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Localization Formulae in odd K-theory

Abstract

by

Florentiu Daniel Cibotaru

We describe a class of real Banach manifolds, which clagsifi. These manifolds
are Grassmannians of (hermitian) lagrangian subspacexcamalex Hilbert space.
Certain finite codimensional real subvarieties describgéhbidence relations define
geometric representatives for the generators of the cologyoings of these classify-
ing spaces. Any family of self-adjoint, Fredholm operatpasametrized by a closed
manifold comes with a map to one of these spaces. We use thbhabest varieties to
describe the Poincare duals of the pull-backs to the pasrapéce of the cohomology

ring generators. The class corresponding to the first georasathe spectral flow.
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CHAPTER 1

INTRODUCTION

In this disertation we answer a question posed by Isadorge®in the mid 80’s
concerning the complex odd K-theoretic funcfor®.

The classifying spaces fdt —! have various homotopically equivalent realizations.
There is the classical description as the unitary groipo) and there is the Atiyah-
Singer realization as the spa8ered. (H ), a certain component of the spacéofinded
self-adjoint, Fredholm operators on a separable complébeHispace .

The cohomology rind?* (U (c0), Z) is an exterior algebra with canonical generators
(xr)rk>1, degx, = 2k — 1. The degree one generator has a very useful geometric
interpretation. IfA : S' — BFred.(H) is a continuous loop of Fredholm operators
then the Poincare dual of the clagsz, € H!'(S',7Z) can be represented by a cycle
supported on the degeneracy lodése S' | Ker Ay # 0}. The integer(,, A*x, is
called the spectral flow of the family and, under generic aors, can be described as
a count with sign of the zero eigenvalues of the family.

Singer asked for a similar description of the classelSx;, where
A: M — BFred,(H) is a continuous map of self-adjoint Fredholm operators. eMor
over it is desirable to design an approach that deals withlizsyof unbounded-red-
holm operators directly without passing to the associatathded operators via func-

tional calculus.



Our approach to this problem is based on symplectic teclesignd has the added
bonus that it provides an elegant way of dealing with unbedraperators as well. The
dissertation is roughly divided in three parts. In the fiesttpve describe several smooth
models for the classifying space af ! while in the second part we describe various
finite codimensional, cooriented stratified spaces thardene all the cohomology
classes corresponding to products of the canonical gemsrat

In order to describe the main results we introduce a bit ohieology.

On the direct sum of a complex Hilbert space with itsélf= H @ H, there is a

0 1 .
natural extra complex structurd: = . A lagrangian subspade C H is a
-1 0

subspace which is taken byisomorphically to its orthogonal complement], = L.
For example the graph of every (closed) self-adjoint operdiounded or unbounded
is a lagrangian.

The Grassmannian of such spaces, denéteg| 77), can be turned into eeal Ba-
nach manifold. In fact the space of bounded, self-adjoirgrafors onH which we

denoted bysym(H) embedds as an open dense subsétagfvia the graph map:

A~

Sym(H)> A—Ty4 € Lag(H), T'y:={(x,Az)|x € H}

On the other han8ym(H ) embedds into the space of unitary operatbiig ) via
the Cayley transform. Our first result, which is the geneedion to infinite dimensions
of a result by Arnold §] says thatlag is diffeomorphic withU(H) and the diffeo-
morphism is constructed by extending the Cayley transfarithé wholeLag. (see
Theorem 2.3.1 for details)

By a famous result of Kuipet/(H) and hencé ag is contractible. Nevertheless an

open subset of this spaéeg, has the homotopy type of the inductive limit of unitary



groups, thus classifyingy —!. By definition,Lag™ is the set of all lagrangians which are
Fredholm pairs with a fixed one, namely the vertical spate,,= 0 ® H. It turns out
that, insideCag ™, there is a whole zoo of classifying spacésg, which correspond
via the mentioned diffeomorphism to the Palais unitary geoli;(H ), modelled on
two-sided, symmetrically normed idedls Examples of such ideals are the Schatten
class operators. The reader can find an intrinsic charaatem ofLag, in section 2.2.

The main technique used in proving thatg™ is a classifying space fok ! is
(linear) symplectic reductionMore precisely, for every closed subspatec H~ let
Hyy be the orthogonal complement 6f @ JIV in H. The symplectic reduction is a
map:

R : Lag™ — Lag Hy

which is continuous on a certain open subset denéted’ of Lag™. Itis, in fact,
diffeomorphic with a vector bundle ovérag Hy,. To investigate the homotopy type of

Lag™ we take a complete, decreasing flagrof

H =Wy,oW 1 DWyD...

and this flag determines a filtration 6fig~ by open subset8ag' ¢ Lag"+'. Each

Lag"

is homotopy equivalent witibag Hy,, hence withU(:) by the finite version
of Arnold’s theorem. The limit when— > oo of Lag"?, which is Lag™, has the
homotopy type ot/(c0). (see Section 2.5 and Theor&m.14)

The Atiyah-Singer spacé3Fred, embedds inCag™, simply by associating to an

operator itsswitchedgraph.

{(v,Av)|ve H} graph — A — {(Av,v)|ve H} switched graph



We prove that this map is a weak homotopy equivalence. Inviig the classical
index, as defined by Atiyah and Singer of a family of self-aatjoFredholm operators
is simply the homotopy class of the family of switched graphsis definition extends
to the unbounded case.

In the second part of this paper we build geometric reprasigas for the generators
of the cohomology ring ofag™ which we identify with some "canonically” defined
cohomology classes dfag™ . These canonical classes are described as follows. The

natural inclusions, : U(n) — Lag™ induce isomorphisms in cohomology:

H*(Lag™) — H"(U(n)),Vk < 2n —1

The cohomology ring of/(n) is an exterior algebra ovet with n-generatorse;(n).
These generators are obtained by transgressing the Classesl;(n) of the universal
rankn bundle overS' A U(n). Therefore there existniquecohomology classes; €
H?*~!(Lag™) that pull-back via the inclusion mapsto these generators(n).

The geometrical representatives of the classesre build from some finite codi-
mensional stratified spaces Hhg~. These spaces are the analogues of the Schubert
varieties on the usual finite Grassmannian with the crudftdrénce that the strata are
real manifolds.

Here is briefly the construction. The set

Zk = {L | dim L N sz—l = 1}

is a cooriented, codimensidlk — 1 submanifold ofLag™. Its set of singularities,

07, .= 7}, \ Z, has codimension bigger thak + 1 in the ambient space. This implies



that
H*(Lag™) ~ H*(Lag™ \0Z;)

is an isomorphism. The submanifolf), is closed inLag™ \0Z;. The cohomology
class, denotefZ;, wy|, defined byZ;, with the natural coorientatiop, is the image of

1 via the composition of maps:

HO(Zk) ~ H%_I(Lag_ \OZ, Lag™ \Z) — H%_I(Lag_ \0Zy) ~ H%_I(Lag_)

Above, the first map is the Thom isomorphism combined withsean and the second
and the third map are the natural pull-backs. We have theviirig result (for details
see Theorem 3.2.14)

Theorem A The geometric cohomology clags;,w;] coincides with the canonical

classz;,.

Suppose now that/ is a closed manifold and suppose one has a smooth family
of self-adjoint, Fredholm operators parametrizedMy Then taking their (switched)
graphs one gets a smooth magp M — Lag™ . In transversal conditions, made precise
in Section 3.4, the preimage sgt!(7,) is a stratified space with no singularities in
codimension one with both a coorientation and an oriematio the top stratum. We
denote by[f~'(Z}), f*wi]* the cohomology class and respectivefy ' (Z},), f*wel«

the Borel-Moore homology class it determines. We have theviing result.

Localization TheoremLet f : M — Lag™ be the map determined by a smooth family

of self-adjoint operators. Then

fr(@n) = [f 7 (Ze), frwn], (a)



PD f*(zx) = [f(Z1), frwils, (a")

wherePD denotes Poincdr duality. ]

In the case whe/ has complementary dimension 1, i.e. dim M = 2k — 1,
then the preimage consists of a bunch of points with sign® rélevance of these
cycles for index theory is that they represent up to a fixedstaori the Poincaré dual
of the2k — 1 th component of the cohomological index (see Section 4.3Tdredrem
4.4.5). In the case wheh/ = S%~! then the degree of the-cycle,i.e. the sum of
the local intersection numbers determines completely cmedtopy type of the mayp.
This number is always divisible by — 1)! by Bott divisibility theorem. (see Theorem
4.3.3).

We devote the last part of this paper to find formulae for tlallmntersection num-
bers in terms of the differentials of the family of operato@ne of the difficulties in
doing intersection theory with the Schubert varieties wecdbed is finding a useful
characterization of their normal bundle. In order to acéigws we used a general form
of reduction. (see section 3.3). Arnold’s theorem comesgoue in some key technical
points in achieving this description. (see Proposition1¥ B

In the casé = 1 we recover the classical description of the spectral flow.AFp 2
as one might expect the local intersection numbers, urti&espectral flow depend not
only on the variation of the eigenvalues but also on the tiariaf the eigenspaces. An
example in that direction is Proposition 4.4.14.

In the last chapter of this dissertation we also discuss \whatans for a family
of operators to be smooth. We use our criterion of diffeadlity on the universal
family of self-adjoint elliptic operators, parameterizegdthe group/(N). This family

associates to a unitary matrix, the Dirac operator ondNevector bundle on a circle



obtained from the unit interval by gluing the end vector gsacia the corresponding
unitary operator. Doing symplectic reduction on this exmye get that the associated
family of graphs is homotopy equivalent with the inclusiofV) — Lag™ reproving
a result that first appeared i%4]. This universal family is key to the proof that Atiyah-
Singer classifying space is homotopy equivalent Witty .

In an Appendix we include a collection of known facts that veeished important
for understanding how one builds cohomology classes outatifeed spaces endowed

with a coorientation and having no singularities in codisien].



CHAPTER 2

CLASSIFYING SPACES FOR ODIKX-THEORY

In this chapter we will introduce our main objects of stude$e are various real
Banach manifolds classifying fak—* that can be described either as subsets of the
unitary group of a complex Hilbert space or as subsets oftfi@dte Lagrangian Grass-
mannian determined by the same Hilbert space. The conndatitveen the two dif-
ferent types of classifying spaces is provided by a gereaiadin to infinite dimensions
of a theorem of Arnold. Symplectic reduction turns out to besaful technique that

reduces many of our questions to their finite dimensionahtarpart.

2.1 The infinite unitary group

This section is designed to recall some well-known factsualspaces of unitary
operators and to introduce notation and terminology thiteiused throughout.
The space oboundedoperators on a fixed, complex, separable Hilbert sgade

denoted byB or B(H).

The group ofunitary operators

U:={UeB|UU=UU=1I}CB

has the structure of a Banach manifold modelled on the sgasefeadjoint, bounded



operators

Sym:={AeB|A=A"}.

The charts are given by the Cayley transforms. For a fiXgd U the set

Av, ={U e U, 1 +UU;" invertible}

is open and the map
USU —i(1-UUHNA+UU N € Sym

is a homeomorphism. In fadt] is a Banach-Lie group since multiplication and inverse

(actually adjoint) are obviously differentiable.

Definition 2.1.1. The open setd;, together with the Cayley transform is called the

Arnold chart aroundU,.

A famous result of Kuiper,45], says that the group of unitary operators on a Hilbert
space has trivial topology. Nevertheless, certain sulespaie more interesting.

We recall the following

Definition 2.1.2. A bounded operatdr’ : H — H is calledFredholmif the dimension
of both its kernel and cokernel are finite dimensional spacesf its image is a closed
subspace ofi.

An densely defined operattr : D(T') C H — H is Fredholm if it is closed,i.e.
the graph is closed I & H, its image is closed and its kernel and cokernel are finite

dimensional spaces.
Let us now introduce the following subset of the group of amjitoperators o/

U, :={U:H— H|UU*=U*U =1, 1+ U is Fredholm}.



Another way of saying that + U is Fredholm is—1 ¢ o..(U), that is—1 is not an
essential spectral value bt We will see in the next sections tHat ; is an open subset
of the space of unitary operatdisthat has the homotopy type 6f(co). This space

also appears irgj.

Remark 2.1.3. Notice thatll_; is not a group. Indeed, i is a unitary operator such

that+1 are not among its spectral values then sei§* and1 + U(—U*) = 0.

Definition 2.1.4. Let X be the ideal of compact operators®and let] C X be a
non-trivial, two-sided, subideal with a topology at leass&rong as the norm topology.
The Palais unitary groupU, of typeJ is the subgroup ofl consisting of operators of

typeU = I + T wherel is the identity operator andl € J.

Let us note that any two-sided ideali€losed.

The topology orily is the norm topology, the topology diy is the topology in-
duced byJ on its subset(; — I.
Palais B3] showed that the Palais unitary groups are classifying ftof &-theory,

that is to say, they are homotopy equivalent with
U(oo) :=lmU(n),

whereU(n) is the unitary group orC". We will reprove his result, using different
methods in sectio.5.

The two-sided ideals have been classified by Calkiri iij. [For a quick description
of the relevant aspects of the theory a good referenceds We will be content to

describe the ideals of Schatten class operators; seezfso [

Definition 2.1.5. Fix a numbep, p € [1, cc]. A compact operatoK is of theSchatten

10



classp if Tr(K*K)P < oo. An operator of Schatten clags= oo is just a compact

operator.

We will use the notatiofch? for the set of all operators of Schatten class [1, oo].

These are naturally Banach spaces with the norm:
15|, = (Te(K*K)P)V/P for p € [1, 00)

or the operator norm in the cage= co. Let us notice that for a compact operator the
following relation about their spectrais trué/K* K) = o( K K*). This is because both
have0 in their spectrum and it is easy to see that an eigenvaluig*foris an eigenvalue
for T'T* as well and vice-versa. It follows that the spagels’( H ) arex-invariant. Also

we have the following important inequality .
ITE], < ITllpu | K.,  whenever p=" < pi' +py!

which holds for allp;, p; € [1, 00|, K € Sch”? andT € Sch”* and moreover it holds
for ' € B in which case the normj - ||, is the operator norm. This turi¥h?” into a
closed * subideal ofK. It is also saying that the Schatten ideals increase with

The casep = 1 of trace class operators apd-= 2 of Hilbert-Schmidt operators are
most likely the more familiar examples. The spagds’( H) should be taken as abstract
analogues of the usuaf spaces. Indeed one other similar feature is the followirgg. L

p=Fgforl <p< oo, 1 = co andso = 1. Then the following duality relations
p

hold:

(Sch”)* = Sch? for 1 < p < oo
(Sch™)* = (X)* = Sch*
(Sch')* = B
The Palais groups are all Banach-Lie groups modelled ongheesof self-adjoint

operators.

11



Symschp = {A - SChp | A = A*}

Remark 2.1.6. We havell; C U_; for every ideall since the only essential spectral

valueofU = I + K is 1.

2.2 The complex Lagrangian Grassmannian

Our main object of study is the space of all lagrangians onlagtispace, endowed

with an extra complex structure. We will give first the mairidigons.

Definition 2.2.1. Let H be a separable, complex Hilbert space anddet H @ H.
We denote byl the spacdd @ 0 and call it thehorizontal subspacend by H ~ the

space) & H and call it thevertical subspace

Let JH — H be the unitary operator which has the block decomposititative

H=HaoH
0 1
J =
-1 0
The essential properties dfareJ = —J* = —J~! so we can think off as a complex

structure onH.

Definition 2.2.2. A complex subspacé c H is calledlagrangianif JL = L*.
The (hermitian)Lagrangian Grassmannian Lag(ﬁl, J) or simply Lag is the set

of all lagrangian subspaces Hf.

Remark 2.2.3. Notice that/L = L+ implies thatL is closed sincé.* is always closed

and.J is unitary.

12



Remark 2.2.4. The notion of Lagrangian Grassmannian of a complex spaeadlr
appears in the literature for example i3] . We caution the reader that the notions
which we use here is not the same as the one used there. Théestimgtructure that
underlines the definition of a lagrangian in our cask;), -) is skew symmetric in the
hermitian sense, that ig/(z),y) = —(J(y), z). As we will see, outag is only a real

manifold.

Example 2.2.5. i) Each of the space&* is a lagrangian subspace add/* =

HT.

i) Given a self-adjoint operator, bounded or unboundedD(T) C H — H, its
graph:
Ir:={(v,Tv)|ve D)}

and itsswitched graph

I = {(Tw,w)|we D(T)}

are both lagrangian subspacedin

The Lagrangian Grassmannian is naturally endowed with alégy as follows.

A

To each lagrangia, we associate the orthogonal projectiéy € B(H) such that

Ran P, = L. The condition thaL is a lagrangian translates into the obvious relation

JP, =Py J = PrJ=(1—P)J

If we let R;, := 2P, — 1 be the reflection il then L is lagrangian if and only if

JRp, = —RpJ

13



It is easy to see that iR is an orthogonal reflection that anticommutes witlthen

Ker (I — R)) is a lagrangian subspace. In other words we get a bijection

Lag — {ReB(H)|R*=1, R=R*, RJ = —JR}

and soLag inherits a topology as a subsetBfH).

The following lemma is well- known.

Lemma 2.2.6. (a) If L is a lagrangian andS € Sym (L) is a self-adjoint operator

then the graph of/ S : L — L* is a lagrangian as well.

(b) For afixed lagrangian’., if L, is both lagrangian and the graph of an operator

T : L — L* thenT has to be of the typgS with S € Sym(L) self-adjoint.

Proof: (a) The graph of/S is closed since/S is bounded. Then for every € L one
has

J(v, JSv) = J(v+ JSv) = Ju+ SJ(Jv) = SJw+w = (SJw,w)

wherew = Jv € L*. Itis easy to see that

{(v,JSv), (SJw,w)) =0, Yve& L, welL*

HenceJI' ;s L I';s. In order to finish the proof one has to show that

JUys+T,6=H

which comes down to showing that for evéey b) € L & L+ = H the system

v+SJw = a
JSv+w = b

14



has a solutiorfv, w) € L & L*. Indeed we can choose
vo= (14 5%)~a— SJb)

w = (1+JS(JS)) " (b— JSa)

(b) The orthogonal complement of the graphlofs the switched graph of 7. Hence

implies that/T'J = T* which is another way of saying thdf" is self-adjoint. O

It is a known fact that, in the finite dimensional case the 8ets (L) are mapped
to open subsets dfag aroundL, turning the Lagrangian Grassmannian into a mani-
fold. The situation in the infinite dimensional case is idealt However we need the

following important proposition.

Proposition 2.2.7.Let L be a lagrangian spacd, € Lag. The following are equiva-

lent:
(a) Listhe graph of an operatof A : Ly — Ly whereA € Sym(Ly).
() LN Ly = {0} andL + L; is closed.
(V) H=L& L¢.
(") H=1L+ L.
(¢) Rr+ Ry, isinvertible.

Proof: (a) = (b) Clearly if L is the graph of an operatdr, — L; thenL is a linear

complement of ;.

15



(b) = (b') = (b") = (b). We have the following equality:
(L+Ly)-=L"NLy=J(LNLy) = {0}

and this proves thdb) = (). Clearly (') implies(b”) and(b”) implies(b) because if

ze LN LgthenJz I LandJz 1 Lyand soz = 0.

(b) = (c) Itis easy to check that
Ker (Pp — Pr) = LN Ly & LN Loy = {0}

The injectivity now follows fromR, + R, = Ry — RL(J)_ =2(P, — PLOL).
Part(V') gives alsoH = L+ & L. This implies that

Range (R, — Ry ) =Range (Pp— Pp1) =L+ Li=H

which proves the surjectivity.

To see the second equality pick firste L. ThenH = Lt & L, implies that
z can be written uniquely as = —z* + y with 2+ € L+ andy € Lo. Therefore
(Pr— Ppa)(z+ ) =2,

Similarly givenyt € L3 there exists a uniqug € L, such thaty — y* € L+ and

so(PL— P i)y—y')=y"

(¢c) = (a) We show that the restriction tb of the projection ontd.y, Pr,|. is an
isomorphism. FirsKer P, |;, = LNLg and sincé&er (R, + Rr,) = LNLg® LN L

one concludes that N Ly = {0}.

16



Surjectivity comes down to showing that the adjdift, |, )* is bounded belowd].
But (Pr,|.)* is nothing else buP, |, .

Forz € Ly one has the following string of equalities
[ PL]o ()] = |1 PLPry ()] = 1/4][(RL + 1)(Rr, 4+ 1)(2)]| =

1/A[(Re + Rey = Bro + 1)(Bi, + D (@)|| = 1/4[(RL + Ry )(Re, + 1)(@)] =
= 1/2((RL + Rpo) Pro(x)l| = 1/2[[(RL + Riy)(2)|]

The lower bound follows from the invertibility ok, + Ry, .
It is clear thatL is the graph of an operat@t: Ly — Ly, T = P }L o (Pr,ln)~t
This operator has to be of the typed with A € Sym(L,) by partd) in the previous

lemma. OJ

Corollary 2.2.8. The set{L € Lag | L is the graph of an operatof, — Lj } is an

open neighbourhood arount,
Proof: The invertibility of R;, + R, is an open condition. O

Definition 2.2.9. For a fixed lagrangiar., the mapA; : Sym(L) — Lag which
associates to an operatsrthe graph of/S is called theArnold chart aroundL. We

will sometimes use the same notatioty, to denote the image of this mapig.

The only ingredient missing from turnin@ag into a Banach manifold modelled on

Sym(H) is to make sure that the transition maps are differentiabdesee that this is

17



indeed the case we pick a unitary isomorphismZ, — L,. Then

U o
U* =

0 JUJ!

is a unitary isomorphism off written in block decomposition as a map
Lo® Ly — Ly & L.

Let L € A, N Ay, thatisL = I'yr = I';s whereS € Sym(L,) andT €
Sym (Ly). LetS = U~'SU e Sym (Ly). We pickv € L, and letw = U~'v € L.
Then

v+ JSv=Uw+ JSUw = Uw + JUJ L JU L SUw = U¥(w + JSw)

Sol'ys = Ul ;5 = I'y7. Therefore

T=—JPy oUo(I,JS) o (P, 0Ufo(I,JS))7,

where(1, JS) : Ly — H is the obvious operator whose range is the graplisf The

differentiability is now clear so we have just proved:

Proposition 2.2.10.The Arnold charts turn the Lagrangian Grassmanniaiy into a

Banach manifold modelled on the space of self-adjoint dpes&ym (H ).

Let us a give an application of what we did so far. We will neleid tomputation

later.

Lemma2.2.11.Let P : Lag — Sym (ﬁ[) be the map that associates to the lagrangian

L the orthogonal projectionp;, onto L. Then the differentiall, P : Sym (L) —
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Sym (H) is given by the following expression relatite= L & L*

. 0 SJ;* 0 —SJ
dpP(S) = ' = '
JS 0 JS 0

whereJ; : L — L™+ is the restriction ofJ to L.

Proof: We need an expression for the projectiBn,, onto the grap/S : L — L*.

That comes down to findingin the equations

a = v—SJ w

b = JSv+w,

wherea,v € L andb, w € L+. We get

v=(1+5*)""a+SJ'b)

so that the projection has the block decomposition reldtive L+

(1 + 52)—1 (1 + 52)—ISJ—1
PFJS - (221)

J(1+ 82718 J(1+82)152 !

Differentiating this atS = 0 we notice that the diagonal blocks vanish since we deal

with even functions of' and so the product rule delivers the result. O

We will see later that the tangent spacelafy can be naturally identified with the

"tautological” bundle

T:={(L,S) € Lag(H) x B(H® H) | S € Sym(L)}.
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The spacelag is not very interesting from a homotopy point of view and ie th
next section we will prove that it is diffeomorphic with thaitary grouplU(H) and so
it is contractible. To get something non-trivial we redtoar attention to the subspace

of vertical, Fredholm lagrangians.

Definition 2.2.12. A pair of lagrangiang L, L») is called aFredholm pair if the fol-

lowing two conditions hold

dim(L; N Ly) < oo and Ly + Ly is closed

The Grassmannian okrtical, Fredholm lagrangianss

Lag™ :={L € Lag | (L, H™) is a Fredholm pair.

Fredholm pairs have been studied before both from the pbwiew of the projec-
tions ([4]) and from the point of view of closed subspaces of a lineacsd[30]). We

summarize the main definitions and properties frdin [

Definition 2.2.13. (a) A pair of orthogonal projection8 and() in a separable Hilbert

spaceH is said to be d&redholm pairif the linear operator

QP :Ran P — Ran (@

is Fredholm.

(b) A pair of closed subspacésandV of H is said to be a Fredholm pair if

dimUNV <00, dimUtNVt<oco and U+ V closed.
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(c) Two subspaceS andV are said to form @aommensuratd-redholm pair ifP;, —

Py is a compact operator.

WhenU andV are lagrangian subspaces the middle condition in the definof a

Fredholm pair is superfluous.

Proposition 2.2.14.Let (P, Q) be a pair of projections. Then the following statements

are equivalent.
(@) The pair(P, Q) is a Fredholm pair.
(b) The pair(@, P) is a Fredholm pair.
(c) The operators® — @ + 1 are Fredholm.

(d) The pairs of subspac€Ran P, Ker ) = (Ran P, (Ran Q)*) and(Ran Q, Ker P) =
(Ran @, (Ran P)*) are Fredholm pairs.

Proof: For the equivalence of the first three claims see Propos#idrand Theorem
3.4 (a)in {].
(¢) = (d) LetU = Ran P andV = Ker () = Ran (1 — @). Then

UNnV =Ker(1-P+Q) and U'NVt=Ker(l-Q+P).

If Ran (1 — @ + P) is closed then the following sequence of inclusions prokas t

U + V is closed

(UrNVHtr =Ker(1-Q+P)  =Ran(1-Q+P)CcU+V Cc (U NnVH*E

(d) = (a) We need to prove that

Pyo:U—V*
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is Fredholm. Its kernel can be identified withn V' so it is finite dimensional. Denote

by W the subspace

W=U+U"NnVH)=U+(U+V)*-

ClearlyW is a closed subspace sindé: NV'*) is a closed subspace 6f-. Moreover
W +V = H so that the operata?,,. : W — V= is Fredholm because it is surjective
and has finite dimensional kernel. The inclusior— 17 also Fredholm and sBy . is

Fredholm as a composition of two Fredholm operators

U—sW —V+,

O

Proposition 2.2.15.SupposéU, V') is a Fredholm pair of closed subspaces and that
W is another subspace commensurable WithThen the pair§V-, W) and (U, W)

are Fredholm pairs.

Proof: This follows from the previous proposition and Theorem &Mirg [4]. O

Let P*|, be the orthogonal projections difi* restricted to the lagrangiah and
Pr|z+ be the projection otk restricted toH=. The following is just a corollary of the

definitions and the first of the previous propositions.

Lemma 2.2.16.The set of vertical, Fredholm lagrangianSag™, coincides with the
set

{L € Lag | P"|; is Fredholm of index}.
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2.3 Arnold’s Theorem

In this section we generalize a result by Arnol&]([see also 1Y) to infinite
dimensions. In his article, Arnold showed that the finite laaggian Grassmannian
Lag(N) C Gr(N,2N) is diffeomorphic to the unitary groufg (V).

We introduce now the main suspects. Considertheigenspaces of, Ker (J +4)
and let

Isom (Ker (J 4 ), Ker (J — 1))

be the set of Hilbert space isomorphisms between the twosigees. To each la-
grangianL we associate the restriction ¥er (J + ¢) of the reflectionk,. SinceR,

anticommutes withy we get a well-definedeflection map

R_ : Lag — Isom (Ker (J + 1), Ker (J — 1)), R_(L)= RL‘Ker(J-{-i)

Notice that

Ry, =

relative to the decompositioh = Ker (J + i) @ Ker (J — i). On the other hand, to
each isomorphisrt’ € Isom (Ker (J + i), Ker (J — 4)) we can associate its graph

which is a subspace df. Itis, in fact, a lagrangian. Indeed
weJTpew=JTv+v)=—iTv+iv=2—-T2€T_p

for somev € Ker(J +1), with 2 = —iTv € Ker(J —1i). Itis standard that the

switched graph™_- is the orthogonal complement bf.. Therefore, we get a second
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well-definedgraph map
I'_ : Isom (Ker (J + 1), Ker (J —i)) — Lag, ' (T)=Tr
Notice that given a lagrangiahthere are canonical Hilbert space isomorphisms

¢+(L) : L — Ker (J £ 1), d+(L)(v) = 1/V2(v £ iJv)

Notation: When there is no possibility for confusion we will uge := ¢ (L).

Every isomorphismI” € Isom (Ker (J + i), Ker (J — ¢)) comes from a unitary op-

eratorUr € U(L).

Ur

L L

] -

Ker (J + i) —— Ker (.J — i)

It is straightforward to see that the gragh, is expressed in terms of the unitary

operatorUr as the set

I'r = {(1 +UT)U+ZJ(1 — UT)U | v E L}

For each lagrangiah, we will call theCayley graph maphe following application

Cr:U(L) — Lag

CL(U):=T_(¢40Uo0 (¢ ) )=Ran{L v (1+U)v+iJ(1—-U)v e H}
We have the following result.

Theorem 2.3.1(Arnold). (a) The reflection and the graph map8, andI'_ are
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inverse to each other.

(b) For every lagrangian’., the Cayley graph mag, : U(L) — Lag is a diffeo-

morphism of real Banach manifolds.

(c) The restriction of the Cayley graph map induces a diffeiquhism of the follow-
ing open setdl_, (L) := {U € U(L) | 1 + U is Fredholm} and

Lag™ (L) :={Ly € Lag | (L1, L)Fredholm pait

Proof: (a) The identityR_ o I'_ = id boils down to computing the reflection in the
graph an the isomorphisit: Ker (J + i) — Ker (J — @) interms of7". Notice that the

next operator o/ written relative the decompositiati = Ker (J + i) & Ker (J — 4),

0o 7
7 0

is an orthogonal reflection whose eigenspace corresponalitige eigenvalué is I'7.
HenceR_I'_(T) =T.

In order to see thdf_ o R_ = id it suffices to show thal_ o R_(L) C L. Take
v € Ker (J +1). Then

D(R_(L)) > v + Ry (v) = 2P, (v) € L.

(b) The only issue one needs to be concerned with is differefitiabFix a la-
grangianLZ and letSym(L) 5 S — I';¢ € Lag be the Arnold chart centered &t

Then using 2.2.1) we get the following expression for the reflectién . relative to
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H=LoL*

(1—82)(1+52)~" 25(1 + §2)~1J!
2JS(1+ 8% —J(1—SH)(1+S2) I

Rr,g =2FPr,s —1=

which is differentiable function of. SinceR_ = P! . where P’ is the

o Ry, (J+i
projection on the eigenspace of/, we conclude thaz_ is smooth and therefore its
inversel'_ is smooth and so i§;..

(¢) Notice that it is enough to prove the claim for a single lagian L, which we
will take to be H*. Let € = Cy~+ Since the Fredholm property is an open condition it
follows thatU_; is open inll(H). We will, in fact, see a proof in the next section that
Lag™ is an open set ol ag.

By standard spectral theory, the Fredholm propertylof- U implies that
Ker (14 U) = €(U) N H~ is finite dimensional and alsel ¢ o (U|ke (14+0):)-

We can now factor ouKer(1 + /). To that end, leH = Ker (1 + U)+, andH* be
the horizontal/vertical copy off in H & H andU’ = Ulg. Sincel + U’ is invertible,
the Cayley graph of/ is in the Arnold chart of7* and so@(U’) + H~ is closed by

proposition2.2.7. On the other hand
CU)+H =€U')+ H +Ker(1+U)

whereKer (1 4+ U) C H~ is finite dimensional and this proves thatU) + H~ is

closed.

Conversely, let. N H~ be finite dimensional and + H~ be closed. If we lef
and [~ be the orthogonal complementsiofi H~ in L andH ~ respectively, these two

spaces are lagrangians.jif ~ & H~ whose intersection is empty, and whose sum is
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closed. Their sum is closed because of the relation
L'+H=(LnH)*

where the orthogonal complement is takerLin- H~. TheC inclusion is obvious.

To prove theD inclusion note that every
z=z1+2: €L+ H™

can be written as

z=2n+2= r1+y1 + T2 + Yo
LNH L H

Soz = (z14+ )+ (z2 +y2) Withzy +y; € LN H™ anday +y, € (LN H™)*
and therefore, it € (LN H~)*thenz =2y +y, € L+ H™.

We have just proved thdt’ is in the Arnold chart of/H~, hencel’ = I's where
S : JH- — JH~ is a self-adjoint operator. Finally, we halie= C(U) wherel is the
extension by-1 on J(L N H~) of the Cayley transform of. It is clear thatl + U is
Fredholm. O

Since our main interest is iflag~ we will deal with this case separately.
Notation: To simplify notation we will use® to denote the Cayley graph mapZat-,

i.e.C:= Cp+.

Corollary 2.3.2. The Cayley graph ma@ : U(H) — Lag
CU)=Ran{H>v— (1+U)v,—i(1 —U)v) e H® H}
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induces a diffeomorphism betwekn,; andLag ™.

Proof: This is just the casé& = H* in Arnold’s theorem. The reason fer: in the
second component is that under the canonical identificafibr- A+ andH = H™,

J|,,, acts as minus the identity. O

Remark 2.3.3.0ur choice of the reflection mag,- to go fromKer (J + i) to Ker (J — 1)
rather then the other way around was not accidental. Theldwtwart at the vertical
spaceH~ = 0 @ H associates to a self-adjoint operatbre Sym(H ~) the switched

graphT', := {(Av,v) |v € H} ¢ H @ H. In the case whe/ = C we want the

composition

51— Lag(1) M sym(C)

defined where it makes sense (i.e. for£ 1) to be orientation preserving. This is

related to the definition of the spectral flow; seB.1 In our case, the composition is

1+ A
L
AT\

This is indeed orientation preserving as a map from the ungiecminus a point to the

real axis.

For each lagrangiah we introduce the change of basis isomorphism

_ 0
Gy L Lt —Ker(J+i) @ Ker(J—1), = | * o

0 ¢poJ7!

whereJ ! : L+ — L isthe inverse of the restrictioh: L — L*. AsamapL @ L+ —
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L ® L+, ®; has the expression

1 1 Jt
V2 | i o

Notice that®; diagonalizes/ relative to the decompositioﬁ =LaLie.

—i 0
O ID, =
0 i
Lemma 2.3.4.LetU € U(L) be a unitary map. Then the reflection in the lagrangian
Ly = €. (U) has the following expression relativé = L & L*
0o uUJt

Rp, = ®p, O
JU 0

Proof: LetTy : Ker (J + i) — Ker (J — i) be the isometry that correspondg(U),
in other wordsTy; = (¢ )U(¢_)~!. Then

0 T 6_ 0 0 U o~ 0
Ry, = =
Ty 0 0 ¢ U o0 0 o
The claim follows from the expression fax;. O

Using the previous lemma we get a different characterinagicCag ™.

Corollary 2.3.5. The space of vertical, Fredholm lagrangians has the folf@char-

acterization Lag™ = {L € Lag | R, + Ry+ is Fredholnj.

29



Proof: If U is the operatol. is coming from via the Cayley graph map then

0 (1+U)*J! X
RL + RH* — (PHJr (I)I_{+
J(1+U) 0

Clearly, Ry, + Ry+ is Fredholm if and only ifl + U is Fredholm. O

Corollary 2.3.6. The Cayley graph maf®, takes the Arnold chart around, bijectively

onto the Arnold chart around,, := C(Uj).

Proof: LetT := U + Uy, Ly := C(U). Then

0 -7 :
Rp, + Ry, = Bpe oL
~T 0

is invertible if and only if" is invertible and hence by propositi@r?.7we getC+ (U) €

Ap, ifand only if 7" is invertible. O

Corollary 2.3.7. Let M be a differentiable manifold and' : M — Lag be a map.

A

ThenF is differentiable if and only i o F' is differentiable where? : Lag — B(H)
associates to every lagrangidnthe reflection in it.

Proof: Clearly F is differentiable if and only ifF, := (€)' o FF: M — U(HT) is

~

differentiable. NowR o C : U(H) — B(H) has the following expression

0 U
RoC(U) = by oL
~U 0
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So I is differentiable if and only ifR o € o F} is differentiable. O

A closer look at the Cayley graph map suggests a useful reflation of Arnold’s
theorem. Notice that for every unitary operator U(L), with Ly := CL(U) the map
U:L— Ly

U(v) =1/2((1+ U)v +iJ(1 — U)w))
is acanonicalHilbert space isomorphism that carriésnto L;;. We can build out of
U an automorphisni/* of H by taking the direct sum df with JU.J~' : Lt — L.
Written in the decompositiofl = L @ L* this automorphism has the expression:
1 14U  —i(1-U)J! 10

U* = 5 =7 ot
iJ(1-U) J1+U)J! 0 JUJ!

We are now ready to give a reformulation of Arnold’s theorem.

Theorem 2.3.8. (a) For a fixed lagrangian’, the following map is a Banach-Lie

group embedding

R 1 0
O, UW(L) — W(H),  O,U) =2 ot
0 JUJ!

where the decomposition is relative b= L @& L. The orbit of the lagrangian
L under the action of this subgroup, i.¢0,(U)L | U € U(L)}, is the entire

spacelag and the stabilizer is trivial. The bijection
U(L) — Lag, U— Or(U)L

is a diffeomorphism of real Banach manifolds.
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(b) The subgroup dlt((ff) determined by), does not depend oh, but only onJ.
Relative to the decompositidd = Ker (.J + i) & Ker (J — i), the map9,, has

the expression:
1 0

0 ¢ Ui

0L(U) =
(c) Thebundlél, C Lag xB(ﬁI) overLag whose fiber over a lagrangiah consists

of unitary operatord/ € U(L) is canonically trivializable and the map:
O:U, — WH),  OLU):=0.,0)

is differentiable.

Proof: (a) Note thatO,(U)L = €. (U) and so the job is done by Theoreh3.1

(b) Self-explanatory.

(c) Let us notice that the tautological bundlec Lag xH, 7 := {(L,v) | v € L}
overLag is naturally trivializable. A natural trivialization isgen as follows. For every
lagrangianZ, let Uy, := @~!(L) be the unitary operator o ™ corresponding td. via
the Cayley graph map. Then the following map is a trivial@atof the tautological
bundle

a1 — Lag xHT, a(L,v) = (L, (Og+(UL) " (v))

since bothC~! and O+ are differentiable. It is straightforward th#t, is naturally
trivializable.

In order to show that is differentiable it is enough to show that the map

d : Lag — U(H), L — &
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is differentiable. Sinc&;+ andCy-+ are differentiable, the following identity proves

this claim.

BC(U)) = O+ (U)Dprs = — 0 VU € U(H™)
V2 o

The decomposition is relativd = H & H. To see why the identity is true, lét, :=
Cy+(U)andv € H*. Then

r:=0g+(U)v)=1/2((14+U)v,—i(1 = U)v) € Ly

and

Oy, (2) = 1/V2(x +iJz) = 1/v2(v, —iv)

Letw € H~. Then
y = Og+ (U)(w) =1/2(i(1 — U)w, (1 + U)w) € L

and

O, (y) = 1/V2(J Yy —iy) = 1/V2(~Uw, —iUw).

Notation: For a lagrangiar. and a unitary map’ € U(L) we will use the notatio/

for the Hilbert space isomorphism:

U:L—CU), U) =0LU)w)=1/2((1+ U)o+ Ji(1 —U)w)
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O
We see that Arnold’s theorem gives more than just a diffeqiniem between two
real Banach manifolds. It shows that given two lagrangiansnd L., there exists

canonicalunitary operators

U(Ll, LQ) € U(Ll), U(Ll, LQ) = GZ}(LQ)

U(LQ,L1> c u(Lg), U(LQ,Ll) = GZ;(LI)
that induce isomorphisms between the two lagrangians

U(Ll, Lg) Ly — Ly and U(LQ,Ll) Ly — Ly
Notice that for every lagrangiah
U(L,L) =id

Moreover, the following is true

Lemma 2.3.9. For every two lagrangiang.; and L, and for every unitary magX &<

U(L,) the following identities hold:
(@) U(Ly, Ly) = (¢4 (L1)) " 0 ¢4 (La) 0 (p—(La)) ™" 0 - (L1);
(b) U(Ly, Ly) = ¢="(La) 0 ¢_(Ln);

(©) O(L1,U(Ly, L) XU(Ly, Ly)™Y) = O(La, U(Ly, Lo) XU (L1, L) 7Y).
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Proof: (a) This identity follows from the commutativity of the diagram

I U(L1,L2) I
¢(L1)J/ ldbr(Ll)
Ker (J +1) Ker (J —1)
¢(L2)T T¢>+(L2)

L, a L

To see why this diagram is commutative think that bietth, andU (L, L) induce an

isomorphismil” € Isom (Ker (J + i), Ker (J — 7)) whose graph is exactls,.

(b) We have

- 1 0 1 0
U(Ly, Ly) = =

0 ¢4 (L1)U(Ly, La) (¢4 (L))" 0 ¢ (La)(p-(La))~t | '

where the decomposition is relati¥e = Ker (.J + i) & Ker (J — ). On the other hand

for v € L; we have:

v =1/V2(¢_(L1)v, ¢, (L1)v) € Ker (J + i) @ Ker (J — i)

and so

U(Lt, La)o = 1/V2(¢-(L1)v, ¢4 (L2) (- (L2) " b4 (L1)v) = 1/V2(¢—(Lo)w, d4 (La)w)

for somew € L,. The identity is now obvious.

(¢) Let Uy := U(Ly, Ly). We considexUsov, JUpJ 'w) € Ly & Lt where(v, w) €
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L, @ Li-. Notice that for all pairgv, w) we have

O(LQ, ﬁngﬁﬁl)(Ulgv, JUng_lw) = (Ulga, Jﬁlgj_lb)

where

a 1 1+ X —i(1 —X)J‘1 v
= 5 = O(Ll,X)(’U,U))
b iJ1-X) JA+X)J! w

The same relation can be written as
O(Ly, Upo XUHO(Ly, Upy) = O(Ly, Upa)O(Ly, X)

from which the identity follows. O

Corollary 2.3.10. Let L;, i € {1,2,3} be three lagrangians and lét(L,, L,) be the

canonical isomorphisms between them. Then
(7([/2, Lg) e} 0([/1, Lg) = U(Ll, Lg)

Proposition 2.3.11.The tangent space dfag is isomorphic with the tautological bun-
dle
T = {(L,S) € LagxSym (H) | S € 8ym(L)} and they are both naturally trivi-

alizable.
Proof: The isomorphism between the tangent spacgé=pfandT is given by:
(L, [a]) = (L,a/(0))
where|a] is an equivalence class of curves arifD)) is the derivative of a representative

of o in the Arnold chart off.
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For every lagrangiai. let U, := GI‘;(L). Consider now the following automor-

phism of the trivial bundle
Lag x Sym (H) — Lag x 8ym (H),  (L,S)— (L,0(UL)'SO(UL))
It restricts to an isomorphism

T — Lag x Sym(H™), (L,S) — (L,U;'SU)

We saw in Corollary2.3.6that the Arnold chart around a unitary operat@y is
taken by the Cayley graph ma@+, to the Arnold chart around the corresponding
lagrangianL, := C(U,). The Arnold chart ofU/; consists of those operatots such

thatU, + U is invertible. These operators live in the image of the cositpm

Uo- 1 — A
U(H A
(H), Hz‘+A

Sym(H) —— U(H)

Cay

= U~ UgU

where the first map is the Cayley transform at identity. WHes C™ this Cayley trans-
form preserves the natural orientation G(n). We denote this composition yay,.
On the other handym( L) is naturally isomorphic witl$ym (H ) by conjugation with

the Hilbert space isomorphist, : H — L, given by

v— 1/2((1 4+ Uy)v, —i(1 — Up)v)
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Let A, be the application that magsm(H ) bijectively to the Arnold chart of,.

Sym(H) —— 8ym(Ly) ——= Lag, A UyAU = X — Tyx
u

Ao

Proposition 2.3.12. The compositiom;! o O o Cay, : Sym(H) — Sym(H) is the

identity.

Proof: We know that the Arnold chart df, maps to the Arnold chart at,. Every
unitary operatot/ € U(H ) such thatl + U is invertible maps via left multiplication by
U, to an operatot/’ such that/, + U’ is invertible. We fix such an operatérand let

A € 8ym(Ly) be defined by

- i(1=U) -
AI:UO%U()_l

We show thatd corresponds via the map — I', ; to the lagrangian determined by

UyU. Indeed, let: € H andv € L, be two vectors related by = Uy(1 + U)z. Then
vt JAv = (00<1 + U)z + JAT(1 + U):;:) - (ﬁou U)z +iJUy(1 — U)x)

= 1/2((1+Uo)(1+U)z, —i(1=Up) 1+ U)z)+(1=Uo) (1 =U)x, —i(1+Up)(1-U) )
=((1 + UoU)z, —i(1 = UoU)x) € O(UU)

Since the correspondence— x is bijective the claim follows.

Plugging inU = (i — A)(i + A)~' with A € Sym(H) finishes the proof. O
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2.4 More examples of Lagrangians

In this section we will discuss what happens with the PaleasigsU, through the
Cayley graph bijection. Let
Lagy = C(Uy)

be the space of lagrangians that correspond to the Palaipgrdhe computation of the
reflectionR.,, in Arnold’s theorem proves again useful for an intrinsicretederization

of Lag; . HereLy := C(U).
0 1-U" )
R, + Ry = ®p+ oL
1-U 0

Hence, if we let, to denote the Banach subspacéigi)

*

~

0
Jp ={X €B(H)| X =dy+ o\, Tel}t=
T 0

. T+T (T —-1T%)
=¢XeBH)|X= , el
(T —-T%) —(T+1T%)

we have the following description/definition férg, .

Lemma 2.4.1. The space of-commensurable lagrangians withi*, Lag; (or just

commensurable wheéh= X) has the following description as a subsetlafy ™
Lagy = {L € Lag™ | R+ Ry- € Js} = {L € Lag™ | P, — Py+ € Js}.

The spacéy is not anideal oB(H @ H), (itis not even an algebra) but the obvious
topology that it inherits frond, topology which we will denote by superscrip{from

strong) makes the identity map continuous in one direction:
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id: 75 — gy

With this topology onlag; the Cayley graph map becomes a homeomorphism when

restricted tdl,.

Remark 2.4.2. It is tempting to have a description 8kg; in terms of the projections
in the spirit of the Lemma&.2.16 Such a description suggests itself and we would like
to say that if the lagrangiah is in Lag; thenP~ |, € J. Nevertheless such a statement
must be taken with a grain of salt. This is because the setopégtionsP~|, is not a
subspace 0B (H) and in general it does not have an algebraic structure.

On the other hand it is true that fdr € Lag,, one hasP~|, o U; € 7, where
U, is the unitary isomorphisni/ — L provided by the Cayley map and conversely if
P~|,oUL € JthenL € Lag; . Therefore, if we také®~ |, € J to meanonly a certain
boundedness condition on the singular valuesof,, the same one that describes
J([39]), e.qg., trace class or Hilbert-Schmidt condition, thea fitevious description

makes perfect sense:
Lag; = {L € Lag(H) | P*|; is Fredholm of index andP~ |, € J}

O

We will put charts orLag; and turn itinto a manifold modeled on the Banach space

Sym,. With this manifold structure the Cayley graph map becomgif@morphism
Uy —> Lagy

We know for example thatl;+ C Lag™ and it is easy to see that in order to have

I'r € Lagy for a self-adjoint operatof’ : H — H one needs to havé € J. Hence
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Ay+ N Lagy ~ Symy(H). The first set is open in the norm topology, so it is open
in the stronges topology. This way we obtained a first chart 8ag;. In order to
put other charts on this space notice that we can unambityutalk about the ideal

J C B(H) as an ideal ofB(L) for any separable, Hilbert spa¢e Indeed since every
ideal is conjugation invariant one can just take a unitaoynisrphism betwee®/ and

L and "transfer”J, via conjugation, to a subset & L).1

Let us fix a finite codimensional spatec H*. Then

Lemma 2.4.3.The lagrangiari’ & JV* belongs to all subsetdag; . The intersection
of the Arnold chart inCag™ aroundV & JV =+ with Lag; is an Arnold chart ofCag;

aroundV & JV+. In other words the graph map induces a bijection

Symy(V & JVE) =~ Ayg e N Lagy .

Proof: The first claim is true becaus@*|, . is clearly Fredholm and |, is a
finite rank operator.
One easy observation is that the unitary niaps U(H ™) in Arnold’s theorem

which satisfie)(U)HT =V & JV 1 is:

I onV
U:

—I onV+t

Let T € Sym(V @ JV*). Itis not hard to see thdt,; = O(U)I,; whereT =

UITU € 8ym,(H™). (hereU is the unitary isomorphisti+ — V & JV+ induced

'In other words we do not have to define what we understand bynmgact or Hilbert-Schmidt
operator on each separable, Hilbert space.
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by the Cayley map of/ € U(H ™) defined before). Indeed we have :

oor.-d[ Y 0 ! o+
(UL 5 ~ lve
0o JUJ! JTv

and the latter set is ju$t;;.

If we let Uj = }J_rg be the Cayley transform df thenl';» = O(U)O(Uz)H =
O(UU;3)(H™). HenceUUjy is the unitary transform in Arnold’s theorem which takes

H*tol'r. Itis easy to see théfU; € 1 + J if and only ifT e Jiff T <. O

Remark 2.4.4. The fact that the Arnold chartd’

vasvs = Avesve N Lagy with V

cofinite dimensional i *, coverLag; is just an observation in the next section.

Simple examples of vertical, Fredholm lagrangians conra tite graphs of bounded,
self-adjoint operator§s : H — H. More interesting examples arise when one looks at
switched graphs of operators. In this case in order forsthiéchedgraph to be Fred-
holm pair with the vertical spacd, itself has to be Fredholm. Most importantly,
need not even be bounded.

Let T be a self-adjoint, Fredholm operator and 1ét= C~!(I';) be the unitary
operator it corresponds to via the Arnold isomorphism. TienoperatotlX =1 — U

is bounded and induces a bijectigh: H — D(T). If we let
(v, w)piry = (X v, X ')y, Yv,we D(T)

be an inner product o (7') induced byX then with this inner product two things are
true, the inclusionD(7') — T is continuous and’ : H — D(T) is a Hilbert space

isomorphism. The following result is now straightforward:
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Lemma 2.4.5.For every closed, self-adjoint operatér: D(T') C H — H there exists
a bounded operatoX € B(H) which is a bijection ontd(7") and which induces an

inner product onD(7") such thatl" : D(T') — H becomes a bounded operator and

T=iX"'2-X)

The new norm orD(7") is nothing else but the graph norm as the next result shows.

Definition 2.4.6. For every closed, densely defined oper&tarD(T) ¢ H — H the
graph normon D(T) is

[ollg = Tl +lvll, Vo e D(T)

Lemma 2.4.7.Let H, be a dense subset éf and letT : H, — H be a self-adjoint
operator. Consider the normy, -), on H, induced by the operataX from the previous

lemma. Then this is equivalent with the graph norm.

Proof: Letv € D(T) and letw = X ~'(v) € H. Notice that

[ollo < 1/2[jvllg

Indeed the inequality is equivalent with

lwll < 1/2(][T Xw]| + [[ Xwl])

which becomes by 4.9

lwll < 1/72(][(2 = X)w]| + [[Xw]])

43



This is just the triangle inequality.

Conversely one has

[vllg = 112 = X)wl[ + [ Xw[} < (X + 112 = X[Dllwll = M]jvllo

We have the following result

Lemma 2.4.8.1f U = @~ !(I';) is the unitary operator that corresponds to the switched

graph of " and Ry (—i) = (T + i)~ is the resolvent ot at —i then

U=1—2Rp(—i)

Proof: Let X := 1 — U. By Lemma2.4.5we have

X=2T+i)'=1-U

O

Corollary 2.4.9. The switched graph of a self-adjoint, Fredholm operatas in Lag

if and only if the resolvenk,(\) € J for some\ ¢ o(T).

Proof: By the previous lemma — U < Jif and only if Ry (—i) € J. O

2.5 Symplectic reduction

Our big goal for this section is to prove thatg ™, together with its little brothers,
Lag; are all classifying spaces for odd-theory, i.e. they all have the same homotopy
type ad/(o0). To achieve this we use the technique called (linear) syatipleeduction

which we now describe.
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Definition 2.5.1. An isotropic subspace of the complex Hilbert spale= H @ H,
endowed with a complex structure as in the previous sectiaglosedsubspacél” C
H such that/Iv C W,

The spacéV* := (JW)= is called theannihilator of 1.

For an isotropic spacé’, the orthogonal complement &f in W<, denotedHy is

called the(symplectically) reducedpace off.

One trivial observation is thadt is the orthogonal complement 4f @ JW in H.

Notice thatHy; is J-invariant since its orthogonal complement is.

Definition 2.5.2. The isotropic spac@ is calledcofinite if Hyy, is finite dimensional
and

Remark 2.5.3. The reason for considering the signature zero conditiori.fy,, in
the previous definition is because we want the LagrangiassgranniarLag(Hyy, ) to

be nontrivial whenevefiy, is not trivial. We want it nontrivial because this guarastee
that every maximal, cofinite, isotropic space is actuallggrdngian. Indeed, with our
definition in place, if a maximal, cofinite, isotropic spacere not a lagrangian, it
would mean thaf{y, is non-zero and hendgag(Hy, ) is nontrivial and so a choice of
a lagrangian inf{;; added to the initial isotropic space would yield a biggetrisoic

space contradicting the maximality.

Example 2.5.4.Every finite codimensional subspaté C H* is in fact cofinite,
isotropic and the same is true about every finite codimemasisnbspace of any la-

grangian, not only7* .
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Definition 2.5.5. For a fixed, cofinite, isotropic spa¢€ we say that the lagrangiain

is cleanwith 1 if it belongs to the set:
Lag" :={L € Lag, LNW = {0}, L+ W closed

If W = L, is a lagrangian itself, we havieag" = ALé.

The next proposition/definition is fundamental.
Proposition 2.5.6. For every cofinite, isotropic spadé&” the following are true:

a) The map
R : Lag" — Lag(Hy), L — Range Ppy, |Lawe

is well-defined. Heréy,,..| .~ is the orthogonal projection ontéy, restricted

to L N W<¥. The mapR is calledsymplectic reduction

b) Given any lagrangiaril. € Lag" there exists another lagrangiaky, > W such

thatZ € A;, C Lag". Hencelag" is an open subset dfag.

c) If Ly D W is alagrangian andV - is the orthogonal complement@f in L then
R(ALs) = Aywe. Inthese Arnold coordinateR(T') = Py . TPy, for every

operator? : L& — Lo. HenceR is differentiable.

Proof: a) The case whefl” is a lagrangian itself, is trivial since thei,, = 0. We
will therefore suppose thdt’ is not lagrangian in what follows.

Let us fix L € Lag"'. The first thing to notice is that N 1V = 0. Indeed suppose
LNWw<« ={0}. ThenJ(L N W<) = {0} and so(L + W)+ = {0} which implies that
L+W = H& H. SinceLNW« = {0} we get thatV is a linear complement af and
becausél’~ O W the only wayL N W« = {0} is if W« = W, that isWW is lagrangian,

which is not our assumption.

46



Let now/ := Py, (L N W*). We must have # {0} as well, sincePy,, | Lrw« IS

injective because of the equality

KerPHW|LﬂWW :LﬁWwﬂ(WGBJW) :LﬂW:{O}

Moreover.J¢ = Py, (L*+ N (JW)*). This is true becaus€y,,J = J Py, which is
another way of saying thdfy; is J invariant.

We will check that | J/. Letx = y; + 2y withz € LNW¥,y € Hy andz € W.
Let alsozt € L+ N (JW)~ be decomposed as" = y, + Jz, with y, € Hy and

zo € W. We notice that

WesaxLJneJWand(JW) ot Lz e W

The next relation is now straightforward, thus proving ttaem.

(y1,y2) = (x — 21, 2" — Jz22) =0

So/ is an isotropic subspace éf, andL, = J¢ + W is an isotropic space doff
suchthatl,+ L is closed and,,N L = {0}. We will prove this claim. Take = z+y €
(Jt+W)NnL,withz e J¢ C Hy andy € W. Thenz e LNW* = LN (Hy & W)
which also means that= Py, (2) € ¢ and sincer € J¢ we conclude that = 0 and
thereforez =y € LNW = {0}.

We notice now thaf., has to be a maximal, isotropic space, hence lagrangian. If
it were not maximal, we could repeat the whole process, Witlinstead ofi’’. This
means that letting/,, C Hy be the orthogonal complementbf + J L, and/, be the
projection of L N Ly € L N W< onto Hy, thent, C H;, would be non-zero and also

a subset of. Sincel L H,,, we get a contradiction.
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b) We only need to show thad . C Lag" whereL, is as before and we are done.
The finite dimensionality follows immediately fromN W C L N L.

Notice that we have the set equalify+ W = L; + W because ifL. = 'z for
some operatoil’ : Ly — Lo, then for every pair(a,b) € Li + W the equation
(z,Tz) + (0,y) = (a,b) has a unique solution. The spakg + W is the orthogonal

complement of//+ in H and so it is closed.

¢) We want to see what happens when we resfitd Aps. First of all we can see
W+ as a distinct lagrangian ibag( Hyy, ).

We claim thatR(A, ) = LagWL(HW) and the last set is just the Arnold chart
A w1 in Hy . To prove the claim we will compute the symplectic reductda graph
I'r C Ly & Ly of an operatofl” : Ly = JW & JWLt — Ly = W & W with

components:

T 1o
T =
15 T,
This is actually easy to do and the answeR{§'r) = I'y, € JW+ @ W+, This com-

putation also proves the last claim. O

Remark 2.5.7. Given a cofinite, isotropic spacd’ and a lagrangiar. such that
dim L N W < oo andL + W closed, the symplectic reduction bfis still well-defined.
However the symplectic reduction as a map is not continuouthis set. We will
see that it is continuous and in fact differentiable whertrigted to each subspace of

lagrangians with a fixed dimension of the intersection 1/. See Sectio.3.

The next set-theoretic equality is a useful by-product efghevious lemma.
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Lemma 2.5.8.1f L, is a lagrangian which containgl’, thenALé =R Y A1) C

Lag", wherelV* is the orthogonal complement Bf in Lj.

Proof: The inclusioncC is clear from the proof of the previous lemma. For the other
one, letL be a lagrangian such th&(L) N W+ = {0}.

Considernowr € LN Ly = LN (W & W+) c LNW<. Thismeans = a +b
with a € W andb € W+ and sob = Py, (z) € R(L). Thereforeh = 0 which implies
r=a€ LNW ={0}.

The sumL + L, is closed because it is the sum of a closed sgaedl and a finite

dimensional onéV . 0

We want to show next that the symplectic reduction is acuallinear fibration.

First let us notice that we have a canonical sectio® aiamely
S : Lag(Hy) — Lag", (& JW.

Remember that by Lemma3.11the tangent bundle otag" is identified with
the bundle whose fiber dt are just the self-adjoint operato$sm(L). For everyl
Lag(Hyw ), the lagrangiad® JIV is clean withil. We saw in Lemma&.5.6 partc) that
in the Arnold chart ofL = ¢ & JW, the symplectic reduction withl” has the simple
expression of projection onto thex ¢ block. We conclude thaKer d; R consists of

self-adjoint operators§' : L — L with block decomposition:
0 S;
Sy S

We have the following equivalent of the tubular neighborhtteorem:

Proposition 2.5.9. a) (KerdR is a trivializable bundle ovefag(Hyy ).

)‘Lag(Hw)
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b) LetLag(Hy ) be embedded ifiag" via $. Then the map

N : (KerdR ) Lag", (L,S)—TysC Lo Lt

) ‘Lag(HW

is a diffeomorphism which makes the diagram commutative:

(Ker dR)| Cag(Hyw) Lag

Lag(Hy)

Proof: «a) In this infinite dimensional context we need to make sure finsit

(Ker dR is a manifold.

)‘Lag(Hw)
We fix by C Lag (Hw) and |etL0 =ly® JW = S(EO)

We will show that there is a natural homeomorphisn{igér dR ) with a

)}Lag(H
product
Lag(Hy ) x Sym®(L"), which commutes with the projectionsfag(Hyy ) and is linear
on each fiber. Her8ym"(L") := Ker d;,R is a Banach subspace &m(L).

The spaceSym®’(L,) has a concrete description. It is the set of all self-adjoint
operators orl, which are zero on thg, x ¢, block.

Recall that the finite version of Arnold’s theorem tells uattfor every lagrangian
¢, € Lag(Hyw) there exists a canonical unitary isomorphigin : ¢, — ¢,. Let

Ly := ¢; & JW. The canonical unitary isomorphisﬁ]‘t1 : Ly — L; has a block

decomposition

N Uy O
UL1 = “
0 1

asamagyd JW — (1 JW.
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In these conditions, if thé, x ¢; block of a self-adjoint operatd¥ € Sym (L) is
zero, then thé, x ¢, block of U SU}, is zero as well.

The map:
(Ker dR)| cag(rr) — Lag(Hw) x Sym° (L), (L1, S8) — (44, UL_llSULl)

is the homeomorphism we were after. The continuity of thesdcomponent follows

by noticing as in corollarg.3.11thatlU; ' ST, is theLyx L, block of C(Uy, ) "1 SC(Uy, ).

b) We will build an inverse folN. Let L € Lag" and lett = R(L) be its symplectic
reduction.

We consider the lagrangiab, = ¢ @ JW. It has the property that + L{ =
L+ W + JR(L) is closed and alsé N L; = {0}.

We prove the last claim. Let us takes LNW @ J¢ decomposed as=a+ b+ ¢
wherea € W, b € JW andc € Hy,. We haveh = 0 because;, a andc are inW & Hyy .
It follows thatc is the projection of: onto Hy, and by definition this is jusk, (z) € /.
On the other hand is in J¢ because: +c € W @ J¢ andc L W and soc = 0.
Thereforer = a € LN W = {0} and we are done with the claim.

By Proposition2.2.7, L is the graph of/S with S € Sym (L;). We claim that the
¢ x ¢ block of S'is zero.

Notice first thatR(L) = R(L;) = ¢andL = T";s. But the symplectic reduction of
the graph of/S with 1 is the graph of/.S; whereS; is the/ x ¢ block of S. Since the
graph of.JS; is ¢ we conclude that; = 0.

Therefore the inverse is:

L — (R(L), JPpy o (Pp,|L)™")
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The differentiability of the maps is immediate when one vearkthe Arnold charts

of 7 on the base space of symplectic reduction and uses Letrrta ]

We will go back now to our spacgag™. We fix a complete, decreasing flag of

cofinite, closed subspacesii.
H=W,>oW ;DWW D ...

We will also use the associated increasing flag:
{0} =W c Wi CcWs...C H™

Let us briefly recall that every closed subspace of a lageamigiisotropic.

Lemma 2.5.10.For any flag of cofinite, isotropic subspaces of the vertigalce H ~
we have:

ULagWi = Lag™, and Lag"" c Lag"+* forall i

Hencelag™ is an open subset dfag.

Proof: The inclusion| J Lag"* C Lag~ is straightforward since if. € Lag" then
dm LN H- <codimW; = iandL + H- = L + W; + W;- is closed since the
orthogonal complement’;* finite dimensional.

Conversely the decreasing sequence of finite dimensioaaksp N W, has trivial
intersection so it must be that there isiasuch thatL. N W; = 0. The fact that. + W;
is closed for every follows by noticing thatiV; is commensurate witli/ — and using
2.2.15

The inclusionCag"® ¢ Lag"+! is straightforward. O
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We now describe how a choice of a complete flag of cofinite sadespforH —
defines an atlas ofag™. Choose a unitary basig,,),>1 of H~ and for eachk-tuple
I = {il, 19, . .. Zk} let

Fy:= span{f;;i € I}

and letF;. be the orthogonal complementhf in H—.

Furthemore we will let

H}"_:FI®JFIC

In other words eacl/;" is a lagrangian consisting of a direct sum between a subsppace
H™* and one off ~. We choset in order to suggest ther has a finite codimensional

space in common witli/ *. In particular//; and H* are commensurate.
Lemma2.5.11. @) Forn > max{i|i € I} we haved, C Lag"".

b) The Arnold charts4HI+ coverLag™, thatis :
U .AH;r = Lag™
I

Proof: At a) notice that fom > max{i | i € I} we havel';. D W, and socH; D> W,
and therefored,;, C Lag'™".

Forb) we writeT : H — H; as

relative to the decomposition$;” = F; @ JF;c andH; = JF; & Fje. Itis easy to

see thal'y N H~ = Ker C. Now the suml’r + H~ is closed being the sum of a finite
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dimensional space and the §et+ Bv + Dv | v € JF.} + Fre. The later set is closed
because it is just the graph 8f;c ® Fjc © (a,b) — Ba € JF7. SoAHf C Lag~.
Conversely, we know by the previous lemma that Lag™ is in some sefag"™.
We let Hy, = W @ JW:=L. Itis known (see 19 ) that in the finite dimensional
case the Arnold charts df; © JFj. coverLag(Hy, ). Herel = {iy,i,...,0} isa
k-tuplein{1,2,... ,n} and/; is its complement. Now notice thatV,, & JF. = JFpe
and hence by Lemma.5.8we must have that. € Lag™ is in some Arnold chart as

above. ]

In a very similar manner one can prove the next result:

Lemma 2.5.12.Let V denote a finite codimensional subspaceff and VV* its or-
thogonal complement i/ *. An atlas ofLag™ is given by the collection of Arnold

charts around/ @ JV+:
U Avesve = Lag™

VCH+

Remark 2.5.13.This lemma, together withag, C Lag™ finishes the proof theltag,
Is a manifold modelled ofym, with the charts described at the end of last section. In

fact all the previous lemmas of this section are true, Witly; replacinglag™.
The following important theorem is an application of syngpiereduction.

Theorem 2.5.14.The spacéag™ is weak homotopy equivalent@foo). The same is

true aboutLag; .

Proof: If we can prove that for a fixed there exists am big enough such that the

pair (Lag™, Lag"™) is k-connected than we are done becadsg'™ is homotopy
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equivalent withCag(Hyy, ) and this will imply that the induced map
Lag(oo) := lim Lag(Hy,) —— limLag"" = Lag™

is a weak homotopy equivalence.

We have of course thdtag"™ = Lag™ \{L | dim L N W, > 1} and we will see in
the next section that the s&t,,, := {L | dim L N W,, > 1} is a finite codimensional
stratified subset ot ag~ whose "highest” stratum has codimensint+1. We therefore

fix n > 1/2(k — 1) and show the induced map on homotopy groups

Wh, )

m(Lag™") — m(Lag™)

is an isomorphism.

Every continuous map : S* — Lag™ is contained in an open sétg"™ for some
N > n big enough so one can deform it to m&p — Lag(Hy, ) — Lag~ simply
by composing with the symplectic reduction which is a defation retract. The new
mapo; : S¥ — Lag(Hy, ) can be deformed into a smooth map and can also be put
into transversal position witly,,, ; N Lag(Hyy, ) which is a Whitney stratified set of
codimensior2n + 1 in the finite dimensional manifolag(Hy, ). Butfork < 2n+1
this means that there is no intersection and hence theirgsuoiapo, has its image in
Lag"". This proves the surjectiviy of the map on homotopy groups.

The injectivity follows by noticing that every malpx S* — Lag™ can be deformed
to amapl x S* — Lag"" by the same type of argument as beforefor> k.

The same proof works fobag, . ]

We want to give an example of how symplectic reduction wonka concrete case:
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Example 2.5.15The universal family For each unitary map’ € U(N), the Hilbert

spaceL}f([O, 1]) is the completion of the space of smooth maps
Cor([0,1]) == {f : [0,1] = CV} | f € C([0,1];C"), f(1) = Uf(0)}

in the L*? norm:

1
712, = [ 1FOF + 170 d
The differential operator:

Ty Lg*([0,1]) = L2([0.1)),  Tp = ‘i%

is a closed, densely defined, self-adjoint, elliptic (hela@holm) with compact resol-
vent. If we letU € U(N) vary we get a family of differential operators and by taking

the switched graphs, a map:
T: U(N) — Lag™ (L*([0,1]) & L*([0,1]))

We will prove later that this family is in fact differentiadglCorollary4.1.11

The isotropic space we choose to do symplectic reductioh, Wity ¢ H~ :=
L?([0,1]) will be the orthogonal complement of the spaé® of constant functions.
Notice that in general this is not a subspace of the domaify,ofThe annihilator}Vy
is the spac€” & L*([0,1])  L3([0,1]) & L?([0, 1]).

First, let us check thaty; is clean withi¥y for all U. This comes down to proving
that the system

Ty(¢) =0
Jy o(t) dt =0
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admits only the trivial solution. And that is easy to do.
We look now at the intersection of the switched grapl¥pfwith the annihilator.

This means solving the equations:

TU¢ =cC
¢(1) = Ug(0)

with ¢ € CV. We get¢(t) = ict + b andic + b = Ub. Soc = i(1 — U)b and one
has solutions only for those constantdhat lie in the image of(1 — U) in which case
o(t) = (U — 1)bt + b. We have to project this to the subspace of constant furgtion

which means computing the integral:

/1 6(1) dt = 1/2(U +1)b

In the end, the symplectic reduction of the switched grapli;ofvith Wy is the

subspacéd.;; of CN @ CV described by the following:
€ Ly < x=(i(1—U)b1/2(1+ U)b) for someb € CV

This looks almost like the map that gives the finite dimenaidgkrnold isomor-

phism. The following is true. The map:

U(N) — U(N), U (1-30)3-U)"!

is a diffeomorphism and in fact an involution. If we let

U :=(1-30)3-U)" and a:=i/4(3-U)b
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then
x=((1-U)b1/2(14+U)b) = ((1 + Uy)a,—i(1 — Uy)a)

Recall that Arnold’s theorem says that the Cayley graph map

U(N) — Lag(CN @ CN), U — Ran[v — ((1 4+ U)v, —i(1 — U)v)]

is a diffeomorphism.
We conclude that the composition of the inverse of the Cagtaph map with the
symplectic reduction of the universal family;¢) =t o Ry, o T : U(N) — U(N) is the

involution of U (V) given by

U— (1-30)3-U)"

The following is a family of diffeomorphisms of the unitaryayip

CxC\{(A\ ) |\ = ul}xUN) — UWN), (A, U) — (A=pU)(=AU)""

The real hypersurface\| = |u| splits C x C into two connected components
(CxC)y :={(\ ) |sgn(|ul—|N) = £} So(1,3) can be connected witft), 1) and
therefore the previous involution is homotopy equivaleithvihe identity map.

We have therefore proved the next result.

Proposition 2.5.16. The universal family is homotopy equivalent with the indas
U(N) — Lag™ (L*([0,1])®L?([0,1])) whereU (N) is identified withlag(N) C Lag™

via the Cayley graph map.

Remark 2.5.17. Notice that the expression for the Cayley graph map in Aredlte-

orem plays a very important role in determining the homotolags of the universal
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family. This is because the group of diffeomorphismd/dfV) is not connected. No-
tice also that changing the boundary condition, for exartplép(1) = ¢(0), changes

the homotopy type of the universal family to its conjugate.

When one looks back at Arnold’s theorem, a legitimate qoass certainly what
does symplectic reduction mean for the unitary group. Weeleale this section with

the answer.

Proposition 2.5.18.LetU € U(H) be a unitary operator such that+ U is Fredholm
and letlV C H be afinite codimensional, closed subspace. Suppos&that + U)N

W = {0}. LetW* be the orthogonal complementidf and let

be the block decomposition bfrelative H = W & W+, Thenl + X : W — W is
invertible and the operatdR(U) : W+ — W+:

RU):=T—Z(1+X)Y,

is unitary. MoreoverKer (1 +R(U)) = PFPyr(Ker(1+U)) and in particular
dim Ker (1 + R(U)) = dim Ker (1 4 U).

Proof: We writel + X = Py o (1 + U)|w. The operatofl + U)|y is Fredholm as
a composition of two Fredholm operatoisy U andiy : W — H. So the image of

(14 U)|w is closed and it has the same codimensiolas H. This follows from

ind (1+U)iy =ind (1 + U) + ind iy
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and from noticing thaind (1 + U) = {0} since

Ker(1+U)=KerU(1+U")=Ker(1+U").

If we can show thaRange (1 + U) |y NW+ = {0} thenWW* would be an algebraic
complement ofRange (1 4+ )|y and so this would imply thaPy, o (1 4+ U)|y is

invertible. Let noww € W be such that

(14+0)w,v) =0 YveW

In particular this is true for = w and so:

lwll* + (Uw, w) =0 (2.5.1)

or in other word$(Uw, w)| = ||w||*> which is the equality case in the Cauchy inequality
sinceU is unitary and s@/w = Aw. Going back tg2.5.1) one sees that = —1 and
sow € WNKer(l+U)={0}.

We check thaR(U) is unitary. First, we have

XX+727Z =1
XY +2T = 0
Y*Y+TT =1

Y*X+T"Z = 0

Hence

(T = Y"1+ X221 - ZA+ X)) =1-Y'Y +Y*(1 + X' XY+

60



Y XA+ X) Y+ Y (1+ X1 - X*X)(1+X)'Y =
=Y (~14+ 04+ X)X+ XA+ X))+ 1+ X1 - X" X)(1+ X))y

The sum in the square brackets is equal to

A+ X XA+ X)) A+ X)) O+ X)) T A X)TIXX (LX) T =

=(1+X)(-1+1+X)H+(1-(1+X) ' XH)XA+X) ' =
=—(1+X)7'XA+X) '+ (1+ X)) X1+ X)) =0

and we are done proving th&(U) is unitary.

Let us take(w, wt) € Ker (1 + U). This means that

1+ X)w+Ywt = 0
Zw+ (1+T)wt = 0

Sincel + X is invertible one gets that = —(1 + X)~'Yw" and therefore

(1+Twt - Z(1+ X)) 'Yuwt =0

This means, of course, that- € Ker (1 + R(U)).

Conversely, ifwt € Ker(1+R(U)), then it is straightforward to see that
(—(1+ X)"'Ywt, wt) € Ker (1 +U).

The fact that the dimensions are equal follows from the hjiég of Py . [ker 140

O

Remark 2.5.19.If A + U is Fredholm, wheré\| = 1 is a unit complex number and

W is closed, cofinite such théder (A + U) N W = {0} then one should replace(l)
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with R\(U) = T — Z(X + X)~'Y. The conclusion is thaR, (U) is unitary and the

relationKer (A + R (U)) = Py (Ker (A 4 U)) holds, as one can easily check.

Definition 2.5.20. Let U € U(H) be a unitary operator such that- U is Fredholm

and letl be a finite codimensional subspace. Theis said to be clean withl if
Ker (14+U)nW = {0}.
Example 2.5.21.Every unitary matrixJ € U(2) can be written in a unique way as

z —A\w

w Az

where()\, z,w) € C* such that\| = 1 and|z|? + |w|? = 1. Here\ = det U. A unitary
matrix U is clean withiW := C ¢ O ifand only if z £ —1.

The reduction map associates to everg U(2) \ {U | z = —1} the unit complex
number:

1 1—|2|? 1+z
AN —w——— (=) = A2+ )\ —
- w1+z( ) “t 1+ 2 1+ 2

When\ = 1 this descends to a map

Z —w 1+ 2z

R:SU@2)\ {~1} — S'\ {~1}, 1
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CHAPTER 3

THE TOPOLOGY OF THE LAGRANGIAN GRASSMANNIAN

In this chapter we describe a Schubert cell stratificatiof@f that parallels the
one given in the finite dimensional case by Nicolaescwit.[ These cells are finite
codimensional submanifolds of the Lagrangian Grassmanwiese closures naturally
determine cohomology classes that correspond to the gereia the cohomology
group of Lag™. For the "canonical” generators of the cohomolaimg of Lag™ there

is a different stratification which is more suitable for dpintersection theory.

3.1 Schubert cells and varieties

The topological structure diag™ is intimately connected with the structure of the
finite Lagrangian Grassmanians which are nothing else butltssical unitary groups.
A detailed topological study of these spaces has been wakeerby Nicolaescu ir?[].

In that paper, the author shows that the Poincaré dualeafeherators of the cohomol-
ogy group ofU(n) can be represented by integral currents supported by sgghialic
varieties. That approach is not available in our infiniteyeinsional context. However
we have on our side symplectic reduction that reduces masteoproblems to their
finite dimensional counterpart.

In section2.5we introduced a complete, decreasing flag:

H =W,oW ;DWW D ...
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We also fixed an orthonormal bagig;, fo, ...} of H~ suchthatV.: = (f1, fo, ..., fn)
and we set; := J f;.
To everyk-tuple of positive integers = {i; < i» < ... < i} we associated the

following vector spaces
F[:<f2|Z€I>,F]c:<fl‘Ze]c>andH;_:<fl‘Z€I>@<ej‘je]c>

Definition 3.1.1. Let I = {i; < iy < ... < i} be ak-tuple of positive integers. Set

ip := 0 andi,,, := co. The weight of the:-tuple is the integer:

Np=) (2i—1)

iel

TheSchubert cellof typel denoted”; is a subset of ag™ defined by the following

incidence relations with respect to a fixed flag
Zr={Le€Lag” |[dmLNW;=k—p, VO<p<k Vjsuchthat, <j <i,}

Remark 3.1.2.One way to look at the incidence relations is by thinking that-tuple
(11,19, . ..,1;) records the "nodes” in the flag where the dimension of the'setetion

with the lagrangiarl. drops by one. O

Remark 3.1.3. Notice that the orthogonal complemeént, of W, is naturally a la-
grangian inHy,, := WX & JW:- andW,, c Hy, will play the role of H~. The flag

Wy = H~ > W, D W, induces a complete, decreasing flagiof :
Wo:=WL oW, :=Wy/W,D...0 W, :=W,/W, = {0}

We letZ;(n) be the Schubert cell ifag(Hy, ) described by the same incidence rela-

tions as the setg; above withi¥; replacingi;. O

64



The following description of Schubert cells proves thatythhee actually Banach

spaces when regarded in the right charts.

Proposition 3.1.4.The Schubert celt; is a closed vector subspace of the Arnold chart
AH} of codimensionV;. More preciselyi’;4 € AH; N Zr if and only if the bounded

self-adjoint operator satisfies the linear equations

(Afie) =0,Vj<iiel jel

Proof: We will show first thatZ; C AHI+. Let L € Z;. Notice that(L, H, ) is a
Fredholm pair by Proposition.2.15sinceH; is commensurate with/ —.

We will show thatZ N H;” = {0} thus proving thatl, = ', € Ay with A €
Sym H; .

Let us remark thal N F;- = {0} because otherwise the dimensionlof WV

would drop at "nodes” other thaf, is, . . .4, (takev = > . _,.a;f; € LN Fre with

J€el
p=min{j € I°]|a; # 0} thenv € LNW,_1 \ LN W,). This is saying thal. N H~
is the graph of an operat@r : F; — Fie.

To seethat. N H; = {0}, letz = v; + vy € LN JF; & Fye. ThenJz € L+ and

so(Jx,w + Tw) = 0, for all w € F;. This implies:
(Ju,w)y =0Y w € Fy

We getv; = 0 and sar = v, € L N Fre = 0, thus finishing the proof that = 1";4 €
AH}F.

LetnowA € Sym (H; ) suchthat';, € Z; and let
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Ay Ay
Ag A4

A:

be the block decomposition of relative toH;” = F; @ J Fre.
One checks immediately that the intersection, N H~ is just the graph of the
restrictionJ As|ker 4, Which has the same dimensionldsr A; C F;. SinceF); has

dimensionk, one concludes that

dlmFJAmH_:k‘<:>A1:O<:><Afl,f]>20, VJSZ, Z,]EI

To prove the rest of the relations, i.€Af;,e;) = 0, Vi € I, j € I°, j < iwe

observe first that

I'yAaNnH = FJA3 and(Afi,6j> = _<JA3fi7fj>‘

The graph ofJA; = T : F; — Fj. satisfies the incidence relations if and only if the
required coefficients vanish, otherwise we would have dsindrops at the wrong

places again. O

Remark 3.1.5.For every two-sided symmetrically normed idéate can defingZ; (J) =
Zr N Lagy . Since the next results are true @, as well as fotZ;(J) making only the

minimal changes, we choose to work with to keep the indices to a minimum.

Notice thatZ; ¢ Lag"™ for alln > max {i | i € I} so we could look at the sym-

plectic reduction of7;. We record the obvious:

Lemma 3.1.6. For n > max{i|i€l} the symplectic reduction

R : Lag"™ — Lag(Hy ) takesZ; C Lag"™ to Z;(n). The strongeR~'(Z;(n)) = Z;

66



is also true.

Proof: Forn > max{i|i € I} we have that; C W, and soA,+ C Lag"" (see
LemmaZ2.5.1). The reduction of the Arnold chart arourfd,” is the Arnold chart
aroundH; (n). The reduction in the Arnold chart being just the projectitie lemma

easily follows. O

Definition 3.1.7. For everyk-tuple I = {iy,is,...,ix} the Schubert varietyis the

closure ofZ; in Lag™, denoted”?;.

Lemma 3.1.8. The Schubert variety; can be described by the following incidence

relations:

Zr={Le€Lag” |[dmLNW,>k—p, V0O<p<k, Vjsuchthat, <j <i,

whereiy =0, iy =occandi, € I, V1 <p <k}

Proof: The fact that the closure is included in the right hand sideésnsequence of

the upper semi-continuity of the functions:
L—-dmLNH", L—=dmLnW,, ... L—=dmLnNW,

Conversely, let us notice that farbig enough we have the following obvious equali-
ties
Lag"" NZ; = cl,(Z;) = RY(Z;(n)) wherecl, (Z;) is the closure ofZ; in Lag"™.
Now, a lagrangian that satisfies the incidence relationséddmma is in soméag""
and its reduced space will satisfy the same incidence oelativith respect to the flag
W > W; D ... > W,. But this means it is irZ;(n), since the finite version of the

lemma is true by a result fron2§]. This concludes the proof. O
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Remark 3.1.9. The Schubert variety is not included in any of the clean feis" .

Nevertheless, the intersection has a very simple desmmipli; N\ Lag"" = R=1(Z;(n)).

We can now describe the strata in the Schubert vadgtyNotice first that ifZ; C
Z;then|J| > |I] since|J| = dim LN H~ foreveryL € Z;. SayJ = {j; < j» <
o< giyandl = {i; < iy < ... < i} withl > k. We deduce that, < j, ;1 Since
Ji—r+1 records the node where the dimension of the intersectidn®t” ; with the flag

drops tok — 1 and similarlyi, < 5, forall 1 < s < k. We record this:

Lemma3.1.10. a) If Z; c Z;then|J| =1 > k = |I| andi, < ji_j., for all

1<s<k.

b) If Z; C Z; has codimensioN; + 1 in Lag~ whereN; = > ics(2i — 1) is the
codimension of7; in Lag™ then|J| = k£ + 1, j; = 1 andjs; = i, for all

1<s<k.
In the proof of the Theorer.5.14we used the following:

Corollary 3.1.11. The fundamental Schubert variefy, can be described by the simple
incidence relation:

Z, = {L| dim(LNW,_;) > 1}

Proof: LetJ = {ji,...,5}, L € Z;andZ; C Z,. The previous lemma tells us
thatj; > n and so the node where the dimension of the intersectidnwith the flag
drops to 0 is bigger than — 1. This proves thé c” inclusion. The other inclusion is

obvious. OJ
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3.2 The cohomology ring and geometrical representatives

Our planis to define geometrical representatives for the mgmrtant cohomology
classes ofLag™, i.e., for certain canonical generators of its cohomolagg which we
call transgression classes. The candidates are of cowrssrttified spaceg;. We
identify the class whose underlying space&iswith a class expressed in terms of these
generators. When pulled-back to oriented, closed marsifold suitable maps, each
of these cohomology classes has a Poincare dual that isygatse but the homology
class determined by the preimage of theZgtogether with an induced orientation.

All cohomology groups are considered withcoefficients.

Proposition 3.2.1. (a) The inclusion map

Lag(Hy,) — Lag™, L— L+ JW,

induces an isomorphism of cohomology groups

Hi(Lag™) ~ H(Lag(Hw,))

forqg <2n —1.

(b) A cohomology class i#/?(Lag™) is uniquely determined by its restriction to

Lag(Hyw, ) via the inclusion map.

Proof: (a) By proposition2.5.9we have that the inclusion induces a homotopy
equivalence ofag(Hyy, ) with Lag"™ = Lag™ \Z,41.

On the other hand,,. , is a stratified subset whose top stratum has codimension
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2n + 1 hence by the extension property, see Proposkidn/, the natural map

H(Lag™) — H'(Lag™ \Zy+1)

is an isomorphism.

(b) It follows from (a). ]

For the rest of the section we will identifyag( Hyy, ) with the unitary groug/(n)

via the Cayley graph map.

Remark 3.2.2. Technically speaking we have a canonical isomorphism betweg( Hyy, )
and/(JW.) (whereJW L is the horizontal subspace 8y, ) given by the Arnold the-
orem and an identification df (JW,") with U(n) via a non-canonical unitary map
JW=L ~ C". From a cohomological point of view it does not matter whag timitary

map is since any other choice will induce the same isomonphis

H*(U(JWy)) = H*(U(n))

simply because every unitary map on a vector space is homedtothe identity. [

Following [29], the groupd/(n) have canonically defined cohomology classes
H?*~Y(U(n),Z). Onthe product® x U(n) there is a rank. complex vector bundI&,,
called the universal bundle. The bundle is obtained by magldut theZ action on the
Z-equivariant bundle:

RxU(n)xC"—RxU(n)
The action on the total space is given by
k(t,Uv) = (t+kUU), VEtUv)eRxUn)xC", keZ
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whereas on the base spaZegcts in the obvious way on tfie component. The classes

x; are transgressions of the Chern classek,gfi.e.,

zi(n) = /S ()

The classes;(n) € H*~'(U(n)), 1 <14 < n, generate the cohomology ring &6fn),

ie.,

Notice that via the canonical inclusion
St x U(n) — S* xU(n+1)

the bundler,, ., pulls-back to give a bundle isomorphic &, ® C. Therefore the class
z;(n + 1) pulls back taz;(n).
This compatibility with the natural inclusions of the class;(n) prompts the fol-

lowing definition.

Definition 3.2.3. The fundamentdlansgression classemn Lag™ are the unique coho-
mology classes; € H*~!(Lag™) that pull-back to the classes(n) € H*~1(U(n))

via the induced map
U(n)—Lag™, zi(n) = i"(z)

wherei is the composition of the natural inclusidrag(n) — Lag™ with the Cayley
graph diffeomorphism.

For every set of positive integefs = {iy, ...}, define the product class €
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HN1(Lag™) to be the cup product of fundamental transgression classes:

Zr = Zig NZig N oo N 24

We now turn to our Schubert varieti&s. In the Appendixs.1we describe in detail
how one can construct cohomology classes out of a coorigstiadified space without

singularities in codimensioh We summarize the main definitions and procedures:

Definition 3.2.4. Let X be a Banach manifold. Auasi-submanifoldof X of codi-
mensionc is a closed subsét” C X together with a decreasing filtration by closed
subsets

W=F"oFoFo>FcC...
such that the following hold.
o Jl =32
e The strat#8* = F* \ F**1, are submanifolds ok of codimensiork + c.

The quasi-submanifold is calleworientableif 8¥ is coorientable. A coorientation

of a quasi-submanifold is then a coorientation of its toptsim.

The main ingredients to define a cohomology class out of aieoi@able quasi-

submanifold are:

e A Thom isomorphism of the top dimensional strat@fpwhich is a submanifold

and closed subset of \ 2. This depends on the choice of a coorientation.

e An extension isomorphism in cohomology, over the singuliatsm 32, which

exists becaus#? has codimension at least two bigger tI$in
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A choice of a coorientatiow of the top stratum defines a Thom isomorphism (of

the closed submanifols? ¢ X \ F2):

HO(8Y) ~ HE(X \ F2, X\ %)

On the other hand by Propositidnl.17the quasi-submanifold? has homological

codimension at least+ 2 and so the restriction map

H(X) — H(X \ F%)

is an isomorphism. The cohomology class determined by thelpaw] is the image

of 1 € HY(8°) via the composition:

HO(8Y) ~ HY(X \ T2, X\ F¥) — HY(X \ F?) ~ H(X)

Remark 3.2.5. A legitimate question is what role does the filtration playhe defini-
tion of the cohomology class? In the appen@li&we show that if a quasi-submanifold
W comes with two different filtration§lV, &) and (W, §) which have common refine-
ment(T, H), where by refinement we understand thét c 52 U G2 and the coorien-
tation oniW \ H? restricts to the coorientations &f \ 2 andWW \ G then they define
the same cohomology class. It is possible that any two fittnatof a quasi-manifold

have a common refinement. However we could not prove that.
To state the next result we introduce a bit of notation anahit@ology.

Notation:

Z}) = Z[UZ[Ul, 82[ 227[\2})
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Definition 3.2.6. We call thestandard filtrationon Z; the following

FO =7 Fl=932.=07;; Fh = U Zy.
Z;CZ1
Nj>Ni+k
Theorem 3.2.7.The standard stratification on the Schubert varigtyturns it into a
coorientable quasi-submanifold kg~ of codimensionV;. There exists a canonical
choice of a coorientatio; on the top stratum such that the following equality of

cohomology classes holds

[71, u)[] = Z7r.

Before we go into the proof, a short digression on the resil{89)] is necessary.
In that article, Nicolaescu uses the theory of analyticenis to build out of the finite
dimensional Schubert variety,;(n) C Lag(n), endowed with an orientation, a homol-
ogy class. He shows that this class is Poincare dual to teexclén) € HY1(Lag(n)).

We summarize the main results:

Proposition 3.2.8. The setsZ;(n)° are orientable smooth, subanalytic manifolds of

codimensionV; in Lag(n) .

Proof: See P9, Lemma 5.7. O

Proposition 3.2.9.The closed set ;(n) with the canonical orientatiow; is an analyt-
ical cycle and so it defines a homology classdp_ v, (U(n)) which is Poincare dual

tox;(n).

Proof. See P9, Theorem 6.1 O
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It is clear that an orientation oh;(n)° induces a coorientation on the same space

by using the normal bundle first convention.

Proof of Th. 3.2.7 We considem > 1/2(N; + 1) and we look at the symplectic
reduction®,. We haven > maxi € I and soZ? C Lag"". By Lemma3.1.6we
have thatR,!(Z?(n)) = Z3. SinceR, is a vector bundle, the normal bundle ¢
is canonically isomorphic with the pull-back vig, of the normal bundle of;(n)°.
Hence it induces an orientation. With this coorientationynwe get a cohomology
class|Z;,w;| € HY'(Lag™). By Propositior8.2.1this class is uniquely determined by
its restriction tolag(Hyy,, ).

Now, the inclusion map : Lag(Hy, ) — Lag™ is transversal t&; and the fol-

lowing set equality holds

’i_l (71) = 7[(71)

To see why itis transversal notice that the imagéasthe zero section, i.&(Lag(Hy, )),
of the symplectic reduction. Itis therefore enough to prbregtransversality of ag( Hy, )
with Z; N Lag"™ (which is a stratified set with a finite number of strata). Tikitrue
because of Lemma.1.6

By Propositions.1.15we have

i(1Z1,wi]) = [Z1(n).wi(n)] € HY (Lag(Hy,))

By Nicolaescu’s results the class on the right equalsV). Since inLag™ there is

another class that restrictstg(/V), namelyz; we get the desired equality. O

We make precise the (co)orientation conventions. We censite Schubert vari-
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etiesZ;(n) as subsets dff (n) and, as usual, we use the Cayley graph diffeomorphism

to transfer the structure (here the (co)-orientation) &0Skhubert varieties dfag(n).

Orientation conventions I: The space of unitary operataign) is naturally oriented
as follows. The Lie algebra(n) is the set ofn x n skew-symmetric matrices. We

identify it with the set of self-adjoint matricesm(n) by the map:
u(n) — Sym(n), B +— —iB

Let

01,...0,, (aij)1§i<j§m (ﬁij)1§i<j§n : Sym(n) — R

be the linear functionals a$ym(n) defined as follows:
QZ(A) = <A€i7 6i>, Ozij = R6<A6i, 6j>7 ﬁij = Im(Aei, €j>
The vector spac&ym(n) is oriented by the following element ¢‘("2(8ym(n))*.

LA NG A\ (A By)

1<i<j<n

In [29) (see Example 5.5) L. Nicolaescu introduced coorientation all the Schubert
cells Z;(n) of U(n) using the basige, ..., e,}. Roughly the idea is the following.

First, one identifiediqU (n) with Ty, U(n) via left multiplication byU; where

id on ({e;j|jel})
—id on ({e;|i€l})

U] =

Second, one uses the fact that in the Arnold chart centeréd thte equations for the
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Schubert cellZ;(n) are linear. The equations describifig(n) in this chart are exactly
the ones given by Lemma.1.4 The coorientation is induced by the linear exterior

form of rank N; onT3qU (n) (thought as the space of self-adjoint matrices).

/\91'/\ /\ (ki A Bri)

el k<ijiel

"transported” via left multiplication by/; to 7y, U(n). In other words the differential

at0 of the composition

Ur-

Sym(n) ——u(n) —== U(n) —==U(n)

takes the previous form to a coorientation form#fn) atU;.

We saw in this section that the coorientation ©r{n) induces a coorientation on
the Schubert celll; € Lag™. On the other hand in Sectidh3 we will see that at
least for the Schubert cells, we have a natural coorientation coming from an explicit
description of the normal bundle. The two coorientationsZgrare in fact one and the

same. m

Definition 3.2.10. The triple composed of the Schubert variéfy with the standard
filtration and the coorientation; is called the Schubert cocycle or the geometric rep-

resentative of;. The cohomology class it represents is denoted by

[7[, u)[].

We consider now families of vertical, Fredholm lagrangiaBy that we simply
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mean smooth maps

F: M — Lag™

Definition 3.2.11.Amap F : M — Lag™ is said to be (standard) transversaltpif

it is transversal to every stratum in the standard stratifina

Lemma 3.2.12. Any smooth family : M — Lag~ can be deformed by a smooth

homotopy to a family transversal 10,

Proof: SinceM is compact, transversality with; means actually transversality of the
reduced family withZ; for n big enough. Transversality with Whitney stratified spaces

is an open, dense condition in the space of all smooth rGaps/ — Lag(n). O

Proposition 3.2.13.Let M be a closed oriented manifold and IBt: M — Lag™ be
a family transversal toZ;. ThenF~1(Z;) is quasi-submanifold o/ with a naturally

induced coorientatiod™w; and

[F~YZ;), F*wi) = F*[Z1,w;]

Proof: The pull-back of the normal bundle 87 is naturally isomorphic with the
normal bundle t&#"~!(Z?) and the coorientatiof™w; is the one induced via this iso-

morphism. For the rest, see Propositiofi.15 O

In the infinite dimensional context, Poincaré Duality does make sense. Instead
we aim for an expression of Poincaré duality for familiedagfrangians parametrized
by a closed, oriented manifoltl/. One way to build homology classes out of strati-
fied spaces is via the theory of analytic cycles, which weaalyementioned, used by

Nicolaescu to prove the duality;(n) = x;(n).
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Another way, which is more appropriate to the point of viewtake in this paper
is via Borel-Moore homology. In the Appendix1we describe the relevant aspects.

Inside an oriented manifolti/ of dimensiom, any oriented quasi-submanifdfdof
dimensiond defines a Borel-Moore homology class as follows. Every simamiented
manifold S of dimensiond has an orientation clags] € H?M(S). In the case of an
oriented quasi-submanifoldl of dimensiond, S := F\ F? represents the top stratum.
This class can be extended to a clas#ji" (F) because the absence of singularities in
codimension one implies that we have an isomorphisft! (F) ~ HPM(S). Finally,
this class can be pushed-forward to a class in the ambienedga It turns out that
when M is closed and oriented this class is Poincaré dual to thernology class
determined by with the coorientation induced in the obvious way.

In the case whef¥ is compact, e.g. whei/ is compact, then the Borel-Moore
homology group off coincides with the singular homology group.

We summarize our discussion:

Theorem 3.2.14.Let FF : M — Lag™ be a smooth map from an oriented, closed
manifold M of dimensiom to Lag™. Supposé- is transversal taZ ;. Then the preim-
age F~'(Z;) has a naturally induced orientation and so it defines a homplcass

[F~Y(Z;)|m € H,._n, (M) which is Poincaé dual to the clas$™[Z;].

Remark 3.2.15. The fundamental class of an oriented quasi-submanifoldoeade-
fined without appeal to Borel-Moore homology, provided sthirgy stronger is true.
Supposef = FY 5 F' = F2 5 ... D F*¥is an oriented quasi-submanifold of dimen-
siond such that every paifF?, ') is a good pair, i.e. there is an open neighborhood
U c F° of ! that retracts t&F?. For example, if the stratification satisfies the Whit-
ney condition then Goresky has shown thatan be triangulated in such a way that the

triangulation respects the filtration (s€€], Prop.5). LetU be a neighborhood df*!
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in J that retracts t&F*. Then the Poincaré duality for a manifold with boundaryssay
that
H'(F\U) =~ Hyi(F\U,0(F\ U))

This implies thatH'(F \ F') ~ H, ;(F,F") (both are isomorphic with thel — 7)-
th Borel-Moore homology group of \ F'). Therefore, the canonical clagsfrom

H°(F\ F') gives aclasa € H;(F,5"). The map

Hy(F) — Hy(F, T = Hy(F,F?)

is an isomorphism because there are no singularities imuakionl, i.e. ' = F2.

For the proof one uses the fact thidt, 5*1) is a good pair. Then one can "extend” the

classa to a class i, (F) which is the fundamental class of the quasi-submanifold.
The following considerations justify the fact that our gesisomanifolds fit into the

picture just described. For a mé&p: M — Lag~ transversal to the quasi-manifalty

the preimage’~*(Z;) is always a Whitney stratified space. To see why it is Whitney

stratified notice that the compactnessidgfimplies thatF (M) c Lag"™ for n big

enough. It is easy to see that the transversalitif ofith Z; implies the transversality

of I with Z;(n) and alsoF~*(Z;) = F~1(Z;(n)). Now, Z;(n) is a Whitney stratified

space and Whitney property is preserved under transvasidgcks. ]

3.3 Generalized Reduction

In this section we take the first steps towards doing intéi@etheory. Recall that
the standard stratification ¢f; has as its top stratum the s&t. It turns out that at
least in the case wheid = 1 there is a better stratification af,, wherek € N*, which

comes with a natural coorientation and is more suitablett@ersection theory. Here we
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define this stratification and describe the normal bundlé@®htaximum stratum. This
top stratum of the new stratification contamgand it also defines a quasi-submanifold
structure forZ;. By Remark3.2.5each of the stratifications defines the same cohomol-
ogy class.

In section2.5we described the process of symplectic reduction with defisotropic
space as a differentiable map going from the set of cleamategans to a finite dimen-
sional Lagrangian Grassmannian. The symplectic reducsianwell defined process
on the entireLag ™, the trouble being that it is not a continuous map everywheosv-
ever it is continuous and in fact differentiable on certaibreanifolds ofLag™. First a

definition.

Definition 3.3.1. For a fixed, finite codimensional of codimensjosubspacél’ ¢ H~
let

Lag" (k) :={L € Lag™ | dimLNW =k}

be the space of lagrangians that interdéctlong a space having fixed dimensibn

We call these lagrangiariscleanor justcleanwhenk = 0.

Remark 3.3.2. For a complete, decreasing flag

H =WyD>W; DWyD

we have

77 C Lag™—1(1) C Z,
Compare with Corollarg.1.11

In the rest of this section we will prove thang'" (k) is a coorientable submanifold
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of Lag™ and we will identify the normal bundle aag" (k) with a certain tautologi-

cally defined bundle ovetag" (k).

Lemma 3.3.3.For everyk-clean lagrangian’. letV = LNW andV* be its orthogonal
in . ThenL is clean with the isotropic spadé’;, := JV ¢ V*.

Moreover, the symplectic reduction with coincides with the symplectic reduction
with W, that is if

Rw (L) = Range Py, | Lawe

then
Rw (L) = Ry, (L)

Therefore it is a well-defined map : Lag" (k) — Lag (Hyw).

Proof: The first claim is obvious. For the second notice that, = Hyy .

What we have to compare are the projections of

LON(JILNW)® Ve Hy)andL N (LNW) & V@ Hy)

onto Hyy. Let us notice that N (J(LNW) & V+ @ Hy) = LN (V1 @ Hy ). Indeed

if one writes
r = a + b + ¢

L J(LNW) vt Hy,
notice thatu € JL 1. L anda L b, ¢ soa = 0.
Now Py, (LN (V@ Hy)) C Py, (LN ((LNW) @ VL@ Hy)) obviously and

the other inclusion follows from noticing that if



thenz —a € LN (V@ Hy) andPy,, (z) = Py, (x — a) = c. [

Corollary 3.3.4. For every lagrangianL € Lag" (k) the intersection. N W has
dimension equal t& + p = dim LN W + 1/2dim Hy,. Moreover, using the same

notations as in the lemmd, N W* decomposes orthogonally as

LNWY=LNnWeaeLn (Ve Hy)

Proof: The image of the projectio®y,, : L N W* — Hy has dimension equal to
1/2dim Hy and the kernel is just N .

Clearly the two spaces that appear in the sum are orthogowlathey are both
subsets of. N W«. So it is enough to prove thdtN V+ @& Hy has dimensiop. But

we saw in the proof of the lemma that

LNn(V*eHy)=LNJLONW)o Ve Hy = LAWY

Moreover, the projectioPy,, : L N W — Hy is injective and its image is a

lagrangian infy,, which has dimensiop. O

The notations we used in the previous lemma will be used tirout this section.

Definition 3.3.5. For every lagrangiad € Lag" (k), letV := LN W, V* be the
orthogonal complement df in W and let/ be the symplectic reduction @f with 17/.
The spacely := (@ V @ JV* is called theassociated lagrangiaror simply the

associate

Lemma3.3.6. a) ForanyL € Lag"(k), the associated lagrangiarn,y,, is in

Lag" (k). Moreover, everyl € Lag" (k) is in the Arnold chart of its asso-
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ciate and it is given by the graph ofX where X € Sym(Ly ) has the block

decomposition:
0 0 X3
0 0 0
Xy 0 Xy

b) LetW = V @ V+ be an orthogonal decomposition &f such thatV is k-
dimensional and let ¢ Hyy, be a lagrangian. Theli & V @ JVL € Lag" (k)
and the setCag" (k) N Aysye e is described in the Arnold chart by linear
equations. More precisely, givéhe Sym (¢ @ V @ JV 1) thenl' ;5 € Lag" (k)

if and only if itsV' x V andV" x ¢ blocks are zero.

c) The spacéag” (k) is a submanifold of.ag™ of codimensiork? + 2pk and the

symplectic reduction map:

R : Lag" (k) — Lag(Hy), L — Range Py, |Lawe

is differentiable.

Proof. a) The fact that the associated lagrangian is indeed a Igigmarns a simple
check. NowLy N W =V, hence clearly.y is in Lag" (k).

For the second claim, notice that, V1) is a Fredholm pair and’* and L;;, ar
commensurable, s@., L) is a Fredholm pair. Moreover the intersectibm Ly is

trivial. Indeed let
r = a + b + ¢

L Jl JV %

Thenb € L+ and sob = 0. Fromxz = a + c it follows thatz € L N W* and

a = Py, (1) € £s0a = 0. Thisimpliest = ce LNV+ = {0}.
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For the last part notice that if is the graph of an operatofS : Ly — Li
then /S|, = 0. Simply because¢/S = P, o (Pr,|r)~*. On the other hand
V c LN Ly. This and the self-adjointness implies that the middle ro@ eclumn
of S are zero. The vanishing of the top, left block follows frone flellowing consid-
erations. The symplectic reduction of any lagrangian inAheold chart of Ly, with
Wy = JV @ V+isjust the graph of thé x ¢ block of the self-adjoint operator aby;
that givesL. But the only operatof — ¢ for which ¢ := Ry, (L) = Rw (L) is the

graph of, is the zero operator.

b) Clearly/ @ V & JV+ € Lag" (k).
Now, every lagrangian in the Arnold chatt,, « ;1-+ IS just the graph of an operator

JS whereS € 8ym ({ &V & JV+). SoS has a block decomposition

Sg,g Svj SJvJ_l
S = SZ,V Sv,v SJVL,V

SZ,JVJ- SV,JVJ- SJVJ-,JVJ-

The conditionv + JSv € W wherev = (vy, vy,v3) € £ &V @ JV+ implies that

the sum
U1 + (%) + (%] + (JSg,ﬂ)l + JSVJUQ + JSJVJ_75U3) +
14 1% JV+ Jl

(JSeyvr + JSyyve + JSyve yus) +  (JSy v+ JSy jvive + ISyt jvivs)
JV vVt
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isinV & V=+. Sincel e JlpV @ JVE LV @V we get

V1 = V3 = (JSg,ﬂ)l + JSVJUQ -+ JSJVL’gvg) = (JSg,Vvl + JSV’V/UQ -+ JSJVL7V/U3) =0

andwv, + (JS&JVLUl + JSV7J‘/LU2 + JSJVL’JVLU3) cVavt

We conclude that in order far+ JSv to be inJV one must have, € Ker 7" where
T = (Sye,Svy) : V. — L@ V. AlsoI';s N W is the graph of the restriction
(JSy.jvi|kerT). The only way the graph of Sy, ;v 1 |ker 7 Can have dimension equal to

the dimension ot/ isif KerT' = V, that is

(Svie,Svv) =0

Hence the intersectiad gy 51+ N Lag" (k) consists of graphs of operators whose

V xV,V x ¢£and? x V blocks are zero.

c) Every lagrangia € Lag" (k) is in the Arnold chart of its associate which is of
the type required by pabi. In these chart€ag" (k) is described by linear equations
and one can very fast see that the codimension is the onatedic

In the Arnold chart off @ V @ JV* the symplectic reduction of any lagrangian
Lo € Lag" (k) with W is the graph of the projection onto tiex ¢ block and the

differentiability follows. O
We would like to say something about the diffeomorphism tgp&ag' (k). For

that end let us notice that beside the symplectic reducign,there is another natural

map one can define dbag" (k) namely:
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D: Lag" (k) — Gr(k, W), D(L)y=LNW

whereGr(k, W) is the grassmannian d@f-dimensional subspaces of. Before we
proceed to study this map let us recall a few well-known fattsut the infinite grass-
mannian.

For every Hilbert spacé/ the setGr(k, H) gets the structure of a metric space
by considering each subspace being represented by thesjgonding projection and
considering the norm topology on the set of all these prajest It is endowed with

the structure of (complex) Banach manifold by the followswmgple lemma:

Lemma 3.3.7. For everyk-dimensional subspadg C H~ the map
Hom(Vg, Vi) — Gr(k, H), T —Tr

sets a homeomorphism betwdéom (Vy, Vi) and{V € Gr(k, H) | V N V3" = {0}}

which is an open subset 6ft(k, H).

Proof: WhenV N V- = {0} the orthogonal projectiod®, |, : V — 1} is a linear
isomorphism sd is just the graph of a linear map frohj to V;-. Now the condition

V N Vi = {0} impliesV, N V+ = {0}. Otherwise, due to the dimension constraints
Vo + V+ would be a proper subset @&f which, by taking orthogonal complements
would say that’ N Vit # {0}. ButV N Vi @ Vp N VL = {0} is equivalent with
Py — Py isinvertible and that proves th@t” € Gr(k, H) | VNVz- ={0}}isan open
set. The continuity of the maps is immediate sinceffhge can be computed explicitly

in terms of " and7T™. O

Corollary 3.3.8. The tangent space 6fr(k, H) is naturally isomorphic with the ho-
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momorphism bundle associated with the tautological buadie its orthogonal com-
plement,

T Gr(k, H™) ~ Hom(r,775)
wherer := {(V,v) |ve V} C Gr(k,H) x H.
We will denote the open sefd” € Gr(k, H) | V NV~ = {0}} by A7,

Definition 3.3.9. Thegeneralized reductiors the map:

R : Lag" (k) — Lag(Hyw) x Cr(k, W)

L — (Range Py, (LNW*), LN W)

Remark 3.3.10. Notice that in the casé = 0 we get what we called symplectic re-
duction since the second component is just a point. This isw#énprefer to keep the
notationXR. In fact to eliminate any possibility of confusion we will niete symplec-
tic reduction from now on byR' since that is the first component in our generalized

reduction.

The generalized reduction behaves very much like the systipleeduction mean-
ing it inherits the structure of a vector bundle whose fibemiteidentify in a moment.

First let us see th&k comes with a natural section namely

S : Lag(Hy) x Gr(k, W) — Lag" (k), V) —=taoVeJvh

Every associate lagrangian lies on this section.
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Theorem 3.3.11. (a) The restriction to the image 8fof the tangent space éfag" (k)
can be naturally identified with the vector subbundlé/otag™ whose fiber at
(@ V @ JVE consists of self-adjoint operatos € Sym(¢ & V @ JV1) which

have the following block decomposition:

S, 0 S;
S=10 0 S
Sy Sz Sy

(b) The generalized symplectic reduction is differengaid(Ker dR)|cag(my)xcre,w)
can be identified with the vector subbundlgatag" (k) | Cag(Hw)x Gr(k,w) WhOSE
fiber at¢ © V @ JV+ consists of self-adjoint operatosc Sym(/ &V @ JV )

which have the following block decomposition.

0 0 S;
S=1 0 0 0
Sy 0 Sy

(c) The natural map
N : (Ker dR)|gag(rw )<y — Lag” (k),  NU@V @ JVES) =T

is a diffeomorphism that makes the diagram commutative
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(Ker dR) }Lag(HW)XGr(k,W) Lag" (k)

T

Lag(Hw) x Gr(k, W)

(d) The spacéag" (k) is diffeomorphic withCag(Hy,) x ()P @ Sym(7) where

7+ is the orthogonal complement of the tautological line beraterGr(k, 1W).

Proof: (a) This is obvious since as we saw in the proof of the Len®%ag in the
charts centered dt = ¢ © V @ JV* the manifoldCag" (k) can be described exactly

as the set of those self-adjoint operators with the claimecdkdecomposition.

(b) In what concerns the differentiability, we only have t@ye that the second
componentR?, is differentiable. For that we again send to the proof of hem3.3.6
where we saw that in the Arnold cha#,. -+ the intersection’ ;s N W is just
Lss, . foreveryS e Lag" (k).

The second claim is also obvious when one works in the Arnbédts centered at

L = (V@ JV+ since thenl R is just the projection on théx ¢ andV x JV -+ blocks.

(c) We construct an inverse fé¥. To everyL € Lag" (k) we associate the la-
grangian/ & V @ JV+ whereV = L N W and/ is the symplectic reduction with’.
In the Arnold chart centered &t V @ JV* the lagrangiar. is a graph ;¢ whereS

has to be of the type:

0 0 S;
S=1 0 0 0
Sy 0 Sy
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Indeed, according tothe Lemm&B8.6 V = LNW = Lsy oo andsoJSy jyL: V —
V1 has to be zero. So the inversefoassociates td. the lagrangiad @ V @ JV+
and the two operators3, and S, which are the projections onto thé, JV/+) and
(JVL, JVE).

(d) In (b) and (c) we have identified the fiberohg" (k) overLagy, x Gr(k, W)
at(¢, V) with the vector spacHom(¢, JV+)@&8ym (JV+). We know that the tautologi-
cal bundle ovefag" (k) is naturally trivializable so the bundle with fioHom (¢, JV*)
over Lagy, ~x Gr(k, W) is naturally isomorphic with the bundBom(W+*, JV+)
where the lagrangiall” € Lag(Hyy ) is just the orthogonal complement @f in H~.

A choice of a basis ofil’+ proves thatiom (W, JV+) is in fact(7+)?. O

Example 3.3.12.We will describe the spacesag' (k) whendim H = 2. The spaces
Lag" (0) are open subsets dfag~ and were described in secti@rb.

Let H = C? andW; = (e,). Then
Lag (1) = Zyy U Zyy
is a3-dimensional sphere minus a point. The point is
Lagf™ (2) = Zg1,9)

In terms of unitary operators these spaces correspondd@Eeperatord/ for which

Ker 1 4+ U has dimension or 2.
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Another non-trivial space which has the diffeomorphisnetgbthe circle is
Lagwl(l) = Z{Q} U Z{Lz}.

One of our general goals is to describe how one can do inteseg¢beory inLag™ .
We would therefore need a description of the normal bundigzef" (k) in Lag™. It
will be enough to describe a splitting of the differentialtbé inclusionCag' (k) —
Lag™. We have a canonical choice for this splitting in the chalda@the zero section
as the Theoren3.3.11shows. In order to find a global characterization we will use

transition charts. The next two lemmata are very important.

Lemma 3.3.13.Let L, L, € Lag™ be two lagrangians such thdt € A;,. Then the
differential atL of the transition map between the Arnold chart centerefi@and the

Arnold chart centered at is the map:
dLSym(LO)ﬁSym(L) dL(S):PL|LOOSOPLO|L

Proof: Let L, € A;, N .A;. This means that, can be described both &5y where

X € 8ym (Lp) andl" ;5 whereS € Sym (L) Itis not hard to see what should be.
JS =Ppio(I,JX)o[Pyo(I,JX)]™*

The image of the mapl, JX) : Ly — H gives the lagrangiai; and the inverse of
Pp o (I,JX) is a well-defined operatat — L, sincelL, is in .A;. We consider the

function:

F:8ym(Ly) — 8ym (L),  F(X)=—JPpio(I,JX)o[Pro(I,JX)|!
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Notice that forXo = —J P, o (Pr,|r)~" we haveF'(X,) = 0 sinceXy € Sym (L) is

the self-adjoint operator such that= I, x,. The differential ofF" at X, is
dx,F(S) = —=JP 1 0(0,JS) o [PLo (I, JXe)] = JPio(I,JXg)o[..]=

= —JPy. 0 (0,J8) 0[Py o (I, JXy) ™"

The reason for the cancellation of the second term is thatrthge of(1, JX;) isin L.

It is easy to see thaf’;, o (I, JX,)]~' = Pp,|., the restriction tal of the projection

onto Ly. Also sinceP;(Jv) = JPp(v) for any lagrangian. and for anyv € H we

getthat—JP,. o (0,.JS) = P, o S. So
dx,F(S) = Prlp, 050 Pryly

and this is ourl;,. O

It is convenient to have another description of the difféisdof the transition map.
To this end let us recall that Arnold’s theorem provides aocéral unitary isomor-

phism:

~ 1
U:Ly— L, Uv) := 5[(1+U)v+i](1—U)v], Vv e Ly,

whereU € U(Ly) is the Cayley transform of the self-adjoint operatqy € Sym(Ly)
that givesL as a graph of/ X, : L, — Lg. Notice first that the projectiof; |, has
a description in terms of the same self-adjoint operafgr The orthogonal.* is the

switched graph of-(JX,)* = X,J. So in order to find the projectiofi, |, in terms
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of X, one needs to solve the system

a = v + XpJw
0 = JXpv + w

wherea,v € Ly andw € L. This is easy and one gets

v=(1+X)"(a)

which yields the expression for the projection:

Prlry(a) = (14 X3) " (a) + JXo(1 + X3) ' (a).

We now plug in

Xo=i(1+U)"1-0)

to conclude that

Pylry(a) = SU((1+U")(a))

N | —

SincePp, |, = (PL|L,)* we have just proved the following result:

Lemma 3.3.14.The mapi;, in the previous lemma can be written as:

dp(S)=-UQ1+U"S(1+U)U*

o] =

Definition 3.3.15. Let j : £ — F be an injective morphism of vector bundles over a

smooth Banach manifold. An algebraic complement: of £ is a vector bundle over
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that splitsj. This means that there exists an injective morphisnt — F' such that
F=F&®G
Notation: Let /' : X1 — X5 be a smooth immersion of Banach manifolds. An algebraic

complement of the tangent bundi&(; is denoted byVX;.

Lemma 3.3.16.Let F' : X; — X5 be a smooth immersion of Banach manifolds. Then
every algebraic complement @fX; is naturally isomorphic with the normal bundle

I/xl.

Proof: The natural projectio?vX; — vX; is an isomorphism. O

We have all we need for proving the following

Proposition 3.3.17. a) Every lagrangian. € Lag" (k) has an orthogonal decom-
positionL = ¢ & L N'W & A wherel is the orthogonal complement 6N W in
LN W¢*andA is the orthogonal complement 61 W in L. Then the space of
operatorsS € Sym (L =(®d LNW @A)

0 S0
S = 51 52 0
0 0 0

is an algebraic complement @f, Lag" (k).

b) The algebraic complement dflag™ |Lagw(k) described above is a finite dimen-

sional, orientable bundle. i = 1, it has a natural orientation.

Proof: a) The claim is clearly true for any associate lagrandignby Lemma3.3.6
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We want to use the transition maps between two different Wrobarts atZ,, namely
the one given by, and the one centered Atto show that the claim is true in general.
In order to avoid any confusion we will 18y, L =: ¢y C Ly. SOLy = ¢y LN
WeaJVE,

By definition ¢, = Py, (¢). We are looking for a relation betweéenand ¢, in
terms of the unitary isomorphisii. HereU € U(Ly ) is the Cayley transform of the
self-adjoint operatoX whose graph i€, that is:

1-U 1—X

and L =Ty.
1+ U’ i+ X JX

X =1

It is not hard to see from what we just said thas the graph of the restriction

JX g, Now U : Ly — L has the following expression.

~ 1 1—
T = +2Uv+u 2U

.

In other words,

201+ U)'w = w+ JSw.

We conclude that

2U(1+U) "y =1¢.
Let/ := U*¢ andA := U*A. The previous identity says that

2

=0 or —ili+X)h =1 (3.3.1)

SincelU,~w = id we deduce thal’™* takes the decompositidh= (& LNW G A to
an orthogonal decompositidhy, = ¢ & L N W & A. The operators € Sym (L) with

the given block decomposition go via conjugationfyto operatorsS € Sym (Lw)
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with the same type of block decomposition relatiug = ¢ & LN W @ A.
We realize, looking at Lemma.3.14 that due to dimension constraints the only

thing one needs to prove is that the equation

14+U* 14U
+U 14U

3.2
5 5 S (3.3.2)
has only the trivial solutiorB; = 0, S; = 0, where
B 0 B 0 Sf 0
B = 0 0 B} and S=1[ 5 S, 0
By, Bs By 0O 0 0

The main point here is that the block decompositiorBois relative Ly, = (o & L N
W @ JV+ and decomposition of is relative toLy, = ¢ & L N W & A. Notice that
(3.3.2 can be written as

B=—(i— X)S(i + X)

This is the same thing as

(Bu,wy = —((i — X)S(i + X)v,w) = (S(i + X)v, (i + X)w), Yv,w € Ly.

We take first € ¢, andw € L NW. Relation(3.3.1) andX = 0 on L N W imply

0=—i(S(i+ X)v,w) = —i(S1(i + X)v, w).

We conclude that; = 0. Similarly takingv, w € L NW we getS; = 0 which finishes

the proof.
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b) Let us notice that we have two tautological bundles dwer" (k) namelyd and

¥ whose fiber af. consists ofL. N W andL N W*, respectively.

v —  LagW(k)x W

! |
99— Lag" (k) x W*

. We have of course thatis a subbundle o#* and if we letf be the orthogonal com-
plement ofd in ¥, then the bundle described in the statemefyis (1) ® Hom (6, 9).
Hence itis the direct sum of a complex bundle, always ndiuoalented and the bundle
of self-adjoint endomorphisms associated to a complex leuriglit this last one is up
to isomorphism the bundle associated to the principal luatlunitary frames via the
adjoint action of the unitary group on its Lie algebra. Tlsislearly orientable.

In the casé = 1, ¢ is a line bundle an8ym (1) is oriented by the identity. [

Orientation conventions I1: Notice that we have the following inclusidfy,, C Lag"**(1)
of manifolds of codimensiofk — 1. In Section3.2 we showed how the finite dimen-
sional Schubert cell&;,(n) induce a coorientation of;;. We would like to show
that the coorientation described there is the same as theahatientation of the alge-
braic complement of’ Lag'*—* (1) explained above.

The connection between the two is Proposittiod.12. It is enough to consider the
finite dimensional case, i.e. we will work witi(n), Lag(n) and Zy, (n).

Let Uy, € Zy(n) be the orthogonal reflection with thel eigenspace given by
(ex). The coorientation &/, of Z,y(n) C U(n) is induced by the exterior monomial
of rank2k — 1 onTiqU(n).

Ok A I\ (i A Bin)- *)

j<k
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This form can be transported to a linear formBn U (n) by the differential ad of the

map

Sym(n) U(n)

Cayy,

= U~ UU
The reason why we can use the Cayley transformation, in gatiee exponential

map as we did in SectioB.2is because the differential @tof the Cayley transform

i—A
1+ A

—

is the identity, after we identify(n) with Sym(n) via multiplication by—i.

We consider the coorientation dfy;(n) C Lag(n) at H," to be the one obtained
from the natural orientation a$ym(( f,)) & Hom((f%), (e1, ..., ex—1)). By Proposition
2.3.12 in order for the Cayley graph map : U(n) — Lag(n) to be coorientation
preserving, i.e., to take the coorientatiorlatof Z,(n) C U(n) to the coorientation

at H;" of Zy,(n) C Lag(n) we need to check that the (differential of the) map

Sym(n) — Sym(H, ), A U AU

is coorientation preserving, i.e. that it takes the fdsnto a positive multiple of the

orientation form of

Sym({fx)) ® Hom((f), (€1, ..., €x-1))

This is straightforward. O
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3.4 Local intersection numbers

We are now ready to do intersection theory/ag .

In this sectionM will be a closed, oriented manifold of fixed dimensi?h — 1,
unless otherwise stated. This is the codimension of the [@ohwarietyZ,. Let F :
M — Lag~ be a smooth map. We will call such a map a (smooth, compaci)yfam
lagrangians.

In Section3.2we defined the transversality 6fto 7, to be transversality on every
stratum in thestandard stratificationIn the case whe/ has complementary dimen-
sion this implies tha#” can only meet the top straturfdy. In this section we weaken
this condition of transversality by defining a new stratifiea onZ;, whose top stratum
containsZ;,.

We saw in the previous section that if
H =Wy,>oW; DWyD
is a complete, decreasing flag &f, we have

77 C Lag™e1(1) € Z4

whereLag"*~*(1) is a smooth submanifold.

Definition 3.4.1. Thenon-standard stratificatioron Z,,:

Z::SODSQD»SgD

has at its highest stratum the manifdg\ S, := Lag'*(1), while the other strata,

S; \ Si4+1 are unions ofZ; C Z,, each of which has codimensié?k — 1) + i in Lag ™.
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A function F : M — Lag™ is (non-standard) transversalq if it is transversal to

every stratum in the non-standard stratification.

Remark 3.4.2. In the rest of this paper the stratification &p is the non-standard and

the notion of transversality we use is the one adapted tcthasification.

Remark 3.4.3. The two stratifications on the Schubert variety define the same co-

homology class iLag™. See Remark.2.5and appendi%.1for details.

By Proposition3.3.17 Lag"*'(1) — Lag~ has an algebraic complement
N Lag"*1(1) which is naturally oriented as follows.

Let L € Lag"*1(1), V := L N W,_, and/ be the orthogonal complement of
LN Wg_yin LN W . The algebraic complement @, Langfl(l) is the vector

subspace o$ym (L) of operators coming from

Sym(V') @ Hom(¢, V)

The spacé’ is one dimensional and sym(1’) is a one dimensionagal vector space,
naturally oriented by the identity map. A non-zero operatas Sym(V') is positively

oriented if the following number is positive:

(Av,v) foranyv € LN Wy

The canonical orientation didom(¢, V') is given by the following data. Let be a unit
vector inV and{gi, g2, - - ., gx—1} be a complex orthonormal basis forWe say that a
basisTy, . .. Ty, is positively oriented foHom(¢, V') if the following determinant is

positive:
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Re(T1g1,v) Im(Thg1,v) ... Re(Tigp_1,v) Im(T' g1, v)
Re(Tyg1,v) Im(Tog1,v) ... Re(Trgr_1,v) Im(Tog_1,v)
Re(Tok—2g1,v) Im(Tor—2g1,v) ... Re(Tok—2gk—1,v) Im({Top_2gk_1,v)

One can check that the orientation does not depend on theechbi or of the basis

{917 92, - .. 7gk—l}-

The following is straightforward:

Lemma 3.4.4. For a self-adjoint operatorS € Sym(L) the Sym(V') & Hom(¢, V)

block is described in the orthonormal basis, g1, g, . . ., gx—1} by the operator:

v — (Tv,v)v

a1 - <T917U>U

g1 — (Tgrp—1,v)v
This lemma and the previous observations prompts the fallgpwdefinition:

Definition 3.4.5. Let I : M — Lag™~ be an oriented family of lagrangians of dimen-
sion2k — 1 transversal tdZ;, and letp € F~'(Z;,) = F~'(Lag"**(1)) be a point in
M.

Let{e, ... €1} be an oriented basis far atp, v be a unit vector irf'(p) "W, _;
and{g1, g2, - .., gx—1} be a unitary basis df(p), the orthogonal complement &f(p) N
Wi_1in F(p) N W ,.

Theintersection numberat p of F andZ;, denotedi(M N Z},), is the sign of the
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determinant

(d,F(e1)v,v) Re(dp,F(€e1)gr,v) ... Im(d,F(e1)gx—1,v)
(d,F(e2)v,v) Re(d,F(€e2)g1,v) ... Im(d,F(e2)g—1,v)
(d,F(eap—1)v,v) Re(d,F(eak—1)g1,v) ... Im(d,F(€op—1)gr—1,v)

Theorem3.2.14implies the following:

Proposition 3.4.6.Let F : M — Lag™ be a smooth family of lagrangians transversal

to Z,. The following equality holds:

/MF*([Zk,wk]): S HMNZ),

peF—1(Zy)

where the integral represents the evaluation of a cohompodbtass on the fundamental

class of)M.
It is useful to have a formula for the intersection numbeemmts of projections.

Lemma 3.4.7.Let F' : M — Lag™ be a smooth family of lagrangians transversal
to Z, and letP : Lag~ — B(H ) be the smooth map that takes a lagrangian to its
orthogonal projection. Denote b¥r : M — B(H ) the composition-JP o F. The

intersection numbef(M N Zy), is equal to the sign of the determinant:

(d,Pr(€er)v,v) Re(d,Pr(e1)gr,v) ... Im(d,Pr(€r)gr—1,v)
(d,Pp(ez)v,v) Re(d,Pr(e2)g1,v) ... Im(d,Pr(€2)gr—_1,v)
(d,Pp(€eag—1)v,v) Re(d,Pp(eag—1)q1,v) ... Im(d,Pp(ear—1)gk—1,v)
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Proof: By Lemma2.2.11we have

0 SJ*

dP(S) = )
JS 0

and so(—JdrP)|symr) = idsymr)- Since all the vectors, gy, ..., g,—1 belong to

L := F(p) the proposition follows. O

The intersection numbers whén= 1 have received a particular attention.
Notation: Let Mas := Lag” (1) = {L | dim L N H~ = 1} be the top stratum in the
non-standard stratification ¢f;.

The notation is justified by the following definition.

Definition 3.4.8. For every familyF' : S — Lag™, transversal tdv{as the intersection

number

Z t(M N Mas),

peF—1(Mas)

is called theMaslov index

Proposition 3.4.9. The Maslov index is a homotopy invariant that provides amige
phism:

m(Lag™ ) ~7Z

Proof: Thisis obvious in the light of the fact that the Maslov indgxtie evaluation over

St of the pull-back of the cohomology class determinedVys, namely[Z;, w;]. O

Lemma 3.4.10.The Maslov index of a familyy : S' — Lag™ can be computed by the

formula:

Z sgn{—J P,u,, v,)

pEF—1(Mas)
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whereuw, is a non-zero vector it'(p) N H~ and P, is the derivative ap of the family

of the associated projections.

Proof: This is just a particular case 8f4.7. ]

Remark 3.4.11. Although we defined the Maslov index for families of lagreantg
parametrized by the circle, one can use the same definitiofafoilies parametrized
by the interval0, 1]. The Maslov index is then a homotopy invariant of maps with th

end-points fixed.

The following observations lead to an interesting formilet # > 1 and denote by

Z>y, the union of Schubert cells:

Zo, =]z

1>k

Lemma 3.4.12.The setZ,, is a closed subspace and a smooth submanifold of codi-

mensior2k — 2 in Mas. Moreover the following set equalities hold:

(@) Zsr = R (P(W,_1)) whereR is the generalized reduction
R:Mas — P(H™).

(b) Zsp = Masn Lag"*1(1).
(C) 72k = 7k

Proof: The first set equality proves that., is a smooth manifold of codimension
2k — 2 in Mas since the generalized reduction is a vector bundle i, _,) is a

closed submanifold dP(H ~). ]
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Remark 3.4.13.A new stratification ofZ;, with Z-,. being the top stratum does not turn
7, into a quasi-submanifold becauge,. does not contain the codimensibrstratum

21 k- O

Definition 3.4.14. A smooth2k — 1 dimensional familyF' : M — Lag™ is strongly

transversatto 7, if the following conditions hold
e [is transversal td@,.
e Fistransversal t&;.
o F7Y(Z)) = F(Mas),i.e.dim F(m)NH- < 1forallm € M.

Remark 3.4.15. The first and the third conditions of strong transversalitply that
F~YZ,) = F Y Zs). Indeed, the first condition implies that
F~Y(Z) = F~'(Lag"*1(1)), whereas the third implies th&t ' (Z,) ¢ F~!(Mas).

Remark 3.4.16. Every smooth family can be deformed to a family that satidfies
first two transversality conditions. However the third cihioth of strong transversality
is not amenable to perturbations, since there are topabghistructions to achieving

that. An example is a family for which cohomology cld8§ 7 5, w; 5] is non- trivial.

Things are good wheh = 2 since then there are no topological obstructions in that

case.

Lemma 3.4.17.Letdim M = 3. Any familyF : M3 — Lag~ can be deformed to a

strongly transversal family t&,.

Proof: First deform the family to a map transversatgand then move it of@k22 21k

which has codimension 4 and has the property(that, 7 » = Lag"' (1) \ Mas. O
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Proposition 3.4.18.Let M be an oriented, closed manifold of dimensiin— 1 and

let F : M — Lag~ be a family, strongly transversal tg,. ThenM' := {m ¢

M | dim F(m)N H- = 1} is a closed, cooriented submanifold &f of dimension
2k — 2. Lety C M*' x P(H ™) be the tautological bundle ovev/* with fiber~,, :=

LN H~.Then

| Fzeal= [ e

Proof: Notice thatM!' = F~!'(Mas). The fact that\* is a cooriented submanifold
of M of codimensionl follows from the second condition of strong transversadityl
the fact thatMas is a cooriented submanifold éfag™ of codimensionl. It is closed
because it is the preimage Bf by the third condition of strong transversality.

We have the following commutative diagram

Lag™

The local intersection number @ andZ-; in Lag™ at a pointm € M is the local
intersection number of/! andMas atm € M, which is the local intersection number
of R o F|pp with P(Wy,_;) atm € M.

Let 7* be the dual to the tautological bundlel®fH —). Then the Poincaré dual of
P(W,_1) inP(H™) is c;(7*)*~! wherec, is the first Chern class of'. The total inter-

section number ofi/! andP(W,_,) is the evaluation of the pull-back of the Poincaré
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dual toP(W,_,) on M. The next equality finishes the proof

7= (Ro Flan)*(7)
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CHAPTER 4

APPLICATIONS

In this chapter we aim to relate the theory developed so fiadex theory. We intro-
duce a criterion for deciding when a general family of opensis continuous/differentiable.
We describe how the Atiyah-Singer classifying spacefor', that is a certain con-
nected component of the set of bounded, self-ajoint opeyaidates toCag™ . The
section on the odd Chern character is based on standartbrasdlis designed to make
the connection between the fundamental cohomology clagsésg™ and index the-
ory. In the last two sections we give concrete local intdisadormulae for different

families of self-adjoint operators.

4.1 Differentiable families

In practice, families of lagrangians come from closed,-adjbint operators. In or-
der to be able to do differential topology one needs an eassrion to decide when
these families are differentiable, especially when oneithasind to work with opera-
tors whose domain varies, such as elliptic boundary prokldmthis section we give
such a criterion and some examples.

We start by recalling Kato’s definition of differentiabilitLet B be a smooth man-

ifold.
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Definition 4.1.1(Kato, [20], Ch.VII-1.2). Let (7} )y 5 be a family of closed,densely de-
fined, self-adjoint operators with domain®(7}),ep - The family is
continuous/differentiable if there exist continuoudkliéntiable families obounded

operatorsS,, R, : H — H such thaRange(S,) = D(T;) and7,S, = R, for all b.

Our operators will always be Fredholm so we concentrate emth
Notation: Let Skred be the set of all closed, densely-defined, self-adjointdkoén
operators.

To each closed, self-adjoint, Fredholm operator one catéass its switched graph.

More precisely one has a map:

I': 8Fred — Lag™, T Ty :={(Tv,v) |ve D)}

Lemma 4.1.2.LetT : B — S$Fred be a family of operators. Suppose> T : B —
Lag™ is continuous/differentiable. Théh is continuous/differentiable in the sense of

Kato.

Proof: If I o T is continuous/differentiable then the family of corresgiory unitary

operatord/, = @~(I'(T3)) is continuous/differentiable and we take

S, = —i(1 —U,), R,=1+1U,

in Kato’s definition. OJ

In order to state the main result of this section we introddarae terminology. We

keep the notations from the previous sections.

Definition 4.1.3. A symplectic operator ot is a bounded, invertible operator that
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satisfies the relation

X' JX=J
Let Symp([:[) be the group of all symplectic operators Bn

Lemma4.1.4. (a) LetL c H be any closed subset & and X : I — H be any

bounded, invertible operator. Then
(XL)J_ — (X*)—ILJ_

(b) The grougSymp(H) acts onlag.

~

(c) LetL € Lagand X € Symp(H). Denote
Xy =X|,:L—XL, and Xp. :=(X")"", :L"— (XL)"

Let, be the unitary operator o/ which, as a mag. & L+ — XL & (XL)*,

has the expression

Xpo XX, ' 0

Yr(X) = .
0 X1 /X, X0

Then the orthogonal reflection i L is given byR y;, = 1 (X) o Ry o (X)*.

Proof: (a) First X*(X L)+ L L because ifr € L andw € (XL)* then
(X"w,v) = (w, Xv) =0

This is the same thing a&*(X L)t c L*. ReplacingL by L* one also gets that
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X*(XL4)*+ c L. We claim that
X' (XL)Y' 4+ X(XLYHY =L+ L+ =H

and so, the previous two inclusions are in fact equalitiesleéd, since all the spaces

involved are closed
(XL)*: 4+ (XLHH) = XLn XLt = {0}

and so( X L)* + (X L)+ = H and the claim follows.
(b) We have/ X L = (X*)"LJL = (X*)"'L+ = (XL)~.

(c) One checks immediately that forc L andw € L+
RXLQ/)L(X)(U) :Q/)L(X)RL(U) =X, o \/XEXL(’U), and

Rxpr(X)(w) = v (X)Rp(w) = =X 0/ X7 Xp1(w).
L]

Proposition 4.1.5.The groupﬁymp(ﬁ[) is a Banach-Lie group modelled on the infinite

Lie algebra of operatory” that satisfy:

Y*J+JY =0

A

The natural actiorbymp(H) x Lag — Lag is differentiable.

Proof: The first part is standard. We prove the second part in twestepst, we show
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that if one fixes a lagrangian, s&¥", the map

Symp(H) — Lag, X — XHT

is differentiable. By Corollary.3.7this is equivalent to proving that the map of asso-
ciated reflections is differentiable. By pdrt) of the previous lemma this is obvious

since

Xp=XoP, and /X;X,=+\P.X*XP,

A

Second, we notice that X € Symp(H) andL € Lag then
XL=XO(H"CHL)H*
whereC~! is the inverse of the Cayley graph map. The map
Symp(H) x Lag — Symp(H),  (X,L) — XO(H*,€7'(L))

is differentiable sinc&® andC~! are. ]

The following theorem gives a useful, general criterionddferentiability. Let B

be the open, unit ball iiR™

Theorem 4.1.6.Let (T,).cp : D(T,) C H — H be a family indexed b# of densely-
defined, closed, self-adjoint, Fredholm operators. Hgt:= D(7;) and supposéi,

comes equipped with an inner product such that:
(1) the inclusionH, — H is bounded and

(2) the operatofTy : Hy — H is bounded.
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Suppose there exists a differentiable family of boundeeriible operatord/ : B —

GL(H) such that
(@) U;(Ho) = D(T);

(b) the new family of operatorg, := U, T, U is a differentiable family of bounded

operators inB(Hy, H).

Then the family of switched graphs associatedp),.5 is differentiable at zero in

Lag™.

Proof: Let us notice that the family of operators éh

. U, 0
0 (U™

is a differentiable family of symplectic operators suchttﬁgfn = ffw. Hence it is
enough to prove the differentiability of the family;. We will assume from now on that
all operatorsr’, are defined on the same domain such thatand (b) are satisfied for
U, = id.

Suppose now thater T, = {0}. ThenI'y, is in the Arnold chartd+ and for||z|
small enough the switched graphg are in the same open set sifdge NH* = Ker 7},
andL — L N H™ is an upper semi-continuous function. Edthin this smaller set
has an inversé, : H — Hy C H. The differentiability of the familyZ’, in B(H,, H)
is equivalent with the differentiability of the family, € B(H, Hy). This implies the
same property fof, seen as a family ifB(H, H) sincei : Hy, — H is differentiable.
Since the switched graph @, is the graph of5,, it follows thathw is differentiable.

The way to place ourselves in the situati&er 7, = {0} is by adding a real constant

A to the familyT, constant for whicter (7, + A\) = {0}. We can do this becaudg
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is Fredholm. In order to justify that this does not changetlaing we look back at
Arnold’s isomorphism. We claim that if the unitary operatQrcorresponds t@,, i.e.

¢(U,) =Ty, then

Uy(N) := (2 + N1 —U,)) (26U, + X1 - U,))

corresponds t@, + A. Indeed "the denominator2i + A(1 — U, ) is invertible for every
real constani\ since% has modulus one if and only ¥ € —; + R. One can easily

verify thatU, (\)U,(\)* = I. Itis also a matter of routine to check that

(1+ U, (\)v | (@ Ue) = X1 = T))[2i(2i + A1 = Ts)) o]
—i(1 = Ug(\))v (—i(1 = U))[2i(2i + (1 = U,)) "]
and this proves the claim. O

The next result gives a practical way to decide when conii in the previous

theorem is satisfied for a family of operators defined on th@esdomain.

Lemma4.1.7.Let Hy, C H be a dense subset i, are endowed with an inner product
such that the inclusion&¥, C H is continuous. Lef", g, : B — B(Hy,H), 91 : B —

B(H), be three families of operators such that
(@) 91(0) = id andg,(0) = 0;

(b) T'(z) = g1(x)T(0) + g2(z), V€ B.
Suppose; and g, are differentiable at zero. Théni is differentiable at zero.

Proof: Letdg;, i € {1, 2} be the differentials & of g;. Then

191(2)To+g2(2) =T'(0) =dg () To—dgz () || < [[(g1(2)=91(0)=dgr(2))[| | To | 10,1+
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H(g2(2) = 92(0) = dga())l| o,

Dividing by ||z|| and taking the limit: — 0 finishes the proof. O

Corollary 4.1.8. If in the previous propositiog; is a continuous map of bounded op-

eratorsg, : B — B(H, H) then the claim stays true.

Proof: This is based on the fact thill'|| y, i < ||T|| z.5- ]

Definition 4.1.9. A family of operator§ 7, ). : Hy — H is called affine if
T, —1T, € B(H), Va
Corollary 4.1.10. An affine family of operator§’,),..5 is differentiable ato if the

associated family of bounded operat@ts— Ty is differentiable.

Corollary 4.1.11. The universal familyl" : U(N) — Lag™ (L?[0,1]) (see Example
2.5.19 is differentiable.

Proof: We use the previous criterion to prove differentiabilitylatTake a chart at
in U(N). For example one can take: Sym(/N) — U(N) be the Cayley transform
or p(A) = e For everyA € Sym(N) let Us : O3, ([0,1]) — C7°([0,1]) be the

operator defined by:

Ua(f)(t) = o(tA) " f(t) = (—tA) f (1)

One checks easily that these operators extend to a diffebbmtamily of unitary oper-
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atorsU : Sym(N) x L?[0,1] — L?[0, 1]. The resulting family is:

d d
UATuanU3 () = =i ~ iol=t) (o)) 1

This is a differentiable family of bounded operatdrs?([0,1]) — L?([0,1]) by the

previous corollary. O

4.2 Index Theory

This section is inspired bys[l].

The classifying space for odH -theory, Lag™ is not the usual space one uses in
index theory. In their workd], Atiyah and Singer looked at the homotopy type of the
spaceBFred C Sym of bounded, self-adjoint, Fredholm operators endowed tiiéh
norm topology. They proved it has three connected compsridnied., , BFred_ and

BFred, characterized by :
e T € BFredy < T has only positive/negative essential spectrum
e T € BFred, < T has both positive and negative essential spectrum

The first two component&Fred. are contractible anBFred, is classifying fork —!.
Let B be compact space. It follows from Atiyah-Singer results theery element

in K~!(B) can be represented by the homotopy class of a continuous map
B — BFred, b— T, (4.2.1)

The homotopy class of such a family of operators is the amailytiex of the family.
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Notice that the map

Ty

V1+tT7

provides a homotopy between the initial map and the assatfamily of "zeroth or-

[0,1] x B — BFred, b

der” operators
T

VI1+T}

This leads to the standard trick that allows one to define alyaaindex for a family

B — BFred, b—

of unboundedself-adjoint, Fredholm operators with spectrum stretghimboth-+oco.

To make the ideas more precise we introduce the followingtfan

T

V14 22

Ri: R — R, T

Recall thatSFred is the set of all closed, densely defined, self-adjoint, Rodd oper-

ators on the Hilbert spacé. The map

Ri : 8Fred — BFred T — Ri(T)

is an injection.

Definition 4.2.1. The Riesz topologyn SFred is the topology induced by the metric

d(T1,Ty) = || Ri(Ty) — Ri(T)||

A function f : B — €S is called Riesz continuous if it is continuous with respedhie
Riesz topology.

TheAtiyah-Singer indexof a Riesz continuous, family of operatdrs B — SFred
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for whichRi(7'(b)) € BFred, is the homotopy class of the map

RioT : B — BFred,

Remark 4.2.2. In order to define an analytic index in the unbounded casegttbie
Atiyah-Singer classifying spadéFred, oneneedshe family to be Riesz continuous.
At the other extreme, if all the operators involved are baddhen Riesz continuity is

equivalent with the norm continuity arii o7" is homotopic withT". O

The vertical, Lagrangian Grassmannidlyg~ suggests a different approach. A
self-adjoint, Fredholm operatdf; : D(T) ¢ H — H bounded or unbounded gives

rise to a vertical, Fredholm lagrangian, namely its swittheaph.

T — Ty :={(Tv,v)|ve DT}

Definition 4.2.3. A family 7' : B — S8Fred of Fredholm operators igap continuous
if the map
FoT:B— Lag™, b Ty,

is continuous.
Thegraph indexof a gap continuous family of Fredholm operatérs B — SFkred

is the homotopy class of the map

ToT:B — Lag™ .

Lemma 4.2.4.The map

I : BFred — Lag~ T —Tr
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is continuous hence every mé@p B — BFred which is continuous in the norm is also

gap continuous.

Proof: The reflection in the switched graph can be computed exliciterms of the

operator and Corollarg.3.7finishes the proof. O

Lemma 4.2.5.Riesz continuity is invariant under conjugation, i.e7ift B — SFred
is Riesz continuous and : B — U(H) is a continuous family of unitary operators

then the familyl’ : B — SFred such thatl}, := U,T,U; for all b € B is continuous.

Proof: This is straightforward in light of

Ri(T}) = Uy Ri (T,)U;

Let H, be a dense subspacefihsuch that there exists an inner prodgct), that

makes the inclusioi/, — H continuous.

Remark 4.2.6.1f T : Hy, — H is a bounded operator, than the topology defined by the
graph norm ofl" on H,, (see2.4.6 is weaker than the topology of the notm [|o. In

other words the identity map:

(Ho, || - llo) — (Ho, [I - lly)

is continuous as one can easily see. On the other hahifFredholm then the norms

are equivalent. Indeed there exists a constgnt 0 such that

lvlg = llvlla = Cil|v|| ms Vo € Ker T
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simply becaus&er 7' is finite dimensional. Moreover there exists > 0 such that
lvllg = | Tv]|m > Callv]|ay, Vo € Ker T+

becausd’|, .. : KerT* — RanT is invertible. O

Proposition 4.2.7.Let T : B — 8Fred(H) be a family of self-adjoint, Fredholm
operators such thal}, : Hy — H is bounded and the family is continuousbatas a

mapT : B — B(Hy, H). ThenT is Riesz continuous &t.
Proof. See Proposition 1.7 ir8[l] and Theorem VI.5.12 in40]. O

Definition 4.2.8. LetT' : B — 8Fred be a family of self-adjoint, Fredholm operators,
let by € B and letH, := D(Tg,) be endowed with the graph norm @f,. The
family is callednice atb, € B if there exist acontinuousamily of unitary operators

U : B — U(H) such that
(@) Hy = U,D(Ty),

(b) The new family(T)beB, T, = U, TyU; is continuous as a family of bounded

operators’ : B — B(Hy, H).
A family is called nice if it is nice at every point. O
The following result is a consequence of what we said above.
Proposition 4.2.9. Every nice family of operators is Riesz continuous.
Example 4.2.10.Every continuous, affine family of operators is nice.
Example 4.2.11.The universal family is nice.

Proposition 4.2.12.Every Riesz continuous family of operators is gap contisuou
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Proof: See Lemma 1.2 inl]. O

Theorem 4.2.13.The graph mafd’ : BFred, — Lag~ is a weak homotopy equiva-
lence and for every Riesz continuous faniily B — SFred the Atiyah-Singer index

coincides with the graph index.

Proof: See Proposition 3.1 and Theorem 3.33n0][ O

The previous Theorem says that the graph index is the apptepotion of analytic

index one has to look at.

Definition 4.2.14.Let F' : M — SFred be a family of self-adjoint, Fredholm operators
parametrized by a compact topological spa¢e ThenF' is said to be continuous if
I' o F is continuous. The analytic index of a continuous fandilydenoted F] is the
homotopy class of the map

ToF: M — Lag™

Remark 4.2.15. All nice families of operators are continuous.

4.3 The Chern Character

Let M be a finite, CW-complex, hence compact. The Chern charastarring
homomorphism:

ch : KO(M) — H®™(M, Q)
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The suspension isomorphism, which is actually taken to éedfinition of K —*, helps

us extend the Chern character to the odd case:

e

I{IOdd(M, Q) R FICVCH(ZM, Q)

It is well-known thatU (o) is a classifying space fok—!. Hence every element in
K ~L(M) can be represented by the homotopy class of a (pointed) fmap\/ —
U(). Let[f] € K~'(M) be the element this map represents. Thgh: M —
YU(oc0) represents an element iti°(XM/) which corresponds tg via the suspension

isomorphism. The previous commutative diagram can beewriis
Yoch[f] =ch([Zf]) (4.3.1)

A short digression is necessary at this point. The spaGéocc) comes with a
principal U (co) bundlel’, namely the bundle obtained with the clutching map given by
the identity. More precisely one starts with the trivi&loo) bundle over0, 1] x U(c0)
and identifieg0, U, g) with (1, U, Ug) for all (U, g) € U(o0) x U(o0).

This is an old acquaintance of ours. Indeed the pull-backisfdundle ta-U (n) is
nothing else but the bundle frame bundle associated to ttteneundleE,, which we
considered in Sectio®.2

Another way of looking at these bundles is via the periodiniap (seeZ], page
224-225)

YXU(n) — Gr(n,2n) — Gr(n,00) ~ BU(n)

123



where the first map is given explicitly as follows
[0, 7] x U(n) — Gr(n,2n), (t,U) — cost —sint

The right hand side is an involution @ ¢ C". The bundleE, is the pull-back of
the universal/(n)vector bundleEU (n). In the same way/ comes from the universal
U(o0)-bundle overBU (o).

Now every continuous map : M — U(oo) defined on a compact s&f is homo-
topy equivalent with a map (which we denote by the same )efterd\/ — U(n). The
class[f] € K~1(M) or the clas§xf] € K°(XM) can be represented by the bundle
(Xf)*E, (which determines a stable isomorphism class). Using exjugt.3.1) we get
that

ch[f] =S ch((Zf) E,)) = S H(2f) ch E,) (4.3.2)

The inverse of the suspension isomorphisns easy to describe. It is the composi-
tion

~ * ~ d _
HCVCH(ZM, Z) S Hovon(sl % M, Z) /tz Jfeven 1(]\47 Z)

wherer : S x M — Y M stands for the projection andt stands for the slant product

with the orientation class &f'. So
YSTH(Zf) chE,) = (7*(2f)* ch E,)/dt = (Sf op)*ch E,)/dt = (4.3.3)

= ((idg: x f)*ch E,)/dt = f*(ch E, /dt)

The classch £, /dt € H°¥(U(n),Q) is called thetransgressiorclass of the Chern

character. Of course, one can do slant product componenanisget, for each positive
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integerk a class:
chy,_, = chy (E,)/dt € H* *(U(n),Q)

There is nothing special about the Chern character. The sBamsgression process can
be applied to any characteristic classtf, in particular to the Chern classes and we
have already done this in SectiBr2 where we denoted those classesihyWe use a

different notation now which is more appropriate to thistest
oy = cx(En)/dt € H* Y (U(n), Z)

There is a very simple relation betweefi, , andc], ;:

Lemma 4.3.1.

T _1 k_l T

chy,_, = ﬁ%ka

Proof: First of all, chy, (E,) € H*(S' x U(n),Q) is a polynomial in the variables
ci(Ey,), ..., cx(E,) and the coefficient of,(E,) is (—1)¥~1/(k — 1)!. On the other

hand, every element iff?¢(S! x U(n),Z) is a sum:
z=x+ Dt Ny

wherex € H*(U(n),Z),y € H*(U(n),Z) andDt € H'(S',Z) satisfiesDt(dt) =
1. We claim that for every characteristic classifits H*(U(n),Z) component van-
ishes. Indeed the clasds the pull-back of via the inclusion{1} x U (n) — S xU(n)
and the claim follows by noticing that the pull-back of thendie E is trivial overU (n).

We conclude that the cup product of any two characterisissds of,, is zero and
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so we have

Chgk (En) =

which after taking the slant product gives the identity wee\after. O

Suppose now that/ is a closed, oriented manifold arfd: M — Lag™. Theorem
3.2.7says that the pull-back*z, = f*[Zx,wi]. On the other hand by the previous

lemma, relations4.3.2), (4.3.3 and Propositior3.2.13we have the following result

Proposition 4.3.2.Let M be a closed manifold and lgt: M — Lag™ be a smooth

map transversal t&,. The following holds:

(-1

Gyl Peed = -

char—1([f]) =

Let us take now := S?"~1. On one hand we have an isomorphism:

ﬂgN_l(Lag(N)) — 7T2N_1(£/ag_)

because iy is a subspace of codimensidnin H~ thenLag™ \ Lag""™ has codi-

mension2N + 1 in Lag~, being equal with the Schubert varie®_, and so every
mapS2N-1 — Lag™ can be homotoped to a m&B"¥ ' — Lag"™. The later space is
a vector space oveérag(N).

On the other hand we have a morphism

mon-1(Lag(N)) — H*7H(S*VLZ),  [f] = [ [Zn,wy] *)
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Moreover this morphism is injective. Indeed, by what was sdiove we have

FZn,wn]) = Gy 1 (Bf) Ex = 57 (en(2f) En)

This means that*[Zy,wy| = 0 if and only if the Euler class of the complex bundle
(Xf)*Ey overS* is zero. But the Euler class is the only obstruction to ttizing a
rank N complex bundle oves?". Hence the classifying mapf has to be homotopi-

cally trivial. On the other hand, via Bott periodicity thespension map

Ton-1(U(N)) = man (BU(N)),  [f] = [E]

is an isomorphism. Hence lEf] = 0 then[f] = 0.
The morphisnix) is not surjective. If we compose it with the isomorphism aied

by integrating over the fundamental class8f !,

HZN_l(SZN_l,Z) N Z, a— a
S2N-1

then we get a morphism,y_1 (Lag(N)) — Z. Its image is in the subgrou — 1)!Z

by Bott divisibility theorem which is saying that the Chermacacter of every rank/
complex vector bundle ove$?” is an integer, because it is the index of the twisted
signature operator. (see Theorem IV.1.446]) This implies that the Euler class of that
bundle is divisible by N —1)!. In fact the image is the whole subgro{up— 1)!Z since
there exists an elemente K (S?V) such thaicha = PD (pt) (see Theorem 24.5.3
in [1€]). We can represent this by a majf : S*¥ — BU(N). The clutching map
associated to th& (N )-principal bundle ovet*" induced by F is the (desuspension)
mapf : S?N-1 — U(N) whose Chern character®D (pt).

The previous discussion leads to the following result.
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Theorem 4.3.3.The map

My : 7ox 1 (Lag™) — Z. My(f : S9! = Lag™]) :/ F[Zwswn]

S2N -1

is injective and the image is the subgroup— 1)!Z.

Corollary 4.3.4. The homotopy type of a mgp: SV~ — Lag™ is determined by the

integer

o £ i)

which is always divisible byN — 1)!. If f is transversal taZ y then this integer is the

total intersection number of and Z y.

Remark 4.3.5. Any map f : S?~! — Lag™ can be deformed to a mag?V ! —
Lag(N). After identifying Lag(N) with U(N) one gets a magiag(N) — S2N-1
coming from the fibratiop : U(N) — S?Y~!. The degree of the compositigm | :

S2N-1 _, §2N-1 s exactly the integer from the theorem.

4.4 Intersection for Families of Operators

The intersection formulae in the Secti8rt were given in terms of the differential
of the family of lagrangians or, what is more or less the sdmregt the differential of
the associated projections. In practice these lagrangienswitched graphs of self-
adjoint, Fredholm operators. In order to adapt those iatgien formulae to the case
of operators, the first thing to do is to make sure that we kntwatwe mean by the
differential of a family of operators. This is clear in theseawhen all the operators
involved are bounded and that is what we do next. In the casn e operators
are unbounded but the family is affine (see Definitibh.9 then the formulae of this

section hold with minimal changes.
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Let M be a smooth manifold. Recall a definition:

Definition 4.4.1. Let F' : M — SFred be a family of self-adjoint, Fredholm operators.
ThenF is said to be smooth/ continuouslifo F is smooth/continuous. Thenalytic

index of a continuous family”’, denoted /'] is the homotopy class of the map
ToF: M — Lag™
Remark 4.4.2. All families of operators satisfying the conditions of Them4.1.6are

smooth/continuous.

The homotopy class of a continuous famifydetermines an element i~ (M)

also called the index.

Definition 4.4.3. The cohomological indexof a continuous familyF' is denoted by
ch[F| € H°¥4(M,Q) and represents the conomology class obtained by applying th

Chern character to the analytic index.
Let W be a codimensioh — 1 subspace off —. We consider the associated — 1
codimensional cocycle whose underlying space is the fatig@chubert variety

Zw ={L € Lag” | dimLNW > 1}

Definition 4.4.4. A smooth familyF : M — 8Fred is said to be in general position
with respect tolV if T o F is transversal to the Schubert varigy, with the non-

standard stratification.

If M has complementary dimensiongy, i.e.,dim M = 2k — 1, the condition to

be in general position with respect B implies that there are only a finite number of
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pointsp € M such that
dim Ty NW =1 (4.4.1)

This means that

dim Ker (F(p))nW =1

Notation: Let F' : M — SFred be a smooth family in general position with respect
to W. For everyp € M such thatlim Ker (F'(p)) N W = 1 denote by, € {£1} the
intersection number atof ' o F with Zyy := Lag" (1) = {L | dim LN W = 1}.

Theorem 4.4.5.Let M be a closed oriented manifold of dimensidh — 1, let
F : M — S8Fred be a smooth family of self-adjoint, Fredholm operators aed |
W C H be a codimensioi — 1 subspace such that is in general position with
respect tolV. Denote byMyy, the setMy, := {p € M | dimKer (F(p)) "W = 1}.
Then

PD cligy_y ([F]) = 2;1_)1_), S op

" peMw
where the term on the left is the Poinéattual to the2k — 1 component of the cohomo-

logical index.

Proof: This is a restatement of Theoredr?.14using Propositiod.3.2 O

Our main goal in this section is to give a formula for the istmtion numbers,.
This is a local problem. We first take up the case of boundedadqes. A simple but

important result is

Lemma 4.4.6.1f T' € Sym(H ) is a bounded self-adjoint, Fredholm operator the pro-

jectionP~ : 'y — H~ is a Banach space isomorphism.
Proof: Straighforward. O
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Let B be the unit ball inR*~!. The next result relates the operator differential to

the graph differential.

Lemma 4.4.7.LetT : B — Sym(H) be a family of bounded, self-adjoint, Fredholm
operators, differentiable at zero. Then the family of st graphsI';, ).c 5 is differ-
entiable at zero. Moreover, for every unit vectoe R", the following equality holds
between the graph and the operator partial derivatives effdmily at0

ar

- . _, or
POO%OO(PO)lz(l—FTOZ)lo%O € Sym(H)

Here P, is the projection of the switched graphGf onto H .

Proof: For differentiability see Theored 1.6

For ||z|| small the switched graph @, is in the Arnold chart of';,. Therefore it
is the graph of an operatdiS, : I';, — JI'z,, whereS, € Sym (', ). We fix such an
x. We are looking for an expression fé} S, (P, )~ as an operator of .

For every vector € H we have a decomposition:
(T:BU7 U) = (Tozu Z) + J(T0y7 y) = (TOZ + Y,z — T(]y)

It is not hard to see that

y = (1+T2)NT, - Ty)v
vo= (1+TT) (1 +T2)z

The last relation makes sense, sifeeT7, approaches the invertible operator 7T7.

The operato”, S.(P, )~' : H — H is nothing else but the correspondence- y
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hence the expression:

Py S.(Py) t =1 +TH) T, — To)(1 + ToyT,) (1 + T7)

Differentiating this expression with respectitdinishes the proof. O

In order not to repeat ourselves we give the following

Definition 4.4.8. A smooth family of bounded, self-adjoint, Fredholm operatb
B — Sym(H) is calledlocalizedat 0 with respect tdV" if the following two conditions

hold

e F'isin general position with respect t¥;
o ([0 F)™(Zw) = {0}

The fact that switched graph &f(0) is in Zy, implies thatl < dim Ker F/(0) < &
by Corollary3.3.4

We treat first a particular non-generic case.

Proposition 4.4.9.Let F' : B — BFred be a family of self-adjoint, Fredholm operators
localized at0 with respect tdV. Suppose thatim Ker F'(0) = k. Let¢ € Ker F/(0) N
W be a unit vector, let be the orthogonal complement @f) in Ker F(0) and let
{41, ...1,_1} be an orthonormal basis ef'.

The intersection numbed, is given by the sign of the determinant:

(O F',9) Re(01Fi1,¢) ...  Im(01FYr_1,9)
<82F¢, ¢> Re(@2F¢1, ¢> Ce Im<82F’(/)k_1, ¢>

(Os—1F @, 0) Re(Owp1F1,0) ... Im(Oap—1FVp—1,9)
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whered, F is the partial derivative of at zero in the-th coordinate direction oR?*~,

Proof: Let F:=T'o F.
Sincedim Ker F(0) = k we get that

fJF(O) NW<« = fJF(O) NH = KQIF(O)

and so the vectorg,, . . ., gx_1 in the definition of the intersection numb&#.5are all
in the domain off'(0) = H~ and we can take them all ier /(0). We want to replace
the partial derivatives of in that intersection formula with the partial derivativédsia

The claim that proves the lemma is:

~ oF

for every unit vector: and everyy € ({¢,41,...,1_1}). In order to prove the claim
let P, be the projection of the switched graph Bf0) onto H~ and letw := (1 +
F3)~' o 9E(0)g. Then

(Br) o (14 B o oE

ax 0 © PO_<07g> = (Fowaw)

Therefore, by using Lemméa4.7we get

(doF(x)g,¢) = (Fow,w), (0,9)) = (w, ¢)

Then
_OF o1 OF
(w.0) = {5-(0)g. (1 + F9)7'0) = {5-(0)g.0)
The last equality holds becaugec Ker Fj,. O
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In the caset = 2, the intersection numbers still have a quite simple degorip

Suppose for now thak is the three dimensional ball.

Proposition 4.4.10.LetT : B — BFred be a family of bounded, self-adjoint, Fredholm
operators. Let € H be a vector and suppose thAtis localized atd with respect to
(e)*. Let0 # ¢ be a generator oKer Ty N (e)+. Then only one of the two situations is

possible

I dim Ker Ty = 1, in which case let) be a non-zero vector satisfying the following

two relations
(¢,9) = 0
T()??D = €

(4.4.2)

Il dim Ker 7y = 2, in which case let) € Ker T, be a non-zero vector such that
Y Lo

Then the intersection numbeg, of 7" with Z . is given by the determinant

<01T¢a ¢> Re<81T77D, ¢> Im<alTwa ¢>
<82T¢7 ¢> Re<82T¢7 ¢> Im<a2T¢7 ¢>
<03T¢a ¢> Re<83T77D, ¢> Im<a3Twa ¢>

whereg; T is the directional derivative of in thei-th coordinate direction oR?.

Proof: Let W = (e)*. The intersection of the switched graph®fwith W« is two
dimensional. Hence the kernel @f is either one or two-dimensional. One vector
in the intersectiorl'y; N W* is (0, ¢). If the kernel of " is two dimensional, then
I'» N W« = Ker T and so the second vector in the intersection formulae is argesr

of the orthogonal complement iKer 7" of (¢). This is the condition imposed anin

this situation.
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In the latter case the equati@h) = ae; has solutions if and only i@ = 0.

If dim Ker T;, = 1, the conditionTy«, o) € W imposes thafya = ae for some
constantz. Of course we are looking for a solution when# 0, since otherwisex
is a multiple of$. At any rate the projection of a/a to Ker T,™ is an element of
WL ¢ W and a generator of the orthogonal complemeriKef 7j in T'r N W« It
satisfies the two conditions we imposedwn

The fact that one can replace the partial derivatives of Wiecked graphs in the
g1 = (T, ) direction by the partial derivatives @f in the ¢ direction is a computa-

tion exactly as int.4.9where we used Lemm@a4.7. O

We state now the general case. ABds again thek — 1 dimensional ball.

Proposition 4.4.11.LetW C H be ak — 1 codimensional subspace and et B —
BFred be a family of bounded, self-adjoint, Fredholm operatorsal@zed at0 with
respect toV. Suppose thatim Ker 7, = p < k. Let¢ be a generator oKer 7o N W
and let¢,, ..., ¢,—1 be a basis of the orthogonal complementaf Ker 75,

The spacédVy := W N Ran7}, has dimensiork — p. Lety,..., ¥, be an
orthonormal basis of Ty (Wry).

(Ker T)+
Then the intersection numbeg, of T with Z is the sign of the determinant

<8IT¢7 ¢> <82T¢7 ¢> e <a2k—1T¢7 ¢>
Re(0iT¢1,0)  Re(0oTo1,0) ... Re(Om-1T¢1,0)
(0 T¢p-1,¢0) Tm(T¢p1,¢0) ... ITm(O 1Td, 1,0)
Re@lT@bl, ¢> Re(@2T¢1, ¢> e Re@zk—lT?/)l, ¢>
(0 TWr_p, ) Im(DsTp—p, @) .. Im(OosyTk_p, &)
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Proof: One only needs to make sense of what the orthogonal compteiigar 7,NV

inTy N WY is. O

If the reader thinks, as we do, that these expressions fdotia¢intersection num-
bers do not have a great deal of aesthetic appeal, we wibhtnyake it up by a different
global formula. This formula is not always available but Wik it is worth writing it
down.

We make the following definition based 8m4.14

Definition 4.4.12. A smooth familyT : M — BFred of bounded self-adjoint, Fred-

holm operators is called strongly transversalZpif I' o T is strongly transversal to

Zy,

Lemma 4.4.13.Letdim M = 3. Any smooth famil§" : M — BFred can be deformed

to a strongly transversal family t&,.

Proof: This is just proof of Lemm&.4.17with the addition that one has to make sure
that in the course of deformation one stays indsd®ed. This is true because the map

I : BFred — Lag™ is open. O

Proposition 4.4.14.Let M be a closed, oriented manifold of dimensin— 1 and
let T : M — BFred be a strongly transversal family t&,. ThenM' := {m ¢
M | dimKerT,, = 1} is a closed, cooriented manifold. LetC M! x P(H) be the

tautological line bundle ovets! with fiber~,, = Ker T},. Then

/M F*[Zy,wi] = /M1 a(y)"

Proof: This is just Propositio.4.18formulated in terms of operators.
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We want to describe the coorientation&f in concrete terms. Let. € M! and
v e T,M \ T,M" be a vector. The vector is said to be positively oriented if given
a curvea : (—e,¢) — M such thato N M = m = «(0) anda/(0) = v, the curve
of operatorsl’ o o has local spectral flow equal tol. This means that the eigencurve

determined by alpha had)eeigenvalue ab and the derivative is positive. ]

4.5 Intersection for Families of Operators Il

The motivating example for this paper was gpectral flow The idea behind the
spectral flow is very simple although to put it in a generafedéntiable topological
framework turns out to be a difficult task. Classically, otets with a family of self-
adjoint, elliptic operatorsi; parameterized by the circle, or by the unit interval. The
elliptic operators have discret eigenvalues and if the fiaimicontinuous the eigenval-
ues of the family also vary in continuous familie’;(¢)) <z called eigencurves. Since
the family is compact only a finite number of eigencurves Wwédcome zero at some
moment in time. The spectral flow is the difference betweemtimber of eigencurves
that start with a negative and end up with a positive sign &ondéd which start with a
positive and end up with a negative sign. In other words, geeisal flow is a count
with sign of the0-eigenvalues and to sucheeigenvalue one associates the sign of the
derivative)\(io) of the eigencurve that contains ttat

In order to make the picture rigorous one has to answer oeguzestions. What
does it mean for the family of operators to be continuous?rdlaee several possible
answers: in the Riesz topology, in the gap topology or, if smdealing with an affine
family of Dirac operators for example then one can use theltmy of the underlying

space. Another question is when are the eigencurves ditiatde around. One can
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Figure 4.1.5F =0

argue that in order to count those eigencurves that beconseatesome moment in
time one does not need differentiability but only contiguibne fixes a finite family
of eigencurves that contains all those that go thru zero hed the spectral flow is
(1) =7 (1)] =37 (0) =327 (0)] where> " (p) is the number of positive/negative
end points of the eigencurvesjat {0, 1}). We are interested in the situations when
one can localize the spectral flow, arguably a more usefuhoatedf computation.

If the family A, satisfies all the good conditions one wishes then the sig{/g§
coincides with the sign ofA,,v, v) for any vectory € Ker A,,. Indeed ifA, and \,
are differentiable families of operators then sdis:= A; — )\;. The correspondence
B — Ker B is a differentiable map wheiim Ker B is constant and so we can, locally
aroundt,, choose a smooth family of unit eigenvectefsfor A, and eigenvalue\,.
That is we have the relation:

Aoy = My

To simplify notations supposg = 0. We can differentiate dt to get:

Ao’Uo -+ AQUO = )\'01)0
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We notice of course thdtd,uy, vy) = 0 SinceA, is self-adjoint. So

<A0U07U0> = <X0U07U0> = Xo

The sign of(ono, vo) does not depend on the choice of the vectoe Ker A, .

Among the good conditions one wishesAfs the fact that the derivativé, makes
sense, which is the case if the operators are bounded, orgeoegally if the family is
affine (see Definitiont.1.9. Another useful observation is the fact that, for a smooth
family of bounded or affine operato(sl;);c.1j, if Ay, is an isolated operator with
one-dimensional kernel, meaning thatr A, = 0 for all ¢ # ¢, close enough, then
(A v, 1) # 0 for some vector, € Ker A, .

These observations lead us to the following definition.

Definition 4.5.1. Let A : [0, 1] — SFred be a smooth (see Definitich4.1) family of
bounded or affine, self-adjoint, Fredholm operators. Thalfais said to be in general

position if the following two conditions hold
e There are only a finite number of poiritg [0, 1] such thater A, # 0.
e For every operatod; with non-trivial kerneldim Ker 4; = 1.

LetZ := {t € [0,1] | Ker A; # 0}. The local spectral flowatt, € Z of A is the
sign of the numbetA,, v, v) for some vector € A,

Thespectral flowof the family is the sum of the local flows, i.e.,

Z sign(Ag,v, v)
to€Z
Proposition 4.5.2. The spectral flow of a family is the Maslov index of the astedia

family of switched graphd : [0,1] — Lag™.
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Proof: In the bounded case this is just.9for k£ = 1. The affine case follows the same

line of argument. O

When one deals with affine families of operators, the loda&rsection numbers are
not more complicated than the bounded case. The specifieveasensider are families
of Dirac operators defined on the same domain where we |letaitveection vary. For
more on Dirac operators se&f] or [34].

Let Ci(M) — M be the bundle of Clifford algebras associated to a compact,
oriented, Riemannian manifold. Lé&t :— M be a Cliffford module overnV/. For
us, this means thaf is a hermitian bundle that comes with a bundle endomorphism
¢: Cl(M) — End (S5), called Clifford multiplication, which is a unitary Cliffa alge-
bra representation in each fiber.

For each hermitian connectidn on S, compatible with the Levi-Civita connection

onCl(M) one gets a Dirac operatdy:

C®(8) Y= C®(T*M @ §) —= C(S)

Dy :=coV

It is a known fact that this operator can be extended to a bedingerator

Dy : LY*(S) — L*(S)

which is self-adjoint, elliptic.
The space of hermitian connections Sn.A(S) is an affine space modelled on
Q'(AdU(9)), which is the set of one forms with values in the bundle asdedito

the principal bundle of orthonormal frames 8f via the adjoint representation. On

140



AdU(S) one has a hermitian metric so one can speadiafections of * M @ Ad U(S)
and this is exactly what'! (Ad U(.9)) will represent for usL? sections rather than just
smooth ones.

Therefore, once one fixes a hermitian connection, the spagg¢becomes a Hilbert

space.

Lemma 4.5.3. The map

D A(S) — B(LY(S), L*(9)), V — Dy

is differentiable.

Proof: If one fixes a connectioR, then one gets an induced map:
QY(AdU(S)) — B(L*(5), L*(S))
V—VQﬁﬂv—QVO:C(V—Vo)

This family is clearly differentiable. The rest follows froLemma4.1.7. O

By Theorem4.1.6the associated family of switched graghs D : A(S) — Lag™
is differentiable. We can actually compute this differah@xplicitly. In order to do
that let us first remember a classical fact about first-orliptic operators, namely the
elliptic estimates. In our case, for example, there existsrestaniC', depending only

onV such that for every € D(Dy) one has the inequality:

1¢lh.2 < C(IDv(9)l2 + [[6]2)
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This inequality can be rephrased as saying that the map:
v LY2(S) — T'py € L*(S) ® L*(S), ¢ — (Dvo, 9)

is continuous and therefore an isomorphism of Banach spaces

We compute the differential df o D at a fixed connectioR¥,,. The result is a map
QY(AdU(S)) — Sym (I'p,)

The target space of this map are self-adjoint operators @shtched graph oDy, .

We can identify this space with a subspacé&¢f.’?(S)) via the mapy.
Sym (F'pg) — B(L*(S)), T —~y'Ty
Definition 4.5.4. If V, is a fixed connection then the following map
aD|,: QAAU(S)) = BL'A(S)),  dD () :=7"d( 0 D), (w)y

is called thgprojected) graph differentiabf D at V.

Lemma 4.5.5. The following relation holds between the graph differelrdiad the dif-
ferential ofD at V:

dD|,(w) = (1+ D) " e(w)

Proof: Letw € Q'(AdU(S)) be al-form with values in(AdU(S)) and letD, :=

Dy + te(w) be the associated affine path of Dirac operators that stefls aWe will

a useful consequence is that one can change the inequglitjnsihe elliptic estimates and still get
a true sentence
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denote bd’; the switched graph db,.
We want to express the switched grapifas the graph of a bounded, self-adjoint,

operatol’y, — I'y. So let:

(D, z) = (Doy,y) + J(Doz, z) = (Doy, y) + (2, —Doz)

wherez, y andz are inL»%(S). In order to solve the system:

Dix = Doy + 2z

xr = y—Dyz
we will suppose first that, y € L**(S). Then:

(1+DyDy)z = (1+ D2y
(®t - @0)37 = (1 -+ Dg)z

Of coursel +D is an invertible operatat??(S) — L?(S) and because the association

V — Dy is continuous, so i$ + DD, for ¢t small enough. Therefore:

z=(14D§) Dy — Do)(1+ DoyDy) ' (1 + D)y

Notice that the operator on the right hand side is pseuderdiitial of order minus one
and as such it can be extended to a continuous opetatds) — L'2?(S). The associ-
ationy — z is the operatof, — Iy seen only after conjugation with the isomorphism
Y.

The derivative at = 0 of this family of operators is exactly the one that appears in

the statement of the lemma. OJ
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Remark 4.5.6. The previous computation is almost exactly the same as theamied

in Lemma2.2.11 The only thing that is different is the target for the progetgraph
differential which is a subspace of the space of boundedatmer onZ'? rather than
L?. This is true more generally for affine families of operatansl the same relation
between derivatives holds. More precisely, lebe the unit ball in som&™ and F :

B — B(H,, H) be a smooth family of self-adjoint Fredholm operators shel/'(b) —
F(0) = A, € B(H). Then the projection map, : I'r) — H, identifies the switched
graph atF'(0) with H, (with the graph norm) and so the projected graph differéntia

and the "differential” ofF" satisfy
P;ld(T o F)P = (1+ F(0)*)*dA

Proposition 4.5.7.Let F' : R" — A(S) be a smooth family of Dirac operators as
above, or more generally a family of affine operators. Thenldical intersection for-
mulae of sectiorl.4 for bounded operators, still hold with the obvious modificas.

For example, in the case df4.10the intersection number is computed by the sign of

the determinant:

(c(O1f)g,0) Rel{c(Oif),¢) TIm(c(Oif)y,¢)
(c(Oaf)p,0) Rel{c(Oaf)h, @) Im(c(Oaf)¥, @)
(c(0sf)p,0) Re(c(Osf)v,¢) Im(c(Dsf),d)

where(¢) = Ker Dy N (e)*+ and satisfies the relations:

v # 0
(p,) = 0 (4.5.1)
Doy = ae
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for some constant, which isO whenKer D, is two dimensional.

Proof: The passing from the graph derivative to the operator dévevés given by the

previous lemma. The rest goes just as in the proof of Prapaosit4.9 O
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CHAPTER 5

APPENDIX

5.1 Representatives of cohnomology classes in Banach ni@dsifo

We describe in this appendix how certain stratified spacemiimfinite Banach
manifold define cohomology classes. Our presentation Eried from the work of B.
Iversen [L9] and G. Ruget{7].

In the sequel our spaces will be assumed paracompact. ladaeimbient spac’
is assumed to be a metric Banach manifold. For such a sp#ges) will denote the
(Cech) cohomology of a topological spakewith coefficients in the constant sheaf
If the space is locally contractible then the cohomologyhwiefficients in the constant
sheafZ can be identified with singular cohomology. séeChap.1l1].

For a closed subsé€t C X we denote by{&(.X) the local homology ofX alongC
(see L9, Sec. 11.9]). If S and X are locally contractible then,

H(X) = H;

sing

(X, X\©).

One important property of local cohomology is9[ Prop. 11.9.5] :

Proposition 5.1.1(excision exact sequencd)et C; D G, be two closed subsets of the

topological spaceX. Then one has the following long exact sequence:
— Hg,(X) — H,(X) — Hg, je,(X/C2) — He ' (X) —

146



Remark 5.1.2. When C; and @, are locally contractible then the previous sequence
corresponds to the long exact sequence in singular congyaksociated to the triple

(X, X\ €, X\ Cy).

For any closed subsétwe denote byH% the sheaf on¥ associated to the presheaf

JN{’g, such that for any open sét C X we have
LU N e,3E) = Hey(U),

For everyz € X the stalk atr of H% is denoted byH?%(z) and can be described by the
inductive limit

He(x) = lim Hfje(U),

Uszx

where U runs through all the open neighborhoodszof Notice that this sheaf has

support onC and because of that we have:

H* (X, HE) ~ H*(C,i*HE)

Definition 5.1.3. The closed spacé is said to havdnomological codimension iX at

leastc if and only if 3§ = 0, Vk < c. We write this as
codim’ (@) > .

Observe that the above definition is local, i@dim’ (C) > ¢ if and only if for

some open covad of X we have

codim?(U N €) > ¢, foranylU € WU.
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Definition 5.1.4. A closed subsef — X is said to benormally nonsingulaior NN)

of codimensiort if the following holds.

e For any pointw € C there exists a neighborho@dof w in X and a homeomor-

phism of pairs

(N, NNC)— (R x (NN €), {0} x NneE).

Remark 5.1.5.1f € < X is NN of codimensior: thencodim’ € > c.

Remark 5.1.6. If ¢ — X is submanifold ofX of codimensior: and@ is closed as a

subset ofX then€ is NN of codimension. In particular,codim’ C > c.

If € — X is NN of codimension: the sheave§(f, are trivial if & # ¢, while if
k = cthe sheaf(}; is locally isomorphic to the constant sh&afWe say thaf is the
co-orientation sheabf ¢ — X and we will denote it by2e.

The Grothendieck spectral sequence for local cohomolag/[(<, Remark 2.3.16])

converges td{$(X) and itsE, term is given by

0 qg<c
B} = H(X, (%) =

HP(C,Qe) q=c.

The following extension property is a consequence of has pes said

Proposition 5.1.7(Extension property)If codim’% (8) > ¢ then, for any closed subset

€ D 8§ and anyg < ¢ — 1, the restriction map
H{(X) — H(‘IG\S)(DC \ C)

is an isomorphism. We will refer to its inverse as éxtension across.
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Proof: By what has just been safdd(X) = 0 for all ¢ < c. The rest is taken care by

the excision exact sequence (Propositoh 1). O

Corollary 5.1.8. If codim’ (8) > ¢, then the for any; < ¢ — 1 the restriction map

HYX)— HY (X \?8)

is an isomorphism.

The Grothendieck spectral sequence givésam isomorphism

Te: H*(C,Qe) — He(X)[c] := Hg™(X).

The composition of this morphism with the natural morphisge : H3(X) — H*(X)
is theGysin map

ve: H*(C,Qe) — H*(X)|c].

Definition 5.1.9. Suppos& — X is NN of codimension: in X.

(a) The set is calledcoorientablein X if the co-orientation shedRe is isomorphic

to the constant shedf with stalkZ at every point. Aco-orientationof the embedding
C — X is a choice of an isomorphisih — Q¢e. A coorientation is uniquely deter-
mined by an elemente € H°(C, Q¢) which, viewed as a section 6, it has the

property thatve(w) generates the stafRe(w) for anyw € C.

(b) For any coorientatiow of C we define by

P = ‘.T@(w@) € HE(X), [G]X = VX,@(w@) c HC(X)

The classbe is called theThom clas®f the (normally nonsingular) embeddifg—
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X, and theelement[C]¥ is called thecohomology classletermined by the normally

nonsingular co-oriented embeddifig— X. O
Proposition 5.1.10.Suppos€ — X isa NN subset ofX of codimensior ands C C
is a closed subset @&f such that

codim’ (8) > ¢ + 2,
such theN N subset® \ X is coorientable inX \ 8. ThenC is coorientable inX and
any coorientation of \ 8 in X \ 8§ extends to a coorientation €fin X.

Proof: Propositions.1.7gives an isomorphism
HE(X) — Hag(X\ 8).
which fits in a commutative diagram

HO(C, Qe) —= H°(C\ 8, |e\s)

H E%X ) H, FX\g>m£(X \8)

where we notice that the restriction®d\ S of the coorientation she&?. is the coori-
entation shea® x\s)/(c\s)- The vertical arrows are the Thom isomorphisms. Since the
bottom horizontal arrow is an isomorphism, we deduce thattme is true for the top

one. In other words, the restriction morphism

LW, 82e) — I(C\ 8,9 [e\s)

is an isomorphism.
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The coorientation of \ 8 in X \ 8 determines a sectia@e s of Qe overC \ 8
such that for everyv € C\ 8 the elementve s(w) is a generator of the stalRe(w).
From the above diagram we deduce that there exists a uniqtiers@ of 2 overC
that restricts tave s. We want to show that for every € €, the elementve(w) is a
generator of the stale(w). We want to check this whewn € § C C.

Sincecodim® 8§ > ¢ + 2 we deduce tha has empty interior as a subset®fThis
is because i were a point in the interior of thenH 5(s) = H(s) # 0. Choose
a small, connected open neighborhdomf w in € such that the restriction dR¢ is
trivial. This is possible since the she@f. is trivial. Note thatl \ § # 0.

On the neighborhood the sections of2e can be identified with locally constant
functionsU — Z. SinceU is connected, any such function must be constant. Thus
we|y can be identified with a constant functiéh — Z whose value at any point
w' € U\ S is agenerator of.. This shows thaiv¢ is indeed a coorientation & in

X. O

The normal nonsingularity is still a pretty strong restdot We want to explain
how to associate a cohomology class to a closed subsetitjiatysliolates the normal

nonsingularity condition.

Definition 5.1.11. A closed subse€ C X is called quasi normally nonsingular (for
short QNN) of codimensionif there exists a closed subset- € such that the follow-

ing hold.

e codim%(8) > ¢+ 2, and

e C\ SisaNN closed subset of \ S of codimensiorr.

The sefS is calleda singular locudor the embeddin@ — X. O
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Remark 5.1.12. The singular locus in the above definitianot uniquely determined
by C. For example if$ is a singular locus and € €\ 8 then8 U {w} is a singular

locus ifdim € > 1.

Suppose® — X is a QNN subset ofX of codimensiore. Fix a singular locus
8§ C €. By Propositiorb.1.7and Corollary5.1.8we have that{§(X) = 0, Vk < c+1,
and an isomorphism

HE(X) — H(CG\S)(X \8).

We denote by its inverse, and we refer to it as tegtension across. If the singular
locus 8 is such thatC \ § is coorientable inX \ 8, then a choice of coorientation
defines an elementes € H°(C\ 8, Q(x\s)c\s)). We denote by x ¢ s the element in

H¢(X, X \ C) that corresponds t@¢ s via the isomorphism
T C € C
HO(C\ 8, Qx\s)/(e\8) — Hieys) (X \ 8) == Hg(X).

Proposition 5.1.13.SupposélV — X isa@ N N of codimensiom, such that for some
choice of singular locu§, the NN setC \ § is coorientable inX \ S,. Then for any

other choice of singular locu$;, such that
codim’y (8o N 81) > ¢ +2

the NN setC\ 8, is coorientable inX \ 8;, and any coorientatiow of C\ 8, induces
a unique coorientation; of €\ 8; which agrees witkw, onC\ (8,U8;). Moreover, the
class®x ecs, € Hs(X) determined by, coincides with the claséy cs, € HE(X)

determined by .

Proof. We carry the proof in three steps.
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Step 1. If 8§ C 8; are singular loci ofC, andC \ 8, is coorientable inX \ 8, then
any coorientation o€ \ 8, extends to a unique coorientation®f, 8, and we have an

equality between the corresponding elementd i#1.X )
Pyes, = Pxes, -
SetX' =X\ 8, =C\ 8,8 =81\ 8. Thens; \ S is closed inC \ §, and
Codim}}(\SO (81 \ S) = codim® 8 > ¢ + 2.

Proposition5.1.10implies that any coorientation @f \ S; extends to a coorientation

of €"in X’. Moreover, the diagram below is commutative

& S
H g (X \ 81) 222 HE o (X \ So)

Es
l ' €sg

H(X)

We only need to check th&k maps the Thom class of the embedd@igs’ — X'\ &

to the Thom class of the embeddifig— X'. This follows from the functoriality of the
Grothendieck spectral sequence which in this special casde rephrased as saying
that the Thom isomorphism is compatible with the restrittio open sets.

Step 2.1f §; and§; are singular loci such thatodim’}((SO N&y) > ¢+ 2,thendy U 8y

is a singular locusObserve that for every € X we have a Mayer-Vietoris long exact

sequence (se€{, Eq. (2.6.29)])

e }C];(\(s()msl)(x) - H?{\s()(x)@j{];(\sl(x) - j‘C];(\(sousl)(x) - j‘flﬁgvgomgl)(x) AR
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where for any closed subsétC X we denoted by’ (x) the stalk atr of the local
cohomology sheaﬁ{’j(\c.
Step 3. SupposeS, and 8; are singular loci such that \ 8, is coorientable and
codim’ (8, N 81) > ¢ + 2. Fix a coorientationv, denote bydx ¢ s, the element in
HE(X) determined bywy.

The coorientatio, restricts to a coorientatian, of C\ (§,U§,) that determines

an element® x ¢ s,us, € Hg(X). From Step 1 we deduce

Dxes, = Px,es0U8;: -

By Proposition5.1.10the coorientationvy; extends to a unique coorientatian of
C\ 8, and from Step 1 we conclude that the elemgi s, determined by, coincides
with the elemen® x ¢ (s,us,) determined bywy, .

O

Definition 5.1.14. (a) If Cis QNN of codimensiorn:in X, C is said to becoorientable
if there exists a singular locu$ — € such that theV /N subset® \ § — X \ Sis
coorientable inX \ 8. A coorientation ofC is defined to be a coorientation 6f\ § in
X\S. O
(b) If Cis QN N of codimensior: in X, then two singular locs, 8’ of € are said to be

equivalent if there exists a sequence of singular loci
§=38p,...,8, =8

such that
codim’(8;_1N8) >c+2, Vi=1,...,n.

From Propositiorb.1.13we deduce that i€ is a co-oriented QNN subset of codi-
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mensiore in X, then thecohomologyclass
(€Y :=exe(Pxes) € H(X) (5.1.1)

depends only on the equivalence class of singular 8@l it is called theohomology
class determined b§ and the (equivalence class of the) singular loSusboveex e
denotes the natural extension morphi&if(X) — H°(X).

The next results follows immediately from the above defims.

Proposition 5.1.15.SupposeX, Y are smooth Banach manifold&, ¢ X is a closed
subset such thabdim’s £ > c¢+2, € — Y is a cooriented QNN of codimensiepand

f: X\ E — Yisasmooth map with the following properties.

e There exists a singular locusfor € such that

codim’ (f(S)UE) > c+2.

e The restriction off to X \ (f~!(8) U E) is transversal te \ 8.

Then the following hold.

(@) The subsef~!(€) is a cooriented) NN subspace o \ E of codimension:

with singular locusf—1(8).

(b) The subset~*(€) U £ is a canonically oriented) N N subspace of codimension

cin X with sinylar locusf~*(8) U E .
(c) The canonical inclusion: X \ £ — X induces an isomorphism
i*: HY(X)— HY (X \ E)
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and

S U BN = [fTHEIN = frle).

The QN N subspaces of a Banach manifold may be difficult to recognieetd the

homological codimension conditions. We recall now a defni{see3.2.4)
Definition 5.1.16. A quasi-submanifoldof X of codimensiornt is a closed subsét C
X together with a decreasing filtration by closed subsets

F=F"'>3F >F?>5F ...

such that the following hold.
o Fl =32
e Thestrata8® = %\ F**1 are submanifolds ok of codimensiork + c.

The quasi-submanifold is calledorientableif 8° is coorientable. Acoorientation
of a quasi-submanifold is then a coorientation of its toptsim.

The stratification is said to be finite if there existsraguch thatF™ = ().
(b) If f:Y — X isasmooth map, arnd is a quasi-submanifold of, thenf is said to

be transversal t6 if it is transversal to every stratum 6t O

Proposition 5.1.17.Any quasi-submanifolf = 3° > F! = 32 5 - .. of codimension

c in a Banach manifold{ is aQ N N subset of codimensiarwith singular locusy?.

Proof: It suffices to prove that

codim}}( F% > ¢ and codim}}( F? >+ 2.
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The fact thatF! = 32 plays no role in the proof of these inequalities so we provg on
the first one.

It is enough to show that given € F°

HYU,U\F) =0 Vk<c

for all small open neighborhoods$ of w. But for U open small enoughy N F° is

a stratified space with a finite stratification because theigseann such thatw €

F. \ F.e1 andF, .4 is closed. So without restriction of the generality we cappmse
the that the stratification is finite.

We now use induction on the number of strata and the excistantesequence
for local cohomology to prove the result. Indeed $8y ' = (). Then there exists a
maximalN < n such thatFy is a nonempty, closed submanifold of codimensienV
in X. ThereforeFy is normally non-singular and so it has homological codinmmat
leastc + N. Suppose we have proved ttt hascodim” > ¢ + 1. Then in the long

exact sequence:

HYX, X\ FY) - H*X, X\ F°) - H* X\ T, X\ T - H-Y(X, X\ T

the first and the last group are zero for/akk ¢. On the other hand

HYXN\FHLXN\TY) = HAX\ T (XN T\ (F°\ )

Now F9\ F! is a closed submanifold of \ 5! of codimension: so it has homological
codimension at leastso the previous group also vanishes fox ¢ and this finishes

the proof. O
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We summarize the previous discussion. Any cooriented,ngedsionc quasi-

submanifold¥ — X determines
i) a Thom classby € H5(X);
i) a cohomology clas§F|* € H¢(X,Z).

It is clear the the preimage of a cooriented quasi-submiarife— X of codimen-
sioncviaasmoothmap’ : Y — X transversal to the strata &fis a quasi-submanifold

of Y of codimensiort equipped with a natural coorientation and
_ Y *
[FH @) = F(191%).

In finite dimensions the cohomology class associated to arierted
quasi-submanifold class is intimately related to Poiaaiality. For any locally com-
pact spaceX we denote by7 2 (X)) theBorel-Moore homologylin the particular case
when X admits a compactificatioX” such that the paifX, X) is a CW-pair then one

can take the definition of the Borel-Moore homology to be

where on the left we mean singular homology. For exampki$ a compact differen-

tiable manifold the Borel-Moore homology coincides witke tisual singular homology.
The "classical” Poincare-Alexander duality (see for exniph. 8.3 in P]) says

that for an oriented manifolX’ of dimensionn and a compact subsé& C X the

following groups are isomorphic:

HP(K) ~ H,_,(X, X \ K)
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where on the left we hav€ech cohomology and on the right we have singular coho-
mology. Suppose now we want to switch the role of homologyasttmology in the

previous isomorphism. Then Poincaré duality (see Th. IX.id[19]) has the form:

Hi(X) = HY(X, X\ K) ~ HP(K)

for any closed subsét C X.

WhenK = X Poincaré duality takes the form:
_ BM
HP(X) - Hn—p(X)

Let X be an oriented smooth manifold of dimensiarwith orientation clas§X|
HPM(X), and¥ — X a cooriented quasi-submanifold &f of codimension:. The
coorientation off defines an orientation of the top stratdi:= F \ F2 of F and thus

a canonical element

pie € HZ(T°).
On the other hand we have:

Proposition 5.1.18.LetF is a quasi-submanifold of codimensioimside an-dimensional

manifold X'. Then
HPM(F)=0 Yk >n—c

Proof: This follows by induction on strata from the long exact setge
HZM(TY) — HPM(T) — HPM(T\ T — H (T

and from the fact that the Borel-Moore homology op-@limensional vanishes in di-

mension bigger thep. ]
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We deduce that
HIPY(F) — HPY(F°)

is an isomorphism and thus there exists an elemerg H 5 (F) that maps tQug.. If

1 denotes the canonical inclusiéhn— X, we obtain an element

[Fx = iu[ug] € HZH(X)

called the (Borel-Moore) homology class determined by the cooriented

guasi-submanifoldr.

Proposition 5.1.19.The classis € HPY(F) is Poincag dual to the Thom clasBs €

H$(X) and the clas$F]|x € H?M(X) is Poincag dual to[F]* € H5(X).

Proof: see [L9] Ch. X.4.

The way this relates with the theory of analytic cycles whigs used by Nico-
laescu, P9 to construct Poincaré duals to the generators of the colagy ring of
U(n) is as follows. LetX be a compact subanalytic manifold and Jebe a quasi-
submanifold which is subanalytic. We can choose a trianiguiaf X that is compati-
ble with the stratification

XDOFOF: o ...

After some barycentric subdivisions we can assume that plisiiad neighborhood of

F2 in F deformation retracts t62. In this case we have

Hf—]vé[(‘rfo) = H, (7, ?2>

The orientation or¥° induces orientations on the top dimensional simplicesainatl

in F. The codimension condition ofi° insures that fact that the sum of these top
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dimensional simplices with orientations defines a relaiwenology class inf,,_. as
its boundary lies in the simplicial neighborhood and the ¢ — 1-homology of this
negihborhood is zero.

R. Hardt[L6, 17] has described another model of homology based on subanalyt
currents. His theory satisfies the Eilenberg-Steenrodnasiand thus, for any compact

triangulated subanalytic s&t we have a canonical isomorphism

H:implicial(X) N Hf{ardt(X)

Via the above isomorphism the clg§3 y coincides with the current of integration over

Fe.
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