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Abstract. We prove that the modZ reduction of the Reidemeister torsion of a rational
homology 3-sphere is naturally a Q/Z-valued quadratic function uniquely determined by
a Q/Z-constant and the linking form.
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1. Introduction. Recently, V. Turaev has proved in [3, Theorem 4.3.1] a certain iden-
tity involving the Reidemeister torsion of a rational homology sphereM . In this paper,
we suitably interpret this identity as a second-order finite difference equation satis-
fied by the torsion. Roughly speaking this identity states that the finite difference
Hessian of the torsion coincides with the linking form of M . This allows us to prove
a general structure result for the modZ reduction of the torsion. More precisely, in
Proposition 3.3 we prove that the modZ reduction of the torsion is completely deter-
mined by three data.
• a certain canonical spinc-structure σ0,
• the linking form lk of M ,
• a constant c ∈Q/Z.
By fixing the spinc-structureσ0, we have a natural choice of Euler structure and thus,

we can identify the Reidemeister torsion with a Q-valued function on H :=H1(M,Z).
Its modZ reduction is a function τ :H �� Q/Z of the form

τ(h)= c− l̂k(h), (1.1)

where l̂k denotes a quadratic form on H such that

l̂k
(
h1+h2

)− l̂k
(
h1
)− l̂k

(
h2
)= lk

(
h1,h2

)
. (1.2)

As a consequence, the constant c is a Q/Z-valued invariant of the rational homology
sphere. Experimentations with lens spaces suggest this invariant is as powerful as the
torsion itself.

2. The Reidemeister torsion. We review briefly a few basic facts about the
Reidemeister torsion of a rational homology 3-sphere. For more details and examples
we refer to [1, 3].
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Suppose that M is a rational homology sphere. We set H := H1(M,Z) and use the
multiplicative notation to denote the group operation on H. To remove the sign ambi-
guities in the definition of torsion, we equip H∗(M,R) with the canonical orientation
described in [3].
Denote by Spinc(M) the set of isomorphism classes of spinc-structure on M . It is

an H-torsor, that is, the group H acts freely and transitively on Spinc(M),

H×Spinc(M)� (h,σ) � �� h·σ ∈ Spinc(M). (2.1)

We denote by �M the space of functions

φ :H �� Q. (2.2)

The group H acts on �M by

H×�M � (g,φ) � �� g ·φ, (2.3)

where

(g ·φ)(h)=φ(hg). (2.4)

We denote by
∫
H the augmentation map

�M �� Q,
∫
H
φ :=

∑
h∈H

φ(h). (2.5)

According to [3], the Reidemeister torsion is an H-equivariant map

τ : Spinc(M) �� �M, Spinc(M)� σ � �� τσ = τM,σ ∈�M (2.6)

such that ∫
H
τσ = 0. (2.7)

In particular, if M is an integral homology sphere we have τM,σ = 0. Denote by lkM
the linking form of M ,

lkM :H×H �� Q/Z. (2.8)

V. Turaev has proved in [3] that τσ satisfies the identity

τσ
(
g1g2

)−τσ (g1)−τσ (g2)+τσ(1)=−lkM
(
g1,g2

)
modZ (2.9)

for all g1,g2 ∈ H, σ ∈ Spinc(M). In the above identity, we replace σ by h ·σ for an
arbitrary h∈H and using the H-equivariance of σ � �� τσ , we deduce

τσ
(
g1g2h

)−τσ (g1h)−τσ (g2h)+τσ(h)=−lkM
(
g1,g2

)
modZ (2.10)

for all g1,g2,h∈H, σ ∈ Spinc(M).
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3. A second-order differential equation. The identity (2.10) admits a more sugges-
tive interpretation. To describe it, we need a few more notation.
Denote by �M the space of functions H �� Q/Z. Each g ∈H defines a first-order

differential operator

∆g :�M �� �M,
(
∆gu

)
(h) :=u(gh)−u(h), ∀u∈�M, h∈H. (3.1)

If Ξ= Ξσ denotes the modZ reduction of τσ , then we can rewrite (2.10) as(
∆g1∆g2Ξ

)
(h)=−lkM

(
g1,g2

)
. (3.2)

Note that the second-order differential operator ∆g1∆g2 can be regarded as a sort of
Hessian.
We prove uniqueness and existence results for this equation. We begin with the

(almost) uniqueness part.

Lemma 3.1. The second-order linear differential equation (3.2) determines Ξ up to
an “affine” function, that is, the sum between a character of H and a Q/Z-constant.

Proof. Suppose that Ξ1, Ξ2 are two solutions of the above equation. Set Ψ :=
Ξ1−Ξ2, Ψ satisfies the equation

∆g1∆g2Ψ = 0. (3.3)

Now, observe that any function F ∈�M satisfying the second-order equation

∆u∆vF = 0, ∀u,v ∈H (3.4)

is affine, that is, it has the form
F = c+λ, (3.5)

where c ∈Q/Z is a constant and λ :H �� Q/Z is a character. Indeed, the condition

∆u
(
∆vF

)= 0, ∀u (3.6)

implies ∆vF is a constant depending on v , c(v). Thus

F(vh)−F(h)= c(v), ∀h. (3.7)

The function λ= F−F(1) satisfies the same differential equation

λ(vh)−λ(h)= c(v) (3.8)

and the additional condition λ(1)= 0. If we set h= 1 in the above equation, we deduce

λ(v)= c(v). (3.9)

Hence,
λ(vh)= λ(h)+λ(v), ∀v,h (3.10)

so that λ is a character of H and F = F(1)+λ. Thus, the differential equation (3.2)
determines Ξ up to a constant and a character.
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Lemma 3.2. Suppose that b : H×H �� Q/Z is a nonsingular, symmetric, bilinear
form on H. Then there exists a quadratic form q :H �� Q/Z such that

�q = b, (3.11)

where
(�q)(u,v) := q(uv)−q(u)−q(v). (3.12)

Proof. Let us briefly recall the terminology in this lemma. b is nonsingular if the
induced map H �� H� := Hom(H,Q/Z) is an isomorphism. A quadratic form is a
function q :H �� Q/Z such that

q(1)= 0, q
(
uk
)= k2q(u), ∀u∈H, k∈ Z (3.13)

and �q is a bilinear form.
Suppose that b is a nonsingular, symmetric, bilinear form H×H �� Q/Z. Then,

according to [4, Section 7], b admits a resolution. This is a nondegenerate, symmetric,
bilinear form

B :Λ×Λ �� Z (3.14)

on a free abelian group Λ such that the induced monomorphism JB : Λ �� Λ∗ :=
Hom(Λ,Z) is a resolution of H,

0
� � �� Λ

JB �� Λ∗
π �� �� H �� 0 (3.15)

and b coincides with the induced bilinear form on Λ∗/(JBΛ) (n := #H),

b
(
π(u),π(v)

)= 1
n2
B
(
J−1B (nu),J−1B (nv)

)
modZ, ∀u,v ∈Λ∗. (3.16)

Now, set

q
(
π(u)

)= 1
2n2

B
(
J−1B (nu),J−1B (nu)

)
modZ. (3.17)

This quantity is well defined, that is,

1
2n2

B
(
J−1B (nu),J−1B (nu)

)= 1
2n2

B
(
J−1B (nv),J−1B (nv)

)
modZ (3.18)

if v =u+JBλ, λ∈Λ. Clearly, �q = b.
Denote by Q the space of solutions of the equation (3.11), that is, the space of

quadratic forms q on H satisfying Hq =−lkM . Q consists of more than one element.
It is a G-torsor, where G =Hom(H,Z2) and the G action is given by

(Q×G)� (q,µ) � �� q+µ. (3.19)

Using the linking form on M we can identify G with the 2-torsion subgroup of H.
Denote by Ξσ the reduction mod Z of τσ .
Fix a spinc structureσ0 onM . We deduce that for every q ∈Q there exists a constant

k= k(q) and a character λ= λq of H

Ξσ0(h)= k(q)+λq(h)+q(h), Hq =−lkM. (3.20)
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In particular,

Ξg·σ0(h) := Ξσ (gh)= k(q)+λq(gh)+q(gh)
= (k(q)+λq(g)+q(g))︸ ︷︷ ︸

c(g,q)

+(λq(h)+(Hq)(g,h))︸ ︷︷ ︸
λq,g(h)

+q(h) (3.21)

where λq,g(•)= λq(•)−lkM(g,•). Since the linking form is nondegenerate we can find
a unique g = g(q) such that λq,g = 0. We set �σ(q) = g(q) ·σ0 and c(q) = c(g(q),q).
The above computation also shows that for every µ ∈G we have

c(q+µ)−c(q)= q(µ), �σ(q+µ)= µ · �σ(q). (3.22)

We have thus proved the following result.

Proposition 3.3. Suppose M is a rational homology sphere. Then there exist func-
tions

c :Q �� Q/Z, �σ :Q �� Spinc(M) (3.23)

so that
τ�σ(q)(h) := q(h)+c(q) modZ, ∀h∈H. (3.24)

Moreover,
c(q+µ)−c(q)= q(µ), �σ(q+µ)= µ · �σ(q), ∀µ ∈G. (3.25)

Remark 3.4. (a) Note that q(µ)∈ (1/4)Z, ∀q ∈Q, µ ∈ Z so that 4c(q) is indepen-
dent of q. It is a topological invariant of M !
(b) One can show that the image of the one-to-one map �σ is Spin(M), the set spinc

structures induced by the spin structures on M . We can thus regard c as a map c :
Spin(M) �� Q/Z.

4. Examples. We want to show on some simple examples that the invariant c is
nontrivial. First, we need some notation.
We denote by Zn the cyclic group with n elements. The functions f : Zn �� Q can

be conveniently described as polynomials f ∈ Q[x], where xn = 1. Given two such
polynomials f ,g, we define the equivalence relation ∼ by

f ∼ g �� �� ∃m∈ Z : f =±xmg. (4.1)

We will not keep track of Euler structures and/or homology orientations and that
is why in the sequel only the ∼-equivalence class of the torsion will be well defined.
In particular, the constant c constructed in the previous section will be defined only
up to a sign.
(a) Suppose that M = L(8,3). Then its torsion is (see [2])

T8,3 ∼− 932 x
7− 3
32

x6− 9
32

x5+ 5
32

x4+ 7
32

x3− 3
32

x2+ 7
32

x+ 5
32
, (4.2)

where x8 = 1 is a generator of Z8. Then

q
(
xn
)= −3n2

16
. (4.3)
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The set of possible values (−3m2/16) modZ is

A :=
{
0,
−3
16

,
4
16
,
5
16

}
. (4.4)

The set of possible values of Ξ(h) is

B :=
{
− 9
32
,− 3
32
,
5
32
,
7
32

}
. (4.5)

We need to find a constant c ∈Q/Z such that

B±c =A. (4.6)

Equivalently, we need to figure out orderings {a1,a2,a3,a4} and {b1,b2,b3,b4} of A
and B such that bi−ai modZ is a constant independent of i. A little trial and error
shows that

�A=
(
0,− 3

16
,
4
16
,
5
16

)
, �B =

(
− 3
32
,− 9
32
,
5
32
,
7
32

)
(4.7)

and the constant c =−3/32. This is the coefficient of x2. We deduce that (modulo Z)

F := T8,3(x)+ 3
32
∼− 3

16
x7−0·x6− 3

16
x5+ 1

4
x4+ 1

4
x3−0·x2+ 1

4
x+ 1

4
. (4.8)

The translation of F by x−2 is

x−2
(
T8,3+ 3

32

)
= 1
4
x7+ 1

4
x6− 3

16
x5− 3

16
x3+ 1

4
x2+ 1

4
x. (4.9)

(b) Suppose that M = L(7,2). Then, its torsion is (see [2])

T7,2 ∼−27 x
6+ 1
7
x5+ 2

7
x3+ 1

7
x− 2

7
, (4.10)

where x7 = 1 is a generator of Z7. We see that in this form T7,2 is symmetric, that is,
the coefficient of xk is equal to the coefficient of x6−k. The constant c in this case
must be the coefficient of the middle monomial x3, which is 2/7.
(c) Suppose that M = L(7,1). Then

T7,1 ∼ 27 x
6+ 1
7
x5− 1

7
x4− 4

7
x3− 1

7
x2+ 1

7
x+ 2

7
. (4.11)

This is again a symmetric polynomial and the coefficient of the middle monomial is
−4/7. We see that this invariant distinguishes the lens spaces L(7,1) and L(7,2). It is
known that these two spaces are homotopic but nonhomeomorphic lens spaces. Thus,
the invariant c distinguishes their homeomorphism types, just as the torsion does.
(d) For M = L(9,2), we have

T9,2 ∼−1027 x
8+ 2
27

x7− 1
27

x6+ 8
27

x5+ 2
27

x4+ 8
27

x3− 1
27

x2+ 2
27

x− 10
27
. (4.12)
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Again, this is a symmetric function, that is, the coefficient of xk is equal to the coeffi-
cient of x8−k, x9 = 1. The constant is the coefficient of x4, which is 2/27. We deduce
that modZ, we have

T9,2− 2
27
=−2

3
x8− 2

9
x7− 1

3
x6− 2

9
x7. (4.13)

(e) Finally, when M = L(9,7) we have

T9,7 ∼− 827 x
8− 2
27

x7+ 10
27

x6+ 1
27

x5− 2
27

x4+ 1
27

x3+ 10
27

x2− 2
27

x− 8
27

(4.14)

the polynomial is again symmetric so that the constant c is the coefficient of x4 which
is −2/27.
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