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1. A VERY FAST INTRODUCTION TO GEOMETRIC MEASURE THEORY

We survey some basic facts about currents. Suppose F is a N-dimensional real Euclidean
vector space. We denote the Euclidean metric on E by (e, e), by H"™ = H}} the m-dimensional
Hausdorff measure on Borel subsets of £ and by dvg the Lebesgue measure on E.

For every smooth map between Euclidean spaces F' : Ey — FEp, every positive integer
k < min(dim Ey,dim E;) and every z € Ey we get a linear map

ASF : AF T By — AP Ey

AkT;(m)El and A*T*FEy are equipped with natural Euclidean metrics and we denote by
|Ji F'|(z) the norm of the above linear map.

Suppose E is an oriented Euclidean space. Denote by Qg (E) the space of smooth, com-
pactly supported m-forms on the Euclidean space E and by Q™(FE) the space of smooth
m~forms. They are naturally equipped with locally convex linear topologies defined by the
uniform convergence on compacts of forms and their partial derivatives of any order. The
space of m-dimensional currents, denoted by D, is the topological dual of ;. The space
of compactly supported m-dimensional currents, denoted by &,,, is the topological dual of
E™. We define

0:Dy — D1
by the equality
(0T, ) = (T,da), Yo € Q2 HE), T € Dy

cpt

Example 1.1. (a) Let N = dim E. Then any orientation of E determines a natural current

E] € Dy, ([E],a>:/Ea, Va € QY

Observe that
J[E] = 0.
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For every a € Q¥(E), T € D,,, k < m define aNT € D,,_ by
(anT,B) = (T,anp), V3ecQl mtk

cpt
We have
(0(anT),p) = ((anT),dp) = (T,a Adp)
= (-DMT,d(a A p) = da A B) = (1) (andT,B) + (~1)*Hda N T, )
which yields the homotopy formula
danT) :(—1)dega(aﬂ8T—(da)ﬂT). (1.1)
In particular, we obtain an embedding
QN_m(E) — D (E), ar— [a] =an]|E],
defined by
(al.8) = [ anp. v5 e aE),
Observe that
dla) = (~1)VN "™ [da], Va € QN (E). (1.2)
(b) If we denote by Q,,(E) the space of smooth sections of AT E then we have a natural
inclusion
Qn(E) = Dp(E), &+ dvg NE,
where

<dUE/\§,5>:\/(§J6)dUE7 v6€S)cpt( )

If we denote by T : Q,,(E) — Q™(E) the natural metric duality and by * : Q™(E) —
QN=m(E) the Hodge *-operator then

dvg A €= (=)W (e N [E], VE € Qn(E).

(c) Suppose M is an orientable m-dimensional submanifold of E and or is an orientation on
M. Then we obtain a current [M] = [M, or] € D,,, defined by

(1 /ﬁ, Vg € O, (B)

If M has boundary OM then Stokes formula implies
O[M, or] = [0M, Dor].

If p is a point in E we denote by [p] the O-current determined by the inclusion {p} — FE.
(d) Consider the 1-form ¢ = df € Q' (R?\ 0). In cartesian coordinates it has the form

= dy — ydzx).
Ay (zdy — ydx)
Then ¢ is locally integrable and thus defines [¢] € D1(R?). We want to compute its boundary.

For every compactly supported smooth function 8 we have
0 ,ﬂ:/ ANdfB = —lim d(By) = lim By =2w3(0
(Ol B) @ . (Be) = lim e (0)
so that
d[df] = 2x[0].
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If f: E — Fisasmooth map and T' € D,,(F) is such that the restriction of f to the
support of T is proper then we define f.T € D,,(F') by

(f.T,a) = (T, f*a), Vo € Q™ (F).

cpt
This operation is called the push-forward of currents defined by a smooth map. It commutes
with the boundary operator 0.
We would like to discuss a few topologies on D,,. Given a current T € D,,, and a precom-
pact open subset W C E we define the mass of T in W to be

my (T) :=sup{(T, ) : ||a|| <1, a € Q™(E), suppa C W }

where
la] = sup [[e(z)]],
el
la(z)|| = max{ (e1 A - Aep) Jafz); e1, - ,em € E are orthonormal }.

||| is called the comass of a. We set that T has locally finite mass if
my (T) < oo, VW € E.

Example 1.2. (a) Suppose M — F is an embedded, oriented m-dimensional submanifold.
Then

myy (M) = vol,, (M NW),
where vol,,, denotes the m-dimensional volume induced on M by the Euclidean metric.
(b) Suppose we are given a Radon measure p on F, a p-measurable m-vector field £ €
['(A™TE) such that |{(z)| = 1 p-a.e. Then we can form the current

pANE € Dy
by setting
(u/\f,oz>:/E§Jadu, Vo € Q-

Then p A € has locally finite mass
mw (i) = [ dlul.
w

We say that A€ is an integral representation current. Conversely, every current with locally
finite mass T' admits a unique integral representation u A &. We set p:= up, £ :=1T. O

We want to discuss a generalization of the above example. A subset M C E is called
countably m-rectifiable if there exists Z C M, and a sequence of embedded C'-submanifolds

Ni,-++ , Ng, -+ C E each of dimension m such that
H™(Z) =0,
and
M\ Zc | )Ny
k>1

It is called rectifiable if H™(M) < oo. If M C E is a countably m-rectifiable set, xog € M
and V C FE is a m-dimensional vector subspace of F then V is called an approximate tangent
space to M at x if for every f € Cgf,(E,R) we have

lim FAH™ = / FAH™,
ENO S, 4o (M) 1%
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where . ,, is the dilation of center ¢ and factor ¢~

1
dewy : B — E, x+— —(x — x0).
€

We have the following characterization of rectifiable sets, [7, Thm. 3.3.5].

Theorem 1.3. A subset M is countably m-rectifiable if there exists Z C M such that
H™(Z) =0 and every x € M \ Z has an approzimate m-dimensional tangent space T, M. O

Given a countably m-rectifiable set M we denote by M,., the subset consisting of points
admitting an approximate tangent space. A measurable orientation of M is an equivalence
class of measurable field of m-vectors @y € I'(A™TE) on E such that d(z) = 0if x € E\ M,
while

J(z)=er A+ Aem,
where eq,--- ,e,, is an orthonormal basis of T, M. Two orientations are called equivalent if
they agree H™-a.e. A pair (M,wys) as above is called an oriented, countably rectifiable set.
To such a pair we associated the current

(M, @] == H™ A Gy

More generally, if v : E — Z is a locally H™-integrable function then we can define v[M,w]
by
WM, o], ) :/ (& 1 @)dH™).
M
We now want to introduce several important classes of currents.

A current T € D,, of the form v[M,d], where v : E — 7Z is locally H™-integrable and
[M,d] is a countably m-rectifiable subset is called locally rectifiable. 1t is called rectifiable if
it has compact support, and hence finite total mass. We denote by R, the Abelian group
of rectifiable m-currents. A rectifiable current T is called integral if OT is rectifiable. We
denote by J,, the Abelian group of integral m-currents.

A current T is called normal if it has compact support and

m(T) +m(0T) < cc.

An m-simplex in F is a linearly embedded m-simplex. It defines in a natural way an integral
current and we denote by P,, the Abelian group generated by these simplices. We will refer
to the elements of P, as polyhedral chains. We denote by P, the real vector space generated
by polyhedral chains.

For every current T' € D,,, we set

F(T) := Sup{(T, a); e, |dall <1 } = inf{ m(T —9S)+m(S); S € Dyt }
We define the flat metric to be
d(T,S):=F(S-T1).
For example, the two oriented segments T', S define two rectifiable 1-currents. Observe that

T-S=0R+(U—-V)=F(T -S) <m(R)+m(U - V) =1d + 2d.

A current T is called flat if its support is contained in a compact set K and it is a limit in
the flat metric of normal currents supported in K. We denote by F,,, the vector space of flat
currents.
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FIGURE 1. Two parallel segments of length | at distance d apart.

A current T € Dy, is called integrally flat if T € R, + 0Rpr1. We denote by F,, the
Abelian group of integrally flat currents. For such a current we define

F(T) :==sup{m(R)+ m(S); T=R+09S, RE Ry, SERpt1}.
The pushforward operation maps flat (integral) currents to flat (resp. integral currents.)

Example 1.4. Any flat m-current 7' can be written in the form
T =¢ Advg +0(nAdvg)

where £ € T'(A™TE) and n € T'(A™"!TE) are compactly supported and Lebesgue integrable.
In particular, if dimm = FE then any top dimensional current can be written in the form
¢ 1 dvg, where £ is a Lebesgue integrable section of det TE. For a proof we refer to [2,
§4.1.18]. The above equality is equivalent to

(T,a) = / (€ Ja)dvg = / (nJda)dvg, Yo € Qpy.
E E
Consider for example the rectifiable current defined by the segment
S ={(t,00eR* te0,1]}.

We denote by (x!,22) the Euclidean coordinates on R?. Then for every o = ajda! + agda? €

Qépt we have
1
<S,a>—/a—/ o (2!, 0)dz!.
S 0

We seek compactly supported, integrable vector fields & = £'0; + €20, € T'(A'TR?), n =
pO1 A Oz € T(A*TR?) such that

[S] = dvg A&+ O(dvg A n),

i.e.
Oa Oa 1
1 2 d1d2/ 2 1d1d2_/ L 0Vdal.
/RQ(S ay + & ag)dr dz” + Rz(ﬁxl 8:62)/) xrdx® = ; ap(z,0)dx

If « is supported in a ball disjoint from S then we deduce
ldat + E2dx® = —d* (pdx' A dz?).

Let

m2

d(x)
We have 6(z) € L,"' (R? \ S) we set

loc

4] dv, d(z) = dist (z,95).

8 =—d"6
and
Ze ={d(x) > €}.
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Using the integration by parts formula in [9, Prop. 4.1.40] we deduce that for every compactly
supported 1-form « we have

/E<da,5>dv+/€<ﬂ,a)dv:/E<da,5>dv—/5<a,d*6) :/ME(a,m 5)ds..

where 71 is the outer unit normal vector field along 07, and ds. denotes the arclength along
0Z.. If we let ¢ — 0 we deduce

/R2<da,5)dv+/RQ<ﬁ,a>dv:2/Sa

2[S] = dv A B; + O(dv A 5),

where for ; : QP(E) — Q,(F) denotes the metric duality. Unfortunately, 3; and d; are not
compactly supported. To obtain compactly supported vector fields we choose a compactly
supported smooth function ¢ such that

((x)=1, Vd(x) <1

so that

Then
2[S] = 9(dv A (¢0):) — (dv A (d*(C6))t)-
O

The supports of flat m-dimensional currents have remarkable properties, [2, Thm. 4.1.20].

Theorem 1.5. Suppose T € F,,,(E). Denote by G,,,(F) the Grassmannian of m-dimensional
vector subspaces of B and by dvy,, the invariant measure on Gy, of total volume 1. For every
L € G (E) we denote by Py, the orthogonal projection onto L. Then

H™(PrsuppT)dym(L) =0 <= T = 0.
Gm

In particular, the support of a nontrivial flat m-dimensional current cannot be contained in
a submanifold of E of dimension < m.
O

The next result explains the importance of integrally flat currents in topology.

Theorem 1.6. Suppose B C A C E are two “reasonable” subsets, e.g subanalytic. Let
Zm(A,B) = {T € Fp; suppT C A, suppdl C B}

B, (A,B) = {T+8S; TeFn,, SEFnui; suppT € B, suppdS C A}.
Then the quotient
Zm(A, B)/B,(A, B)
is naturally isomorphic to the singular homology Hy,(A, B;Z). A similar result holds if we

replace F with J in the above definitions.
O

For a proof we refer to [2, §4.4].
A central result in the theory of currents is the compactness theorem of Federer-Fleming,
[2, Thm. 4.2.17].
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Theorem 1.7. Fix a compact subset K C E and a positive constant c. Then the set
{T € Jn; supp(T) C K, m(T)+m(9T) < c}

1s closed with respect to the F-metric while the set
{T € Fp; supp(T) C K, m(T)+ m(9T) < c}

is closed with respect to the F metric. ]

2. SINGULAR CONNECTIONS

Suppose £ — X is a smooth vector bundle over an oriented smooth manifold X, « is a
section of E, and then Z(«) is the zero locus of a. The Gauss-Bonnet-Chern theorem shows
that if o vanishes nondegenerately along Z(«), and if V is a connection on E then the r-th
Chern-Weil form ¢, (V) satisfies an equality of currents

(V) = [Z(a)] = T,
where T is some current on X of dimension (N — 2r + 1).
—
We want to associate to the pair (V,«) as above a connection V® with the following
properties.
A limg o ?SO‘ = V and the forms CT(€SO‘) converge in the sense of currents to as s / co.
—
We denote this limit current by ¢, (V). Moreover, if a has a nondegenerate zero set then
—
(%, 0) = [Z(a)] -
B. As s / oo the family of connections V* converges uniformly on the compacts of X \ Z(«)
— — —
to a connection V> = V% and ¢,(V®) =0 € Q¥ (X \ Z(a) ).
C. The Chern-Weil transgression T, € Q?"~1(X) satisfying
(V%) = (V) +dls, s>0
has a limit in the sense of currents as s * co.

To produce such connections we use a technique introduced by Harvey and Lawson in [5,
I.2]. We describe it in a general situation.

Consider two smooth complex vector bundles Fy, F/1 a over the smooth, oriented manifold
X. We denote by r; the rank of E;, i = 0, 1. For a generic section o € Hom(Ep, F1) we have
rank o, = 7, for almost all x € X. We set

D(a) := {a: € X; rankay, < min(rg, ;) }

Suppose we are given two bundle morphisms a9 € Hom(Ey, E1) and g1 € Hom(E, Ep) and
connections V* in E;. We obtain connections V7/* on Hom(E;, Ej), i, = 0,1. We can then
define
— —
Vl = Vl — (Vmoqo)am, VO = VO + a01(V10a10).
Note that the definitions are not symmetric. Set for simplicity & = «y9. In applications
we would like a; to be a sort of inverse for a. Note that if ajpog;r = 1g, then if we set
a ' = ag; then
N
V!i=aVia!
In general, on X \ D(a) we have two vector bundles

K=kera, R=im«a
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If we choose hermitian metrics h; on E; we would like to have
apr = o ' P,
where Pg denotes the orthogonal projection onto R and a~! denotes the inverse of the map

aqQ - I{L — R.
If ro < r; then on X \ D(«) we have

a 'Pp= (a*oz)_loz*
while if rg > r; then on X \ Dy («) we have

a 1Pp = a*(aa*)™?
Clearly this definition does not make sense over the degeneracy locus D(«). One way out of
this problem is to take an approximate inverse in the above definition. There is no unique

way of doing this, and every choice will be called an approzimation mode.
We choose an approzimate 1 which is a smooth, increasing function

X :[0,00) — [0,1]
such that x(0) = 0 and y(co) = 1. Then the family x,(t) = x(s%t)! converges to 1 uniformly
on the compacts of (0,00) as s /" oo. In the sequel, a very special role will be played by the
algebraic approximation mode defined by

A

Now define

Bs(t) :=t™ Ly (t).
Note that 3s(t) converges to t~! uniformly on the compacts of (0,00) as s /" co. For every

hermitian, nonnegative operator A the operator (§s(A) is an approximate inverse of A. We
set

S

1| Bs(a*a)a* if g <1
X = o*fBs(aa®) if rog >

Note that for every continuous function f : R — R we have the equality?
fl@®a)a® = a* f(aa™),

so that

a;l = fs(a*a)a™ = o™ fs(aa™).

-1

Qg

is a well defined morphism E; — Ejy. It vanishes on R+ and we have

ozs_loz = xs(a*a), aoas_l = xs(aa™).

We define

s O s,a 1 -1 Gs 0 -1

Vi=V**=V" - (Va)a, ", V°=V"+a, (Va).
As s /' oo the connection v converges on X \ D(«) to a connection Vo = Voo called the
singular pushforward of V. Note that in the algebraic approximation mode we have

Vsa Vl sa

IThe curios choice of s in the definition of xs will be justified a bit later.

2To prove this equality note first that is trivially true for f(z) = 2™ and thus by linearity it is true for
polynomials. To prove it for any continuous function f we choose a sequence of polynomials converging
uniformly to f on a compact interval containing the spectra of both aa™ and a*a.
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The construction of ?5"‘ is natural in the following sense. If f : Y — X is a smooth map
then .
V) = (fV)e (2.1)
Consider now a special case of the above construction when Ey = C. The morphism « can
be identified with a smooth section £ = Fy. Equip C with the trivial connection and metric
and E with a hermitian metric h = (e, ) and compatible connection V = V¥. Then

la?> = a*a, of(u) = (u,a)g, Yue C®(E).

Set xs = xs(|a|?) and B = Bs(|a)?). We deduce

ot = X o, Viu=Vioy = vy - Xs (U’Q)E(VEQ)
o |of?
Note that
Viu=(1-xs)VEu = V>®u =0
We write

Ve=VE 1 A, A, =-2(VEa)a* (2.2)

Let us find the curvature €4 of ?S. We have

2
Q= Qp +dV Ay + Ay A Ay = Qp + dV A, + ’2‘484 (VEa)a* A (VEa)a*
and
., Xsd|o 2 * Xs * Xs *
dV Ay = —dxs A (VEPa)a* + |OJ|4‘ (VPa)a* — W(QEa)a + \a|2(an) A (VEab).

Using the equality
dla]* = (VEa*)a + o*VEa

we deduce )
xsdla * Xs *
]04|]4| A (VEa)a* = —’a’4(VEa)/\d]a\2/\oz
= ’;(T4 (VEa) A (VEa®)aa® — |§T4 (VEa)a* A (VEa)a*

Putting all of the above together we deduce

*

0, = QE(1 _ X0 ) + X (vEq) A (an*)(1 _ ﬂ)

|of? |of? |of?

S 1-— S
_dXs A (VEOZ)OZ* — X(’aHX)(VEa)a* A (VEOé)Oz*
—(1— L oE B x _aa”
=(1 Xs)QE—i-Xs{QE—i- |a|2(V a) A\ (VPa )}(1 a2 )
S 1- S
—dxs A (VEPa)a* — X(|a|4X)(VEa)a* A (VEa)a®

As s /' oo we have y;(t) — 1 uniformly on the compacts of [0,00) and we deduce that on
compact subsets of the open set X \ a~1(0) the curvature 25 converges uniformly to

Q0 = (s + = (VEa) A (VEa®) ) (1 - fﬁ).

|of?
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Observe that if F is a line bundle then
ac® =lal*-1g
so that in this case (g = 0.

Example 2.1 (Fundamental universal computation). Suppose X = C, E is the trivial
line bundle C, V¥ and hg are the trivial metric and connection on C and « is the tautological
section a(z) = z. Then if we use the notation d = V¥ we deduce

d d dxs Nd
Vei=d—y(l2)=, Vo=d-=, Q=00
z z z
If X=C", E=C", and « is the tautological section
1
alz) =z, z=| :
ZT’
Then
—
Ve=d-— |>Z‘|s2dz®z*, =2, 7. (2.3)
Observe that A; = —é—lsgdz ® z* is represented by the r x r matrix with entries 1-forms
_ _ Xs i
A = aijli<ij<r, aij = —Wdz 2

The (7, ) entry of Ag A Ag is

‘ |s4 Zdzlikdzkéj = ﬁdz’éjalz\?
z z

k
The (i, j)-entry of dAs is

|X|S2 dzd NdZ — xed(|2|72)d2 E — | 2| 2dy.d2F
z

The (i,7) entry of Qs = dAs + As A Ay is then

2
Xs 1 ndsi o daizi [ 25 o
= [5ded ndT + de #( S0l + xsd(1217%) + |2 dy, )

v~

=Us; =Vij;

—
We want to compute the top Chern form associated to V)

c,,(?S) = (2;) det Q.

If we denote by S, the group of permutations of r-objects and by €(¢) the signature of a
permutation ¢ € S, we deduce
det Qg = Z 6(90) HQ'Lgo(z) = Z 6(90) H(U’Lgo(z) + ‘/;Lp(l))
PESy i=1 ©ES, i=1
Observing that

Vie(i)Vie) = 0, Vi, j
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we conclude
'

H(U + Vlcp(l H Uz<,o () + Z Vk‘(p H Uup

=1 i#k
We analyze the above two terms separately. We have

li‘[Uw(i) = (Xs EH ) Hdz A dz¥@) = (- 1)7‘(7"1)/2(XS|Z’g)rﬁdziAﬁdzgo(i)
=1 i=1 i=1

= (@) (1) T2 (xs[2l ) Hdz AHdz = e(¢) (alof2) TL " a

=1
Next,

i#£k z;ék:

k) . Ly
’2‘4 dch( ) + ‘Z| dXS) H Uup(z)
itk

= dzFz¢ () < —Xs

2
itk

=— e HUw () + 1217 22k 22 W) dy H Ui (i)-
i#k
Now observe that

dx
dys = X4d|z?, Xu(t) = e s*x/(s°t)
so that

21 kop(h) A S A ol
|z|“dz"z dXSHUw(Z-):M |[z# " 2d2" A dz :THUi

i#k i
Putting all the above together we deduce

v(i)

ZVW k)chW( HUzw< i+ XS' . ﬁUw
and -
HUw + ZVW k)ll%@ = (@) x’sif[ldzi Adz'
Hence

r—1 r
det Qg =7! ( |>Z<|S2 ) X H dz' A dz'

i=1
At this point we use the elementary identity

[1d#' A dz' = (—2i)av;,

11
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where dV, denotes the Euclidean volume form on C". Hence

r—1
= ! Xs p 2r .y, adV,
c1(V ) e (‘ZP) Xs@Vr J2T-1Xs Xs‘ ‘27« 29

where 09,_1 denotes the volume of the unit sphere in C", o, = (r 1) In spherical coordinates

we have
dv, = p*tdpdo, p=|z|.
We deduce J 4
o o o
a(V*) =2rx;! Xapdp —— Zd(xs(p2))ra2 - (2.4)

Recall that we have a transgression formula
s =0
cr(V3) — ¢, (V) =dTy,

where the transgression terms Ty is defined by

. r SO .
T,, = <‘> / det(As, Q)ds,
27T 0

9
O0s

with
Ay = A, det(A,Q,) = % li=0 det(tA + Q).
Observe that
As = —Xs(|2*) |2 ?dz @ 27,
where

folt) = DXy = D (520) = 25 (5%1).

ds

ds

On the other hand J

dt
Let Z = Z,(t) be the matrix representing Qg + tA,. Its (i, ) entry is
Zij(t) = Qyj txs|z| 2d2'E = Uy + Wy,

Y
Xs(t) = $*X/(s*t) = X5 = X,

2 y '
Wij = Vi +1 zcsdzléj :dz’29<| i 2?4 xsd (|z|_2)+|z|_2dxs—txs|z|_2).

det Z4(¢) is a polynomial of degree < r in t and we would like to compute its degree 1 part.

We have
T
det =5 = Z () HEw(z) (t)
SOESr =1
and the degree 1-term is obtained by computing the differential of this polynomial at ¢ = 0.

We have
d - . -2 (k)
77 li=0 det Eq(t) = —al > el (§ " dP O ] Qs >

PESr 1#£k
We analyze each summand separately. We have

B _ Xs i
dzFz# (k) Hin(i) = dzFzek) H( P |2dz A dz?) 4 dziz#0 )< E ’48\z|2 + dﬂs) )
itk ik
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=dFz2W I (ﬁsdzi A dz99) 4 dztz90 g3, )
ik

= dzFze) H < —z2WdB, A dz' — B,dz?D A dzi> = dzFzek) H dz' A d(Bsz9 D)
i#k i#k
= idzkﬁszw“) [ 2" A ds.z2).
Bs P
Set

k zF

k _ sk _
Wy = Bsz" = XSW’
to conclude
1 . ) 1 4 4
dzFz¢ ) H Qipy = —dzFwe®) H dz' A dw?®) = e(p)=dzFwh H dz' A dwy.
i#£k Ps ik Ps i#k
Hence

d Xs =, bk . .
. = — P ) (2
o lt—0 det E5(t) = —r! RE Zdz z Hdz A dw?,.
k=1 ik
Integrating with respect to s and making the change in variables s — s so that dsxs = xsds

we deduce .
. T
_ 1 -2 k sk j '
Ts, = —r! (27r> |z Zdz z ‘l_[clzZ A dwy, . (2.5)
k=1 i#£k
Letting sg — oo we deduce

. LA
1 . .
_ _ = k(zk|.,|—2 % St | —2
T = r.<2w> > dz" (24 )Hdz Ad(Z|z|72).
k=1 i#k

Observe that the transgressiog T is independent of the approximation mode. A standard
argument now shows that ¢;(V?®) converges in the sense of currents to the current [0] € C",
ie.

lim [ e (Vy)u(z)dV = u(0), Yue Q°,(C). (2.6)

s—00 Jor cpt

Moreover we have an equality of currents
0] = 0] — (V) = lim ¢,(Vs) — (V) = 0To. (2.7)

The convergence of the transgression forms T to T in the sense of currents follows from
the dominated convergence theorems and the fact that the coefficients of Ty, are integrable.
O

Let us put the above computations in a different light. Consider the trivial vector bundle
G, over a point. We denote by m the natural projection. Then the trivial bundle of C" over
C" is naturally isomorphic to 7*Cj;. The section a(z) = 2 is then the tautological section of
*Cr,.

Suppose now that we start with the trivial vector bundle 7 : C'y — X over the smooth
manifold X. We equip it with the trivial metric hg and trivial connection d. Now look at the

pullback bundle
E =7*C% — Ck%.
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We continue to denote by d the pullback connection 7*d. Given local coordinates (z%) on X
we obtain local coordinates on the base of E, (z*,2%). Denote by « the tautological section
of E,

a(z, ) = z.

Then d° is given by the same equation (2.2)

F=d-2dz@z
|22
and the computations in Example 2.1 extend word for word to this more general case. The
zero set of the tautological section is naturally identified with the submanifold X — Cl.
Using the equality (2.6) and the argument in [9, Lemma 7.3.12] based on the integration
along the fibers of Cy — X we deduce that cr(cig) converges in the sense of currents as
s /" 0o to [X]. More precisely if dimyx = n and n € Q,,(CY) then

/CS{ c(d®) Ap = / To(er(d®) A,

X

where 7, denotes the integration along the fibers of 7. The equation (2.6) then implies

lim ﬂ*(cr(cZS)An:/ 7.
s/ ) x X
If now we start with an arbitrary metric connection V = d+ B on C'y and we continue to
denote by V its pullback to F then using (2.2) we deduce

=t 75 X *
V,=d°— |z’823z®z . (2.8)

. —
Denote by V*! the connection d*® — té‘z Bz ® z* and denote by €2,; its curvature. The

transgression formula implies

1
cr(€s) — ¢ (d®) =dTg, T = (—27ri)_r/ det(‘X‘S2 Bz® 2%, Q).
0 z
Observe that the space Q°(CY) of differential forms on the total space of C% admits an
increasing filtration F*Q® by the degree in the fiber variables. More rigorously
F7IQ* = (0), ne FFQ* <= vV ine FF1Q°
for every vertical tangent vector V. We will use the notation deg,n < k for n € FFQ°.
Observe that
degTp =2r—1, deg, 15 <2r —2, deg,dlp <2r —1.

We deduce that for every n € Q. (C’) we have

-

—
(e (V) An) =m(er(d®) An)
and we conclude that

N
lim ¢,(V) = [X], in the sense of currents.
s,/'00
Since the Chern-Weil forms are gauge invariant we can reduce the case of an arbitrary metric
on Cy to the case of the trivial metric and arbitrary metric connection via a gauge transfor-
mation of Cy.
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- =
The transgression Ty = T'c,(V*, V) converges in L' as s / oo. This can be seen using
the transgression formula which implies that T has the form

To = Puxs)wr,
¢
where Py(x) is a universal polynomial (independent of s), and wy is a form (independent of x;,
of degree 2r — 1, of vertical degree < 2r — 1 which is homogeneous of degree 0 with respect to
the action of the multiplicative group (0,00) along the fibers of C’. Putting together these
local considerations we obtain the following result.

Theorem 2.2. Suppose w : E — X is a complex vector bundle of rank r over the smooth
manifold X equipped with a hermitian metric h and compatible connection V. Continue to
denote by V its pullback to n*E — E. If we denote by a the tautological section of 7™ FE — E

— —
and we set V¥ = V> then
.
(V) =¢. (V) =0€ Q(E),
lim cr(gs) = [X], as currents,
s,/'00
) - =

and the transgressions Ty = T'c,(V*, V) converge as currents to a current To, = Too(h, V)
represented by a LlloC form of degree 2r—1 on E, smooth outside the zero section and satisfying

the current equation
[X] = 0T

3. UNIVERSAL COMPACTIFICATION

Suppose X is a real analytic manifold, £ — X is a real analytic vector bundle over X
equipped with a (real analytic) hermitian metric and compatible (real analytic) connection
V. For a real analytic section o we form the approximate pushforward connection V* on F
using the algebraic approximation mode. In this case we have

2 2
st S
t) = — -
XS() SQt—f—]_’ 58 S2t+1
— —
V=V =V - (Va)a; ' =V — s?(Va)a*(s*aa* + 1)L
Observe that if we define

Ca “la * * —1

V=V =V - (Va)a™(aa” +1)
then

?S — ?SO&
— ' .
We want to prove that the Chern forms ¢,(V?®) converge in the sense of currents as s /" 0o
— - =

to a current ¢,(V°%), and the transgression forms Ty = T'c,(V*, V) converge in the sense
of currents to a current T, satisfying the current equation

(Vo) — (V) = T
To achieve this it is convenient to regard « as section of Hom(C, F). For each x € X the
graph of o
Ya(z) = {(MAa(z)) €C, ® E,; A€C,}
is a line in C, & E, which we regard as a point in the projective space P(C, & E,). The

morphism « thus determines a section 7, of P(C@ E') and this section completely determines
a.
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A section ¢ of P(C @ E) is the graph of a section o € Hom(C, E) if and only if
l, CE, =0, VreX.

Equivalently, we can identify the total space of Hom(C, F) with the open subset P(C @ E)°,
which is the complement of the divisor P(E) C P(C @ E).
Denote by E the pullback of E to P(C @ E) and by D the pullback of V to E. Denote by

a the tautological section of E over Hom(C, E) C P(C @ E). We set D*® = D*®. Then
D'=D - s*(Da)a*(s*aa* + 1) L.

Denote by L the tautological line bundle over P(C@ E) and by L= its orthogonal complement
in C® E. Denote by P (resp. Q) the orthogonal projection onto L (resp. L. Let us describe
P and @Q over Hom(C, E) C P(C & E). Given a € Hom(C,, E,) the associated line ~, is

Yo = {(A,a)); A eC}.

The orthogonal complement of 7, is the graph of —a* : E — C. Given (t,v) € C, ® E, we
need to find u € E; and A € C, such that

(A,aA)+(—a*u,u):(t,v)<:>[i —la* } . [ A]: [ t].

1 —a* 1 a*
el LI DA R
Observe that V,U, = Diag(1 + a*a, 1 + aa*) so that

(14+a*a)\ | t| | t+a'v 1 . _a
|: (1—1—@@*)’& —Va v = —at+v :>>\—41+|a|2(t+(1 'U)) 0—41+|a|2t7

Set

so that we obtain the block decomposition

[ G+l (+fap) e
P=[atad @ e | )

To find Q(¢,v) we need to find u € E; and A € C, such that

(—a*u,u) + (A, a\) = (t,v) < U, [ 3§ } - [ t ]

[

Hence ( )
1+a*a)\ | t _ =1/
[ (1 + aa*)u ] =V, [ v } = u=(14aa") " (—at +v),
[ a*(1+aa*)"ta —a*(1+aa*)"!
Q - |: _(1+aa*)—1a (1+aa*)—1 (3.2)
The multiplicative group Rsg acts on C® E by s- (A, u) = (A, su). We obtain in this fashion
a flow @, : P(C® E) — P(C @ E) and we set Ly = &L, L = ®*L+. Over P(C @ E)° the
orthogonal projection @, onto L is obtain from (3.2) by replacing a by sa. We obtain the
block description
s?a*Mza —sa*M,

_ _ 2 *\—1
QS[ _sM.a M, , Ms=(1+s“aa™)"".

This projection restricts to a vector bundle morphism R, : E — }LSL which is an isomorphism
of vector bundles over P(C & E)°. Consider the connection D* on E defined by

D* := R;YQ;D)R;.
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More precisely, given a section u of E we have

—sa*Mgu
Rsu = [ Mo } .
Hence
DDR.u = [ —%((CX;Mjw } . Q.DR, = *
st s2M,ad(a* Mou) + M,D(Mgu), R;!
We deduce

R;'Q.DR.u = s*ad(a* M,u) + D(M,u) = s*a(da*) Msu + s*aa*D(Mu) + D(M,u)
= s?a(Da*)M,u + (1 + s*aa*) M, Du + (1 + s?aa*)(DM,)u
T
= Du + s*a(da*) Myu + (M;'DM,)u
Differentiating the equality M; M, = 1g we deduce
(M7'DM,) = —(DM; )M, = —s*(D(aa*) )M, = —s?(Da)a* M, — s*a(Da*)M,
Putting all the above together we obtain the identity

D* = R;'Q,DR,u = Du — s*(Da)a* M,u = D*u. (3.3)
If we denote by Dy . = @D the natural connection on Lt induced by D then
QsD =®:D; .

and we thus we can rewrite (3.3) as
D® = R;'®*Dy\ R,, Vs > 0. (3.4)
We have thus obtained the following result.
Lemma 3.1 (Universal Desingularization).
—
cr(D?) = (5D 1) = Pier(Dpo). (3.5)
O
We want to investigate the existence of the limit lim,_,o, ®3w where w is a fized differential
form on P(C® E). We will follow the very elegant approach developed by Harvey and Lawson
in [6]. This requires a small digression.

Suppose F : Xj° — Xi" is a smooth map between smooth oriented manifolds. The
pullback by F'is a linear map

F* QF(X)) — QF(Xo).
It is convenient to regard it as a linear map
F7# Q8 (X1) = Dpy_r(Xo), a— (F*a)N[Xo).
We can rewrite this map as follows. Consider the graph of F~1
Iy = { (r1,70) € X1 X Xo; x1 = F(x0) }

Then I'}, defines an integral current [I'p] € Dy (X1 x Xp). For ¢ = 0,1 we denote by
m; : Xo X X1 — X; the canonical projection. We have the following result.
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Lemma 3.2.
Fro = (m0)«((7fa) N[I'E]), Vae ok (x71).

Proof For 3 € Q" %(X,) we have

<(7r0) ((7104 ),5> < mra) N [TE], 7703>
<[FF] 77104/\770ﬂ / (F x 1x,)" (mfaAms
Xo

:/ Franf={(Fa)n[X,B).

O

This suggest the following more general construction. Suppose that we are given a roof,
i.e a diagram of the form

Y
fo bil
Xl/ \XO |

where X, X1,Y are oriented smooth manifolds, and fj, fi are smooth maps. Assume K is
a k-dimensional kernel for this roof, i.e. a k-dimensional current in Y such that fy is proper
over supp K. Then we obtain a linear map

Ky Q™(X1) = Di—m(Xo), Kga=(fo)«((ffa)NK).
The result in Lemma 3.2 can be rephrased as the equality
F* = [Tl
We have the following homotopy formula
(0K)ga = Ky(da) + (—1)"0Ka, Ya € Q™(X,). (3.6)
Indeed,

Ky(da) = (fo)u (d(fi0) N K ) "2 (o) (ffan 0K — (~1)"0(ffan K))
= (0K)ga — (—1)"0K 4a.
We can rewrite this in operator form
(OK)y = Kyod+ (—1)"0 0 Ky. (3.7)

Observe that if we have a family of smooth maps Fy : Xo — X1, s € (0,00) such that I'},
converges as s — oo to a current I';_ in X; x Xg such that m is proper over supp '} then
for every k form o on X, the pullbacks Fo converge to the current (I'f))xo.

Suppose we are given a smooth map

F:]0,00) x Xog — X1, (s,20) — Fs(xp).
For every s > 0 consider the current
Ty == {(@1,t,m0) € X1 x R x Xo; 21 = Fy(20), 0<t<s}.

We set
05Ty := [s] x ', OoTs := [0] x ',
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so that

0Ts = 0sTs — 0T5s.
We obtain a roof

Y = X1 X R x XO

y &
X1 XO
where 7; denote the natural projections. Using T as kernel we deduce that for every k-form
« on X1 we have
3.6
Ffa— Ffa = (0T)sa 2 (Ty)4(da) + (~1)F0(Ty) o

The operator (Ts) 4 : Q%(X1) — Dpys1-k(Xo) is the pullback by 7 followed by the integration

along the fibers of T} L Xy In particular, we deduce that (7)4 maps smooth k-forms on
X1 to smooth (k — 1)-forms on Xy. Since on (k — 1)-forms (viewed as (ng — k + 1)-currents)
we have d[a] = (—1)¥[da] (see (1.2)) we deduce

Fia— Fja = (Ts)gda + d(Ts) 4. (3.8)

Denote by R = S! the one-point compactification of R. We set Y = X; x R x X and thus
we can view the currents Ty as currents in Y.

Definition 3.3. We say that F': [0,00) x Xo — X has finite volume if there exists a metric
7 on R, a metric gg on Xy and a metric g; on X7 such that the volume of

TOOZ:F*FCX1XR><X0

with respect to the metric g1 & 7 ® go is finite.
O

Along [0,00) C R the metric 7 can be expressed as 7 = w?(s)ds?. The above volume of
' is described by the improper integral

/O ( /X (w? + |FL2) 2 det (1 + (D, F)*DFy )/ Qd%mo))czs,
0

where for every zg € Xo we denoted by (Dy, Fs)* the adjoint of Dy, I : Tiy Xo — Thy(00) X1
with respect to the metrics go, g1. Note that the finiteness of this integral is independent of
the metric 7 on R.

If we identify S! with [~1,1] and [0, 00) C R with the subset [0,1) via the map

s
1+s

[0,00) 35— x =

I

then the finite volume condition translates to
/0 (/X (14 5) "2+ [FLI2,)Y? det( 1 + (Dyy Fs)*DFy ) /?aVy, (w0) ) ds < oo
0

for some metrics gg, g1 on Xg and X;. Using a smooth proper function p : Xg — R we deduce
the following.
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Lemma 3.4. The finite volume condition is equivalent to

/ (/ ((1+5)_2+|FS’|§1)1/2det(]l+(DIOFS)*DFS)1/2dVgo(x0)>ds<oo, (3.9)
0 Uy

for any precompact open subset Uy C X and any metrics g; on X;.
O

The currents T, in Y induce currents Ty in Y. The finite volume condition implies that
I'; defines a current in T inY.

Since F has finite volume then T, — T» in the mass norm. In particular T, converges
weakly to Tho and

OsTs = T + pTs — OcoT oo = 0T oo + Too.

If 1y : Y — X is proper over supp T, then for every smooth k-form a on X; the pullbacks
F}a converge as currents as s /' 0o to the current Fa 1= (0scToo)xv. Additionally, we
have the equality of currents

Fra— Fja = (Ta)gda + (—1)"0(Tx) 4.
Proposition 3.5. If F' is a real analytic map and it is uniformly locally bounded, i.e. for
every compact subset Ko C X there exists a compact set K1 C X1 such that
F([0,00) x Kp) C K1,
then F has finite volume and the natural projection mo : Y — Xy is proper over the closure

Of FF mY.

Proof The closure of I';. in X x R x Xy is a semianalytic set, and thus according to [2,
§3.4] or [4, §2] it has locally finite volume. The uniform boundedness condition now implies
the finite volume condition on F'.

O

Remark 3.6. The above considerations admit the following immediate generalizations. Sup-

pose F — E ~ Bis a real analytic, locally trivial fiber bundle and us : B — E, s € [000) is
a smooth family of sections. The graph of a section v : B — FE is then the submanifold

Iy, =u(B) C E.
The pullback by wu is defined by the roof

E
117 N
E B
with kernel I';,. The formulation of the finite volume condition is similar and is left to the

reader.
O

In our original situation we have
Xo=X1 =P(Ca® E) and Fs(\,u) = D[\, u] = [\, sul.

The map ® : [0,00) x P(C® E) — P(C & E) is clearly real analytic. Since the fibers of
P(C @ F) — X are compact we deduce that this map is also locally uniformly bounded. As
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explained by Fulton in [3, Rem.5.1.1, Ex.18.1.6], the asymptotics of the flow ®4 as s — oo are
intimately related to the deformation to the normal cone construction in algebraic geometry.

We study first the special case when the base X of F is a point. Thus we need to analyze
the closure of

{(sul,s. ul); s € 0,00), A u] € PC E) |

in P(C® E) x R x P(C@ E). Near co € R we choose a local coordinate ¢t = 1/s so that in
this coordinate we have

D\ u] = [Nt 1u).
We need to study the closure of

T = {([ult,u)); te (0,1), A u] e PCa ) |

in P(Ca® E) x[0,1] x P(C® E). A point P = ([po, vol, 0, [Xo, uo]), |Ao| + |ug| = 1 is in this
closure if and only if there exist real analytic maps

t:[0,1] — [0,1], t(z)=tox®, to#O0,
A:[0,1] = C, Az) = Ao + Aoa?,
uw:[0,1] = E, wu(zr) =wuo+ oz a,b,c € Z>y, a#0, to, Ao, 1o # 0,

such that,
li{%[to)\ox“ + toroz™t, ug + Uox] — 1o, vo.
x

We distinguish several cases.

e ug, A\g # 0. In this case ug =0, vg = uyp.

e )\ =0, ug # 0. In this case we also have g = 0, vg = uyp.
e \g # 0, ug = 0. In this case we have

[/J,(), 1)0] = ii{%[t())\()$a + to/'\oanrb, itoxc].

If ¢ = a then
110, vo] = [toAo, Tio],

if ¢ < a, then

110, vo] = [toAo, o] = [0, o]
if ¢ > a, then

[/,LO,Q}O] = [tO/\(),O] = [170]
Hence

{([07u0]3 [)‘Oau(]])a uo 7é 0} U {([So,ﬂo], [13 0])} - aooIv&)
We deduce that 0,1 is supported by the a variety I'y = P(C® E) x P(C® E) which has
two irreducible components H, B, where
H=P(CaFE)x{[1,0]},
and B is the closure in P(C® E) x P(C® E) of I'},, where
P:P(Co® E)\{[1,0]} - P(F) cP(Ca® E)

denotes the projection of center [1,0] onto P(E). Note that B is biholomorphic to the blowup
of P(C& E) at [1,0]. The two components intersect along the common divisor P(E) x {[1,0]}.
The deformation Iy, — T'g_ is similar in spirit with the deformation depicted in Figure 2.
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FIGURE 2. Deforming the graph of the identity map ®; : P(C@ E) — P(C & E)

When X is arbitrary, we set Y = P(C® F) and consider complex blowup M = Bix (Y xC)
of Y x C along the zero section®

X —>PC®EFE)xC, z+— ([1,0],0) e P(C E) x C.

The projection Y x C — C defines a real analytic function ¢t : Y x C — C and thus induces
a real analytic function ¢t : M — C. Then Ffbl/t converge as t — 0 to a current supported by

the "divisor” {t = 0}. This divisor has two irreducible components, H and B.

The component H = P(C @ E) is the exceptional divisor of the blowup of C & E along
{0} x X. The component B is the blow-up BlxY of Y along X — P(C & E), embedded as
the zero section. These two components share in common a P(F). Let us point out that the
total space of the deformation of the zero section embedding X — Y to the normal cone is
precisely M? = M \ B, (see [3, §5.1]).

If now « is a real analytic section of E it induces a real analytic section o of P(C® E) and

we have the tautological equalities
— —

E=o'Lt, a=a*(a), V°=a*(D?).
Then
(V) = a*e,(D%) X " dte, (Dy1) = a’er(Dy ),
where ay; = ®5 0 o = sa. Since the family of sections sa is real analytic and the fibers of
P(C® E) — X are compact, the conditions of Proposition 3.5 are satisfied and we deduce
that cr(gs) converge as currents as s /" 00.

Imitating [1, Prop.IV. 22], we will refer to the closure of the set {(¢,a(z)); = € X} C C*xE
in P(C @ E) as the blowup of C x X along Z = {0} x a~1(0).* We denote this blowup by
Blz(C x X). The part of this blow-up sitting above {0} x X determines the limit c,,(?oo’a).
The part of the blowup above {0} x X is the total transform X of {0} x X in Blz(C x X).
This consists of two components: the exceptional divisor €z of the blowup Blz(C x X), and
the strict transform X of {0} x X. If a is a nondegenerate section then €, = P(C® E) |z
and X = Blz({0} x X).

To prove that the Chern-Weil transgressions TcT(e)s, ?0) converge as currents as s /" 00
we need to reformulate the construction of this object in the language of kernels.

Suppose A, s € [0, s] is a smooth family of connections on the vector bundle £ — X.
They determine a connection A on the pullback E of E to [0,s] — X. The Chern-Weil
transgression Te, (Ag, Ag) is defined as the form on X obtained by integrating the form ¢, (A)

3The normal bundle of this zero section is a complex bundle.
41t all objects are holomorphic this is indeed the blowup as defined in [1, IV.24].
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along the fibers of [0,s] x X — X. Suppose now that ®; is a smooth 1-parameter family
of smooth maps X — X such that & = 1x, and A is connection on E. We obtain a 1-
parameter family of connections 4; = ®¥A on A and the associated connection A coincides
with ®* A, where

$:[0,8] x X — X, &(t,z) = By(x).
If we consider the roof

[0,s] x X x X

TN e = rtane) =

X X
with kernel T = I‘é then we deduce that

TCT(AS, Ao) = (TS)#CT(A()).

The convergence of the transgression forms Tcr(es, ?0) now follows again from the conver-
—
gence of the kernels Ts. The current ¢, (V) is defined by

.
(er(V),m) = /X ¢:(Dys) Am™n, Vi € Q21 (X).

When « is a nondegenerate section
/ CT(DLJ_)/\TF*HZ/ CT(D]LJ_)/\T('*U‘F/ er(Dpi) A7 n.
X P(COHE) z X

A B
Over X \ Z the strict transform can be identified with the graph of the section
X\Zw—[0,a(x)) CP(E) CcP(Co® E).
Note also that over X \ Z we have
L* [pmy= 7" (E) and (7*V) |p(g)~ Dyo,

where ~ denotes gauge equivalence. Hence ¢, (Dy1) | = 0 so that B = 0. On the other hand

A:/ CT(DLL)/\’N*??:/W*(CT(DLL)/\’N*’I])
P(Cz®E z) Z

(use projection formula)
:/(W*CT(DLL)) /\77:/7].
z z
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