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Abstract

We prove an index theorem for families of elliptic boundary value problems and a
glueing formula for the index of a family of Dirac operators on a closed manifold. In
the process we also obtain a very general result about the cobordism invariance of
the index of a family.

To achieve these goals we develop techniques (inspired from symplectic geometry)
for computing the index of a family of Fredholm operators.

Key words and phrases: Dirac operators, boundary value problems, Calderon
projectors, index of families, Clifford algebras, Karoubi’s K™9-theory, generalized
symplectic spaces, generalized symplectic reduction, generalized Maslov index.
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Introduction

Consider a closed, compact oriented Riemann manifold (M,g) which is decom-
posed into two manifolds-with-boundary by an oriented hypersurface £: M = M;Ug
M,. Assume moreover that it is given a continuous family (D, )yey of Dirac type op-
erators on M. Classically, this family has an index in some K-group. The problem
we address in this paper is the following:

Describe the index of the family in terms of its behavior on the two pieces of the
decomposition
i.e. we are looking for a splitting formula for the index of a family. If for example the
operators have some symmetries (e.g. they are skew or selfadjoint) then the index lies
in in a higher K-group (e.g. if all the operators are selfadjoint the index is in K'(Y)).
Thus it is very important to take their symmetries into account. Also, it makes a
difference whether the operators are complex or real. In this paper we will consider
only real operators since they are homotopically more complicated. However all the
techniques extend to the complex case. The natural context which coherently takes
into account all these aspects is that of Fredholm operators with Clifford symmetries
introduced in [AS] and [Ka2].

In a previous paper [N1] we dealt with a special case of the above splitting problem.
There we considered a path of selfadjoint Dirac operators (D*):[o,1) on bundle £ of
Clifford modules with a fixed Clifford structure. To any such operator D there is an
associated pair of Cauchy data spaces (CD spaces for brevity) A; (¢ = 1,2). These
are closed subspaces in L?(£|g) defined roughly as follows:

Al=Ai(DY) = {Ulg; U€C®(M;), D'U=0 on A} =12

It turns out that L?(€ |g) has a natural symplectic structure and the CD spaces
form Fredholm pairs (cf. Sec.3) of lagrangian subspaces. The space of Fredholm
pairs of lagrangians classifies K and an ezplicit isomorphism K'(S') — Z can be
constructed, called the Maslov indez. Then one shows that the index of the original
path of Dirac operators (also called the spectral flow) equals the Maslov index of the
associated path of CD paces.

An equivalent way of looking at this result is to consider the family of boundary
value problems

B’={ DU =V on M,
U lom, € A3

where D! = D! |p,. Since (Af,A}) is a Fredholm pair the operator Bt is Fredholm
and because Al is lagrangian B' is selfadjoint. Moreover ker B! = (kerD') |m, which

Received by the editor July 24, 1995.
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X Introduction

suggests that the family of boundary value problems may have the same index as
the original family (D) and thus the splitting formula describes the index of the
family (B') in terms of boundary data. This is the approach we take in our search
for a general splitting formula: replace the original family with a family of boundary
problems which has the same index and then describe the index of the family of
boundary problems in terms of “interactions along the boundary”.

First, we look at Fredholm operators with (Clifford) symmetries (see Prop. 2.9
for their definition). These were shown (cf.[AS], [Ka2]) to form classifying spaces
FredP for all K-groups. Thus to any continuous family y ~ T, € Fred®? there
1s an associated index ind, o (T,) € KP(Y). Unfortunately the problem of deciding
whether two families have the same index can be very delicate.

The other side of the story is recovered by generalizing the notion of lagrangian
which is the key notion in this paper. A symplectic space can be viewed as a module
over the algebra C'° = C and one can define lagrangians in terms of this structure:
any lagrangian subspace defines a Z,-grading of the (1,0)-structure. The generaliza-
tion is now evident. One considers C*9-modules and (p, g)-lagrangians (Sec.3) which
can be viewed as defining “super” structures. The space FLP? of Fredholm pairs of
infinite dimensional (p, ¢)-lagrangians is a classifying space for the K?9-groups of
Karoubi (this is also proved in [KGLZ] in a disguised form). Thus to any continuous
family y — (A].A}) € FLP? (y € Y-compact CW complex) one can associate an
element p,4(A},A}) € KP9(Y) called the generalized Maslov indexz.

The space FL"? is very abstract and a natural question imposes itself: given two
continuous families in FL?? (parameterized by the same compact CW-complex Y')
decide whether they have the same generalized Maslov index.

The solution to this problem is the key theoretical result of this paper. The
Clifford modules are formally very similar to the usual symplectic spaces. Standard
symplectic operations have natural correspondents to Clifford modules (which we
called generalized symplectic spaces). In particular, the symplectic reduction process
generalizes to arbitrary Clifford modules and more important to infinite dimensions.
The reduction gives a very efficient way of transforming an infinite dimensional prob-
lem to a finite dimensional one. We proved that two continuous families of Fredholm
‘pairs of lagrangians are homotopic iff we can symplectically reduce them to homotopic
families of finite dimensional lagrangians (see Thm. 4.14 for details).

We next look at families of Clifford symmetric Fredholm operators (see Sec.5 for
-details) and we ask ourselves the same effectivity question: given two continuous
families of Clifford symmetric Fredholm operators decide whether they have the same
index. The answer to this question is the second main theoretical contribution of this
paper. To approach this problem it is more convenient to think of linear operators in
terms of their graphs. Given

T:Dom(T)CH— H

a closed, densely defined, Clifford symmetric Fredholm operator in an Hilbert CP9+1-
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module H, its graph
I'r={(z,Tz) € H x H; z € D(T)}

isa (p+1,¢+1)-lagrangian with respect to a natural (p+1, ¢+1)-structure in H x H.
Moreover (H x {0},T'r) is a Fredholm pair. Thus the map I' : T + I'r embeds Fred®?
in FLPT19* and in Theorem 5.5 we prove that I' is a homotopy equivalence. One
major advantage is that we included in our consideration unbounded operators as
well and this makes Theorem 5.5 a very versatile result. A crucial step in the proof
is the construction of some Clifford symmetric operators which are “generators” in
K -theory. We called them Floer operators since it seems it was Floer who for the
first time in [F] emphasized their K-theoretic relevance in the context of symplectic
homology. Now using the symplectic reduction trick for abstract lagrangians we can
reduce the computation of the index of a family of Fredholm operators to a finite
dimensional problem.

Finally we study boundary problems for Dirac operators on a manifold with
boundary. If D is a Clifford symmetric Dirac operator on a bundle £ — M with
Clifford symmetries, then L?(&|sp) inherits a natural Clifford module structure and
the CD space A(D) of D is a generalized lagrangian subspace. A boundary condition
for D corresponds to a choice of a closed subspace V C L*(€ |ap). This boundary
condition is elliptic iff (A(D),V) is a Fredholm pair. The boundary problem thus
obtained displays Clifford symmetries iff V is a generalized lagrangian. Therefore we
look at a family of boundary value problems

By:{DyU:W on M

cvY.
U |8M€ Ly y

Here the parameter space is a compact CW-complex and for each y € Y, Ly is a
generalized lagrangian in L*(& |sum) -depending continuously upon y- such that the
pair (A(D,), L,) is Fredholm. The main application of the previous theoretical con-
siderations is Theorem 6.2. A family of boundary problems as above determines two
elementsin K79(Y). The first one is an index ind, ¢( Dy, Ly) if we think of these prob-
lems as defining Fredholm operators. The second element is a raeasure of the “inter-
action along the boundary” and is the generalized Maslov index pip41,+1(A(Dy), Ly ).
Theorem 6.2 states a very natural fact:

indp,q(Dyv L)) = Hp+1‘q+l(A(Dy)a Ly).

The logical structure of the proof is simple. One first shows that the general case
is equivalent with a special one, namely when M is in fact a cylinder. The cylinder
case is symplectically reduced to a Floer family for which we have already described
the index. The main reason this approach works is the extreme rigidity of Dirac
operators: they satisfy the unique continuation property. As a corollary we deduce
the splitting formula for arbitrary families of Dirac operators (Thm. 6.10) using the
approach outlined in the beginning.
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Both theorems 6.2 and 6.10 where stated for families of Dirac operators with
constant symbol. However in Subsection 6.3 we explain how the same proof extends
to the more general case of varying symbols. Similar results were recently proved by
[DZ] in the complex case, using entirely different methods.

The key ingredient which makes this extension possible is the notion of spectral
section defined in [MP], adapted in the obvious manner to a (p, q) setting. Roughly
speaking a spectral section is a continuous family of Atiyah-Patodi-Singer family.
Using the adiabatic analysis of [N2] we show that the restriction to the boundary of
any family of Dirac operators is a family which admits a spectral section. In particular
this provides a short proof of a very general result stating the cobordism invariance
of arbitrary families of Dirac operators. This arbitrariness is two fold: the space of
parameters is any compact CW complex and the index can live in higher K-theory.
As explained in Subsection 6.3 the CD spaces induce an “excess of symmetry” on the
boundary operators which leads to the vanishing of the index.

We are very pleased of a technical byproduct contained in Appendix B. There
we deal with the continuity of families of Dirac operators with varying boundary
conditions (thus varying domains). This was one delicate point dealt with in the
paper [FO1] when studying paths of ordinary differential operators (what we called
Floer operators). The authors used a conjugation trick which reduces the problem to
families with constant domain. Unfortunately this trick does not generalize well to
partial differential operators.

Although we were interested only in real case (which is richer from a topological
point of view) the methods we develop extend almost verbatim to the complex case
and we considered it was not worth lengthening the presentation by dealing with both
the real and the complex case.

The paper is divided in six sections and we collected the analytical technicalities
in four appendices.

For the readers convenience we present a very short survey of some basic facts
concerning the not so popular but extremely versatile K7+ theory of Karoubi.  In
Section 3 we introduce the notion of (p, q) lagrangians and show how these can be
organized to produce a classifying space of the K?%-theory .

The theoretical heart of this work is contained in the sections 4 and 5 which
describe in detail the symplectic skeleton of K theory. We gathered the applications
to index theory in Sec.6.

We want to mention that (most of) the results of this work were announced in
[N2].

Acknowledgments 1 want to thank B. Boss and K. Wojciechowski for their
interest in this work. Their results on the boundary value problems for Dirac operators
made me aware of the K-theoretic relevance of the CD spaces.

Also I want to thank W. Zhang for the preprint [DZ]. It was while reading their
work that 1 got the idea for the new proof of the cobordism invariance of the index
of families described in Proposition 6.7.



1 Algebraic preliminaries

We gather in this section some standard facts about Clifford algebras and their rep-
resentations. For details and proofs we refer to [LM] or [Kal].

§1.1 Clifford algebras Let Q be a quadratic form on V. The Clifford algebra
generated by V and @, denoted by C(V, Q) is the associative unital algebra generated
by V with the relations

u-vtv-u = —Q(u.v)-1 VuveV.

f ¢,.-+,€en (n=dimV) is a basis of V in which @ is diagonal then C(V,Q) can be
alternatively characterized as the associative unital algebra generated by €;,- -, €n
modulo the relations

e;-e;+ei-e; = —2Q(eie5) Vi, (1.1
J J 3 J

For any nonnegative integers p, ¢ such that p+¢ > 0 we denote by R”? the space
R” @& R? endowed with the quadratic form

Qzay) = lz|’—|y* z€R”, yeR

where | - | denotes the standard euclidian metric. Then CP9 denotes the Clifford
algebra generated by R™?. When p = ¢ = 0 we set % = R.

Let €, - €p; €1, - €5 denote the standard basis of R??. CP9 decomposes as a
Z,-graded algebra (“superalgebra”)

CPe = CP9 @ CPI (1.2)

where C2 are the vector subspaces generated by the even /odd degree monomials in
the basis elements {ei; €;}.

CP9 can be naturally equipped with a scalar product making {e; - €5} an or-
thonormal basis. Denote the corresponding norm by || - ||. (C?9,]| - |) is a Z,-graded
real C*-algebra with the anti-involution “x” uniquely defined by its action on the
generators:
er

. .
T=—€, € =¢ Vi,j

J
It will be useful to introduce some “super” notions.

1



2 L. I. Nicolaescu

Definition 1.1 (a) A superspace is a vector space H together with a distinguished
direct sum decomposition

H = Hyo® H,.

R=diag(1y,,~1y,) is called the grading of the superstructure. If H is a Hilbert space
and the decomposition above is orthogonal H is called a Hilbert superspace.

(b) A superalgebra is a Z,-graded algebra A = Ao@® A;. The elements in A (resp.A;)
are called even (resp.odd).

(¢) The supercommutator in a superalgebra is the bilinear map [-,-], : Ax A — A
defined on homogeneous elements by the formula

[z,9)s = 2y — (=1)F¥lyz
where |- | € {0,1} denotes the degree of a homogeneous element.

Example 1.2 If V = V;, @V} is a superspace then the algebra of endomorphisms of
V has a natural Z,-grading. The even operators preserve the grading while the odd
ones switch it. We will write End (V) to emphasize this super structure of End (V).

§1.2 Clifford modules The notion of Clifford module plays a crucial role in
the definition of Karoubi’s KP9-theory. We collect here some facts and definitions
concerning these objects.

Definition 1.3 (a) A Hilbert (p,q)- module is a Hilbert space H together with a
morphism of C*-algebras

p:CP?" — B(H).

(B(H)= bounded linear operators on H).
(b) A (p.q) s —module is a superspace V = Vo @ V; together with a morphism of

superalgebras _
p:C?? — End (V).

A Hilbert (p,q) s-module is defined in the obvious way.

Example 1.4 A Hilbert (p,q) module (H, p) is uniquely defined by a choice of op-
erators J; = p(e;) and C; = p(¢,) satisfying

J=-Ji, Cl=C; Vij

Ji=-1,Cl=1 Vi,j
{J,C;y = 0 Vij
{Ji,Ji,} = 0 = {le’cjz} Vi # 2 1 # Ja-
where for any linear operators A, B the bracket {A, B} denotes their anticommutator
AB + BA. Note that any finite dimensional C??-module can be given a structure of

Hilbert module constructing a metric using the averaging trick (average with respect
to the action of the finite group generated by the e’s and ¢’s).



Generalized symplectic geometries and elliptic equations 3

Remark 1.5 CP9 has a volume element w = €y--- €, € -+~ €. It satisfies

5(641) 5(8+41)
2 2

W= (=1) , W= (=1) w (1.3)
where § = p— q. Thus w is a selfadjoint involution if § = 0,—1(mod4). Moreover
when § = —1(mod4) w lies in the center of CP? since

wei + (—1)eiw = we; + (—1)ew = 0 Vi,j. (1.4)

This implies that multiplication by %(] — w) is an idempotent endomorphism of CP9
i.e. CP9 is not simple. Thus in this case every CP% module H has decomposition

H=H,3%H_ (1.5)
into the £1 eigenspaces of @ = Jy---J,-Cy---Cy.

Definition 1.6 A Fredholm selfadjoint operator T in an infinite dimensional Hilbert
space is called essentially indefinite iff its essential spectrum contains both posi-
tive and negative elements. In particular a selfadjoint involution C on an infinite
dimensional Hilbert space is called essential if both ker(] — C) and ker(I + C) arc
infinite dimensional. An infinite dimensional Hilbert (p,q)-module (H,p) is called
essential if

(1) either & £ —1(mod4);

(ii) or & = —1(mod4) and the subspaces Hy in the decomposition (1.5) are both
infinite dimensional. Equivalently, this means that the involution Q@ = Jy---J, -
("y - C, is essential. In particular a (p,q) s-module with grading R is called essential
if

(1) either p — q¢ Z 0(mod4);

(ii) or p — ¢ = 0(mod4) and the involution RJ; ---J,Cy---Cy is essential.

A finite dimensional (p,q)- module is called essential if either (p-g) # —1 (mod
1) or if (p-qg) = =1 (mod 4) the involution Q is nontrivial i.e. Q # 1. One defines
«ssential finite dimensional gradings in a similar fashion.

The topological meaning of essentiality will be revealed in Lemma 3.5

Denote by M?9 the set of isomorphism classes of (p, ¢)-modules. The direct sum
of modules induces on MP9 a structure of abelian monoid. The Grothendieck group
associated to MP9 (cf [Kal]) is denoted by RP9. Analyzing the algebraic structure of
the Clifford algebras one deduces the following periodicity result (see [Kal]).

Proposition 1.7 Ifp—qg=p' — ¢’ (mod 8) then

RPY =~ RP'-9.
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We define in a similar way the monoid MP9 of isomorphism classes of finite di-
mensional (p,q) s-modules. Let BP9 denote its associated Grothendieck group. If
H = H, ® H_ is a C? supermodule than Co+1 = Projy, — Projy_ is a selfad-
joint involution on H anticommuting with the generators of the CP9-action (briefly
a (p,q)-grading) and thus extends the CP? structure on H to a CP9*+! structure.
Conversely, a (p, g)-grading on a (p, ¢)-module induces a super CP? structure so that
we have

Lemma 1.8

}‘{p,q o~ RPetl

Using the periodicity result of Propositionl.7 one can replace the notation RP?
by RP~? and similarly for the R's. The inclusion CP? < CP9+! induces a map

Ipg R+l _, fra
Following [ABS] we introduce
Ap_g = Ap, = cokeri,, = kP9/i, R.
For any finite dimensional (p, ¢) s-module M with grading n we denote by [M, 7] its
image in Apq. If (Mi, i) (k =1,2) are two (p,¢) s-modules then (My,m] = [Ma, )
iff there exist (p,q + 1) s-modules Ny (k = 1,2) such that
Mi@&N,=M,&N, as (p, q) s — modules.

The groups A,, will play an important role in this paper. We list bellow the
groupsR™ and Ag, for ¢ =0,...,7.

Table 1.1

3
RYI\Z|Z@Z|Z|Z|Z|ZoZ
0

Ol N o
O N}~




2 Topological preliminaries

This section is a brief survey on the bigraded (real) K-theory introduced by Karoubi.
For more details we refer to the efficient presentation in [KGLZ] Exposés II and III
or the more comprehensive one in [Kal].

§2.1 Karoubi’s K?-theory Let X be a compact CW-complex and let E — X a
real (metric) bundle of C*?-modules. A (p,q)-grading of E is a selfadjoint involution
n € Aut(E) anticommuting with the generators of the C?? structure.The space of
all (p, q)-gradings of E will be denoted by Grad™?(E). The abelian group KO™(X)
can be described as follows.

1.The generators These are the triples [E;no,7:] where E is a finite dimensional
bundle of C?9-modules over X and 7.7; are (p, q)-gradings of E.

2.The addition

(E;no,m) + [Fipo, 1] = [E @ Fin0 @ posm @ -

3. The relations First we define the acyclic triples to be the triples of the form
[E;n.7n). These represent the trivial element in KOP7(X).

Two triples [E; 70, m] and [F; po, 1] define the same element in K O™7(X) if there
exist acyclic triples [E’;n,n] and [F'; u, p] such that
(a) E® E' = F & F' as bundles of CP?-modules ;

(b) the gradings 7; @ n and w; & p (i = 0,1) are homotopic as (p,q)-gradings in
EaFE =FgF.

A triple [E;no,m) as above will be called a standard grading representation
of the element it represents in K?9. Its opposite in KP9 admits the grading repre-
sentation [E; 1, 7no)

The set of generators can be considerably diminished. To this aim it convenient
to consider a cofinal family of real CP9- supermodules i.e. an increasing family
of CP9-supermodules {(En,7)}n>0 such that any other real C?? -supermodule is a
factor of some (E,,7,) (here 5, denotes the (p,g)-grading of E, coming from the
“super” structure). As generators for K OP?(X) it suffices to take the triples

[En X X?"]m"]]
5



6 L. 1. Nicolaescu

where 7 is a continuous map 7 : X — Grad, ,(E,) ( [Kal] Prop.111.4.26).

If (X,Y) (Y C X) is a pair of compact CW-complexes then the relative group
KOP4(X,Y) is defined following a similar pattern.
1. The generators These are as before triples [E; 7o, ;] satisfying the suplimentary
condition : 7o ly = mly.
2. The addition Identical to the one defined above.
3. The relations The acyclic triples are the same. The equivalence relation is
similar. The only difference is what we mean by homotopy in 3(b) above. It should
be understood as being a homotopy through gradings that agree over Y.

Using the mod 8 periodicity of Clifford algebras one can show the following alge-
braic periodicity result.

Proposition 2.1 Ifp—q =p' — ¢’ (mod 8) then
KOP(X,Y) = KO"(X,Y)
for any compact CW-complezes Y C X.

Let KO(X,Y) be the usual relative K-group for real vector bundles as defined in [A].
Then one can show (see [Kal]).

Proposition 2.2
K*(X,Y) = KO(X,Y).

To describe the relationship with the higher K O-groups we need to introduce the
periodicity morphism

t: KOt (X) - KOP(X x D', X x §%.
Identify D! with the upper semi-circle e : 0 < # < 7 and denote by
’ m: XxD' — X

the natural projection. Consider a triple [E;n;,7,] where E is a C?%*! vector bundle
over X and 7,72 € GradP?*!(E). Denote by E’ the bundle E viewed as a CP?
bundle. E’ has a distinguished grading €,41 coming from the C??*! module structure
of E. Let E = 7°(E') & E’ x D'. E is a C*%-bundle over X x D'. E comes with
two gradings

i(z,0) = €g41(x) cos § + ni(z)sind ¢ =1,2.

[E; 71, 172] defines an element in KOP¥(X x D', X x S9).
The map [E;m,n2] — [E; 1, 72] will induce a homomorphism

t= KOt (X) - KO™(X x D', X x S°).

We can now state the fundamental result in K-theory ([Kal]).
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Theorem 2.3 The homomorphism t defines an isomorphism

KOPo+1(X) = KOP9(X x D', X x S§°).

Corollary 2.4 (Bott Periodicity) If n = p — g(mod8)

KO™(X) = KO™(X).

If M is a finite dimensional CP%-supermodule with grading n then [M;n, —n] defines
an element in K OP9(pt). If moreover M is a CP**'-supermodule with a grading p
then u and —p are homotopic as CP9 — gradings via the homotopy

1(8) = cosfu +sinfe,qy 6 € [0, 7).

(u(0) are C™-gradings since the gradings p and €,4; anticommute). We thus have a
map

a: Ay, — KO (pt)

defined by

The groups A, , are defined in purely algebraic terms while the groups K O"(pt) have
a topological nature. This is why the next result is somewhat surprising.

Corollary 2.5 (Atiyah-Bott-Shapiro [ABS]) The map
a: Ay, — KOP(pt)

is an isomorphism.

Sketch of proof One can show that the map o is surjective (see Remark 3.14 to
come). From Corollary 2.4 one deduces easily that KOP?(pt) = A,,. Looking at
the list of A s given in Table 1.1 we see that the surjective endomorphisms are
necessarily automorphisms. O
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§2.2 Some elementary examples We interrupt here the flow of presentation
to describe ezplicit isomorphisms KO%(pt) = Z and KO'(pt) & Z. Using the
periodicity result we will then ezplicitly describe a generator of K'°(1,81) = Z. This
will play an important role later when we will identify the spectral flow with a Maslov
index.

The elements of KO%°(pt) are represented by pairs (E,no,7:) where 7; are Z,
gradings of the finite dimensional Euclidian space E. The map

1
(E,n0,m) — 5“(770 -m)€EZ

defines an isomorphism
indoo : K%%(pt) = Z.

We will refer to it as the canonical isomorphism . The element

Yoo = (R’ 1R7 _1R)

satisfies tndp o Y00 = 1 and will be called the canonical generator.

The algebraic periodicity isomorphism K0%%(pt) = KO"(pt) can be explicitly
characterized as follows. Start with u = (E,no,m) € KO%°(pt). The direct sum
E=E & E has a natural (1,1) structure defined by

_ 0 1g _ 0 1g
S I P

i = (E,no@ —no,m ® (—m)) € KO (pt).

The correspondence u +— 4 defines an isomorphism in K-theory. Denote as usual

0= JR. For each v = (F,vp,1n) € KO (pt) set

Now form

indy 1 (v) & ;l;-tr(Qz/o - Qu) € Z.

Note that ind, (i) = indyo (u) for all u € KO®°. In particular 7;,; = 40,0 will be a
generator of KO'!(pt) which will be called the canonical generator. More explicitly

mMma = (RLIR & (-1R), (1R) & 1R)-

Using the topological periodicity isomorphism ¢ : KO (pt) — K'9(1,01) we can
now explicitly describe a generator of K O'°(7,01) this is 7,0 = t(71.1) and is defined
by the triple

71,0 = (R? Ro(6), Ri(8)), 6 €0,7]
where R? is equipped with the (1,0) structure defined by

=[]
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and the (1,0)-gradings Ro(6), R1(6) are defined by

sin 0 cos 0 —sinf cos#
Fo(0) = [ cosf —sinf ] Ru(0) = [ cos@ sinf ] ’
Set £o(8) = ker(1 — Ro(6) and £,(0) = ker(1+ Ri1(6)). £o(0) is the line spanned by the
vector

vo(6) = (sinb + cos 8)i + (cos 6 — sin )]
while £, () is the line spanned by the vector

v1(8) = (sin 6 — cos 0)i — (sin 6 + cos 6)].

As 0 runs from 0 to 7 the slope of £o(#) changes decreasingly from tan 7/4 to — tan 7 /4
while the slope of £;(8) performs the opposite variation.

§2.3 Classifying spaces There are presently many proofs of Theorem 2.3. One
approach is to reduce it to a topological result (the original Bott periodicity). This
is done via classifying spaces.

To describe one such classifying space consider M = CP9+1, This is tautologically
a CP9 module. Any CP9 supermodule is a summand of M" for n large enough. In
other words, {(M™, €g41)n3o0 is a cofinal family of CP9-supermodules. Let Grad™?(n)
denote the set of (p, ¢)-gradings of M™ and set

Grad”(oco) = lim Grad™?(n).
Then we have the following result ( see [Kal]).
Proposition 2.6 Grad™(oo) is a classifying space for KOP9.

Grad™?(oc) can be alternatively described as a homogeneous space. Let OP%(n)
denote the group of orthogonal C?9-automorphisms of M" and OF7(n) the identity
component. OP9*1(n) is the subgroup of orthogonal CP9tlautomorphisms of M™ and
OP? its identity component. Finally note that €g4 is a grading for the CP%-module
M?*. Denote by Grad??(n) the component of ¢4 in Grad”¥(n). Any g € 0h%(n)
acts on n € Grady?(n) by 7 — gng—1. This action is transitive and the stabilizer
of €441 is clearly OP9%1. Thus

Grad?(n) = OF%(n) [/ OP"* (n).

Let
03%(o0) = lim O3*(n)

091 (o0) = lim 0P+ (n).

Then :
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Proposition 2.7 A,_, x OF%(co) / OP9*}(c0) is a classifying space for KOP9. Here
A,_, 1s endowed with the discrete topology.

Let H be an infinite dimensional C??*! module. Denote by OP(H) the group
of orthogonal operators commuting with the subjacent C?9 action. Similarly de-
fine OP9t1(H). If K is the ideal of compact operators, denote by O%? the identity
component of OP9(H) N (I 4+ K). Similarly Op**! = OP9+Y(H)n (I + K).

The techniques of [P] apply and show that O%? (resp O29*') and O%(c0) (resp
OP9*1(c0) ) are homotopically equivalent. We thus have the following consequence.

Corollary 2.8 A,, x O%?/0%%*! is a classifying space for K79,
P\q K K ying

This classifying space reflects the topological character of K-theory. The func-
tional analytical aspect is seen in the following homotopically equivalent description
of the classifying space due to Karoubi (see [Ka2] and [KGLZ]; compare with [AS]).

Let H be an infinite dimensional C?%*2 module. Denote by BF?? the set of all
bounded selfadjoint Fredholm operators D on H such that

De;+eD = De;j+e¢,D=0Ve=1,...,p, 7=1,...,9+ 1.

Denote by BF(? the component of €,42 in BF??. In [Ka2] it is proved the following
result.

Proposition 2.9 A,_, x BF}? is a classifying space for KOP9.

The previous result can be slightly reformulated as follows. Let H be a Hilbert
(p.q + 1) module and define BF%; as
BFrS = BFP"if p—q# 1 (mod 4).

BFEE ={T € BF*": TJy---J,Cy---Cyyy is essential} if p— ¢ =1 (mod 4).
) q

€ss

Notice that when p —¢ =1 (mod 4) T'J; - - J,C - - - Cg4; is selfadjoint.

Example 2.10 Consider the case p = 1 and ¢ = 0. Any (1,1) module H; can be
described as a direct sum of two copies of a Hilbert space H, H, = H x H and the
Clifford action is given by

_ 0 1y _ 1y 0
A R

so that 7' € BF"? iff T has a block decomposition

15 0)
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where D : H — H is a Fredholm selfadjoint operator. Hence we can identify BF*°
with the space of bounded, selfadjoint, Fredholm operators. A simple computation

shows that
D 0
TJ]C] = [ 0 D ]

so that T € BFPY iff D is essential. In [AS] it is shown that the space of Fredholm
selfadjoint operators has three connected components two of which are contractible
and a third consisting precisely of the essential ones, which carries all the important
homotopical properties.

For any T € BFPY, the subspace kerT is naturally a finite dimensional (p,q)

s-module so it defines an element in A,_,. In this way we have an index map
L:BFPS — Ay, T [kerT] € Apy.

The following result is proved in Proposition 5.1 of [AS] (see also our Proposition 3.13
to come).
Proposition 2.11 (i) The map ¢ : BFLL — Apg is continuous and moreover:
AT T2) = «(Th) + (T2) so that induces a morphism ¢, : mo(BFPL) — Apg-
(i) . is a bijection and moreover all the connected components are homeomorphic to

BFE? = .71(0).
Propositions 2.9 and 2.11 immediately imply the following result.

Corollary 2.12 BF?Y is a classifying space for KOP9.

ess

This generalizes the classical result of Atiyah and Janich ([A]) that the space of
Fredholm operators is a classifying space for KO®°.



3 (p,q)-lagrangians and classifying spaces for K-theory

In this section we will present a new description of the classifying space for K O™,
This description is hidden in the definition of the group K OP4+1((H(X)) of [KGLZ]
Exposé II1. However we adopt a different point of view which will emphasize some
aspects not discussed there.

§3.1 (p,q)-lagrangian subspaces Let H be a Hilbert C??-module (throughout
this section all modules will be a Hilbert and all subspaces will be assumed closed).

p:CP% — B(H)

Set as in Example 1.4 J; = p(e;) and C; = p(¢;). A grading of (H,p) is then a
selfadjoint involution R (reflection) such that

{JisR} = {C;,R} = 0. (3.1)
Set. L = ker(] — R). If P is the orthogonal projection unto L then clearly
R=2P -1
and because of (3.1) the subspace L has the following properties
JiL = C;L = Ly Vi,j. (3.2)
This justifies the following definition.

Definition 3.1 A subspace L in a CP9-module is called a (p,q) — lagrangian if it
satisfies condition (3.2).

It is easily seen that if L is a (p, ¢)-lagrangian and P (resp. Q) is the orthogonal
projection onto L (resp. L*) then the associated reflection (through L) defined by
R = P—Q is a grading for the C?%-module. Hence there is a bijective correspondence
between gradings and (p, ¢)-lagrangians. However, as we shall see in the sequel, the
lagrangian description has a more natural occurrence in applications.

12
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Example 3.2 Let H be a C'®-module. C'° = C. Set J = p(e1). H can be
interpreted as a Hilbert space with a complex structure given by J. Associated to J
is the non-degenerate skew-symmetric bilinear form

w(z,y) = (Jz,y) Vz,y € H.

(H,w) becomes a symplectic vector space. The (1,0)-lagrangians are the maximal
w-isotropic subspaces (or lagrangians); see [N] for details).

Let H be an infinite dimensional CP9-module, L a (p,¢)-lagrangian and R its
associated reflection. L is called an essential lagrangian if
(i) either p — ¢ # 0(mod4)
(ii) or p — ¢ = 0(mod 4) and the CP9*1-structure it induces on H is essential.
Denote the set of essential (p, ¢)-lagrangians by £79.

Example 3.3 A (0,0)-lagrangian is a closed subspace L in H. It is essential iff both
L and L* are infinite dimensional. In general, note that if p— ¢ = 0(mod 4) then 2 =
Jy -+ J,C; -+ - Cy is an involution. If L is a (p, ¢)-lagrangian with associated reflection
R then RQ = QR and L is essential iff both ker(R =+ ) are infinite dimensional.

Remark 3.4 Note that L7 is nonempty. Indeed let T be an isometry T : H —
H @& H. We transport the CP9-module structure from H to H @ H as follows

j _ 0 TJ,'T—] —C— _ 0 7.‘(7]]—'_1
v TJiT_l 0 7 TCJ'T--1 0

J. and FJ_ define a CP9-module structure on H @ H and T is an isomorphism of
C*9-modules. Now let R € B(H & H) be the involution

- I 0
R0 )
R = T7'RT is a (p,q)-grading of H and ker(I — R) € LP9.

LP9 has a natural topology viewed as a space of operators. To describe its global
structure we will need an extension of the results in [Ku] to C'”%-modules. At this
point the essentiality assumption plays a crucial role.

Lemma 3.5 Let H be an essential Hilbert CP9-module and denote by OP9(H) the
group of orthogonal CP9-automorphisms of H. Then:

(i) H= CP ®g H as C”?-modules. In particular any two essential (p,q)-modules
are isomorphic.

(3)OP9(H) is path connected and contractible.



14 L. I. Nicolaescu

Proof The proof of (i) will be carried out in several steps.
Step1 Let F =R, C, Hand p: F — B(H) an infinite dimensional F-module.
Then

H=F ®r H as F — modules.

We consider only the case F = H. The other situations are completely similar (and
even simpler). Note first that H = C?°. Let L C H be a (2,0) lagrangian i.e.

il = jL = L* (i,j € H).

Since k = ¢ -j we deduce that L is k-invariant and thus becomes a G®-module
(k* = —1). Choose L; an (1,0)-lagrangian in L. A simple computation shows that

H=HQ®g L, asH - modules.

On the other hand L, is infinite dimensional and thus isomorphic with H. Step 1 is
completed.

Step 2 Consider
p:M,(F)— B(H) (F =R, C, H)

an isomorphism of involutory unital Banach algebras where H is an infinite dimen-
sional Hilbert space and the involution in M, (H) is induced by the obvious conju-
gation in F and the transposition of matrices. Then we have an isomorphism of

M, (F)-modules
H = M,(F)®g H.

We follow the idea in the proof of Thm.I1I 4.4 of [Kal]. Fori = 1,...,n consider the
diagonal matrix

E,' = diag(él,-, ceey 5.,"').

where §;; is Kronecker’s delta. Set P, = p(E;). One sees that the P,’s are selfadjoint,
pairwise commuting idempotents satisfying

S P = Idy.

We define H; = Range (P;). Since the projections P, commute with the action of F
each H; becomes an F-module. Clearly we have a direct sum decomposition
H=H &...0H,.

For i # j consider the matrix E;; with entries

z :{ 605 ) if {Q,B}Q{Z,]}
PN 1 =bas 5 if {0, 8} C {5,5)
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and set T;; = p(E;;). Then T;; P = P;T;; and therefore T;; defines an F-isomorphism
between H; and Hj. In particular we deduce that the summands H; are infinite
dimensional and by Step 1 we have isomorphisms of F-modules
H=FQRr H:i=FQRH.
The decomposition
H=@FeorH
1
realizes the desired isomorphism of M, (F)-modules.

Step 3Let A=C**=HoHor A= C%!' =~ R @ R and consider H an essential
A-module. Then we have an isomorphism of A-modules

H=A OR H.
We consider only the first case. Then
H = Ho & H,

where Ho, H, are H-modules. Since H is essential both Ho and H; are infinite dimen-
sional so they are isomorphic to H as H-modules. This proves the desired isomorphism
of A-modules.

Step 4 If H is an essential C?%-module then
H=CPggrH as CP? — modules. (3.3)

The algebraic structure of the Clifford algebras C?7 is known (cf. [Kal]). They can
have one of the following forms

M, (F)(F =R, C, H) or M(F) @ M.(F) ® M.(F), (F =R, C).

If CP9 = M,(F) then (3.3) follows from Step 2. If C*¢ = M,(F) & M,)F) & M,(F)
the isomorphism (3.3) follows combining Step 2 and 3. (i) is proved.

To prove (ii) note that the isomorphism (3.3) implies
OP9(H) = OP(C™ @ H) = O(H)
while O(H) is path connected and contractible by Kuiper’s theorem (cf. [Ku]) O
Lemma 3.5 implies the following result.

Corollary 3.6 The space LP9(H) is path connected and contractible.
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Proof The group O?9(H) acts on L?9(H) by
L—-TL , Lel,TeO"H).
If Ry is the reflection associated to L then
Rrp =TR.T".

Given L, and L; two essential (p, ¢)-lagrangians they define two essential C?9+! struc-
tures on H. By Lemma 3.5 any two such structures are isomorphic and thus there
exists T' € O such that L, = T'L,. Hence the action of OP9 is transitive. The
stabilizer of this action is OP9*! and therefore

LP9 = QP9 /Pt
It is routine to check we have a fibration
Op,q+1 — OP9 — [P9,

with contractible fiber and total space. In particular the base £»9 is weakly con-
tractible. Since by [Mi] £ has the homotopy type of a CW-complex we deduce that
it is in fact contractible. O

Definition 3.7 Let Ly and L, be two subspaces of infinite dimension and codimen-
sion in a Hilbert space H. The pair (Ly, L;) is called Fredholm if
(a) Ly + L is closed.
(b) dim(L, N Lz) + codim(L; + L;) < oo.
The integer
. i(L], Lg) = dlm(L] n Lg) — codim(L1 + Lg)

is called the (Fredholm) index of the pair.

Set
FLP = {(Ly,L;) € LP9 x LP? [ (L, Ly) is Fredholm}.

Remark 3.8 Let K denote the ideal of compact operators in H. The Fredholm con-
dition for a pair (Ly,L,) can alternatively be described as follows. Let P; be the
orthonormal projections onto L; (j = 1,2). Then (Ly, L) is Fredholm if and only if
one of the following conditions is fullfiled (cf. [C])

(1) P+ P, and P* + P} are Fredholm.

()Pt — P, € K. Moreover if (Ly,L) € FLPS withp+¢ > 0 (say p > 1) then we
have

(L] +L2)l = Lf' nLéL = Jl(Ll an)

so that in this case
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Remark 3.9 If Ly, L, are two (p,q)-lagrangians and R, resp. R, are the correspond-
ing reflections then we deduce from Remark 3.8 that (Ly, Ls) is Fredholm iff one of
the following holds:

(i) R1 — Ry is Fredholm.

()R, + R, € K.

Since (Ry + Ry)? is compact and since 41 = (R — R2)? + (Ri + R2)? we deduce that

D(R],R2) = 1/4(R1 —R2)2 € I+K

§3.2 Graphs of linear operators and lagrangians It is very easy to construct
(p,q) lagrangians. The following example illustrates a very important method of
creating lagrangians. Most of the lagrangians we will encounter will be of this form,
namely as graphs of operators with Clifford symmetries.

Example 3.10 Let (H, p) be a Hilbert C?**!-module (J; = p(e:) , Cj = p(e;)
T:Dom(T)CH—H

a closed, selfadjoint, densely defined operator satisfying
(a) ker T is finite dimensional.
(b) Range (T') is closed.
(c) CP9*Y(Dom (T)) C Dom (T)
(){J:.T} = {C;,T} =0 Vi,j.
Consider
I'r = {(z,Tz)€ H x H; z € Dom(T)}
and

FOZHX{O}CHXH

Both are closed subspaces of H x H. Since ker T is finite dimensional I'oNI'7 is finite
dimensional. Since Range (T') is closed we deduce from standard results in functional
analysis (see [K] Chap.IV) that [ + I't = H x Range(T) is closed and has finite
codimension. Thus (T'g, T'r) is a Fredholm pair of subspaces in H x H. On the other

hand H x H has a natural structure of C?"¥-module (p' =p41, ¢ = ¢+ 1) given
by

P(ei)z [J, 0] (ISZSP),p(CJ)': [C] CJ] (IS]S‘I’)

pley) = [—?H 161 ] .

The orthogonal complement of 'z in H x H is (cf. [K])

and

It = {(-Tz,z2) € Hx H [z € Dom(T)}.
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Now a simple computation shows that
p(e)Tr = p(&;)Tr = Tx,p(e:)lo = p(e;)Tg Y1<i<p',1<5<¢,

Thus (T'o,T'r) is a Fredholm pair of (p/, ¢')-lagrangians iu H x H.

The example above has a very important converse.

Example 3.11 Let (H, p) be a Hilbert C?"%'-module and Lo, L two (p', ¢')-lagrangians.
Denote by Rp the reflection through Lo. Then Lo = ker(] — Ro), Ly = ker(J + Ro).
Assume that L is such that

(a) (Lo, L) is a Fredholm pair.

(b)y LN Ly = {0}.

Then Lo = L¢ since Jy Lo = LE. Thus we can identify Lo with Ly via —J,. Then
H = Ly & Lo and we have the block decompositions

Cfro0)] o, [ 0 1L
o ) - -]l )

Since J; and C; anticommute with Ry and J we deduce

o U o ¢ ,
1=[33]6=[8 4]

where J; é]‘ : Lo — Lo are orthogonal maps satisfying
32 5 . .
I =6 =1,,1<i<p,1<j<q.

From the condition (b) we see that L can be represented as the graph of a (not
necessarily continuous) linear map

T:Dom(T)C Lo®d0— 06 Lo

where Dom (T') is the orthogonal projection of L C Lo @ Lo onto Lo @ 0. One checks

easily that
Dom(T)+ Ly = L+ L§ = Cy(L*+ Ly) inH

Since (L* 4+ Lo) = (LN Ly)* = H and C, is an isomorphism we deduce that
Dom(T)+ Lf = H

i.e. Dom (T) is dense in Lo. The pair (L, Lo) is Fredholm so that T is Fredholm i.e it
has finite dimensional kernel and a closed finite codimensional range (cf. [K] Chap.IV
). The condition that L is lagrangian translates into

Tj,'-{-j,'T = Téj'*‘éjT =0 Yi,y

i.e. T is an operator as in the Example 3.10.
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The ideas involved in Example 3.11 have interesting applications. Let L, Lo be
two transverse (p, q)-lagrangians (p+ ¢ > 0) i.e

LonL =0 (3.6)

Lo+L=H (3.7)

From (3.6) and (3.7) we deduce that V u € Ly there exists a unique v = V(u) € Lo
such that u + V(u) € L. This can be rephrased by saying that L is the graph of
a linear map V : L} — Lo satisfying some anticommutativity relations that can
be described as follows. Decompose as before H = Lo & L and then use a block
decomposition as in (3.5) ). Then

[0 J o &
J'_[—ji'o]’cj_[éf 0]

where J;, C”j : Lo — L¢ are unitary operators. Then since the graph of V is lagrangian
the operator V must satisfy

~ *

Vii-Jv =VvC;+ GV (3.8)

Because L is closed the map V has to be continuous (closed graph theorem). For
0 <t<1setV = (1—-1t)V and let A, denote the graph of V;. Obviously V;
satisfies (3.8) so that (Lo, A,) is a pair of Jagrangians satisfying (3.6-7), Ao = L
and Ay = L. Moreover since t — V; is a continuous family of bounded operators
{ — A, is a continuous family of lagrangians in the gap topology (see (K] Chap.IV ).
This shows that L is homotopic through lagrangians to Ly. In fact we can state a
parameterized version of this fact.

Proposition 3.12 Let X be a compact CW-complez and Lo a (p,q)-lagrangian in a
Hilbert CP9-module H (p+ q > 0). Set

£P9 = {L € LP* | (Lo, L)satisfy (3.6), 3.7}
and consider a continuous family
L:X—->LP , z— L,
Then the family L is homotopic in L9 to the constant family z — L¢.

We refer to Appendix C where we give a different proof this result using a more formal
approach.
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§3.3 The components of FLP? The space of Fredholm pairs of (p, ¢) lagrangians
is in general disconnected. In this subsection we describe the components consisting
of pairs of essential ones. The groups A, , will play a key role.

Let (Ly, L) € FLP and denote by R; the reflection through L;. We can form a
finite dimensional CP9-supermodule

Its (p,g)-grading is R; = R; (restricted to I(L;, L;)). Via the Atiyah-Bott-Shapiro
map a we obtain an element

Bpo(L1, L3) = [I(Ly, Ls2); Ri,—Ry] € KP9(pt)
Proposition 3.13 The map
Pp,q - FLP?T — KOP9(pt)
is locally constant and surjective. Moreover
ppg(Lr, L2) = ppq(Mi, My)

if and only if (L1, Ly) and (My, M,) lie in the same connected component of FLP9,
Thus p,, induces a bijection

indy g [pt, FLPY — KOP9(pi).
(Compare with Proposition 5.1 of [AS] and Proposition 2.11).
Proof Let (L;,L;) € FLP? and denote by R; the corresponding reflections. Set
' D = D(Ly,Ly) = 1/4(R, — Ry)>.

D is Fredholm, selfadjoint, commutes with the CP9-action and with both R; and R,.

‘Moreover we can naturally identify /(L,,L,) as a CP9-supermodule with ker D =

ker(Ry — Rz). We will show that if (L}, L) € FLP? (with reflections R, R}) is close
to (L1, L;) then kerD' has the same image in A, , as kerD (here D' = D(L}, L) =
1/4(R; — Ry)?).
By Remark 3.9 we have D € I + K so 0 is an isolated point of the spectrum. Let
€ > 0 such that
spectrum D N [—¢,€] = {0}.

Choose § = é(¢) such that for any selfadjoint operator T € I + K with ||T — D|| < §
we have
+e ¢ spectrum T

Now consider a continuous path(L;(t), L2(t)) € FLP9, # €[0,1] such that (L;(0),L,(0))=
(L), Ly) and
ID:—D|| <6, Vte[0,1] (3.9)
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where D; = D(Ly(t), Ly(t)). Let P, denote the spectral projection of D, correspond-
ing to the spectral interval [—¢,€] and let E; denote its range. D; commutes with the
CP9-action so E; is a CP9-submodule. Also since

[Dy, Ra()) = [Di’R2(t)] =0

we conclude that E; is both Ry(t) and R,(t)-invariant. From (3.9) we deduce that F;
varies continuously with t so that (E¢),¢ 5 form a bundle of CP9-modules over [0, 1].
As in Lemma 111.4.21 of [Kal] we deduce that the image of the triple (E¢, R (1), —Ra(t))
in KOP9(pt) is independent of t € [0,1].

For notational simplicity we let E' = Ej, L} = L;(1), Ly = La(1) etc. Denote
by U the orthogonal complement of kerD’ in E'. We have the following equality in
KOr9(pt)

(E' R, —R)) = (I(L}, Ly); Ry, — Ry) ® (U; Ry, —Ry) = (I(Ln, L), Ry, Ry).

We will show that (U; R}, —Rj,) = 0 in KOP¢(pt) by proving that —R} and R; are
homotopic as CP9-gradings when restricted to U. Let T = 1/2(R, — R}). Since
D' = T?is invertible so is T'. Set

T, = —R, + s(T +.R}) = —R] +s5/2(R, + R))

1

= —R{] — s~

Ry i)

From || R, (R, + R})|| < 2 we deduce that for all s € [0,1) the operator T, is invertible.
For s = 1 we have the equality T, = T which is invertible). Now set

R\(R; + R3)}.

R, = T,(T?)™V? = T,|T,|™".

Then clearly R? = I and since T, anticommutes with the J;’s and the C;’s so does
R,. Thus R, is a C?9-grading of U. In particular this shows that —R; is homotopic
as C79-gradings with 7'|T|~! . Similarly one shows that R; is homotopic with T\T|™?
so that

(U;R|,—R;) = 0 in KO™(pt)

(kerD; Ry, —R;) = (kerD'; Ry, —R3) in KO™(pt). (3.10)

Hence the map p,, : FLP? — KOP9(pt) is continuous.

Remark 3.14 The same argument we used to prove (3.10) can be used to show
that any triple [M;no,m) representing some element in KOP9(pt) is equivalent (in
KOP(pt) ) to a triple of the form [N;5,—n]. We may take N = ker(no + m) and
n="o|n.
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To prove that p,, is surjective consider [M; 5, —5] an element in K OP4 (pt). Let U be
an infinite dimensional CP9-supermodule, U = U, @ U; with both Uo and U, infinite
dimensional. Denote by R the reflection through U and then set H = M @ U. In
Hwe have two (p, ¢)-gradings Ro = 7 ® —R and R, = n @ R. Then Ry, R, define a
Fredholm pair of lagrangians (Lo, L) with 1(Lo, L) = M.

A pair of gradings as above of the form (n ® —R, 7 & R) on a direct sum of
CP9-modules H = M @ U will be called standard. The injectivity of u,, will be
established in two steps.

Step 1 Every Fredholm pair is homotopic to a standard pair.
Let (Ro, R1) be a Fredholm pair of gradings (i.e. Ry + R, € K )- Set

M = ker(Ry — Ry), U=M', n=Ry|um.

As in the proof of (3.10) one shows that Ry | is homotopic through C?9-gradings to
—R;. Set R =R, |y. Then we showed that (R, R;) is homotopic (in FLP?) to the
standard pair (n® —R, n & R).

Step 2 Any two standard pairs that have the same index are homotopic.
At this point the essentiality assumption is crucial. The proof is a routine exercise
using the contractibility of the group OP established in Lemma 3.5. O

§3.4 The homotopy type of FLP? In the previous subsection we provided a
first glance into the K-theoretic nature of the space of Fredholmn pairs of lagrangians.
We can now state and prove the main result of this section which completely describes
the homotopy type of this space.

Theorem 3.15 Let H be an essential Hilbert CP9-module. Then FLP? is a classify-
ing space for KOP9,

Proof In.view of proposition 3.13 it suffices to show that any connected component
of L7 is homotopically equivalent to some component, of GradP¥(oco). To this aim
we will closely follow the method proposed in the proof of Thm?2.2 of [N] so we will
only sketch the main steps.

Henceforth we will identify lagrangians with their associated reflections. First
note that we have a projection

7 FLP? — LP9 (Ro, Ry) — Ry
If R € £P9 then set
LE = 7"Y(R) = (=Ro+K) i L7,

One can check easily that we have a fibration. The base is contractible so the total
space will have the weak homotopy type of the fiber. According to [Mi] all the above
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spaces have the homotopy type of CW-complexes so the above weak homotopy is a
genuine homotopy equivalence.

Step 1 Oilq (see Corollary 2.8) acts transitively on the connected components of L%’
by
R - T]le_1 s (R, R]) € FLPI.

The proof is word by word the proof of Steps 2-4 in Thm 2.2 of [N1}.

Step 2 Conclusion. The stabilizer of the above action is O2*!, Thus

The theorem follows using Corollary 2.8 and Proposition 3.13. O

Remark 3.16 In the case p = 0, ¢ = 0 this result is proved in [BW1]. The case
p=1, ¢ =0 is treated in [N1]. The general case also follows from the very abstract
considerations in [KGLZ].



4 Symplectic reductions

In the previous section we have seen that the space FL£?? of Fredholm pairs of (p,q)-
lagrangians classifies K O™9. In this section we address an effectivity question. Given
f X — FLP a continuous family of pairs of lagrangians describe the element it
induces in KOP? in a finite dimensional language.

84.1 Generalized symplectic geometries All the results and techniques dis-
cussed in this section have their origin in a very simple observation which suggests
that Clifford modules are in many respects similar to symplectic spaces. Namely
on any Hilbert C?9 -module (H, p) (finite or infinite dimensional) one can naturally
define a bilinear continuous map

x:HxH—> (CP)*
(where (C?9)* is the dual of C?? as a real vector space) defined by
(x(z,y),¢) = (plc)z,y) Vz,ye H, 6 ceC™.

Here (-,-) : (C?9)" x CP? — R is the natural pairing and (-,-) is the scalar product
in H. Using the natural scalar product on C?? we identify this Clifford algebra with
is dual.

Example 4.1 Let (H,p) be a C*%module. C'° = C, H is a complex Hilbert space
and x : H x H — C is then

x(z,y) = (z,y) +i(Jz,y)

so that x 1s the usual Hermitian induced by the euclidian structure together with
the complex structure. Similarly, a C?? structure on an euclidian space is equivalent
with a hyperkahler structure on that space.

Let C}? (resp. C®?) denote the subspace of even (resp. odd) elements in C?9. Fix
H a Hilbert CP?-module.

24
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Definition 4.2 Let W C H be a closed subspace. Define the even (resp. odd)
annihilator of W by

WY (resp W) = {z € H; x(z,w) € CP9 (resp. x(z,w) € C?* Ywe W}
A closed subspace W C H is called (p,q)-isotropic iff W C W2 and Wt c we.

Remark 4.3 One can deduce easily from the definition that
Wo = (CP'W)* wo = (CHW)*. (4.1)
Thus W is (p,q)-isotropic iff
CPW c Wt |, CY'W = W.

In this case the space CPW will play an important role in the future. It will be
called the dual of W and we will denote it by W#(Fig.1). Note that L C H is a
(p.q)-lagrangian iff L is mazimal (p,q)-isotropic.

Example 4.4 If H is a Hilbert C'*-module then it is naturally a symplectic space. A
(1.0)-isotropic subspace is then an isotropic subspace in the usual sense of symplectic
geometry. In this case the even annihilator of a closed subspace is the standard
symplectic annihilator while the odd annihilator is W,

The importance of (p, g)-isotropic subspaces stems from the fact that they provide a
very efficient method of producing (p, ¢)-lagrangians.

Definition 4.5 Let L be a (p,q)-lagrangian and W a (p,q)-isotropic subspace. We
say that L is clean mod W if LNW = {0} and L + W is closed.

The next result describes the key technique we will use in this paper in dealing
with indices of families of elliptic problems.

Proposition 4.6 Generalized symplectic reduction Let (H, p) be Hilbert CP9-
module (p + g > 0) and consider L a (p,q)-lagrangian which is clean mod a (p,q)-
isotropic subspace W. Denote by Hw the orthogonal complement of Win W) and by
P the orthogonal projection onto Hw. Then:
(i) Hw is a CP?-module ;
(i) LW = P(LNW2) = (LNW2)/W is a (p,q)-lagrangian in Hw.

Hw and LY are called the symplectic reductions of H (resp.L) mod W. (Fig.
1)

In the proof we will need the following technical results.
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the action of CI_J’q

.........
- 2y
0 S,

HW 15 the symplectic reduction of H mod W

H ->

Figure 1: A (p,q)-isotropic subspace

Lemma 4.7 Let H, W be as in Proposition 4.1 and let T denote generically one of
the generators of the Clifford action on Hi.e. T = p(e;) or T = p(e;) (1 <1< p, 1<
7 £4q). Then

(i) W0 = (TW)*: = W#,

(ii) H has an orthogonal decomposition as

H=TWe&HyaW.
(iii) LW = (L+ W) Hy.

Proof of Lemma 4.7 (i) Since W) = (CP*W)* it suffices to show that TW =
CP'W = W#. Clearly TW C CP?'W. Conversely given S € C”? we have T-1S ¢
C}? so that by Remark 4.3 T~'SW C W since W is (p, q)-isotropic. In particular we
deduce SW C TW which concludes the proof of (i).

(i1) Follows from (i) and the orthogonal direct sum W2 = W& Hw.

(iif) Clearly L" C (L + W) N Hw. Conversely let u € (L + W) N Hw. Thus there
exists r € L and w € W such that z+w € Hy i.e. £ € —u+ Hw C W + Hy Hence
xr € W)N L. Since u = Pz we deduce u € P(L N w?). D

Proof of Proposition 4.6 (i) Let v € WY N W+ = Hy,. Then
Tue TWINTW* = TW) N (TW)* (T orthogonal

= (Lemmad.7)T(TW)* N W) = W nW? = Hy

and thus Hwy is a CP%-module.
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(i1) We have to show that if T = p(e;) or p(¢;) then TLY = (LW)*. Since LNW =
{0} we deduce that Yu € LY there exists a unique @ € LN W2 such that P7 = u.
Set W = u — u. Consider u;, up € L. There exists as above elements 7; € L N Wf
such that Pu; = u; ( = 1,2). Then T, € L* since L is lagrangian. Thus

(m17ﬂ2) =0
so that
(Tu1 +_u—)1,'LL2+m2) = 0.

Using Lemma 4.7 (ii) we deduce (T'uy,uz) = 0. Since u; , uz; were chosen arbitrarily
we conclude that

TLY c (LW)*.
Conversely, let v € (L")* N Hw. This is equivalent to
v E (L ﬂWi)* N Hw.

Since L + W is closed and T is an isomorphism we deduce that TL + TW = L* +
(W2)* is closed. Therefore we have

ve (Lr 4+ (WHYYnHw = (TL+TW)NH, = T(L+W)N Hy.
Since T is a bijection and THy = Hw we deduce
T've (L+W)Nn Hy = Lw (by Lemma4.7 (iii))
and hence T} (LYW)* c LY. Proposition 4.6 is proved. O

Definition 4.8 A (p,q)-isotropic space W is called cofinite if the symplectic reduc-
tion Hy- is finite dimensional.

When W is cofinite there is an alternate way of viewing the process of symplectic
reduction which is often very useful. Thus consider A a (p,q)-lagrangian which 1s
clean mod W. Set L = AY. Choose a lagrangian Lo C Hw such that LN Lg = {0}
(take for example Lo = L) and consider Ag = Lo + W#. This is a (p, ¢)-lagrangian
in H and because A is clean mod W we deduce

ANA; = 0.

Since A + W is closed and Lo is finite dimensional (W is cofinite) we deduce that
A + Ag is closed. The assumption p + ¢ > 0 implies in a standard fashion (Remark
3.8)

A+ Ay = H.
Thus as in Proposition 3.12 we can represent A as the graph of a (bounded) linear
operator

TAo—-)AéL
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Using the direct sum decompositions
Ao = Lo@W#* | Afg =Ly W

we can write T in a block form

StH

where A : Lo — L. Then L, as a subset of Lo x L is the graph of the operator A.
Now if A’ is a lagrangian clean mod W which is close to A it stays transversal to Ay
and as before it is the graph of an operator T’ : Ag — Ay (close to T') which has the

block decomposition
, | A B
T = [C, D,].

In particular A’ is close to A.

We can rephrase these in a more formal manner. Consider the space L} of (p, q)-
lagrangians which are clean mod W. The generalized symplectic reduction process
defines a map

Rw : LY (H) — LP(Hw). (4.2)
The above observations show that as in the usual symplectic case (see [GS]) we have

Proposition 4.9 If W is cofinite then the reduction map Rw is continuous.

§4.2 Homotopic properties of the symplectic reduction process The re-
duction map constructed above is also surjective and in fact it has a natural section
(extension map)

Ew : LPY(Hw) — LY (H) (4.3)

defined by
' Ew : L~ Ly W¥,

Obviously Ew is continuous.

Proposition 4.10 Let W be a cofinite (p,q)-isotropic subspace in a Hilbert CP9-
module H, where p+ q > 0. Then the reduction map

Rw : LI(H) — LP9(Hw)

is a weak homotopy equivalence and Ew is a homotopy inverse. More precisely if X
is a compact CW-complex and
A: X - LY

is a continuous family of lagrangians clean mod W then the family

{A(z); z € X}
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is homotopic (inside L})) to the family
(AW (z)eW#*; z € X}.

Proof Set L(z) = AY(z) and A'(z) = Ew(L(z)) = L(z) & W#. We want to use
Proposition 3.12 to show that {A(z)} is homotopic to {A’(z)} Thus we have to check
the following
Az)N(A'(z))r =0 VzeX. (4.4)
Alz)® (N(z))* = H Vze X (4.5)
Proof of (4.4) Let L*(z) denote the orthogonal complement of L(z) in Hw. Note

that
(A(2))* = L*(z) & W.

Since A(z) is clean mod W we deduce
Alz)N (LY (z)+ W) =0

and (4.4) is proved. ‘

Proof of (4.5) Since A(z) is clean mod W the subspace A(z) + W is closed. On the
other hand, W is cofinite so that L*(z) is finite dimensional. These two observations
imply that A(x)+ W + L*(z) is closed. Using condition p+¢ > 0 as in Remark 3.8
we get (4.5). Proposition 4.10 follows from Proposition 3.12. O

Let W, C W, be two cofinite isotropic subspaces. Set H; = Hw, (¢ = 1,2). Then
obviously £}! C L} and H; C H,. If we denote by Wi, the orthogonal complement
of W, in W, then Wy, is a (p, q)-isotropic subspace in Hw, and one can check that
Hw, is the reduction of Hw, mod Wi,. Let L}, denote the family of lagrangians in
H, which are clean mod Wj,. It is a routine exercise in linear algebra to show that
the reduction mod W, of lagrangians clean mod W; produces lagrangians in in H,
clean mod W, and moreover the “tower” bellow is commutative.

LY, (H2)
Rw.
v (H) Rwy,
Rwr
L:qu(Hl)

Diagram 1: The reduction maps R, are compatible with inclusions
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§4.3 The generalized Maslov index The result established above opens new
avenues. It provides a simple way of deciding when two families of Fredholm pairs of
lagrangians are homotopic by reducing the problem to a finite dimensional situation.
In this subsection we will provide a concrete description of the element in K theory
defined by such a continuous family. We named this description the generalized Maslov
indez for reasons that will be explained later in this section.

Definition 4.11 Let A be an essential (p,q)-lagrangian in an essential Hilbert C?9-
module H. A filtration of A is a family F of cofinite isotropic subspaces W C A such
that
(a) A € F.
(b) VW, Wy € F there exists W3 € F such that W5 C W, N W,.
(c)
nw=o
Wer
(d) the family (Hw)wer is cofinal i.e. any finite dimensional C??-module is a direct
summand of Hy .
A lagrangian with a distinguished filiration will be called filtered.

Remark 4.12 Any essential (p,q)-lagrangian admits a filtration. To show this note
first that given H; (i=1,2) two essential CP9-modules and A; C H; essential la-
grangians then from Corollary 3.6 we deduce that there ezists a CP?-isomorphism
T : H — H, such that T(Ay) = Ay. Thus the problem reduces to constructing an
exzample of filtered lagrangian.

Let (Myn)u>1 be a sequence of CP9-supermodules such that the sequence of CPI-
modules )
H, = @M,

n=1

is cofinal in the sense of [Kal]. Denote the grading of M,, by 1, and set
L, = ker(1 —n,).

Now form the Hilbert sum

H=QM,
n=1
Then H is an essential CP9-module and
A=@Ln
n=1

is an essential (p,q)-lagrangian. Set

Wk-:@Ln k_>_0

n>k
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W, is a cofinite (p,q)-isotropic subspace and in fact
Hy = Hw,.
The family (Wi)kso is a filtration of A.
Let Ag C H be a filtered (p, ¢)-lagrangian and denote its filtration by F. Consider
FLBY = {A € L | (Ao, A) € FLP}.

We have seen in the proof of Theorem 3.15 that .'Fﬁ’;’q is a classifying space for KOP¥.
Thus to any continuous map A : X — FL§? (X- compact CW-complex ) there
corresponds an element in K OP¢(X) which we provisorily denote by ind, ¢(Ao, A).
Recall that any element u of KOP9(X) has a (nonunique) standard grading rep-
resentation as a triple [E;no,m) where E is a finite dimensional C?? -bundle over
X and 7. ny are (p, q)-gradings of E. We can then form the lagrangian subbundles

Lo = ker(1 —no), Ly = ker(1+m)

so that 1, is the reflection through Lo and —7,; is the reflection through L;. The
triple (E: Lo. Ly) will be referred to as a standard lagrangian representation
of u € NOP(X) or simply lagrangian representation. Note that any triple of
the form (E; L, L#) represents the trivial element in KOP9(X). We will look for a
standard representation of the element ind, 4(Ao, A) introduced above.

We first need the following technical result.

Lemma 4.13 Let X bc a compact CW-complez and
A:X - FLY zw— A
a continwous map. Then there exists W € F such that Azis clean mod WVz € X.

Proof For any ¢ € X and W € F the intersection A, N W is finite dimensional since
(Ag. A;) is Fredholm and W C Aq. Obviously

N (A:NW) =0

WeF

so that (A; N W) is a filtered family of finite dimensional vector spaces. Hence there
exists W, € F such that A, N W, = 0. Since W has finite codimension in Ap the
pair (A, W) 1s in fact Fredholm and in particular A; + W, is closed. It is now easy
to show that there exists a neighborhood U, of z in X such that A, is clean mod W,
for all y € U,. Now cover X with finitely many such neighborhoods

X = Uy, U---UUL,
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and choose W € F so that
WcW,n---nW,

Tm*

Then A; is clean mod W for all z € X. O

For each W € F let Mw denote the orthogonal complement of W in Aq. My is
a (p, ¢)-lagrangian in Hy and in fact is the symplectic reduction of A mod W#.

Denote by A : X — FL5? a continuous family of lagrangians and choose W as in
Lemma 4.13 The reduction mod W of the family A is a continuous family = — LY
of lagrangians in Hw and thus we obtained a triple (Hw; Mw,(LY)) which is a
lagrangian representation of some element in KO?(X). We claim that this element
is independent of the choice of W. Indeed, a standard filtration argument shows that
it suffices to consider only the case when W, C W, are two isotropic spaces in F such
that the family A is clean mod both W; and W,. Set

Hi=Hw,, L =L" M =My, (i=1,2)

T

and U = Wi, the orthogonal complement of W, in W,. U is a finite dimensional
isotropic subspace in H,. Then as in Diagram 1
L] = RUL2 ) M] = RU#M1~ (46)

Set Ho = U @ U#. From Proposition 4.10 and (4.6) we deduce that L, is homotopic
to L; & U# so that we have an equality

(Hy; M2, L) = (Hy; Ma, Ly) @ (Ho; U U#) in KOP(X)
so that (Hy; My, Ly) = (Hy; My, Ly) in KOP9(X).

If No, My : X — FL5 are two homotopic families related by a homotopy

N:Xx1— FLE (z,t) = Ni(z)

then we can pick W € F such that AMy(z) is clean mod W for all z and t. Cor-
respondingly we get an element (Hw; M,,,N") € KOP9(X x I) which restricts to
(Hw, Mw, N¥) over the slice X x {i}, i = 0,1. We conclude that the symplectic
reduction process induces a well defined map

Mo+ (X, FLE) = KOP(X) A ppo(Ao, A)

which we will call the generalized Maslov index.
We can now state the main result of this section which generalizes Proposition

3.13
Theorem 4.14 The generalized Maslov index

o : [ X, FLY'] —» KOPI(X)

is a bijection for any compact CW-complezr X.
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Proof Surjectivity is almost immediate. Indeed, since (Hw)wer is a cofinal fam-
ily of CP9-supermodules any element u in KOP9(X) can be represented as a triple
(Hum; Mw, L) where L is a lagrangian subbundle of Hw (see [Kal]). Now set

Ar = Ew(Ls) = L. & W¥.
Then the family (A;)zex lies in FLp? and obviously
ppg(Ao, A) = (Hum; Mw, L).
To prove the injectivity consider
Ay, Ayt X — FLY?
and W, , W, € F such that A, is clean mod W; (z=1,2) and
(Hi; My, Ly) = (Hz; M, L) in KOPI(X) (4.7)

where as before M; = Mw, , H; = Hw, etc. We may as well assume that W, C W,
so that H, C Hs. Again since the family F is cofinal we deduce from (4.7) (see [Kal]
Prop. 111.4.26) that there exists W € F, W C W, and lagrangian N; = W;/W in

H! = Hw/H; such that
Ly N¥F=L,& N (=7 : homotopic) (4.8)
and
M, & Ny = My & N,

From (4.8) we deduce immediately that
Ewi(Ly) = Ew(L1 & NF) = Ew(Ls & NY) = Ew(La)

so that form Proposition 4.10 we deduce that A; = A, This shows the map y;, 1s
injective and thus Theorem 4.14 is proved. O

Remark 4.15 Theorem 4.14 can be slightly extended as follows. Consider (Ao, Av) :
X — FLP and assume W, C Ao(z) is a continuous family of cofinite isotropic
subspaces such that

(a) (Hw,) defines a bundle of p,q)-modules over X.

(b) Ay(z) is clean mod W, for all z € X.

Let LY (z) resp. LY¥(x) denote the reduction of Ao(z) (resp. Ai(z)) mod W#
(resp. mod W ). We thus get an element (Hw; LY, LY) e KOP(X) which as before
can be shown to be independent of the various choices and coincides with the gener-
alized Maslov indez constructed above. Finally to describe the relative K OP9-groups
we consider the family

FLr = {A] (S fﬁg’q / AN Ay = O}

Then
KOP(X,Y) = [(X,Y); (FL77, FL2)]

and an isomorphism can be explicitly described as in Theorem 4.14.
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§4.4 Comparison with the traditional Maslov index In this very brief sub-
section we explain the motivation behind our terminology. We consider the case
P =1, ¢ = 0. As we have pointed out in this case the generalized symplectic geome-
try coincides with what is usually know as symplectic geometry.

In the traditional case one can associate to each path of lagrangians

(Lo(t), La(t)), t € [a,0]

in asymplecticspace H (suchthat the extremities are transversal)an integer p(Lo(%),L1(t)
called the Maslov index (we refer to [CLM1] or [N1] for details). Its homotopic prop-
erties immediately imply that it defines an isomorphism

p: KOY°(1,81) — Z.

On the other hand using the lagrangian representations of the elements in K-theory
we can define another isomorphism

pro: KOY(1,0I) - Z

defined by
p10(0) =1

where 71 ¢ is the canonical generator defined in Subsection 2.2. We claim that py0 = p.
To verify this claim it suffices to show that

u(m0) = 1.

If (Lg(t)i, Li(t)) is a paths of lines in R? equipped with the symplectic structure

0 1
w(u,v) = (Ju,v), J=[_1 O}'

(Note that w = dy A dz rather than the traditional dz A dy.) Then its usual Maslov
index can be computed as follows (see [CLM1] or [N1]). First decompose the path
into little parts so that inside these subintervals neither of the lines is vertical and
at extremities the lines intersect transversally. To compute the Maslov index carried
by each of the above subintervals denote by m;(t) the slope of Li(t), ¢ = 0,1 and
form the paths Ti(t) = (t,mi(t)). Then the local Maslov indices are given by the
intersection numbers #(Io(t) N T1(t)). Using the explicit description of 71,0 given in
Subsection 2.2 it is now very easy to check that its (traditional) Maslov index is 1.
Hence the generalized Maslov index coincides with the traditional one.



5 Clifford symmetric Fredholm operators

We are primarily concerned with the indices of families of Fredholm operators
as in Proposition 2.9. This section parallels Section 4 in that it addresses a related
effectivity question: describe in finite dimensional terms the index of a family of
Fredholm operators (possibly unbounded !). We adopt a new point of view and
we feel it is one of the important contributions of this paper. Namely we realized it
is more convenient to think of operators in terms of their graphs. In this way they
naturally become lagrangians and the techniques developed in Section 4 will provide
a satisfactory answer to the effectivity question above.

§5.1 The space F7? Let H be an essential infinite dimensional Hilbert Cratl.
module module. For brevity we will write ¢’ (resp. p' ) instead of ¢ + 1 (resp p + 1).
Following Examples 3.10 and 3.11 consider 77 the set of densely defined, closed,
selfadjoint Fredholm operators

T:D(T)C H— H

satisfying :
(i) C9(D(T) = D(T).
(Gi{T.Ji} = {T.C;} =0, V1<i<p1<;5<¢.

If we think of H as a (p, g) s-module with grading given by Cy then the conditions
(i) and (ii) above can be rephrased by saying that I) is an odd degree linear map
supercommuting with the action of C?? and thus it (almost) defines an element in a
Kasparov KK group (see [B]). We will not pursuit this point of view in the present
paper but we believe it is deserves some attention.

The set FP9 can be topologized using the gap topology (Appendix A). < will
denote the gap convergence. As in Proposition 2.11 we select a subset of F which we
call 77,1 defined as follows:

G)if (p—q) # —1 (mod 4) then FBI = F.
(i1) if (p — ¢) = =1 (mod 4)
= {T e 779 T(1+ TV € BFLS )

CSS €ss>

Proposition 5.1 The space FP? is homotopically equivalent with the space BFPI.
35
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Proof : For 0 < s < 1/2 consider w, : R — R defined by

Mif A <(1-9)/s
ws(A) = (1-3s)/s if A>(1-1s)/s
—(1=3s)/s if A<—=(1-3s)/s

and set wo(A) = A. Using the functional calculus for selfadjoint operators we get for
each a map

VU, : FO? — BFp?

by T +— w,(T) (since w, is odd and bounded w,(T) is in BF™?). It is easily seen
that if T, % T in FP? (or equivalently in the norm resolvent sense of [RS]) then
V,(T,) 2 V,(T) and since ¥,(T,) and their gap limit are bounded operators we
deduce by the results of [K] that ¥ (T,) — ¥,(T) in norm and thus the map ¥ is
continuous. It is a simple exercise in functional analysis to show that if 0 < so < 1/2
and and s, — so then ¥, (T) — ¥,,(T) in norm, uniformly for T in compacts of
FP4. The continuity of the family ¥, at s = 0 follows from the uniform gap estimate
(see Lemma A.2)
§(T, W, (T)) < 2'/%.

The map V¥, /, is a weak homotopy equivalence between F¢* and BF§?. Proposition
5.1 follows from the results in [Mi]. O

Denote by FZ? the connected component of FP? containing the the essential
(p,q + 1)-gradings. From the propositions 2.9, 2.11 and 5.1 we deduce that
FRix A, x FO°

ess

and all invertible operators in F7; lie in Fop, q.

§5.2 Hamiltonian (p,q)-modules This brief subsection is very technical in con-
tent . It describes a few simple methods of detecting essential objects (like e.g. la-
grangians, Fredholm operators etc.)

Definition 5.2 A Hamiltonian (p,q) module is a pair (H,J) where H is a Hilbert
(p. q)-module and J is a skewadjoint operator satisfying J* = —1 and anticommuting
with the standard generators of the CP? action. Notice that J induces a (p+1,q9)
structure on H. We will call J the suspension of the hamilton structure.

(b) A Hamiltonian (p,q) module is called good if its essential both as a (p,q)-module
and as a (p+1,q)-module.

(c) Let (H,J) be a Hamiltonian (p,q)-module. A (p,q)-lagrangian subspace L in H
is called good if JL = L* (i.e. L is also a (p+1,q) lagrangian) and L s both (p,q)
and (p+1,q) essential.
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Let H be a (p,¢')-module, ¢’ = ¢+ 1. H x H becomes a Hamiltonian C??'-module
with the Clifford action given by

€ — 0 Ji
' Ji 0

. 0 C; .
- < ’
1S25Pafg [CJ 0] I_JSQ

[ o 1y
A ] .
We let the reader check that (H x H, J) is a good hamiltonian space iff H is (p, ¢+ 1)
essential.

Given H an essential, infinite dimensional (p,¢')-module and T € FP9 we can
form the graph of T

and suspension

I'r = {(z,Tz)€ H x H [ z € D(T)}

and

To = {(z,0)€ Hx H ]z ¢ H)}.

Both Tp and I'r are (p', ¢')-lagrangians and (I'o, I'r) is a Fredholm pair. Tautologically,
the map T — I'r is continuous.

Definition 5.3 An operator T € FP9 is called good if 't is a good lagrangian in
the Hamiltonian space (H x H,J) constructed above.

Lemma 5.4 If H is an infinite dimensional, essential (p,q+1) module then any op-
erator T € FE9(H) is good.

Proof Notice first that the subspace of good operators in F3* is connected. Indeed
it is open since essentiality is an open condition. To see it is closed consider T,,-% T in
F¥? with T, good. Denote the reflection associated to I'r, by R, and the reflection
associated to I'r. Then R, — R and we have to show that if R, are both (p,q+1)
and (p+1.q+1) essential then so is R. This boils down to showing that the limit of
a convergent sequence of essential involutions is also essential. This is an obvious
fact if we work-“downstairs” in the Calkin algebra (= Bounded operators modulo the
compact ones). Thus, to complete the proof we have to show that there exists good
operators in F3%. Choose R an essential (p,q + 1)-grading. Then the reflection C
associated to the graph of R is
0 R
¢ = [ 0k } .

It is a simple exercise in linear algebra to show the following equivalences.
(i) Ris (p,q+ 1) essential <= C is (p,q + 1) essential.

(31) H is (p,q + 1) essential <= C is (p+ 1,9 + 1) essential.

We leave the details to the reader. O
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§5.8 The graph map and generalized Floer operators Let FLE denote
the connected component of the pair (I'o, T¥) in

{AeL” | (To,A) € FLP').

Notice that T# = I't is a good lagrangian so that all lagrangians in FLE are good.
We get a continuous map

I = TP F9 — }‘Lg""'

defined by
' : TwTr.

The main result of this section is the following.

Theorem 5.5 The map I'P? is a weak homotopy equivalence so that F§? is a classi-
fying space for the reduced functors KO' " (o) = ]?DP'Q(O) = KOPi(e,pt).

Proof We have to show that for any compact, connected CW complex X the induced
map

(X, 79 — [X, FLE ]
is a bijection and in fact it suffices to consider only the case when X is some sphere
X = 5
Step 1: Surjectivity Since FLE""(H x H) is a classifying space for KO it
suffices that for any u € KO"" with a standard representation (E; Lo, L;) there

exists a continuous map

T: X —» Fre

such that (E; Lo, L1) is a symplectic reduction of the fainily (I'o,I'1, )zex i.€.
bt ((To, I'1, )zex) = (E5 Lo, Ly) in Ko

The novelty of our proof consists in the manner in which we construct the family
(T:)zex- They will be very natural differential operators associated to the element u.
First, we may assume that £ = F x X where F is a finite dimensional Hilbert
C?9'-module and Lg is independent of z. Then (L1(z))zex can be viewed as a
continuous family of lagrangians in F'.
We will identify Lg @ Lo with F' via the correspondence

Lo®Ly— F, (u,v)—u—Jv, J=Jp.
J can be rewritten as

0 1
J = [_ILO 0 ] (5.1)
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It will be convenient to think F is a Hamiltonian (p, g + 1)-module with suspension
J. We can choose from the very beginning F to be a good Hamiltonian module and
Lo a good lagrangian. Since J; and C; anticommute with J and with the reflection
through Lo they can be rewritten as

0 U . 0 0 ., ]
Ji=[ui 0],(151SP) cj-—-[oj 0’],(1SJSQ) (5.2)

where U;, O; are orthogonal operators Lo — Lo such that

0} = —U} = 1,

1

For each £ € X consider the unbounded operator (this justifies the hamiltonian
terminology)

d
T.:D(T.)C H = L*0,1;F) = L*0,1;F) uwr Jd—‘;
D(T.) = {u€ L}(0,1;F) / u(0) € Lo, u(1) € Li(z)}
Set
= _ 4, _ U 0 - _ _10; 0 ,
JI—JJ,—[0 —Ui} ,C]-CCJ—[O _O]l (5.3)
Obvious]y—j? = -1 ,_C—j = J. J; and C; extend naturally to H defining a structure of

Hilbert C?9'-module. Since the Ly and L,(z) are (p', ¢’)-lagrangians they are invariant
under J; and ?j so that the domain of T is invariant under the above CP% -action.
T, is a special Dirac operator and our choice of boundary conditions makes it a
Fredholm selfadjoint operator (see [BW3] or [FOZ2]). Its kernel can be identified with
Lo N Ly(x). It obviously anticommutes with J; and C; so that T, is a family in F.
Proposition B.1 of Appendix B shows this is also a continuous family (in the gap
topology). The operators we have constructed above will be called generalized Floer
operatorssince Andreas Floer was the first to realize their K-theoretic relevance while
studying the symplectic Floer homology of a pair of lagrangian submanifolds (see[F]
for more details).

Since (E; Lo, L;) belongs to the reduced K O-group we may assume that for some
2o € X we have Li(z) = L¥ (i.e. (F;Lo,Li(z0)) = 0 in KO?9(pt)). This means
that Ty, is invertible and in fact we have the following result.

Lemma 5.6 All the operators (T;)zex are in F§°.

Sketch of Proof Since X and F£ are connected it suffices to show that just one of
the operators T; is good. We will do this for z = zo where the boundary conditions
are u(0) € Lo. u(1) € LE. In this case the operator To = T, is invertible. Its
spectrum can be explicitly computed

o(To) = {(2k + 1)7/2; k € Z}.
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The corresponding eigenspaces Vy can be explicitly described as well.
Va = {u(t) € H; u(t) = (cos M)z + (sin At)Jz, z € Lo}, A € o(To).

Note that o(Tp) is symmetric with respect to the origin. For each A € o+(To) =
o(To) N (0,00) set Hy = VA @ V_, and denote by R, the involution on Hy defined by
diag(lv,, —1v_,). H,is an essential (p, g+1) module because it is naturally isomorphic
with F' which was chosen to be good. R, defines an essential lagrangian because Lo
is a good lagrangian. Now form the involution

R = @AE0+(T0)RA'

Clearly R is a (p, g+ 1) grading of H. The operator To(1 + TZ)~"/2 can be deformed
inside 7?9 to R. (The obvious deformation will do the trick). Because each H) is
essential (as a finite dimensional module) then so will be the infinite dimensional one

H = @®ireoy(10)Ha-

Similarly we deduce R is (p, g+ 1) essential. Thus T, lies in the connected component
of essential (p, g + 1) lagrangians. O

H & H has a structure of Hamiltonian (p, ¢ + 1)-module structure given by

3 0 jg’ ~ O U . - 7 =
Ji:[ji 0]’ Cj=['éj O]J (ISlSP,ISJS‘]) (')-4)

and suspension

- 0 1
J=Jp,=[_]H 6’] (5.5)

We will show that (T'o,I';).ex represents the same element in KO© (X) using a
suitable symplectic reduction. Set

Lo={ueH;u(s)=uy€ Lo ae.s€ [0,1]}.
Lo ® Lo becomes a C?"?'-submodule of H & H. In fact, can show

Lemma 5.7 Ly & Ly is isomorphic as a CP9 -module with F = Lo & JLo via the
map
Tul_ [uo
oo [3]- 16 ]

Proof of Lemma 5.7 We have

(L) =e (2 ]) - [20])
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H

L W

o(at]) =o([F2]) = [ 720 - [0a) ]
so([4]) = a([50)]) = [Het | oo

Similarly one shows

and Lemma 5.7 is proved. O

Let W denote the orthogonal complement of Lo in H. The subspace W &0 is a
(r'.q)- 1sotr0p1c subspace of H @ H and obviously the symplectic reduction of H @ H
mod W is To® Lo. We perform the symplectic reduction of I'r, mod W. For simplicity
we will omit the subscript z.

Note first that T'y is clean mod W since kerT' C Lo. It is easily seen that W} =
H & Lo (Fig. 2) so that

FrNWY = {(u,Tu) /ue D(T), Tu e Lo).

Let vy € Lo. The equation
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Tu =v , ue D(T)
1s equivalent to the boundary value problem
Ju = v , u(0)€ Ly, u(l) € L,.
The general solution to Ji = vy = const. is
u(s) = u(0) — sJvp.

The boundary condition imposes ug = u(0) € Lo and up — Jup € L;. Hence we
deduce

I'rn Wf = {(u(s),vo) ; u(s) = uo — sJvg, up € Ly , up — Jug € Ly }. (5.6)

To find the reduction of 'y mod W we have to project I'r N W2 orthogonally onto
Lo®Lo = (H®H)w. Given u(s) as in (5.6) let (4, ) denote the orthogonal projection
of (u(s),Ju(s)) onto Lo @ Lo. This means

/](u(s)—ﬂ,qﬁ)ds = /l(vo—ﬁ,w)ds =0 V¢,v € L.
0 0

] —
/ (1’0 - SJUO - 227 ds)ds =0 V¢ € LO . v = Vp.
1]

1 —
/(uo-ﬂ,¢)ds =0Véelo, 5= v
0

Thus _ L
()" =1, = {(uo,v0) € Lo ® Lo [ up — Jup € L,}.

Tautologically, the isomorphism ® defined in Lemma 5.4 sends L, to L;. Thus we
have a C”""'-isomorphism

& : (Lo, Ly) — (Lo, L)

which shows that
#og'(To,T'1, )zex) = (F x X; Lo, Li(z))
and the surjectivity is proved.
Injectivity We have shown so far that the map I' induces a surjection
I. : T (F2%) - KO™ (57, (5.7)

From Proposition 5.1 we know that we have an 1somorphism
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Using Table 1.1 and Bott periodicity (Thm 2.3) we deduce
KO™(§™) =0, Zy, Z.

For these groups the surjective endomorphisms are also bijective and thus the map
of (5.7) is an isomorphism. Theorem 5.5 is proved. O

Definition 5.8 Let T : X — FP9 be a continuous family in FP9. The element
pp,o((To, I'r,)zex) € Kopl'q’(X)
will be called the index of the family T and will be denoted by ind, o(T').

Remark 5.9 (a)The families of generalized Floer operators we have considered in
the proof of Theorem 5.5 were also studied in great detail in the papers [FO1,2] using
a different approach. Theorem 5.5 can be rephrased as saying that Floer families
generate the KO-groups.

(b) The same proof as above shows that the connected components FP9 are in a
bijective correspondence with Ay = KOP9(pt.).

(c) One can consider more general families of Floer operators of the form

d
TI:JE;

where the principal symbol J may also vary with z € X. This does not affect at all
the symplectic reduction proof presented above. The corresponding indez of the family
will continue to be the generalized Maslov index of the pairs of boundary conditions.

§5.4 Examples We want to illustrate the above abstract considerations with
some examples we believe are very suggestive.

Consider first the simplest of the situations: a single operator T' € Fo0. Thus
it can be represented as Fredholm operator H @ H — H @ H which has the block

decomposition
0 D~
r=[5 "]

where D : H — H is a Fredholm operator.
The element defined by T in K0%°(pt) & Z is the usual index

ind (T) = indoo(T) = dimker D — dimker D".
Equivalently, indooT can be given the grading representation

indgoT = (ker T, Ro, —Ro)
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where Ry is the natural involution on E “y ®H

1y 0
We want to show that the lagrangian approach proposed in the previous subsections
produces the same conclusion, albeit in a more roundabout manner.

Look at the graph of T' as a subspace '+ C E@® E. E @ E has a natural (1,1)
structure defined by

-1 0 R, 0

I'r is a (1,1) lagrangian with respect to this structure.

Denote by W the orthogonal complement of ker T in E. Then W' = W ¢ 0 is an
(1,1) cofinite isotropic subspace of E® and I'y is clean mod W".

The symplectic reduction of E@ E mod W’ is the subspace ker T @ ker T equipped
with the (1,1) structure induced from E @ E. The symplectic reduction of 't mod
W' is the subspace kerT @ 0 C kerT @ kerT. Thus the element defined by T in
K'(pt) admits the lagrangian representation

[ra] e[ %)

indoo(T) = p11(To.T7) = (kerT @ ker T, ker T & 0,ker T & 0).
If we denote by 7 the orthogonal reflection in kerT & 0
N = lkerT @ (—lierT)
then we obtain a grading representation of this index
indoo = (kerT @ kerT,n,—n) € KO (pt) = Z.

According to the computations in Subsection 2.2 the above index can be identified

with the integer
1 1 Ry 0
Etl‘(JRU) = -2—“' [ 0 R :'

= tr Rp = dimker D — dim ker D".

The considerations in the previous subsections can be used to produce yet another
proof of the equality
Maslov index = Spectral flow

The spectral flow is an explicit isomorphism
SF:KY(1,01)— Z.

Given a continuous path ¢t — D, € 10 ¢ € [0,1] such that Dy and D; are invertible
then, roughly speaking, the spectral flow of this path counts with sign the eigenvalues
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of D; which change sign as t varies in [0,1]. We refer to [APS], [BF] or [N1] for more
details. We want to show that it coincides with the Maslov index .

If (D;)ier is a family of selfadjoint Fredholm operators on a Hilbert space H then
their graphs I'p, are (1,0) lagrangians in H @ H equipped with the (1,0) structure
defined by

Its Maslov index is obtained by a symplectic reduction of the family (T, I'p,).

To establish the equality between the Maslov index and the spectral flow it suffices
to verify it on a generator of (KO"°(1,8I). It is very easy to select such a generator.
Take for example the element with the lagrangian representation

7 = (R2>R@O7Lt)a lt’ S 13

where L; denotes the line with slope t and R? is equipped with the symplectic structure
—dz A dy. The Maslov index of this path is 1.
On the other hand, this element can be obtained by symplectic reduction from
the the graphs of the Floer operators
du

D, : Dom (D,) C L*([0,1],C) — L*([0,1],C), D.u(s) = _iZs_

Dom D, = {u € L3([0,1],C) ; u(0) € R, u(1) € L,}.

(R? = C is equipped with the (1,0) structure defined by multiplication with —i. The
induced (1,0)-symplectic structure is —dz A dy.) It is fairly easy to compute the
spectrum of D, since the equation
du
2% _
i— u
has the explicit solutions
u(s) = exp(ikrs).

The eigenvalues are
A(@)=0,4+2mn, neZ,te€[—¢c¢

where 0, € (—n/2,7/2) is the angle the line L; makes with the raxis. Clearly the
spectral flow of this family is 1. This shows the spectral flow coincides with the
(generalized) Maslov index.



6 Families of boundary value problems for Dirac operators

In this last section we will use the abstract techniques we developed so far to prove
an index theorem for families of boundary value problems for Dirac operators: Thm.
6.2. As an application, we derive a very general splitting formula: Thm. 6.10. In
the process we will provide a new very short proof of the cobordism invariance of the
index of families using an idea of [MP] coupled with the adiabatic analysis of [N1].The
formulations of these results requires the introduction of a suitable language.

Notation L2 will denote the Sobolev space of distributions "o-times ” differentiable
with derivatives in L2. The norm of L? will be denoted by |- |, or by |- |5 to
emphasize the fact we are dealing with distributions defined over a specific manifold
L. We will denote the L? norm by [-].

§6.1 (p,q)-Dirac operators and their Calderon projections Consider an
oriented Riemann manifold (M, g). We denote by C(M) the bundle of Clifford alge-
bras generated by T*M with the induced metric. Denote by £ a bundle of selfadjoint
('(M)-modules (in the sense of [BGV]). We denote the Clifford multiplication by

¢: T°M — End (£)

and fix a Clifford connection (see [BGV]) Vin £. On the space End (£) one can define
anorm for each ¢ € R, thinking of them as bounded maps L2 — L2, Correspondingly,
we will use the notation End,(£) to indicate which topology we use in a specific
situation. Furthermore we agree that all Hilbert space notions (like e.g. orthogonality,
adjoints etc.) will be understood in the L2-sense.

Suppose now that £ has an additional €' structure compatible with the C(M)-
structure and with the connection V. By this we understand that there exists a
morphism of *-algebras

p(e:) : CP' — End (€)

such that

{plese(e)} = {p(e;),c(a)} = 0, Yae Q'(M) Vi, (6.1)

Vole:) = Vople;) = 0, Vi, ;. (6.2)
46
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U

rx{-1} 2x{0}

Figure 3: The boundary has a metrically nice neighborhood

Moreover, assume that each fiber £, is an essential finite dimensional (p, ¢')-module.
Set as usual J; = p(e;), C; = p(e;). A bundle with the above properties will be
called a CP9-Dirac bundle.

It is very easy to construct examples of C?-Dirac bundles. Start with a C(M)-
bundle & with a Clifford connection V'. We can think of £ as a Zs-graded C(M)-
bundle with the trivial grading. Form the trivial bundle CP9 = CP9 x M endowed
with the trivial connection. We then form the Z;-graded tensor products CPIQC(M)
and £ = CPI&E. € with the induced connection has all the required properties.
For example the C'(M)-superbundles of [BGV] are C%9Dirac bundles.

Let £ be a CP9-Dirac bundle and assume that (M, g) is a compact oriented mani-
fold with oriented boundary &M = I such that the metric g is a product in a tubular
neighborhood N of the boundary, N = X x (~2,0] (Fig. 3). Set & = £|r and denote
by s the longitudinal coordinate along N. Let

J =c(ds) : & — &

denote the endomorphism of & induced by the Clifford multiplication with ds. Any
Dirac operator D on € can be written near ¥ as

~

D = J(Vs+ Do(s)). (6.3)

Denote by DP9 the space of selfadjoint Dirac operators D : C®(€) — C*®(€) such
that
{D,J;} = {D,C;} =0, V1<i<p1<j<¢
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of £ satisfying

{40} = {4,¢;) = 0 VI<i<pi<j<y (6.4)
{A,J} =0 overN (6.5)
ViA =0 over N. (6.6)

D1 is an affine space modeled by Cyl?9. 1t can be topologized using a L? norm on
CylP9 where ¢ is large enough so that L? embeds continuously into C3.

J can be used to introduce a structure of Hamiltonian (P, g+ 1)-module in L%(&)
by
1<p (6.7)

J 1
J 1 q' (6.8)

IN A
IN A

7,'=J,‘
?.7:0]

J
and suspension

Tpss =

~

For each D € DP9 and & € R let
Ke(D) = {U ¢ L&) DU =0 on M}

For any o > 1/2 there is a wel] defined trace ([BW3], [S1])

R, : Ko(D) — Lf,_],z(&,)

U Ul); .

The Cauchy data space (CD space for brevity) of D is defined as

Am(D) = Ry;K,1/2(D).
Am(D) s a closed subspace in L%(&,) and R, 2 gives a continuous bijection K, /2(D) -
Arr(D). ‘Ap(D) consists of the sections u € L2(&) which extend to L}, solution
of DU =0 on M. The orthogonal projection

Ip = L3 (&) — L*(&)

onto Ax (D) is induced by a zeroth order pseudodifferential operator called the
Caldéron projection of D ([BW3], [S1]). Its principal symbol depends upon D only
through the C(M)-structure in €. Denote this symbol by 7_ and set Ty = lg —7_.
In [BW1 — 3] is shown that :
Apm(D)* = JAp(D).

Since D anticommutes with Ji and C; we deduce

JK(D) = C;K(D) = K(D)
so that

JiAp = UJ'AM(D) = A}tl
which shows that Am(D) is a (p/, ¢')-lagrangian in L4(&) with the above -
structure.
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§6.2 The index of families of boundary value problems Denote by v =
\IIL’,’,:;"‘ the family of (p', ¢')-lagrangians A C L?*(&) such that the orthogonal projec-
tion onto A is a zeroth order pseudodifferential operator whose symbol is 7. We
deduce from the above definition that VD € DP9 and YA € WLPY the subspaces
(Am(D),A) form a Fredholm pair of lagrangians. We now topologize YL using
the convergence

A, ¥ A iff P,, — Pp» as bounded operators L2 - L2 ¢=0,1/2

We will call this ¥-convergence. Denote by \Ilﬁ’élq' the connected component of
WP containing Ap(D)*t, where Ap(D) denotes the CD space of some D € D™9.
Given any A € VP9 and D € D¢ we can form the operator

T = T(D,A) : Dom(T) C L*(&) — L*(€)

Dom (T) = {U € L}(€) [ Uls€ A}

TU = DU.

The results of [BW3] Chap.18, 19 show that T is a Fredholm selfadjoint operator
anticommuting with the generators of the C?4'-action on L*(£). We thus have a map

T . BPP = DP9 x WLP — FP° (6.9)
(D,A) — T(D,N).

Proposition B.1 from the Appendix shows that this map is actually continuous.

Proposition 6.1 (a)Any A € WLE is an essential (p', ¢')-lagrangian in L2(&).
(b) For any D € DP? and any A € WLEY the operator T(D,A) lies in F.

For a proof we refer to Appendix D. Part (a) of the above proposition shows that
there is a well defined CD-map

CD : D9 x WLE — FLy¥ (6.10)

(D,A) = (Am(D), A)

which is also continuous by Lemma C3 in the Appendix.
Let Y be a compact, connected CW-complex and

B:Y =DM x WLE? = BPP ye (Dy,Ay)



50 L. I. Nicolaescu

a continuous map. We obtain via 7 a continuous family of operators T(Dy,Ay)yey €
FLy? which by Theorem 5.5 has a well defined index ind, ,(T') € KOP9'. Using the
CD map we get a continuous family

CD(B) : Y — FLB
which by Theorem 4.14 has a generalized Maslov index ko (CD(B)) € KOP9'(Y).

The main application of the results we proved so far is the following result.
Theorem 6.2

indp,q(T(ﬂ)) = pp,'(CD(B)).

Before we begin proving Thm. 6.2 it is convenient to describe some special families
Y — DP9 ox YL
Let D € D™, Along N it has the form
D = J(V, + Do)

where
Do : C=(&) — C™=(&)
is a selfadjoint Dirac operator on &, anticommuting with J. Since D anticommutes
with J;, and C; we deduce
0 = {JDQ,} - JD()J,’ + J,'JDo = —Do.].],' + J,‘JDO
= DoJ{J‘*‘J{JDo = {Do,-j{}.

For each- E > 0 denote by HE = HE(D) (resp HE |, HE ) the closed subspace of
L?*(&) spanned by the eigenvectors of D, corresponding to eigenvalues in the interval
[~ E, E] (resp. in [E, 00), (00, —E]). Similarly one defines ’Hg and ’H]S':.

The operator Do anticommutes with the generators of the C?9' action so that
V E > 0 the subspace HE is a finite dimensional C?¢'-submodule of L*(&). Moreover
HE and HE are both (¥', ¢')-isotropic subspaces and in fact HE is the symplectic
reduction of L?(&) mod either one of them.

It is known that the orthogonal projection of L*(&) onto HE is a zeroth order
pseudodifferential operator with symbol 7, (see [APS1],[BW3]). If we choose L C HE
a (p',q')-lagrangian then the projection onto L is a smoothing operator (all eigenvalues

spanning ‘HE are smooth ) so that the projection onto HE @ L is a zeroth order
pseudodifferential operator with principal symbol 4. Thus

HE@ L e wer (6.11)

s0 it is an admissible selfadjoint, elliptic boundary condition for D. We call these
special boundary conditions level E Atiyah-Patodi-Singer conditions or lagrangians -
generalized APS for brevity. We will use the following result proved in Appendix C.
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Lemma 6.3 Let M be a compact manifold with boundary, D € D" and A : Y —
VLPT a continuous family of pseudodifferential lagrangians. Then there exists E > 0

such that (Ay)yey is homotopic in the topology of 1-convergence to a family of level
E APS lagrangians

(Ay) = (Ly ®HT)
Moreover LyE can be identified with the symplectic reduction of A, mod HE.

Proof of Theorem 6.2 The proof will be completed in several steps.

Stepl: Deforming the operators Any family 8 : ¥ — DP9 x VLT |y e
(D,.A,) can be deformed to one in which y — D, is constant , D, = D. This is
trivially true since D is an affine space.

Step 2: Restricting to the neck. Let M_; = M\ (—1,0] x ¥ (Fig.3) and set
A-l = AM-](D)

Consider the family of BVP over the cylinder C = [—1,0] x £ given by the operators
S, = S(D,Ay) defined by

Dom(S,) = {U € LYAE |} : U lxi-1)€ A1, Ulsxio)€ Ay}

S,U = DU.

(Sy)yey is a continuous family in 79 and thus they have an index in KOP9'(Y). We
will show that

ind, (T(D,A,)) = ind,4(5,).
Set H = L*(€) and H' = L%*(E|¢). There is a natural extension map

Uiz) , zeC

0 , otherwise -

Z:HCHH,U._,Uz{ (6.12)

This is obviously an embedding of C??" modules. We also have an extension map
Zp : Dom(S,) — Dom(T,)

given by
U , onC

UP . on M., (6.13)

Uwr ZpU) = {
where UP is the unique section in K;(D |p_,) such that

UP |gxi-1y= U lex{-1)€ Am_, (D).
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Now consider the elliptic eigenvalue problem for Sy = S(D, A% (D))

U IEx{-—]} A, (6.14)

DU = AU, on C
€
Ulgxqoy €

So 1s an elliptic selfadjoint BVP and has real and discrete spectrum.

For any v > 0 denote by H| the closed subspace of H' generated by the eigen-
vectors of Sp corresponding to eigenvalues in the interval [—v,v] and denote by W/
its orthogonal complement in H'. H’ x H' has as usual a C?"-structure and W, are
cofinite (p’, ¢')-isotropic subspaces in H' x H'. Obviously (W), is a filtration of H’
and as in Sec.4 we can find vy > 0 such that

Is, is clean mod Wy = W, Vy. (6.15)
We now perform the symplectic reduction of I's mod W}. First intersect
TsN(Wy)S = {(U',DU"Y e H' x H' | U’ € Dom(S,), DU’ € H,}. (6.16)
Next, project I's onto H, x H,
(U', DU") = (U', V")
V' = DU, /C(U'—zjf,qs') =0 V¢ e H!,. (6.17)

Denote this symplectic reduction of I's by Ls. Using the extension map Z of (6.12)
we construct

H, = Z(H!).

Let W, denote the orthogonal complement of H, in H. W, is a cofinite (p', ¢')-isotropic
subspace in H x H and we claim that

I'r,

Yy

is cleanmod Wy =W, Vy (6.18)

where v, is the same as in (6.15).
Indeed, suppose the contrary. Then there exists y € Y such that

FTy N W, # 0.

Hence one can find V € Dom (T,) N Wy such that DY = 0, V # 0. Notice that
Vice Wgand D(V |¢c) = 0. Thus

1% Ic @0 € rsy N Wé =0 & 0 (by (6]5))

By the unique continuation property we deduce V = 0 on M and (6.18) is proved.
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The symplectic reduction can now be explicitly described.
I'r N (W)} ={(U,DU) e Hx H; U€ Dom(T), DU € Ho}. (6.19)
The projection onto Hg x Hy
(U, DU) — (U, V)
can be found by solving the linear system

v = DU, /M(U —U,4)=0 Vée H (6.20)

or equivalently

V = DU, /C(U-U,qs') —0 V¢ eH,. (6.21)

Denote this symplectic reduction of I'r by Lr. There is a natural isomorphism of
C?"9'-modules

lc: H,, x Hy — H, x H,, (U, V) (Ule,V o). (6.22)

We claim that
Lr|c= Ls. (6.23)

It suffices to show that Ls C Lt |c since
) . 1.
dimL;=dimLr = 5 dimH,,.

Let (U’, V') € Ls. It is the projection of some element (U’, DU’) as in (6.16) such
that (6.17) is satisfied. Thus

U' € Dom(S,), DU’ € H,, .

Consider I/ =. Zp(U') defined as in (6.13). From the construction of U we deduce
Ulsx{o)€ Ay (i.e. U € Dom (Ty) ) and

DU:{DU’ , onC

0 , elsewhere
so that DU € Z(H,)) = H,, i.e.
(U, DU) € Tz, N (Wo)S.
Let (U, V) denote the orthogonal projection of (U, DU) onto H,, x H,,. By definition

(0,‘7) € Lt.
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Obviously V|c = (DU)|c= DU’ = V' and from (6.21) we deduce

LWie=Ole,9) = VéeH,

or

/C(U’—Ulc,¢) =0 VoeH,

which by (6.17) is equivalent to

and (6.23) is proved. Now

indo(T) = tprg'(Lo,T1) = ptyg'(Hon, L)
and via the map |¢

tog(His L) = prr (), Ls) = ind,,q(S).
Step 2 is completed.

Step 3: Deforming the boundary conditions. We now use Lemma 6.3 for the
manifold C' with boundary —% x {—-1}UZ x {0}. Thus in the definition of S, we can
replace A, with LE@HE on ¥ x {0} and A_; with LE, @ HE on T x {~1}, where LE,
is the symplectic reduction of Ap (D) mod HE. (One uses HE on T x {-1} instead
of HZ since T x {—1} and £ x {0} have different transversal orientations).

Along C the operator D has the form

d
D = J(— + Do).

Note that H§ is Dy invariant and set A = D, |#&. Finally set Ao = Ap(D) and let

Lo denote the symplectic reduction of Ag mod HE. As in [N1] we have the important

relation
LE, = ALE. (6.24)

Step 4: Reduction to a Floer family. We use the notations introduced at Step
3. Consider the Floer family
=y« Dom(Zy) € L2([-1,05H5) — L*([- 1,0 HE) = A

where
Dom(Z,) = {u€ L([-1,0,H5) / u(-1) € LB, , u(0) € LF}

Z,(u) = J(% + A).
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We will show via a suitable symplectic reduction that
ind, ,(Z) = ind,4(S). (6.25)
First note that A embeds as a C?9'-module in H' = L*€|c). Let
={UeH/U+AU = 0}.

This is a finite dimensional C* ' submodulein A C H'. Let W denote the orthogonal
complement of © in H and W' its orthogonal complement in H. Wisa (p,q)
isotropic subspace in HxHand Wisa(p,q ")-isotropic subspace in H'x H'. Clearly
I'z, is clean mod W, Vy and since ker(T,) C H,Vy € Y we deduce that I'7, is clean
mod W', Vy. Using the Fourier decomposition in terms of the eigenvectors of Dy we
deduce

DY (©)C H. (6.26)

(6.26) implies immediately that the reduction of I'z, mod W’ coincides with the
reduction of 'z, mod W and (6.25) follows from Thm. 4.14, 5.5.

Step 5: Conclusion. Putting together all the informations we have obtained so far
we deduce

ind, ,(T) = ind,,(Z). (6.27)

Consider the deformation
=t =t 3 3
=,; Dom(=Z,) CH - H

Dom(Z.) = {ue L}([-1 O HE) Ju(=1) € e LE] | u(0) € LE}

_ du
Zo(u) = J(ds (1 —t)Au).
Since A = Dg e is selfadjoint and antlcommutes with J; and C; we deduce that

e"ALE isa (phq ) lagrangian in HE. Thus Z! is a selfadjoint operator in F*9 and by

Proposmon C.1 we deduce that = is a continuous family in the gap topology. Thus
ind,,(Z°%) = ind,,(Z}).
Using (6.24) we see that
Dom(Z!) = {u e L*([-1.0);HE [ u(-1) € L, w(0) € LF}

du
This is precisely the Floer family we used in the proof of Theorem 5.5 where we
showed

ind,(Z) = ppo(LE, L) (6.28)
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Recall now that LZ is the symplectic reduction of Ap(D) mod HE and LE is the

symplectic reduction of A, mod HZ = ’Hf#. Theorem 6.2 follows from (6.27)-(6.28)
coupled witli Theorem 4.14 (or rather Remark 4.15). O

Remark 6.4 (a) The deformation we used in the last step has the nice property that
if Eg is invertible then =} stays invertible for all t. We will need this in the proof of
the splitting formula.

(b) The result at Step 4 when p = 1, ¢ = 0 and Y = S’ is discussed from a different
perspective in [FO2)].

(c) Recently X. Dai and W. Zhang ([DZ]) have proved a complex version of our
Theorem 6.2. They consider families of complex Dirac operators parameterized by
smooth manifolds which may not have constant symbol as the families in Theorem
6.2 did. However, in the next subsection we will use a result of [MP] to eliminate this
condition from the statement of the theorem.

(d) The results of Quillen [Q] provide an ezplicit construction of the Chern character
in a context very similar in spirit with ours: in [Q] as in the present paper the elements
in K-theory measure the “ homotopical distance” between two lagrangian subbundles
in a bundle of Clifford modules as opposed to the more traditional, analytical point
of view that K-theory measures the nonezactness of a sequence of bundle morphisms.
The “isomorphism” between these two points of view is given by the graph map or the
Cayley transform, in Quillen’s terminology. This opens possibility of re-obtaining the
results of [MP] (and eventually an odd version) from Theorem 6.2.

§6.3 -The cobordism invariance of the families index As we have already
mentioned the families considered in Theorem 6.2 have constant symbol. In this
section we explain how one can eliminate this assumption from the hypotheses of the
theorem.

First, a careful analysis of the proof of the theorem shows this assumption enters
essentially only at Step 3 when we use Lemma 6.3 which shows that if the operators
D, are independent of y € Y then the boundary value conditions can be deformed
to generalized APS conditions. The constant symbol hypothesis is used only to show
that the original family can be deformed (via the obvious affine homotopy) to a family
of Dirac operators which admit generalized APS conditions. The theorem is true for
more general families of operators which admit families of boundary conditions of
Atiyah-Patodi-Singer type.

A better way of phrasing this condition is to use the notion of spectral section
introduced in [MP]. To define it we first need to introduce slightly more general
families of Dirac operators.

Consider a fibration

p:Z =Y
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over a compact CW-complex Y in which the fibers are smooth manifolds diffeomorphic
with a compact smooth manifold N with boundary N (possibly empty). We assume
the transition maps of this fibration are continuous families of diffeomorphisms of
(M,8M). Equip Z with Riemann metrics (g,) along the fibers p~!(y) which vary
continuously in the C*-topology. If AN # 0 we assume the metrics have the same
nice behavior near the boundary as in Subsection 6.1.

Consider a vector bundle € — Z such that its restriction to the fibers p~*(y) is a
Dirac bundle &,. We thus get a bundle

D14 Y

with fibers DP9 = DPI(E,) topologized using a sufficiently smooth Sobolev topology
as in Subsection 6.1. The spaces L?(€,) form a bundle of (p, ¢ + 1) Hilbert modules
over Y.

A continuous family of Dirac operators is then a continuous section (D(y))yey of
DP9 Assume now the fibers p~!(y) are manifolds without boundary.

Definition 6.5 A (p.q)-spectral section of the family (D(y)) is a family (P,) of
selfadjoint projections of L*(E,) satisfying the following conditions.

(i) Each P, is a zeroth order pseudodifferential operator.

(ii) The family y — Py, is 1-continuous.

(i) The range of P, is a (p,q + 1) lagrangian in L*(E,).

(iii) There ezists a spectral cut i.e. continuous function

R:Y — [0,00)
such that for everyy € Y

_ Pu=u if A>R(y)
D(y)““*“”{ Pu—0 if A<-R(y)

Exactly as in [MP] one can prove the following result.
Proposition 6.6 The family (D(y))yey admits a spectral section if and only if
ind, (D(y)) = 0.

We want to make two observations.

1. The reflection R, = 2P, — 1 anticommutes with D(y) up to finite rank operators.
We can roughly exFress this as an “excess of symmetry”.

2. The spaces ’H? Y) are (p,q + 1) isotropic subspaces in L*(£,) and the symplectic

reductions of L2(£,) mod HE¥ form a CP9*1-bundle over Y.
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We interrupt a little the flow of arguments to illustrate on a simple situation the
reason why the “excess of symmetry” in the above proposition implies the vanishing
of the index.

Consider the case p = 0, ¢ = 0 and Y = {pt}. Thus we have an odd Dirac operator
on a Clifford superbundle £ = £, @ £_. Denote by 5 the Z,-grading of this bundle
and set H = L*(£). Because D anticommutes with  we deduce that for any E > 0
n defines an isomorphism

HE = HE,
A spectral section with spectral cut E > 0 defines in this case a (0, 1)-lagrangian in
the space H|_g g) spanned by eigenvectors corresponding to eigenvalues in [-E,E].
Denote by R the (0,1) grading which corresponds to this lagrangian. Since R anti-
commutes with 7g = 7|y _g 5 we deduce

dimker(1 — ng) = dimker(1 + 5g).

In other words
indooD = trpg = 0.

Consider a family {D(y)}yey of (p,q) Dirac operators on a manifold M with
boundary ¥ = M. Assume that for each y € Y the operator D(y) has the cylindrical
form described at the beginning of this section. Denote by Dy(y) the restriction of
D(y) to the boundary and set & = &(y) the restriction of Ey) to L. As we have
seen &o(y) has a a natural (p',¢') structure (p' =p+1, ¢ =¢g+1) and {Do(y)} is a
a continuous family of (p', ¢)-Dirac operators. We want to prove the following result.

Proposition 6.7 The family {Do(y)},ey admits a (p',q) spectral section.
Proof Let us first describe the idea of the proof. Attach to M(y) a long cylinder
Cr(y) = [0,7] x Z(y).

Denote the resulting manifold by M, (y) and the obvious extension of D(y) to M, (y)
by D(Y:r). The operator D(y,r) defines a new CD space A,(y) C L*(&(y). In
[N1] we showed that for any y € Y the space A,(y)* (or rather the corresponding
orthogonal projection) converges as 7 — oo to a spectral section of Do(y) we denote
- by Aw(y)*. We now have a possible candidate for a spectral section of the family
Do(y). Unfortunately the collection {As(y)*} may not be a continuous family of
(P',¢')-lagrangians since the above convergence may not be uniform. However, for
r sufficiently large the family {A.(y)*} is continuous and it is very close to being a
spectral section (in a sense to be elaborated below).

With this almost spectral section in our hands we will use the same arguments
used in the proof of Proposition 1 of [MP] to show that the index of the family Do(y)
in KOP9(y) is trivial. In other words we establish a general result the cobordism
invariance of the indezx of families. At this point we can invoke Proposition 6.6 to
conclude that the family {Do(y)} does admit a bona fide spectral section. Now let
us fill in the details.
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Definition 6.8 Let ¢ > 0. A (p',q)-¢-almost spectral section of the family
(Do(y)) is a family (P,) of selfadjoint projections of L*(&o(y)) satisfying the following
conditions.

(i) Each P, is a zeroth order pseudodifferential operator with the same symbol as the
orthogonal projection onto A(y).

(i) The family y — P, is Y-continuous.

(ii) Range P, is a (p,q + 1) lagrangian in L%(&,).

(iii) There ezists an almost spectral cut i.e. an upper semicontinuous function

R: Y - [0,00)
such that for everyy €Y
Pou—ul| <ellull i A> Rly)
(yku = A { NPull <ellull if X< —R(y)

The proof of the adiabatic limit result of [N1] also produces the following weaker
conclusion.

Lemma 6.9 There exists v > 0 with the following property: for any e 2 0 there
exists r > 0 (sufficiently large) so that A (y)* is an e-almost spectral section with an
almost spectral cut R(y) satisfying

max{R(y): y €Y} < v

In the terminology of [N1], the number v plays the role of a common nonresonance
level for the family Do(y).
Set as in [MP]
Qy = Do(y)(1 + Do(y)") 7%

This is a family in BF® with the same index as {Do(y)}. Denote by Pr(y) the
orthogonal projection onto A,(y)*. It is not difficult to see that the pseudodifferential
operators @, and

Q'(y) = P.(y)Q,P, + (1 — P(y))Qy(1 — Pr(y))

have the same symbol and thus they determine the same element in KO?(Y). Now
form

QS.r(y) = P.(y){Q@y + sG(y)} Py + (1 - P.(y)){Qy — sG(y)}(1 - P.(y))
where G(y) is the compact operator G(y) = (1 + Do(y))~/2. Hence

~

ind, ,(Do(y) = indy o(Q@r.s(y)), Vr,s 2 0.
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Let v as in Lemma 6.9 and fix s > v such that
s+ A

m+(1/) = mm{m ; I/\I < I/} > 2
and
. s—A
m_(v) = mm{m s A S v} > 2.

By Lemma 6.9 P,(y) is an e-almost spectral section with an almost spectral cut R(y)
such that R(y) < v, Vy. One can now elementarily verify that if ¢ satisfies the
mequalities

e? <

N~

and

T < min{m(v),m- (v}
then Q,‘,(y) is positive definite on the range of P.(y) and negative definite on the
range of (1 — F,(y)) so that it is invertible for each y. In particular the family can
be deformed to a family of (p',g) gradings. Since the space of (7', 9)-gradings (i.e.
(p'. ¢)-lagrangians is contractible this shows

ind,¢(Do(s)) = 0

so that by Proposition 6.6 the family {Do(y)} admits a spectral section. The proof
of Proposition 6.7 is complete. O

As we have mentioned at the beginning of this subsection Theorem 6.2 is valid
for more general families of Dirac operators with varying symbols. The structure of
the proof in this more general situation is the same. Step 1 no longer applies. Step
2 extend word for word for word to this more general situation. The only change
occurs at Step 3 when instead of deforming the boundary conditions to a generalized
Atiyah-Patodi-Singer family we deform the to a spectral section whose spectral cut
is sufficiently large so we can perform clean symplectic reductions. In the process we
will obtain families of Floer operators with varying symbols. As we have noted in
Section 5 this situation leads to the same conclusion.

§6.4 Gluing formule We conclude this section with an application of the ideas
involved in the proof of Thm. 6.2.

Consider a closed, compact, oriented Riemann manifold (M,g) and let £ — M
be a CP9-Dirac bundle. Suppose that inside M sits an oriented hypersurface which
decomposes M into two manifolds-with-boundary M = M, U M, (Fig. 4))

Moreover assume that the metric is a product in a tubular neighborhood N =
(=1,1) x X. Denote by D" the space of selfadjoint Dirac operators D in & such that

D; = D |ye D™(M;) i=1,2.
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Figure 4: A metrically nice splitting

As before DP9(£) is an affine space which can be topologized using a L% metric
(L? — C?). For any D € D7 we get a pair of CD spaces

Al(D) = AM.(Dz) 3 t= 1a2

These are (p',¢') isotropic spaces in L%(&) and moreover the pair (A1(D), A2(D)) is
Fredholm. In fact, both A;(D) are pseudodifferential lagrangians and their (principal)
symbols are independent of D. Denote the symbol of A; by m_ and by the symbol of
A2(D) by 7, . Then we have (see [BW3])

.+ 74 = 1.
Thus we get a map
AD)  DPI L WLEA X WLE (C FLP)
D :— (A(D),A2(D)) (6.29)

which by Lemma C.5 is continuous (in the ¥-convergence topology).
Topologically DP9 is uninteresting since it is contractible. However, inside D
there is an open set
DM = {D € D" / D invertible}
which we assume is nonempty. The relative topology of the pair becomes interesting.
In fact to any map

f: (D", 5™ = (DP9, DP) y s D,
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Associated to it is the index ind, o(f) = KO?*'(D",S*!). Using the map A® of
(6.30) we get a generalized Maslov index

mpa(AO(f)) € KOP (D™, 5771,
We can now formulate the last result of this paper.

Theorem 6.10 (Splitting formula for the index of families)
For any continuous map f : (D", S""1) — (DP9, DP9) we have the equality

indyo(f) = ppo(AB()).

Proof Let f : y — D(y), y € D". Consider the family of boundary value
problems

T, = T(Di(y), A2(y))  A2y) = A2(D(y))
We get a continuous map
T : (D" S" ') — (BPP, BPr9)
where
BP? = {(D,A) € D** x WLE)® [ T(D,A) is invertible}.
Proceeding exactly as in Step 2 of the proof of Thm.6.2 we deduce

indy4(f) = ind,o(T) in KOP"9'(D", 5" ). (6.30)
Thus it suffices to show that
indy, o(T) = pp g (A?(f)) in KOP9'(D", 5"1) (6.31)

This does not follow directly from Thm. 6.2 which refers to the absolute KO-groups
and we have to prove a relative version. The strategy is however completely similar.
A little care is needed to make sure that all deformations we perform are relative
deformations.

The first problem is at Step 1 when the family

y — T(Di(y), A2(y))

is deformed to a family in which D;(y) is independent of y. The affine deformation
we used may not be a relative deformation. This deficiency can be easily removed
using Proposition C.7 which shows that BPY is contractible. Hence in proving the
relative version of Thm. 6.2 we may as well start at the very beginning with a family

T:(D",5"1) — (BP9, BP™)
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such that T |sn-1 is constant
T(Di(y), A(y)) = T(Dy,A) Vye S

where A is an APS lagrangian such that the pair (A, (D;)A) is a transversal Fred-
holm pair. Now we can linearly deform the whole family D;(y) to D,.

The deformations we make at Step 3 are now relative deformations. The only
problem that might occur is the final deformation at Step 5. However by Remark
6.4(a) these are relative deformations. This proves (6.31). Theorem 6.10 follows using

(6.30). O

Remark 6.11 For p=¢=0 and n=0 this result is proved in [BW1-2]. For p=1, ¢=0
and n=1 this result is proved in different ways in [BF],[Bu],[CLM?2] and [N1]. The
complezx case is discussed in [DZ]. There they deal with arbitrary families (with possibly
nonconstant symbols) but they use different approaches depending on the parity of
p — q. Our approach achieves this in “one shot” and extends verbatim to the complex
case. Although we stated the above theorem only for families with constant symbol the
result is valid for more general families of Dirac operators with varying symbols. In
fact the same proof can be slightly altered to cover this more general situation and as
in the case of boundary value problems a key ingredient is the result on the ezistence
of spectral sections we established in the previous subsection. We leave the reader
perform the necessary modifications.



A Gap convergence of linear operators

We will prove here some technical results about gap convergence we used in the main
body of the paper.

Let H be a real separable Hilbert space. Consider the space C(H) of densely
defined, closed linear operators

T :Dom(T)Cc H— H.
For each T we let I't denote its graph
I'r = {(u,Tu) € H x H [ u € Domn(T)}.
Following [K], Chap.IV we introduce
Definition A.1 (a) Let L, M C H be two closed subspaces of H. Set
8(L,M) = sup{dist(z,M) [z € L, |z| =1}

and

§(L,M) = max(8(L,M),6(M,L)).

6(L, M) is called the gap between the subspaces L and M.
(b) A sequence (T,,) C C(H) is said to be gap convergent to T (and we write this
as T, 5T if

~

oI'r,,T7) =0 asn — oc.
By Theorem 1V.2.18 of [K]
T,5T < max(§(T'r,,T'1),8(T7s,T7+)) — 0

and thus for selfadjoint operators § = 8. Let us describe: explicitly what 6(T'r,,,T'7) —
0 really means.

Consider S,T € C(H). We first describe §(S,T). Let 7 denote the orthogonal
projection onto I'7. If (z, Sz) € I's then

dist{(z,Sz),T'r} = ||(z,Sz) — 7¢(z, Sz)||.
Note that (z, Sz) — n7(z, Sz) € (I'r)* and from [K], 111.5.91 one deduces
(Tr)* = {(~T"u,u) / u € Dom(T")}.
Thus there exists u € Dom(T") and y € Dom(T) such that

mr(z,5z) = (,Ty) , (z,5z) - np(z,Sz) = (~T"u,u)
64
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H

Figure 5: Computing distances between graphs of linear operators

so we can decompose (z,Sz) uniquely as (Fig. 5)
(:E,S.’B) = (y1 Ty) + (—'T.u?u)'

The pair (u,y) can be viewed as the unique solutions of the system

T*u — y = —z u€ Dom(T~) (A1)
u + Ty = Sz y€ Dom(T) '
Then f ;
+ |T*u
§(S,T)? = sup {1 2L A2
( ) :EDomI()S)\O{ lez + |SII2 } ( )
where u is determined from z via (A.1). Thus §(T5,T) — 0 iff
, |uf? + |T*uf?
lim su ——0} =0
n—eo zEDom%)Tn)\O Izl2 + |Tnx|2}
or equivalently,
2 T 2
m  osup (LR, (A.3)

n=% sepom(Tano Y12 + |T*y[?

Above, u and y are determined from z using (A.1).
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Figure 6: w, approximates Ig as s — oc

In the remaining part of this section all operators will be assumed Fredholm and
selfadjoint. If T is such an operator consider

D(T) = Dom(T) x Dom(T) C H x H — H x H

which has the block form

D(T):[T ‘]}.

I T

One sees easily that D(T) is Fredholm and it has a bounded inverse which is

D) = [T(1+T2)“ (14 1% J

-(1+7%)71 T(1+4 1%
and obviously
ID(T)7|| < 1. (A4)
For 0 < s <1/2 consider the continuous function w; : R — R defined by (Fig. 6)
A if A< (1-3s)/s
ws(A) =

(I=s)/s i A>(1-3s)/s
—(1=38)/s if A< —(1-35)/s
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w, has the following nice properties

w, is odd and bounded. (A.5)
ws(A) > A as s—0 VIER (A.6)
A — ws (AP

A2 = <252 Vs€[0,1/2], VAE€R. (A7)

(1+23)(1 +w,(A)?) ~
Proof of (A.7) For |A\] < (1 — s)/s this is trivial. For |A| > (1 —s)/s we have
PR T

1+ A2 s24+(1=s)? =~

For any selfadjoint operator T set T, = w,(T). By (A.5) the operators T; is a
bounded.

|As(’\|2 =

Lemma A.2 For any Fredholm selfadjoint operator T we have
§(T,,T) < V2s.

Proof We have to estimate
ful? + |Toul?

|z|? + |Tz|?
5] = |72
Ml
u=-T(14+T}) 24+ (1+T) Tz = 1+ T T - Ty)z.

It follows that
lu]? + |Touf? = |(14 T2)Y2u? = |1+ T2)"VHT - T)z|*.

where u is the solution of
Hence

so that

Using the spectral resolution for 7' we get
|zl + |Tz* = (1 + T%)"%z|”.
Set z = (1 + T?%)!/?z. Then
ul? + [ Toul? _ |+ T2)7VAT = T)(1 +T7) 1222
|z|? + [Tz? |22
_ A1)z

= 1T < 962,
o

Lemma A.2 is proved. O
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B Gap continuity of families of BVP’s for Dirac operators

Let M be a compact oriented Riemann manifold with boundary ¥ = oM, £ —
M a bundle of selfadjoint C(M)-modules (see [BGV] for more details about the
construction of Dirac operators). Set & = € |z. The space of Dirac operators on £
is an affine space modelled by End (£) which as usual we topologize using a Sobolev
metric L2 such that L2 — C3. Now consider the following data

(i) A sequence of formally selfadjoint Dirac operators Dn converging in the above
topology to a (formally selfadjoint) Dirac D.

(i1) A sequence of zeroth order pseudodifferential operators P, on & which ¢-converge
to a zeroth order pseudodifferential operator P i.e.

P, — P as bounded operators L? — L? o =0,1/2.

Assume

(iii) The operators P, resp. P are selfadjoint elliptic boundary conditions for D, and
resp. D in the sense described in [BW3].

This means that the operators

T. : Dom(T,) C L*() — L*(€)

defined by
Dom(T,) = {U € L}€) /| P.U |g= 0} T, U = DU

are selfadjoint and Fredholm. Define T similarly.
Proposition B.1 Let (D, Py)nso0 and (D,P) satisfy conditions (i)-(iii) above. Then

T,5T

Proof We have to show that 6(I'z,,I'r) — 0. We argue by contradiction. Assume
the contrary. Thus there exists a sequence z, € Dom (T) ‘

I.‘Enlz + Iannlz =1 (Bl)
™ [l + 1Dt
. |ual®* + |Du,
im —————— = § € (0,00 B.2
n—00 |yn|2 + lDyn|2 ( ] ( )
Du, - Yn = —Tn
{ v, + Dy = Duzy’ (B.3)

We will need the following auxilliary result:
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Lemma B.2 There ezists C > 0 independent of n such that

|z|y £ C(lz| + |Drnz|) Vz € Dom(T,).

Lemma B.2 will be proved after we complete the proof of proposition B.1.

The same letter C' will be used to denote the various bounds which will be con-
stants independent of n unless otherwise indicated. The relations (A.4), (B.1) and
the elliptic estimates for T imply

Iuﬂh + lynll <C. (B4)

Lemma B.2 with (B.1) also gives

|z < C (B.5)

so on a subsequence
z, — z weakly in L3(£) (B.6)
z, — x strongly in L2 (B.7)

Using (B.6) and the continuity of the trace map
35 LHE) > LiplEe) uwmuls
we deduce
vz, — vz weakly in L]2/2 and strongly in L? o <1/2. (B.8)
The ¥-convergence of the operators P, implies that Pyz = 0 and in particular
z € Dom (T). (B.9)

The inequalities (B.4), (B.5) and the elliptic estimates for the first equation of (B.3)
yield
lunl2 S C(Izﬂll + |y'n|1 + Iu'ﬂl]) < C

so that on a subsequence

u, — u strongly in L. (B.10)

Because the the graph of T is closed we deduce u € Dom(T). Using (B.1) and (B.4)
and the system (B.3) we conclude that on a subsequence

Yn @ (Dpzy — uy) — y @ (2 — u) weaklyin L? x L2
Here z is the weak limit of Dy,,. The graph of T is also weakly closed so that

y € Dom(T) , Dy+u = z. (B.11)
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Now D, — D in C? and z, — z in L?. Hence
Dz = z in the sense of distributions

Summarizing we see that u, y, = and z satisfy

Du - y = -z
{u + Dy = Dz = =2 (B.12)

Equation (B.12) has an obvious solution y = z and u = 0. By (A.4) this is the unique
solution so that by (B.10)

u, — 0 strongly in L2 (B.13)

The relation (B.13) implies that the numerator of (B.2) goes to 0. The limit in (B.2)
is strictly positive only if
yal|* + | Dyn|* — 0.

Coupling this with elliptic estimates we get
Yn — 0 strongly in L. (B.14)

The convergences (B.13) and (B.14) can now be used in the second equation of (B.3)
and produce
D,z, — 0 strongly in L% (B.15)

The first equation of (B.3) gives
z, — 0 strongly in L?. (B.16)
Obviously (B.15) and (B.16) contradict (B.1). Proposition B.1 is proved. O

Proof of Lemma B.2 Let z € Dom(T,). We have an elliptic boundary estimate
([BW3], Chap.19)
lzly < C(lz|+ |Dz| + |Pyzli/2,8)

< C(lz] + |Duz| + |Pivzl1j2,8) + C(I(Dr — D)z| + |(Pn — P)y2l1/2,2)
< C(lzl +{Dnzl) + ea(zls + |y2l1/2,2) (we used (7) and (22))
< C(|z| + |Dnz| + €n|z]1) by trace inequalities.
Above, ¢, — 0 as n — oo. Now the ¢,-term can be absorbed in the left hand side

and the proof of the lemma is completed. O

Remark B.3 The above proof of Proposition B.1 can be easily adapted to include the
situations when the operators D, have varying symbols.
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C Pseudodifferential Grassmanians and BVP’s for Dirac operators

We gathered here a collection of technical facts we used in Section 6. We will use the
terminology introduced in that section

Throughout Sections 1 to 4 we worked in abstract Hilbert spaces neglecting any
other analytical structure they may posses. In “real life ” the Hilbert spaces one
encounters are L? spaces of distributions over some smooth Riemannian manifold
and as such, they have a natural Sobolev filtration by L2.

If € is an euclidian vector bundle over a Riemann manifold M then a closed sub-
space W C L%(£) is called pseudodifferential if the orthogonal projection Pw onto
W is induced by a zeroth order pseudodifferential operator. The principal symbol of
Pw will be also called the symbol of W. This notion of pseudodifferential subspaces
was considered in {W] in connection with BVP’s for Dirac operators.

Consider now a C??~! Dirac bundle & — ¥ over a closed compact manifold
and choose Ay a pseudodifferential (p, ¢)-lagrangian. Denote by 7 the symbol of Ao
and consider WLP the set of all pseudodifferential lagrangian: which have the same
svmbol 7 as Ag. We topologize W.L?? with the topology of -convergence as in Sec.
6. Note that if A € WLP the reflection R through A is a zeroth order selfadjoint
pseudodifferential operator, which moreover is elliptic.

We will need the following technical result

Lemma C.1 Let Y be a compact CW-complez and
f:Y = ULP y Ay

a continuous family of pseudodifferential lagrangians such that:

(i)A, NAg = 0 Vy.

(1Z)Ay + Ao = Lz(go) Vy

Then f is homotopic in WLP? (in the topology of Y-convergence) with the constant
map y — Ay.

Proof The proof is based on a simple trick that we used before in the proof of
Proposition 3.12. Let R = R(y) = 2P, — I be the reflection through A, and
similarly Ry the reflection through Ao. The conditions (i) and (ii) can be rephrased
as

R(y) + Ro isinvertible Vy.

Set A = A(y) = (R — Ro),
S; = Si(y) = Ro+tA where t € [0,2].

Note that §; = 1(Ro+ R) is invertible and it is a zeroth order selfadjoint pseudod-
ifferential operator. For t € (0,1) rewrite S; as

S, = Ro(I +tRoA)
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where t||RoAljo < 1. We conclude that S, is invertible as an operator L? — L2. Since
S, is also elliptic its L? inverse is pseudodifferential of zeroth order and is bounded in
any L2.

We proceed similarly for ¢ € (1,2] rewriting

S, = R—(2-1)A

and we conclude that for all t’s S, is invertible with pseudodifferential inverse. Now,
using the functional calculus of [S2], form the pseudodifferential operator

Ct = Stlstl—llz te [0,2].

Note that C; are (p,q)-gradings of L?& ,¥t ,Co = Ro and C; = Ci(y) = R(y).
Moreover the C/s have all the same symbol as Ry and the R's. The lagrangians
determined by C; gives the desired deformation. Lemma C.1 is provedd

Let W be a cofinite, pseudodifferential (p, g)-isotropic subspace of L%(&,) such
that the symplectic reduction H of L?(&) is a smoothing subspace i.e. it consists of
smooth sections of &. Let  denote the symbol of W#. Consider a continuous family

(Ay)yey € VLTS (C.1)

such that

A, is cleanmod W Vy. (C.2)
For each y denote by L, the symplectic reduction of A, mod W and set
Ay = L, @ W#,

The projection onto H is smoothing we so that the projection onto ]\y 1s pseudod-
ifferential. The family (L,),ey is continuous which implies the family (A,),ey is
continuous in WL??. The reader can verify easily

(i)Ay,NA, =0 Vy.

(1) A, + A, = L*(&) Vy.

Proceding as in Lemma C.1 we obtain the following result.

Lemma C.2 The family (A,),ey is homotopic in WLP? with the family (A,)yey .

Let D € DP9, Along the neck it has the form
D = J(V, + D) (C.3)

and consider the spaces Hy ,HE and HZ coming from the spectral decomposition of
Do. HE and HE are pseudodifferential (p', ¢')-isotropi. subspaces with symbols 7_
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and resp. 74 = 1 —7m_. Moreover HE is the symplectic reduction of L?(&) mod HE
(and also mod HE) and is a smoothing subspace.
Consider (A,)yey a continuous family in \IJLf,';"'. We can find E > 0 large enough
such that
A, is clean mod HE Vyev. (C4)

Let Lf denote the symplectic reduction of A, mod HE. Using Lemma C.2 we get

Corollary C.3 For any continuous family (Ay)yey in \Ilﬁfrlq' there ezists E > 0 such
that (Ay)yey is homotopic in \Ilﬁf,:q' to the APS family

(Ly & HE)yer-

Corollary C.3 is precisely Lemma 6.3.

Remark C.4 In the proof of the above corollary instead of working with a single
operator D we could work with a continuous family of them (D(y)) such the restriction
to the boundary, (Do(y)) admits a spectral selection in the sense of Definition 6.5.
The family of pseudodifferential lagrangians A, wil now possible have varying symbols.

It is not difficult to see there exist a spectral section whose corresponding spectral
cut R(y) is sufficiently large so that Ay is clean mod ’Hg(y). Now we can perform the

reduction mod ’H};(y) to conclude the original family of pseudodifferential lagrangians

is homotopic to the family
L ol —R(y)

y 1<

Now consider as in Section 6 a C?? Dirac bundle over a compact oriented manifold
M with boundary M = £. For any D € DP9 the CD space Ap(D) is a pseudodif-
ferential (p/, ¢')-lagrangian in L?(&) with symbol independent of D which we called
m_. We have a map
CD:DP — VLY

As in Proposition 2.4 in [N1] one proves the following result.

Lemma C.5 The above CD map is continuous.

Remark C.6 The proof of Proposition 2.4 in [N1] extends easily to cover the situa-
tion when the symbols of the various Dirac operalors are not constant.

Let 7, denote the symbol of the orthogonal complement of some CD space and set
as in Sec. 6

BP9 = {(D,A) € DP x WLEX (&) [ T(D,A) is invertible}

topologized as usually.
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Proposition C.7 The space BP?? is weakly contractible i.e. any continuous map
B:8" — Bp?
is homotopic to a constant map.

Proof Let B(y) = (Dy,A,), y € S™ and denote by A;(y) the CD space of D,. Lemma
C.3 shows this is a 1-continuous family. Since (D, A,) € BP?? we conclude

A(y)NnA, = 0.
The pair (A1(y),A,) is Fredholm. As in Remark 3.8 we deduce that
A(y)+ A, = L3(&).
Lemma C.1 implies there exists a homotopy (A} )e[o,) in wLP' such}that
Ay) = A, , AL = A(y).

Moreover the proof of Lemma C.1 shows that during the deformation A*(y) and A{y)
stay transversal. Thus

(Dy,Ay) = (Dy,Af(y)) inBPP.
Now fix an operator D € DP9 and consider
D! = (1-1t)D, +1tD.
We have.a homotopy in BPr9
t — (D!, Am(D?)*

between (D,,Af(y)) (at t = 0) and the constant family (D, Ay (D)*) (at t = 1).
This concludes the proof of Proposition C.7. O

D The proof of Proposition 6.1

We begin with a simple but useful observation we will frequently use in this section.
Let H be an infinite dimensional Hilbert (p, g)-module, p— ¢ = 0 (mod 4) and R a
(, q) grading. The volume operator Q = J; - - - J,Cy - - - C, is in this case an involution
which commutes with RB. Thus Hy = ker(1 F Q) are R-invariant subspaces of H.
Then, for RQ2 to be essential it suffices to show that R |y, is essentially indefinite.
Let M be a manifold with boundary M = X as in Section 6 and £ — M an
essential (p, ¢)-Dirac bundle.
Proof of (a). The only interesting case is p —~ ¢ = 0 (mod 4). Fix D € DP9 and
denote by Ag = Apm(D) the CD-space of D. As in the proof of Proposition 5.1 one
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{0} Ix{0} Ix{r}
M
A\ 4
glue

Figure 7: Adiabatic deformation of the neck

can show (using the connectivity of YLE") that a lagrangian in WLE is essential
iff Aot is or equivalently, Ag is.

Define M(r) = M U E x [0,r]. M(r) is usually called an adiabatic deformation
of M; (see Fig. 7). D has a natural extension D(r) as a neck-compatible Dirac on
M(r) and denote by A, C L*(€ |am(r)) the CD space of D(r).

In [N1] we showed that there exists £ >0 such that

lim A, = Lg & HZ

where Lg is a (p, ¢')-lagrangian in HE. Again a continuity argument shows that Ao
is essential iff Ao is. Denote the grading defined by Ae by R and the reflection
through HE by Rg. HE is a (p', ¢')-isotropic subspace of L?(&). Since the volume
Q=1J;- -7,,'51 . -Uq' is even, we deduce ’HE is Ql-invariant so that Rg commutes
with Q. Clearly R, — Rg is compact so that R..S! is essentially indefinite iff Rpflis.
Using the opening remark we see that it suffices to show that K L2(e2) is essentially
indefinite. Here £ are the +1 eigenbundles defined by Q.

Do = D |g anticommutes with the ojis and the _C_;-s so that it commutes with
Q. In particular L*(EF) are Do-invariant. Part (a) is proved if we show that the
spectrum of Dg |L2(£0¢) is unbounded both from below and above. This follows from
the observation in [APS1] that the spectral projections defined by the negative and
the positive spectrum are both Oth order pseudodifferential operators.

Proof of (b). The interesting case is p — ¢ = 1 (mod 4). Let D € DP9 the volume
QO=J-J,Ci---Cyis an involution commuting with D and splits £ into a direct
sum of eigenbundles £*. Moreover L?(e*) are D-invariant. A continuity argument
4 la Proposition 5.1 shows that T' = T(D.A) is essential for all A € \Il/.',g’q’ iff it 1s
essential for just one boundary condition A € \I/Lg""'. Using the observation in the



76 L. I. Nicolaescu

beginning we deduce that for such a T' to be essential it suffices that the spectrum of
T |12(¢+) is unbounded both from above and below. Thus part (b) follows if we can
show that for any formally selfadjoint Dirac operator D on a manifold with boundary
M there exists a selfadjoint boundary condition A € VLo such that the spectrum of
T = T(D,A) is unbounded both from below and above. Equivalently, it suffices to
show the set

Du,
(—lz?’-l—)-;uel/%,uyéO,ulgeA}

is unbounded both from above and below.

We pick A as a generalized APS condition A = Lg & ’Hf such that Lg contains
an eigenvector ¢ of Do with eigenvalue p such that ||z = 1. Set ¥ = Jb, where as
usual J denotes the Clifford multiplication by ds.

Choose now Lipschitz continuous cutoff functions «, B : R — R defined by:

(i) a(s) =0 for s < =1, a(s) = 1 for s 2 —1/2 and a is linear on [-1/2,0].
(ii)3(s) = —1/2 for s < —1/2 and B(s) = s for s 2 -1/2.
Set

§={Q(u) =

-1/2 -1/2
A= / la(s)[2ds > 0, B= / a(s)ds =1/4 > 0.
-1 -1

For each n € Z define A, = sign(n)(p? + 47?n?)"/? and u, € L}(€) by

2rn

An — 4

u, = a(s) (cos(?wnﬂ(s))¢> + sin(27rnﬂ(s))z/)) .

From this definition we immediately deduce that u,|s€ LE and that u, is supported
on the neck & x [—1,0]. Moreover
Du, = Au, over (—1/2,0). (D.1)

We now evaluate the various quantities which appear in the definition of Q for our
special choices.
The norm |u,|?. We split the computation into two parts.

. o+ 1
lunl? = 1/4 (1 + lx—;—g ) =1/24+0(n7') over T x (—1/2,0). (D.2)
|ux|* = A over £ x (-1,-1/2). A (D.3)
(Du,,u,). We split the computation as before. Using (D.1) we get
(Dtn, un) = A(1/2 4+ O(n71)) over X x (-1/2,0) (D.4)
(Dun, u,) = cos(rn)uB over T x (-1,-1/2). (D.5)

The relations (D.2)-(D.5) and the obvious remark A, ~ 27n immediately imply that
the sequence Q(u,) is unbounded both from below and above. Proposition 6.1 is
proved. O
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Remark D.1 The argument used in the proof of (b) can be easily adapted to produce
a proof of {a) without appealing to the results in [APS1] which rely on deep analytical
facts. The functions u, where found solving an eigenvalue problem for a linear 2-
dimensional hamiltonian equation given by the hamiltonian H : R* — R defined by
H(z,y) = p(|z|* = |y|?). In the boundary-less case it suffices to deform the metric
until the manifold ¥ looks like a connected sum ¥ = #sphere such that the gluing
region is cylindrical. Then “graft” on the neck the solutions of the above hamiltonian
equations.
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