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1. A very fast introduction to geometric measure theory

We survey some basic facts about currents. Suppose E is a N -dimensional real Euclidean
vector space. We denote the Euclidean metric on E by (•, •), by Hm = Hm

E the m-dimensional
Hausdorff measure on Borel subsets of E and by dvE the Lebesgue measure on E.

For every smooth map between Euclidean spaces F : E0 → E1, every positive integer
k ≤ min(dimE0,dimE1) and every x ∈ E0 we get a linear map

Λk
xF ∗ : ΛkT ∗F (x)E1 → ΛkT ∗xE0

ΛkT ∗F (x)E1 and ΛkT ∗xE0 are equipped with natural Euclidean metrics and we denote by
|JkF |(x) the norm of the above linear map.

Suppose E is an oriented Euclidean space. Denote by Ωm
cpt(E) the space of smooth, com-

pactly supported m-forms on the Euclidean space E and by Ωm(E) the space of smooth
m-forms. They are naturally equipped with locally convex linear topologies defined by the
uniform convergence on compacts of forms and their partial derivatives of any order. The
space of m-dimensional currents, denoted by Dm is the topological dual of Ωm

cpt. The space
of compactly supported m-dimensional currents, denoted by Em, is the topological dual of
Em. We define

∂ : Dm → Dm−1

by the equality
〈∂T, α〉 = 〈T, dα〉, ∀α ∈ Ωm−1

cpt (E), T ∈ Dm.

Example 1.1. (a) Let N = dimE. Then any orientation of E determines a natural current

[E] ∈ DN , 〈[E], α〉 =
∫

E
α, ∀α ∈ ΩN

cpt.

Observe that
∂[E] = 0.
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For every α ∈ Ωk(E), T ∈ Dm, k ≤ m define α ∩ T ∈ Dm−k by

〈α ∩ T, β〉 = 〈T, α ∧ β〉, ∀β ∈ ΩN−m+k
cpt .

We have
〈∂(α ∩ T ), β〉 = 〈 (α ∩ T ), dβ〉 = 〈T, α ∧ dβ〉

= (−1)k〈T, d(α ∧ β)− dα ∧ β〉 = (−1)k〈α ∩ ∂T, β〉+ (−1)k+1〈dα ∩ T, β〉
which yields the homotopy formula

∂(α ∩ T ) = (−1)deg α
(
α ∩ ∂T − (dα) ∩ T

)
. (1.1)

In particular, we obtain an embedding

ΩN−m(E) ↪→ Dm(E), α 7→ [α] = α ∩ [E],

defined by

〈[α], β〉 =
∫

E
α ∧ β, ∀β ∈ Ωm

cpt(E).

Observe that
∂[α] = (−1)N−m+1[dα], ∀α ∈ ΩN−m(E). (1.2)

(b) If we denote by Ωm(E) the space of smooth sections of ΛmTE then we have a natural
inclusion

Ωm(E) ↪→ Dm(E), ξ 7→ dvE ∧ ξ,

where
〈 dvE ∧ ξ, β〉 =

∫

E
(ξ β) dvE , ∀β ∈ Ωm

cpt(E).

If we denote by † : Ωm(E) → Ωm(E) the natural metric duality and by ∗ : Ωm(E) →
ΩN−m(E) the Hodge ∗-operator then

dvE ∧ ξ = (−1)m(N−m)(∗ξ†) ∩ [E], ∀ξ ∈ Ωm(E).

(c) Suppose M is an orientable m-dimensional submanifold of E and or is an orientation on
M . Then we obtain a current [M ] = [M,or] ∈ Dm defined by

〈[M ], β〉 =
∫

M
β, ∀β ∈ Ωm

cpt(E)

If M has boundary ∂M then Stokes formula implies

∂[M,or] = [∂M, ∂or].

If p is a point in E we denote by [p] the 0-current determined by the inclusion {p} ↪→ E.
(d) Consider the 1-form ϕ = dθ ∈ Ω1(R2 \ 0). In cartesian coordinates it has the form

ϕ =
1

x2 + y2
(xdy − ydx).

Then ϕ is locally integrable and thus defines [ϕ] ∈ D1(R2). We want to compute its boundary.
For every compactly supported smooth function β we have

〈∂[ϕ], β〉 =
∫

R2

ϕ ∧ dβ = − lim
ε↘0

∫

|z|≥ε
d(βϕ) = lim

ε↘0

∫

|z|=ε
βϕ = 2πβ(0)

so that
∂[dθ] = 2π[0].

ut
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If f : E → F is a smooth map and T ∈ Dm(E) is such that the restriction of f to the
support of T is proper then we define f∗T ∈ Dm(F ) by

〈f∗T, α〉 = 〈T, f∗α〉, ∀α ∈ Ωm
cpt(F ).

This operation is called the push-forward of currents defined by a smooth map. It commutes
with the boundary operator ∂.

We would like to discuss a few topologies on Dm. Given a current T ∈ Dm and a precom-
pact open subset W ⊂ E we define the mass of T in W to be

mW (T ) := sup
{〈T, α〉 : ‖α‖ ≤ 1, α ∈ Ωm(E), suppα ⊂ W

}

where
‖α‖ = sup

x∈E
‖α(x)‖,

‖α(x)‖ = max
{

(e1 ∧ · · · ∧ em) α(x); e1, · · · , em ∈ E are orthonormal
}
.

‖α‖ is called the comass of α. We set that T has locally finite mass if

mW (T ) < ∞, ∀W b E.

Example 1.2. (a) Suppose M ↪→ E is an embedded, oriented m-dimensional submanifold.
Then

mW (M) = volm(M ∩W ),
where volm denotes the m-dimensional volume induced on M by the Euclidean metric.
(b) Suppose we are given a Radon measure µ on E, a µ-measurable m-vector field ξ ∈
Γ(ΛmTE) such that |ξ(x)| = 1 µ-a.e. Then we can form the current

µ ∧ ξ ∈ Dm

by setting

〈µ ∧ ξ, α〉 =
∫

E
ξ αdµ, ∀α ∈ Ωm

cpt.

Then µ ∧ ξ has locally finite mass

mW (µ ∧ ξ) =
∫

W
d|µ|.

We say that µ∧ξ is an integral representation current. Conversely, every current with locally
finite mass T admits a unique integral representation µ ∧ ξ. We set µ := µT , ξ := ~T . ut

We want to discuss a generalization of the above example. A subset M ⊂ E is called
countably m-rectifiable if there exists Z ⊂ M , and a sequence of embedded C1-submanifolds
N1, · · · , Nk, · · · ⊂ E each of dimension m such that

Hm(Z) = 0,

and
M \ Z ⊂

⋃

k≥1

Nk

It is called rectifiable if Hm(M) < ∞. If M ⊂ E is a countably m-rectifiable set, x0 ∈ M
and V ⊂ E is a m-dimensional vector subspace of E then V is called an approximate tangent
space to M at x0 if for every f ∈ C∞

cpt(E,R) we have

lim
ε↘0

∫

δε,x0 (M)
fdHm =

∫

V
fdHm,
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where δε,x0 is the dilation of center x0 and factor ε−1

δε,x0 : E → E, x 7→ 1
ε
(x− x0).

We have the following characterization of rectifiable sets, [7, Thm. 3.3.5].

Theorem 1.3. A subset M is countably m-rectifiable if there exists Z ⊂ M such that
Hm(Z) = 0 and every x ∈ M \ Z has an approximate m-dimensional tangent space TxM . ut

Given a countably m-rectifiable set M we denote by Mreg the subset consisting of points
admitting an approximate tangent space. A measurable orientation of M is an equivalence
class of measurable field of m-vectors ~ωM ∈ Γ(ΛmTE) on E such that ~ω(x) = 0 if x ∈ E\Mreg

while
~ω(x) = e1 ∧ · · · ∧ em,

where e1, · · · , em is an orthonormal basis of TxM . Two orientations are called equivalent if
they agree Hm-a.e. A pair (M, ωM ) as above is called an oriented, countably rectifiable set.
To such a pair we associated the current

[M, ~ω] := Hm ∧ ~ωM .

More generally, if ν : E → Z is a locally Hm-integrable function then we can define ν[M, ω]
by

〈ν[M, ω], α〉 =
∫

M
ν(~ω α)dHm〉.

We now want to introduce several important classes of currents.
A current T ∈ Dm of the form ν[M, ~ω], where ν : E → Z is locally Hm-integrable and

[M, ~ω] is a countably m-rectifiable subset is called locally rectifiable. It is called rectifiable if
it has compact support, and hence finite total mass. We denote by Rm the Abelian group
of rectifiable m-currents. A rectifiable current T is called integral if ∂T is rectifiable. We
denote by Im the Abelian group of integral m-currents.

A current T is called normal if it has compact support and

m(T ) + m(∂T ) < ∞.

An m-simplex in E is a linearly embedded m-simplex. It defines in a natural way an integral
current and we denote by Pm the Abelian group generated by these simplices. We will refer
to the elements of Pm as polyhedral chains. We denote by Pm the real vector space generated
by polyhedral chains.

For every current T ∈ Dm we set

F(T ) := sup
{〈T, α〉; ‖α‖, ‖dα‖ ≤ 1

}
= inf

{
m(T − ∂S) + m(S); S ∈ Dm+1

}
.

We define the flat metric to be
d(T, S) := F(S − T ).

For example, the two oriented segments T , S define two rectifiable 1-currents. Observe that

T − S = ∂R + (U − V ) =⇒ F(T − S) ≤ m(R) + m(U − V ) = ld + 2d.

A current T is called flat if its support is contained in a compact set K and it is a limit in
the flat metric of normal currents supported in K. We denote by Fm the vector space of flat
currents.
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Figure 1. Two parallel segments of length l at distance d apart.

A current T ∈ Dm is called integrally flat if T ∈ Rm + ∂Rm+1. We denote by Fm the
Abelian group of integrally flat currents. For such a current we define

F(T ) := sup
{

m(R) + m(S); T = R + ∂S, R ∈ Rm, S ∈ Rm+1

}
.

The pushforward operation maps flat (integral) currents to flat (resp. integral currents.)

Example 1.4. Any flat m-current T can be written in the form

T = ξ ∧ dvE + ∂(η ∧ dvE)

where ξ ∈ Γ(ΛmTE) and η ∈ Γ(Λm+1TE) are compactly supported and Lebesgue integrable.
In particular, if dimm = E then any top dimensional current can be written in the form
ξ dvE , where ξ is a Lebesgue integrable section of detTE. For a proof we refer to [2,
§4.1.18]. The above equality is equivalent to

〈T, α〉 =
∫

E
(ξ α)dvE =

∫

E
(η dα)dvE , ∀α ∈ Ωm

cpt.

Consider for example the rectifiable current defined by the segment

S =
{

(t, 0) ∈ R2; t ∈ [0, 1]
}
.

We denote by (x1, x2) the Euclidean coordinates on R2. Then for every α = α1dx1 +α2dx2 ∈
Ω1

cpt we have

〈S, α〉 =
∫

S
α =

∫ 1

0
α1(x1, 0)dx1.

We seek compactly supported, integrable vector fields ξ = ξ1∂1 + ξ2∂2 ∈ Γ(Λ1TR2), η =
ρ∂1 ∧ ∂2 ∈ Γ(Λ2TR2) such that

[S] = dvE ∧ ξ + ∂(dvE ∧ η),

i.e. ∫

R2

(ξ1α1 + ξ2α2)dx1dx2 +
∫

R2

(
∂α2

∂x1
− ∂α1

∂x2
)ρdx1dx2 =

∫ 1

0
α1(x1, 0)dx1.

If α is supported in a ball disjoint from S then we deduce

ξ1dx1 + ξ2dx2 = −d∗(ρdx1 ∧ dx2).

Let

δ =
x2

d(x)
dv, d(x) = dist (x, S).

We have δ(x) ∈ L1,1
loc(R

2 \ S) we set
β = −d∗δ

and
Zε = {d(x) ≥ ε}.
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Using the integration by parts formula in [9, Prop. 4.1.40] we deduce that for every compactly
supported 1-form α we have∫

Zε

〈dα, δ〉dv +
∫

Zε

〈β, α〉dv =
∫

Zε

〈dα, δ〉dv −
∫

Zε

〈α, d∗δ〉 =
∫

∂Zε

〈α,~n δ〉dsε,

where ~n is the outer unit normal vector field along ∂Zε and dsε denotes the arclength along
∂Zε. If we let ε → 0 we deduce∫

R2

〈dα, δ〉dv +
∫

R2

〈β, α〉dv = 2
∫

S
α

so that
2[S] = dv ∧ β† + ∂(dv ∧ δ†),

where for † : Ωp(E) → Ωp(E) denotes the metric duality. Unfortunately, β† and δ† are not
compactly supported. To obtain compactly supported vector fields we choose a compactly
supported smooth function ζ such that

ζ(x) = 1, ∀d(x) ≤ 1.

Then
2[S] = ∂

(
dv ∧ (ζδ)†

)− (
dv ∧ (d∗(ζδ) )†

)
.

ut

The supports of flat m-dimensional currents have remarkable properties, [2, Thm. 4.1.20].

Theorem 1.5. Suppose T ∈ Fm(E). Denote by Gm(E) the Grassmannian of m-dimensional
vector subspaces of E and by dγm the invariant measure on Gm of total volume 1. For every
L ∈ Gm(E) we denote by PL the orthogonal projection onto L. Then

∫

Gm

Hm(PL suppT )dγm(L) = 0 ⇐⇒ T = 0.

In particular, the support of a nontrivial flat m-dimensional current cannot be contained in
a submanifold of E of dimension < m.

ut

The next result explains the importance of integrally flat currents in topology.

Theorem 1.6. Suppose B ⊂ A ⊂ E are two “reasonable” subsets, e.g subanalytic. Let

Zm(A,B) =
{

T ∈ Fm; suppT ⊂ A, supp ∂T ⊂ B
}

Bm(A, B) =
{

T + ∂S; T ∈ Fm, S ∈ Fm+1; suppT ∈ B, supp ∂S ⊂ A
}
.

Then the quotient
Zm(A,B)/Bm(A,B)

is naturally isomorphic to the singular homology Hm(A, B;Z). A similar result holds if we
replace F with I in the above definitions.

ut

For a proof we refer to [2, §4.4].
A central result in the theory of currents is the compactness theorem of Federer-Fleming,

[2, Thm. 4.2.17].
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Theorem 1.7. Fix a compact subset K ⊂ E and a positive constant c. Then the set
{
T ∈ Im; supp(T ) ⊂ K, m(T ) + m(∂T ) ≤ c}

is closed with respect to the F-metric while the set
{
T ∈ Fm; supp(T ) ⊂ K, m(T ) + m(∂T ) ≤ c}

is closed with respect to the F metric. ut

2. Singular connections

Suppose E → X is a smooth vector bundle over an oriented smooth manifold X, α is a
section of E, and then Z(α) is the zero locus of α. The Gauss-Bonnet-Chern theorem shows
that if α vanishes nondegenerately along Z(α), and if ∇ is a connection on E then the r-th
Chern-Weil form cr(∇) satisfies an equality of currents

cr(∇)− [Z(α)] = ∂T,

where T is some current on X of dimension (N − 2r + 1).
We want to associate to the pair (∇, α) as above a connection

−→∇α with the following
properties.

A. lims↘0
−→∇sα = ∇ and the forms cr(

−→∇sα) converge in the sense of currents to as s ↗ ∞.
We denote this limit current by cr(

−→∇∞,α). Moreover, if α has a nondegenerate zero set then
cr(
−→∇∞, α) = [Z(α)].

B. As s ↗∞ the family of connections
−→∇s converges uniformly on the compacts of X \Z(α)

to a connection
−→∇∞ =

−→∇∞,α and cr(
−→∇∞) = 0 ∈ Ω2r(X \ Z(α) ).

C. The Chern-Weil transgression Ts ∈ Ω2r−1(X) satisfying

cr(∇s) = cr(∇) + dTs, s > 0

has a limit in the sense of currents as s ↗∞.
To produce such connections we use a technique introduced by Harvey and Lawson in [5,

I.2]. We describe it in a general situation.
Consider two smooth complex vector bundles E0, E1 a over the smooth, oriented manifold

X. We denote by ri the rank of Ei, i = 0, 1. For a generic section α ∈ Hom(E0, E1) we have
rankαx = r, for almost all x ∈ X. We set

D(α) :=
{

x ∈ X; rankαx < min(r0, r1)
}
.

Suppose we are given two bundle morphisms α10 ∈ Hom(E0, E1) and α01 ∈ Hom(E1, E0) and
connections ∇i in Ei. We obtain connections ∇ji on Hom(Ei, Ej), i, j = 0, 1. We can then
define −→∇1 = ∇1 − (∇10α10)α01,

←−∇0 = ∇0 + α01(∇10α10).

Note that the definitions are not symmetric. Set for simplicity α = α10. In applications
we would like α01 to be a sort of inverse for α. Note that if α10α01 = 1E1 then if we set
α−1 = α01 then −→∇1 = α∇0α−1

In general, on X \ D(α) we have two vector bundles

K = kerα, R = im α
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If we choose hermitian metrics hi on Ei we would like to have

α01 = α−1PR,

where PR denotes the orthogonal projection onto R and α−1 denotes the inverse of the map
α10 : K⊥ → R.

If r0 ≤ r1 then on X \ D(α) we have

α−1PR = (α∗α)−1α∗

while if r0 > r1 then on X \ D1(α) we have

α−1PR = α∗(αα∗)−1

Clearly this definition does not make sense over the degeneracy locus D(α). One way out of
this problem is to take an approximate inverse in the above definition. There is no unique
way of doing this, and every choice will be called an approximation mode.

We choose an approximate 1 which is a smooth, increasing function

χ : [0,∞) → [0, 1]

such that χ(0) = 0 and χ(∞) = 1. Then the family χs(t) = χ(s2t)1 converges to 1 uniformly
on the compacts of (0,∞) as s ↗∞. In the sequel, a very special role will be played by the
algebraic approximation mode defined by

χ =
t

1 + t
.

Now define
βs(t) := t−1χs(t).

Note that βs(t) converges to t−1 uniformly on the compacts of (0,∞) as s ↗ ∞. For every
hermitian, nonnegative operator A the operator βs(A) is an approximate inverse of A. We
set

α−1
s =

{
βs(α∗α)α∗ if r0 ≤ r1

α∗βs(αα∗) if r0 > r1
.

Note that for every continuous function f : R→ R we have the equality2

f(α∗α)α∗ = α∗f(αα∗),

so that
α−1

s = βs(α∗α)α∗ = α∗βs(αα∗).
α−1

s is a well defined morphism E1 → E0. It vanishes on R⊥ and we have

α−1
s α = χs(α∗α), αα−1

s = χs(αα∗).

We define −→∇s =
−→∇s,α = ∇1 − (∇α)α−1

s ,
←−∇s = ∇0 + α−1

s (∇α).

As s ↗∞ the connection
−→∇s converges on X \D(α) to a connection

−→∇∞ =
−→∇∞,α called the

singular pushforward of ∇. Note that in the algebraic approximation mode we have
−→∇s,α =

−→∇1,sα.

1The curios choice of s2 in the definition of χs will be justified a bit later.
2To prove this equality note first that is trivially true for f(x) = xn and thus by linearity it is true for

polynomials. To prove it for any continuous function f we choose a sequence of polynomials converging
uniformly to f on a compact interval containing the spectra of both αα∗ and α∗α.
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The construction of
−→∇s,α is natural in the following sense. If f : Y → X is a smooth map

then
f∗(

−→∇s,α) =
−−−→
(f∗∇)s,f∗α. (2.1)

Consider now a special case of the above construction when E0 = C. The morphism α can
be identified with a smooth section E = E1. Equip C with the trivial connection and metric
and E with a hermitian metric h = (•, •)E and compatible connection ∇ = ∇E . Then

|α|2 = α∗α, α∗(u) = (u, α)E , ∀u ∈ C∞(E).

Set χs = χs(|α|2) and βs = βs(|α|2). We deduce

α−1
s =

χs

|α|2 α∗,
−→∇su = ∇s,αu = ∇Eu− χs · (u, α)E

|α|2 (∇Eα).

Note that −→∇su = (1− χs)∇Eu =⇒ −→∇∞u = 0.

We write −→∇s = ∇E + As, As = − χs

|α|2 (∇Eα)α∗ (2.2)

Let us find the curvature Ωs of
−→∇s. We have

Ωs = ΩE + d∇As + As ∧As = ΩE + d∇As +
χ2

s

|α|4 (∇Eα)α∗ ∧ (∇Eα)α∗

and

d∇As = −dχs ∧ (∇Eα)α∗ +
χsd|α|2
|α|4 (∇Eα)α∗ − χs

|α|2 (ΩEα)α∗ +
χs

|α|2 (∇Eα) ∧ (∇Eα∗).

Using the equality
d|α|2 = (∇Eα∗)α + α∗∇Eα

we deduce
χsd|α|2
|α|4 ∧ (∇Eα)α∗ = − χs

|α|4 (∇Eα) ∧ d|α|2 ∧ α∗

= − χs

|α|4 (∇Eα) ∧ (∇Eα∗)αα∗ − χs

|α|4 (∇Eα)α∗ ∧ (∇Eα)α∗

Putting all of the above together we deduce

Ωs = ΩE

(
1− χsαα∗

|α|2
)

+
χs

|α|2 (∇Eα) ∧ (∇Eα∗)
(

1− αα∗

|α|2
)

−dχs ∧ (∇Eα)α∗ − χs(1− χs)
|α|4 (∇Eα)α∗ ∧ (∇Eα)α∗

= (1− χs)ΩE + χs

{
ΩE +

1
|α|2 (∇Eα) ∧ (∇Eα∗)

}(
1− αα∗

|α|2
)

−dχs ∧ (∇Eα)α∗ − χs(1− χs)
|α|4 (∇Eα)α∗ ∧ (∇Eα)α∗

As s ↗ ∞ we have χs(t) → 1 uniformly on the compacts of [0,∞) and we deduce that on
compact subsets of the open set X \ α−1(0) the curvature Ωs converges uniformly to

Ω0 =
(
ΩE +

1
|α|2 (∇Eα) ∧ (∇Eα∗)

)(
1− αα∗

|α|2
)
.
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Observe that if E is a line bundle then

αα∗ = |α|2 · 1E

so that in this case Ω0 = 0.

Example 2.1 (Fundamental universal computation). Suppose X = C, E is the trivial
line bundle C, ∇E and hE are the trivial metric and connection on C and α is the tautological
section α(z) = z. Then if we use the notation d = ∇E we deduce

−→∇s = d− χs(|z|2)dz

z
,

−→∇∞ = d− dz

z
, Ωs = −dχs ∧ dz

z
.

If X = Cr, E = Cr, and α is the tautological section

α(z) = z, z =




z1

...
zr


 .

Then −→∇s = d− χs

|z|2 dz ⊗ z∗, z∗ = [z̄1, · · · , z̄r]. (2.3)

Observe that As = − χs

|z|2 dz ⊗ z∗ is represented by the r × r matrix with entries 1-forms

As = [aij ]1≤i,j≤r, aij = − χs

|z|2 dziz̄j .

The (i, j) entry of As ∧As is

χ2
s

|z|4
∑

k

dziz̄kdzkz̄j =
χ2

s

|z|4 dziz̄j∂|z|2.

The (i, j)-entry of dAs is
χs

|z|2 dzj ∧ dz̄j − χsd(|z|−2)dziz̄j − |z|−2dχsdziz̄j .

The (i, j) entry of Ωs = dAs + As ∧As is then

Ωij =
χs

|z|2 dzj ∧ dz̄j

︸ ︷︷ ︸
:=Uij

+ dziz̄j
( χ2

s

|z|4 ∂|z|2 + χsd(|z|−2) + |z|−2dχs

)

︸ ︷︷ ︸
:=Vij

We want to compute the top Chern form associated to
−→∇s)

cr(
−→∇s) =

(
i

2π

)r

detΩs.

If we denote by Sr the group of permutations of r-objects and by ε(ϕ) the signature of a
permutation ϕ ∈ Sr we deduce

detΩs =
∑

ϕ∈Sr

ε(ϕ)
r∏

i=1

Ωiϕ(i) =
∑

ϕ∈Sr

ε(ϕ)
r∏

i=1

(Uiϕ(i) + Viϕ(i)).

Observing that
Viϕ(i)Vjϕ(j) = 0, ∀i, j
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we conclude
r∏

i=1

(Uiϕ(i) + Viϕ(i)) =
r∏

i=1

Uiϕ(i) +
r∑

k=1

Vkϕ(k)

∏

i6=k

Uiϕ(i).

We analyze the above two terms separately. We have
r∏

i=1

Uiϕ(i) =
(
χs|z|−2

)r
r∏

i=1

dzi ∧ dz̄ϕ(i) = (−1)r(r−1)/2
(
χs|z|−2

)r
r∏

i=1

dzi ∧
r∏

i=1

dz̄ϕ(i)

= ε(ϕ)(−1)r(r−1)/2
(
χs|z|−2

)r
r∏

i=1

dzi ∧
r∏

i=1

dz̄i = ε(ϕ)
(
χs|z|−2

)r
r∏

i=1

dzi ∧ dz̄i.

Next,

Vkϕ(k)

∏

i6=k

Uiϕ(i) = dzkz̄ϕ(k)
(

χsdz̄ϕ(k) ∂|z|−2

∂z̄ϕ(k)
+ |z|−2dχs

) ∏

i6=k

Uiϕ(i)

= dzkz̄ϕ(k)
(
−χs

zϕ(k)

|z|4 dz̄ϕ(k) + |z|−2dχs

) ∏

i 6=k

Uiϕ(i)

=
(
−χs|zϕ(k)|2

|z|4 dzk ∧ dz̄ϕ(k) + |z|−2dzkz̄ϕ(k)dχs

) ∏

i6=k

Uiϕ(i)

= −|z
ϕ(k)|2
|z|2

∏

i

Uiϕ(i) + |z|−2dzkz̄ϕ(k)dχs

∏

i6=k

Uiϕ(i).

Now observe that

dχs = χ′sd|z|2, χ′s(t) =
dχs

dt
= s2χ′(s2t)

so that

|z|−2dzkz̄ϕ(k)dχs

∏

i6=k

Uiϕ(i) = |z|−2|zϕ(k)|2dzk ∧ dz̄ϕ(k) =
χ′s|zϕ(k)|2

χs

∏

i

Uiϕ(i)

Putting all the above together we deduce
r∑

k=1

Vkϕ(k)

∏

i 6=k

Uiϕ(i) = −
r∏

i=1

Uiϕ(i) +
χ′s|z|2

χs

r∏

i=1

Uiϕ(i)

and
r∏

i=1

Uiϕ(i) +
r∑

k=1

Vkϕ(k)

∏

i6=k

Uiϕ(i) = ε(ϕ)

(
χs

|z|2
)r−1

χ′s
r∏

i=1

dzi ∧ dz̄i.

Hence

det Ωs = r!

(
χs

|z|2
)r−1

χ′s
r∏

i=1

dzi ∧ dz̄i.

At this point we use the elementary identity
r∏

i=1

dzi ∧ dz̄i = (−2i)rdVr,
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where dVr denotes the Euclidean volume form on Cr. Hence

c1(
−→∇s) =

r!
πr

(
χs

|z|2
)r−1

χ′sdVr =
2r

σ2r−1
χr−1

s χ′s
dVr

|z|2r−2
,

where σ2r−1 denotes the volume of the unit sphere in Cr, σr = 2πr

(r−1)! . In spherical coordinates
we have

dVr = ρ2r−1dρdσ, ρ = |z|.
We deduce

c1(
−→∇s) = 2rχr−1

s χ′sρdρ
dσ

σ2r−1
= d(χs(ρ2))r dσ

σ2r−1
. (2.4)

Recall that we have a transgression formula

cr(
−→∇s0)− cr(

−→∇0) = dTs0

where the transgression terms Ts is defined by

Ts0 =

(
i

2π

)r ∫ s0

0
det(Ȧs,Ωs)ds,

with

Ȧs =
∂

∂s
As, det(A, Ωs) =

d

dt
|t=0 det(tA + Ωs).

Observe that
Ȧs = −χ̇s(|z|2)|z|−2dz ⊗ z∗,

where

χ̇s(t) =
dχs

ds
(t) =

d

ds
χ(s2t) = 2tsχ′(s2t).

On the other hand
d

dt
χs(t) = s2χ′(s2t) =⇒ χ̇s =

2t

s
χ′s(t).

Let Ξs = Ξs(t) be the matrix representing Ωs + tȦs. Its (i, j) entry is

Ξij(t) = Ωij − tχ̇s|z|−2dziz̄j = Uij + Wij ,

Wij = Vij + t
2χ′s
s

dziz̄j = dziz̄j
( χ2

s

|z|4 ∂|z|2 + χsd(|z|−2) + |z|−2dχs − tχ̇s|z|−2
)
.

detΞs(t) is a polynomial of degree ≤ r in t and we would like to compute its degree 1 part.
We have

det Ξs =
∑

ϕ∈Sr

ε(ϕ)
r∏

i=1

Ξiϕ(i)(t)

and the degree 1-term is obtained by computing the differential of this polynomial at t = 0.
We have

d

dt
|t=0 detΞs(t) = −χ̇s|z|−2

∑

ϕ∈Sr

ε(ϕ)

(
r∑

k=1

dzkz̄ϕ(k)
∏

i6=k

Ωiϕ(i)

)
.

We analyze each summand separately. We have

dzkz̄ϕ(k)
∏

i6=k

Ωiϕ(i) = dzkz̄ϕ(k)
∏

i 6=k

(
χs

|z|2 dzi ∧ dz̄ϕ(i) + dziz̄ϕ(i)
( χ2

s

|z|4 ∂|z|2 + dβs

))
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= dzkz̄ϕ(k)
∏

i 6=k

(
βsdzi ∧ dz̄ϕ(i) + dziz̄ϕ(i)dβs

)

= dzkz̄ϕ(k)
∏

i 6=k

(
−z̄ϕ(i)dβs ∧ dzi − βsdz̄ϕ(i) ∧ dzi

)
= dzkz̄ϕ(k)

∏

i6=k

dzi ∧ d(βsz̄
ϕ(i))

=
1
βs

dzkβsz̄
ϕ(k)

∏

i6=k

dzi ∧ d(βsz̄
ϕ(i)).

Set

wk
s = βsz̄

k = χs
z̄k

|z|2 ,

to conclude

dzkz̄ϕ(k)
∏

i6=k

Ωiϕ(i) =
1
βs

dzkwϕ(k)
s

∏

i 6=k

dzi ∧ dwϕ(i)
s = ε(ϕ)

1
βs

dzkwk
s

∏

i6=k

dzi ∧ dwi
s.

Hence
d

dt
|t=0 detΞs(t) = −r!

χ̇s

|z|2
r∑

k=1

dzkz̄k
∏

i 6=k

dzi ∧ dwi
s.

Integrating with respect to s and making the change in variables s 7→ χs so that dsχs = χ̇sds
we deduce

Ts0 = −r!

(
i

2π

)r

|z|−2
r∑

k=1

dzkz̄k
∏

i6=k

dzi ∧ dwi
s0

. (2.5)

Letting s0 →∞ we deduce

T∞ = −r!

(
i

2π

)r r∑

k=1

dzk(z̄k|z|−2)
∏

i6=k

dzi ∧ d(z̄i|z|−2).

Observe that the transgression T∞ is independent of the approximation mode. A standard
argument now shows that c1(

−→∇s) converges in the sense of currents to the current [0] ∈ Cr,
i.e.

lim
s→∞

∫

Cr

cr(
−→∇s)u(x)dV = u(0), ∀u ∈ Ω0

cpt(Cr). (2.6)

Moreover we have an equality of currents

[0] = [0]− cr(∇) = lim
s→∞ cr(

−→∇s)− cr(∇) = ∂T∞. (2.7)

The convergence of the transgression forms Ts to T∞ in the sense of currents follows from
the dominated convergence theorems and the fact that the coefficients of T∞ are integrable.

ut

Let us put the above computations in a different light. Consider the trivial vector bundle
Cr

pt over a point. We denote by π the natural projection. Then the trivial bundle of Cr over
Cr is naturally isomorphic to π∗Cr

pt. The section α(z) = z is then the tautological section of
π∗Cr

pt.
Suppose now that we start with the trivial vector bundle π : Cr

X → X over the smooth
manifold X. We equip it with the trivial metric h0 and trivial connection d. Now look at the
pullback bundle

E = π∗Cr
X → Cr

X .
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We continue to denote by d the pullback connection π∗d. Given local coordinates (xa) on X
we obtain local coordinates on the base of E, (zi, xa). Denote by α the tautological section
of E,

α(z, x) = z.

Then ~ds is given by the same equation (2.2)

~ds = d− χs

|z|2 dz ⊗ z∗

and the computations in Example 2.1 extend word for word to this more general case. The
zero set of the tautological section is naturally identified with the submanifold X ↪→ Cr

X .
Using the equality (2.6) and the argument in [9, Lemma 7.3.12] based on the integration
along the fibers of Cr

X → X we deduce that cr(~ds) converges in the sense of currents as
s ↗∞ to [X]. More precisely if dimX = n and η ∈ Ωn

cpt(Cr
X) then

∫

Cr
X

c1(~ds) ∧ η =
∫

X
π∗(cr(~ds) ∧ η,

where π∗ denotes the integration along the fibers of π. The equation (2.6) then implies

lim
s↗∞

∫

X
π∗(cr(~ds) ∧ η =

∫

X
η.

If now we start with an arbitrary metric connection ∇ = d + B on Cr
X and we continue to

denote by ∇ its pullback to E then using (2.2) we deduce
−→∇s = ~ds − χs

|z|2 Bz ⊗ z∗. (2.8)

Denote by
−→∇s,t the connection ~ds − t χs

|z|2 Bz ⊗ z∗ and denote by Ωs,t its curvature. The
transgression formula implies

cr(
−→∇s)− cr(~ds) = dTB, TB = (−2πi)−r

∫ 1

0
det

( χs

|z|2 Bz ⊗ z∗, Ωs,t

)
.

Observe that the space Ω•(Cr
X) of differential forms on the total space of Cr

X admits an
increasing filtration F kΩ• by the degree in the fiber variables. More rigorously

F−1Ω• = (0), η ∈ F kΩ• ⇐⇒ V η ∈ F k−1Ω•

for every vertical tangent vector V . We will use the notation degv η ≤ k for η ∈ F kΩ•.
Observe that

deg TB = 2r − 1, degv TB ≤ 2r − 2, degv dTB ≤ 2r − 1.

We deduce that for every η ∈ Ωn
cpt(Cr

X) we have

π∗( cr(
−→∇s) ∧ η ) = π∗( cr(~ds) ∧ η )

and we conclude that

lim
s↗∞

cr(
−→∇s) = [X], in the sense of currents.

Since the Chern-Weil forms are gauge invariant we can reduce the case of an arbitrary metric
on CX to the case of the trivial metric and arbitrary metric connection via a gauge transfor-
mation of CX .
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The transgression Ts = Tcr(
−→∇s,

−→∇0) converges in L1 as s ↗ ∞. This can be seen using
the transgression formula which implies that Ts has the form

Ts =
∑

`

P`(χs)ω`,

where P`(x) is a universal polynomial (independent of s), and ω` is a form (independent of χ,
of degree 2r−1, of vertical degree ≤ 2r−1 which is homogeneous of degree 0 with respect to
the action of the multiplicative group (0,∞) along the fibers of Cr

X . Putting together these
local considerations we obtain the following result.

Theorem 2.2. Suppose π : E → X is a complex vector bundle of rank r over the smooth
manifold X equipped with a hermitian metric h and compatible connection ∇. Continue to
denote by ∇ its pullback to π∗E → E. If we denote by α the tautological section of π∗E → E

and we set
−→∇s =

−→∇s,α then

cr(
−→∇0) = cr(∇) = 0 ∈ Ωr(E),

lim
s↗∞

cr(
−→∇s) = [X], as currents,

and the transgressions Ts = Tcr(
−→∇s,

−→∇0) converge as currents to a current T∞ = T∞(h,∇)
represented by a L1

loc form of degree 2r−1 on E, smooth outside the zero section and satisfying
the current equation

[X] = ∂T∞.

3. Universal compactification

Suppose X is a real analytic manifold, E → X is a real analytic vector bundle over X
equipped with a (real analytic) hermitian metric and compatible (real analytic) connection
∇. For a real analytic section α we form the approximate pushforward connection

−→∇s on E
using the algebraic approximation mode. In this case we have

χs(t) =
s2t

s2t + 1
, βs =

s2

s2t + 1
−→∇s =

−→∇s,α = ∇− (∇α)α−1
s = ∇− s2(∇α)α∗(s2αα∗ + 1)−1.

Observe that if we define
−→∇α :=

−→∇1,α = ∇− (∇α)α∗(αα∗ + 1)−1

then −→∇s =
−→∇sα.

We want to prove that the Chern forms cr(
−→∇s) converge in the sense of currents as s ↗ ∞

to a current cr(
−→∇∞,α), and the transgression forms Ts = Tcr(

−→∇s,
−→∇) converge in the sense

of currents to a current T∞ satisfying the current equation

cr(
−→∇∞,α)− cr(∇) = ∂T∞.

To achieve this it is convenient to regard α as section of Hom(C, E). For each x ∈ X the
graph of αx

γα(x) =
{
(λ, λα(x) ) ∈ Cx ⊕ Ex; λ ∈ Cx

}

is a line in Cx ⊕ Ex which we regard as a point in the projective space P(Cx ⊕ Ex). The
morphism α thus determines a section γα of P(C⊕E) and this section completely determines
α.
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A section ` of P(C⊕E) is the graph of a section α ∈ Hom(C, E) if and only if

`x ⊂ Ex = 0, ∀x ∈ X.

Equivalently, we can identify the total space of Hom(C, E) with the open subset P(C⊕E)0,
which is the complement of the divisor P(E) ⊂ P(C⊕E).

Denote by E the pullback of E to P(C⊕E) and by D the pullback of ∇ to E. Denote by
a the tautological section of E over Hom(C, E) ⊂ P(C⊕ E). We set

−→
Ds =

−→
Ds,a. Then

−→
Ds = D− s2(Da)a∗(s2aa∗ + 1)−1.

Denote by L the tautological line bundle over P(C⊕E) and by L⊥ its orthogonal complement
in C⊕E. Denote by P (resp. Q) the orthogonal projection onto L (resp. L⊥. Let us describe
P and Q over Hom(C, E) ⊂ P(C⊕E). Given a ∈ Hom(Cx, Ex) the associated line γa is

γa = {(λ, aλ); λ ∈ C}.
The orthogonal complement of γa is the graph of −a∗ : E → C. Given (t, v) ∈ Cx ⊕ Ex we
need to find u ∈ Ex and λ ∈ Cx such that

(λ, aλ) + (−a∗u, u) = (t, v) ⇐⇒
[

1 −a∗
a 1

]
·
[

λ
u

]
=

[
t
v

]
.

Set

Ua =
[

1 −a∗
a 1

]
, Va =

[
1 a∗
−a 1

]
.

Observe that VaUa = Diag(1 + a∗a, 1 + aa∗) so that[
(1 + a∗a)λ
(1 + aa∗)u

]
= Va

[
t
v

]
=

[
t + a∗v
−at + v

]
=⇒ λ =

1
1 + |a|2 (t + a∗v), v =

a

1 + |a|2 t,

so that we obtain the block decomposition

P =
[

(1 + |a|2)−1 (1 + |a|2)−1a∗
a(1 + |a|2)−1 (1 + |a|2)−1aa∗

]
. (3.1)

To find Q(t, v) we need to find u ∈ Ex and λ ∈ Cx such that

(−a∗u, u) + (λ, aλ) = (t, v) ⇐⇒ Ua

[
λ
u

]
=

[
t
v

]
.

Hence [
(1 + a∗a)λ
(1 + aa∗)u

]
= Va

[
t
v

]
=⇒ u = (1 + aa∗)−1(−at + v),

Q =
[

a∗(1 + aa∗)−1a −a∗(1 + aa∗)−1

−(1 + aa∗)−1a (1 + aa∗)−1

]
. (3.2)

The multiplicative group R>0 acts on C⊕E by s · (λ, u) = (λ, su). We obtain in this fashion
a flow Φs : P(C ⊕ E) → P(C ⊕ E) and we set Ls = Φ∗sL, L⊥s = Φ∗sL⊥. Over P(C ⊕ E)0 the
orthogonal projection Qs onto L⊥s is obtain from (3.2) by replacing a by sa. We obtain the
block description

Qs =
[

s2a∗Msa −sa∗Ms

−sMsa Ms

]
, Ms = (1 + s2aa∗)−1.

This projection restricts to a vector bundle morphism Rs : E → L⊥s which is an isomorphism
of vector bundles over P(C⊕ E)0. Consider the connection Ds on E defined by

Ds := R−1
s (QsD)Rs.



CHARACTERISTIC CURRENTS OF SINGULAR CONNECTIONS 17

More precisely, given a section u of E we have

Rsu =
[ −sa∗Msu

Msu

]
.

Hence

DDRsu =
[ −sd(a∗Msu)

D(Msu)

]
, QsDRs =


 ∗

s2Msad(a∗Msu) + MsD(Msu), R−1
s




We deduce

R−1
s QsDRsu = s2ad(a∗Msu) + D(Msu) = s2a(da∗)Msu + s2aa∗D(Msu) + D(Msu)

= s2a(Da∗)Msu + (1 + s2aa∗)Ms︸ ︷︷ ︸
1E

Du + (1 + s2aa∗)(DMs)u

= Du + s2a(da∗)Msu + (M−1
s DMs)u

Differentiating the equality M−1
s Ms = 1E we deduce

(M−1
s DMs) = −(DM−1

s )Ms = −s2(D(aa∗) )Ms = −s2(Da)a∗Ms − s∗a(Da∗)Ms

Putting all the above together we obtain the identity

Ds = R−1
s QsDRsu = Du− s2(Da)a∗Msu =

−→
Dsu. (3.3)

If we denote by DL⊥ = QD the natural connection on L⊥ induced by D then

QsD = Φ∗sDL⊥

and we thus we can rewrite (3.3) as
−→
Ds = R−1

s Φ∗sDL⊥Rs, ∀s ≥ 0. (3.4)

We have thus obtained the following result.

Lemma 3.1 (Universal Desingularization).

cr(
−→
Ds) = cr(Φ∗sDL⊥) = Φ∗scr(DL⊥). (3.5)

ut

We want to investigate the existence of the limit lims→∞Φ∗sω where ω is a fixed differential
form on P(C⊗E). We will follow the very elegant approach developed by Harvey and Lawson
in [6]. This requires a small digression.

Suppose F : Xn0
0 → Xn1

1 is a smooth map between smooth oriented manifolds. The
pullback by F is a linear map

F ∗ : Ωk(X1) → Ωk(X0).

It is convenient to regard it as a linear map

F# : Ωk(X1) → Dn0−k(X0), α 7→ (F ∗α) ∩ [X0].

We can rewrite this map as follows. Consider the graph of F−1

Γ∗F =
{

(x1, x0) ∈ X1 ×X0; x1 = F (x0)
}
.

Then Γ∗F defines an integral current [ΓF ] ∈ Dn0(X1 × X0). For i = 0, 1 we denote by
πi : X0 ×X1 → Xi the canonical projection. We have the following result.
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Lemma 3.2.
F#α = (π0)∗

(
(π∗1α) ∩ [Γ∗F ]

)
, ∀α ∈ Ωk(X1).

Proof For β ∈ Ωn0−k(X0) we have
〈
(π0)∗

(
(π∗1α) ∩ [Γ∗F ]

)
, β

〉
=

〈
(π∗1α) ∩ [Γ∗F ], π∗0β

〉

=
〈
[Γ∗F ], π∗1α ∧ π∗0β

〉
=

∫

X0

(F × 1X0)
∗(π∗1α ∧ π∗0β

=
∫

X0

F ∗α ∧ β =
〈
(F ∗α) ∩ [X0], β

〉
.

ut

This suggest the following more general construction. Suppose that we are given a roof,
i.e a diagram of the form

Y

X1 X0

�
��
f0

[
[]f1

,

where X0, X1, Y are oriented smooth manifolds, and f0, f1 are smooth maps. Assume K is
a k-dimensional kernel for this roof, i.e. a k-dimensional current in Y such that f0 is proper
over suppK. Then we obtain a linear map

K# : Ωm(X1) → Dk−m(X0), K#α = (f0)∗
(
(f∗1 α) ∩K

)
.

The result in Lemma 3.2 can be rephrased as the equality

F# = [Γ∗F ]#.

We have the following homotopy formula

(∂K)#α = K#(dα) + (−1)m∂K]α, ∀α ∈ Ωm(X1). (3.6)

Indeed,

K#(dα) = (f0)∗
(
d(f∗1 α) ∩K

) (1.1)
= (f0)∗

(
f∗1 α ∩ ∂K − (−1)m∂(f∗1 α ∩K)

)

= (∂K)#α− (−1)m∂K#α.

We can rewrite this in operator form

(∂K)# = K# ◦ d + (−1)m∂ ◦K#. (3.7)

Observe that if we have a family of smooth maps Fs : X0 → X1, s ∈ (0,∞) such that Γ∗Fs

converges as s → ∞ to a current Γ∗∞ in X1 ×X0 such that π0 is proper over suppΓ∗∞ then
for every k form α on X1 the pullbacks F ∗

s α converge to the current (Γ∗∞)#α.
Suppose we are given a smooth map

F : [0,∞)×X0 → X1, (s, x0) 7→ Fs(x0).

For every s > 0 consider the current

Ts :=
{
(x1, t, x0) ∈ X1 × R×X0; x1 = Ft(x0), 0 ≤ t ≤ s

}
.

We set
∂sTs := [s]× Γ∗Fs

, ∂0Ts := [0]× Γ∗F0
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so that
∂Ts = ∂sTs − ∂0Ts.

We obtain a roof
Y = X1 × R×X0

X1 X0

AAAAAD
π1






�
π0

where πi denote the natural projections. Using Ts as kernel we deduce that for every k-form
α on X1 we have

F#
s α− F#

0 α = (∂Ts)#α
(3.6)
= (Ts)#(dα) + (−1)k∂(Ts)#α.

The operator (Ts)# : Ωk(X1) → Dn0+1−k(X0) is the pullback by π1 followed by the integration
along the fibers of Ts

π1−→ X1. In particular, we deduce that (Ts)# maps smooth k-forms on
X1 to smooth (k − 1)-forms on X0. Since on (k − 1)-forms (viewed as (n0 − k + 1)-currents)
we have ∂[α] = (−1)k[dα] (see (1.2)) we deduce

F ∗
s α− F ∗

0 α = (Ts)#dα + d(Ts)#α. (3.8)

Denote by R̄ ∼= S1 the one-point compactification of R. We set Ȳ = X1 × R̄ ×X0 and thus
we can view the currents Ts as currents in Ȳ .

Definition 3.3. We say that F : [0,∞)×X0 → X1 has finite volume if there exists a metric
τ on R, a metric g0 on X0 and a metric g1 on X1 such that the volume of

T∞ := Γ∗F ⊂ X1 × R̄×X0

with respect to the metric g1 ⊕ τ ⊕ g0 is finite.
ut

Along [0,∞) ⊂ R̄ the metric τ can be expressed as τ = w2(s)ds2. The above volume of
Γ∗F is described by the improper integral

∫ ∞

0

(∫

X0

(w2 + |F ′
s|2g1

)1/2 det
(
1+ (Dx0Fs)∗DFs

)1/2
dVg0(x0)

)
ds,

where for every x0 ∈ X0 we denoted by (Dx0Fs)∗ the adjoint of Dx0F : Tx0X0 → TFs(x0)X1

with respect to the metrics g0, g1. Note that the finiteness of this integral is independent of
the metric τ on R̄.

If we identify S1 with [−1, 1] and [0,∞) ⊂ R̄ with the subset [0, 1) via the map

[0,∞) 3 s 7→ χ =
s

1 + s
,

then the finite volume condition translates to
∫ ∞

0

(∫

X0

((1 + s)−2 + |F ′
s|2g1

)1/2 det
(
1+ (Dx0Fs)∗DFs

)1/2
dVg0(x0)

)
ds < ∞

for some metrics g0, g1 on X0 and X1. Using a smooth proper function ρ : X0 → R we deduce
the following.
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Lemma 3.4. The finite volume condition is equivalent to
∫ ∞

0

(∫

U0

(
(1 + s)−2 + |F ′

s|2g1

)1/2 det
(
1+ (Dx0Fs)∗DFs

)1/2
dVg0(x0)

)
ds < ∞, (3.9)

for any precompact open subset U0 ⊂ X0 and any metrics gi on Xi.
ut

The currents Ts in Y induce currents T̄s in Ȳ . The finite volume condition implies that
Γ∗F defines a current in T̄∞ in Ȳ .

Since F has finite volume then T̄s → T̄∞ in the mass norm. In particular T̄s converges
weakly to T̄∞ and

∂sTs = T̄s + ∂0T̄s ⇀ ∂∞T̄∞ = ∂0T̄∞ + T̄∞.

If π0 : Ȳ → X0 is proper over supp T̄∞ then for every smooth k-form α on X1 the pullbacks
F ∗

s α converge as currents as s ↗ ∞ to the current F ∗∞α := (∂∞T∞)#α. Additionally, we
have the equality of currents

F ∗
∞α− F ∗

0 α = (T̄∞)#dα + (−1)k∂(T̄∞)#α.

Proposition 3.5. If F is a real analytic map and it is uniformly locally bounded, i.e. for
every compact subset K0 ⊂ X0 there exists a compact set K1 ⊂ X1 such that

F ([0,∞)×K0) ⊂ K1,

then F has finite volume and the natural projection π0 : Ȳ → X0 is proper over the closure
of ΓF in Ȳ .

Proof The closure of Γ∗F in X1 × R̄×X0 is a semianalytic set, and thus according to [2,
§3.4] or [4, §2] it has locally finite volume. The uniform boundedness condition now implies
the finite volume condition on F .

ut

Remark 3.6. The above considerations admit the following immediate generalizations. Sup-
pose F → E

π³ B is a real analytic, locally trivial fiber bundle and us : B → E, s ∈ [0∞) is
a smooth family of sections. The graph of a section u : B → E is then the submanifold

Γ∗u = u(B) ⊂ E.

The pullback by u is defined by the roof

E

E B

[
[]π�

��
1E

,

with kernel Γ∗u. The formulation of the finite volume condition is similar and is left to the
reader.

ut

In our original situation we have

X0 = X1 = P(C⊕ E) and Fs(λ, u) = Φs[λ, u] = [λ, su].

The map Φ : [0,∞) × P(C ⊕ E) → P(C ⊕ E) is clearly real analytic. Since the fibers of
P(C⊕ E) → X are compact we deduce that this map is also locally uniformly bounded. As
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explained by Fulton in [3, Rem.5.1.1, Ex.18.1.6], the asymptotics of the flow Φs as s →∞ are
intimately related to the deformation to the normal cone construction in algebraic geometry.

We study first the special case when the base X of E is a point. Thus we need to analyze
the closure of {

( [λ, su], s, [λ, u] ); s ∈ [0,∞), [λ, u] ∈ P(C⊕E)
}

in P(C ⊕ E) × R̄ × P(C ⊕ E). Near ∞ ∈ R̄ we choose a local coordinate t = 1/s so that in
this coordinate we have

Φs[λ, u] = [λ, t−1u].
We need to study the closure of

Γ∗Φ =
{

( [tλ, u], t, [λ, u] ); t ∈ (0, 1], [λ, u] ∈ P(C⊕ E)
}

in P(C ⊕ E) × [0, 1] × P(C ⊕ E). A point P = ([µ0, v0], 0, [λ0, u0]), |λ0| + |u0| = 1 is in this
closure if and only if there exist real analytic maps

t : [0, 1] → [0, 1], t(x) = t0x
a, t0 6= 0,

λ : [0, 1] → C, λ(x) = λ0 + λ̇0x
b,

u : [0, 1] → E, u(x) = u0 + u̇0x
c a, b, c ∈ Z≥0, a 6= 0, t0, λ̇0, u̇0 6= 0,

such that,
lim
x↘0

[t0λ0x
a + t0λ̇0x

a+b, u0 + u̇0x
c] → [µ0, v0].

We distinguish several cases.
• u0, λ0 6= 0. In this case µ0 = 0, v0 = u0.
• λ0 = 0, u0 6= 0. In this case we also have µ0 = 0, v0 = u0.
• λ0 6= 0, u0 = 0. In this case we have

[µ0, v0] = lim
x↘0

[t0λ0x
a + t0λ̇0x

a+b, u̇0x
c].

If c = a then
[µ0, v0] = [t0λ0, u̇0],

if c < a, then
[µ0, v0] = [t0λ0, u̇0] = [0, u̇0]

if c > a, then
[µ0, v0] = [t0λ0, 0] = [1, 0].

Hence {
([0, u0], [λ0, u0]), u0 6= 0} ∪ {

([s0, u̇0], [1, 0])
} ⊂ ∂∞Γ∗Φ.

We deduce that ∂∞Γ∗Φ is supported by the a variety Γ∗Φ∞ = P(C⊕E)× P(C⊕E) which has
two irreducible components H, B, where

H = P(C⊕E)× {[1, 0]},
and B is the closure in P(C⊕ E)× P(C⊕E) of Γ∗P , where

P : P(C⊕ E) \ {[1, 0]} → P(E) ⊂ P(C⊕ E)

denotes the projection of center [1, 0] onto P(E). Note that B is biholomorphic to the blowup
of P(C⊕E) at [1, 0]. The two components intersect along the common divisor P(E)×{[1, 0]}.
The deformation Γ∗Φs

→ Γ∗Φ∞ is similar in spirit with the deformation depicted in Figure 2.
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Figure 2. Deforming the graph of the identity map Φ1 : P(C⊕ E) → P(C⊕ E)

When X is arbitrary, we set Y = P(C⊕E) and consider complex blowup M = BlX(Y ×C)
of Y × C along the zero section3

X ↪→ P(C⊕ E)× C, x 7−→ ([1, 0], 0) ∈ P(C⊕ E)× C.

The projection Y × C → C defines a real analytic function t : Y × C → C and thus induces
a real analytic function t̃ : M → C. Then Γ∗Φ1/t

converge as t → 0 to a current supported by

the ”divisor” {t̃ = 0}. This divisor has two irreducible components, H and B.
The component H ∼= P(C ⊕ E) is the exceptional divisor of the blowup of C ⊕ E along

{0} ×X. The component B is the blow-up BlXY of Y along X ↪→ P(C⊕ E), embedded as
the zero section. These two components share in common a P(E). Let us point out that the
total space of the deformation of the zero section embedding X ↪→ Y to the normal cone is
precisely M0 = M \B, (see [3, §5.1]).

If now α is a real analytic section of E it induces a real analytic section α of P(C⊕E) and
we have the tautological equalities

E = α∗L⊥, α = α∗(a),
−→∇s = α∗(

−→
Ds).

Then
cr(
−→∇s) = α∗cr(

−→
Ds)

(3.5)
= α∗Φ∗scr(DL⊥) = α∗scr(DL⊥),

where αs = Φs ◦ α = sα. Since the family of sections sα is real analytic and the fibers of
P(C ⊕ E) → X are compact, the conditions of Proposition 3.5 are satisfied and we deduce
that cr(

−→∇s) converge as currents as s ↗∞.
Imitating [1, Prop.IV. 22], we will refer to the closure of the set {(t, α(x)); x ∈ X} ⊂ C∗×E

in P(C ⊕ E) as the blowup of C × X along Z = {0} × α−1(0).4 We denote this blowup by
BlZ(C×X). The part of this blow-up sitting above {0}×X determines the limit cr(

−→∇∞,α).
The part of the blowup above {0} ×X is the total transform X̂ of {0} ×X in BlZ(C×X).
This consists of two components: the exceptional divisor EZ of the blowup BlZ(C×X), and
the strict transform X̄ of {0} ×X. If α is a nondegenerate section then EZ = P(C ⊕ E) |Z
and X̄ = BlZ({0} ×X).

To prove that the Chern-Weil transgressions Tcr(
−→∇s,

−→∇0) converge as currents as s ↗∞
we need to reformulate the construction of this object in the language of kernels.

Suppose At, s ∈ [0, s] is a smooth family of connections on the vector bundle E → X.
They determine a connection Â on the pullback Ê of E to [0, s] → X. The Chern-Weil
transgression Tcr(As, A0) is defined as the form on X obtained by integrating the form cr(Â)

3The normal bundle of this zero section is a complex bundle.
4If all objects are holomorphic this is indeed the blowup as defined in [1, IV.24].
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along the fibers of [0, s] × X → X. Suppose now that Φt is a smooth 1-parameter family
of smooth maps X → X such that Φ0 = 1X , and A is connection on E. We obtain a 1-
parameter family of connections At = Φ∗t A on A and the associated connection Â coincides
with Φ̂∗A, where

Φ̂ : [0, s]×X → X, Φ̂(t, x) = Φt(x).
If we consider the roof

[0, s]×X ×X

X X

'
'
'')
r[[[[̂

` , `(t, x1, x2) = x1, r(t, x1, x2) = x2

with kernel Ts = Γ∗
Φ̂

then we deduce that

Tcr(As, A0) = (Ts)#cr(A0).

The convergence of the transgression forms Tcr(
−→∇s,

−→∇0) now follows again from the conver-
gence of the kernels Ts. The current cr(

−→∇∞) is defined by

〈cr(
−→∇∞), η〉 =

∫

X̂
cr(DL⊥) ∧ π∗η, ∀η ∈ Ω2r

cpt(X).

When α is a nondegenerate section∫

X̂
cr(DL⊥) ∧ π∗η =

∫

P(C⊕E)|Z
cr(DL⊥) ∧ π∗η

︸ ︷︷ ︸
A

+
∫

X̄
cr(DL⊥) ∧ π∗η

︸ ︷︷ ︸
B

.

Over X \ Z the strict transform can be identified with the graph of the section

X \ Z 7→ [0, α(x)] ⊂ P(E) ⊂ P(C⊕E).

Note also that over X \ Z we have

L⊥ |P(E)= π∗(E) and (π∗∇) |P(E)∼ DL⊥ ,

where ∼ denotes gauge equivalence. Hence cr(DL⊥) |X̄= 0 so that B = 0. On the other hand

A =
∫

P(CZ⊕E|Z)
cr(DL⊥) ∧ π∗η =

∫

Z
π∗

(
cr(DL⊥) ∧ π∗η

)

(use projection formula)

=
∫

Z

(
π∗cr(DL⊥)

) ∧ η =
∫

Z
η.
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