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Abstract

We construct some natural metric connections on metric contact manifolds compatible with the contact structure
and characterized by the Dirac operators they determine. In the case of CR manifolds these are invariants of a fixed
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We are interested in the local differential geometry of such a manifold and in particular, we seek “natural”
connection in the tangent bundig\.

Gauge theory suggests that a “natural” connection ought to be compatible waitidl J. We will
refer to these ametric contact connection3 hese requirements alone still leave open a wide range of
choices. On the other hand such manifolds are also equipped with some natural elliptic partial differential
operators. For the simplicity of the exposition assuvhes equipped with apinstructure with associated
complex spinor bundI&. Every metric connectioW on M induces a Dirac type operator

D(V):C®(S) = C=(S).

A metric connectiorV is calledbalancedif D (V) is symmetric. Two connectiorig’, i = 0, 1, will be
calledDirac equivalentif (V%) =9 (V). The first question we address in this paper is the existence
of a metric contact connection Dirac equivalent with the Levi-Civita connection.

On the other hand, a metric contact manifold is equipped with a natural elliptic, first order oférator
resembling very much the Hodge—Dolbeault operator on a complex manifold (see S=8tionmore
details). This operator acts on the sections of the complex spinor bpdiesociated to the canonical
spirf structure determined by the contact structure. A metric contact connéciimiuces a (geometric)
Dirac operato®. (V) on C*(S,).

The second question we address in this paper concerns the existence of a metric contact connection
such that®.(V) = H. We say that such a connectioraidapted tdH.

To address these questions we rely on the work P. Gauduchoifé{see Section2.1), concerning
hermitian connections on almost-hermitian manifolds. More precisely, to implement Gauduchon'’s results
we will regardM as boundary of certain (possible non-complete) almost hermitian manifolds. We will
concentrate only on two cases frequently arising in gauge theory.

e The symplectization = R, x M with symplectic formw = d(tn), metricg = dr? + n®2 + 1g|y,
and almost complex structure .

e The cylinderM =R x M with metric g = dt? 4+ g and almost complex structure defined by
Jo, =&, Jlv=1J

To answer the second question we use the cylinder case and a certain natural perturbation of the first
canonical connection off' M, g, J). This new connection o M preserves the splitting M = Rd, ®
T M and induces a connection @hV with the required properties (see Sect®). Moreover, when/
is a CR manifold this connection coincides with the Tanaka—\Webster connddtoh3]

To answer the first question we use the symplectlzazllbland a natural perturbation of the Chern
connection orf’ M. We obtain a new connection di whose restriction t¢1} x M is a contact connec-
tion (see SectioB.4). WhenM is CR this contact connection is also CR, but it never coincides with the
Tanaka—Webster connection. We are not aware whether this contact connection has been studied before

Theorem. (a) On any metric contact manifold there existb@anced contact connectiaadlapted taH
and abalanced contact connecti@irac equivalent to the Levi-Civita connection. If the manifold is CR
these connections are also CR.

(b) On a CR manifold each Dirac equivalence class of balanced connections contains at most one CR
connection. Moreover, the Tanaka—Webster connection is the unique balanced CR connection adapted
to'H.
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Finally, we present several Weitzenbdck formulee involving the opefdtdsee SectiorB8.3). We
expect these facts will allows us to extend the computatior{9]iro more general links of isolated
surface singularities.

1. General properties geometric Dirac operators
1.1. Dirac operators compatible with a metric connection

Suppos€M, g) is an orientedz-dimensional Riemannian manifold. We will denote a generic local,
oriented, orthonormal synchronous frameTof by (e;). Its dual coframe is denoted kgy'). We will
denote the natural duality between a vector space and its dyal by

A metric connectioron T M is a connectiorivV on TM such thatvg = 0. Thetorsion of a metric
connectionV is theT M-valued 2-formT = T (V) defined by

T(X,Y)=VyxY — VyX —[X, Y].

The Levi-Civita connection, denoted ly in the sequel, is the metric connection uniquely determined
by the condition7 (D) = 0. Any metric connectiorV can be uniquely written a® + A, whereA €
QYEnd_(T M)), where End denotes the space of skew-symmetric endomorphigniscalled thethe
potential of V. There are naturabomorphisms

QUTM) — QXT*M), TwT', QYENd(TM))— QXT*M), A A
defined by

RQUTM)> T T, (X, T'(Y,2))=¢(X,T(Y,2))
and

QUENL(TM)) 3 A AT, (X, AN(Y, 2))=g(AxY, 2) = AT(X; Y, Z),
VX,Y,Z € Vect(M). In local coordinates, if

T(eje)=Y Thei Agej=) Ale
i k

then
T'ej e) =Y The', Allej e0) =) Afe',
i

i
or equivalently,7,, = T}, A, = A%, To simplify the exposition, when no confusion is possible, we
will drop the T from notations and when working in local coordinates, we will wAitg instead ofAZ/.k
etc. Define

tr: 23(T*M) —> 21(M),  Q*T*M)> (Bjy) > (trB)=Y _ Biye*

ik

and theBianchi projector

b: 2%(T*M) — 23(M),
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Q¥T*M) 3 (Bijp) — bB = Z (Biji + Biij + Bjri)e' Ael A ek
i<j<k

Note that if B € 23(M) C 2*(T*M) thenB = bB.
For anyA € End(T M) anda € 21(M) we defineA A o € 2%(T*M) by the equality

(Ana)(X;Y,Z)=((AX), Aat)(Y, Z)
=g(AX,Y)a(Z) — g(AX, Z)a(Y), VX.,Y,ZeVect(M),

wheree, (resp.e’) denotes the-dual of a vector (resp. covectos) The proof of the following result is
left to the reader.

Lemmal.l. LetA € EnAT M), o € 2Y(M) and set
Ay = l(A-i—A*) A= l(A A%
T2 T2 ‘
Thentr(AAa)=({rd)a — A'a, b(AAa)=2w,s_ Ao, where
was (X,Y)=g(A_X,Y), VX,Y eVect(M).
Using the above operations we can orthogonally decom@ss&* M) as
QAUT*M) = 2N(M) & 23(M) & 25(T* M),
where
Q5(T*M) :={A e 2%T*M); bA=1trA=0},
and21(M) embeds in2%(T*M) via the map
1
QY M) - Q¥T*M), o~ a:= —(Lrw A
n —
Using this orthogonal splitting we can decompose any 22(T*M) as

1 -1
A=1{rA+ZbA + PoA, POA:=A—trA—§bAe.Q§(T*M).

The next result, whose proof can be found4h, states that a metric connection is determined by its
torsion in a very explicit way.

Proposition 1.2. Suppose tha¥V is a metric connection with potential and torsionT. Then
TT=—AT 4+ bAT, (1.1)
t to Lo
Al=-T +§bT . 1.2)

In particular bAT= 26771, trAT= —tr ™.
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Since all the computations we are about to perform are local we can assumé ftisagéquipped
with a spin structure and we denote I§/the associated complex spinor buntiid/e have aClifford
multiplication map

c: 2" (M) — EndS).
A hermitian connectiorV on'S is said to becompatible with the Clifford multiplication and the metric
connectionv on T M if

Vx(cl@)y) = c(Vxa) ¥ + c(@)Vxy, VX €VectM), a € 2Y(M), ¥ € C=(S).

We denote byly = 20y (S) the space of hermitian connections $rompatible with the Clifford multi-
plication andv.

Proposition 1.3. The spac@ly (S) is an affine space modelled by the spaeé(M) of imaginaryl-forms
onM.

Proof. SupposeV®, V! e 2y. SetC := V! — V0 € 21(EndS)). Since bothV’, i =0, 1, are compat-
ible with the Clifford multiplication andv we deduce that for ever¥ € Vect(M) the endomorphism
C(X) := X 1 C commutes with the Clifford multiplication. Since the fibersSoére irreducible Clifford
modules we deduce from Schur's Lemma th4fX) is a constant in each fiber, i.eC,e 21(M) ® C.
Since bothV' are hermitian connections we conclude tGanust be purely imaginary 1-form.0

Definition 1.4. A geometric Dirac operatoons is a first order partial differential operat®r of the form

D=D(V):C®ES) - C(T* M ®S) > C=(S),

whereV € 2y (S) for some metric connectiow on 7 M.

Locally, a geometric Dirac operator has the fofiV) = > c(e")@e,.. Every metric connectioV

canonically determines a connecti®re 2y (S) locally described as follows. If thgo(n)-valued 1-form
w associated by the frame;) to the connectiotV is defined by

Ve, = Zek ®a)}'{jei, a)};j +a),{i =0,
ik
then the induced connection 8ris given by the End(S)-valued 1-form (segB])
A 1 i i j
o= -2 Zek ® wy;cle')c(e’). (1.3)
i,j,k

We setd (V) := D (V) andDy := D (D). Dy is the usuaspinDirac operator. We see that every geometric
operator has the form

D =9(V)+c(ia),

1sis Zy-graded ifn = dim M is even and it is ungradedsifis odd.
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whereV is a metric connection ol anda € 2*(M). We have the following elementary identity
1 1
D(D+ A)=9D(D) — Ec(tr A) + éc(b(A)). (1.4)

Definition 1.5. The connectiorV is calledbalancedif (V) is symmetric. We denote B, (M) the
space of balanced connections fn

The identity(1.4)implies immediately the following result.

Proposition 1.6. (a) The connectiorV with torsionT is balanced if and only ifr 7 = 0.
(b) Suppose thaV = D + A is a balanced connection dhM. Then

1 1
DV)=Do+ EC(bA) =D+ ZC(bT).

Corollary 1.7. Suppos&® =Dy + c(w), w € 23(M). Then® = D(V), where

The above result can also be rephrased in the language of superconnections describedlk.g., in
Supposer € £2°(M). The operatotl + c(z) is a superconnection on the trivial line bundle Taking
the tensor product it with the connecti@dnon S we obtain a superconnection 8r=C ® S

Ap = ®1+1QD:C®ES)— 2%S).
The Dirac operator determined by this superconnection is

CoAy, =90+ C(w).
Definition 1.8. Two connections/?, V1 € 2, (M) will be calledDirac equivalentf
(VO =D (V.
The above results show that two balanced connectihsndV* are Dirac equivalent if and only if

c(bT (V%)) =c(bT(V!)) <= bT(VH=bT (V7). (1.5)

Two metric connections off M, not necessarily balanced, are will be caltashsi-equivalentf they
satisfy the conditiorf1.5).

1.2. Weitzenbock formulae

Suppose(E, k) is a hermitian vector bundle oved. A generalized Laplacians a formally self-
adjoint, second order partial differential operafor C*°(E) — C*(E) whose principal symbol satisfies

oL (§) = —&215.
The next classical result shows that the class of generalized Laplacians is quite narrow.
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Proposition 1.9 [1, Section 2.1][5, Section 4.1.2]Supposd. is a generalized Laplacian of. Then
there exists ainique hermitiarconnectionv on E and a unique selfadjoint endomorphignof E such
that

L=V*V+R. (1.6)

We will refer to this presentation of a generalized Laplacian as the Weitzenbdck presentdtion of

If © is a geometric Dirac operator 6ithen both®*® and©0* are generalized Laplacians. Suppose
now thatV is a balanced connection on our spin manifoM, g). It determines a symmetric Dirac
operator® (V). We denote byw™ and respectivelyRy the Weitzenbdck connection and respectively
remainder of the generalized Laplacian(V)2. A classical result of Lichnerowicz states thatufis
the Levi-Civita connection theR'™ = V andR = s/4, wheres is the scalar curvature of the Riemann
metric g. WhenV is not symmetric the situation is more complicated but we can still produce explicit
descriptions oV™ andR.

More precisely we know frornProposition 1.6hat

D(V)=Do+ %c(bTT).

We setw := %bT*. As explained at the end of Sectiéril, ®(V) is the Dirac operator associated to the
superconnectioﬂf) + @ . Using[2, Theorem 1.3jve deduce the following result.

Theorem 1.10. Denote by®sin the spin-Dirac operator induced by the Levi-Civita connectibn
Dspin= @(13). Any geometric Dirac operatdd can be written as

D =Dgpin+ C(@) +C(ia), ae ' (M), @ e 23(M).

Additionally, if V=D + %w + U, whereU € 2%(T*M) is such thatr U = 0= bU = 0 then

D=DV) +c(ia), DV)2=(V®)*V® + Ry + c(ida),

where

L1 , . 1
VP =V 4+ 2 Zel ® Tijxcle’)c(e’), Ry = zls(g) + (c(dw) — 2| |1?). (1.7)
i,j.k

The last theorem has an obvious extension where we reflldnethe complex spinor bundIg,
determined by &pirf-structures on M. This case requires the choice of a hermitian connection on the
line bundle de§, . In the spin case d8t= C and the additional hermitian connection on the trivial line
bundle is encoded by the imaginary 1-friamappearing in the statement dfieorem 1.10
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2. Dirac operatorson almost-her mitian manifolds
2.1. Basic differential geometric objects on an almost-hermitian manifolds

In this subsection we survey a few differential geométiacts concerning almost complex manifolds.
For more details we refer {d,6,7].

Consider an almost-hermitian manifald??’, g, J). Recall that this means tha¥, g) is a Riemann
manifold andJ is a skew-symmetric endomorphism®M such that/? = —1. Fix xo € M and consider
a local, oriented orthonormal frame &M, (e1, f1,...,e., fn).- We also assume it is adaptedtdhat
is,

fj=Jej5 V]=1,,n

We denote by(e!, f1,...,¢", f") the dual coframe. Let:= /—1. We splitTM ® C into +i-eigen-
subbundles of, T M*° andT°. These are naturally equipped with hermitian metrics inducegl dryd
have natural local unitary frames near

1

TMY: g = ﬁ(ek—ifk), k=1,...,n,
TM%Y: & Z=i(€k+ifk)’ k=1,...,n.
NG

Form by duality7*M*9 and7*M°! with local unitary frames given by

1 . . 1 .
ek = —Z(e" +if% andrespectively & :=-—(*"—if", k=1,...,n.

72 NG

Form =0,..., 2n we have unitary decompositions
A"T*"MR@C= P APIT*M, APIT*M:=A"T*M"°® A1T* MO,
p+q=m
SetK,, := A"°T*M. We denote byP”9 the unitary projection ontai”¢ and define
3:Q2P9(M) — QrtY (M), §:=Prittod
and
31271 (M) — P M), 3:=Prod.
The space23(M) ® C splits unitarily as
2*C=2 e 0", 2T=*00'? o =023g¢n.
Finally, introduce the involutiof)t on £22(T* M) defined by
MB(X;Y,Z)=B(X;JY, JZ).

2 Our conventions for the wedge product and exterior derivative differ from those u$gdan([6, 1.83]. They agree with
those in[4,8]. This explains some discrepancies between formulg &) and the present paper.
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Observe that
Yyt =Myt, VyTent.

We denote by2'1(T*M) the 1-eigenspace aft and by 211(7*M) the intersection of ker with
¥YT*M). Thus

Ae QM (T*M) < A=9MA, bA=0.
The Nijenhuis tensoN e 22%(T M) is defined by

NX.,Y):= %([JX, JY1—[X,Y]-J[X,JY]1—-J[JX,Y]), VX.,YeVectM).

Notice thatN (J X, Y) = N(X, JY) = —JN(X, Y). This implies immediately that %' = 0.
We denote byD the Levi-Civita connection determined by the metgi@and byw the fundamental
2-form defined by

o(X,Y)=g(JX,Y), VX,Y e Vect(M).

Locally we havew =i}, e/ A&/, Defined‘w € 23(M) by
d°w(X,Y,Z2)=—-dw(JX,JY,JZ).

TheLee formé determined by(g, J) is defined by
0 = Aldw) = —J A((d“w)"T),

where A denotes the contraction ly, A = (oA )*, andJ acts on the 1-forna by
Ja(X)=—a(JX), VX eVectM).

We have the following identity (s€6, 8IX.4] where the authors use slightly different conventions)
1 1
g((Dx Y, Z) = —5do X, JY,JZ) + sdo(X. Y, Z) + 2¢(N(Y,2),JX). (2.1)

The forme determines the skew-symmetric part™f via the identity

bNT = (dw)™.
The almost complex structure defines a Cauchy—Riemann operator

3, C*(TMY®) —> %Y (T M)
defined byX 19,Y =[X, Y]*°, VX € C*(TM®Y), Y € C®(TM*O).

A hermitian connectiomn T M is a metric connectioiv such thatvJ = 0. A hermitian connection
V is completely determined by := %(bT)+ andB := (T")11 via the equality (seft, Section 2.3]
1 3 9 3

T(V)'=NT+ é(dcw)+ — éznt(dcaﬁ) + éw — ézmw + B.
We will denote the above connection By, B). WhenB = 0 we write V() instead ofV (v *, B).
Observe that ifl" is the torsion ofV (v, B) then

b7t =bNT+3y T = (d°w)” +3yT.
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Using the formulag4, (1.3.5), (1.4.9)hnd the equalityy ™ = bMy*, V¢t € 21 we deduce that
tromy T =-27Ay", Yy et (M).
Since trNT = 0 we deduce that the trace of the torsiorvafiy *, B)

3 3 3
trT(V(y ™, B))=trB+ zlJA((de)+ +yt)=trB — Ze + ZJAw+.

Example 2.1. Thefirst canonical connectio(see[4, Section 2.5pr [7]) is the hermitian connectiow®
defined byB =0 andb7 = (d°w)~ — (d°»™) so thaty* = —%(dcw)Jf. Its torsion is

1
Ti=N'- 21((dcw)+ + M w)t).
In general, it is not a balanced connection sind%Ttt —%0.
Example 2.2. TheChern connectioor thesecond fundamental connectj#, 7], is theuniquehermitian
connectionV on 7'M such thatv®! = 3;. We will denote it byV¢. Alternatively (sed4, Section 2.5},

it is the hermitian connection defined B/= 0 andbT' = (d‘w)~ + (d‘w)™, i.e., it is determined by
Y+ = 1(d‘w)™. Its torsion is given by

1, . :
TI=N"+ 5((@ @) — M w)").
In general, it is not a balanced connection sindg'te —6.

Theorem 2.3. For everyB € Qsl*l(T*M) such thattr B = %9 there exists dermitianconnectionv? =
V?(B) uniquely determined by the following conditions.

(i) V?is balanced.
(i) (TH1=B.
(i) V? is quasi-equivalent t&° (see(1.5)).

Proof. We seekv’ of the formV? = V(y*, B). The condition (iii) implies that its torsion satisfie®, =
(d°@)” —(d°w)*. Thus we need to chooge” = —%(d“w)*. Now observe that & tr T, =trB— 0. O

Definition 2.4. We will refer to any of the connectiong” constructed iTheorem 2.3s abasic connec-
tion determined by an almost hermitian structure.

The torsion of a basic connectioif (B) is
1, .
T, =N - (@t +Md‘0)*) + B. (2.2)
Observe also that on an almost Kahler manifold the first and second fundamental connection coincide.

The resulting connection is basic with= 0. They are precisely the connections used by Ta[igsto
analyze the Seiberg—Witten monopoles on a symplectic manifold.
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For any basic connectiovi” we have the following identitieg4, Section 3.5

14
09)(Zo, Z1, ..., Zp) =Y (VIV} ¢(Zo, ..., Zj, ..., Zp), (2.3a)
j=0

n

3(Z1,.. . Zp1) =— Z(é’i J Vf,¢ + fid V%‘ﬁ)(zl’ s Zp_1),
i—1

VZo,...,Z, € C®(T*M), ¢ € 2°7(M). (2.3b)
2.2. Hodge—Dolbeault operators

An almost hermitian manifold is equipped with a canonicalpirf structure and the associated
complex spinor bundle is

S, 1= A% T*M = @ AP0
p=20

Note that de§, = K,,*. The Chern connection induces a hermitian connectiovtlen K, and we
denote by®. the geometric Dirac operator induced by the Levi-Civita conneclioon T M and the
connection dev* on K.

If M is spinable, then a choice of spin structure is equivalent to a choice of a square rogtarfd
in this caseS, :=S ® K;f/z. The bundleS, has a natural Dirac type operator, the Hodge—Dolbeault
operator

Hy =20 +05%):C™(S,) - CX(S)).
We have the following resul2, Theorem 2.2hnd[4, Section 3.6]
1
H; =9 — 21{c((dfw)+) —c((dw)7)}.

UsingTheorem 1.1@ve deduce thait(, is a geometric Dirac operator, more precisgfy is induced by
V®1+1Qdetve, whereV is the connection

V=D- %((dcwﬁ — (d°®)”) withtorsionT" = %(d”(a))_ — dw)").

3. Dirac operatorson contact manifolds
3.1. Differential objects on metric contact manifolds

We review a few basic geometric facts concerning metric contact manifolds. For more details we refer
to [3,11].

A metric contact manifoldm.c. manifold for brevity) is an oriented manifold of odd dimensiant2L
equipped with a Riemann metricand a 1-formy such that



366 L.I. Nicolaescu / Differential Geometry and its Applications 22 (2005) 355-378

e [n(x)|, =1,Vx € M. Denote byt € Vect(M) the metric dual ofy and setV :=kern C TM.V isa
hyperplane sub-bundle @fM and we denote by, the orthogonal projection ont.
e There exists/ : TM — T M such that

dn(X,Y)=g(JX,Y), J*X=-X+nX)E, VX,Y eVectM).

Definition 3.1. A contact metric connectioan (M?'*1, 5, J, g) is a metric connection such th&t/ =
0= VE.

The manifold M is calledpositively orientedf the orientation induced by the nowhere vanishing
(2n + 1)-form n A (dn)" coincides with the given orientation of. In this caselv, = %77 A (dn)". Set
w :=dn. We have decompositions

VRC=vVPgq Vel v*eC=v"g V"L

and we seK , :=det(V*)10, & := L. J. The operato® is a traceless, symmetric endomorphisnvof
(see[3]). SinceLs(J?) = 0 we deduce

JO+dJ=0 — (JO) = (D). (3.1)
Define the Nijenhuis tensay € 22(T M) by®
1
N(X.Y) = S{JX. Y1+ X JY] = JIX.JY] = JUIX. Y]},

Notice thatN (¢, X) = —%J(DX, VX € Vect(M). (M, g, n) is a Cauchy—Riemann manifol(fCR for
brevity) ifand only if /N (X, Y) =0, VX, Y € C*(V). Equivalently, this means, and

1
NX,Y)+ éa)(X, Y)¢ = —J2N(X, Y)=0, VX,YeC™V).
In this case, the Nijenhuis tensor can be given the more compact description
1
NTZE(JCD/\n—r]@dn). (3.2)

In particular,M is a CR manifold when dim/ = 3.
3.2. The generalized Tanaka—\Webster connection

To each metric contact manifold we can associate an almost hermitian mani(dfﬂ g, J ) defined
as follows.

M=RxM, $=dt’+g, Jo, =E.
We will denote byc? the exterior differentiation on/. If we set

OX,Y)=2(JX,Y), VX,Y eVect(M)

3 We used the facto% rather than th% used in the almost complex case only to keep up with the conventig8k in



L.I. Nicolaescu / Differential Geometry and its Applications 22 (2005) 355-378 367

theno =dt An+ow andd® = —dt A w. We deduce that the Lee forén= A(—dt A dn) is —ndt. We
will work with local, oriented orthonormal frames( fo, e1, ..., €., f») adapted toJ such that

e0o=0, fo=£& =dt, fO=n,

n . n
n . _ . _ A | _ _
=i N0 +i E ek A Bk, da):——z(so—l—so)/\ E ek A&k,

k=1 \/_ k=1

R 1
d'd=——=("—) ") e ne=—nnady

V2 pat
so that(bN) = (d°®)~ = 0. We have the following identity3].

2
Observe that |y, = INT + 1y ® dn so that

N(X,Y)= E<N(X, Y)+ %a)(X, Y)g), N@, X)= %cpx, VX, Y € Vect(M). (3.3)

. 1 1 1 1
0=bNT|y = EbNT + 260 ®dn) = ébzv* + g0 Adi.

Hence

bNT = —}n/\dn
> .

We want to findB e Qslvl(T*M) such that tB = —5 dr and the basic connection it induces BhM is
compatible with the splitting, & 7M. From(2.2) we deduce that the torsion of such a connection is

A A 1 ~ ~ A 1

T, =N - 2 (@O +Md*D)") + B = NT+ 2(n A+ Ma A )+ B, (3.4)
ThustbT =1 A dn. UsingProposition 1.2ve deduce tha¥” = D + A where
1
2
Thus, for allX, Y € Vect(M) which aret-independent we have

S(VPX,Y)= A} X, Y).
Since

B(3,;;e,0)=0 and g(N(X,Y),9,)=0, VX,Y eVectM).
we deduce

1 R
Al=ZbT) —T) = Z(n/\dn — M Adn)) — NT - B.

A ob 1
g(V/ X, Y) = —Zim(n Adn)(d; X, Y) =0.
Similarly, we deduce

§(VPX,8)=A}(3:;X,0)=0 = V’Z=0, VZe\Vec(M).



368 L.I. Nicolaescu / Differential Geometry and its Applications 22 (2005) 355-378

SinceV? is a metric connection we dedugév’,, 9,) = 0. On the other hand, for any vector fieldsY
on M we have

1 R
1 1
= Zg(XV’ Yy) — Zg(CDY, X)— B(X;0,,7Y),
whereXy = Py X,Y = PyY. Next,VX, Y € Vect(M), we have
1 R
§(VhyY, 8f)=AZ(X; Y, 8;)=—ZimnAdn(X; Y,9,)—&(N(,9),X)— B(X;Y, )

1 1
= —Zg(Xv, Yy) + Zg((PY, X)— B(X;Y,0).

Lemma 3.2. There exists3, € 211(T*M) such thatr B = —4dr and

B(0;;e,0) =0, (3.5a)
1 1
B(X;Y,d,) = 21g(x, DY) — Zg(XV, Yy), VX,Y eVect(V). (3.5b)
Proof. Define
1 1 1
B:Z(cb/\dt+JcD/\n)—Z(PV/\dt+JPV/\n)+§n®dn (3.6)
and we set

1 1
BO:Z(QD Adt+J® An), Bl=—Z(Pv Adt + JPy A1).

We need to show that this definition is correct, i.e., the al®gatisfies all the required conditio(&5a),
(3.5b)and

trB = —%d;, bB=0, BeQNT*M).

Here the elementary properties limmma 1.1will come in handy. Sinced and J@ are symmetric
and traceless we deduce thaBjr= 0, bBy = 0. The conditionBy € 211 follows from the identity
¢J = —J . Now observe thaB; € 2% and

1 n
bB = —— d tr B = ——=dt.
1 277/\ n, 1 >

Finally n ® dn € 2%, it is traceless anti(n ® dn) = n A dn. The condition(3.5b) follows by direct
computation. The lemma follows putting together the above faats.

If we chooseB as inLemma 3.2ve deduce
8(VPX,9)=0, VX eVec(M).

The above computations show that the basic connedtionf (M, g, J) determined byB, preserves
the orthogonal splitting” M = (3,) ® T M and thus induces alancedcontact metric connectiow ™
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onT M. To compute its torsion we use the ident(8/4). Observe that
Ny = 3{N*+ }n®dn},
2 2
andM(n Adn)|ly =n ®dn. Finally

1 1 1
Bly==-(J® —ZJP Zndn.
[ M 4( AN 2 vAn+2n® n

Since onM we have the equality Py = J, the torsionTrw of V™YW given by

N 1 1
Fry=5N'+n®@dn+ nndy+ 700 —J) An. 3.7)

Moreover,bTrw = n A dn.

Definition 3.3. We will call the above connectiovi"¥ thegeneralized Tanaka—Webstmnnection of\/.
It is the unique metric connection with torsion given(y7).

To explain the terminology in the above definition suppose nowthé a CR-manifold. Using3.2)
and(3.7)we deduce

i =3 ®d +l Ad 1(J/\ )+1J<p/\
W = 477 n 477 n 4 n 2 n.
In particular,

Trw(X,Y)=dn(X,Y)&, VX,Y eVect(V).
Because the distribution*? is integrable we deduce

Trw(X,Y)=0, VX,YeC®(VO).
A contact metric connection with the above property will be call&@Rametric connectiarNext observe
that forX,Y € C*°(V) we have

: 1 1 1

HenceTtw(&,Y) = %JcDY. Since®J = —J® we deduce/ Trw (&, X) = —Trw(€, J X).

Remark 3.4. Using [11, Proposition 3.1]Jwe deduce that wheiM is a Cauchy—Riemann manifold,
the connectiotv™ on (V, J) is the Tanaka—Webster connection determined by the CR structure (see
[10,11,13]for more details). The generalized Tanaka—\Webster connection we have constructed does not
agree with the generalized Tanaka—Webster connection constructed by S. Tdatp bhecause that
connection is not compatible with if M is not a CR-manifold.

Finally, let us point out that wheM is a CR manifold then

1 1
g(VIVX,Y)=g(DeX,Y) + EbTTTW(g‘, X,Y) =Ty (E: X, V)= g(DgX - 37X, Y)

so thatvW = D} := PyD; — 3.
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Example 3.5. Let us consider in greater detail the special case of a metric, cogpaicB-manifold M.
M is automatically a CR-manifold so that the torsion of the (generalized) Tanaka—\Webster connection
satisfies

1
Tro(X.Y) =dn(X.Y)E, Trw(§, X)=ZJ@X, VX.Y €C*(V), bTyy=nAdn.
ThespinDirac operatof, on M is related to the Dirac operat@ (V™) by the equality

1 1 1
DV™) =Do+ Z0(0T) = Do+ 7601 Adi) =Do— 7.

When M is Sasakian, i.eg¢ = 0, the above equality shows th@(Vv™) coincides with the adiabatic
Dirac operator introduced if®] (see in particulaf9, Eq. (2.20)]with A = % 5§=1).

Later on we will need to compare the connections\deaind detv’ induced by the Chern connection
V¢ and respectively’” on K *.

Proposition 3.6. detV¢ = detV” + 4.

Proof. Denote byV° the first fundamental connection (YI?I f). We haveV’ = VOA— B, whereB is

described inLemma 3.2Sets := g9 A g1 A - -+ A g,. Then for every vector field on M we have
detv:s = detv2s — Bys.

Observe thaBysk = >0 Cle; S0 thatBy$ = (G2 Cf)8. On the other hand;f = g.(Bxex, &),

whereg. denotes the complex bilinear extensiorgoHence

1 . . . .
Ct = =g.(Bx(ex —ifo), ex +ife) =ig(Bxex, Jer) +ig(Bx fr, Jfo).

2
Thus
Sl =i i(g(JBxek, ex) + g(J Bx fi. fo)) = —itr J By. (3-8)
Using kequality(agi)/ve deduce
2(BxY,JY) = %{g(cpx, Y)dt(JY) —g(J DX, Y)n(JY)}

+ %{g(PVX, Y)dt(JY) —g(J Py X, Y)n(JY)} + %n(X)dn(Y, JY).
We see that W By # 0 only if X = & in which case shows that the syf8)is n. Hence
V28 = v — inn.
On the other hand we have the ident[#, Eq. (2.7.6)]

i i i
detv* = detv® + 6 = detv® - %Jdt — detv’ + %n O

Corollary 3.7. F(detv¢) = F(detv?) + 4 dn.
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3.3. Geometric Dirac operators on contact manifolds

Consider the Hodge—Dolbeault operatoon M
H=+2(0+0"): 2% (M) - 2%*(M).
It is a geometric Dirac operator and it satisfies
n
H=~2) (&Y, +2E)V5,).
k=0
wheret denotes the Clifford multiplication o, = A®*T*M, V = V? @ 1 + 1 ® detV¢, and deW*
denotes the hermitian connection Krﬂgl induced by the Chern connection 8@/. More precisely
CE ) =v2ek ne, E(eF) =25 e
Above, ¢* i e denotes the odd derivation 6f%* (M) uniquely determined by the requirements
18l =68;, Vjk=0,...,n.

We want to point out thatg“ A)* = ¥ 1. We set
N 1 . A
J :=08(dt) = 7 (€% +eE%), Sc:=SF|,.,-

Note thatS, |y =S, @ JS..

The metric contact structure ad produces d/ (n)-reduction of the tangent bundiéM . This U (n)-
reduction induces gpirf structure onM ands. is the associated bundle of complex spinors an&det
Kt

The Clifford multiplication orS, is defined by the equality

Cla) = J&@), Yaef2'(M).
Along M we can identifyS; with 7S} and as sucky we can write.
0 —-G*
G O

We can view the Hodge—Dolbeault operator as an operatSf enS.

. . 0
sz(vf—[g _GHG*D, H =N,

H is the geometric Dirac operator induced %) ® 1 + 1 ® detv¢. We want to provide a more explicit
description of the operat@. Observe that

J = ] GG*=G*G =1s,.

COO(Sj) — ‘QO,even(M) — .QO,even(V*) @ éo A QO,Odd(V*)
where207 (V*) := C®(AP(V*)%1). We can represent € C*(S+) as a sum

Y=y @AY, Y e 0NV, Yo e 2009y,
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The above decomposition can be alternatively described as follows. The operator
cn) = JEm): C*(S) — ()

satisfiesc(n)? = —1 and thus:(in) is an involution ofCOO(Sj). More explicitly
c(n) = '5(6(50) +&(e9) (6% — &%) =i(E° A —e%2) (&% A +°).

Thus, for every e 2°%*(V*) we have

cim@E°Agp)=—"A¢p, c(—ing=¢.

This shows that the above decomposition is defined byttheeigenspaces of the involutiatn). The
restriction of the operata¥ : 2%*(M) — 2%7(M) to 2%*(V*) decomposes into two parts. More pre-
cisely, if ¢ € 2%*(V*) then

[EEN

I =% A Qo + Oy :=
Note that
dop =3¢ € 20P(V*), 8y € 207V,
We will regardd, andd, as operators
50:90,*(‘/*) s .QO’*(V*), 5‘/:90,*(‘/*) N .QO’*“(V*).
Pick ar-independent sectiof = COO(Sj). It decomposes as
W=, L8 V., Yse Qo,even(odd(v*)
We have the equality
wlo]=-[e TIE -one][5]-on T ][5)
0 G 0 0 —GHG* 0 GH 0 0
Thus
V204 0%y =GHY =tdnNHYy = HY =—-V2T0+0%)y.
We compute
@+ )Wt +EAY) =Yy + BE) AP —EO NP+ 'Y + 0" EAY) (9E°=0)
=AYy + vy —EO Ay 4+ (EOA o+ 0y) Wy + 0 (E° A YL)
=2 A (Bo¥y — Ovr) + vy + 5Py +05(° 1) + 9 EO A Y)
=82 A (Bo¥y — Ovp) + vy + 050y + 0" G A V).

To proceed further we need to provide a more explicit descriptiof*far_1)*y_. We denote by, o)
the L2-inner product onV. For everyt-independent compactly supporteds $2%°99(M) we havex =
o +EO Aoy, oy € 200006ve ) and

(1+cin)d + 5(1 —c(in))ad.

NI =

(0, *E° A @), = (0, 82 A p_ )y = (E° A doar—, O A p_)pr — (EO A Ovary , EO A )y

= (o, p_)m — (Ovey, d_)w = (o—, A5d_) s — (ot D).
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We conclude

*Enp )= —EON50_,
and

040y +EAY) =8 A (Po¥r — vy — 3yh-) + Ovry + Iy vy + 5.
Now observe that

(dt)e = %2(6(50) +6())e=(E"re—5"10)

so that
HY = —~/2(% 1 —°N\)[E° A B0y — By Y- — 35d-) + W + By iy + A3v—)
= —V2{@o¥y — dvp- — 85¢-) — A B ¥s + By iy + ) ).
In block form

H[m]:ﬁ = @Y+ ) _[m]
V- (3 + dy) 3 V-

The above equality can be further simplified as followsp ¥ 2°%7(V*) c 2*(M) ® C then
dp enn (R207(VH +271VH) @ 07T (v @ 2P (V) @ 227N (V).
and
—V/280¢p = —i(& 1dp)*? =: —iL} ¢.
On the other hand, the identi(2.3a)implies
o = Vi = —=I"9.
Sincediv,& =0 the operato'rVérW is symmetric and so must by;’. Hencedi¢ = iL;’ and
H[w+]:[ —iL{ ﬁ<5é+5v>][w]
(/. V2(3y + %) 74 (/-
or equivalently,

H=c(inL + [ (3.9)

0 V2(dy + 35)
V2035 +97) 0 '
We will refer to’H as thecontact Hodge—Dolbeault operatoFhe next result summarizes the results we
have proved so far.

Theorem 3.8. Suppos&M?' 1, g, ) is a metric contact manifoldy := kern. Denote byS, the bundle
of complex spinors associated to the $patructure determined by the contact structure. Denote the
corresponding Clifford multiplication bg.
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(i) S.= A% V* c(ing = (=1)P¢, V¢ € 2°7(V*). We decompose
Se=Stes;, Sf=deveroddys)
(i) The operatorH : C*®(S.) — C*(S.) defined by(3.9)is a geometric Dirac operator induced by the
connectionv™ on T M anddetVe ondetS..

(i) If we denote byD, the Dirac operator orfS, induced by the Levi-Civita connection @hvf and
detVe ondetS then

1
H=9.+ ZC(" Adn).

(iv) Using the identityF (detv¢) = F(detv™) + 2 dy, we deduce that{ satisfies a Weitzenbdck for-
mula

1 ,
HZ = (V) (V™) + % + = (4c(dn Adn) —2n) + Ec(F(dethW)) + ”74'c(w),
whereV™ is the Weitzebdck connection defined’ir). In particular, if dimM = 3 (so thatn = 1

andc(n A dn) = —1) we have

1 11
De=H+7, HZ = (V)" (V™) + Z -g7 2c(F(olethW)) + c(dn)

3.4. Connections induced by symplectizations

_ Thesymplectizatiowf the positively oriented metric contact manif@id2'+1, n, g, J) is the manifold
M =R, x M equipped with the symplectic form

o=dt An+tdn=dt An+tw.

If we denote byd the exterior derivative o/ then we can writed = d(tn). M is equipped with a
compatible metri¢ = dt? + n? + tw(e, Jeo).

We denote by/ the associated almost complex structure. We will identifwith the slice{1} x M
of M. If we fix as before a local, oriented, orthonormal frates, fi, ..., en, f2 compatible with the
metric contact structure oM then we get a symplectic frame

ég =0, f():é, Ekztil/zek, szl‘il/sz, k=1,...,n

The dual coframe is
0 =dt, f°=n, ek = 1126k, f":tl/zf", k=1,...,n

We denote byV the Nijenhuis tensor of and by1\7 the Nijenhuis tensor of the almost complex manifold
(M J) used in Sectiod.1 The Chern connectiok® of (M, g, J) is the metric connection with torsion
N. In this cas® =0, bT = 0. Observe thaf = J. We deduce that fof,k =1, ..., n, we have

. . 3 . 1 L .
N(Ej,ék)I;N(é’j,ek), N(éj,fk):;N(ej»fk)a N(fjafk):;N(fj’fk),

- - 1.
N@ep), N@. fi)=-—5N@, fo),

N(@,¢)) = 7

7
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- 1 - ~ ~ 1 A
N(S’éj): N(at’ej)’ N(stsfk): N(ah fk)
Vi Vi

Denote byD the Levi-Civita connection determined iy It determined by (sefs,8])
28(DxY, Z) =Xg(Y,Z)+ Y3(X, Z) — ZZ(X, Y)
+28(1X.Y1,2)+8((Z. X1.Y) + g(X.[Z,Y]).
We deduce from the above identity thafif Y arez-independent vectors tangent alaig
28(DiX,Y) =g(Xy,Yv) =0(X,JY),
whereXy := Py X. Hence
28(DxY,8) =—8,8(X,Y)=—g(Xy,Yy) =w(JX,Y).

As in Section3.1 we want to alterv¢ by B € 23%(T*M) such that tB = 0 so that the new basic
hermitian connectiolv” with torsion7, := NT + B satisfies

Vbe=0, g(Viy,9,)=0, (3.10)

for all 7-independent tangent vectaks ¥ along M. We haveV = D + A, whereA' = —7;'. Thus we
need

0=§(VxY,d)=g(Dx(¥,3)) — g(X,N(¥,d,)) — B(X; Y, )
= —%a)(JX, Y)+ (X, N@,Y))— B(X;Y,d).
If Y =& we deduce
B(X:;£,8,)=0.
If Y € C*(V) then we deduce

%g(x, N@.,Y))+B(X;,Y)
1 1
= Eg(X’ Y)+ mg’(xv ®Y)+ B(X;0,,Y)
Ji

1 t

1
0=—Sw(JX.V)+

We conclude thaB must satisfy the additional conditions
B(&;0,,Y)=0, Y eC™(V),

1 1 1
B(X;0;,Y) = —Z—J(ﬁg(x, Y)+ Eg(x, <DY)>.

We write B = Bg + B1 WhereBy is defined as ilemma 3.2y the equality

1
Bo= ——(® Adt+J® An).

NG
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B; must satisfy the equalities B; =0,

1
B1(X; 3;,Y)=—Z§(X, Y), VX, YeC®(V), (3.11a)

Bi(X;£,0)=B1(£;9;,,Y)=0, VXeVect(M), Y e C(V). (3.11b)
We try B; of the form
Bi=xdt@dt An+yn®dn+U+YV

where

1 1
U=—PyAdt, V=—JP,An.
2V 2t g

Clearly B, € 2%1(T*M). Next observe that
1 n
bBy=ynAdn+bV = y—i—; nAdn, trBp= x—|—; dt.

Thus, setv = -7,y = % These choices guarantee tiate Qslvl(T*M) and trBy = 0. The conditions
(3.11a) and (3.11an now be verified by direct computation. We can now conclude that if

1 n 1 1
B=—(@DAdt+JD AN ——dt@dt An— — d —(Py ANdt+ JPy A
4«/2( + n) p ® n tﬁ® 77+2t( v +JPy An)

then the connectioR” with torsion NT + B satisfies the condition.10) These conditions show that
V? induces by restriction to the sli¢e} x M a connectiorV’ on T M. The torsion ofv! = V=1 is given

by
T T ot 1 1
(T1)' = N'|jz1+B|i=1=N |M+Z(J<b/\n)—n®dn+§(JPv/\n)
@l + 3 1 1
= =-N ——77®d7]+§(JPV/\n)+Z(J¢/\n).

2 4

This connectiomevercoincides with the generalized Tanaka—\Webster connection constructed in Sec-
tion 3.1, because in this case we h&/ElT = 0. This showsV! is Dirac equivalent to the Levi-Civita
connection. We have thus proved the following result.

Theorem 3.9. On every metric contact manifol@dV, g, J) there exists a canonical balanced contact
metric connectiorV? induced by a basic hermitian connection on the symplectizatia#f. afhis contact
connection is Dirac equivalent to the Levi-Civita connection and its torsion is given by

i 1.3 1 1
T =SN'=Zn@dn+ S Py An)+ 3P An).

When M is a CR manifold we deduce fro(8.2)

t 1 1
T, =—n®dn+§J/\n+§J(DAn.



L.I. Nicolaescu / Differential Geometry and its Applications 22 (2005) 355-378 377

In particular
Tv(X,Y)=—dn(X,Y)s, VX, Y eC®(\V).

Let us observe that in this case for evefyY € C*°(V) we have
g(ViX, ) =g(D:X,Y) — g(§, Tu(X. Y)) = g(De X, ¥) + (X, Y)

so that
3
Ve=Dy +J=PyDs+J=V{"+2J.

Remark 3.10. Let us point out a difference between contact and hermitian connections. We have shown
that there always exist contact connections with torgicsatisfyingb7" = 0.

On the other hand, ¥ is a hermitian connection on an almost complex hermitian man{fldg, J)
with Nijenhuis tensoV then its torsion satisfies (s¢g)

(bT)" = (bN") = ([d°w)".
If dim M = 4 then alwaygd“w)~ = 0 and in this case it is possible to find hermitian connections Dirac

equivalent to the Levi-Civita connection. However, in higher dimensions this is possible if and only if
(d‘w)” =0.

3.5. A uniqueness result

The constructions we performed in the previous subsection may seem a bit ad-hoc but as we will show
in this section they produce, at least for CR manifolds, connections uniquely determined by a few natural
requirements.

Proposition 3.11. Supposé&M, n, g, J) is a CR manifold. Then each Dirac equivalence class of connec-
tions contains at most one balanced CR connection.

Proof. SupposeV is a balanced CR connection with torsidn Sets2 := b7'. We get a hermitian con-
nectionV =dt A 8, + V on (T M, J) with the propertyp7 (V)" = 2, tr T (V)" = 0. Denote byv’ the
basic hermitian connection off' M, J) we have constructed in Secti@il The results in Sectiof.1
imply that

3
T =1+ = x/ﬁ — ézmw +B=T +85,
where
Yyt e 3 (M), BeQNNT*M), =BT + 3y =3y +nAdy,
B(0;;0,0)=0=B(e;e,3,)=0, trB=0. (%)

Thusy* is uniquely determined. Moreover, singeis a CR connection we deduce that

g(X,T(Y,2))=0, VX,Y,ZeC®V).
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Since the restriction o¥? to M is also a CR connection we deduce
S(X;Y,Z)=0, VX,Y,ZeC>®V).

Thus the restriction oB to V is uniquely determined. The conditighe Qslvl(T*M) coupled with(x)
show that the restriction aB to Rd, @ R¢ C T M is also uniquely determined. This concludes the proof
of Proposition 3.11 O

Corollary 3.12. The Tanaka—Webster connection on a CR manifold is the unique balanced CR connection
adapted toH. Moreover, the connectioW? of Section3.4 is the unique balanced CR connection with
torsion satisfyingg Tt = 0, i.e., Dirac equivalent with the Levi-Civita connection.
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