A and set B is defined as:
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H(A, B) = max(h(A, B), h(B, A))

where

h(A, B) = max
a∈A

min
b∈B

‖ a − b ‖

(a) h(A,B)= d11 (b) h(B,A)= d21

Figure 4.4. Two Point Sets Illustrating the Hausdorff Distances.

Figure 4.4 shows an example of Hausdorff Distance of point sets A and B,

where A = {a1, a2} and B = {b1, b2, b3}. Also the algorithm considers simple

transformations such as rotation or scaling. Without loss of generality, it allows

only set B to translate and lets set A remain unchanged. The Hausdorff distance

under translation is measured as:

MT (A, B) = min
t

H(A, Translate of(B))
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where H is the Hausdorff distance as defined in equation (1), and Translate of is

a function used to implement scaling or rotation of set B. After the set B has been

translated, especially by the scaling, we might lose some property which is true of

the original image. In our experiments, we align all the ear images into same size

and orientation, therefore rotation is not considered in the Hausdorff matching.

Achermann and Bunke [3] use an extension of the Hausdorff distance matching

for the 3D face registration. Instead of using original 2D Hausdorff distance, they

introduce a 3-D version of the partial Hausdorff distance. All the computation

is based on the 3D space. In our experiment, the matching is between two edge

images, therefore, only 2D Hausdorff distance is computed during the procedure.

4.2.2 Hausdorff Matching with Ear Image

In order to use Hausdorff distance to measure the similarity of two ears, we

consider the binary edge image of both 2D and 3D depth ear image. We noticed

that the 3D depth data looks much “cleaner” than the 2D intensity data. Figures

4.5(a) and 4.5(b) show the 2D and 3D images taken on two different days of the

same person’s ear. The Canny edge detector with the same parameters is applied

to those 2D and 3D ear data, and the edge images are shown in Figure 4.5(c) and

4.5(d). Here, single isolated edge pixels are eliminated from the edge images. It is

obvious that edges from the range image are much more connected and smoother

than in the 2D edge images. This is the motivation to develop an edge-based

Hausdorff distance method using the range image.

The model images are the edge images from the gallery, and the test images are

the edge images from the probe. The Canny edge detector is applied on all of the

model and test images. The parameters are set to σ = 1.00, Tlow = 0.50, Thigh =
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(a) 2D intensity data (b) 3D Depth data

(c) Edge image of (a) (d) Edge image of (b)

Figure 4.5. 2D and 3D Ear Images and Associated Edge Images. Canny
Edge Detector Parameters are σ = 1.0, Tlow = 0.5, Thigh = 0.5.
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0.50. Also only the inner edges of an ear is used. The outside contour is from

the mask, and it is the same over all the images, therefore we drop it, as shown

in Figure 4.5(d). By applying the Hausdorff algorithm, the maximum distance D

between two ear edge images is obtained. Given a model image and a test image,

let the model image remain fixed, move the test image ±D pixels in x direction

and ±D pixels in y direction. At each position, the similarity between the test

image and model image is computed. The maximum similarity in this D × D

range is used as the measurement for matching.

The similarity is evaluated by the matching rate. Given an edge pixel in the

model image, if there are edge pixels within the threshold of Tmatch pixels in the

test image, then the pixel is a match. Here Tmatch = 3. The matching rate =

number of matching pixels

total edge pixels in model image
. The forward matching rate is the matching rate from

test image to model image, and the backward matching rate is the matching rate

from model image to test image. The forward and backward matching rate are

combined for the similarity measure. In our experiments, different weightings on

the forward and backward matching rate were tested, shown in Table 4.1.

There is no significant difference between various combinations of weighting

between 0.3 and 0.7. Applying a forward matching weight of 0.6 and a backward

matching weight of 0.4 on 302 subjects, the rank one recognition rate achieved

is 67.5%, which is significantly better than the 3D PCA performance, shown in

Figure 4.6.
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TABLE 4.1

Recognition Rate Using Different Combinations of FM and BM.

Forward Backward Recognition

Matching Matching Rate

0.7 0.3 142 out of 202

0.6 0.4 148 out of 202

0.5 0.5 146 out of 202

0.4 0.6 144 out of 202

0.3 0.7 142 out of 202
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Figure 4.6. Hausdorff Ear Recognition Performance.
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4.3 ICP-Based Approach

4.3.1 ICP Algorithm

Given a set of source points P and a set of model points X, the goal of ICP is to

find the rigid transformation T that best aligns P with X. Beginning with a start-

ing estimate T0, the algorithm iteratively calculates a sequence of transformations

Ti until the registration converges. At each iteration, the algorithm computes

correspondences by finding closest points, and then minimizes the mean square

difference between the correspondences. A good initial estimate of the transfor-

mation is required, and all scene points are assumed to have correspondences in

the model. The centroid of the extracted ear is used as a starting point in our

experiments in this chapter.

The general ICP algorithm requires no extracted features, or curvature com-

putation [5]. The only preprocessing of the range data is to remove the outliers.

In a 3D face image, the eyes and mouth are common places to cause holes and

spikes. 3D ear images do exhibit some spikes and holes due to oily skin or sensor

error, but much less than in the 3D face images. Our initial experiment does not

have outlier removal. We also consider a version of ICP that does some outlier

removal as part of the algorithm.

4.3.2 Initial Experiment

Our initial experiments used the ICP implementation in the VTK library [65].

This implementation uses an oct-tree data structure. In the first baseline exper-

iment, we use the same template size on both the gallery and probe ear images,

and it gives us a 74.8% rank one recognition rate. When a smaller ear template

is used on both gallery and probe ears, the performance increases to 79.7%. The

41



smaller ear template helps to exclude some background points, which improves

the ICP performance. Given a starting registration, the ICP process is guaranteed

to converge to a local minimum if the set of source points is a subset of the set of

the destination points [5]. To give the probe a better chance to be a subset of the

gallery ear, we used a larger template for the gallery ear, and a smaller one for

the probe ear. This improves the rank one recognition rate to 85.1%, as shown in

Table 4.2.

Another issue for ICP is computation speed. It takes 25-35 minutes to compute

one probe ear against 202 gallery ears if all the ear points are used. The average

number of data points for an ear is 5272 in our database, based on imaging the

ear with the Minolta Vivid 910 with the “Tele” lens. Sub-sampling of the original

range data will reduce the computational time significantly. Instead of using all

the points, every other row and column in the 3D image is selected. After sub-

sampling, the average number of the points on the ear is reduced to 1186. If both

gallery and probe ears are sub-sampled, it only takes 3-5 minutes to compute one

probe ear against all the gallery ears, but the rank one recognition rate decreased

to 83.7%. If only probe ears are subsampled, it takes 5-8 minutes for the same

computation, and the rank one recognition rate stays at 84.7%.

4.3.3 Noise Removal

Given a profile image, it is very difficult to isolate the ear without any back-

ground and noise around it. This problem will affect the ICP performance. One

observation is that the noise mostly occurs on the top part of the ear. The bottom

part of the ear is relatively clean, except when an earring appears. The blue line

in the truthwriting (on the right in Figure 3.7(c)), which goes through the ear
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TABLE 4.2

The ICP Performance by Using Different Masks for Gallery and Probe.

* The time is for matching one image against 202 images in the gallery.

Initial Experiments with 202 Person Dataset

Variation of ICP Algorithm Rank One Recognition Rate

Mask for max ear size for gallery and probe 74.8%

Mask for min ear size for gallery and probe 79.7%

Additional reduced mask for probe 85.1% (25-35 minutes*)

Subsample points for probe only 84.7% (5-8 minutes*)

from top to the bottom, defines the bottom boundary of the ear clearly. Taking

advantage of the fact that the ear edge is a continuous curve, we start from the

bottom point, and use a seed-growing method to trace the ear edge and eliminate

the noise. The big jump in the z depth value indicates a new ear edge point.

Also, this edge point should connect to the old edge point, which is defined in

the previous step. Figure 4.7(d)- 4.7(h) shows that this method effectively gives

us much “cleaner” images, although sometimes when the hair is too close to the

ear, this method fails. Figure 4.7(i)- 4.7(j) shows some missed cases. Rank-one

recognition on the 302 person dataset increased from 84.1% to 87.7% with this

additional step.

4.3.4 Speed Limitation

It is well known that the basic ICP algorithm is effective but time consuming

for 3D object registration [4, 22, 31, 32, 44, 50, 63]. In order to make it more

practical, it is necessary to speed up the algorithm. Two steps which are intended
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(a) (b) (c) (d)

(e) Remove Noise of (a) (f) Remove Noise of (b) (g) Remove Noise of (c) (h) Remove Noise of (d)

(i) Failed Case 1 (j) Failed Case 1

Figure 4.7. Examples of Noise Removal.
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to make the algorithm faster are considered in this section. One is to control the

number of iterations, and the other is to use appropriate data structures to shrink

the running time for each iteration.

The number of iterations is initially set as 50, but we found the error distance

decreases much faster in the first few iterations than in the later iterations. So

instead of using a fixed number of iterations, we measure the drop in the aver-

age distance between paired points between two consecutive iterations. Using a

threshold of 0.0001 for the average point difference in mm, the average of the

number of iterations decreases from 50 to 25.74, and the performance stays the

same.

In their experiments, Besl and Mckay reported that 95% of the running time is

attributed to determining the corresponding points. Our initial ICP implementa-

tion used an octree as the data structure. Following the suggestion of [5, 63, 67], a

k-d tree data structure was implemented. When using ICP to register two surfaces

T and S, the total time includes two major parts. One is to build a tree, and the

other is to find the closest point in the surface T for each point in surface S. The

search for the closest point can be speed up by using a tree structure to store the

point set. The traversal time for both octree and kd-tree are log n, where n is the

number of cells in the space after subdivision. Since our 3D data can have spikes

and noise, it is very easy for the octree to be unbalanced, but the k-d tree will not

suffer from this.

Table 4.3 shows that the ICP-based recognition performance using octree and

kd-tree ICP are essentially the same. The reason why octree and kd-tree have

slight different results is due to the different data structures. The cctree subdivides

the 3D space into small cells, and builds the tree upon these. When searching the
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TABLE 4.3

ICP Performance by Using Octree and K-d Tree. The performance

shows the rank one recognition rate, and the run time is the CPU time

to register one source surface to one target surface.

Subsample probe Octree K-D Tree

Performance Run Time (s) Performance Run Time (s)

1 87.1% 22.3 86.7% 3.41

2 87.4% 3.82 87.1% 0.98

4 86.4% 1.34 87.7% 0.61

8 75.2% 0.68 73.2% 0.48

16 14.6% 0.52 16.2% 0.40

closest point, the octree attempts to find the closest cell to the given point and

returns the point that is a projection from the given point to the plane created by

all the points in that closest cell. The comparison between the ICP performance

using Octree and K-d tree is presented in Table 4.3.

4.3.5 Outlier Elimination

When using the ICP algorithm to align two surfaces, the quality of alignment

depends highly on selecting good pairs of corresponding points from two surfaces.

When outliers or missing points occur, their corresponding points will distract the

alignment and generate a wrong transformation matrix. For the ear biometric,

hair is the most common cause of outliers, and sometimes minor hair covering

part of the ear is inevitable. Therefore outlier elimination becomes a requirement

for our system.
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An “outlier” match can occur when there is noise in one of the two point sets

or when there is a poor match. To improve performance, outlier elimination is

added to the original ICP implementation. Outlier elimination is accomplished

in two stages. During the calculation of the transformation matrix, we focus on

eliminating the spike noise [42, 84]. The approach is based on the assumption

that for a given noise point p on the probe surface, the distance from p to the

associated closest point gp on the gallery surface will be much larger than the

average distance. For each point p on the probe surface, we find the closest point

gp on the gallery surface. Let D = d(p, gp) represent the distance between the two

points. Only those pairs of points whose D is less than a threshold are used to

calculate the transformation matrix. Here the threshold is set as mean distance

+ R
2

2
, where the mean distance is the average distance of all point pairs, and R is

the resolution of the gallery surface.

The second stage occurs outside the transformation matrix calculation loop.

After the first step, one transformation matrix is generated to minimize the error

metric. We apply this transformation matrix on the source surface S and obtain

a new surface S ′. Each point on the surface S ′ will have a distance to the closest

point on the target surface. We sort all the distance values, and use only the lower

90% to calculate the final mean distance. Other thresholds have been tested, but

90% gives the best performance, which is consistent with the experience of other

researchers [59]. The two-stage outlier elimination method improved rank-one

recognition from 87.7% to 91.4%.
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(a) Gallery (b) Probe (c) Identified Outliers

Figure 4.8. Examples for Outlier Elimination.

4.3.5.1 Outlier Elimination Using AV Distance Metric

Since both outlier rejection and using the AV distance metric result in higher

performance, we combine these two approaches, by using the absolute distance

as the threshold. The rank-one recognition improved from 87.7% to 97.4%. This

might be because absolute value is more robust when outliers appear in the set of

correspondences.

Figure 4.8 shows an example of one pair of ears which is not correctly recog-

nized before using outlier elimination, but is correctly recognized after the addition

of this procedure. There is some hair around the right top edge of the ear which

affects the mean distance before using outlier elimination.

4.3.6 Point to Point vs. Point to Triangle Approach

Two approaches are considered for the ICP algorithm to match the points,

point-to-point [5] and point-to-triangle [20]. In the point-to-point approach we try

to find the closest point on the target surface. In the point-to-triangle approach we
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use the result from the point-to-point algorithm. After obtaining the closest point

on the target surface, all the triangles around this point are extracted. Then the

real closest point is the point on any of these triangles with the minimum distance

to the source point. From our experiments, it seems that each of the approaches

has pros and cons, and there is no clear winner when considering all situations.

As shown in Table 4.4, the point-to-point approach is fast, and accurate when

all the points on the source surface can find a good closest point on the target

surface. But if the gallery is subsampled, the point-to-point approach loses ac-

curacy. Since the probe and gallery ear images are taken on different days, they

vary in orientation. When both gallery and probe images are subsampled, it is

difficult to match points on the probe surface to their corresponding points on the

gallery surface. This serves to increase the overall mean distance value. But this

approach is much faster than point-to-triangle.

On the other hand, the greatest advantage of the point-to-triangle approach is

that it is accurate through all the different subsample combinations. Even when

the gallery is subsampled to every fourth row and column, the performance is still

acceptable. This behavior comes at a substantial computational expense. And in

our experiment, where we just take one scan of the ear, the presence of occlusion

is unavoidable. Therefore point-to-triangle will certainly give us more accurate

error distance.

Our final algorithm attempts to reduce the tradeoff between performance and

speed. The point-to-point approach is used during the iterations to compute the

transformation matrix. One more point-to-triangle iteration is done after obtain-

ing the transformation matrix to compute the error distance. We have learned

that using a gallery surface that is denser than the probe surface will sometimes
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yield better performance. The final results reflecting the revised algorithm are

shown in Table 4.4. After using the revised ICP implementation, when gallery

and probe are both subsampled, the performance is close to the point-to-triangle

approach, but requires significantly less computation time.

Table 4.4 leads to two conclusions. The first is that when the gallery and

probe surfaces have similar resolution, the revised ICP is fast and reasonably

accurate. The second is that when the gallery surface is much denser than the

probe surface, point-to-point is both fast and accurate. The highest rank-one

recognition is obtained with the point-to-triangle matching and no subsampling

of the data. However, this is computationally expensive. A more practical result

is obtained with our revised algorithm and subsample by 4 on the probe. Figure

4.9 shows the four mis-matches on the 302-subject dataset.

TABLE 4.4

ICP Performance by Using Point-To-Point, Point-To-Triangle and

Revised Version.

G = Gallery Point-To-Triangle Point-To-Point Revised version

P = Probe Perf. Run Time Perf. Run Time Perf. Run Time

G1P1 98.7% 4-5 hrs 95.7% 20-25 mins 95.4% 20-25 mins

G1P4 97.7% 20-25 mins 97.4% 1-2 mins 97.4% 1-2 mins

G2P4 97.7% 6-7 mins 94.7% 0.5-1 min 96.4% 0.8-1 mins

G4P4 94.7% 1 min 74.5% 0.2-0.3 min 89.4% 0.3-0.4 min
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(a) Hair Covered (b) Hair Covered (c) Hair Covered

(d) 2D Image of (a) (e) 2D Image of (b) (f) 2D Image of (c)

(g) Gallery (h) Probe

Figure 4.9. Four Incorrect Matches.

51



4.4 Statistical Significance Testing

4.4.1 Z-test with Bonferroni Correction

Four single-biometric experiments were explored extensively in the previous

sections, represented as CMC curves in Figure 4.10. The ICP-based approach has

the highest performance, followed by the 3D edge-based approach, then followed

by PCA approach on 2D intensity images, and PCA on the 3D range images.

Another 3D ear recognition method due to Bhanu and Chen [8] was initially

considered but dropped in favor of the other methods described. In order to

analyze the performance differences between methods, statistical significance tests

were conducted.

A test for significance of difference in observed rank one recognition rate can

be addressed as a binomial distribution problem. The correct matching rate is the

probability of success p and incorrect matching rate is the probability of failure q,

where p + q = 1. When the sample size becomes larger, the binomial distribution

begins to converge to a normal distribution. That is, for a large enough sample

size N, a binomial variable X is approximately to N(Np, Npq). Fairly good results

are usually obtained when Npq ≥ 3. Here, p̂ is the proportion of observed correct

matches. p̂ value for each method is shown in Table 4.5. In our circumstance,

sample size N = 302, with all Np̂q̂ ≥ 3.

Given two methods, with sample size as N1 and N2, and proportion of observed

correct matches as p̂1 and p̂2, the test statistic for H0 : p1 = p2 is

z =
p̂1 − p̂2√

(N1+N2

N1N2
)(X1+X2

N1+N2
)(1 − X1+X2

N1+N2
)

whereX1 = p̂1 × N1 and X2 = p̂2 × N2.
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Figure 4.10. Performance of Different Approaches.

TABLE 4.5

Proportion of Observed Correct Matches.

ICP 2D PCA 3D PCA Edge-based

p̂ 0.987 0.636 0.553 0.675

q̂ 0.013 0.364 0.447 0.325

Np̂q̂ 3.87 69.91 74.65 66.25
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Table 4.6 is constructed using 0.05 level of significance. It is well known that

significance levels from the pairwise comparisons might be misleading. Simply,

this means that when too many comparisons are carried out, there exists the

probability that the result suggests a statistically significant difference even if no

difference exists. And this kind of error is called type I error.

The Bonferroni correction has been used post hoc to determine the significance

of multiple tests [33]. It basically multiplies each of the significance levels from

the z test by the number of tests performed. If this value is greater than 0.05,

a significance level of 0.05 is used. This obviously makes it harder to claim a

significant result, and reduces the chance of making a Type I error to an acceptable

level.

TABLE 4.6

Statistical Test of the Difference between Performance, Using 0.05 level

of significance. H0 : There is no difference in performance between the

two methods. (*: It changes from reject to accept after Bonferroni

adjustment).

Edge 2D PCA 3D PCA

ICP 11.03(Reject) 12.67(Reject) 10.23(Reject)

Edge 1.01(Accept) 3.08(Reject)

2D PCA 2.08(Accept*)
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The “reject” in Table 4.6 refers to rejecting the null hypothesis of no sig-

nificant difference. The performance of the ICP-based algorithm is statistically

significantly better than the other three methods. The edge-based performance is

statistically significantly better than the 3D PCA-based method.

4.4.2 Friedman Test with Nemenyi Post-hoc Test

The z-test with following Bonferroni correction is one of the binomial tests.

However, the binomial testing assumes that the samples are drawn from normal

distribution. As noted by Salzberg in [64], when this assumption is not met,

the binomial testing lacks the power of the better non-parametric tests and the

Bonferroni correction is “overly radical”. Demšar suggested using the Friedman

test [29, 30] with the corresponding pot-hoc tests [55], a pair of non-parametric

tests, for statistical comparisons [25]. There is no proof whether our dataset is

normally distributed. We were interested in determining whether there exists a

difference between the z-test result and the Friedman test result. As we described,

the z-test uses the rank-one recognition performance of each algorithm on a 302-

subject dataset. For the Friedman test, it takes each subject (probe ear) as an

observer, and looks at the rank of every algorithm on each subject.

The Friedman statistic is given by:

χ2
f =

12N

k(k + 1)

[
∑

j

R2
j −

k(k + 1)2

4

]
(4.5)

As in [25], N is the number of observers, here N = 302; k is the number of

algorithms to be compared. Assume rj
i be the rank of the j-th algorithm on the

i-th observer, Rj = 1
n

∑
i r

j
i , which indicates the average rank of algorithm j. The

null-hypothesis is that there is no difference in performance among algorithms.
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If the null hypothesis is rejected, the Nemenyi post-hoc test [55] is applied. The

performance of two algorithms i, j is significantly different only if their average

ranks Ri, Rj differ by at least the critical difference (CR):

CD = qα

√
k(k + 1)

6N
(4.6)

z = (Ri − Rj)/

√
k(k + 1)

6N
(4.7)

q0.05 is 2.569 and q0.10 is 2.291 when k = 4.

Using the Friedman Test, χ2
f = 147.5966, and we reject the null-hypothesis.

The average rank for each algorithm and their pair-wise z value are shown in

Table 4.7. Compared to the z-test results, the only difference is between 3D PCA

and edge-based. The z-test with the Bonferroni correction detects the significant

difference between performance of these two algorithms, while the Friedman test

with the Nemenyi post-hoc test does not. For any statistical test in the following

chapters, we will apply both methods.
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TABLE 4.7

Friedman Test of the Difference between Performance, Using 0.05 level

of significance. H0 : There is no difference in performance between the

two methods.

Edge 2D PCA 3D PCA

Average Rank = 2.5977 = 2.6689 = 2.7864

ICP = 1.9470 6.1936 (Reject) 6.8713 (Reject) 7.9897(Reject)

Edge = 2.5977 0.6777 (Accept) 1.7961 (Accept)

2D PCA = 2.6689 1.1184 (Accept)
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CHAPTER 5

A FAST ICP-BASED APPROACH 1

In a biometrics scenario, gallery images are enrolled into the database ahead

of the matching step, which gives us the opportunity to build related informa-

tion before the probe comes into the system. In this chapter, we present a novel

approach, called “Pre-computed Voxel Closest Neighbor,” to reduce the compu-

tational time for shape matching in a biometrics context. The approach shifts

the heavy computation burden to the enrollment stage, which can be done offline.

Experiments in 3D ear biometrics with 369 subjects and 3D face biometrics with

219 subjects demonstrate the effectiveness of our approach.

5.1 Introduction

Since its introduction by Chen and Medioni [20] and Besl and McKay [5],

the Iterative Closest Point (ICP) algorithm has been widely used for 3D shape

matching [20, 31, 43, 83], and demonstrates appealing accuracy. It has been used

in a wide range of application areas, including the integration of range images

[34, 70] and alignment of CT and MR images [27]. Here, we are specifically

interested in 3D shape matching for biometrics [17, 18, 20, 51, 52, 81]. The

1This section is based on the paper, “A fast algorithm for ICP-based 3D shape biometrics”,
presented at the Fourth IEEE Workshop on Automatic Identification Advanced Technologies
(AutoID 2005) [79].
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ICP algorithm is known to be computationally expensive. With two clouds of

points or meshes, source S (probe) and target T (gallery), the complexity of a

typical single ICP iteration is O(NS log(NT )) in the expected case, where NS is

the number of points in the source and NT is the number of points in the target.

The improvement to O(NS log(NT )) from O(NS × NT ) results from using a K-D

tree data structure [81]. Also the ICP algorithm iteratively finds the minimum

distance between two surfaces. With NI iterations, the overall complexity of ICP

matching is O(NINS log(NT )) [5]. Therefore, matching high-resolution images of

both source and target surface leads to a heavy computational load. A fast ICP

implementation is crucial for practical use in biometrics.

Nowadays, using shapes sensed by a 3D scanner is a major trend in biometrics

[17, 18, 20, 51, 52, 74, 81]. Each scan yields a 3D shape that can be used as a

representation of the subject. In this chapter, we illustrate our approach using

both 3D ear and 3D face shapes. There are two types of image in a biometric

application, gallery and probe. The gallery images are those that have been

enrolled and are known to the system, while the probe images are those that need

to be matched against the images in the gallery. In a recognition scenario, one

probe is matched against all the images in the gallery, and the algorithm returns

the best match with the minimum error distance. In a verification scenario, one

probe is matched against just one gallery entry, the one enrolled for the claimed

identity. In recognition or verification, enrollment occurs once and is followed

by many instances of recognition. As we mentioned in the previous chapters, in

developing 3D ear shape as a biometric, the gallery uses full resolution to achieve

better recognition accuracy, which means that the computational expense depends

heavily on the gallery data.
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One special characteristic of this application is that all gallery images are

already enrolled into the database before the matching takes place. Probe images

are introduced into the system during the matching process. Taking advantage

of the fact that the gallery images are enrolled prior to matching, we propose

a novel method to accelerate the ICP matching. Our new method is called the

“Pre-computed Voxel Closest Neighbor”. The idea is to voxelize a volume which

can hold the 3D gallery surface, and for each voxel to pre-compute its distance to

the 3D gallery surface and save this for future use.

In section 2 we review several fast ICP approaches. Then in section 3 we give

details of our approach. Section 4 addresses the applicability of our approach

by using the ear and face biometrics, and experimental results are presented and

analyzed. Finally, section 5 discusses further refinements and possible future di-

rections.

5.2 Literature Review

There have been a number of attempts to speed up ICP matching. One line

of work is focused on fast algorithms for computing the nearest neighbor. The

use of the k-d tree data structure appears to be the standard method in this area

[5, 68]. Cleary and co-workers analyzed the “Elias” algorithm to search for a

nearest neighbor in the n-dimensional Euclidean space [22]. They claimed that

by using the “Elias” algorithm, the number of search points is independent of the

total number of points on the surface. In [32], Greenspan et al. proposed a novel

nearest neighbor algorithm for small point sets. They report that “Elias” is much

faster than a plain k-d tree, and that the “spherical constraint” method improves

the speed still further. Zinsser et al. analyzed the performance of the nearest
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neighbor algorithm for ICP registration [85]. Their work is not limited to range

images or triangular meshes, but also can be used with 3-D point sets generated

by structure-from-motion techniques.

Benjiemaa [4] proposed a multi-z-buffer technique to accelerate the ICP algo-

rithm. All points are projected in a z-buffer to perform the local search, and they

claimed that this space partition speeds up the search for point-to-point corre-

spondences. But in order for the multi-z-buffer technique to work properly, two

surfaces need to be sampled with a high and uniform density.

Another line of work in this area looks at different sub-sample strategies to

reduce computation time. One strategy is using multi-resolution approaches; that

is, start with a coarse point set and use progressively finer point sets as the

algorithm proceeds. The idea of the average distance between points in the current

resolution in comparison to the average distance between matched points is the

standard way to automate the switching between resolutions [50].

In [31], Gelfand et al. describe the importance of the quality of the point pairs.

In the presence of noise or miscalibration in the input data, it is easy to create poor

correspondences between pairs of points. Therefore, the least-squares technique

might lead to wrong pose, or make it difficult for the algorithm to converge.

They propose a technique to decide whether a pair of meshes has good quality by

measuring the covariance matrix between two meshes which have been sparsely

and uniformly sampled. This technique tries to avoid the unstable movement

between two surfaces by sampling the features from the input data which are the

best constraint for this kind of movement.

In [63], Rusinkiewicz and Levoy discussed the variants of ICP which affect all

phases of the algorithm. They list most of these variants, and evaluate their effects
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on the speed with which the correct alignment is reached. Also in the paper, they

proposed a combination of ICP variants optimized for high speed.

Researchers have also looked at mixing the two lines of work, having some

multi-resolution mixed with some constrained search for nearest neighbor. Jose

and Hügli proposed a solution that combines a coarse to fine multi-resolution

approach with the neighbor search [45]. The multi-resolution approach permits to

successively improve the registration using finer levels of representation and the

neighbor search algorithm speeds up the closest point search by using a heuristic

approach. They claim this technique reduces the time complexity of searching

from O(N log(n)) to O(N), while preserving the matching quality [44].

5.3 Fast ICP Matching for 3D shapes

The most time consuming part of the ICP algorithm is that for each point on

the probe surface, the algorithm needs to find the closest point on the gallery sur-

face. By using these pairs of corresponding points, the ICP algorithm iteratively

refines the transforms between two surfaces, finding the translation and rotation

to minimize the mis-match.

This search for a closest point on the gallery surface is initially done using a

kd-tree, as described in [81], and each search takes O(logNG), where NG is the

number of the points on the gallery surface. Our goal is to reduce this search time

to a constant value. The main idea is that if we can pre-compute the distance

from any point in the 3D space to the gallery surface, and use it when needed,

then the search time for a closest point is a constant.

Our “precomputed voxel nearest neighbor” approach is illustrated on the ap-

plication of matching 3D surfaces for biometric recognition. At the time of en-
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(a) Step 1 (b) Step 2 (c) Step 3

Figure 5.1: Voxelization of 3D Ear Data. In order to show it clearly, we present it
from coarse to fine. In step 1 the volume is subdivided into 8 small voxels, and in
step 2 each small voxel is subdivided into 8 even smaller voxels. And continue this
subdivision until the size of each voxel is smaller than a threshold. (To implement
this idea, we do not need to do it step by step, and instead we subdivide the
volume once using a fixed voxel size).

(a) (b)

Figure 5.2: Close Look at Voxels and Example Distance Between Voxel and
Gallery Surface. (P1 is the center of the voxel 1 and the closest point on the
gallery surface to P1 is P1’. P2 is the center of the voxel 2 and the closest point
on the gallery surface to P2 is P2’).
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rollment, the gallery 3D shape sits in a 3-D volume that we think of as a set of

voxels. In our experiment, the volume size depends on the size of the biometric

source, face or ear. The detailed explanation will be given in next section. Figure

5.1 illustrates how the voxelization is done.

Placing the enrolled 3D surface into this volume, each point on the gallery

surface falls into a voxel. A given voxel can be empty or hold one or more points

from the gallery surface. If a probe surface is placed into this volume, every

point on the probe surface should also fall into some voxel if the volume size is

big enough. Suppose that there is a point P1 on the probe surface that lies in

the voxel V1 in the volume. P2 which lies in voxel V2 is the point on the gallery

surface which is closest to P1. The distance between two points P1 and P2 can

be approximated by the distance between the center of the two voxels V1 and V2

with the precision of the voxel size, shown in Figure 5.2.

In the ICP algorithm, given an enrolled surface in the volume, different probe

surfaces attempt to find the minimum distance error to the enrolled surface. Here,

the gallery surface is fixed, but the position of points on the probe surface varies

within the volume from iteration to iteration. If all the points from the probe are

within the volume which holds the gallery surface, each point should be in some

voxel. For a given point P on the probe surface, suppose we know that its closest

point on the gallery surface is P ′ and voxel Vp is the voxel this given point is in.

The distance between P and P ′ is approximately equal to the distance between

P ′ and the center of the voxel Vp, with the precision of the voxel size. Each voxel

in the data structure can index a distance value pre-computed at enrollment of

the surface. Therefore, given the position of one point, the index of the voxel can

be calculated easily.
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5.3.1 Volume Size

The initial experiments used a volume around the 3D shape corresponding to

the max size of the object. For an ear, the volume size is set to 8 cm wide, 10 cm

tall and 8 cm deep. For a face, the volume size is set as 10 cm wide, 14 cm tall

and 7 cm deep. The voxel size is related to the precision of the 3D scanner. If the

size for each voxel is 0.05cm×0.05cm×0.05cm, we have 160×200×160 = 5.12M

voxels per volume for an ear. The fixed volume size is usually larger than 3D

objects in the volume. The reason that it has extra space is that we need to

consider the orientation of the 3D objects. Even though the width of the ear is

usually small, the overall crossing will be large if the ear is rotated along the Z

axis instead of straight up. Unfortunately much space is wasted for fixed volume.

In order to solve this problem, we reduce the volume size by applying principal

component analysis (PCA) on the 3D data.

Principal Components Analysis is used for computing the dominant variances

representing a given data set. As we apply PCA on the 3D data, it yields three

eigenvectors. The first eigenvector is the direction of greatest variation in the data,

the second eigenvector is the direction of second greatest variation, and the third

eigenvector is the third greatest variation. And all eigenvectors are orthogonal to

each other.

According to our 3D shape data, the greatest variation is related to the height

of the 3D shape, the second one to the width, and third one to the depth of

the data. After obtaining these three eigenvectors, a new coordinate system

[V T
x V T

y V T
z ] is generated, each Vi is a vector. If we project the old 3D points

into the new system, the ranges along these three new axes represent the size of

a box enclosing the 3D shape.
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Figure 5.3 illustrates the steps of this procedure. When compared to the

width, height, and depth in Figure 5.3(a) and Figure 5.3(c), the overall size of the

bounding box of the new 3D shape is smaller than the size of the old one.

[X ′Y ′Z ′] = [XY Z] ∗ [V T
x V T

y V T
z ] (5.1)

Width = max(X ′) − min(X ′) (5.2)

Height = max(Y ′) − min(Y ′) (5.3)

Depth = max(Z ′) − min(Z ′) (5.4)

For the ear experiment, the overall file size is reduced by 10 times after we

used the PCA-based volume size instead of the fixed volume size. Also with a

smaller file size to save the information, it requires less memory to build and read

the data. Therefore this reduces the building time, and sometimes it also reduces

the matching time when swapping is needed in the old approach.

5.3.2 Implementation

To implement our strategy of pre-computed voxel nearest neighbor, we com-

pute ahead of time for each voxel in the 3D space, it’s closest point on the gallery

3D shape. The first step is to place the 3D surface into a volume whose center

is the center of the 3D surface. Due to the noise in the 3D depth value, the

position of the gallery surface center x, y and z are defined in different ways.

xcenter = xmax+xmin

2
, ycenter = ymax+ymin

2
, zcenter = zmax+zmin

2
. Figure 5.4 shows a

volume holding both gallery and probe. For each voxel element in the volume,

we use a k-d tree to find the closest point on the gallery surface to that voxel’s
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(a) Original 3D Shape (b) New Coordinate System

(c) New 3D Shape

Figure 5.3: Steps to Calculate the Volume Size. In (b), a new coordinate system
is generated from eigenvectors of the covariance matrix, where Y’ is according to
the direction of the largest variance in the dataset, X’ to the second, and Z’ to
the third. Part(c) shows the new 3D shape after projecting every old point onto
new coordinate system.
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center. Once the point is found, the index of the point is stored as the value of the

voxel element. A data structure V oxelElement[Width][Height][Depth] is used to

represent the subdivision of 3D space into voxels, and the value of width, height

and depth comes from 5.4. The value of V oxelElement[x][y][z] is the index of the

gallery point, which is closest to the point(x,y,z). We store the index of the point

instead of the point position to save space. Pre-computed results are saved to a

file which can be read into memory when needed.

Then, computing the closest neighbor for a current position of the probe face

is simply indexing into the voxel data structure. Thus, constant computational

time instead of O(logNG) is achieved. This is blazingly fast in comparison to any

of the other nearest neighbor finding methods, but of course it is offset by the size

of the storage required. Furthermore, since the access time is constant, we can use

the finest resolution for the gallery image, which avoids the computation expense

of using the point-to-triangle approach [20]. Figure 5.4(a) shows an example when

both gallery and probe come into the voxel.

5.4 Experiments

In order to evaluate the efficiency of this method, we compare the recognition

rate, space and running time between the original algorithm and our proposed

approach.

We present results using 3D ear shape from 369 subjects and 3D face shape

from 219 subjects. For each subject, the earlier 3D images are used for the gallery,

and the later 3D images are used as probes. For the ear experiment, the gallery

images use the full resolution, and the probes are subsampled by every 4 rows and

every 4 columns. The average number of points is 5500 for a gallery ear shape, and
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(a) View 1 (b) View 2

Figure 5.4: Gallery and Probe Images Show in the Same Volume. Each voxel in
the volume corresponds to a point index on the gallery surface.

400 for a probe ear shape. And for the face experiments, both gallery and probe

images are subsampled by every 4 rows and every 4 columns. The average number

of points on a gallery and a probe surface are 4000 and 3000, respectively, for face

shapes. In addition, different voxel sizes are tested, and comparison results are

presented. The system runs on dual-processor Pentium Xeon 2.8GHz machines

with 2GB RAM, and the implementation is written in C++.

5.4.1 Voxel Size

Three voxel sizes are examined using the same dataset for both ear and face

biometrics. For the ear experiments, they are 1mm3, 0.5mm3 and 0.25mm3.

For the face experiments, they are 2mm3, 1mm3 and 0.5mm3. The reason for

using different voxel size for ear and face is because the gallery face images are

subsampled by every 4 columns and rows. Before the matching procedure takes

place, we build the volume for every gallery ear/face. For each voxel in the volume,

a kd-tree structure is used to find the closest point on the gallery and we save the
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TABLE 5.1

Ear Biometrics: Different Parameters Affected by Voxel Size. At 0.1

level of significance, there is no statistically significant difference

between (1), (2) and (3) using both Z-test and Friedman test.

Voxel size Building Time Reading Time Matching Time File Size Performance

(1 gallery ear) (1 gallery ear) (1 against 369) (369 images)

1mm 10-50s 0s 15-25s 127 M 97.0% 1

0.5mm 30-200s 1s 20-30s 1009M 97.3% 2

0.25mm 100-500s 1 - 5s 20-30s 7.8 G 97.3% 3

TABLE 5.2

Face biometrics: Different Parameters Affected by Voxel Size. At 0.1

level of significance, there is no statistically significant difference

between (1), (2) and (3) using both Z-test and Friedman test.

Voxel size Building Time Reading Time Matching Time File Size Performance

(1 gallery ear) (1 gallery ear) (1 against 219) (219 images)

2mm 25-35s 0-1s 80-90s 983M 93.6% 1

1mm 150-160s 5-6s 80-90s 15G 94.1% 2

0.5mm 1500-1600s 35-45s 80-95s 63 G 93.2% 3
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results on the disk. In order to utilize our method, we read one voxelized gallery

data structure into memory and match it against all the probes. Therefore, our

recognition experiment has two processes, offline building and online matching.

Tables 5.1 and 5.2 illustrate the time requirement for each process.

For the ear experiments, all the images are acquired using a Minolta Vivid

910 with the “Tele” lens, and the subject sat approximately 1.5 meters away

from the sensor. Within that distance range, the sensor has a depth accuracy

of approximately 0.55mm. According to our results, going to a finer voxel size,

from 0.5mm to 0.25mm, does not yield much in term of increased accuracy, yet, it

requires significantly more storage space and longer time to process. Even though

the access time is a constant value, when the number of voxels is too big, it will

exceed the size of available memory, and force the algorithm to use swap space,

which will slow down the computation. If we increase the voxel size from 0.5mm

to 1mm, the reading time drops, and matching time is at the same level, and the

performance drops by around 0.3%, which is not statistically significantly different

from the smaller voxel size.

For the face experiments, the image acquisition is the same. But since the

gallery images are subsampled by 4 x 4, there is no statistically significant differ-

ence in performance for voxel size variations.

Table 5.3 compares the original ICP and our pre-computed ICP. The difference

between the original ICP and our ‘Pre-computed Voxel Closest Neighbor” ICP is

obvious. The recognition performance of both methods is essentially the same,

but for the time spent on the online matching, the pre-computed matching is

significantly faster than the original one. For the regular ICP, the matching time

for one probe against all the gallery images is around 106 seconds, while kd-tree
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TABLE 5.3: Ear Experiments: Difference Between Original ICP and Pre-
computed ICP. ** At 0.1 level of significance, there is no statistically significant
difference between (1), (2), (3) and (4) using both Z-test and Friedman test.

Method Building Time Running Time Perfor-
(1 gallery ear) (1 against 369) mance

Original ICP 0 106 97.0% 1

Pre-computed (voxel = 1 mm) 10- 50s 0.2+ (15 – 25)s 97.0% 2

Pre-computed (voxel = 0.5 mm) 30-200s 1+ (20 – 25)s 97.3% 3

Pre-computed (voxel = 0.25 mm) 100-500s 3 + (20 – 30)s 97.3% 4

building just takes less than one second. For the voxel ICP, the matching time is

just around 25-30 seconds. But the file reading time takes 10 seconds when we

use size of voxel as 0.25 mm. So the voxel matching time is about 1/3 to 1/4 of

the time for the “regular” approach, but reading the data structure takes an extra

amount of time.

Table 5.4 illustrates how running time increases when probe size gets larger

for both original ICP and pre-computed ICP. When the probe size is small, there

is no advantage to the voxel approach. However, for very large probe size the

voxel approach yields an enormous improvement in speed. Here, we suppose all

the gallery images can be kept in memory. In a real biometrics application, some

or all of the gallery might be kept in memory all the time.

5.5 Improvement

As we stated in the previous section, the most time consuming part of the ICP

algorithm is closest point searching. There are two common ways to find the closest

point, point-to-point and point-to-surface. A detailed comparison between them

for a biometric application can be found in [81]. The point-to-point approach is

fast, and accurate when all the points on the probe surface can find a good closest
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TABLE 5.4

Ear Biometric: Run Time vs. Probe Size for Both Original ICP and

Pre-computed ICP. (voxel = 0.5 mm)

Probe size Original ICP Pre-computed ICP

10 5s 3s

50 20s 7s

100 35s 10s

200 75s 15s

300 106s 25s

369 150s 30s

point on the gallery surface. But if the gallery image is subsampled or coarse in

the original, the point-to-point approach loses accuracy. On the other hand, the

greatest advantage of the point-to-triangle approach is that it is accurate through

all the different subsample combinations. But this behavior comes at a substantial

computational expense.

Our voxel algorithm can shift the computation burden to offline, therefore

if the gallery images are not in a fine resolution, the point-to-triangle method

for pre-computed distance should be able to yield better performance without

increasing the running time for the recognition. This is proved by the experimental

results. By using point-to-triangle method for pre-computing, the ear recognition

rate is improved from 98.3% to 98.7%, and the face recognition rate is improved

from 94.1% to 96.4%. The improvement is more obvious in the face recognition

experiment, which also demonstrates that the point-to-triangle method is more

accurate than point-to-point method when the gallery images are coarse.
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5.6 Summary And Discussion

The main contribution of this chapter is the “Pre-computed Voxel Closest

Neighbor” strategy to improve the speed of the ICP algorithm for use in biomet-

rics. This technique is aimed at a particular application in human identification.

The idea is based on the possibility of computing the data structure before the

matching procedure taking place.

Different voxel sizes are examined, and the performance and running time are

compared with the results from the original ICP algorithm. Our experimental

results verify the expected feature of our approach on our 369-subject dataset

with ear biometric, and a 219-subject dataset with face biometric. The online

matching time drops significantly when we use the pre-computed results from the

enrolled 3D shape offline computation. Our results demonstrate that for very

large galleries the voxel approach yields a dramatic improvement in speed.
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CHAPTER 6

MULTI-BIOMETRICS 1

Recently, multi-biometrics have been investigated by several researchers [9, 10,

41, 47]. Multi-biometrics can be divided into three simple classes, according to

the method of combination. These are multi-modal, multi-algorithm and multi-

instance. In general, multi-modal uses different modalities of biometrics, like face,

voice, fingerprint, iris and ear of a same subject. Also we consider that for a

given biometric, the data from different sensors are one kind of multi-modal, like

2D intensity data and 3D range data. Multi-algorithm uses different algorithms

on the same data. For example, we can use both PCA and ICP on 3D ear data.

Multi-instance has more than one representation for a given subject. For example,

if we took three 2D ear images of the same person on different dates, then the

three images together can be treated as a representation of this person. A complex

combination can involve more than one kind of multi-biometrics. For example, we

can combine 2D PCA and 3D ICP, which includes both multi-modal and multi-

algorithm biometrics if we consider 2D intensity data and 3D range are different

modalities.

As we first explored multi-modal biometrics using ear data, only a 202-subject

dataset was available. As more image acquisitions were held, more images were

1This section is based on the paper, “Multi-Biometrics 2D and 3D Ear Recognition”, pre-
sented at the Audio- and Video-based Biometric Person Authentication Conference, 2005 [78].
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accumulated, and in this chapter the largest dataset has 302 subjects. All the

experiments run on the 202-subject dataset are rerun on the 302-subject dataset

to validate our previous conclusions.

6.1 Fusion Levels and Score Normalization

Each simple biometric has four steps: (1) obtain the data from the sensor, (2)

extract the interesting area or features from the raw data, (3) compare the data to

a group of enrolled data to obtain the matching score and (4) determine the correct

or incorrect match based on the matching score [61]. Based on these different

steps, there are several possible fusion levels. Sensor level fusion combines the

raw sensor outputs. Feature extraction level fusion combines multiple extracted

features from each biometric. Matching score level fusion combines the matching

scores from each biometric. Decision level fusion uses the results from different

biometrics and makes the final decision based on all of them.

In our study, the fusion rules work at the matching score level. Since each sim-

ple biometric has a different meaning, range and distribution of matching scores,

score normalization is required in order to combine them. In our experiments,

min-max score normalization has been applied on all the results before we do the

fusion: s′ = (s − min)/(max − min).

6.2 Multi-modal Biometrics

Multi-modal biometrics in this work refers to the combination of 2D intensity

data and the 3D range data. There are three algorithms based on 3D range data,

and one on 2D intensity data. Therefore, the combinations include 2D PCA with

3D ICP, 2D PCA with 3D PCA, and 2D PCA with 3D edge-based approach.
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TABLE 6.1

Rank One Recognition for Fusion on Multiple Modalities (302 subjects).

Multi-modals MIN Simple SUM Advanced Sum

2D PCA + 3D ICP 76.4% 81.1% 82.5%

2D PCA + 3D PCA 72.2% 78.8% 79.1%

2D PCA + 3D Edge 73.5% 80.5% 82.5%

First, two simple fusion rules are tried on all three combinations. As shown in

Table 6.1, the sum rule performs much better than the min rule. This conclusion

is similar to that in [15, 47]. Also, an advanced sum rule is tested. The rank

one matching in each modality is given an additional weight, which measures the

distance between itself and the rank two match. The advanced sum rule yields

better results than the simple sum rule.

The sum rule adds individual matching scores from different matches. Equal

weights are assigned to each modality. However, in general, some modalities have

better performance than others. In order to show the relative strength of several

modalities, different weights are assigned to individual modalities. We test the

weight assignment by using 202 subjects on 2D PCA combined with 3D ICP. As

shown in Table 6.2, the highest performance is 93.1%, obtained when the weight

of ICP is 0.8, and the weight of PCA is 0.2.

Applying the same weighted sum rule to the other two combinations, the best

performance is obtained when there is equal weight for each modality. This is

because 2D PCA, 3D PCA and edge-based approaches have similar performance.

The rank one recognition is 79.1% when combining 2D PCA and 3D PCA, and
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TABLE 6.2

Different Weights for Fusing the ICP and PCA Results.

Weight Weight Performance Performance

2D PCA 3D ICP (202 Subjects) (302 subjects)

1 0 71.4% 63.6%

0 1 85.1% 84.1%

0.9 0.1 73.3% 66.9%

0.8 0.2 76.7% 68.9%

0.7 0.3 78.2% 73.8%

0.6 0.4 81.7% 78.5%

0.5 0.5 84.2% 82.5%

0.4 0.6 86.6% 88.7%

0.3 0.7 89.1% 90.7%

0.2 0.8 93.1% 90.4%

0.1 0.9 91.6% 86.4%
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TABLE 6.3

Fraction of the Correct Match in the Different Interval Level.

1 2 3 4 5 6 7 8 9 10

PCA 0.4250 0.7429 0.8333 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ICP 0.2222 0.5319 0.9999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

it is 82.5% when combining 2D PCA and 3D edge-based algorithm. The CMC

curves are shown in Figure 6.1.

Our third combination rule is based on the analysis of the interval between

rank 1 and rank 2 in both PCA and ICP results. Figure 6.2 shows that the overlap

area between the correct matches and incorrect matches is much less in ICP than

in PCA, which means that it is easier to use a threshold to separate the correct

and incorrect matches in the ICP than in the PCA results.

Figure 6.3 shows the probability distribution of the different intervals between

the correct matches and incorrect matches. In general, the greater the gap between

the rank 1 and rank 2 matches, the higher the possibility that it is a correct match.

When the interval in ICP is greater than 0.2, they are all correct matches. The

corresponding value in PCA is 0.002. For both ICP and PCA, we split the interval

range into 10 steps. All the interval values are placed into these 10 steps. The

ratio of the correct over incorrect matches in each interval step is shown in Table

6.3.

When an interval falls into a certain range, we can determine the possibility

that it is a correct or incorrect match from Table 6.3. Using this information we

can combine the PCA and ICP in a smarter way. Before the combination, the
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Figure 6.1. Multi-modal Biometrics Performance.
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Figure 6.2. Relationship Between Correct Matches and Incorrect
Matches.
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Figure 6.3. Interval Distribution Between Correct and Incorrect
Matches Using Both PCA and ICP approaches.

interval between the rank 1 and rank 2 is computed for each comparison in the ICP

and PCA. Then the corresponding percentage of the correct match and incorrect

match is obtained according to Table 6.3. Using this strategy to combine the PCA

and ICP results on 202 subjects, the rank one recognition rate is 93.1%, which

is the same as the best result obtained from the simple weight scheme shown in

Table 6.2.

Until now, all the results are calculated using the 202-subject dataset. Since

the small dataset has a distribution similar to the larger dataset (302 subjects),

we predict the distribution of the larger dataset by using the value in Table 6.3.

The rank one recognition rate is 91.7%, which is even better than the results

(90.1%) using simple weighted sum scheme. Thus it seems that performance may

be increased by using a smart fusion step. However the increase is not statistically

significant and this issue deserves further exploration.
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TABLE 6.4

Multi-algorithm Biometrics Using Weighted Sum Rule.

3DICP 3DPCA 3DEdge Performance

ICP + PCA 0.90 0.10 87.70%

ICP + Edge 0.80 0.20 90.2%

PCA + Edge 0.40 0.60 69.9%

6.3 Multi-algorithm Biometrics

Three different algorithms have been developed to use on the 3D data. These

are the ICP-based algorithm, PCA-based algorithm and edge-based algorithm.

After score normalization, the weighted sum rule is used for combinations. Rank

one recognition rates are shown in Table 6.4. The best performance is achieved

when combining ICP and edge-based algorithm on the 3D data.

From Table 6.1, if we only consider those with not so good performance, like

2D PCA, 3D PCA and 3D edge-based approach, the multi-modal biometrics has

better performance than the multi-algorithm.

6.4 Using Multiple Images to Represent a Person

In general, approaches perform better with a multiple-sample representation

of a person, and scale better to larger datasets. We have 169 subjects that have at

least 4 good images in both 2D and 3D data. Each pair of 2D and 3D images were

taken on a different date. In this section, we will concentrate on the multi-galleries

or multi-probes using 2D PCA and 3D ICP algorithms.
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Figure 6.4. Multi-algorithm Biometrics Performance.
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TABLE 6.5

Fusion on Multiple Galleries and Probes (169 Subjects).

2D PCA 3D ICP

1G1P 73.4% 81.7%

MIN SUM MIN SUM

1G3P 82.2% 83.4% 95.3% 81.1%

2G2P 84.0% 87.5% 97.0% 81.7%

3G1P 81.7% 80.5% 91.1% 81.7%

For each subject, there are four 2D and 3D images available. We consider three

possible multiple-instance representations based on these images. These are (a) 1

in the gallery and the other 3 images in the probe, (b) 2 in the gallery and the

other 2 in the probe, and (c) 3 in the gallery and the other 1 in the probe. Two

fusion rules, min and sum, are exploreed to combine the results, shown in Table

6.5. It is interesting here that we have multi-instance better than multi-modal.

Using one gallery and one probe for these 169 subjects, the rank one rate is 73.4%

for 2D PCA, and 81.7% for 3D ICP. Combining the results of 2D PCA and 3D

ICP, the best performance obtained is 88.2%.

In the multi-galleries and multi-probes experiments, the best performance is

achieved when 2 images are put into the gallery and the other 2 put into the probe.

This is true in both 2D PCA and 3D ICP algorithms. This combination gives us

4 matches, whereas the other combinations give 3 matches. Also we noticed that

the min rule is much more powerful than the sum rule in the 3D ICP performance,
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while it has similar performance to the sum rule in the 2D PCA performance. We

attribute the performance of the min rule in the case of 3D ICP to the possibility

of minimizing “outliers”in the 3D matching.

Matching of 3D ear images has many sources of “outliers”. There can be

outlier noise in a given 3D image, such as a “spike” from 3D sensing. Also in

matching one 3D image to another, incorrect point correspondences may arise,

possibly due to points existing in one scan but not the other. Increasing the

number of representations for a certain person in both the gallery and probe gives

a better chance to find the correct correspondence between the points. Thus, the

performance increases significantly in the ICP experiment.

6.5 Summary And Discussion

We find that multi-modal, multi-algorithm or multi-instance improve perfor-

mance over a single biometric. The combination of the 2D PCA and 3D ICP

gives the highest performance of any pairs of biometrics considered. Three differ-

ent multi-biometric combinations were considered. All result in improvement over

a single biometric. Among the four single modal ear biometrics, the ICP-based

recognition outperforms the other three methods. And it is expected that the

best combination includes the ICP as one of the components. Multi-modal with

2D PCA and 3D ICP gives the highest performance. As to the other three not-

as-good methods, multi-modal biometrics turns out to have better performance

than the multi-algorithm biometrics.

The fusion experiments on multi-modal, multi-algorithm and multi-instance

biometrics yield different results. The sum rule outperforms the min rule on

multi-modal and multi-algorithm biometrics, while the min rule performs well on
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the multi-instance biometrics, especially when using the ICP algorithm. The min

rule has the power to reduce the noise from the original data, which is suitable for

the application to multi-instance biometrics. The new fusion rule we introduced

in combining 2D PCA and 3D ICP is based on analyzing the interval between

rank one and rank two. And the performance result is the best of the fusion rules

we used.

The multi-modal 3D ICP plus 2D PCA recognition was 87.7% on the 302

person dataset, as listed in Table 6.4. It is useful to ask how a multi-modal

result compares to the multi-instance results for the individual modes. The multi-

modal approach represents a person by two images, in both the gallery and as a

probe. If we look at the two-image representation in each of the individual imaging

modes, we get 87.5% for 2D PCA and 97% for 3D ICP on the subset of 169 of

the 302 persons, Table 6.5. The multi-modal result for this same subset of 169

persons is 88.2%. Thus we find that the multi-modal result barely improves over

the two-image 3D ICP result, and that the four-image 3D ICP result for multi-

instance is substantially better than the multi-modal result. This is different

relative performance than found by Chang [16] in a study of multi-modal face

recognition, where multi-modal 2D + 3D performance was greater than multi-

image 2D or multi-image 3D. However, our work differs in several potentially

important respects. One is of course that we study ear recognition rather than

face recognition. But also, Chang used the same PCA-based approach for both

the 2D face and the 3D face recognition, whereas we use an ICP approach for our

3D recognition. This is important because it appears in our results that the ICP-

based approach is substantially more powerful than the PCA-based approach for

3D. Another potentially important difference is that in our multi-image results,
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the two images used to represent a person are taken at different times, at least a

week apart. Chang used images from the same acquisition session in his multi-

image results. It is quite possible that images taken on different days give a more

independent sample, and so give better performance.

6.6 Improved ICP Algorithm

The multi-biometric results presented in previous sections indicate that 3D

shape matching with an ICP-based approach has strong potential for ear biomet-

rics. Therefore, after the results in previous sections were completed, we con-

sidered various refinements to this approach, several of which were incorporated

into an improved algorithm. The amount of the ear shape used in the gallery and

probe representations was adjusted to reduce interference from the background. A

step to remove outlier point matches was added to reduce the effects of incorrect

correspondences. Our improved algorithm produces substantially better results.

Using the 302-person dataset, with a single 3D ear scan as the gallery enrollment

for a person, and a single 3D ear scan as the probe for a person, the new algo-

rithm achieves 98.7% rank-one recognition [81]. This performance from a single

modality and algorithm is high enough that a larger and more challenging data set

is needed in order to experimentally evaluate its use in possible multi-biometric

scenarios.

6.7 Multi-biometrics Using Ear and Face

So far, our multi-modal biometrics only considered ear images. It would be

interesting to look at the combination of ear and face. Both of them have their

pros and cons when used for recognition. The face has a larger area and therefore
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can be captured easily. However, the face shape can be distorted by expression

change, eyeglasses, and heavy makeup. Conversely, ear shape is not affected by

expression change, makeup or glasses. However, due to its relatively small size, it

is more likely for the ear to have total occulsion than the face.

Studies [10, 16, 41, 49, 62, 73] have shown that combining different modalities

usually increases the percentage of enrollment rate and improves the performance.

When one biometric is not available, the other one can be used. Ear and face can

be captured in the same manner, and they are physically close to each other. This

provides the possibility and feasibility of having multi-modal biometrics using

both the ear and face.

There are 174 subjects in our dataset that have two ear shapes and two face

shapes. For each subject, we place one ear/face in the gallery and the other one in

the probe. Our revised ICP algorithm is applied on both the ear and face datasets.

The rank-one recognition rate is 97.7% for the ear shape matching, and 93.1% for

face shape matching.

In order to combine these two modalities, we use the min-max normalization

and both sum and interval-based fusion rules. Either fusion rule yields 100% rank-

one recognition rate on these 174-subject dataset. The result is consistent with

our conclusion about the efficiency of multi-modal biometrics, and also indicates

the promising possibility of multi-modal biometrics using both 3D ear and face

shapes.

Figures 6.5 - 6.6 gives two examples of correctly matched subjects with multi-

modal results, but that were originally mismatched with face or ear alone.
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(a) Gallery Ear (b) Mismatched Probe Ear

(c) Gallery Face (d) Matched Probe Face

Figure 6.5. Multi-modal Biometrics using Ear and Face. The original
matching score of ear alone does not return the correct match, but it is

corrected by the face matching.
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(a) Gallery Ear (b) Matched Probe Ear

(c) Gallery Face (d) Mismatched Probe Face

Figure 6.6. Multi-modal Biometrics using Ear and Face. The original
matching score of face alone does not return the correct match, but it is

corrected by the ear matching.
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CHAPTER 7

AUTOMATIC EAR RECOGNITION 1

In the earlier chapters, the pre-processing of ear images has had manual steps,

and algorithms have not necessarily handled problems caused by hair and ear-

rings. This chapter presents the first fully automated system for ear biometrics

using 3D shape. There are two major parts to the system: automatic ear region

segmentation and 3D ear shape matching. Starting with the multi-modal 3D+2D

image acquired in a profile view, the system automatically finds the ear pit by

using skin detection, curvature estimation and surface segmentation and classifi-

cation. After the ear pit is detected, an active contour algorithm using both color

and depth information is applied, and the contour expands to find the outline of

the visible ear region.

We have found that the active contour (AC) algorithm is well suited for de-

termining the ear region. The ear pit makes an ideal starting point. The AC

algorithm grows a contour until it finds the ear edge, and is robust in its ability

to exclude earrings and occluding hair. When the active contour finishes, the out-

lined shape is cropped from the 3D image, and the corresponding 3D data is then

used as the ear image for matching. The matching algorithm achieves a rank-one

recognition rate of 97.6% on a 415-subject dataset. In order to demonstrate the

1This section is based on the paper, “An Automatic 3D Ear Recognition System”, presented
at Third International Symposium on 3D Data Processing, Visualization and Transmission,
2006.
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competence of our automatic ear segmentation, two other experiments are con-

ducted on the same dataset. A comparable rank-one recognition rate using the

old manually-assisted ear cropping that uses a fixed template [80] rather than the

active contour is 96.4%. And a comparable rank-one recognition rate with every-

thing being the same except the the location of the ear pit is manually marked is

97.1%.

This chapter is organized as follows. A review of related work is given in section

2. In section 3, we describe the experimental method and materials used in our

work. Section 4 presents the detail of the automatic ear segmentation system.

Section 5 describes an improved iterative closest point (ICP)-based approach for

3D ear shape matching. In section 6, we present the experimental results and

analysis. Section 7 gives the summary and conclusions.

7.1 Segmenting the Ear Region from a Profile Image

Automatically extracting the ear region from a profile image is a key step in

making a practical biometrics system. In order to locate the ear from the profile

image, we need to have a robust feature extraction algorithm which is able to

handle variation in ear location in the profile images. After we find the location

of the ear, segmenting the ear from the surrounding is also important. Any extra

surface region around the ear could affect the recognition performance. An active

contour (“snakes”) approach is used for this purpose [24, 46, 75].

Initial empirical studies demonstrated that the ear pit is a good and stable

candidate as a starting point for an active contour algorithm. When there is so

much of the ear covered by hair that the pit is not visible, the segmentation will

not be able to be initialized. But in such cases, there is not enough ear shape
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Figure 7.1. Data Flow of Automatic Ear Extraction.

visible to support reliable matching, anyway. From the profile image, we use skin

detection, curvature estimation. and surface segmentation and classification to

find the ear pit automatically. Figure 7.1 presents the steps that are involved in

accomplishing the automatic ear extraction.

7.1.1 Ear Pit Detection

The first step is to find the starting point, the ear pit, for the active contour

algorithm. Ear pit detection includes four steps: preprocessing, skin detection,

curvature estimation, and surface segmentation and classification. We illustrate

each step in following sections.

7.1.1.1 Preprocessing

We start with the binary image of valid depth values to find an approximate

position of the nose tip. Given the depth values of a profile image, the face contour

can be easily detected. An example of the depth image is shown in Figure 7.2(b).
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A valid point has an (x, y, z) value reported by the sensor, and is shown as white

in the binary image in Figure 7.2(c).

We find the X value along each row at which we first encounter a white pixel in

the binary image, as shown in Figure 7.2(c). Using the median of the starting X

values for each row, we find the approximate X value of the face contour. Within

a 100-pixel range of Xmedian, the median value of the Y values for each row is an

approximate Y position of the nose tip. Within a 120 pixel range of the Ymedian,

the valid point with minimum x value is the nose tip. The method avoids the

possibility of locating hair or chin as the nose tip.

(a) Original 2D Color Image (b) Depth Image

(c) Nose Tip Location (d) Circle Sector

Figure 7.2. Using Nose Tip as Center to Generate Circle Sector.
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Figure 7.2(c) illustrates the steps to find the nose tip. Using the point P(XNoseT ip,

YNoseT ip) as the center of a circle, we generate a sector spanning +/- 30 degrees

from the horizontal with a radius of 20 cm. One example is presented in Figure

7.2. With a high degree of confidence, the ear is included within the sector, along

with some face, hair and shoulder. In all of the 830 images, none of the ears are

outside the region that we look at, and the +/- 30 degrees should cover people

looking up or down by that much.

7.1.1.2 Skin Region Detection

Next, a skin detection method is applied to locate the skin region. This step

is intended to isolate the face and ear region from the hair and clothes. Our skin

detection method is based on the work of Hsu et. al [36]. The major obstacle

of using color to detect skin region is that the appearance of skin-tone color can

be affected by different lighting conditions. In their work, a light compensation

technique is introduced to normalize the color appearance. In order to eliminate

the dependence of skin-tone color on luminance, a nonlinear transformation on the

YCbCr color space is applied to make the skin cluster luma-independent. With

the transformation results, a parametric ellipse in the color space is used as a

model of skin color, as described in [36]. Together with the preprocessing step,

the skin region detection drops out some irrelevant regions, such as the shoulder

or hair area, helping to reduce the computation time in later steps.

7.1.1.3 Surface Curvature Estimation

This section describes a method that can correctly detect the ear pit from

the region obtained by previous steps. We know that the ear pit shows up in
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(a) Original 2D Color Images (b) After Preprocessing (c) After Skin Detection

Figure 7.3. Ear Region with Skin Detection.

the 3D image as a pit in the curvature classification system [6, 28]. Flynn and

Jain evaluated five curvature estimation methods and classified them into ana-

lytic estimation and discrete estimation [28]. The analytic estimation first fits a

local surface around a point, then uses the parameters of the surface equation to

determine the curvature value. Instead of fitting a surface, the discrete approach

estimates either the curvature or the derivatives of the surface numerically. In

our case, we use an analytic estimation approach with a local coordinate system

determined by principal component analysis [28, 66].

In practice, the curvature estimation is sensitive to noise. For stable curvature

measurement, we would like to smooth the surface without losing the ear pit

feature. Since our goal at this step is only to find the ear pit, it is acceptable to

smooth out other more finely detailed curvature information. Gaussian smoothing

is applied on the data with an 11 × 11 window size. In addition, “spike” data

points in 3D are dropped when an angle between the optical axis and a surface

normal of observed points is greater than a threshold. (Here we set the threshold

as 90 degrees.) Then for the (x,y,z) points within a 21 × 21 window around a

given point P , we establish a local X,Y,Z coordinate system defined by PCA for

that point P [28]. Using this local coordinate system, a quadratic surface is fit
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to the (smoothed, de-spiked) points in the window. Once the coefficients of the

quadratic form are obtained, their derivatives are used to estimate the Gaussian

curvature and mean curvature.

7.1.1.4 Surface Segmentation and Classification

The Gaussian curvature (K) and mean curvature (H) are obtained for each

point from the estimation step. The surface type at each point can be labeled

based on H and K. See Figure 7.4 for the surface type definition. We group 3D

points into regions with the same curvature label. In our experience, segmentation

of the ear image by the sign of Gaussian and mean curvature is straightforward,

and the ear pit can always be found in the ear region if it is not covered by hair

or clothes.

Figure 7.4. H and K Sign Test for Surface Classes [6].
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After segmentation, we expect that there is a pit region (K > 0 & H > 0)

in the segmented image that corresponds to the actual ear pit. Due to numerical

error and the sensitivity of curvature estimation, thresholds are required for H

and K. Empirical evaluation showed that TK = 0.0009 and TH = 0.00005 provides

good results. Figures 7.5(c) and 7.5(d) show an example of the face profile with

curvature estimation and surface segmentation. Also, we find that the jawline

close to the ear always appears as a wide valley region (K ≤ 0 & H > 0), and is

located to the left of the ear pit region.

It is possible that there are multiple pit regions in the image, especially in

the hair around the ear. A systematic voting method is developed to correctly

find the ear pit. Three categories of information contribute to the final deci-

sion: the size of the pit region, the size of the wide valley region around the

pit and how close the ear pit region is to the wide valley. Each category is

given a score in the range of 0 to 10, and the score is simply calculated as

the ratio of max area or distance at a scale of 10. For example, the largest

pit region P1 in the image has a score of 10, and the score of any other pit

region P2 is calculated as Area(P2)/Area(P1) × 10. The pit with the highest

average score is assumed to be the ear pit. The ear pit is correctly found in

Figure 7.5(f). In order to validate our automatic ear extraction system, we com-

pare the results (XAuto Ear P it, YAuto Ear P it) with the manually marked ear pit

(XManual Ear P it, YManual Ear P it) for the 830 images. The maximum distance dif-

ference between (XAuto Ear P it, YAuto Ear P it) and (XManual Ear P it, YManual Ear P it)

is 29 pixels. There are slightly different results from the active contour algorithm

when using automatic ear pit finding and manual ear pit marking. But the dif-

ference does not cause problems for the active contour algorithm finding the ear

99



(a) Original 2D Color Images (b) After Skin Detection

(c) Curvature Estim. & segm. (d) 2D view of 7.5(c)

(e) Ear Pit Vote Results (f) Ear Pit in Original Image

Figure 7.5. Steps of Finding the Ear Pit: (a) 2D/3D raw data, (b) skin
detection, (c) curvature estimation, (d) surface segmentation, (e) region

classification, ear pit detection.
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region, at least on the 830 images considered here. Using a manual marking of the

center of the ear pit rather than the automatically found center of ear pit results

in minimal difference in rank-one recognition rate, 97.1% to 97.6%. The difference

in performance is only a few cases and is not statistically significant. Therefore,

as long as the starting point is near the ear pit, the active contour can always find

the ear contour. After the ear pit is correctly located, the next step is to segment

out the unoccluded portion of the ear from the image.

7.1.2 Ear Segmentation Using an Active Contour Algorithm

The 3D shape matching of the ear relies upon correct and accurate segmenta-

tion of the ear. Therefore, a robust and automatic ear segmentation algorithm is

essential. Several factors contribute to the complexity of segmenting the ear out

of the image. First, ear size and shape vary widely in different persons. Second,

there is often hair touching or partially obscuring the ear. Third, if earrings are

present, they overlap or touch the ear but should not be treated as a part of the

ear. These characteristics make it hard to use a fixed template to crop the ear

shape from the image. A bigger template will include too much hair, while a

smaller template may lose shape information. Also it is hard to distinguish the

ear from hair or earrings, especially when hair and earrings have similar color to

skin or are very close to the ear.

Edges are usually defined as large magnitude changes in image gradient, which

also indicates locations of intensity discontinuities. These intensity discontinuities

are assumed to be in the same location as the geometric discontinuities. Even if

the edges are correctly found by varying edge detection approaches, it is not clear

how these edges can be connected to indicate a region of an object in the image.
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The classical active contour function proposed by Kass, Witkin and Terzopoulos

[46] is used to grow from the ear pit to the outline of the visible ear region.

E =

1∫

0

Eint(X(s)) + Eext(X(s))ds (7.1)

Eint =
1

2
[α|X

′

(s)|2 + β|X
′′

(s)|2] (7.2)

Eext = Eimage + Econ (7.3)

Eimage = ∇Image(x, y) (7.4)

Econ = −wcon

→

n (s) (7.5)

The contour X(s) starts from a closed curve within the region, and then grows

under internal and external constraints, to move the curve toward local features

(Equation 7.1). Following the description in [46], X
′

(s) and X
′′

(s) denote the

first and second derivative of the curve X(s). α and β are weighting parameters

for measuring the contour tension and rigidity, respectively. The internal function

Eint restrains the curve from stretching or bending. The external function Eext is

derived from the image, so that it can drive the curve to areas with high image

gradient, and lock on to close edges. It includes Eimage and Econ. Eimage is image

energy, which is used to drive the curve to salient image features, such as lines,

edges, terminations. In our case, we use edge feature as Eimage. Econ represents

the external constraints force that usually is a function of X(s). Some human

operators or initial constraints can be added to it. Usually Econ is set as zero.

The traditional active contour algorithm suffers from instability due to image

force. When the initial curve is far away from image features, the curve is not

attracted by the Eimage, and would shrink into a point or a line depending on the
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initial curve shape. Cohen proposed a balloon model to give more stable results

[23]. The “pressure force” as Econ (Eq 7.5) is introduced, and when it is added

to the previous curve, it pushes the curve outward so that is does not shrink to a

point or a line. Here
→

n (si)(x, y) = si−1(x,y)−si+1(x,y)
Distance(si−1,si+1)

, si is the point i on curve s.

Figure 7.6 shows how the active contour algorithm grows toward the image edge.

Our initial empirical studies demonstrated that the active contour algorithm

is well suited for determining the ear region boundary. Starting with the ear pit

determined in the previous step, the active contour algorithm grows until it finds

the ear edge. Usually, there is either depth or color change, or both, along the

ear edge. These attract the active contour to grow towards and stop at the ear

boundary.

Initial experiments were conducted on the 3D depth image and 2D color images

individually. For the 2D color images, three color spaces, RGB, HSV and YCbCr

were examined. YCbCr’s Cr channel gave the best segmentation results. For

the 3D images, the Z (depth) image is used. Results show that using color or

depth information alone is not powerful enough for some situations, where the

hair touches the ear and has similar color to skin.

Figure 7.7 shows examples when only color or depth information is used for

the active contour algorithm. In Figure 7.7(a), the hair touches the ear, but the

hair color is completely different from skin color. Therefore, using only color

information, the ear contour is correctly found. In Figure 7.7(b), the hair has

similar color to skin, but there are large depth changes after the active contour

reaches the ear edge, which helps the active contour stop growing. In these two

cases, the ear edge is correctly found. However, when there is no clear color or

depth change along the ear edge, it is hard for the algorithm to stop expanding.
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(a) Original Image (b) Energy Map of 7.6(a)

(c) Energy Map of Ear

Starting Point

Initial Contour

Final Contour

(d) Active Contours Growing

Figure 7.6. Active Contour Growing on Ear Image.
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(a) Only Using Color (b) Only Using Depth

(c) Only Using Color (d) Only Using Depth

Figure 7.7. Active Contour Results using Only Color or Depth
Information.
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As shown in Figures 7.7(c) and 7.7(d), the active contour can keep growing after

it reaches the ear contour.

The examples in Figure 7.7 imply that either color information or depth infor-

mation alone is not adequate for finding the outline of the ear region. In order to

improve the robustness of the algorithm, we combine both the color and 3D in-

formation in the active contour algorithm. To do this, the gradients of the depth

images and the Cr channel from YCbCr together form the Eimage. The Eimage

in the Equation (7.3) is replaced by the Equation (7.6). Consequently, the final

energy E is represented by Equation (7.7).

EImage = wdepth∇Imagedepth(x, y) + wCr∇ImageCr(x, y) (7.6)

E =

1∫

0

1

2
[α|X

′

(s)|2 + β|X
′′

(s)|2]

+wdepth∇Imagedepth(x, y) + wCr∇ImageCr(x, y)

−wcon

→

n (s) (7.7)

In Figure 7.7, the active contour grows towards the side of the face more than

expected. In order to correct this, we modify the internal energy of points to

limit the expansion when there is no depth jump within a 3 × 5 window around

the given point. The threshold for the maximum gradient within the window is

set as 0.01. With these improvements, the new active contour algorithm works

effectively in separating the ear from hair and earrings and the active contour

stops at the jawline close to the ear.

The initial contour is an ellipse with ear pit as center, major axis as 30 pixels

and minor axis as 20 pixels, and the major axis is vertical. Figure 7.8 illustrates the

steps of active contour growing for a real image. And Figure 7.9 shows examples
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(a) Iteration = 0 (b) Iteration = 5 (c) Iteration = 25

(d) Iteration = 45 (e) Iteration = 75 (f) Iteration = 150

Figure 7.8. Active Contour Growing on A Real Image.
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(a) Earring & Blonde Hair (b) Blonde Hair

(c) Earring & Blonde Hair (d) Earring

(e) Earring & Blonde Hair (f) Earring & Blonde Hair

Figure 7.9. Effectiveness of Active Contour Algorithm when Dealing
with Earring and Blonde Hair.
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in which the active contour deals with hair and earrings. The 3D shape within

the final contour is cropped out of the image for use in the matching algorithm.

7.2 Matching 3D Ear Shape for Recognition

7.2.1 ICP-based Matching

We use ICP-based 3D shape matching to recognize the ear. Given a set of

source points P and a set of model points X, the goal of ICP is to find the rigid

transformation T that best aligns P with X. Beginning with a starting estimate

T0, the algorithm iteratively calculates a sequence of transformations Ti until the

registration converges. At each iteration, the algorithm computes correspondences

by finding closest points, and then minimizes the mean square distance between

the correspondences. A good initial estimation of the transformation is required,

and all source points in P are assumed to have correspondences in the model X.

The ear pit location from the automatic ear extraction is used to give the initial

translation for the ICP algorithm. The following sections outline our refinements

to improve the ICP algorithm for use in matching ear shapes.

7.2.2 ICP - Perturbation of Starting Point

The initial transformation is crucial to the ICP algorithm. Given a starting

transform, the ICP algorithm can always find the local minimal between the two

surfaces, but it is not guaranteed that the global minimal will be returned. A good

starting transform can help ICP to return the distance value which is close to the

global minimum and is best to represent the similarity between two surfaces. Ear

shape has rich curvature. Therefore small variations in the starting point may

affect the performance.
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(a) Manually Marked Ear Pit (b) Automatically Marked Ear Pit

(c) Perturbation

Figure 7.10. Perturbation of Starting Point: The minimum error
distance is 0.311 mm if using starting point from (1), the minimum

error distance is 1.015 mm if using starting point from (b), and the the
minimum error distance is 0.321 mm if using perturbation method,

shown in (c).
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(a) Probe 1 (b) ED = 0.503, Rank 2 (c) ED = 0.491, Rank 1

(d) Probe 2 (e) ED = 0.509, Rank 2 (f) ED = 0.500, Rank 1

(g) Probe 3 (h) ED = 0.525, Rank 4 (i) ED = 0.499, Rank 1

(j) Probe 4 (k) ED = 0.549, Rank 4 (l) ED = 0.459, Rank 1

Figure 7.11. Continued on Next Page.
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(a) Probe 5 (b) ED = 0.613, Rank 60 (c) ED = 0.472, Rank 1

Figure 7.12. Mismatched Probe and Gallery. ED is error distance value
returned from our ICP algorithm with perturbation. The first column is
the probe images, the second column is the real gallery images, and the

third column is the mismatched gallery images.

Figure 7.10 shows an example of mismatch due to a poor choice of starting

point. In order to address this problem, we add perturbation into the matching.

Our approach takes an initial point from the ear pit search, then a rectangle with

width 10mm, and height 20mm is created with the initial point at its center. The

algorithm examines 5 points, the initial point and each of the four corners of the

square, and uses the best point as the starting point for the ICP process. The best

point is selected in the following way. The five candidate points are ranked by their

distance from the target surface. The distance is obtained by running the ICP

algorithm for 10 iterations using the candidate point as the starting point. Various

numbers of iterations for the perturbation ICP were checked and 10-iteration

yields the best results. To make the difference clear, we call the ICP run in the

perturbation process as perturbation ICP, and the run after perturbation and with

the selected best point as starting point as registration ICP. For the old approach,

the number of iterations for perturbation ICP is 0, and 40 for the registration

ICP. In order to reduce the time complexity, the source surface is subsampled for
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perturbation ICP, and the number of iterations is stopped when less than 40%

of points find the closest point on the target surface within a threshold. Also we

notice that with the perturbation, the overall iterations needed for registration

ICP is reduced to 20 iterations instead of 40 iterations for the old approach. With

this improvement based on considering perturbations of the starting point, the

performance goes up from 97.1% to 98.8%, and the running time stays about the

same as the old approach.

Figures 7.11 - 7.12 show the five cases out of 415 in which the probe image

does not find the correct gallery image at the rank-one match.

7.3 Experimental Results

In an identification scenario, our algorithm achieves a rank-one recognition

rate of 98.8% on our 415-subject dataset. The CMC curve is shown in Figure

7.13(a). In a verification scenario, our algorithm achieves an equal-error rate

(EER) of 0.012. The ROC curve is shown in Figure 7.13(b). These are excellent

performance values in comparison to previous work in ear biometrics. Where

higher performance values were reported, they were for much smaller datasets.

Also, the rank-one recognition is 94.2% (33 out of 35) for the 35 cases that

involve earrings. This is a difference of just one of the 35 earring probes from

the rank-one recognition rate for probes without earrings. Thus the presence of

earrings in the image causes only a minimal loss in accuracy.

To further investigate the accuracy of our method of automatically finding the

ear pit, we compared to recognition results using manually-marked ear pit loca-

tion. We ran the same 415-subject person recognition experiment with everything

the same except using a manually marked ear pit location rather than the auto-
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Figure 7.13. The Performance of Ear Recognition.
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matically found location. The rank-one recognition rate resulting from using the

manually-marked ear pit location is 97.1%. We can also compare to a previous

algorithm that uses more detailed manual marking to extract a fixed-shape ear

template [77]. Using this algorithm on the same 415-subject dataset, the rank-one

recognition rate is 96.4%. Thus the performance of our automated approach seems

as good as similar approaches that are assisted by manual location of landmark

points.
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CHAPTER 8

OCCLUSION AND SYMMETRY EAR EXPERIMENTS

8.1 Partial Ear Experiments

So far, our experiments deal with some minor occlusion due to hair covering

and earrings. And the results suggest that recognition performance is not no-

ticeably affected by these noises. However it is still interesting to examine the

algorithm’s effectiveness in the presence of ear occlusion and analyze the signif-

icance of different portions of the ear. To set up the experiments, a partial ear

shape is used for recognition. The images in the gallery are the same as used in

the previous experiments. Portions of the probe ears are removed from different

directions by a certain percentage of the horizontal or vertical distance of the

boundary box. Examples are shown in Figure 8.1.

The experimental results in Table 8.1 demonstrate that the performance stays

at the same level when the portion of the ear that is removed from top, bottom,

left or right is in the 10 percent range, which indicates that minor hair cover will

not affect the performance much, but large hair cover will certainly reduce the

recognition rate. The results also suggest that the inner part of the ear contains

the most useful information, and the top and right parts of the ear contain the

least useful information. If we remove 10% portion of the ear from three directions:

top, bottom and right section, the recognition rate is 98.3%.
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(a) Original Ear

(b) Top 10% (c) Top 20% (d) Top 30% (e) Top 40% (f) Top 50%

(g) Right 10% (h) Right 20% (i) Right 30% (j) Right 40% (k) Right 50%

(l) Bottom 10% (m) Bottom 20% (n) Bottom 30% (o) Bottom 40% (p) Bottom 50%

(q) Left 10% (r) Left 20% (s) Left 30% (t) Left 40% (u) Left 50%

Figure 8.1. Example of Partial Ear. The captions in part(b) through
(u) indicate the percent of the ear removed.
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In addition, we checked extreme cases where more than 30% of the ear is

removed from different sections. The overall recognition rate is reduced by the

removal of large sections. However, after removing 50% of the bottom or right

portion of the ear image, the remaining shape still yields recognition rate of over

80%. This suggests that even in circumstances where much of the ear is occluded,

it still has potential for recognition. Moreover, it lends support for using the ear

as a biometric.

We notice that the performance increases from 97.6% to 98.3% after removing

the top 20% of the ear. Figure 8.3 illustrates an example of this effectiveness on

removing top 20% of the ear. It indicates that removing some top portion from

the ear can actually decrease the effects of noise.

TABLE 8.1

Experiment Results Using Partial Ear with a 415-subject dataset: All

the results are shown as rank-one recognition rate. The rank-one

recognition rate is 97.6% by using the whole ear as probe.

Portion Removed 10% 20% 30% 40% 50%

Top 97.6% 98.3% 97.1% 82.4% 74.9%

Right 97.1% 97.1% 94.7% 90.1% 86.3%

Bottom 97.1% 96.6% 95.2% 87.4% 82.2%

Left 96.9% 94.2% 91.3% 68.4% 47.0%

118



Figure 8.2. Partial Ear Experiment Results.

(a) Gallery Image (b) Probe Image with Noise on the Top

Figure 8.3. After Removing Top 20% of the Ear, the Recognition Rank
Jumps From Rank 23 to Rank 1.
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8.2 Ear Symmetry Experiment 1

The ear data used in our experiments in previous chapters are gallery and probe

images that are approximately straight-on views, of the same ear, acquired on

different days. One interesting question to explore is the use of bilateral symmetry;

that is, matching a mirrored left to the right ear of the same person. This means

that for one subject we enroll his right ear and try to recognize using his mirrored

left ear.

One example is shown in Figure 8.5(a) and 8.5(b). For our initial experiment

to investigate this possibility, both ear images are taken on the same day. The

rank-one recognition rates from matching a mirrored image of an ear are around

90%. By analyzing the results, we found that most people’s left and right ears

are approximately bilaterally symmetric. But some people’s left and right ears

have recognizably different shapes. Figure 8.5 shows an example of this. Thus it

seems that symmetry-based ear recognition cannot be expected to be as accurate,

in general, as matching two images of the same ear.

8.3 Off-angle Experiment

Another dimension of variability is the angle of view, which means that the

enrolled gallery ear and the probe ear are from different angles of view. We enroll

a straight-on right ear, and try to recognize a right ear viewed at some different

amount of angle. The initial experiments only test on a small dataset. We have

some observations, but cannot draw any strong conclusions until we have a larger

dataset.

1This section is based on the paper, “Empirical Evaluation of Advanced Ear Biometrics”,
presented at the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops: Empirical Evaluation Methods in Computer Vision, 2005 [80].
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(a) Right Ear (b) Left Ear

Figure 8.4. Image Acquired for Ear Symmetry Experiments.

In this experiment, there are 4 different angles of view for each ear: straight-

on, 15 degrees off center, 30 degrees off center and 45 degrees off center, as shown

in 8.6. The 45 degree images were taken on the first week. The 30 degree images

were taken the second week. Finally, the 15 degrees and straight-on images were

both taken on the third week. For each angle of ear image, we match it against

all images in the different angle datasets.

There were only 24 subjects that showed up on every week. Therefore the

initial experimental results, shown in Table 8.2, are obtained from a fairly small

dataset. Two observations are drawn from the Table 8.2. The first is that 15

degrees and 30 degrees off center have better overall performance than the straight

on and 45 degree off center. This observation makes sense, since there is more ear

area exposed to the camera when the face is 15 degrees and 30 degrees off center.

Also matching is generally good for 15 degrees off or less, but gets worse for more

than 15 degrees. The second observation is that the elements in Table 8.2 are

symmetric. A larger dataset is required if we want to verify our observation and

draw any conclusions.
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(a) Example 1 (b) Example 1

(c) Right ear) (d) Mirrored Left ear

Figure 8.5: Examples of Asymmetric Ears.
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(a) Straight-on (b) 15 Degrees off

(c) 30 Degrees off (d) 45 Degrees off

Figure 8.6. Image acquired for Off Angle Experiments.
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TABLE 8.2

Off Angle Experiments with a 24-Subject Dataset.

Straight-on 15o off 30o off 45o off Average

straight-on 100% 87.5% 70.8% 86.1%

15o off 100% 100% 87.5% 95.8%

30o off 87.5% 100% 95.8% 94.4%

45o off 79.2% 87.5% 100% 88.9%

Average 88.9% 95.8% 95.8% 84.7%
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CHAPTER 9

COMPARISON WITH OTHER BIOMETRICS

9.1 Comparison to 2D “Eigen-Ear” Results

In order to compare with the state of the art reported in the literature [14], we

run the “eigen-ear” experiments on the subset of persons that have images usable

for 2D eigen-ear. Chang obtained 73% rank-one recognition with 88 persons in

the gallery and a single time-lapse probe image per person [14]. Our rank one

recognition rate for PCA-based ear recognition using 2D intensity images for the

first 88 persons in our 415-person dataset is 76.1%, which is similar to the result

obtained by Chang, even though we used a completely different image data set

acquired by a different sensor and used different landmark points. For the same 88

persons, the ICP-based ear recognition gives a 98.9% rank-one recognition rate,

which is statistically significantly better than the 2D “Eigen-Ear” Results. This

indicates that our algorithm represents a substantial advance relative to previous

work in ear biometrics.

9.2 Comparison to Commercial Face Recognition Results

To relate the performance level achieved here to the commercial state of the

art, we experimented with FaceIT version 6.1 [1]. We used frontal face images

which were taken on the same date for the same subject as the ear images used in
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the experiments. Only 409 out of the original 415 subjects also had good quality

frontal face images. None of the 6 people who are missing in the face experiment

has ear biometric recognition errors. The images are taken by Canon Power Shot

G2 and Nikon D70, under controlled studio lighting and with no lighting condition

change between gallery and probe [58]. Each image has resolution 1704x2272.

With normal expression both in gallery and probe, the rank one recognition rate

is 98.7%. Subjectively, our impression is that FaceIT version 6 has improved

performance over version 5 in a noticeable way.

The difference in commercial face recognition performance and our ear biomet-

rics performance is small, just 98.7% to 97.6%. This indicates that ear biometrics

potentially has similar recognition power to face biometrics, and should motivate

additional work in this area. Currently there has been far less research investment

in ear biometrics than in face biometrics.

9.3 Scalability of Recognition with Dataset Size

Scaling of performance with dataset size is a critical issue in biometrics. For

example, a decrease in recognition performance with increased dataset size was

observed in FRVT 2002 for 2D face recognition:

For every doubling of database size, performance decreases by two to
three overall percentage points. In mathematical terms, identification
performance decreases linearly with respect to the logarithm of the
database size. [57]

When the gallery size becomes bigger, the possibility of a false match increases.

Usually, some techniques scale better to larger datasets than others. Figure 9.1

shows the scalability of our ear recognition algorithm. For a given data set size less

than 415, the images are randomly selected from the 415 persons 100 times. The
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blue line shows the average performance of these 100 random selected datasets.

The red line shows the range of the performance at each dataset size. When

the gallery size increases, the recognition performance is largely unchanged. At

least within the range of dataset size considered here, it appears that doubling

the dataset size incurs less of a performance decrease than found in FRVT 2002

for 2D face recognition. Going from 100 persons to 400 persons, doubling twice,

reduces performance approximately 3%.
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Figure 9.1. Scalability of Proposed Algorithm’s Performance with
Increased Dataset Size.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

We have presented experimental results for three different approaches to 3D

ear recognition and a PCA-based approach to 2D ear recognition. Our results

are based on the largest experimental dataset to date for ear biometrics, with 2D

and 3D images acquired for over 400 persons on two different dates. This is the

most comprehensive investigation of 3D ear recognition to be reported to date,

the largest experimental evaluation of 2D ear recognition, and the first (only)

comparison of 2D and 3D ear recognition.

Also we have presented a fully automatic ear recognition system using 2D and

3D information. The automatic ear extraction algorithm can crop the ear region

from the profile image, separating ear from hair and earring. The recognition

subsystem uses an ICP-based approach for 3D shape matching. The experimental

results demonstrate the power of our automatic ear extraction algorithm and 3D

shape matching when applied to biometric identification. The system has a 97.6%

rank-one recognition rate on a time-lapse dataset of 415 persons. The system as

outlined in this dissertation is a significant and important step beyond existing

work in this area. The system is fully automatic, handling preprocessing, cropping

and matching. The system addresses issues that plagued earlier attempts to use
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3D ear images for recognition, specifically partial occlusion of the ear by hair and

earrings.

The size of the dataset and the scalability tests demonstrate the applicability

of our approach for 3D ear recognition. Comparisons to a 2D eigen-ear approach

and to a commercial face recognition system further demonstrate the piratical

strengths of this work. Though there are certain issues that need to be addressed,

such as the matching of even more occluded ear surfaces to full gallery images

and the computational expense of the ICP algorithm, we are confident that the

approach presented here represents a viable method of using the ear for human

identification.

ICP in its current form is computationally expensive. We believe this is still a

major challenge to its use in biometric identification. We are currently looking at

ways of reducing the computational expense of ICP while maintaining a high level

of accuracy. One effort toward this goal is presented in chapter 5. Additionally,

noisy or incomplete data is inevitable in a production system. We are also exam-

ining the robustness and applicability of ICP to matching partial ear surfaces to

full-ear gallery surface.

Our work extensively investigated the possibility of using ear as a biometric.

The focus of the work is on the improvement of performance and reducing the

computation time. The experimental results suggest the potential power of ear

biometric. The automatic system proposed demonstrates its effectiveness and

efficiency.
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10.2 Future Work

There are several directions for future work. Our automatic ear extraction

works well for ear segmentation by employing both color and depth information.

However, the active contour algorithm may fail if there is no gradient change in

either color or depth image. An improvement might focus on using shape and

texture constraints to help the segmentation. It might be possible to build in

some preferred shape, like an ellipse, or to penalize small irregular parts to the

outline.

Even though our ear dataset is the largest to date, it is still too small to

demonstrate practical use for many applications. A larger dataset is necessary to

validate our work. In addition, it would be interesting to look further at partial

ear occlusion and off-angle ear experiments. The initial experimental results allow

us to make some observations, but a larger dataset is required if we want to verify

our observations and draw any rigorous conclusions.

Speed and recognition accuracy remain important issues. We have proposed

several enhancements to improve the speed of the algorithm, but the algorithm

might benefit from adding feature classifiers. We have both 2D and 3D data and

they are registered to each other, which should make it straightforward to test

multi-modal algorithms. In our multi-modal biometric experiments, we considered

the combination of 2D and 3D ear at the matching score level. It would be

interesting to look at feature extraction level or decision level combination.
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APPENDIX A

EAR BIOMETRICS DATA

Our experiments use the biometric database collected at the University of

Notre Dame during academic year 2003 and 2005. The data is available under Uni-

versity of Notre Dame (UND) Biometrics Database distribution. Detailed informa-

tion can be found at http://www.nd.edu/∼cvrl/UNDBiometricsDatabase.html.

There are 1680 images enrolled based on use in this work, and each has an abs

format (3D data) file and a ppm format (color image) file. In total, the images

are about 3.9 G in size.
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APPENDIX B

EARRING DATA
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APPENDIX C

MINOR HAIR COVERRING
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