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A WEIGHTED SEMILINEAR ELLIPTIC EQUATION INVOLVING
CRITICAL SOBOLEV EXPONENTS
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Abstract. In this paper we prove the existence of a positive radial solution of the problem
—Au=rulP"lu+ Ar®u, in Bp C R (r = |z)

for A in a suitable (and almost optimal) range. Here N > 3, a,0 > —2 and p=(N+2+
20)/(N — 2) corresponds to the critical Sobolev exponent p +1 = (2N + 20)/(N ~ 2). Our
result extends the previous one due to Brézis and Nirenberg when ¢ = a = 0.

0. Introduction. In a previous paper [8] we considered the problem
1 LAY o q—l M
—F(r u') =r%ul?" u in (0,1)

1

u(1) =0, / r/|2dr < oo (0.1)
0

u > 0.

We recall some of the results we obtained there.
“If ¥ > 1 then the problem has exactly one weak solution for 1 < ¢ < 143420

-1
and no weak solution for ¢ > (y +3+20)/(y - 1).”
In this paper we shall deal exactly with the critical case, namely, ¢ = p = (v +
3+ 20)/(y —1). Instead of (0.1) we consider the more general problem

- -—1;1-(r"u')' = 7|uP"lu 4+ Ar®u in (0, 1)
T

1
u(1) =0, / K1 dr < oo (0-2)
0

u>0

where v > 1, 0, > —2.
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In order to describe our results we need to explain some notation. Let us consider
the linear eigenvalue problems

1
—%(r“’u')’ = Ar®u, u(1l)=0, /0 r|? dr < oo (0.3)

and

1 1
—:f:(r2‘7v')’ = pur®v, v(1)=0, /0 r2= ' 2 dr < oo (0.4)

which should be understood in a suitable weak sense.

We denote by A (e, ) the least eigenvalue of (0.3) which exists for y > 1, & > —2
and by p1(a,7) the first eigenvalue of (0.4) which exists for 1 < v < o+ 3. We can
now state our main results.

A. There exists no weak solution of (0.2) for A < 0 or A > A (a).
B.If v > o+ 3 then (0.2) has at least a weak solution if and only if A € (0, A1 (a)).

C.If1 <7y < a+3 then pi(e,7) < Aj{e,7) and problem (0.2) has a weak solution
for each A € (p1(e,7), M(e,7)).

The proof of these results uses a variational method together with the techniques
of Brézis-Nirenberg [3] in order to overcome the difficulties raised by the lack of
compactness due to the critical Sobolev exponent p+1 = (2y+ 2+ 20)/(y - 1).

Our results can be directly applied to elliptic PDEs yielding a twofold generaliza-
tion of some of the results of the Brézis-Nirenberg paper [3]. The paper is divided
into three sections. Section 1 deals with weighted Sobolev spaces. In particular,
here is proved the existence of a best Sobolev constant in a critical Sobolev imbed-
ding and we compute it explicitly. Section 2 is the core of the paper. Here are
stated and proved the existence results for (0.2). Section 3 is devoted to the proof
of the inequality p;(o,y) < M{a,y) forl1 <y < a+3.

1. Imbedding theorems for weighted Sobolev spaces. Existence of a
best constant in the critical case. We first recall some known facts about
weighted Sobolev spaces which we have stated and proved in [8] in a form suitable
for our purposes. Let R € (0, +0o0], E,}f is the closure of the set

S = {u € C*[0,R] : v = 0 in a neighborhood of R}

in the norm | - ||4,r defined by

R 1/2
b= ([ rwpar) ™
0

When R = 1 we write simply ||u||y, L§(0, R) is the weighted L9(0, R; % dr).
We recall the following results (see [8] for a proof).

Radial Lemma. There exists C = C(y) > 0 such that for u € E¥

C
[u(r)| € oozl Ve € (O, R).
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Imbedding Lemma. Let v > 1, R < 0o and § > max(—1,7 — 2). Then ER
L{(0, R) continuously if and only if

04+1 _v-1
_— . .
=22 (1)

Compactness Lemma. Let v > 1, R < oo and § > max(~1,v — 2). The imbed-
ding ER — L}(0, R) is compact if

0+1 _ ~v-1 ,
. > (1.1)
We are interested mainly in the critical case; i.e., the situation (+1)/q = (y—1)/2
hence 20+ 1)
+
= * = . .2
g=" o (1.2)

The continuity of the critical imbedding is equivalent to the existence of a constant
K > 0 such that

“u"L'}'(O,R) < Kllully,r- (1.3)

In fact (1.3) holds also with R = oo (see Maz’ya [7], Sect. 1.3.1). Set
S0, R) = inf{lull o | € B, 25+ oy = 1) (1.4

Following the ideas in Aubin [1] we can prove the following result.
Proposition 1.1. Let § > v —2 > —1. Then in (1.4) with R = oo the infimum
S(v,8,00) is achieved by the function

— C
U(r) = (1 ¢ r279)(-D/Z+o)

=C-U(r), o=0-+ (1.5)

where C is a normalization constant; i.e., such that |[U|IL~,'(0 o0y = 1-
5 (0,

Proof: The proof will be carried out in two steps.

Step 1. If the infimum is achieved then it can also be achieved by a positive
decreasing function. Let us assume the infimum is achieved. Obviously ||uly,cc =
IHNullly,00 and ||u||L;'(0’w) = I““'”L}'(o,oo)' (The former equality is a consequence of
a variant of Stampacchia’s lemma; see [6] for a proof.) Hence the infimum can also
be reached by positive functions. The functions that realize the infimum satisfy the
Euler-Lagrange equation

—r—l,y—(r"u')' = M| "2, (1.6)

where A € R* is a Lagrange multiplier. We may assume u > 0. By the Radial
Lemma we infer

lim u(r) = 0. (1.7)

T—00
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We make the change of variables s = r~(7=1) and we denote v(s) = u(r). Then v
satisfies the following equation

1 Ap? -1

ves + 1) G — 0 10 (0,00) (1.8)

with v(0) = 0 and v, = dv/ds. Hence the function Av is concave. One of the
following two situations may occur.

A. X < 0. Then v is convex and hence v'(0) exists and v'(0) > 0. Therefore v is
increasing and obviously u is decreasing.

B. A > 0. Then v is concave and since v > 0 near co we get v (o0) = 0 and
consequently v is increasing. Again we get that u is decreasing.

Step 2. The infimum is achieved by the function (1.5). It is easily seen that the
function (1.5) satisfies (1.6) with a suitable A. The statement of Step 2 follows from
a sharp result due to G.A. Bliss [2]. We state a special case of it.

Lemma 1.2. Let ¢ > 2 and let h(z) > 0 be a measurable real-valued function such
that [° h*(z) dz is finite. Set g(z) = Js g(t)dt. Then

(/Ooo gq(:c)x""’dz) < K(/:o h2(x)dx)m (1.9)

where ¢ = 20— 2 and K = 1/(g — « — 1)[(aI(g/a)) /(T(1/a)T((g — 1)/a))]%.

Here I is Euler’s gamma function. The relation (1.9) holds with equality for every
function h(z) of the form

C

Ha(l') = (dxa + 1)(0-{-1)/0'

(1.10)

We see that (1.9) can be restated as

( / g (@) de) T < Ko / 19/ (2)|? d, (1.9)
0 V]

for every increasing function g such that g(0) = 0 and g’ € L?(0,00). If in (1.9) we
make the change in variables z = 1/7%, u(r) = g(z) then we get

0 1/ o 1/2
Vllq(/ wd(r)r((va/2)-1 dr) ! < KMyt (/ |u' ()| 2rv 1 dr) (1.11)
0

0

for every positive decreasing function u such that u(r) — 0 as r — oo. If in (1.11)
we further specialize v and g such that v+ 1 =17, %1 —1 =6 we get v =7 — 1 and
g = (2(8+1))/(y—1) and we obtain the critical Sobolev imbedding. Moreover (1.11)
becomes equality when d/dz u(r) = Hqa(z), where z = r~(7=1). This happens when
u(r) = U(r) where U is given by (1.5).

Remark 1.3. The result above allows one to compute the exact value of S(7, 8, o).
In fact

U113, 00

Lefle

L]"(0,00)

S(v,6,00) = (1.12)
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oo 140
2 - ~ 112 / _ _ T
W= [P0 i, U0) = (0= ) e

. ) oo ,r'y+2+20'
”U“'y,oo =(y-1) /0 (14 r2+o)2(r+1+0))/(2+0) dr

_ ('Y _ 1)2 0 s(1+3+20)/(2+a)—1 ds
- 0 (1 + s)(2(‘7+l+a’))/(2+a)

240
so that 1342 .
”UIIZ - (7 - 1)2 F( 240 )F(gﬁ) (1 13)
== ore (g ‘

where we have used the formula

® g™ ldz  T(m)-T(n)
/o (14+z)™t"  T(m+n) Ym,n >0 (1.14)

(cf. Dwight [4]). We now compute in a similar way

oo 6
v — T —
N0z 0,000 = /0 1§ rroyeeryera & @=7+09)

1 ©  (v+o+1)/(2+0)-1 1 [P(Q;—ija)]z (1.15)
- 2+a_/0 (14 5)@Or+o+1)/(240) ds = 240 1-\(2§1+1+o')
240

where again we have used (1.14). It is a straightforward observation that S(v, 6, R)
is invariant under rescaling so that it does not really depend on R. We set

S(v,8) == S(7,6,R), R € (0,00).

2. Existence of a positive solution. In this section we consider the existence
question for the following boundary value problem

1
— — (") =l 'u+ Ar®u in (0,1), A € R,
Loy = .1 o

a>=-2,0>-2,u€e bk, u>0

where p = (y+3+20)/(y— 1), ¥ > 1, 0 > —2 so that the imbedding E, — L5t
0 = v + o is noncompact.
We shall look for a weak solution of (2.1); i.e., a function u € E,, u > 0 such that

1 1
/ r’u'o dr = / [rPuPp 4+ ArT*eupldr, Vg € E,. (2.2)
0 0

Remark 2.1. (2.1) has no weak solution for A < 0.



658 L.I. NICOLAESCU
This will follow from a Pohozaev-type argument similar to that used in [8]. As-

sume the contrary; i.e., there exists a weak solution u of (2.1) with A < 0. In (2.2)
we set ¢ = u and we get

1 1
/ rlu'|? dr = / [rOuPt? 4 Ar7rey?] dr. (2.3)
0 0
By standard elliptic regularity, u« € C2(0,1) so that u is a classical solution of
—(r"u') = ruP + A"y, in (0,1), wu(1)=0. (2.4)
We multiply (2.4) with ru’ and we get

YU 4 AP 4 Ot P 4 AT = 0

1 1 d A d
_ Lo+l 12 112 0+1 %  p+1 Zpvte 22y = .
2" dr|u| + vl +p+lr dr(u )+2r dr(u) 0

We integrate the last inequality by parts on (¢,1). We obtain

A
W@ - 3 )P — et (e) - SeTtetiud(e)

p+1
+ —-——/ Tl (r) |2 dr — b+ 1/ rOuPti(r)dr (2.5)
_Mytetl) +2oz + 1)/ r”+"u2(7‘) dr = 0.

Since u € E, N LE*! we get that on a subsequence &x — 0
eyt (ex)|? + vt Pt () = 0 as k — oo. (2.6)
By the Radial Lemma u?(g) < const.e~(*~1) so that
grret)y?(g) < const. €72 = O(1) ase — 0, since a > 2. (2.7)
If in (2.5) we let € = g — 0 we infer by (2.6), (2.7)

L/ () + 7—2—/0 Y| (r)|* dr — vT 1), ruP*(r)dr
(2.8)

From (2.3) and (2.8) we infer

-1 6+1 Ma+2) [
%Iu'(7‘)|2+(72 = pil)/ 7|u'(r)|2dr—~——-—(a2+ )A rY¥ey?(rydr =0
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and finally since (y - 1)/2=(04+1)/(p+ 1)
o 1
(D) = 2\—(-—-;—2-2‘/; rrrey?(r)dr < 0. (2.9)

We get u'(1) = 0. We know that also u(1) = 0. Therefore it follows—according to
the uniqueness in a Lipschitzian Cauchy problem—that u = 0.

A special part in our considerations will be played by the following generalized
engenvalue problem

-%(WU')’ =XM%, A€R,a>-2 u€ekE, (2.10)

which is meant in the following generalized sense

1 1
/ Yo dr = /\/ r"*eupdr, Yy € E,. (2.11)
0 0

Since for o > —2 the imbedding E, — L?7 44 18 compact one can prove in a standard
manner the following facts:

(F1) The spectrum of (2.10) consists of an unbounded sequence of positive eigen-
values 0 < Ai(0,7) < A2(a,7) < A3(e,7) < --- — o0, each of them having
finite multiplicity.

(F2) The eigenvalue A;(c, ) is simple and the corresponding eigenspace is gener-
ated by a positive eigenfunction.

(F3) For every v > 1 the mapping @ — A (a,7) is decreasing and continuous.

(For a proof of these by now classical statements we refer the reader to the work of
D.J. de Figueiredo [5].)
When there is no possibility of confusion we shall write A («) instead of A\;(a, 7).

Remark 2.2. Problem (2.1) has no weak solution for A > A\ (a,7),v > 1, a > 2.
Indeed, we set in (2.2) ¢ = ;. We get

1 1
/ '] dr = / [rPuPpy 4 Ar 7+ %upy] dr.
0 0

If in (2.11) we set ¢ = u and A = A\ (a) we get

1 1
/ ol dr = )\1/ 7+, dr.
0 0

We infer

1 1
0>(\- /\1)/ Yt up, dr = / rOuP o, dr.
0 0

Due to the fact that ¢; > 0 it follows u = 0.

From the two remarks above we see that a necessary condition for the existence
of a solution of (2.1) is that A € (0, A\;(c)).
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Following the ideas of Brézis-Nirenberg [3] we shall consider the minimization
problem

S5 = $3(1,6) = inf{[ull2 ~ NJulZs,_; lull pes = 1). (2.12)

If u is a solution of (2.12) we may assume u > 0 for otherwise we replace u by |ul.
Then u satisfies

1
—;—;(r”u')' - Ar®u = Syr’u? in (0,1), u€E,

in the weak sense (2.2). It follows that if Sy, > O then ku satisfies (2.2) for some

appropriate constant k£ > 0 (namely k = 51/(P=1)) " Thys in order to obtain a
A

solution of (2.1) it is sufficient to check the following conditions.
Problem (2.12) has a solution. (2.13)
Sy > 0. (2.14)
Condition (2.14) holds if and only if A < A;(a) which is (according to Remark 2.2)

a necessary condition for the existence of a solution of (2.1).
A sufficient condition so that (2.13) holds is supplied by the following result.

Proposition 2.3. If S\ < S then the minimization problem (2.12) has a solution.

The proof of this result follows the same lines as the proof of Lemma 1.2 in the
paper of Brézis-Nirenberg [3] so we omit it.

Our task is to check when S < S,. We follow the arguments used in (3] Lemma
1.1 and Lemma 1.3. We treat separately two cases.

2.1. The case 7> a+3. The main result of this subsection is the following.
Proposition 2.4. Let v > a + 3. Then Sy(7,8) < S(v,0) for every A > 0.

Proof: We shall estimate the ratio

2 _ pY 2
lulZ = Mull3,

2
u
el

QA“E = 3 0=7+0

with

_ p(r)

Ue(r) = (e + .,.2+a)(”/—])/(2+0)’ e>0 (2.15)
where ¢ € C*[0, 1) is a fized function such that ¢(r) = 1 for r in some neighborhood
of 0 and ¢(r) = 0 in some neighborhood of 1.

We claim that as € — 0 we have

K
2 _ 1
”u5”7 - 6(1_1)/(24.0) + 0(1) (216)

K,

||u5||i:+] = Geera T 0(1) (2.17)
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K,
coa—oyarsy TO) 7>a+3 (2.18)

2 —
el =
K3|1085|, 7=a+3

where K1, K, K3 are positive constants such that K; /K, = S.
Verification of (2.16).

/
ey — o'(r)
ue(r) = (e + re+o)r=D/(2+0) — (=

) ri+op(r)
(E + 7-2+0)(‘Y+1+¢7)/(2+a)

Since ¢ = 1 near 0 it follows that

9 1 12 5 1 r7+2+2a
—_ v —
el = ./0 rlucfdr=(v=1) ./0 (€ + r2+0)2(r+1+0)/(2+2) dr + O(1)
1 e~ 1/(240) (42420
= ( (7 - 1)2 > ds
e(r=1)/(2+0) 0 1+ s2+a)(2(7+1+o))/(2+o)
K,
= Goarey T o)
where
K B ( B 1)2 00 s'y+2+2o d _ U 9
1= s=Ull3,00

(1 + s2+0)2G+1+0)/(240)

and U is given by (1.5).
Verification of (2.17).

1 1 1t+o ,p+1
P (i’ M—,
0 o (g4 r2t+o)2(r+1+0))/(2+0)

1 @Pti(r) — 1 1 pr+o
=/0 (e + 7-2+0)(2(‘7+1+a))/(2+a) dr + o (e+ 7-2+a)(2('y+1+o))/(2+g) dr

! vt+o K!
B /0 (€ + r2to)2(v+1+0))/(2+0) dr+0(1) = e(r+1+0)/(2+0) +0(1)

where N
o0 y+o
;= T — TP+
o= ./o 7 rereyaerraners & = Wiz 0.0 -

Thus (2.17) follows with K, = ||U]| , and K1/Kz = S(7,6).

2
L:'“(O,oo
Verification of (2.18). We have

“u ”2 — ! [592(T) — 1]T7+a dr + ! ryte dr
NWita = Jo (e + r2+o)@G-D)/2+0) o (€ + r2+o)(-1)/(zFa)

1 r7+a
N /o (€ + r2+o)2(v=1))/(2+0) dr + O(1).
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When v > a + 3 we have

e—1/(2+)

1 rYta 1 sTte
/0 (€ + r2+o) -1/ (%) dr = 5(-1—3—a)/(2+a)/0 (1 + s2+o) @D/ (2+a) ds

1 oo gte
= Z(=3=a)/(2+0) /0 (1 + s2+o)@(=1))/(z+0) ds+0(1)
and thus (2.18) follows with

N R gYta
Ks = /0 (5 seyaa-nyare) &
When v = o + 3 we have

1 r2o+3 g 1 1 s (2(a+2))/(2+0) ds
o (g + r2+o)(2(at2))/(2+0) r= 2+0 J, (5 + s) 5
1
= 5—llogel +0(1)
and thus (2.18) follows with K3 =1/(2 + o).
Combining (2.16), (2.17) and (2.18) we get
S — )‘%5(2+a)/(2+a) + O(elr—1/2+9)y, v>a+3

Qx(ue) ={

S - A%5(2“+2)/(2+")| loge| + O(e2o+2)/(24+0)y o = o+ 3.
In all cases we deduce that @5 (u.) < S provided € > 0 is small enough. B
We can state the following result

Theorem 2.5. Let v > o + 3. There exists a solution of (2.1) if and only if
0<A< (a)

2.2. The case 7 < a+3. Of special interest to us will be the following eigenvalue
problem

== (r27"') = pr®u, u € By, (2.19)

which should be understood in the weak sense (2.11).
We shall consider the following more general eigenvalue problem

—-Tiﬁ(rﬁu') =ur®u, u€ Eg pB<1 (2.20)

which is understood in the Eg-weak sense
1 1
/ rPu' dr = M/ re+Pyupdr, Vo € Eg. (2.20")
0 0

If one makes the change in variables r = s!/(1=A) y(r) = v(s), then (2.20) reduces
to
_ K (at2)/(1-pB)-2
v’ = = ﬁ)zs 10=F)=2y v e Eq (2.21)
understood in Ey-weak sense.
The decisive remark is the following
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Lemma 2.6. The space E; is compactly imbedded in L? for every § > —1.

Proof: Indeed Ep is compactly imbedded in L} for every p > 1 according to
Kondrachov’s theorem. Now let § > —1.

! ! 1p, [1 1/q
2 5,2 pé 29
||u]|L§ /o r°u®ds < (A T dr) ([) u dr)

for some p,g > 1 such that p6 > —1 and (1/p) + (1/g) = 1. Hence fullzz <
const.||u|| z2¢ and therefore Ey is compactly imbedded in L2.

From the compactness result stated above it follows that if in (2.21) (o +2)/(8 -
1) =2 > —1 (or simply o + 3+ 1 > 0) then the spectrum is discrete, positive, the
first eigenvalue p; (o, 3) is simple and the corresponding eigenspace is generated by
a positive function ;.

Lemma 2.7. Let 9, be defined as above. Then ¢1(r) —¢1(0) = O(r®**2) asr — 0
and ¢1(0) > 0.

Proof: Since ¢; € Eg and B < 1 it follows that ¢; € L*°(0,1) and a simple
argument shows that 1; € C[0,1]. Using the same arguments as in Proposition 2.4
of [8] it follows that

Y1(r) — ¥1(0) = O(ro+2).

Suppose that 4;(0) = 0. If we make the change of variables r = s1/(=8) ((s) =
¥1(r) then w(s) satisfies

-w'"(s) = afl—ﬂ)zs‘sw in (0,1), 6 = ?—j—; -2 wekE

in Eop-weak sense. By the strong maximum principle we infer w’(0) > 0 since
w(0) = 0. Invoking once again the arguments of Proposition 2.4 in [8] we infer
w(s) = O(s**%) as s — 0. Since § > —1 it follows that w’(0) = 0. Contradiction!
The lemma is proved.

Thus the eigenvalue problem (2.19) leads to a positive discrete spectrum when
2—y4+a+1>0;ie,y<a+3.

We denote the least eigenvalue with p11 (e, ) and the corresponding eigenfunction
with 1, such that ¥; > 0

»1(0)=1, ¢i(r)—-1=0(** ?)asr — 0. (2.22)

Our next task is to estimate

el = Alelis

2
u
II e”L:iL

Qz\(us =

where #(r)
T
el =3 mr ey V()= i),

First we estimate the terms that enter Q(u.).
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Estimation of ||u.|[2.

Y'(r) ritod(r)
, —_— — —
w(r) = T rareya-niEre) O - 1) T eyaraere)
so that
1 ! 2 +140 !
2 _ [’ (r)Pr” ol rYH iy (r)y(r)
||u5"'y = / [(E + r2+a)(2('y—1))/(2+a) 20v-1) (e + r2+a)(27+a)/(2+cr)

v+2+420,/,2
+ (,\/ - 1)2 T 1/) (r)
(E + r2+a)(27+2+2a)/(2+a)

] dr.

We integrate by parts the second term above and we get

! o' (r)Pr?

2 _
luell5 = b (& 4 rEro)@G-D)/EHo) dr

1 v+o
+e(y-D(r+1+ 0)/0 Y*(r) (€ + r2+o)RO+1+))/(2+0) dr

1 . ryto
/0 4 (’")(E+ 73+0) @ F1+0))/(2+0) dr

1 rYto 1 . rto
=j(; (e+ r2+a)(2(7+1+a))/(2+a) dr +/0 [¥*(r) - 1] (e+ r2+a)(2(‘1+1+a))/(2+a)
=0+ 1

K!

h= c(r+140)/(2+0)

+0(1)

where
rY +o

oo
K] = /
o (1 + ,,-2+0)(2(“r+1+a))/(2+a)

dr. (2.23)

By (2.22) we get

1 ,r'y+a+a+2
|I2| < const. o (e + r2+0)Cr+1+0))/(240) = 0(f(e))
where E_(—7+a—a—1)/(2+0’)’ 0% +o>a+ 1
fe) =4 |logel, y4o=a+l

1, y+o<a+l
We infer that

et = [ 7 4 4 ey + O(0) + O,

£ + r2+o)2(r-1)/(2+0) c(—1)/(2+9)
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e—0.
A simple computation shows that O(e) + O(e(f(e)) = O(ef(€)), € \, 0 so that

1 ! 2
2 _ [ (r)[*r” K,
luelly = | eirzreyaa-nvers &+ samherey TOEf(@)  (2:29)
as € — 0, where
Ki=(y-1r+14+0)K] (2.25)

and
E(a+3—7)/(2+6), y+o>a+ 1

ef(e) = ¢ ¢|loge| Y+o=a+1
£, Yy+o<a+l.

Estimation of |lu.|?,,..
2

P PP (r)rrte ryte p
”uflLHJ (€_+r2+ayﬂ7+l+anlﬂ+a) o (e + o) CeHF /T ¢

_ / rHi) -t
0

(€ + r2t+o)(2(r+1+0))/(2+0)

r=1 4+ I,.

As above we infer

K]
+1 _ 1
Iluﬁ”i;“ = o T O(g(e))
where
E—(7+a—a—1)/(2+c)’ y+o>a+1
g9(e) = { |logel, T+o=a+l
1, y4+o<a+l.
Hence
K, :
||ug||L,,+1 = G0/t + O(g(¢)) (2.26)
with
K, = [K1]2/(P+1), (2.27)

Estimation of [|u.||Z - /\||u€||i,+ . By (2.24) we get
Y+ao

K, ! ! ()2
c(=1)/(2+0) o (4 r2+o)2(r=1))/(2+0)

1‘[)2(7' 1-‘7+a
- ’\./ (e § roro)eanErs T OEf(E)

dr

el = A3, =
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/01( e /01( Py

€+ r2+a)(2(‘y—l))/(2+0) €+ r2+°)(2(’7‘1))/(2+")

2v—=2

2 2-0 at+2-7,,2 r
/ [ (r)]*r"77 = Ar ¥*(r)] (e + r2+o)2(-1)/2+9) dr

_ /0 R(W)N(e,r) dr = /0 R(v)dr + /0 RW)[N(e,r) — 1] dr

- /01 R(v) dr + 0(c).

We infer

I

2 2 —_—
||u€||7 - /\"ue"Lng,x T Z(-1)/(2+0)

+/01R(¢)dr+0(5f(5)) ase—0 (2.28)

where again we have used the fact that O(e) + O(e(f(e)) = O(e(f(€)) as € \, 0. By
(2.26) and (2.28) we infer

Qa(ue) = T+ 7" 1>/2/ R($) dr + O(€7=D/2e f(e)).
From v < a + 3 we get ef(e) = o(1) and therefore
%

1
- “,2—1 + (1= D/C4e) / R(3) dr + o(e7~D/+)) a5 e\, 0. (2.:29)
2 0

If we recall our definition of 1) we get
1 1
/ R(y)dr = / [r2= Y ()2 = Ar2rem 9% (r)] dr
0 0

= (p(a) = \) -/0 rot2=192(r) dr = (pi(a) — A) K,

where K3 is a positive constant. This yields

Qr(ue) = = + K (py(a) — N0/ @) 4 o(e1=D/(240)) a5 £\, 0. (2.30)
Now we claim that K1 /K, = S. Indeed S = I:—'U”TI'L-L— v (2.23), (2.27) we see that
Ky = ||U||% ,4:. We have to check that K; = ]|U|| ? oo~ From (1.13) we get

]
43420 -1
iz = (- ICE TG
»00 240 F(2(7+1+a))
240

K can be easily computed using (1.14) and we get

(y =Dy +1-0) [[(HE]

G+ol  T(REE)

K=
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So that we actually have to check

(7+1+a)[r(7—;r-31r-'ai£)]2=(7-1)1‘(72T;2")r(;;;). (2.31)

From the well-known relation I'(z + 1) = zI'(z) we infer

()~ it (65)

() = e ().

(2.31) follows from the equalities above. Hence

K,
=5 (2.32)
By (2.30) and (2.32) we get
If A > pi(a) then Sy < S. (2.33)

Now we can state

Proposition 2.8. If u;(a) < Ai(e) (@ > ~2, 1 < v < a+ 3) then the problem
possesses at least a solution for each A € (p1(@), M (a)).

There is still a question we must answer, namely when does the following spectral
equality hold?

pi(a) < Aq(e). (2.34)

We recall that py(a) = pi(a,v) and A\j(a) = Ai(a,7), are the least eigenvalues
of the following eigenvalue problems

1
r2=7

(r?=7Y") = pr®y, ¢ € By, (2.35)

and respectively
1
—;;(7‘7'(/1,), = /\r°‘<,0, "2 € E-, (236)

where o > —2, 1 < ¥ < a + 3 and these eigenvalue problems are understood in the
weak sense (2.20') and (2.11). '

The aim of our next section is to answer this question.

3. Proof of the spectral inequality. The main result of this section is the
following.
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Ly

/.
/.

cf2.1)

Figure 1.

Proposition 3.1. p(a,7) < M(a,y) foralla > -2,1<y<a+3.
The proof will be carried out in several steps. Let us first denote by D the set
D={(a,7)|1<y<a+3}.

In the (o, )-plane D looks like Figure 1.
Let us denote by S the set

S={(e,7) € D|p(ey7) < M, M}

We also consider the following semigroup of transformations of the (a,v)-plane
(Hg)p>o where the Hp are given by the law

(o) 2 (agyva) = Blar+ 2,7 — 1) + (=2,1). (3.1)

(Hg)p>0 is a semigroup of homoteties of pole C(—2,1). Clearly, Hg(D)C DVB>0.

Proof of Proposition 3.1.
Step 1. Hs(S) C S, VB > 0. We have to prove that if p1(a,7) < A1(e,7) then
also

pi(ag,vg) < M(ag,vs)-

Indeed, let us make the change of variables r = s% in the equations (2.35) and
(2.36). We get

1
s——(s27"Y') = fPus*fY, ¢ € Eryy, (3.2)
§°—8

and respectively
1 (a4
—;:,;(37"99')' = B*As%p, » C By, (3:3)

where oy and 7 are given by (3.1). This yields pi(ap,v8) = B*pi(e,B) and
Ai(ap,v8) = B*M(a,7) and thus p1(a,y) < Mi(@,7) if and only if pi(ap,7s) <
A (ag, 7p)-

Step 2. p1(a,2) < Mi(e,2), for all @ > —1. We denote by ¢ and respectively
¢ eigenfunctions corresponding to p1 and A such that 9,9 > 0in (0,1). Then ¥
and ¢ satisfy

—" = mr®yY, € Ey (3.4)
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and respectively
1
_r_z(’”zso')' =Mr, Y€ b, (3.5)

As in Lemma 2.7 we can prove that

©(0) >0 (3.6)
o(r) = 9(0) = O(r™+?) asr N\, 0. (3.7)

Hence ¢’(0) = 0 and ¢ € Ey. From (3.5) we infer
n o4 2 /
—o" = Mr*+ —¢'. (3.8)

Multiplying (3.8) with ¢ and then integrating on (0,1) we get

1 1 1 ’
2
"2dr =\ reo?dr + —Soidr.
' ¥
0 0 o T
1 1
[ ez [ regtar
0 0

1 1 1 ’
U1 / r®p?dr < }\1/ r*¢? dr +/ 2oy’ dr.
0 0 o T

It is a routine exercise using (3.5) to prove that ¢’ < 0. Thus

1 1
/11/ rep?dr < /\1/ r®p? dr
0 0
hence py < A;.

Step 3. S = D. We have proved so far that the half line (T") : @ > ~1, v = 2
lies in S (see Figure 1). Hence by Step 1 we get (o Hs(T) C S. It is an easy
geometric remark that

Since

it follows

U Hg(T) =D (see Figure 1).
B>0

Proposition 3.1 is proved. §

Now we can state the following result.

Theorem 3.2. a) Fory > a+ 3, a > —2 problem (2.1) has a solution if and only
if X € (0, M(e,7))-

b) For1 <y < a+3, o> -2 we have u1(a,v) < Ai(a,v) and problem (2.1)
has a solution if X € (p1(a, B8), M(e,7)) and no solution if A < 0 or A > A;.

Remark 3.3. In the paper [3] of Brézis-Nirenberg it was proved that if v = 2,
a = 0 then problem (2.1) has a solution if and only if A € (72/4,72). An easy
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computation shows that p,(0,2) = #?/4 and X;(0,2) = 7% and thus our result
seems optimal. It is therefore natural to ask the following question:
Is it true that in the case 1 < v < a + 3 problem (2.1) has no solution for

A< pi(e,7)?
Remark 3.4. We consider the problem
—Au=rluflu+ Ar®u in BR C RN (r =|z)
u=0 on0Bg (3.9)

u>0

a,0>-2,p+1=(2N+20)/(N -2).
By a weak solution of (3.8) we mean a function u € Hg(Br) u > 0 satisfying

VuV<p=/ r"]ulp”lugodx+)\/ reupdz, Yo € Hy(BR). (3.10)
Br Bgr B

R
It is easily seen that at least at a formal level the radial solutions of (3.9) satisfy

1
FN-1

(V') = r7 P 'u 4+ Ar®u in (0,R), v’ =du/dr,u >0, u € En-1.
(3.11)

We claim that weak solutions of (3.11) in the sense of (2.2) satisfy (3.10). Indeed,

if u satisfies (3.11), then u satisfies

—Au=rufflu+ Mr%u in Bg\{0} (3.12)

by standard elliptic regularity. Let ¢ € H3(Q). We multiply (3.12) with ¢ and then
we integrated on D, = {z € RN : ¢ < |z| < R} using Green’s formula

/ VuVedz —/ r|ulP" up dz — )\/ r“ucpd:l:+/ u'(e)p(z)dS = 0.
D, D, |z|=¢

Here ds is the surface element on |z| = €, dS = Y y_,; €~ df; df is the surface
element on [|z| = 1] and 3" _; is the (N — 1)-dimensional measure of the sphere
|z| = 1. We get

/ Vquoda:—/ 7‘"|u|”_1uzpdw—/\/ rup dz
D, D, D.

+ Z / N1/ (e)p(e, 8) do = 0.
N-1YIzl=¢

Since u € Ey_; we deduce that eVu/(¢)? — 0 on a subsequence € = ¢ — 0. Hence
eV=1u/(ex) — 0 since N > 1. In (3.13) we let € = ex — 0. This yields

Vu-chdx—/ r"|u|”_1ucpdx——)\/ r®updz = 0;
Bn BR BB

i.e., exactly (3.10). Now it is easy to formulate existence results for the problem

(3.9). Let \;(c) be the first eigenvalue of the following eigenvalue problem
—~Au= X% inBg, u=0 on0Bg. (3.14)

As in Figueiredo [5] we infer that A;(a) is simple and the corresponding eigenfunc-

tion may be chosen positive. We deduce that in fact A;(a) = A (e, N — 1) where

A1 (a, N—1) was defined at (2.11). Let p;(a) be the first eigenvalue of the eigenvalue

problem (2.35) with v = N — 1.

We can now state

(3.13)
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Theorem 3.5. a) For N > a+4, a > -2 problem (3.9) has a radial weak solution
if and only if A € (0, M\1()).

b) For2< N < a+4, a > -2, we have p;(a) < A (a) and if X € (1 (), M ()
problem (3.9) has a radial weak solution. It has no radial weak solution if A < 0,
A Z Al.

Concerning the regularity of radial weak solutions it can be easily proved that
these are classical solutions of (3.9). Indeed u € Ex_;. Let 6 = (N —1)+ (0 +1)/2,

g = (p— 1)N/2. Then, a simple computation shows that ﬂ—-l-b —‘t- so that

by the imbedding lemma we get that u € L}(0, R); i.e., r(V~ 1)7'("“)/2lul(”"l)N/2
LY(o, R) which can be restated as r"|ul1‘"1 € LN/Z(BR) Hence if we set a(r) =
79|u|P~! then u is a weak solution of

—Au=a(r)u+ Ar®u in H)(Bg)

with a € LN/? (BR)
We can now proceed as in Brézis-Nirenberg [3] to infer that u € L®(Bg) and
hence by standard elliptic regularity u € C?(Bp).
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