Geometriae Dedicata 88: 37-53, 2001. 37
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

Lattice Points Inside Rational Simplices and the
Casson Invariant of Brieskorn Spheres

LIVIU I. NICOLAESCU
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, U.S.A.
e-mail: nicolaescu. 1 @nd.edu

(Received: 21 January 2000; in final form: 20 November 2000)

Abstract. We express the number of lattice points inside certain simplices with vertices in Q% or
O* in terms of Dedekind—Rademacher sums. This leads to an elementary proof of a formula
relating the Euler characteristic of the Seiberg—Witten-Floer homology of a Brieskorn
Z-homology sphere to the Casson invariant.

Mathematics Subject Classifications (2000). 11F20, 11P21 57M27.

Key words. Seiberg—Witten—Floer homology, Casson invariant, Brieskorn spheres, lattice
points, Dedekind sums.

0. Introduction

From the very beginning, it was apparent that the Seiberg—Witten analogue of the
instanton Floer homology of a (Z-)homology 3-sphere is no longer a topological
invariant, since it can vary with the metric. W. Chen [2], Y. Lim [7] and
Marcolli-Wang [8] have explained the metric dependence of the Euler characteristic
of the SWF (= Seiberg-Witten—Floer) homology.

More precisely, if g; (i =0, 1) are two generic Riemann metrics on a homology
3-sphere N and Asw(N, g;) is the Euler characteristic of the SWF homology of
(N, gi), the results of [2, 7, 8] imply that

Zsw(NV, g1) — 1sw(N. g0) = 1 F(g1) — § F(go),
where
F(g) = 4'7dir(g) + nsign(g)

14ir(g) denotes the eta invariant of the Dirac operator of (N, g) while 7,,(g) denotes
the eta invariant of the odd signature operator on (N, g). In particular, the above
equality shows that the quantity

a(N) = —xsw(N. g) +gF(g)

is independent of g and thus is a topological quantity.
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In 1996, W. Chen, P. Kronheimer and T. Mrowka have conjectured that this
quantity coincides (up to a sign) with the Casson invariant of N. This has been
established recently by Y. Lim, [6].

In the present paper we consider in greater detail the special case of Brieskorn
homology spheres X(ay, ..., a,) with at most 4 singular fibers, n < 4 and explore
the rich arithmetic hiding behind these objects. More precisely, the results [13] show
that for a certain natural metric gy on X(ay, aa, ..., a,) (realizing the Thurston
geometric of this Seifert manifold), and we have

_XSW(Z(ala seey an)s gO) = 2Cal ..... ay» n= 3a 4

where C,, .4, 1s the number of lattice points in the simplex

,,,,,

"x; 1 "1
Ay, ..., ay) = {(xl,...,x,,)eR”;xiZO,Z 3<§<n—2—2 a_)}
i=1 ! i=1 !

The first goal of this paper is the direct, explicit and elementary determination of
,,,,, «, When n = 3, 4. This arithmetic problem intrigued the author since the vertices
of the simplex A(ay, .. ., a,) are not lattice points and some of the counting techniques
using Riemann-Roch theorem on toric varieties seem to apply.* Still, this is not the
most general rational simplex. It displays a miraculous symmetry (Lemma 2.2)
which, when used in conjunction with a generalization of an idea of Mordell (see
[10, 15]), leads to an explicit formula of this number in terms of
Dedekind—Rademacher sums (see below). In fact, very little additional effort is
needed to compute the entire Ehrhart polynomial of this polytope.

On the topological side of the story, R. Fintushel and R. Stern have shown in [3]
that the Casson invariant A(Z(a, b, c,)) of the Brieskorn sphere X(a, b, c) is
%o(a, b, ¢) where a(a, b, ¢) denotes the signature of the Milnor fiber of 2(«, b, ¢). This
result was extended to arbitrary Z(ay, ..., a,) by Neuwmann-Wahl in [11],

ME(ar, az, ..., an) = to(ar, ... ap). (0.1)
The Chen—Kronheimer—-Mrowka formula in this case is equivalent to
_2Ca1 ..... ay %F(gO) = %0(01, s an)- (02)

According to Zagier (see [4, 11]) the signature of a(ay, ..., a,) can be expressed in
terms of Dedekind sums. In [13] we have expressed F(gyp) in terms of
Dedekind—Rademacher sums as well. Thus (0.2) becomes an identity between
Dedekind sums. The second goal of this paper is to prove the identity between
Dedekind—Rademacher sums by elementary means.

*M. Vergne has kindly pointed out to the author that the paper [1] contains a description of
the Ehrhart polynomial of a general rational polytope. However, we believe that the amount
of work required to translate the general formulae of [1] into the very explicit language of
Dedekind—Rademacher sums needed for the topological applications in this paper would
involve about the same amount of work as our ad-hoc proof based on Mordell’s trick.
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The Dedekind—Rademacher sums are defined for every coprime positive integers /4,
k, and any real numbers Xx, y by

>

—1

s = SH((02) (24

where for any r € R we set

1
(=1

7
() = {?;} L1 oreryz, @ =r-D)

The above description is theoretically very convenient but computationally
cumbersome. Due to the reciprocity law (see [14] or the Appendix) the numerical
determination of these sums in concrete cases is as computationally complex as
the Euclid’s algorithm for the pair (%, k). The sums s(#, k; 0, 0) are precisely the
Dedekind sums s(#, k) discussed in great detail in [4,15].

The present paper consists of three sections and an appendix. In the first section we
survey the results of [13] which express F in terms of Dedekind—-Rademacher sums
and reduce the computation of ygw to a lattice point count. In the next section,
we describe a generalization of an idea of Mordell which reduces the lattice point
count to a certain arithmetic expression. The third section describes this arithematic
expression in terms of Dedekind—Rademacher sums and completes the proof of (0.2).
For the reader’s convenience we have included a brief appendix containing the basic
properties of Dedekind—Rademacher sums used in this paper.

1. Geometric Preliminaries

For pairwise coprime integers ai,...,a, =2, n>=3 we denote by X(a),
a=(ay,...,a,), the Brieskorn homology sphere X(ay, ..., a,) with n singular fibers
(see [5] for a precise definition). We orient X(a) as the boundary of a complex
manifold. 2(a@) is a Seifert manifold. With respect to the above orientation it is
a singular S! fibration over the orbi-sphere S?*(@) which has n cone points of
isotropies Z,,, 1 <i < n. This fibration has rational degree

1
l=—— A= co, Q.
1 ayaz, a

Set b; := A/a;. The Seifert invariants B: By, .-, PB,) (normalized as in [13]) are
defined by

pibi=—1(moda), 0<p; <a.

Set g; := [3;1 = —bi(mod a;), i =1,...,n. The canonical line bundle of S*(@) has
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rational degree
]
Kk=x(a):=mn-2)— —.
The universal covering space of X(a) is the Lie group G = G(a)

SUQ. k@ <0,

Gla) = { PSLy(R), (@) > 0,

where P?LZ(R) denotes the universal cover of PSL,(R). Moreover, X(a) =T /G
where I is a discrete subgroup of G. The natural left invariant metrics on G (see
[17]) induce a natural metric gg on X(a). All the geometric quantities discussed
in the sequel are computed with respect to this metric and for simplicity we will
omit go from the various notations. Thus F(a) is F(g).

Set

o [ﬁ} _ % A even,
P=12¢) 710, 4o0dd,
and define 7 = (y,,...,7,) by the equalities
y; =mf;(mod o), 1<i<n,

where m is the integer

A 2 ’

—(n—-2)4-2
Al —p = “ (f’l ) P u .= Zb,
i
In [13] we have proved the following:

e If A is even then

F@) =1-4) s(b; a)-

_4Z<(<q’aj>> +2s(/3,., a i -;iﬁip,—p>>. (1.3)

The above expression can be further simplified using the identities

s(Bi, ai) = —s(bi, ap), (1.4)
5(/3[7 ai; % - %)

— s(bpan L (it
- S<bl7al5272> 2(( ai . (1'5)

The identity (1.4) is elementary and can be safely left to the reader. The identity (1.5)
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is proved in the Appendix. Putting the above together we deduce that when 4 is even
we have

1
F _1 4 1y Y1 1y Y1 1
@ =1+ Zs(b a)—i-SZ (b ai: 5. 2) (1.6)
o If A is odd then

F@) =1 =4 stk a)-

—42n:<2s<ﬁ,., a,—;y"tl&,—p) + ((%J») (1.7)
i=1 L i

Similarly, we have an identity

Vi Yo(ari\\ Z —g(p 0L L
s(ﬁ,,a,,ai,0>+2<<a[)>_ S<b"a”2’2)’ (1.8)

and we deduce
F(“)—1—1+4Z (bi.a)+8) s b; L1 (1.9)
a) = y i s(b;, a; i s\ bivais 5.5 )- .

The signature o(a) of the Milnor fiber of () can be expressed in terms of
Dedekind sums as well (see [11, Section 1])

. (n 2)A ‘
o(@) =—1— 32 42)(@, a;). (1.10)
We deduce that
R L =24 e I b 11
F(a) + o(a) = T+§+§Z E+8Zs bl,al,E,E , (L.11)
where

= 1 Aeven,
| -2 A4odd.

The description of yqw requires a bit more work. Introduce the simplex

A(Zz):{?ceZ"; >0, Z—<—}
For each X € A(a) set

aw =3 |2)

i 1
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and denote by S; the symmetric product of d(x) copies of S2. Note that if n = 3,4
then d(X) = 0 for all X € A(a@) so that S; consists of single point.

The irreducible part of the adiabatic Seibert—-Witten equations on X(a) was studied
in [12, 13] and can be described as Mi; = (J; Mz where Ntz = SD?;{ UMz, E)Jt;f ~ S;.
Moreover, the virtual dimensions of the spaces of finite energy gradient flows
originating at the unique reducible solution and ending at one of the 9)t; are all odd.
Using the adiabatic argument in §3.3 of [13] we deduce that if all d(Xx) are zero
the Seiberg—Witten—Floer homology obtained using the usual Seiberg—Witten
equations is isomorphic with the Seiberg—Witten—Floer homology obtained using
the adiabatic equations. Moreover, all the even dimensional Betti numbers of
the Seiberg—Witten—Floer homology are zero and we deduce

yow(@) = —2C; := —24#A (). (1.12)

The main result of this paper is the following:

THEOREM 1.1. If a= (a1, ...,,a,) € Z", n=3,4 has mutually coprime entries
then

—16C; = F(a) + o(a)
:—w+§+%gg+82s(bi,ai;%,5). (1.13)
According to (0.1), (1.12) and (1.11) this is equivalent to
§F(@) +2C; = —a(X(a) = A(Z(a)),
where /. denotes the Casson invariant.

Remark 1.2. As indicated in [13], Rohlin’s theorem implies that the term F(a) is
divisible by 8. The results of [11] show the signature o(a) is also divisible by 8. Thus
the right-hand side of (1.13) is an integer divisible by 8. The above theorem shows
that F(a) + a(a) is in effect divisible by 16!

2. The Mordell Trick

Let a € 7" be as in the previous section. Denote by P = P; the parallelipiped
P:=(0,a1 —1] x---x[0,a,— 1) NZ".

When n = 3 we will use the notation a = (a, b, ¢). Define ¢: P — R by

a1 .
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Remark 2.1.

(a) Suppose n =3, a = (a, b, ¢). Note that g(p) € %Z for some p € P if and only if abc
is odd and

o a—1 b—-1 c—1
P=P=\"5"75"737)

In this case ¢(p) = 3.
(b) Suppose n =4, a =(ay, ..., as). Then g(p) € Z for some p € P if and only if 4 is
odd and

a1—1 a4—l
P=P=(—%5 5

in which case g(p,) = 2.

For every interval I C R we put N; := #¢~'(I). Note that if n =3

Ca,b,c = N(O,%)- (21)
while if n =4
Cay,..as = No,1)- (2.2)

For every r € R define ||| = [r + %] where [-] denotes the integer part function. Note
that ||r| is the integer closest to r. We now discuss separately the two cases,
n=3and n=4

o The case n=23, a =(a,b, c). Imitating Mordell (see [10, 15) we introduce the
quantity o := 3 »(llgll — D(llqll — 2)

Observe that

o= ZN[O%) + 2N[%,3) = 2N(0’%) + 2N(%’3) (23)

The importance of the last equality follows from the following elementary
result.

Proof. Consider the involution

w:P—>P, (x,y,2)\—>(a@a—-1—-x,b—1—yp,c—1-2).

It has the property g(w(p)) = 3 — g(p) from which the lemma follows immediately. []
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Using the lemma and the equalities (2.1), (2.3) we deduce

4Cape =Y _(lgl = D(ligll —2). (24)
P
o Thecase n=4,a=(a,...,as). Arguing exactly as above we deduce
4C; =4Non =Y (g1 - 1)lg] - 2). (2.5)
P

The proof of Theorem 1.1 will be completed by providing an expression for the above
sums in terms of Dedekind—Rademacher sums. This will be achieved in the next
section following the strategy of [10] (see also [15]).

3. The Proof of Theorem 1.1

We will consider separately the two cases n = 3 and n = 4.

3.1. THECASEn =3

Seta = (a, b, ¢) so that A = abc, u = ab + bc + ca. We will distinguish two cases: 4 is
even and 4 is odd.
e A is even. In this case ¢(p) + 3 & Z so that

lgl =g +3—{a+3 = - ((g+3)
The sum can be rewritten as
Y- (la+) -+ -2)
:;q2—3;q+2;1—
—22 alla+3) + ;((q +9)+33 (g +4)

P P

We compute each of these 6 sums separately.
Zl:#P:abc,
P
Reras y+3 z+1
be EL ca =4 ab &L
=— 2x+ 1) +— 2y+ 1) +— 2z+1
2a§(x+ )+2b;(y+ )+2C;(z+ )

B 3abc
=

o
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Using basic properties of Bernoulli polynomials (see [16]) we deduce

2

a—1 1 1
Z(’““) = (Bat ) - By).

x=0 a

where

By = 121 12)(t —1)

is the third Bernoulli polynomial. Note that Bs(}) = 0 and
Bi(t+1) = 1( - )).

Using the identity

n

Lk + n
n 2

=

=
Il

0
we conclude
o Sabe 1 (b ca ab
T T\ e )

Next

> ((g+Y) ZZ((§+£+§+”ZZ;’?)>

P P
“”"—‘<< kK u+ abc)>
= (e
— abc 2abc

According to the Kubert identity (A.4) in the Appendix the last sum is equal to
(((u + abc)/2)) which is zero. Thus

2 ((a+3) =0

P
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The sum > g((g + %)) requires a bit more work. Note first that it decomposes as

i % { X z u+abc n
~ a b 2abc
x= y.z
1
+ y z u—l—abc
+ — b Z(( Z E 2abc >>+
x y z u+tabc
+Y7 ;((a+b+c 2abc >)+
=851+ 5 +S5;.

We describe in detail the computation of S;. The other two sums are entirely similar.
Note first that

(use the Kubert identity (A.4))

()
a 2a

be(x+Y) be+b+c be(x+4) 1
= () = ()

We conclude

a

Uy + %((bc(x—i—%)_'_l))
a 2
x+1 be(x+1) 1 1 &L /be(x+1) 1
X_O((/))((a P3)) ()

(use the Kubert identity)

-S(C(E)

= s(be.az}.).

||
5 «M

Il
<)
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Hence

2_al(a+3) =s(be.a: 3.3) + s(ea b 5.3) +s(ab, ;3. 5).
P

Finally

?(“W=;(<2+£+§+“;Zf">)2

(use the fact that u + abc is odd in this case)

2

abc—1
_ Z <<abc )) = s(1, abc; O,%)

(use (A.1)

_abe 1
T 12 12abc’

Putting together the above information we deduce that if abc is even then

4Cahe =13~ 12abc_ﬁ bt e)”

— 2(s(be, a; 2 2) + s(ca, b; 1 3 2) + s(ab, c; 2 , 2)) 3.1

abc 1 1<bc ca ab)

The identity (1.13) is now obvious.

e A is odd. In this case, using Remark 2.1 we deduce

_Ja—-Wg+d, P # Do
lap)ll = {q—(q+%§)+%, P = Py

Thus

(uqn—l)(nqn—z):{(q (g+9) =g - ((q+%)> 2. p#po.

(G- g+ —Da—Ug+3))—3. p=p,.
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Hence

4Cape = (a— g+ —Dg— g+ -2+
P

+(@—(q+2) = D@ = (@+) =D, —
—(q—((g+) = D@~ (g+) 21y,

=Y @—(@+»—-Da— g+ -2 +}. (3.2)
P

The above sum can be computed exactly as in the even case with one notable
difference, namely

abc—1 2
Y=Y ((k—+ o abef 2)))

k=0

(u + abc is even)

abc—1 2
k abc 1 1
= _— = 1 N = — —_—.
Zk:0 ((abc)) s(1, abe; 0, 0) 12 + 6abc 4

Thus, when abc is odd we have

4C,. = abc 1 i <bc ca ab)_

12 Teabe 12
— 2s(be, a; 3, ) + s(ca, b; §,3) + s(ab, ¢; 5, ).

a b c

This completes the proof of Theorem 1.1 when n = 3.

3.2. THECASEn =4

We follow a similar strategy with some obvious modifications. Set a = (ay, .. ., a4),
A =aaryazas, u=>by+ ...+ by and

Si =Y (g1 = D(lq] - 2).
Pa

As in the previous subsection will distinguish two situations.

e A is even. Note that for every p € P we have ¢(p) € Z so that

[ql=q—((q) —3.
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Thus

Si=Y (4= (@) =3/ — () —5/2)
P

=D (@ —4+15/4) =2 @)+ (@) +4D ()
P P P P

49

The computation of the above terms follows the same pattern as in the previous

subsection.

D (@) =0,
P

> 15/4 = 154P/4 = 154/4,
P

4 a;—1 . 1 4
Zp:q: ;bl; XIC:—2: lz]:blzar =24,
4 ai—1 x_+l 2 A ai—1 X'—i-l a—1 x.+l
;qz = ;bz);( lai 2) +ZZ aia; <ZO lai 2) (Z() Ja,‘ i
= = </ Xi= Xj= ‘
& bagal =Y A
B ; 3a; 1<i<j<4

4
A b; 134 1 b;
:Z<§‘ 1za,)+3A—T‘ﬁ _
When A4 is even u is odd and we have
A1 2
k+u/2 A 1
2 1
= =5(1,4;0,5) = ———.
Sr =3 (7)) =0 a0h=15-5;
Finally, Y 5 q((q9)) = Si +--- + S4 where

01—1 1
X1 +§ X2 X3 X4 X u
S1 = § a : E <(—a2 +—a3 +—a4 +—a1 +—2A>>-

x1=0 X2,X3,X4

S», 83, S4 are defined similarly. To compute S; note that

bi—1
X2 X3 X4 X u k  x u
Y ((Z+2+ 202 ) =Y ([ + 2
xz,xs,«m((az as a4 4 2A)> ko<<b1 a 2A)>

(use the Kubert identity)

(x| u\\ _ (11 +D  u—b
_(<a—1+2_al>)_(( a0 2a ))
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((u — by)/ay is odd)

bi(xi+1 1
- ("5 +2)

Thus

ar—1 1
_ — x;+1/2 bl(x1+§) 1
S| = Z @ <( a +2

X|=0

and we deduce as in the previous subsection that S| = s(by, a1; 5, 1). By adding all the
above together we deduce that if 4 is even then

A 1 1 b L
4Ca—Sa—g—m—ﬁXi:gi—22izs(bz,al,§,§)-

The identity (1.13) is now obvious.

e Aisodd In this case u is even. Arguing as in the previous subsection, we deduce

Sa= (4= (@) =3/20q (@) —5/2) +}.
P

The only term in the previous computations which is influenced by the parity of 4 is

A-1 2
>@r = ((“52)) =sa.a
P k=0

A 1 1

"t w

Putting together all the terms we obtain again the identity (1.13). The Theorem 1.1 is
proved. O

Appendix: Basic Facts Concerning Dedekind—Rademacher Sums

In the paper [14], Hans Rademacher introduced for every pair of coprime integers
h, k and any real numbers x, y the following generalization of the classical Dedekind
sums

k—1

sCh, k; x,y) = Z((ﬂ _;L_y)) ((h(ﬂl:_ 24 x))

n=0

A simple computations shows that s(/, k; x, y) depends only on x, y mod 1. When
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h =1 and x = 0 one can prove (see [14])

12 6k 4° ’
s(1,k;0,y) = 1 (A.D)
E+EBZ({J/})’ yeR\Z,

where By(f) = 1* — t+é is the second Bernoulli polynomial.

Perhaps the most important property of these Dedekind—Rademacher sums is
their reciprocity law which makes them computationally very friendly: their
computational complexity is comparable with the complexity of the classical
Euclid’s algorithm. To formulate it we must distinguish two cases.

e Both x and y are integers. Then

2, @2
S(B, a; x, y) + (o, By v, x) = —}1+% (A.2)
e x and/or y is not an integer. Then
s(B, o x, y) + s, By, X)
2 2
— () () + B () + By + ox) + 0 (x) (A3)

208

where Y,(x) := Ba({x}).

An important ingredient behind the reciprocity law is the following identity
([14, Lemma 1])

=~

—1

((“TW)) — (W) V¥weR. (A.4)

Il
=

I

Following the terminology in [9], we will call the above equality the Kubert identity.
We conclude with a proof of the identity (1.5). For simplicity we consider only the
case n=3and i =1. Set d = (a, b, ¢). Thus A4 = abc is even, u = bc + ca + ab and
by = bc. For arbitrary n the proof is only notationally more complicated.
The proof of (1.5) goes as follows:

nth/2 1
S(ﬁlsa9 a ) 2

-S(EC)

Il
=
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(y; = By(u — abc — 1)/2 mod a)

S

(y:=x—(abc —u+1/2) mod a)

() ()

(use y = —bcz mod a and f;hc = —1 mod a;)

_ 2(; ( <bcz — (abe — u/2))> ( (a»
e

z=

=2

z=0

M

Il
o

y

At this point we use the elementary identity

(C)=((F)) -5 300

where
z =0 (mod) a,
o(2) = { 0 otherwise.
We deduce
+p,/2 1
S<ﬁl, oy L B/2 __)
o 2

=S
a 2 a
z=0
=L bc(z+%) 1 1/(bc 1
2 (7)) (i)
The Kubert identity shows that the second sum above vanishes. Also
qul—i-% u—abc/2 b+c—bc bc
I 2 — = — - 4+
a a 2 2a
(b1
“\\2a 2/))

The identity (1.5) is proved. The proof of (1.8) is similar and is left to the reader
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