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Introduction

The main goal of this paper is to state and prove the De Rham Theorem in two different
ways. We will work exclusively in the realm of smooth manifolds, and we will discuss various
different ways of associating cohomology groups to a smooth manifold. Of primary concern
for us will be the language of differential forms. At this point, we wish to give the reader
some geometric intuition for the De Rham Theorem, since the treatment in the paper will
be largely technical.

In the discussion that follows, we will consider the question of when a planar vector
field on R2 is a gradient vector field. That is, we wish to decide when, for a vector field
~F (x, y) = P (x, y)i + Q(x, y)j defined on a region D ⊂ R2, there exists a function f(x, y)
on D such that

∇f :=
∂f

∂x
i +

∂f

∂y
j = P i + Qj

1
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If this happens, we will say that ~F is exact. We see that by the equality of mixed partial
derivatives that if ~F = P i + Qj is exact, then

∂P

∂y
=

∂Q

∂x

In general, we say that if this condition is satisfied, then the vector field is closed. We wish
to know if a closed vector field is exact. It turns out that if we have a closed vector field ~F
on a convex subset D ⊂ R2, then the vector field is exact on D. Also, in this case, we have
that ∫

C

~F · ddr =
∫

C
Pdx + Qdy = 0, ~r = xi + yj,

for any closed path C in D. Now, consider the vector field ~F (x, y) given by

~F (x, y) =
−y

x2 + y2
i +

x

x2 + y2
j

With this definition, it is easily checked that, on R2 − (0, 0)

∂P

∂y
=

∂Q

∂x
=

y2 − x2

(x2 + y2)2
,

so that ~F is closed. However, it can be shown that ~F is not exact. Furthermore, if we let
S1 denote the unit circle, then we have∫

S1

~Fd~r = 2π

The difference between these two cases is that in the first case we had a convex subset,
and in the other case we have the set R2 − (0, 0). We see that this particular vector field is
not a gradient because it has strange behavior near zero. We’d like to say the problem is
that (0, 0) is missing from the space, or that it is in some sense a “hole” in our space. Of
course, there are a priori many different ways to define holes as subsets of R2.

One way is to look at integrals over closed paths of closed vector fields. If we happen to
find a closed vector field with integral not equal to 0 over a closed path, then we can say
that this path surrounds a hole in our space. Similarly, we could say that if we have a closed
path which we cannot homotopically shrink to a point, then we say this path surrounds a
hole. There are of course other possible definitions.

Intuitively, in more abstract settings, the various different ways of defining holes in a
space are described by the various definitions of the cohomology of a manifold, and the De
Rham theorem says that all of these methods of measuring holes are the same. In effect,
the De Rham theorem tells us that it does not matter how we compute how many holes
there are in our manifold, we will always get the same answer.

To prove this striking theorem, we will first discuss in great detail the language of dif-
ferential forms, stating many important theorems, defining the De Rham cohomology, and
proving the Poincaré Lemma.

In section 2 we will discuss the notion of simplicial complexes, and will develop the theory
of simplicial homology and cohomology, defining many key concepts that will be used in
the proof of the De Rham Theorem.

In section 3, we will define the notion of a smoothly triangulated manifold, and we will
also define a period map which will go from differential forms on M to simplicial cochains
on the triangulation of M . Finally, we will prove that this map is an isomorphism in
cohomology, which is the first proof of the De Rham Theorem.
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In section 4, we will develop the notion of singular homology and cohomology, and we
will discuss the generalized Mayer-Vietoris exact sequence, proving its exactness.

Finally, in section 5, we will build up the notion of double complexes, which we will
then use to define another period map which goes from differential forms on M to singular
cochains on M . We will then prove that this map induces isomorphisms in cohomology,
which will be the second proof of the De Rham theorem.

We offer two proofs of the De Rham theorem in this paper because the two proofs
represent two widely different views of the subject. The first proof is given in a very
classical setting, and represents the classical point of view, whereas the second proof uses
very modern machinery and represents a more modern point of view. Both of these points
of view have merit, and so we demonstrate them both.

At this point, I would like to thank all the people who made this thesis possible. I would
like to thank all the faculty of the University for their help in building up my mathematical
career and teaching me all that I know about math. Most of all, I would like to thank my
advisor, Professor Liviu Nicolaescu, without whom none of this would have been possible.
He has been there since the beginning of this project, helping me put together the paper
you see here.

1. The Basics

1.1. The calculus of differential forms. We want survey without proofs the basic facts
concerning the calculus of differential forms on a smooth manifold. For details we refer to
[4].

For any smooth manifold M we denote by Vect(M) the vector space of smooth vector
fields on M , and by Ωk(M) the vector space of differential forms of degree k, i.e., maps

ω : Vect(M)× · · · ×Vect(M)︸ ︷︷ ︸
k

→ C∞(M),

such that, for every X1, . . . , Xk ∈ Vect(M), f1, . . . , fk ∈ C∞(M) and any permutation σ of
{1, . . . , k} we have

ω
(
Xσ(1), . . . , Xσ(k)

)
= ε(σ)ω(X1, . . . , Xk),

ω(f1X1, . . . , fkXk) = (f1 · · · fk)ω(X1, . . . , Xk),
where ε(σ) ∈ {±1} denotes the signature of the permutation σ. By definition, Ω0(M) is the
space C∞(M) of smooth real valued functions on M .

We form the graded vector space

Ω•(M) :=
dim M⊕

k=0

Ωk(M).

We say that ω ∈ Ω•(M) is homogeneous if it belongs to one of the summands Ωk(M). For
a homogeneous element ω we denote by |ω| its degree. A linear map

L : Ω•(M) → Ω•(M)

is called homogeneous of degree q if it maps any homogeneous form ω to a homogeneous
form Lω and

|Lω| = |ω|+ q.

The space Ω•(M) is an associative R-algebra with respect to the wedge or exterior product

∧ : Ω•(M)× Ω•(M) → Ω•(M).
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The product of any two homogeneous forms ω, η is a homogeneous form ω ∧ η and

|ω ∧ η| = |ω|+ |η|, ω ∧ η = (−1)|ω|·|η|η ∧ ω.

A differential form of degree k can also be interpreted as a smooth section of the vector
bundle ΛkT ∗M , the k-th exterior power of the cotangent bundle T ∗M ,

ω : M → ΛkT ∗M, M 3 x 7→ ωx ∈ ΛkT ∗xM.

The support of ω is defined as the closed set

suppω := closure
{

x ∈ M ; ωx 6= 0 ∈ ΛkT ∗xM
}

.

We denote by Ωk
c (M) the space of smooth differential forms of degree k with compact

support.
The exterior derivative on M is the homogeneous linear operator

d : Ω•(M) → Ω•(M)

of degree 1 uniquely determined by the following conditions.

For every pair of homogeneous forms ω, η we have

d(ω ∧ η) = (dω) ∧ η + (−1)|ω|ω ∧ (dη). (P−)

d2 = 0. (1.1)
∀f ∈ C∞(M) = Ω0(M), df is the differential of f.

Any vector field X ∈ Vect(M) determines a homogeneous linear operator of degree −1

iX : Ω•(M) → Ω•(M)

called the contraction with X and defined by

iXω(X2, . . . , Xk) = ω(X, X2, . . . , Xk), ∀ω ∈ Ωk(M), X2, . . . , Xk ∈ Vect(M).

The operator iX satisfies the odd product rule (P− ).
The Lie derivative along a vector field X ∈ Vect(M) is the homogeneous linear operator

of degree 0
LX : Ω•(M) → Ω•(M)

uniquely determined by the following conditions.

∀ω, η ∈ Ω•(M), LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXω), (P +)

∀f ∈ C∞(M), LXf = df(X), (1.2)
∀α ∈ Ω1(M), Y ∈ Vect(M), (LXα)(Y ) = LX

(
α(Y )

)− α([X,Y ]), (1.3)
where [X, Y ] denotes the Lie bracket of the vector fields X,Y .

Example 1.1. Suppose that x1, . . . , xn, n = dim M , are local coordinates on an open
subset U ⊂ M . For every ordered multi-index

I = (i1 < · · · < ik), 1 ≤ ij ≤ n

we
dxI := dxi1 ∧ · · · ∧ dxik ∈ Ωk(U).

Any ω ∈ Ωk(U) is a linear combination

ω =
∑

|I|=k

ωIdxI ,
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where ωI ∈ C∞(U), and the summation is carried over all ordered multi-indices I such that
|I| = k. Moreover

dω =
∑

I

(dωI) ∧ dxI . ut

Proposition 1.2. For any X, Y ∈ Vect(M), and any ω ∈ Ω•(M) we have the following
commutation formulæ

(LXd− dLX)ω = 0. (1.4a)(
LXLY − LY LX

)
ω) = L[X,Y ]ω, (iXiY + iY iX)ω = 0. (1.4b)

(LXiY − iY LX)ω = i[X,Y ]ω. (1.4c)

LXω = (iXd + diX)ω. (1.4d)
The equality (1.4d) is known as Cartan’s homotopy formula. ut

Any smooth map F : M → N induces a homogeneous linear operator of degree 0

F ∗ : Ω•(N) → Ω•(M)

called the pullback by F and defined by

F ∗ωx(v1, . . . , vk) := ωF (x)

(
F∗(v1), . . . , F∗(vk)

)
, ∀x ∈ M, v1, . . . , vk ∈ TxM,

where F∗ : TxM → TF (x)N denotes the differential of F .

Example 1.3. Suppose F : Rm → Rn is a smooth map. We denote by (xi) the coordinates
in Rm and by (uj) the coordinates in Rn. Then the map F can be interpreted as a collection
of functions

uj = uj(x1, . . . , xm), 1 ≤ j ≤ n.

A differential form ω of degree k on the target space Rn has the form

ω =
∑

1≤j1<···<jk≤n

ωi1...ik(u1, . . . , un)duj1 ∧ · · · ∧ dujk , ωi1...ik ∈ C∞(Rn).

Then F ∗ω is the differential form obtained from the above expression by thinking of the
qunatities uj as function of xi so that

duj =
m∑

i=1

∂uj

∂xi
dxi ∈ Ω1(Rm)

and
ωj1,...,jk

(. . . , uj , . . . ) = ωj1,...,jk

(
. . . , uj(x1, . . . , xm), . . .

) ∈ C∞(Rm). ut
Proposition 1.4. The pullback is a morphism of R-algebras which commutes with the
exterior derivatives commute with pullbacks. More precisely, for any smooth map F : M →
N , and any ω, η ∈ Ω•(N) we have

(F ∗(ω ∧ η) = (F ∗ω) ∧ (F ∗η), dMF ∗ω = F ∗dNω.

Moreover,
1∗M = 1Ω•(M)

and if G : N → P is another smooth map, then

(G ◦ F )∗ = F ∗ ◦G∗. ut
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Recall that an orientation on a finite dimensional vector space V is an equivalence class
of ordered bases of V where two bases e := (ei)1≤i≤dim V and f := (f j)1≤j≤dim V are called
equivalent if the transition matrix Tf ,e = (T i

j )1≤i,j≤dim V defined by

f j =
∑

i

T i
jei, ∀j,

has positive determinant. We denote by Orvect(V ) the set of orientations of V . For any
orientation or ∈ Or(V ) we denote by −or the opposite orientation, i.e.,

Or(V ) = {or,−or}.
For any basis e we denote by [e] ∈ Or(V ) the orientation its determines.

A smooth manifold M is called orientable if it admits a volume form, i.e., a nowhere van-
ishing top degree form ω ∈ Ωdim M (M). Two volume forms ω0 and ω1 are called equivalent
if there exists f ∈ C∞(M) such that

ω1 = efω0.

An equivalence class of volume forms is called an orientation on M , and the set of orien-
tations is denoted by Or(M). For any volume form ω we denote by orω the orientation
defined by ω. For any orientation or on M we define the opposite orientation −or so that

or = orω ⇐⇒ −or = or−ω.

If M is an orientable n-dimensional manifold, then or every point p ∈ M we have a natural
map ip : Or(M) → Orvect(Tp(M)) defined as follows. If or ∈ Or(M) is defined by a volume
form ω, then ipor is described by an ordered basis {e1, . . . ,en} of TpM such that

ωp(e1, . . . , en) > 0.

The map ip is surjective, and if M is connected, then ip is in fact a bijection.
If M and and N are smooth manifolds then any diffeomorphism F : M → N induces a

bijection F ∗ : Or(N) → Or(M), where for every volume form ω on N we have

F ∗[orω] = [orF ∗ω].

If F : M0 → M1 is a diffeomorphism, and ori is an orientation on Mi, i = 0, 1, then F is
called orientation preserving if

F ∗or1 = or0.

Example 1.5. (a) A vector space V can also be regarded as a smooth manifold. As such,
it is orientable, and the map

i0 : Or(V ) → Orvect(V )
is a bijection. For this reason, in the sequel we will freely identify Orvect(V ) with Or(V ).

The Euclidean vector space Rn. It has a canonical orientation given by the canonical
basis

ej =




δ1
j
...
δi
j
...

δn
j




, 1 ≤ j ≤ n, δi
j :=

{
1 i = i

0 i 6= j
.

We say that this is the canonical orientation on Rn and we will denote it by orRn .
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We can regard Rn as a smooth manifold. If we denote by (x1, . . . , xn) the Cartesian
coordinates determined by the canonical basis, then

dVn := dx1 ∧ · · · ∧ dxn ∈ Ωn(Rn)

is a volume form defining the canonical orientation.
(b) The unit sphere

Sn :=
{
(x0, . . . , xn) ∈ Rn+1;

n∑

i=0

(xi)2 = 1
}

is an orientable manifold. Consider the point p0 = (1, 0, . . . , 0) ∈ Sn. To specify an
orientation on Sn its suffices to specify an orientation on

Tp0S
n =

{
(x0, . . . , xn) ∈ Rn+1; x0 = 0

}
.

The canonical orientation of Sn is defined by orienting Tp0S
n using the ordered basis

e1(0, 1, 0, . . . , 0), . . . ,en(0, 0, . . . , 0, 1).

We will denote by orSn the canonical orientation of Sn. ut

Theorem 1.6 (Existence of integral). Let n be a positive integer. To any smooth manifold
M of dimension n, and any orientation or on M we can associate a linear map∫

[M,or]
: Ωn

c (M) → R, Ωn
c (M) 3 ω 7→

∫

[M,or]
ω,

uniquely defined by the following conditions.
(a) ∫

[M,−or]
= −

∫

[M,or]
.

(b) For any diffeomorphism F : M0 → M1, and any or1 ∈ Or(M1) we have∫

[M0,F ∗or1]
F ∗ω =

∫

[M1,or1]
ω, ∀ω ∈ Ωn

c (M1).

(c) For any orientable smooth manifold M , any or ∈ OrM , and any open subset U ⊂ M
we have ∫

[U,or|U ]
ω|U =

∫

[M,or]
ω, ∀ω ∈ Ωn

c (M), suppω ⊂ U.

(d) For any compactly supported smooth function f : Rn → R we have∫

[Rn,orRn ]
fdx1 ∧ · · · ∧ dxn =

∫

Rn

fdx1 · · · dxn

︸ ︷︷ ︸
Riemann integral

. ut

Recall that a n-dimensional manifold with boundary is a topological space M such that
there exists a smooth n-dimensional manifold M̃ and a smooth function f : M̃ → R with
the following properties

0 ∈ int f(M̃), M =
{
p ∈ M̃ ; f(p) ≤ 0

}
,

df(p) = 0 =⇒ f(p) 6= 0,

The interior of a manifold with boundary is the set

M0 :=
{
p ∈ M̃ ; f(p) < 0

}
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and its boundary is the set

∂M :=
{
p ∈ M̃ ; f(p) = 0

}
.

Both M0 and ∂M are smooth manifolds, and they are independent of the choice of M̃ and
f .

The manifold with boundary M is called orientable if we can choose M̃ to be orientable.
Any orientation or on M induces an orientation ∂or on ∂M as uniquely characterized by
the outer-normal-first condition
∀p ∈ ∂M the frame e1, . . . ,en−1 of Tp∂M is positively oriented with respect to ∂or if and

only if there exists e0 ∈ TpM̃ such that df(e0) > 0 and the ordered frame { e0,e1, . . . , en−1}
of TpM̃ is positively oriented with respect to or. (The condition df(e0) indicates that the
vector e0 points towards the exterior of M .)

Example 1.7. The closed unit ball

Bn+1 =
{
(x0, . . . , xn) ∈ Rn+1;

∑

i

(xi)2 ≤ 1
}

is an orientable manifold with boundary ∂bn+1 = Sn. The canonical orientation of Rn+1

induces an orientation orn+1 on Bn+1 and ∂orn+1 = Sn. ut

Theorem 1.8 (Stokes formula). Suppose M is an n-dimensional orientable manifold with
boundary defined by a pair (M̃, f). Then for every orientation or on M and for every
ω ∈ Ωn−1

c (M̃) we have ∫

[M0,or]
dω =

∫

[∂M,∂or]
ω. ut

1.2. Elementary homological algebra. We introduce the notion of a (co)chain complex.
Recall that a graded real vector space is a real vector space equipped with a direct sum
decomposition

V • :=
⊕

n∈Z
V n.

If V • is a graded vector space, then a homogeneous element of V • is an element v which
belongs to one of the summands V n. In this case we say that n is the degree of v and we
write |v| := n.

A linear map between two graded vector spaces L : U• → V • is called homogeneous of
degree k if

∀n ∈ Z, u ∈ Un =⇒ Lu ∈ V n+k.

If V • is a graded vector space, then for every k ∈ Z we defined its translate V •[k] to be the
graded vector space

V •[k] =
⊕

V [k]n, V [k]n := V n+k.

A chain (respectively cochain) complex is a pair (A•, d) where A• is a graded vector space
and d : A• → A• is a linear homogeneous map of degree −1 (respectively 1) such that
d2 = 0. For simplicity, in the sequel we will concentrate exclusively on cochain complexes.
Often one thinks of a cochain complex as a sequence of linear maps

. . . −→ An−1 dn−1−→ An dn−→ An+1 . . . ,

so that dn ◦ dn−1 = 0, ∀n ∈ Z
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The cohomology of a cochain complex (A•, d) is the graded vector space H•(A) =
H•(A•, d) where

H i(A) =
ker di

im di−1
, ∀i ∈ Z

It is convenient to rephrase the last definition in the language of cocycles. A cocycle of
degree n of (A•, d) is a degree n element a such that da = 0, i.e., a ∈ ker dn. Two cocycles
a′, a′′ ∈ An are called cohomologous if a′ − a′′ is a coboundary, i.e., there exists x ∈ An−1

such that
a′ − a′′ = dx.

Thus, we can identify Hn(A) with the set of cohomology classes of cocycles of degree n.
A morphism between the cochain complexes (A•, dA), (B•, dB) is a homogeneous linear

map of degree zero
f : A• → B•

such that, for every n ∈ Z the diagram below is commutative

An Bn+1

Bn Bn+1
?

L

-dA

?

L

-
dB

(1.5)

Note that a chain morphism maps cocycles to cocycles and coboundaries to coboundaries
so that we deduce the following result.

Proposition 1.9. Any cochain morphism f : (A•, dA) → (B•, dB) induces a linear map
H(f) : H•(A) → H•(B) which is homogeneous of degree zero. Moreover

H(1A•) = 1H(A),

and if g : (B•, dB) → (C•, dC) is another is a cochain morphism, then

H(g ◦ f) = H(g) ◦H(f). ut

Two cochain morphisms f0, f1 : (A•, dA) → (B•, dB) are called homotopic if there exists
a cochain homotopy between them, i.e., a homogeneous linear map of degree −1

K : A• → B•

such that
f1 − f0 = KdA + dBK.

Proposition 1.10. If f0, f1 : (A•dA) → B•, dB) are two homotopic cochain morphisms
then

H(f0) = H(f1).

Proof. Suppose a0, a1 ∈ A• are two cohomologous cocycles, ie.e., da0 = da1 = 0 and there
exists x ∈ A• such that dAx = a1 − a0.

Then
f1(a1)− f0(a1) = dBKa1

and
f0(a1)− f0(a0) = f0(a1 − a0) = dBf0(x)
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so that
f1(a1)− f0(a0) = dB((Ka1 + f0(x)).

The last equality shows that if a0 and a1 are cohomologous, then so are f0(a0) and f1(a1).
ut

1.3. The DeRham complexes. To any smooth manifold M we can now associate in a
canonical fashion a cochain complex

0 → Ω0(M) d−→ Ω1(M) d−→ . . .
d−→ Ωn(M) → 0. (DR)

We note that this is indeed a cochain complex because d2 = 0. It is called the De Rham
complex.

Definition 1.11. Let ω be a degree r differential form on M . The form ω on M is called
closed if dω = 0. It is called exact if there exists η ∈ Ωr−1(M) such that dη = ω. ut

We set dr := d|Ωr , ∀r. We see that the space of closed r-forms coincides with the kernel
of dr, while the space of exact r-forms coincides with the image of dr−1. The cohomology
of the De Rham complex is called the De Rham cohomology of M and it is denoted by
H•(M).

The De Rham complex with compact supports is the complex

0 → Ω0
c(M) d−→ Ω1

c(M) d−→ . . .
d−→ Ωn

c (M) → 0. (DRc)

We denote by H•
c (M) the cohomology of this complex and we will refer to it as the De

Rham cohomology of M with compact supports.

Example 1.12 (The De Rham cohomologies of R). We first compute H•(R). Clearly,
Hk(R) = 0 if k ≥ 2. From the definitions, we have that H0(R) = ker d0. Note that

f ∈ ker d0 ⇐⇒ df = 0 ⇐⇒ f is a constant function.

Therefore
H0(R) = {constant functions on R} ∼= R.

We now compute H1(R). Clearly, ker d1 = Ω1(R). Let ω = g(x)dx be a 1-form. Define a
function f ∈ Ω0(M) by:

f(x) :=
∫ x

0
g(u)du.

Then
df = f ′(x)dx = g(x)dx = ω,

by the Fundamental Theorem of Calculus. This shows im d0 = Ω1(R). Therefore, H1(R) =
0. Thus, we conclude Hk(R) = R if k = 0 and it is 0 otherwise. In particular,

Hk(R) =

{
R, k = 0
0, k > 0

We now compute H•
c (R). The above argument shows that H0

c (R) is equal to the constant
functions with compact support, and therefore,

H0
c (R) ∼= 0.

To compute H1
c (R) we consider the period map,∫

R
: Ω1

c(R) → R, ω 7→
∫

R
ω.
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Clearly, this map is surjective. We then conclude that

ker d1

ker
∫
R

=
Ω1

c(R)
ker

∫
R
∼= R.

We will prove that

ker
∫

R
= im

(
d0 : Ω0

c(R) → Ω1
c(R)

)
,

and thus conclude that H1
c (R) ∼= R.

Assume ω ∈ im
(
d0 : Ω0

c(R) → Ω1
c(R)

)
. Then there exists an f ∈ Ω0

c(R) so ω = df . Since
ω and f have compact supports, we can assume supp(ω) ⊂ [a, b], and f(a) = f(b) = 0. We
then have ∫

R
ω =

∫

R

df

dx
dx =

∫ b

a

df

dx
dx = f(a)− f(b) = 0.

Therefore

im
(
d0 : Ω0

c(R) → Ω1
c(R)

) ⊂ ker
∫

R
.

Conversely, let ω = g(x)dx ∈ ker(
∫
R). We will prove show that there exists f ∈ Ω0

c(R) so
df = ω. We define f by

f(x) :=
∫ x

−∞
g(u)du.

By the Fundamental Theorem of Calculus, df = g. Also, let supp(g) ⊂ [a, b]. Then we
have, for x < a,

f(x) =
∫ x

−∞
g(u)du = 0

since g(u) is zero on the interval (−∞, x). Also, if x > a, we have

f(x) =
∫ x

−∞
g(u)du =

∫

R
g(u)du = 0,

since ω ∈ ker(
∫
R). Therefore, by the above, we get H1

c (R) = R and we conclude

Hk
c (R) =

{
R, k = 1
0, k 6= 1

ut

Proposition 1.4 implies that for any smooth map F : M → N the pullback F ∗ : Ω•(N) →
Ω•(M) is a cochain morphism. In particular, it induces a morphism. Therefore, by Propo-
sition 1.9, we have an induced map in cohomology

H(F ∗) : H•(N) → H•(M),

which, for simplicity, we will continue to denote by F ∗.

Corollary 1.13. If M and N are diffeomorphic smooth manifolds then their De Rham
groups H•(M) and H•(N) are isomorphic.

Proof. Let f : M → N and g : N → M be diffeomorphisms which are inverse to each other.
Then we have

f∗ : H•(N) → H•(M), g∗ : H•(N) → H•(N).
By above,

1H•(N) = (f ◦ g)∗ = g∗ ◦ f∗ 1H•(M) = (g ◦ f)∗ = f∗ ◦ g∗.
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Therefore, f∗ and g∗ are both isomorphisms, so that

H•(M) ∼= H•(N).

ut

1.4. The Poincaré lemma. To any smooth manifold M we associate the cylinder

M̂ := [0, 1]×M.

In particular, note that for all η ∈ Ωk
(
M̂

)
, we have a decomposition

η = dt ∧ η0 + η1,

where η0 = ∂tyη is the contraction of η by dt. We can view η0 as a t-dependent (k−1)-form
on M . We define an operator K : Ωk

(
M̂

)→ Ωk−1(M) by the following:

K(η) =
∫ 1

0
η0(t)dt.

More precisely, we can view this as saying that K(η) is the form such that

K(η)x =
∫ 1

0
η0(x, t)dt.

We now have the following proposition.

Proposition 1.14. If we denote by it the inclusion M → [0, 1]×M so that it(x) = (t, x),
then we have, for all η ∈ Ωk(M)

i∗1η − i∗0η = (dK + Kδ)η

Proof. Clearly, the above equation is linear in η, therefore, by using partitions of unity, we
can reduce to the case when supp(η) ⊂ [0, 1]×U, where U is a coordinate neighborhood of
M . More specifically, let {Uα}α∈A be a locally finite cover of M by coordinate charts, and
let {ρα} be a partition of unity subordinate to {Uα}. From this, we can get a partition of
unity on M̂ by extending each ρα to be constant in the time variable. To prove our claim,
it now suffices to show

K(
∑

α∈A

ραη) =
∑

α∈A

ραK(η) = K(η).

This can be seen easily using local finiteness. Clearly, we can break K(η) as
∑

α K(η|Uα).
We therefore only need to check that if U is a coordinate chart and B ⊂ A = {α ∈ A :
supp ρα ⊂ U},

K(
∑

α∈B

ραη) =
∑

α∈B

ραK(η).

But this equality is obvious, since K is linear and the sum is finite. Therefore, we now
assume that supp(η) ⊂ [0, 1]× U.

Fix x1, . . . , xm coordinates on U. We know that any η with support on [0, 1] × U is a
linear combination of forms of type I, which look like f(t, x)dt ∧ dxI and forms of type II,
which look like g(x, t)dxJ , where I is an index of size q − 1 and J is of size q. Thus, the
proof reduces to checking the homotopy formula in the case where η is either one of these
two forms.
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We first check the case where η is of type I. Without loss of generality, we will say
η = f(t, x)dt ∧ dx1 ∧ . . . ∧ dxq−1. We conclude that in our earlier breakdown, η1 = 0 and
η0 = f(t, x)dx1 ∧ . . . ∧ dxq−1 = f(t, x)dxI . We therefore have:

dK(η) = d((
∫ 1

0
f(t, x)dt)dxI)

= (−1)q(
m∑

j=q

∫ 1

0

∂f

∂xj
dt)dxI ∧ dxj + (f(1, x)− f(0, x))dt ∧ dxI

Also, we can easily compute

d̂η = (−1)q
m∑

j=q

∂f

∂xi
dt ∧ dxI ∧ dxj

Taking K, we get

K(d̂η) = (−1)q(
m∑

j=q

∫ 1

0

∂f

∂xj
dtdxI ∧ dxj)

We can now clearly see that

(dK −Kd̂)(η) = f(1, x)dt ∧ dxI − f(0, x)dt ∧ dxI = i∗1(η)− i∗0(η)

as required.
We now check the result for forms of type II. We can assume without loss of generality

that η = g(t, x)dxJ = g(t, x)dx1∧ . . .∧dxq. Using our earlier breakdown, we see that η0 = 0
and η1 = g(t, x)dxJ . Therefore, we have by definition of K that K(η) = 0. We have the
computation

d̂η =
∂g

∂t
dt ∧ dxJ + (−1)q

m∑

j=q+1

∂g

∂xj
dxJdxj

We can then easily compute

K(d̂η) =
∫ 1

0

∂g

∂t
dt ∧ dxJ = g(1, x)dxJ − g(0, x)dxJ = i∗1(η)− i∗0(η).

Therefore, since d(Kη) = 0, we have (Kd̂− dK)(η) = i∗1(η)− i∗0(η), as required. ut

We note that above implies that if we consider the maps i∗0 and i∗1 as maps of cohomology,
then they are equal. Using this, we can prove the following useful theorem.

Theorem 1.15. Homotopic maps induce identical maps in cohomology.

Proof. We recall that if f, g : M → N are homotopic, then there exists F : R×M → N so
that

f(t, x) =

{
f(x) t ≥ 1
g(x) t ≤ 0.

We can also say this by saying

f = F ◦ i1, g = F ◦ i0

where it is defined as before in R×M . Therefore,

f∗ = i∗1 ◦ F ∗, g∗ = i∗0 ◦ F ∗.
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But by the above argument, we know that i∗0 = i∗1 at the level of cohomology. Therefore, at
the level of cohomology, f∗ = g∗. ut

Corollary 1.16. Two manifolds of the same homotopy type have isomorphic De Rham
cohomology

Proof. If two manifolds have the same homotopy type, we get maps

f : M → N, g : N → M

so that f ◦ g and g ◦ f are homotopic to the identity. Therefore, by the above theorem, we
have

g∗ ◦ f∗ = (f ◦ g)∗ = 1∗N = 1H•(M), f∗ ◦ g∗ = (g ◦ f)∗ = 1∗M = 1H•(N)

Therefore, we have that the maps f∗ and g∗ are inverses of each other, as required. ut

Finally, we can prove the Poincaré Lemma

Theorem 1.17. Let U ⊂ Rn be convex. Then

Hk(U) =

{
0 k > 1
R k = 0.

Proof. Let η : R→ [0, 1] be a smooth map so that

η(t) =

{
1 t ≥ 1
0 t ≤ 0.

We then can define a map H : R× U → U by H(t, x) = η(t)x. Then H is smooth and

H(t, x) =

{
0 t ≤ 0
x t ≥ 1.

Therefore, we have that 1U is homotopic to the 0 map.
Now consider R0, the space of a single point. We can define maps i : R0 → U and

π : U → R0 by i(pt) = 0 and π(x) = pt. Then we have π ◦ i = 1R0 and i ◦ π = 0, which
is homotopic to the identity. Therefore, we have that U is homotopy equivalent to a point,
and therefore, by homotopy invariance, the desired result follows. ut

The previous result implies that if we have U ⊂ Rn and 0 < k < n, then there is a map
L : Zk(U) → Ωk−1(U) so that d ◦ Lη = η for all η ∈ Zk(U). We now seek to produce this
map explicitly. First, we define a map C : [0, 1]× U → U as

H(s, x1, . . . , xn) = (sx1, . . . , sxn)

Now let η be a closed k-form. We know η =
∑

ηIdxI . Let V be the vector field defined by

V =
∑

i

∂xi

We compute C∗(η). We have

C∗(η) =
∑

I

ηI(sx)d(sxi1) ∧ . . . ∧ d(sxik)

=
∑

I

ηIs
kdxI +

∑

I

(ηI(sx)sk−1ds(V ydxI)
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where we have

V ydxI =
k∑

j=1

(−1)jdxj1 ∧ . . . ∧ d̂xij ∧ . . . ∧ dxik

We can then say that

Lη =
∑

I

(∫ 1

0
ηI(sx)sk−1ds

)
V ydxI .

We leave it to the reader to check that d ◦ L(η) = η.

2. Simplicial Complexes

2.1. Basic Concepts. First, we establish a notation. If S is any set, we define 2S as the
collection of subsets of S, and 2S∗ as the collection of non-empty subsets of S.

A simplicial complex is a finite collection of non-empty finite sets K such that if T ∈ K,
S ⊂ T , and S 6= ∅, then S ∈ K. We define the vertex set of K, V (K) as

V (K) =
⋃

S∈K

S

We will say that if v ∈ V (K), v is a vertex, and if S ∈ K, S is a face of K

Example 2.1. For every set V , the collection 2V∗ is a simplicial complex called the standard
simplex with vertex set V. If V = {v0, v1, v2}, we have

2V
∗ = {{v0}, {v1}, {v2}, , {v0, v2}, {v1, v2}, {v0, v1}, {v0, v1, v2}}

and clearly
V (2V

∗ ) = V ut
Example 2.2 (The Nerve of a Cover). Any time we have a manifold M and an open cover
U = {Uα}α∈A, we can associate a simplicial complex, called the nerve of U and denoted
N(U) as follows. The vertex set of N(U) is the set A, and we have the relation

{α1, . . . , αp} ⊂ A ∈ N(U) ⇔
p⋂

i=1

Uαi 6= ∅

Specifically, if M = I where I is a discrete set, we can consider the cover U = {Ui}i∈I given
by

Ui = I \ {i}.
In this case, we can see at once that

N(U) = 2I
∗ ut

A morphism of simplicial complexes, K0 and K1, is a map

f : V (K0) −→ V (K1)

such that if S is a face of K0, f(S) is a face of K1. That is to say

S ∈ K0 ⇒ f(S) ∈ K1

Example 2.3. Let K be a simplicial complex, and let V = V (K). Then the natural
inclusion

K ↪→ 2V
∗

is a morphism of simplicial complexes. ut
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We now define RV to be the vector space of all functions from V to R. That is,

RV = {f : V → R}
We can find a basis of RV by defining the so-called Dirac functions δu, for all u ∈ V :

δu(v) :=

{
1 u = v

0 u 6= v

We see that the collection {δu} does indeed form a basis of RV . Indeed, if f ∈ RV , we have

f =
∑

u∈V

f(u)δu

We note that if V = {1, . . . , n}, then RV is just Rn and δ1, . . . , δn is the standard basis.
Let K be a simplicial complex with vertex set V (K) = V . Now, let S ∈ K. We recall

S ⊂ V . Then we have

∆S = {f ∈ RV : f =
∑

s∈S

tsδs, ts ≥ 0,
∑

s∈S

ts = 1}

This is called the closed simplex spanned by {δs}s∈S . We can similarly define the open
simplex

∆̇S = {f ∈ RV : f =
∑

s∈S

tsδs, ts ≥ 0,
∑

s∈S

ts = 1}

We can also define AffS to be the smallest affine plane containing S:

AffS = {f ∈ RV : f =
∑

s∈S

tsδs,
∑

s∈S

ts = 1}

We note dim AffS = |S|− 1. We now define the geometric realization of K, denoted by [K],

[K] :=
⋃

S∈K

∆S =
⋃

S∈K

∆̇S .

Similarly, we define the m-skeleton of K, denoted by [Km] as

[Km] :=
⋃

S∈K,|S|≤m+1

∆S

We now describe the notion of a chain of subsets of K. A chain of subsets of K is a finite
collection {Si}n

i=1 such that Si ∈ K for all i, and Si ⊂ Si+1. Using this, we can define the
barycentric subdivision of K as the simplicial complex K ′ ⊂ 2K∗ , where K ′ consists of all
chains of subsets of K.

We can define the so-called barycentric coordinate functions, bv, which are continuous
functions from [K] to R, as follows. Let v ∈ V (K), and let x ∈ [K]. We have

x =
∑

v′∈V

tv′δv′ , tv′ ≥ 0,
∑

v′∈V

tv′ = 1

We note that in the above expression, if v′ /∈ S, then tv′ = 0. Also, in the above expression
there is a tv corresponding to the vertex v, and we define bv(x) = tv. We have the following
proposition.

Proposition 2.4. The barycentric coordinate functions bv have the following properties.
(1) bv(x) ≥ 0 for all v, and for all x ∈ [K]
(2)

∑
v∈V bv(x) = 1
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(3) x =
∑

v∈V bv(x)δv

(4) ∃x ∈ [K] so that bvj (x) 6= 0 for all j = 1 . . . k if and only if {v1, . . . , vk} ∈ K.

If v ∈ V (K) is a vertex of K. We set

St(v) :=
⋃

S3v

∆̇S

This is called the star of v. We can similarly define the star of any face of K as follows. If
S ∈ K, then

St(S) :=
⋃

K3T⊃S

∆̇T

We have the following relation

St(S) =
⋂

v∈S

St(v)

We now develop the notion of an oriented simplex. As before, let K be a simplicial
complex with vertex set V (K) = V . We say an ordered simplex is a pair (S,<), where
S ∈ K and < is a total order of S. If S = {v0, v1, . . . , vl} and v0 < v1 < . . . < vl, then we
will say

(S, <) = [v0, v1, . . . , vl]

We can define an equivalence relation, denoted ∼, of the set of ordered simplices. We say
that (S1, <1) ∼ (S2, <2) if S1 = S2 and if the identity map consists of an even number of
inversions as a map of ordered sets. Clearly, there are two equivalence classes, and we define
an oriented simplex

−→
S as a choice of equivalence class. We denote the other choice by

−→
S op.

We also note that using this, we can get an orientation on ∆S by choosing the orientation
of AffS given by the ordered basis δv1 − δv0 , . . . , δvl

− δv0 . This will be denoted
−→
∆S

2.2. Simplicial Homology. We eventually wish to develop the theory of simplicial co-
homology, which we will then compare to the De Rham cohomology. To do this, we first
discuss simplicial homology. As discussed in the beginning of the paper, in order to get
homology, we first must produce a chain complex. To this end, we introduce the groups
Cl(K) for any oriented simplicial complex K. Specifically, we will say that the group Cl(K)
is the free abelian group with generators

−→
S and

−→
S op, where S ∈ K has |S| = l + 1, with

the relations −→
S +

−→
S op = 0

In the sequel, we will use the notation −−→S for
−→
S op

We turn this into a chain complex by introducing the boundary operator:

δ : Cl(K) −→ Cl−1(K)

We define δ by its action on the generators.

δ([v0, v1, . . . , vl]) =
l∑

j=0

(−1)j [v0, v1, . . . , v̂j , . . . , vl]

We note that it is necessary to check that this definition is well defined. To do this, we
must show that if σ ∈ Sl+1,

δ([vσ(0), . . . , vσ(l)]) = ε(σ)δ([v0, . . . , vl]),



18 ANDREW FANOE

where ε(σ) is the sign of σ. We further notice that it is sufficient to check this for all
transpositions. We first check that

δ([v0, . . . , vi−1, vi+1, vi, vi+2, . . . , vl]) = −δ([v0, . . . , vl])

Indeed, we have
δ([v0, . . . , vi−1, vi+1, vi, vi+2, . . . , vl])

=
i−1∑

j=0

(−1)j [v0, v1, . . . , v̂j , . . . , vi+1, vi, . . . , vl]+(−1)i+1[v0, . . . , v̂i, . . . , vl]+(−1)i+2[v0, . . . , v̂i+1 . . . , vl]

+
l∑

j=i+2

(−1)j [v0, v1, . . . , vi+1, vi, . . . , v̂j , . . . , vl] =
l∑

j=0

(−1)j+1[v0, v1, . . . , v̂j , . . . , vl] = −δ([v0, . . . , vl])

Using this, we have clearly that

δ([v0, . . . , vi−1, vj , vi+1, . . . , vj−1, vi, vj+1, . . . , vl]) = (−1)2(j−i)−1δ([v0, . . . , vl]) = −δ([v0, . . . , vl]).

It is now clear, that if σ ∈ Sl+1, then since σ is a product of transpositions,

δ([vσ(0), . . . , vσ(l)]) = ε(σ)δ([v0, . . . , vl]),

as required, so that δ is well defined. We leave with the reader the basic exercise that
δ ◦ δ = 0. The proof is not hard, and involves rearranging sums. This shows that the pair
(C•, δ) is a chain complex, and thus we can form the simplicial homology of an oriented
simplicial complex K, which will be denoted H•(K).

Example 2.5. We compute the simplicial homology of 2V∗ , where V is a finite set, |V | = n.
Define a map ε : C0(2V∗ ) → Z as follows. We recall that

C0(2V
∗ ) =

⊕

v∈V

Z < v > .

We therefore define ε by saying that ε(v) = 1 for all v ∈ V . We claim that the sequence

0 −→ Z ε←− C0(2V
∗ ) δ←− C1(2V

∗ ) δ←− · · · (2.1)

is exact. First, we note that the surjectivity of ε is apparent. To see the exactness elsewhere,
we will construct a linear map

Lq : Cq(2V
∗ ) → Cq+1(2V

∗ )

such that
δq+1Lq + Lq−1δq = 1,

which would imply that 1 is homotopic to the zero map, which gives that sequence is exact
at all other required points. Now define

Lq([v0, v1, . . . , vq]) =
∑

v∈V

[v, v0, . . . , vq].

One can readily check that this definition of Lq has all of the required properties, so that
the sequence above is exact, as required. But the sequence being exact implies

Hn(K) =

{
Z n = 0
0 n ≥ 1
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We now define the notion of simplicial cohomology. We can define a cochain complex
by taking duals and adjoints of the above chain complex. That is, we have the cochain
complex (C•(K), δ∗), where C• = C∗• = Hom(C•(K),R). We have the map

δ∗ : C l(K) → C l+1(K)

defined as follows. If f ∈ C l(K), then we have

δ∗(f) = f ◦ δ

We see that δ∗ ◦ δ∗ = 0, since δ ◦ δ = 0. We will call the cohomology of this complex the
simplicial cohomology of K.

We now seek to describe the effect of δ∗. First, we define a basis of C l(K). If
−→
S ∈ Cl(K),

then we define a function φS ∈ C l(K) by

φS(
−→
T ) =





1
−→
T =

−→
S

−1
−→
T = −−→S

0 S 6= T

We see that if {−→Si} is a basis of Cl(K), then {φSi} forms the dual basis of C l(K) corre-
sponding to {−→Si}. Since δ∗ is linear, it will be enough to compute δ∗ of these basis vectors.
We have

δ∗(φS) =
∑

v,v /∈S

φv∪S

Finally, as a piece of notation, we will denote by c0 the 0-cochain so that c0(v) = 1 for all
v ∈ V (K).

3. A Simplicial Approach to the De Rham Theorem

3.1. A Simplicial Approach to the De Rham Theorem. We must first establish more
language before we can discuss the De Rham theorem. In particular, we must discuss the
notion of a smoothly triangulated manifold.

We say that a smoothly triangulated manifold is a triple (M, K, h), where M is a smooth
manifold, K is a simplicial complex, and

h : [K] −→ M

is a homeomorphism with the following property. If S ∈ K, the map h|∆S
: ∆S → M has

a smooth extension h̃S to a neighborhood of ∆S , U ⊂ AffS , h̃S : U → M . Additionally, we
will say that V (K) = V is the vertex set of K

Here I will provide an example with a picture.
Our general goal for the section is, for any smoothly triangulated manifold (M, K, h), to

find an isomorphism from H l(M) to H l(K). We will do this by first producing a morphism
of chain complexes from the De Rham complex to simplicial cohomology complex, and then
checking that this morphism induces isomorphisms in cohomology using two lemmas. We
will assume that dimM = n

We need to produce a sequence of maps Pl : Ωl(M) → C∗
l (K) such that

∂∗ ◦ Pl = Pl+1 ◦ d.

We define these maps now.
We seek to define a map

Pl : Ωl(M) → C l(K).
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To each l-form ω ∈ Ωl(M), we must associate a linear function from Cl(K) → R. We do
this as follows. Let

−→
S ∈ Cl(K) be an oriented l-simplex. Consider the smooth extension

h̃S : U → M . Taking the pullback gives us a smooth map h̃∗S : Ωl(M) → Ωl(U). Thus, for
every ω ∈ Ωl(M), we get a form h̃∗S(ω) which is an l-form on U, which was a neighborhood
of ∆S in AffS . We can then define

< Pk(ω),
−→
S >:=

∫
−→
∆S

h∗s(ω) =:
∫
−→
∆S

ω,

Where <,> denotes the canonical pairing between a vector space and its dual. These maps
are called the period maps. We note that we can define all of the above terms on all of
Cl(K) by extending by linearity.

Now that we have this definition and can talk about integrating over a simplex, we will
state and prove a replacement for Stokes’ Theorem, which will be useful to us later.

Lemma 3.1. Let ∆n be the standard n-simplex in Rn, i.e. the oriented simplex [x0, . . . , xn]
where xi is the i-th standard basis vector of Rn and x0 is the origin in Rn, and let ω ∈
Ωn−1(M). Then we have ∫

∆n

dω =
∫

∂∆n

ω.

Proof. Let ω =
∑n

i=1 ωidx1 ∧ . . . ∧ d̂xi . . . ∧ dxn. Then we have

dω =
n∑

i=1

(−1)i−1 ∂ωi

dxi
dx1 ∧ . . . ∧ dxn

We know by definition that

∂([x0, . . . , xn]) =
n∑

i=0

[x0, . . . , x̂i, . . . , xn]

Also, we have for each i, an orientation preserving diffeomorphism

φi : {(t1, . . . , tn−1) ∈ (0, 1)n−1 :
∑

i

ti ≤ 1} = A → [x0, . . . , x̂i, . . . , xn]

Where

φi(t1, . . . , tn−1) =

{
(t1, . . . , ti−1, 0, ti, . . . , tn−1) i 6= 0
(1− t1 − . . .− tn−1, t1, . . . , tn−1) i = 0

Using this, we can compute, if i = 0∫

[x0,...,x̂i,...,xn]
φ∗i (ω)

=
n∑

i=1

(−1)i−1

∫

A
ωi(x1, . . . , vx−1, 1− x1 − . . .− x̂i − . . .− xn, xi+1, . . . , xn)dx1 . . . d̂xi . . . dxn

And if i 6= 0, ∫

A
ωi(x1, . . . , xi−1, 0, xi+1, . . . , xn)dx1 . . . d̂xi . . . dxn

Using all this, we finally conclude
∫

[x0,...,xn]
dω =

n∑

i=1

(−1)i−1

∫

A

∫ 1−v1−...−v̂i−...−vn

0

∂ωi

∂xi
(x1, . . . , xn)dxidx1 . . . d̂xi . . . dxn
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=
n∑

i=1

((−1)i−1

∫

A
ωi(x1, . . . , xi−1, 1− x1− . . .− x̂i− . . .− xn, xi+1, . . . , xn)dx1 . . . d̂xi . . . dxn

−
n∑

i=1

((−1)i−1

∫

A
ωi(x1, . . . , xi−1, 0, xi+1, . . . , xn)dx1 . . . d̂xi . . . dxn

=
n∑

i=1

(−1)i−1

∫

A
ωi(x1, . . . , xi−1, 1− x1 − . . .− x̂i − . . .− xn, xi+1, . . . , xn)dx1 . . . d̂xi . . . dxn

+
n∑

i=1

(−1)i

∫

A
ωi(x1, . . . , xi−1, 0, xi+1, . . . , xn)dx1 . . . d̂xi . . . dxn

=
n∑

i=0

(−1)i

∫

[x0,...,x̂i,...,xn]
φ∗i (ω) =

∫

∂[x0,...,xn]
ω

ut

Proposition 3.2. The maps Pl satisfy the relation ∂∗ ◦ Pl = Pl+1 ◦ d for all l.

Proof. Let ω be a smooth l-form, and let
−→
∆S be an oriented (l + 1)-simplex. Then we have

by Stokes’ Theorem

< Pl+1 ◦ d(ω),
−→
S >=

∫
−→
∆S

(hS)∗(dω)

=
∫
−→
∆S

d(h∗S(ω)) =
∫

∂
−→
∆S

h∗S(ω)

=< Pl(ω), ∂
−→
S >=< ∂∗ ◦ Pl(ω),

−→
S >

Thus, ∂∗ ◦ Pl = Pl+1 ◦ d for all l, as required. ut

Therefore, we get maps
P l : H l(M) −→ H l(K)

Theorem 3.3 (De Rham Theorem). P l is an isomorphism for all l.

We will prove the De Rham theorem using two lemmas. We first state the lemmas, then
use them to prove the De Rham Theorem, then we go back and prove the lemmas.

Lemma 3.4. There exists a sequence of linear maps

αl : C l(K) → Ωl(M)

for all 0 ≤ l ≤ n with the following properties.
(1) d ◦ αl = αl+1 ◦ ∂∗
(2) Pl ◦ αl = 1Cl(K)

(3) α0(c0) = 1
(4) suppαl(φS) ⊂ St(S)

Lemma 3.5. Let ω ∈ Ωl(M) be closed. Suppose Pl(ω) = ∂∗(c), for some c ∈ C l−1(K).
Then there exists a τ ∈ Ωl−1(M) so that dτ = ω and Pl−1(τ) = c.
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Proof. (De Rham Theorem) We first show that P l is surjective. Let z ∈ C l(K) be a cocycle,
i.e. ∂∗(z) = 0. Choose a sequence αl for all l = 0, . . . , n, as in Lemma 3.4, and let ω = αl(z).
We have

dω = d(αl(z)) = αl+1(∂∗(z)) = αl+1(0) = 0

Also, we have
Pl(ω) = Pl(αl(z)) = z

Therefore, by passing to cohomology, we clearly see that P l(ω) = z, so that P l is surjective
for all l.

We now show P l is injective. It is enough to show that if ω ∈ Ωl(M) is closed and
Pl(ω) = ∂∗(c) for some c ∈ C l−1(K), then there exists a τ ∈ Ωl−1(M) so that dτ = ω.
But this is exactly what we get by Lemma 3.5. Therefore P l is injective for all l, and we
conclude that P l is an isomorphism for all l.

ut

Proof. (Lemma 3.4) Without loss of generality, and for notational convenience, we assume
that [K] = M and that h = 1M .

We first construct a partition of unity subordinate to the open cover of M given by the
collection

{St(v) : v ∈ V }
Consider the functions bv defined earlier, the barycentric coordinate functions. Consider
the sets Fv and Gv defined as follows for all v ∈ V :

Fv := {x ∈ M : bv(x) ≥ 1
n + 1

} (n = dim M)

Gv := {x ∈ M : bv(x) ≤ 1
n + 2

}
Clearly, Fv and Gv are disjoint closed sets of M with

Fv ⊂ St(v), M − St(v) ⊂ Gv.

Hence, for all v ∈ V , we can produce a function fv : M → R such that fv(x) > 0 on Fv,
and fv(x) = 0 on Gv. We notice that the collection {Fv : v ∈ V } forms a cover of M .
Indeed, if x ∈ M , then there exists an S ∈ K so that x ∈ ∆̇S . We conclude that bv(x) = 0
if v ∈ V \ S, and we recall that ∑

v∈V

bv(x) = 1

But since S ⊂ V , |S ≤ n| and we conclude that there exists some v ∈ S so that bv(x) ≥ 1
n+1 ,

so that {Fv} is an open cover of M . This implies that M −Gv is an open cover of M. The
above also shows that for all x ∈ M , there exists a v so that fv(x) 6= 0. We conclude that
for all x ∈ M , ∑

v∈V

fv(x) > 0.

Therefore, we can define functions gv : M → R as

gv(x) =
fv(x)∑

v∈V fv(x)
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But then, by definition of the gv, we clearly have that {gv} is a partition of unity subordinate
to the open cover {M \Gv}, and therefore it is also subordinate to the open cover

{St(v) : v ∈ V }.
Using this partition of unity, we can define our desired sequence of maps,

αl : C l(K) → Ωl(M).

It suffices to define these maps on the generators of C l(K). If S ∈ K, |S| = l, and−→
S = [v0, v1, . . . , vl], then we say

αl(φS) = l!
l∑

i=0

(−1)igvidgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

It remains to check that these functions satisfy properties (1)− (4)
We first prove property (1). We clearly see that

d ◦ αl(φS) = (l + 1)!dgv0 ∧ . . . ∧ dgvl

We also have
αl+1 ◦ ∂∗(φS) = αl+1(

∑

v,v∪S∈K

φv∪S)

= (l + 1)!
∑

v,v∪S∈K

[
gvdgv0 ∧ . . . ∧ dgvl

−
l∑

i=0

(−1)igvidgvdgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

]

= (l + 1)!(I − II)
Where I and II are the sums of the previous line. We have the following:

Claim. If {v, v0, . . . , vl} is not in K, then

gvdgv0 ∧ . . . ∧ dgvl
= 0 on M

To see this, assume first that x is not in St(v), so that gv(x) = 0 and the claim is obvious.
Now, assume x ∈ St(v). Then we have bv(x) 6= 0. Therefore, there exists a j so that

bvj (x) = 0, since otherwise {v, v0, . . . , vl} ∈ K. Now define a set

U = {y ∈ M : bvj (y) <
1

n + 2
}

Then U is open and x ∈ U . Also, by definition, gvj = 0 on U since U ⊂ Gvj . Therefore, we
conclude that dgvj is zero on U . Hence, dgvj (x) = 0, so that gvdgv0 ∧ . . .∧ dgvl

= 0, and the
claim is proved.

We now use this claim to rewrite the sums I and II.
First, we consider I. Using the claim, we trivially have

I =
∑

v,v∪S∈K

gvdgv0 ∧ . . . ∧ dgvl
=

∑

v/∈S

gvdgv0 ∧ . . . ∧ dgvl

We now consider II. We have

II =
∑

v,v∪S∈K

l∑

i=0

(−1)igvidgvdgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

=
l∑

i=0

(−1)i
∑

v,v∪S∈K

gvidgvdgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl
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=
l∑

i=0

(−1)i
∑

v/∈S

gvidgvdgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

=
l∑

i=0

(−1)i
∑

v 6=vi

gvidgvdgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

=
l∑

i=0

(−1)igvi


∑

v 6=vi

gvi


 ∧ dgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

=
l∑

i=0

(−1)igvi(−dgvi) ∧ dgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

= −
l∑

i=0

gvidgv0 ∧ . . . ∧ dgvl
.

Note, we have used that ∑

v∈V

gv = 1 ⇒
∑

v∈V

dgv = 0.

Combining, we get

αl+1 ◦ ∂∗(φS) = (l + 1)![I − II] = (l + 1)!(
∑

v∈V

gv)dgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

= (l + 1)!dgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl
= d ◦ αl(φS).

From this, property (1) follows.
We now check property (3). We note that α0(φv) = gv. We therefore have

α0(c0) = α0

(∑

v∈V

φv

)
=

∑

v∈V

gv = 1

We now check property (4). Suppose, as before, that we have

S ∈ K,
−→
S = [v0, . . . , vl].

Then we have

αl(φS) = l!
l∑

i=0

(−1)i(−1)igvidgv0 ∧ . . . ∧ d̂gvi ∧ . . . ∧ dgvl

We note that if x ∈ M has

bvk
(x) <

1
n + 2

,

then x ∈ Gvk
, so that gvk

and dgvk
are zero at x, which means αl(φS) is zero at x. Therefore,

αl(φS) is identically zero on the set

{x ∈ M : bv(x) <
1

n + 2
, v ∈ S}.

But we have that this is an open set containing M \ St(S), so that

suppαl(φS) ⊂ St(S)
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We now verify property (2). The proof will be by induction on l. If l = 0, then we have
P0 ◦ α0(φv), v ∈ V is the 0-cochain given by, if v′ ∈ V

< P0 ◦ α0(φv), v′ >=< P0(gv), v′ >= gv(v′)

We see that gv(v′) = 0 if v 6= v′, since v′ /∈ St(v) if v 6= v′ and gv = 0 outside of St(v). Also,

1 =
∑

v∈V

gv(v′) = gv′(v′)

for all v′ ∈ V . We conclude that

< P0 ◦ α0(φv), v′ >=

{
1 v = v′

0 v 6= v′

= φv(v′)
But the above holds for all v, v′ ∈ K, so that P0 ◦ α0 = 1, as required.

Now assume that property (2) holds for l − 1. We have that if S, T ∈ K, then

< Pl ◦ αl(φS),
−→
T >=

∫
−→
∆T

αl(φS).

Therefore, it suffices to show that the above equals 1 if
−→
S =

−→
T and equals 0 if S 6= T .

We first note that if S 6= T , then since

∆T ⊂ M \ St(S)

and by property (4), we have that

< Pl ◦ αl(φS),
−→
T >=

∫
−→
∆T

αl(φS) = 0.

It remains only to check ∫
−→
∆S

αl(φS) = 1

Now let
−→
S = [v0, v1, . . . , vl], and let

−→
R = [v1, . . . , vl], with the vi ∈ V . We have∫

−→
∆S

αl(∂∗φR) =
∫
−→
∆S

dαl−1(φR) =
∫

∂
−→
∆S

αl−1(φR).

But ∂
−→
S =

−→
R plus some sum of other oriented (l − 1)-simplices, so that by induction, we

have ∫

∂
−→
∆S

αl−1(φR) =
∫
−→
∆R

αl−1(φR) = 1

We finally conclude that

1 =
∫
−→
∆S

αl(∂∗φR) =
∫
−→
∆S

αl(φS + terms of form φT , with S 6= T )

=
∫
−→
∆S

αl(φS),

as required. Thus, the proof of Lemma 3.4 is complete ut

With this, we now see that the proof of the De Rham Theorem will be finished by a proof
of Lemma 3.5. Before we can do this, we must introduce and prove yet another lemma.
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Lemma 3.6. Let S be a k-simplex in Rn

(ar) Suppose r ≥ 0 and k ≥ 1. Let ω be a smooth, closed r-form defined “near” Fr(∆S),
i.e. in a neighborhood of Fr(∆S), where Fr(∆S) := ∆S − ∆̇S. If k = r + 1, further assume
that

∫
∂
−→
∆S

= 0. Then there exists a smooth closed r-form τ defined near ∆S so that τ = ω

near Fr(∆S)
(br) Suppose r ≥ 1 and k ≥ 1. Let ω be a smooth closed r-form defined near ∆S. Suppose

τ is a smooth (r − 1)-form defined near Fr(∆S) so that dτ = ω near Fr(∆S). If k = r,
further assume that

∫
∂
−→
∆S

τ =
∫
−→
∆S

ω. Then there exists a smooth (r − 1)-form τ ′ defined
near ∆S so that τ ′ = τ near Fr(∆S), and dτ ′ = ω near ∆S.

Proof. The proof will proceed by induction, first showing (a0), then showing that (ar−1) ⇒
(br), and finally showing that (br) ⇒ (ar).

(a0): r = 0, therefore, ω is a smooth function defined near Fr(∆S) so that dω = 0.
Therefore, ω is constant on each connected component of its domain. If k > 1, then Fr(∆S)
is connected, and hence we have that ω is a constant function, and therefore has an obvious
extension to a function near ∆S . If k = 1, then let

−→
∆S =< v0, v1 >, with v0, v1 ∈ V (S).

We also have, by assumption

0 =
∫

∂
−→
∆S

= ω(v1)− ω(v0).

Therefore, we have ω(v0) = ω(v1), and once again, ω is constant near Fr(∆S), so that it
has an obvious extension to a function near ∆S . This proves (a0).

(ar−1) ⇒ (br): ω is a closed r-form (r ≥ 1) defined on an open set containing ∆S . By
the Poincaré Lemma, we have that ω is exact near ∆S . That is, there exists a smooth
(r − 1)-form τ1 defined near ∆S so that dτ1 = ω near ∆S . In general, we will not have
τ1 = τ near Fr(∆S). However, we do have that near Fr(∆S), τ1 − τ is closed. Indeed, we
have

d(τ1 − τ) = dτ1 − dτ = ω − ω = 0.

Also, if k = (r − 1) + 1 = r, then we have∫

∂
−→
∆S

(τ1 − τ) =
∫

∂
−→
∆S

τ1 −
∫

∂
−→
∆S

τ

=
∫
−→
∆S

dτ1 −
∫

∂
−→
∆S

τ =
∫
−→
∆S

ω −
∫

∂
−→
∆S

τ = 0,

where the last equality is by hypothesis. Therefore, we can apply (ar−1) to τ1 − τ to get
a smooth closed (r − 1)form µ defined near ∆S so that µ = τ1 − τ near Fr(∆S). Let
τ ′ = τ1 − µ. Then we clearly have that τ ′ is a smooth closed (r− 1)-form defined near ∆S ,
τ ′ = τ1 − τ1 + τ = τ near Fr(∆S), and, near Fr(∆S) we have

dτ ′ = dτ1 − dµ = ω − 0 = ω.

This completes the proof of (br).
(br) ⇒ (ar): Let

−→
S = [v0, . . . , vk] for some vertices in K, and define a simplex T ⊂ S as−→

T = [v1, . . . , vk]. Furthermore, define F as Fr(∆S) \∆T . Since ω is closed, we can apply
the Poincaré Lemma to ω to obtain a smooth (r−1)-form µ defined near F so that dµ = ω.
In particular, dµ = ω near Fr(∆T ). If k > 1, we seek to use (ar) on µ and ω. We must
therefore check that if k − 1 = r, then∫

−→
∆T

ω −
∫

∂
−→
∆T

µ = 0
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Now let
−→
C = ∂

−→
S − −→

T , so that ∂
−→
C = −∂

−→
T . Then, noting that each simplex of

−→
C is

contained in F , and that dµ = ω near F , we have
∫
−→
∆T

ω −
∫

∂
−→
∆T

µ =
∫
−→
∆T

ω +
∫

∂
−→
∆C

µ

=
∫
−→
∆T

ω −
∫
−→
∆C

dµ

=
∫
−→
∆T

ω −
∫

∂
−→
∆T

ω

=
∫

∂
−→
∆S

ω = 0,

Where the last equality is by hypothesis. Thus, we can apply (br) to get a form µ′ defined
near ∆T so that µ′ = µ near Fr(∆T ) and dµ′ = ω near ∆T . Thus, we can define a form µ2

near Fr(∆S) by gluing together µ′ and µ, which we can do because they are equal on their
common domain. Clearly, since µ′ and µ have the property, we also have dµ2 = ω near
Fr(∆S).

Now let k = 1. Then Fr(∆S) consists of 2 vertices, v0 and v1. Since ω is closed, the
Poincaré Lemma again guarantees the existence of smooth (r − 1)-forms µi near vi for
i = 0, 1, where dµi = ω. Shrinking domains if necessary, we can assume that the domain of
µ0 and the domain of µ1 are disjoint. This again defines a µ2 near Fr(∆S) with dµ2 = ω
near Fr(∆S).

Now, let f be a smooth function which is identically 1 near Fr(∆S) and is zero outside of
the domain of µ2. Then we have that fµ2 is a smooth (r − 1)-form defined near ∆S . Look
at τ = d(fµ2). Clearly, τ is a closed r-form defined near ∆S , and near Fr(∆S), we have

τ = d(fµ2) = df ∧ µ2 + fdµ2 = dµ2 = ω

since f = 1 near Fr(∆S), and therefore df = 0 near Fr(∆S). This completes the proof of
(ar), and therefore of Lemma 3.6. ut

We are now ready to prove Lemma 3.5, and thus finish the proof of the De Rham Theorem.

Proof. (Lemma 3.5) We shall inductively construct a sequence τ0, . . . , τn = τ of (l−1)-forms
so so that

(1) τk is defined in a neighborhood of [Kk]
(2) dτk = ω near [Kk]
(3) τk = τk−1 near [Kk−1]
(4) Pl−1(τl−1) = c

We see that this will complete the proof, since for each oriented (l − 1)-simplex
−→
S of [K]

and for each k ≥ (l − 1), we have

< Pl−1(τk),
−→
S >=

∫
−→
∆S

τk =
∫
−→
∆S

τl−1 =< Pl−1(τl−1),
−→
S >= c(

−→
S ).

so that τ = τn has all the required properties.
We first construct τ0. Cover [K0] by a collection of mutually disjoint balls. Since ω is

closed, we get by the Poincaré Lemma that ω is exact on each ball. Therefore, by gluing,
we get a form τ ′0 defined on the union of these balls so that dτ ′0 = ω. If l − 1 6= 0, we can
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set τ0 = τ ′0 and we are done. Now assume l− 1 = 0. We need P0(τ0) = c. If v ∈ V = V (K),
we have

< P0(τ ′0),
−→v >=

∫
−→
∆v

τ ′0 = τ ′0(v)

Let av = c(v)− τ ′0(v), and define, near v,

τ0 = τ ′0 + av.

Clearly, dτ0 = dτ ′0 = ω near [K0] and P0(τ0) = c, as required.
Now, assume τk−1 has been constructed with properties (1)− (4). We seek to construct

τk with properties (1) − (4). Assume that, for all oriented k-simplices
−→
S , we can find a

smooth (l− 1)-form τk(S) defined near ∆S so d(τk(S)) = ω near ∆S and τk(S) = τk−1 near
Fr(∆S). By gluing them together, we then get a smooth (l− 1) form τ ′k satisfying (1)− (3).

To construct τk(S), we seek to apply (bl) of Lemma 3.6. Note that ω is a smooth closed
l-form defined near ∆S and that τk−1 is a smooth (l− 1)-form defined near Fr(∆S) so that
dτk−1 = ω near Fr(∆S). Also, if k = l, we have by (4) and by hypothesis

∫
−→
∆S

ω = Pl(ω)(
−→
∆S)

= ∂∗c(
−→
∆S) = c(∂

−→
∆S) = Pk−1(τk−1)(∂

−→
∆S) =

∫

∂
−→
∆S

τk−1.

Thus, we can apply (bl) to get a smooth (l−1)-form τk(S) defined near ∆S so that τk(S) =
τk−1 near Fr(∆S) and d(τk(S)) = ω near ∆S .

Thus, we have τ ′k satisfying (1) − (3). If k 6= l − 1, set τk = τ ′k. Now assume k = l − 1.
We know that τ ′l−1 satisfies (1) − (3), and we want τl−1 to have Pl−1(τl−1) = c. Choose a
sequence αl for all l = 0, . . . , n, as in Lemma 3.4, and let c1 = c− Pl−1(τ ′l−1). Then define
τl−1 in a neighborhood of [K l−1] by

τl−1 = τ ′l−1 + αl−1(c1).

For each r and each oriented r-simplex
−→
S , we note that αr(φS) is identically zero in a

neighborhood of M−St(S). In particular, αr(φS) is zero near [Kr−1]. Since each c ∈ Cr(K)
is a linear combination of such φS , we have that αr(c) is zero near [Kr−1] for all r-cochains
c.

Applying this with r = l and r = l − 1, we get that near [K l−1],

dτl−1 = dτ ′l−1 + d ◦ αl−1(c1) = dτ ′l−1 + αl ◦ ∂∗(c1) = dτ ′l−1 = ω,

and that near [K l−2],
τl−1 = τ ′l−1 + αl−1(c1) = τ ′l−1 = τl−2.

Therefore, τl−1 satisfies (1) − (3). But property (4) is also satisfied. Indeed we have by
definition of c1 and Lemma 3.4

Pl−1(τl−1) = Pl−1(τ ′l−1)− Pl−1 ◦ αl−1(c1)

= (c− c1) + c = c.

Therefore, we have constructed τk satisfying properties (1)− (4), as required. ut
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4. Singular Cohomology Theory

4.1. Singular Homology and Cohomology. Our goal this section is to establish the
theory of singular cohomology. In order to talk about singular cohomology, we first introduce
singular homology.

Let R∞ be the space

R∞ =
∞⊕

i=0

R.

We topologize R∞ by declaring a subset C ⊂ R∞ closed if and only if C ∩ Rn is closed in
Rn, for any n ≥ 0.

Let Pi ∈ R∞ denote the i-th standard basis element, that is the element which is 1 in
the i position and 0 everywhere else. We define the standard q-simplex ∆q as

∆q :=
{ q∑

j=0

tjPj :
q∑

j=0

tj = 1, tj ≥ 0
}

.

We see that ∆q clearly lies in the affine plane Aff(∆q), defined as follows:

Aff(∆q) = {
q∑

j=0

tjPj :
∑

j

tj = 1}.

Now let M be a smooth manifold. We clearly see that ∆q is not a smooth manifold, so we
cannot a priori talk about a smooth map from ∆q to M . Therefore, we will say that a map

f : ∆q −→ M

is smooth if there exists a neighborhood U of ∆q in Aff(∆q) and a smooth function f̃ :
U −→ M such that f̃ |∆q = f . We now define

Sq(M) = C∞(∆q, M), Cq(M) =
⊕

s∈Sq(M)

R〈s〉.

The elements of Sq(M) are called (smooth) singular q-simplices. The elements of Cq(M) are
called (smooth) singular q-chains in M . They are finite linear combinations with integral
coefficients of singular q-simplices.

We define the i-th face map of the standard q-simplex to be the unique affine function

∂i
q : ∆q−1 → ∆q, ∂i

q(
q−1∑

j=0

tjPj) =
i−1∑

j=0

tjPj +
q∑

j=i+1

tj−1Pj

We can then further define maps ∂i using these face maps. In particular, if φ : ∆q → M ,
we can define

∂i : Sq(M) → Sq−1(M), ∂i(φ) = φ ◦ ∂i
q.

We can use these maps to turn C•(M) into a chain complex by defining a boundary operator

∂ : Cq(M) → Cq−1(M), ∂(φ) =
q∑

i=0

(−1)i∂i(φ)

It can be checked that ∂2 = 0, but we omit the computation here. We will call the homology
of this complex the singular homology of M with integral coefficients and we denote it by
H•(M).
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As an example, we now compute the singular homology of Rn. First, let s ∈ Sq(Rn). We
can define the cone over s to be the (q + 1)-simplex Ks in Sq+1(Rn) as

Ks(
q+1∑

j=0

tjPj) = (1− tq+1)s(
q∑

j=0

tj
1− tq+1

Pj).

This is the cone in Rn with vertex origin and base the simplex s. Intuitively, we can view
tq+1 as a time variable, and as it varies from 0 to 1, our cone varies from s to the origin.

Proposition 4.1. Let K : Sq(Rn) → Sq+1(Rn) be the cone construction, for any q. This
induces a linear map K : Cq(Rn) → Cq+1(Rn) satisfying

∂K −K∂ = (−1)q+11

Proof. The proof is a simple matter writing out ∂Ks and K∂s and comparing the two sides.
It is left to the reader. ut

We see that an immediate consequence of this proposition is that the cone construction
K is a homotopy operator between the identity map and the zero map on Sq(Rn). We see
that an immediate consequence of this is

Hq(Rn) =

{
0 q ≥ 1
Z q = 0

We now discuss singular cohomology. We can define a group

Cq(M) = Hom(Cq(M),R).

The elements of Cq(M) are called singular q-cochains. We can also define a coboundary
operator ∂∗ as follows. If ω ∈ Cq(M), we define ∂∗ω ∈ Hom(Cq(M),R) by

∂∗ω(c) := ω(∂c)

Then it is clear that ∂∗ω ∈ Cq+1(M) and that (∂∗)2 = 0. Thus, we have that C• is a cochain
complex, and thus we can form its cohomology. We will call this the singular cohomology
of M , and we will denote it by H•

sing(M).
Any 0-cochain can be identified with a (possibly discontinuous function ω : M → R. We

note that a function ω on M is a 0-cocycle, i.e. ∂∗ω = 0, if and only if ω(∂c) = 0 for all
paths c in M . Thus, ω is constant on each path component of M , and we have

H0
sing(M) = Rν ,

where ν is the number of path components of M .
We now compute the singular cohomology of Rn. Define the operator L : Cq(Rn) →

Cq+1(Rn) to be the adjoint of the cone operator K. That is, if ω ∈ Cq(Rn), and c ∈
Cq−1(Rn), then

Lω(c) = ω(Kc).
Then, for ω ∈ Cq(Rn) and c ∈ Cq(Rn), we have

((δL− Lδ)ω)(c) = (δ(Lσ))(c)− (L(dω))(c) = Lω(∂c)− δω(Kc)

= ω(K∂c)− ω(∂Kc) = ω((K∂ − ∂K)c) = (−1)q+1ω(c),
where the last equality follows from Proposition 4.1. Therefore

1 = (−1)q+1(δL− Lδ),
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so that again the identity map is homotopic to the zero map on Cq(Rn) for q ≥ 1. Therefore,
we again have

Hq
sing(R

n) =

{
R q = 0
0 q ≥ 1

4.2. The General Mayer-Vietoris Principle. Let U = {Uα}α∈A be an open cover of M ,
where A is a totally ordered set. We will define the groups CU• (M), the group of so-called
U-small chains in M . This is the free Abelian group generated by the singular chains in M
that lie entirely in some open set of the cover U. More precisely, if we define

SU
q (M) = {s : ∆q → M ; ∃α ∈ A such that s(∆q) ⊂ Uα},

then
CU
• (M) :=

⊕

s∈SU
q (M)

Z〈s〉.

The Excision Theorem [3, Prpp. 2.21] implies that the inclusion

i : CU
• (M) → C•(M)

is a chain homotopy equivalence.
Denote by N(U) the nerve of U and by Np(U) the set of p-faces of the nerve. Recall that

these are linearly ordered sets
σ := {α0 < · · · < αp}

such that

Uσ :=
p⋂

i=0

Uαi 6= ∅.

Following A. Weil [5] we define

Sp,q(U) :=
{
(σ, s) ∈ Np(U)× Sq(M); s(∆q) ⊂ Uσ

}

and we set
Cp,q(U) :=

⊕

(σ,s)∈Sp,q(U)

Z〈σ, s〉.

Now define

δ : Cp,q(U) → Cp−1,q(U), δ〈σ, s〉 =
p∑

i=0

〈δiσ, s〉,

where
δi(α0, . . . , αp) := (α0, . . . , αi−1, αi+1, . . . , αp).

We define

∂ : Cp,q(U) → Cp,q−1(U), ∂〈σ, s〉 =
q∑

i=0

(−1)i〈σ, ∂iσ〉.

For every U-small singular q-simplex s : ∆q → M we set

V (s) :=
{
α ∈ A; s(∆q) ⊂ Uα

}
.

Observe that for any B ⊂ V (s) we have
⋂

β∈B

Uβ 6= ∅ =⇒ B ∈ N(U).
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This shows that 2V (s)
∗ is a subcomplex of N(U), and moreover, for every q ≥ 0 we have an

isomorphism of chain complexes

(C•,q(U), δ) ∼=
⊕

s∈Sq(U)

(
C•(2

V (s)
∗ ), δ

)
.

Observe that we have a natural augmentation

ε : C0,q(U) → CU
q (M), 〈σ, s〉 7→ 〈s〉, ∀(σ, s) ∈ S0,q(U).

Using (2.1) we deduce that for every s ∈ SU
q (M) we have a long exact sequence

0 −→ Z〈s〉 ε←− C0(2
V (s)
∗ ) δ←− C1(2

V (s)
∗ ) δ←− · · ·

and thus a long exact sequence

0 −→
⊕

s∈SU
q (M)

Z〈s〉 ε←−
⊕

s∈SU
q (M)

C0(2
V (s)
∗ ) δ←−

⊕

s∈SU
q (M)

C1(2
V (s)
∗ ) δ←− · · ·

We have thus proved the following proposition.

Proposition 4.2 (Generalized Mayer-Vietoris Exact Sequence).

0 CU
q (M) C0,q(U) C1,q(U) . . .¾ ¾ε ¾δ ¾δ

is an exact sequence for all q ≥ 0. ut

5. André Weil’s Approach to the De Rham Theorem

5.1. Double Complexes. We now introduce the notion of a double complex. First, let
A•,• be a doubly graded vector space. That is, we have

A•,• =
⊕
m,n

Am,n.

Further assume we have two maps, D′
A and D′′

A, with the following properties. First, assume
that for all p, q, we have

D′
A : Ap,q −→ Ap+1,q, D′′

A : Ap,q −→ Ap,q+1.

Furthermore, assume that we have the relations

D′
A ◦D′

A = D′′
A ◦D′′

A = 0, D′
A ◦D′′

A = −D′′
A ◦D′

A.

Under these circumstances, we say that the triple (A•,•, D′
A, D′′

A) form a double complex.
We can define the notion of a morphism of double complexes in the same was as we

defined a morphism of chain complexes. We say that φ is a morphism of double complexes
if, for double complexes (A•,•, D′

A, D′′
A) and (B•,•, D′

B, D′′
B)

φ : Ap,q −→ Bp,q

for all p and q, and also

φ ◦D′
A = D′

B ◦ φ, φ ◦D′′
A = D′′

B ◦ φ.

Given any double complex (A•,•, D′
A, D′′

A), we can associate a cochain complex called the
total complex as follows. First, we define the graded vector space Tot•(A) as follows:

Totn(A) =
⊕

p+q=n

Ap,q.
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We can also define a map DA : Totn(A) −→ Totn+1(A) by the formula

DA = D′
A + D′′

A.

It is immediately clear that the relations D′
A ◦D′

A = D′′
A ◦D′′

A = 0, D′
A ◦D′′

A = −D′′
A ◦D′

A

give that D2
A = 0, so that (Tot•, DA) is a cochain complex. We see that if φ is a morphism

of double complexes A•,• and B•,•, then we get an induced cochain map

φ : Tot•(A) −→ Tot•(B).

We note that since D′
A and D′′

A are both cochain operators, we can consider the coho-
mology of columns and rows in our double complex. We set Ep,•

1 := H•(Ap,•, D′′
A). By

definition, we see that if we have

φ : A•,• −→ B•,•

a morphism of double complexes then we get an induced morphism

φ1 : Ep,•
1 (A) −→ Ep,•

1 (B).

Theorem 5.1. Let
φ : A•,• −→ B•,•

be a morphism of double complexes and

φ1 : Ep,•
1 (A) −→ Ep,•

1 (B).

be the induced morphism. If φ1 is an isomorphism for any p, then the map

φ : Tot•(A) −→ Tot•(B)

induces isomorphisms in cohomology.

Proof. We follow the approach in [2, Lemma 1.19]. Let (C•,•, D′
C , D′′

C) be a double complex
with total complex (Tot•(C), DC). Define a subcomplex F •

q (C) ⊂ Tot•(C) by

F l
q(C) =

⊕

k≥q

Ck,l−k

Then clearly, we have

. . . ⊃ F •
q−1(C) ⊃ F •

q (C) ⊃ F •
q+1(C) ⊃ . . .

for all l. Also, it is clear that DC maps F •
q (C) to itself. From this definition, it is clear that

the quotient complex (F •
q (C)/F •

q+1(C), DC) is isomorphic to (C•,q, D′
C). Thus, for our map

φ : A•,• → B•,•, we have that the condition that φ1 : Ep,•
1 (A) → Ep,•

a (B) be an isomorphism
is equivalent to saying that the map

φ : F •
q (A)/F •

q+1(A) → F •
q (B)/F •

q+1(B)

induces isomorphisms in cohomology for all q. We note that we have the following commu-
tative diagram of complexes:

0 −→ F •
q+r(A)/F •

q+r+1(A) F •
q (A)/F •

q+r+1(A) F •
q (A)/F •

q+r(A) −→ 0

0 −→ F •
q+r(B)/F •

q+r+1(B) F •
q (B)/F •

q+r+1(B) F •
q (B)/F •

q+r(B) −→ 0

-

?

φ

-

?

φ

?

φ

- -
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Using this diagram, induction on r, and the 5-lemma, we can easily conclude that the map

φ : F •
q (A)/F •

q+r(A) → F •
q (B)/F •

q+r(B)

induces isomorphisms in cohomology for all q, for all r ≥ 0. But, if C•,• is a double complex
as before, then we see clearly that

Fn
0 (C) = Totn(C), Fn

r (C) = 0,

where r > n. But then we have that

φ : Tot•(A) −→ Tot•(B)

induces isomorphisms in cohomology, as required. ut

We note that by merely switching columns and rows, one can state and prove an equiva-
lent statement using the cohomology of the rows instead of the cohomology of the columns.

5.2. De Rham Theorem. Let M be a smooth manifold and let U be a good cover of the
manifold M , and let N(U) denote the nerve of U. Let

Np(U) = {σ ∈ N(U) : |σ| = p + 1}
be the set of p-simplices of the nerve. As in section 4.1, we have the space Sq(M), and we
can form the DeRham cohomology H•

sing(M). Similarly, we have the complex Ω•(M) and
we can form H•(M). We define a map

PM : Ωq(M) −→ Sq(M) = Hom(Sq(M),R)

for all q, called the period map, as follows. If ω ∈ Ωq(M), S ∈ Sq(M), and <,> denotes the
canonical pairing between a space and its dual, then

< PM (ω), S >:=
∫

∆q

S∗(ω).

It is easily shown that PM is a cochain map. We do not prove this here, but note that the
proof is very similar to the proof of Proposition 3.2.

Consider now the double complex

Cp,q(U) = Hom(Cp,q(U),R) = Hom
( ⊕

(σ,s)∈Sp,q(U)

Z〈(σ, s)〉,R
)
,

as defined in Section 4.2, and also the double complex C•,•(U, Ω) defined as follows.

Cp,q(U, Ω) :=
∏

σ∈Np(U)

Ωq(Uσ).

The elements of Cp,q(U, Ω) are families (ωσ)σ∈Np(U), ωσ ∈ Ωq(Uσ).
The differentials

D′ : Cp,q(U, Ω) → Cp+1,q(U), D′′ : Cp,q(U,Ω) → Cp,q+1(U)

are defined by the equalities .

D′(ωσ)σ∈Np(U) = (ητ )τ∈Np+1(U), ητ =
p+1∑

i=0

(−1)iωδiτ |Uτ .

D′′(ωσ)σ∈Np(U) = ((−1)pdωσ)σ∈Np(U).

It is easy to check that
(D′ + D′′)2 = (D′)2 = (D′′)2 = 0.
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Now define another period maps P : Cp,q(U, Ω) −→ Cp,q(U) for all p, q as follows. If

(σ, s) ∈ Sp,q(U) and ω := (ωσ) ∈
∏

σ∈Np(U)

Ωq(Uσ),

then we define

Pω(〈σ, s〉) =
∫

∆q

s∗(ωσ).

The map P is then the natural extension of this to the direct sums. One can easily check
that P is a map of double complexes, again following the methods of Proposition 3.2, so we
leave this computation out as well.

We now recall from Section 4.2 that there is an augmentation morphism ε

ε : C0,q(U) −→ CU
q (M).

Taking duals (HomZ(−,R)), and adjoints, we then get that there exists a map

ε∗ : Cq
U(M) −→ C0,q(U).

We recall that the inclusion
i : CU

• (M) → C•(M)

is a chain map and induces isomorphisms in homology, from which we conclude that

i∗ : C•(M) → C•
U(M)

is a cochain map and induces isomorphisms in cohomology.
Finally, we can define the restriction map

r : Ωq(M) → C0,q(U,Ω)

by sending ω to the collection ωU , where for each U ∈ U, ωU := ω|U .
Putting all of this together, we get the following commutative diagram of complexes:

C•(M) C•
U(M) C•,•(U)

Ω•(M) C•,•(U, Ω)

-i∗ -ε∗

6
PM

-r
´

´
´

´
3́

P

Passing to total complexes, we get the similar commutative diagram

C•(M) S•U(M) Tot•(C(U))

Ω•(M) Tot•(C(U, Ω))

-i∗ -ε∗

6
PM

-r
´

´
´

´
´́3

P

Using this, we can now prove the De Rham Theorem.

Theorem 5.2 (De Rham Theorem). Let M be a smooth manifold. Then the period map
PM : Ω•(M) → C•(M) induces isomorphisms in cohomology. In particular, the DeRham
cohomology of M is isomorphic with the singular cohomology.



36 ANDREW FANOE

Proof. Let U be a good cover of M , N(U) the nerve of U, and Np(U) the set of p-simplices of
the nerve, as before. Then as shown, we get a commutative diagram of cochain complexes

C•(M) C•
U(M) Tot•(C(U))

Ω•(M) Tot•(C(U, Ω))

-i∗ -ε∗

6
PM

-r
´

´
´

´
´́3

P (5.1)

We see that if we can show that in this diagram, i∗, ε∗, r, and P all induce isomorphisms
in cohomology, then we can conclude that PM induces isomorphisms in cohomology, as
required. We already noted that i∗ induces isomorphisms in cohomology. We turn to ε∗.

View C•
U(M) as a trivial double complex A•,• where

Ap,q :=

{
Cq

U(M) := HomZ(CU
q (M),R) p = 0

0 p ≥ 1
.

We recall that by Theorem 4.2 that

0 CU
q (M) C0,q(U) C1,q(U) . . .¾ ¾ ε ¾ δ ¾ δ

is an exact sequence, where ε is defined in Section 4.2. But, since each term of this is a free
abelian group, we conclude by the properties of the Hom functor that

0 Cq
U(M) C0,q C1, q . . .- -ε∗ -δ∗ -δ∗

is an exact sequence, from which it follows that the map of double complexes

ε∗ : A•,• −→ C•,•(U)

induces isomorphisms in the cohomology of rows. Therefore, we conclude by Theorem 5.1

ε∗ : Tot•(A) −→ Tot•(C(U))

induces isomorphisms in cohomology. But clearly Totn(A) = Cn
U(M), which gives us that

ε∗ : C•
U(M) −→ Tot•(C(U))

induces isomorphisms in cohomology.
We now show that r induces isomorphisms in cohomology. View Ω•(M) as a trivial

double complex A•,• where

Ap,q :=

{
Ωq(M) p = 0
0 p ≥ 1

.

According to [1, Prop. 8.5] the sequence below is exact.

0 ←− Ωq(M) C0,q(U, Ω) C1,q,Ω ←− . . .¾ r ¾

From this, we see directly that

r : A•,• −→ C•,•(U,Ω)

induces isomorphisms in the cohomologies of rows. But then by Theorem 5.1,

r : Tot•(A) −→ Tot•(C(U, Ω))
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induces isomorphisms in cohomology. But clearly Totn(A) = Ωn(M), which gives us that

r : Ω•(M) −→ Tot•(C(U,Ω))

induces isomorphisms in cohomology.
It remains only to show that P induces isomorphisms in cohomology. We see from Lemma

5.1 that if we show
P : C•,•(U, Ω) −→ C•,•(U)

induces isomorphisms in the cohomologies of columns, then we will be done. In particular,
by passing through the direct sum, we see that it is enough to show that if p ≥ 0, σ ∈ Np(U),

P : Ω•(Uσ) −→ C•(Uσ)

induces isomorphisms in cohomology. Since U is a good cover, we know that for all σ ∈
N(U), Uσ is diffeomorphic to Rn for some n. In particular, we know by the Poincaré Lemma
and by computation in section 4.1 that

Hq
sing(Uσ) =

{
R q = 0
0 q ≥ 1,

Hq(Ω•(Uσ)) =

{
R q = 0
0 q ≥ 1

.

Hence

Ep,q
1

(
C•,•(U,Ω)

)
=

{
0 q > 0∏

σ∈Np(U)R q = 0.
= E1

(
C•,•(U)

)

Recall that a singular 0-cocycle can be identified with a constant function on Uσ, and
similarly a closed 0-form can also be identified with a constant function. This shows that
the period map induces an isomorphism

P : Ep,q
1

(
C•,•(U, Ω)

) → E1

(
C•,•(U)

)

and thus the map
P : Tot•(C(U), Ω) −→ Tot•(C(U))

induces isomorphisms in cohomology, and furthermore. From our commutative diagram
(5.1) we finally conclude that

PM : Ω•(M) −→ Cq(M)

induces isomorphisms in cohomology. ut
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