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Introduction

In no other branch of mathematics is it so easy for experts to blunder as in
probability theory.

Martin Gardner

I have to confess that my mathematical formation is not that of a probabilist. I am a
geometer/analyst by training. About fifteen years ago I stumbled on some probabilistic ge-
ometry questions. The ad-hoc methods I used were producing encouraging but unsatisfactory
answers. A chance encounter with a trained probabilist led me to a pretty advanced mono-
graph dealing with related problems from a probabilistic view point. I spent a sabbatical
year learning probability so I could understand that book.

I eventually did understand that book, I was able to phrase the original questions in a
better language and I even offered answers to questions I could not conceive before. A “side
effect” of this effort was that I got a taste of probability.

To the geometer in me, the probabilistic thinking looked (and still looks) like mathematics
with a bit more, somewhat similar to classical mechanics, that is mathematics with a sprinkle
of physical intuition. I find this subject fresh, full of of interesting and enticing questions.
This is how my probabilistic journey began and I have been enjoying it since. In the meantime
I matured a bit more by teaching probability, both at undergraduate and graduate level. This
book partially reflects this personal journey.

Probability theory has grown out of many concrete examples and questions and I firmly
believe that probabilistic thinking can only be grasped through examples. Compared to other
mathematical areas I am familiar with, probability contains an unusually large number of
counterintuitive results. To me, these represent one of the attractive features of the subject.
So a substantial part of this book is devoted to examples, some truly fundamental and quite a
few more esoteric but which are aesthetically very pleasing and pedagogically very revealing.
Some of these examples are recurring, appearing in many places in the text and, as we develop
more and more sophisticated technology, we dig a deeper and deeper into them.

While teaching probability I discovered that probabilistic simulations enhance the under-
standing of probabilistic thinking. That is why I have included a brief introduction to R and
a few of the simple codes that allows one to do basic Monte-Carlo simulations. I hope I can
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ii Introduction

tempt the reader to try a few of these and be amazed, like myself and my students, of the
remarkable agreement between practice and theory.

I have divided the book into five chapters. The first one concentrates on the measure
theoretic foundations of probability and its theoretical part. It is essentially the content of
Kolmogorov’s foundational monograph. I assume that the reader is familiar with the measure
theory and integration. I survey this subject and I present complete proofs only of results
that have important probabilistic applications or significance.

The first genuinely probabilistic concept is that of independence and I prove early on
Kolmogorov’s zero-one theorem. It is a striking all-or-nothing result and its deeper impli-
cations are gradually revealed in the later parts of the book. The ubiquitous concept of
random variable and its numerical characteristics are discussed in detail. Along the way I
discuss the various modes of convergence of random variables. I made sure the reader has the
opportunity to see these ideas at work so I present many classical random variables and some
of their probabilistic occurrences. Among the classical problems/themes I discuss I should
mention, the inclusion-exclusion principle, sieves and Poissonization, Poisson processes, the
coupon collector problem, the longest common subsequence problem.

Section 4, one of the largest of this chapter, is devoted to the concept of conditional
expectation, a central probabilisitic concept that takes some getting used to. Analytically, the
existence of conditional expectation is a simple consequence of the Radon-Nicodym theorem.
This however hides its probabilistic significance. I opted for the more involved approach that
reveals the meaning of this object as the best predictor given certain information.

To get to the heart of the rather subtle concept of conditional expectation I tried to present
many examples, from simple computations to more sophisticated applications to stochastic
optimization problems such as the classical secretary problem. I spend considerable time
on the concept of kernels a.k.a. random measures, regular conditional distributions and
disintegration of measure describing the various connections between them. I opted to only
sketch the proof of the existence of regular conditional distributions since I felt that the
missing details add little to the understanding of this important concept. Instead, I have
included a large and varied number of concrete examples to give the reader a better feel of
this concept.

The last section of this chapter is an introduction to stochastic processes. The central
result of this section is Kolmogorov’s existence/consistency theorem that guarantees that
various objects discussed in the previous sections do indeed have a mathematical existence.
I decided to present a complete proof of this result so the reader can see the source of this
existence, namely Tikhonov’s compactness theorem, a result that is deeply rooted in the
foundations of mathematics.

Chapter 2 is devoted to a major theme in probability, the law of large numbers and its
relatives. To quote Gnedenko and Kolmogorov, [78], “all epistemological value of the theory
of probability is based on this: that large-scale random phenomena in their collective action
create strict, nonrandom regularity”.

The first section is devoted to the Strong Law of Large Numbers. I present Kolmogorov’s
proof that reduces this result to the convergence of random series with independent sum-
mands. I find the Law of Large Numbers philosophically surprising since it extracts order
out of chaos. The Monte Carlo method is one convincing manifestation of the order-out-chaos
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phenomenon. I could not pass the opportunity to introduce the concept of entropy and its
application via the law of large numbers to coding/compression of data. The second section
is devoted to the central limit theorem.

The third section is devoted to concentration inequalities. We describe the basics of Cher-
noff’s estimates and produce a few fundamental concentration inequalities. As an application
we discuss Lindenstrauss-Johnson lemma stating that the geometry of a cloud of points in
a high-dimensional vector space is, with high confidence, little disturbed by an orthogonal
projection onto a random subspace of much smaller dimension.

Section 4 is devoted to more modern considerations, namely uniform limits of empirical
processes. The Glivenko-Cantelli is the pioneering result in this direction. I also discuss
more recent results showing how this uniform convergence can be obtained by combining the
concentration results in the previous section and the concept of VC-families/dimension. I
briefly describe the significance of such results to PAC-learning, a concept central in machine
learning.

The last section of this chapter is a brief introduction to the theory of Brownian motion. I
used it as an opportunity to discuss more concepts and results involving stochastic processes
such as Gaussian processes and Kolmogorov’s continuity theorem.

Chapter 3 is devoted to the castle that J. L. Doob built, namely the theory of (sub)martingales,
discrete and continuous. I present in detail the theoretical pillars of this edifice: stop-
ping/sampling, asymptotic behavior, maximal inequalities and I discuss a large and diverse
collection of examples: occurrence of patterns, Galston-Watson processes, optimal gambling
strategies, Azuma and McDiarmid inequalities and their application to combinatorial op-
timization problems, backwards martingales, exchangeable sequences, de Finetti’s theorem,
and asymptotics in Polya’s urn problem, Brownian motion.

Chapter 4 is an introduction to Markov chains. This beautiful and rich subject is still
actual, growing, and has many applications and ramifications. The first three sections are
devoted to the “classical” part of this subject and culminates with the law of large numbers
for such stochastic processes. Section 4 is devoted to a more recent (1950’s) point of view,
namely the connection between reversible Markov chains and electrical networks. I adopt a
more geometric approach based on the old observations of H. Weyl and R. Bott (see [18])
that Kirckhoff’s laws have a Hodge theoretic description. The last section is devoted to finite
Markov chains I describe various ways of estimating the rate of convergence of irreducible
recurrent Markov chains. The chapter ends with brief discussion of the Markov Chain Monte
Carlo methods.

The last chapter of the book is the shortest and is devoted to the classical ergodic the-
orems. I have included it because I felt I owed it to the reader to highlight a principle that
unifies and clarifies the main limit theorems in Chapters 2 and 4.

As the title indicates, this book is meant as an introduction to the modern, i.e., post
Kolmogorov’s axiomatization, theory of probability. The reader is assumed to have some
familiarity with measure theory and integration and be comfortable with the basic objects
and concepts of modern analysis: metric/topological spaces, convergence, compactness. In a
few places, familiarity with basic properties of Banach spaces is assumed.
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This book could serve as a textbook for a year-long basic graduate course in probability.
With this purpose in mind I have a included a relatively large number of exercises, many of
them nontrivial and highlighting aspects I did not include in the main body of the text.

The book grew up from notes for a one-semester graduate course in probability that
I taught at the University of Notre Dame. That course covered Chapter 1, the classical
limit theorems (Sec.2.1-2.3) and discrete time martingales (Sec. 3.1-3.2). Some of the proofs
appear in fine print as a suggestion to the potential student/instructor that they can be
skipped at a first encounter with this subject.

Work on this book has been my constant happy companion during these improbable
pandemic times. I hope I was able to convey my curiosity, fascination and enthusiasm about
probability and convince some readers to dig deeper into this intellectually rewarding subject.

Notre Dame, May 2022



Notation and
conventions

• We set N := Z>0, N0 := Z≥0.

• For n ∈ N we set In := {1, 2, . . . , n}.
• For n ∈ N we denote by Sn the group of permutations of In.

• We set R+ := [0,∞).

• For x ∈ R we set ⌊x⌋ := maxZ ∩ (−∞, x], ⌈x⌉ := minZ ∩ [x,∞).

• x ∧ y := min(x, y), x ∨ y := max(x, y).

• i :=
√
−1

• Given a subset A of a set X we denote by Ac its complement (in X).

• For any set X we denote by 2X the collection of all the subsets of X.

• For any set X we denote by 2X0 the collection of all the finite subsets of X.

• We will denote by |S| or #S the cardinality of a set S.

• For natural numbers n ≥ k we denote by (n)k the falling factorial,

(n)k := n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

• If T is a topological space, then we denote by BT the σ-algebra of Borel subsets of
T .

• We denote by λ the standard Lebesgue measure on R and by λn the standard
Lebesgue measure on Rn.

• If (Ω,F) is a measurable space and (Ai)i∈I is a collection of subsets of F, then
σ(Ai, i ∈ I) is the smallest sub-σ-algebra of F containing all the collections Ai.

• For a collection (Xi)i∈I of random variables defined on the same probability space
we denote by σ(Xi; i ∈ I) the sub-σ-algebra generated by these variables.

v



vi Notation and conventions

• Given an ambient set Ω and a subset A ⊂ Ω we denote by IA : Ω → {0, 1} the
indicator function of A,

IA(ω) =

{
1, ω ∈ A,

0, ω ̸∈ A.

• We denote by ωn the volume of the unit ball in Rn and by σn−1 the “area” of the
unit ((n− 1)-dimensional) sphere in Rn.

ωn =
1

n
σn−1, σn−1 =

2Γ(1/2)n

Γ(n/2)
.
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Chapter 1

Foundations

At the beginning of the twentieth century probability was in a fluid state. There was no clear
mathematical concept of probability, and ad-hoc methods were used to rigorously formulate
classical questions. Probability at that stage was a collection of interesting problems in search
of a coherent setup. According to Jean Ville, a PhD student of M. Fréchet, in Paris probability
was viewed among mathematicians as “an honorable pastime for those who distinguished
themselves in pure mathematics”.

The whole enterprise seemed to be concerned with concepts that lie outside mathemat-
ics. Henri Poincaré himself wrote that “one can hardly give a satisfactory definition of
probability”. As Richard von Misses pointed out in 1928, the German word for probability,
“wahrscheinlich”, translates literally as “truth resembling”; see [176]. Bertrand Russel was
quoted as saying in 1929 that “Probability is the most important concept in modern science,
especially as nobody has the slightest notion of what it means”. The philosophical underpin-
nings of this concept are discussed even today. For more on this aspect we refer to the recent
delightful book [50].

In his influential 1900 International Congress address in Paris D. Hilbert recognized this
state of affairs and the importance of the subject. In the sixth problem of his famous list of
23 he asked, among other things, for rigorous foundations of probability. These were laid by
A. N. Kolmogorov in his famous 1933 monograph [100]. According to Kolmogorov himself,
this was not a research work, but a work of synthesis. A brilliant synthesis I might add. His
point of view was universally adopted and modern probability theory was born. The theory
of probability can now be informally divided into two eras: before and after Kolmogorov.

The present chapter is devoted to this foundational work of Kolmogorov. The pillars of
probability theory are the concept of probability or sample space, random variables, inde-
pendence, conditional expectations, and consistency, i.e., the existence of random variables
or processes with prescribed statistics.

So efficient is his axiomatization that to the untrained eye, probability, as envisaged
by Kolmogorov, may seem like a slice of measure theory. In a 1963 interview Kolmogorov
complained that his axioms have been so successful on the theoretic side that many mathe-
maticians lost interest in the problems and applications that were and are the main engines of
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2 1. Foundations

growth of this subject. I understand his criticism since I too was one of those mathematicians
that was not interested in these applications. Now I know better.

In this chapter I present these pillars of probability theory and prove their main properties.
I have included a large number of detailed examples meant to convey the subtleties, depth,
power and richness of these concepts. No abstract theorem can capture this richness.

I want to close with a personal anecdote that I find revealing. A few years ago, at a
conference, I had a conversation with J. M. Bismut, a known probabilist whose mathematical
interests were becoming more and more geometric. He noticed that I was in the middle
of a mathematical transition in the opposite direction and asked me what prompted it. I
explained my motivation, how I discovered that probability is not just a glorious part of
measure theory and how much I struggled to truly understand the concept of conditional
expectation, a concept eminently probabilistic. He smiled and said: “Probability theory
is measure theory plus conditional expectation”. I know it is an oversimplification, but it
contains a lot of truth.

1.1. Measurable spaces

1.1.1. Sigma-algebras. Fix a nonempty set Ω.

Definition 1.1.1. (a) A collection A of subsets of Ω is called an algebra of Ω if it satisfies
the following conditions

(i) ∅,Ω ∈ A.

(ii) ∀A,B ∈ A, A ∪B ∈ A.

(iii) ∀A ∈ A, Ac ∈ A.

(b) A collection S of subsets of Ω is called a σ-algebra (or sigma-algebra) of Ω if it is an
algebra of Ω and the union of any countable subfamily of S is a set in S, i.e.,

∀(An)n∈N ∈ SN,
⋃
n≥1

An ∈ S. (1.1.1)

(c) A measurable space is a pair (Ω, S), where S is a sigma-algebra of subsets of Ω. The
subsets S ∈ S are called (S-)measurable. ⊓⊔

Remark 1.1.2. To prove that an algebra S is a σ-algebra is suffices to verify (1.1.1) only for
increasing sequence of subsets Bn ∈ S. Indeed, if (An)n∈N is an arbitrary family in S the the
new family of sets in S

Bn =
n⋃
k=1

An, n ∈ N,

is increasing and its union coincides with the union of the family (An)n∈N. ⊓⊔

Example 1.1.3. (a) The collection 2
Ω of all subsets of Ω is obviously a σ-algebra.

(b) Suppose that S is a (σ-)algebra of a set Ω and F : Ω̂ → Ω is a map. Then the preimage

F−1(S) =
{
F−1(S); S ∈ S

}



1.1. Measurable spaces 3

is a (σ-)algebra of subsets of Ω̂. The σ-algebra F−1(S) is denoted by σ(F ) and it is called the
σ-algebra generated by F or the pullback of S via F . We will often use the more suggestive
notation

{F ∈ S} := F−1(S) =
{
ω̂ ∈ Ω̂; F (ω̂) ∈ S

}
.

(c) Given A ∈ Ω we denote by SA the σ-algebra generated by A, i.e.,

SA =
{
∅, A,Ac,Ω

}
.

We will refer to it as the Bernoulli algebra with success A. Note that SA is the pullback of
2
{0,1} via the indicator function IA : Ω → {0, 1}.

(d) If C ⊂ 2
Ω is a family of subsets of Ω, then we denote by σ(C) the σ-algebra generated by

C, i.e., the intersection of all σ-algebras that contain C. In particular, if S1, S2 are σ-algebras
of Ω, then we set

S1 ∨ S2 := σ(S1 ∪ S2).

More generally, for any family (Si)i∈I of σ-algebras we set∨
i∈I

Si := σ

(⋃
i∈I

Si

)
.

(e) Suppose that we are given a countable partition {An}n∈N of Ω

Ω =
⊔
n∈N

An.

The sets An are called the chambers of the partition.Then the σ-algebra generated by this
partition is the σ-algebra consisting of all the subsets of Ω who are unions of chambers. This
σ-algebra can be viewed as the σ-algebra generated by the map

X : Ω → N, X =
∑
n∈N

nIAn ,

so that An = X−1
(
{n}

)
.

(f) If (Si)i∈I is a family of (σ-)algebras of Ω, then their intersection⋂
i∈I

Si ⊂ 2
Ω

is a (σ-)algebra of Ω.

(g) If (Ω1, S1) and (Ω2, S2) are two measurable spaces, then we denote by S1 ⊗ S2 the sigma
algebra of Ω1 × Ω2 generated by the collection{

S1 × S2 : S1 ∈ S1, S2 ∈ S2
}
⊂ 2

Ω1×Ω2 .

(h) If X is a topological space and TX ⊂ 2
X denotes the family of open subsets, then the

Borel σ-algebra of X, denotes by BX , is the σ-algebra generated by TX . The sets in BX

are called the Borel subsets of X. Note that since any open set in Rn is a countable union of
open cubes we have

BRn = B⊗n
R . (1.1.2)

Any finite dimensional real vector space V can be equipped with a topology by choosing
a linear isomorphism L : V → RdimV . This topology is independent of the choice of the
isomorphism L. It can be alternatively identified as the smallest topology on V such that all
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the linear maps V → R are continuous. We denote by BV the sigma-algebra of Borel subsets
determined by this topology.

We set R̄ = [−∞,∞]. As a topological space it is homeomorphic to [−1, 1]. For simplicity
we will refer to the Borel subsets of R̄ simply as Borel sets.

(i) If (Ω, S) is a measurable space and X ⊂ Ω, then the collection

S|X :=
{
S ∩X : S ∈ S

}
⊂ 2

X

is a σ-algebra of X called the trace of S on X. ⊓⊔

Remark 1.1.4 (Nedoma’s pathology). Suppose that (Ω, S) is a measurable space. The
product Ω× Ω contains a distinguished set, the diagonal

Ω =
{
(ω, ω); ω ∈ Ω

}
⊂ Ω× Ω.

Then ∆ is not measurable measurable with respect to the product sigma-algebra S ⊗ S if
Card Ω > ℵc = Card R. For a proof we refer to [151, Sec. 21.8].

Suppose that Ω is a Hausdorff topological vector space, and S = BX is its associated
Borel sigma-algebra. The diagonal ∆ is closed with respect to the product topology. In
particular it belongs to the Borel sigma-algebra defined by the product topology. However,
if Card Ω > ℵc, then the diagonal it is not measurable with respect to the the product S⊗ S!
In other words the product of Borel sigma-algebras is strictly smaller than the Borel sigma-
algebra BX×X determined by the product topology! This phenomenon is referred to as the
Nedoma’s pathology. ⊓⊔

Definition 1.1.5. Let C be a collection of subsets of a set Ω. We say that C is a π-system
if it is closed under finite intersections, i.e.,

∀A,B ∈ C : A ∩B ∈ C.

The collection C is called a λ-system if it satisfies the following conditions.

(i) ∅,Ω ∈ C.

(ii) if A,B ∈ C and A ⊂ B, then B \A ∈ C.

(iii) If A1 ⊂ A2 ⊂ · · · belong to C, then so does their union.

⊓⊔

Note that a collection C is a σ-algebra if it is simultaneously a π and a λ-system.1 Since
the intersection of any family of λ-systems is a λ-system we deduce that for any collection
C ⊂ 2

Ω there exists a smallest λ-system containing C. We denote this system by Λ(C) and
we will refer to it as the λ-system generated by C. .

Example 1.1.6. Suppose that H is the collection of half-infinite intervals

(−∞, x], x ∈ R.

Then H is π-system of R. The λ-system generated by H contains all the open intervals. Since
any open subset of R is a countable union of open intervals we deduce that Λ(P) coincides
with the Borel σ-algebra BR.

1Check this.
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If X is a topological space and TX is the collection of open subsets, then TX is a π-system.
⊓⊔

Theorem 1.1.7 (Dynkin’s π − λ theorem). Suppose that P is a π-system. Then

Λ(P) = σ(P).

In other words, any λ-system that contains P, also contains the σ-algebra generated by
P.

Proof. Since any σ-algebra is a λ-system we deduce Λ(P) ⊂ σ(P). Thus it suffices to show
that

σ(P) ⊂ Λ(P). (1.1.3)

Equivalently, it suffices to show that Λ(P) is a σ-algebra. This happens if and only if the
λ-system Λ(P) is also a π-system. Hence it suffices to show that Λ(P) is closed under (finite)
intersections.

For any subset A ⊂ Ω we define

LA :=
{
B ∈ 2

Ω : A ∩B ∈ Λ(P)
}
.

It suffices to show that
Λ(P) ⊂ LA, ∀A ∈ Λ(P). (1.1.4)

Observe that LA is a λ-system if A ∈ Λ(P). Indeed, Ω ∈ LA since A ∈ Λ(P). The properties
(ii) and (iii) in the definition of a λ-system are clearly satisfied since Λ(P) is a λ-system.
Thus, to prove (1.1.4), it suffices to show that

P ⊂ LA, ∀A ∈ Λ(P). (1.1.5)

Note that since P is a π-system
P ⊂ LB, ∀B ∈ P.

In particular, since LB is a λ-system, we deduce

Λ(P) ⊂ LB, ∀B ∈ P.

Thus, if A ∈ Λ(P) and B ∈ P, then A ∩ B ∈ Λ(P). In other words, B ∈ LA, ∀B ∈ P,
∀A ∈ L(P ), i.e.,

P ⊂ LA, ∀A ∈ Λ(P).

This proves (1.1.5) and completes the proof of the π − λ-theorem. ⊓⊔

1.1.2. Measurable maps.

Definition 1.1.8. A map F : Ω1 → Ω2 called measurable with respect to the σ-algebras Si
on Ωi, i = 1, 2 or (S1, S2)-measurable if F−1(S2) ⊂ S1, i.e.,

F−1(S2) ∈ S1, ∀S2 ∈ S2.

Two measurable spaces (Ωi, Si), i = 1, 2, are called isomorphic if there exists a bijection
F : Ω1−→Ω2 such that F−1(S2) = S1 or, equivalently, both F and its inverse F−1 are
measurable. ⊓⊔
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Definition 1.1.9. Suppose that (Ω, S) is a measurable space. A function f : Ω → R̄ is
called S-measurable if, for any Borel subset B ⊂ R̄ we have f−1(B) ∈ S. ⊓⊔

Example 1.1.10. (a) The composition of two measurable maps is a measurable map.

(b) A subset S ⊂ Ω is S-measurable if and only if the indicator function IS is a measurable
function.

(c) If A is the σ-algebra generated by a finite or countable partition

Ω =
⊔
i∈I

Ai, I ⊂ N,

then a function f : Ω → (R,BR) is A-measurable if and only if it is constant in the chambers
Ai of this partition. ⊓⊔

The measurability of a map F : (Ω1, S1) → (Ω2, S2) imposes infinitely many constraints
on F , one constraint for each measurable set S2 ∈ S2. It is very impractical to decide the
measurability of such a map since very often S2 has a very complicated description. The next
result is extremely useful in practice since it shows that often the measurability of a map is
decided by a lot fewer and more transparent constraints.

Proposition 1.1.11. Consider a map F : (Ω1, S1) → (Ω2, S2) between two measurable spaces.
Suppose that C2 is a π-system of Ω2 such that σ(C2) = S2. Then the following statements are
equivalent.

(i) The map F is measurable.

(ii) F−1(C) ∈ S1, ∀C ∈ C2.

Proof. Clearly (i) ⇒ (ii). The opposite implication follows from the π−λ theorem since the
set {

C ∈ S2; F−1(C) ∈ S1
}

is a λ-system containing the π-system C2 that generates S2. ⊓⊔

Corollary 1.1.12. If F : X → Y is a continuous map between topological spaces, then it is
(BX ,BY ) measurable.

Proof. Denote by TY the collection of open subsets of Y . Then TY is a π-system and, by
definition, it generates BY . Since F is continuous, for any U ∈ TY the set F−1(U) is open in
X and thus belongs to BX . ⊓⊔

⊓⊔

Corollary 1.1.13. Let (Ω, S) be a measurable space. A function X : Ω → R is (S,BR)-
measurable if and only if the sets X−1( (−∞, x] ) are S-measurable for any x ∈ R.

Proof. It follows from the previous corollary by observing that the collection{
(−∞, x]; x ∈ R

}
⊂ 2

R
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is a π-system and the σ-algebra it generates is BR.

⊓⊔

Remark 1.1.14. In measure theory and analysis, sigma-algebras lie in the background and
rarely come to the forefront. In probability they play a more important role having to do
with how they are perceived.

One should think of Ω as the collection of all the possible outcomes of a random exper-
iment. A σ-algebra of Ω can be viewed as the totality of information we can collect using
certain measurements about the outcomes ω ∈ Ω. Let us explain this vague statement on a
simple example.

For example, suppose that the set of possible outcomes is [0, 1), but our measuring devices
detect with certainty only the first digit of the decimal expansion of a number in [0, 1). We
say that a subset S of [0, 1) is measurable if using our device we can conclude with absolute
certainty that an outcome ω belongs or not to S. In this case the only measurable subsets
are unions of the intervals

[
k−1
10 ,

k
n

)
, k = 1, . . . , 10.

Suppose now we are given a measurable space (Ω, S) and a function X : Ω → R. Can we
measure the value of X at an outcome ω using the same measurements that determine S?

Suppose that we can absolutely confirm about the outcome ω of an experiment is whether
X(ω) ≤ x for any given x ∈ R. In other other words, we can detect by measurements the
collection of sets

{X ≤ x} := X−1
(
(−∞, x]

)
, x ∈ R.

In particular, we can detect whetherX(ω) > x, i.e., we can detect the sets {X > x} = {X ≤ x}c.
More generally, we can determine the sets

{a < X ≤ b} = {X > a} ∩ {X ≤ b}.
Indeed, we can do this using two measurements: one measurement to decide if X ≤ a and
one to decide if X ≤ b. Moreover, we are allowed to perform countably many measurements.
In particular, we can decide if

ω ∈
⋂
n∈N

{
x− 1/n < X(ω) ≤ x+ 1/n

}
,

or, equivalently, if X(ω) = x.

We say that a set S isX-measurable if given ω ∈ Ω we can decide by doing countably many
measurements on X whether ω ∈ S. If S1, . . . , Sn, . . . ⊂ Ω are known to be X-measurable,
then their union is X-measurable. Indeed,

ω ∈
⋃
n∈N

Sn⇐⇒∃n ∈ N : ω ∈ Sn.

Let us observe that the set theoretic conditions imposed on a sigma-algebra have logi-
cal/linguistic counterparts. Thus, the statement

ω ∈
⋂
i∈I

Si

translates into the formula ∀i ∈ I, ω ∈ Si, while the statement

ω ∈
⋃
i∈I

Si
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translates into the formula ∃i ∈ I, ω ∈ Si.

Conversely, statements involving the quantifiers ∃, ∀ can be translated into set theoretic
statements.

The information we can collect by doing such measurements of the function X is collected
into the sigma-algebra σ(X) = X−1(BR) generated by the map X : Ω → (R,BR). ⊓⊔

Corollary 1.1.15. Consider a pair of maps between measurable spaces

Fi : (Ω, S) → (Ωi, Si), i = 1, 2.

Then the following statements are equivalent.

(i) The maps Fi are measurable.

(ii) The map

F1 × F2 : Ω → Ω1 × Ω2, ω 7→
(
F1(ω), F2(ω)

)
is (S, S1 ⊗ S2)-measurable.

Proof. (i) ⇒ (ii) Observe that if the maps F1, F2 are measurable then

F−1
1 (S1), F

−1
2 (S2) ∈ S, ∀S1 ∈ S1, S2 ∈ S2

⇒ (F1 × F2)
−1(S1 × S2) = F−1

1 (S1) ∩ F−1
2 (S2) ∈ S, ∀S1 ∈ S1, S2 ∈ S2.

Since the collection S1 × S2, Si ∈ Si, i = 1, 2, is a π-system that, by definition, generates
S1 ⊗ S2 we see that the last statement is equivalent with the measurability of F1 × F2.

(ii) ⇒ (i) For i = 1, 2 we denote by π the natural projection Ω1 × Ω2 → Ωi, (ω1, ω2) 7→ ωi.
The maps πi are (S1 ⊗ S2, Si) measurable and Fi = πi ◦ (F1 × F2). ⊓⊔

Definition 1.1.16. For any measurable space (Ω, S) we denote by L0(S) = L0(Ω, S) the
space of S-measurable random variables, i.e., (S,BR̄)-measurable functions Ω → R̄.

The subset of L0(Ω, S) consisting of nonnegative functions is denoted by L0
+(Ω, S), while

the subspace of L0(Ω, S) consisting of bounded measurable functions is denoted L∞(Ω, S).
⊓⊔

Remark 1.1.17. The algebraic operations on R admit (partial) extensions to R̄.

c+±∞ = ±∞,∞+∞ = ∞, c · ∞ = ∞, ∀c > 0.

As we know, there are a few “illegal” operations

∞−∞, 0 · ∞,
0

0
etc. ⊓⊔

Proposition 1.1.18. Fix a measurable space (Ω, S). Then the following hold.

(i) For any X,Y ∈ L0(Ω, S) and any c ∈ R we have

X + Y, XY, cX ∈ L0(Ω, S),

whenever these functions are well defined.
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(ii) If (Xn)n∈N is a sequence in L0(Ω, S) such that, for any ω ∈ Ω the limit

X∞(ω) = lim
n→∞

Xn(ω)

exists. Then X∞ : Ω → R̄ is also S-measurable.

(iii) If (Xn)n∈N is a sequence in L0(Ω, S). For any ω ∈ Ω we set

Y∞(ω) = inf
n∈N

Xn(ω), Zn(ω) = sup
n∈N

Xn(ω).

Then Y∞, Z∞ ∈ L0(Ω, S).

Proof. (i) Denote by D the subset of R̄2 consisting of the pairs (x, y) for which x+ y is well
defined,

D = R̄2 \
{
(∞,−∞), (−∞,∞)

}
.

The set D is obviously a Borel subset of R̄2 since it is open. Observe that X + Y is the
composition of two measurable maps

Ω → D ⊂ R̄2, ω 7→
(
X(ω), Y (ω)

)
, D → R̄, (x, y) 7→ x+ y.

Above, the first map is measurable according to Corollary 1.1.15 and the second map is Borel
measurable since it is continuous. The measurability of XY and cX is established in a similar
fashion.

(ii) Observe first that the set {X∞ > −∞} is measurable because

X∞(ω) > −∞⇐⇒∃M ∈ Z, ∃N ∈ N, ∀n > N, Xn(ω) > M.

We will show next that for any x ∈ R the set
{
X∞(ω) > x

}
is S-measurable. Note that

X∞(ω) > x⇐⇒∃ν ∈ N, ∃N = N(ω) ∈ N : ∀n ≥ N : Xn(ω) > x+ 1/ν.

Equivalently {
X∞(ω) > x

}
=
⋃
ν∈N

⋃
N∈N

⋂
n≥N

{
Xn > x+ 1/ν

}
∈ S.

(iii) The proof is very similar to the proof of (ii) so we leave the details to the reader. ⊓⊔

Corollary 1.1.19. For any measurable function f ∈ L0(Ω, S), its positive and negative parts,

f+ := max(f, 0), f− := max(−f, 0)
are also measurable.

Proof. The function f+ is the composition of the continuous function x+ = max(x, 0) with
f . ⊓⊔

Definition 1.1.20. A function f ∈ L0(Ω, S) is called elementary or step function if its range
is a finite subset of R. We denote by Elem(Ω, S) the set of elementary functions. ⊓⊔

More concretely, a function f : Ω → R is elementary if there exist finitely many disjoint
measurable sets A1, . . . , AN ∈ S, and constants c1, . . . , cN ∈ R such that

f(ω) =

N∑
k=1

ckIAk
(ω), ∀ω ∈ Ω. (1.1.6)
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The decomposition (1.1.6) of an elementary function f is not unique. Among the various
decompositions there is a canonical one

f =
∑
r∈R

rIf−1(r).

The above sum is finite since f−1(r) is empty for all but finitely many r’s.

Let us also observe that Elem(Ω, S) is a vector space. Indeed if f0, f1 are elementary
functions with ranges R0 and respectively R1, then their sum is measurable and its range is
contained in R0 + R1. This is a finite set since R0, R1 are finite. Clearly the multiplication
of an elementary function by a scalar also produces an elementary function.

Any nonnegative measurable function is the pointwise limit of an increasing sequence of
elementary functions. To see this, for each n ∈ N we define

Dn : [0,∞) → [0,∞), Dn(r) :=

n2n∑
k=1

k − 1

2n
I [(k−1)2−n,k2−n)(r).

Let us observe that if r ∈ [0, n], then Dn(r) truncates the binary expansion of r after n digits.
E.g., if r ∈ [0, 1) and

r = 0.ϵ1ϵ2 . . . ϵn . . . :=
∞∑
k=1

ϵk
2k
, ϵk ∈ {0, 1},

then

Dn(r) = 0.ϵ1 . . . ϵn.

This shows that (Dn)n∈N is a nondecreasing sequence of functions and

lim
n→∞

Dn(r) = r, ∀r ≥ 0.

For f ∈ L0
+(Ω, S) and n ∈ N we define Dn[f ] : (Ω, S) → [0,∞)

Dn[f ](ω) := Dn

(
f(ω)

)
=

n2n∑
k=1

k − 1

2n
I [(k−1)2−n,k2−n)( f(ω) ) + nI [n,∞)( f(ω) ). (1.1.7)

We deduce that the sequence of nonnegative elementary functions Dn[f ] converges increas-
ingly to f .

Definition 1.1.21. Let (Ω, S) be a measurable. A collection M of S-measurable functions is
called a monotone class of (Ω, S) if it satisfies the following conditions.

(i) IΩ ∈ M.

(ii) If f, g ∈ M are bounded and a, b ∈ R, then af + bg ∈ M.

(iii) If (fn) is an increasing sequence of nonnegative random variables in M with finite
pointwise limit f∞, then f∞ ∈ M.

⊓⊔

Theorem 1.1.22 (Monotone Class Theorem). Suppose that M is a monotone class of
the measurable space (Ω, S) and C is a π-system that generates S and such that IC ∈ M,
∀C ∈ C. Then M contains L∞(Ω, S) and all the nonnegative S-measurable functions.
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Proof. Observe that the collection

A :=
{
A ∈ S : IA ∈ M

}
is a λ-system containing the π-system C so A = σ(C) = S, by the π − λ theorem. Thus
M contains all the elementary functions. Since any nonnegative measurable function is an
increasing pointwise limit of elementary functions we deduce that M contains all the nonneg-
ative measurable functions. Finally, if f is a bounded measurable function, then f+, f− are
nonnegative and bounded measurable functions so f+, f− ∈ M and thus

f = f+ − f− ∈ M.

⊓⊔

Definition 1.1.23. The σ-algebra generated by a collection (Xi)i∈I of real-valued functions
on a set Ω is

σ
(
Xi, i ∈ I

)
:=
∨
i∈I

X−1
i (BR).

⊓⊔

The next result provides an interpretation of the concept of measurability along the lines
of Remark 1.1.14 .

Theorem 1.1.24 (Dynkin). Suppose that F : (Ω, S) → (Ω′, S′) is a measurable map. Let
X : Ω → R be an S-measurable function. Recall that σ(F ) = F−1(S′). Then the following are
equivalent.

(i) The function X is
(
σ(F ),BR

)
-measurable.

(ii) There exists an (S′,BR)-measurable function X ′ : Ω′ → R such that X = X ′ ◦ F .

Proof. Clearly, (ii) ⇒ (i). To prove that (i) ⇒ (ii) consider the family M of σ(F )-measurable
functions of the form X ′ ◦F , X ′ ∈ L0(Ω′, S′). We will prove that M = L0

(
Ω, σ(F )

)
. We will

achieve using the monotone class theorem.

Step 1. IΩ ∈ M.

Step 2. M is a vector space. Indeed if X,Y ∈ M and a, b ∈ R, then there exist S′-measurable
functions X ′, Y ′ such that

X = X ′ ◦ F, Y = Y ′ ◦ F, aX + bY = (aX ′ + bY ′) ◦ F.

Hence aX + bY ∈ M.

Step 3. IA ∈ M, ∀A ∈ σ(F ). Indeed, since A ∈ σ(F ) there exists A′ ∈ S′ such that

A = F−1(A′)

so IA = IA′ ◦ F . Hence M contains all the σ(F )-measurable elementary functions.

Step 4. Suppose now that X ∈ L0
(
Ω, σ(F )

)
is nonnegative. Then there exists an in-

creasing sequence (Xn)n∈N of σ(F )-measurable nonnegative elementary functions that con-
verges pointwise to X. For every n ∈ N there exists an S-measurable elementary function
X ′
n : Ω′ → R such that

Xn(ω) = X ′
n

(
F (ω)

)
, ∀ω ∈ Ω
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Define

Ω′
0 :=

{
ω′ ∈ Ω′; the limit limn→∞X ′

n(ω
′) exists and it is finite

}
Let us observe that Ω′

0 is S′-measurable because

ω′ ∈ Ω′
0⇐⇒∀ν ≥ 1, ∃N ≥ 1, ∀m,n ≥ N : |X ′

n(ω
′)−X ′

m(ω
′)| < 1/ν,

i.e.,

Ω′
0 =

⋂
ν∈N

⋃
N≥1

⋂
m,n>N

{
|X ′

n(ω
′)−X ′

m(ω
′)| < 1/ν

}
.

Clearly, F (Ω) ⊂ Ω′
0. For any ω

′ ∈ Ω′ we set

X ′
∞(ω′) :=


limn→∞X ′

n(ω
′), ω′ ∈ Ω′

0,

0, ω′ ∈ Ω′ \ Ω′
0.

Arguing as in the proof of Proposition 1.1.18(ii) we deduce that X ′
∞ is S′-measurable. For

any ω ∈ Ω the sequence X ′
n

(
F (ω)

)
= Xn(ω) is increasing and the the limit

lim
n→∞

X ′
n

(
F (ω)

)
exists and it is finite. Hence

X ′
∞
(
F (ω)

)
= X(ω), ∀ω ∈ Ω.

This proves that M is a monotone class in L0
(
Ω, σ(F )

)
that is also a vector space so it

coincides with L0
(
Ω, σ(F )

)
. ⊓⊔

Corollary 1.1.25. Suppose that X1, . . . , Xn : (Ω, S) → R are S-measurable random variables.
The the function X : Ω → R is σ(X1, . . . , Xn)-measurable if and only if there exists an BRn-
measurable function u : Rn → R such that

X = u
(
X1, . . . , Xn

)
.

Proof. Apply the above theorem with (Ω′, S′) = (Rn,BRn) and

F (ω) = (X1(ω), . . . , Xn(ω)
)
.

⊓⊔

Remark 1.1.26. We see that, in its simplest form, Corollary 1.1.25 describes a measure
theoretic form of functional dependence. Thus, if in a given experiment we can measure
the quantities X1, . . . , Xn and we know that the information X ≤ c can be decided only by
measuring the quantities X1, . . . , Xn, then X is in fact a (measurable) function of X1, . . . , Xn.
In plain English this sounds tautological. In particular, this justifies the choice of term
“measurable”. ⊓⊔
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1.2. Measures and integration

1.2.1. Measures. Throughout this section (Ω, S) will denote a measurable space. Given a
function f : X → R we will use the notation {f ≤ c} to denote the subset f−1

(
(−∞, c]

)
.

The sets {a ≤ f ≤ b} etc. are defined in a similar fashion.

Definition 1.2.1. A measure on (Ω, S) is a function µ : S → [0,∞], S 7→ µ
[
S
]
such that

the following hold.

• µ
[
∅
]
= 0, and

• it is σ-additive, i.e., for any sequence of pairwise disjoint S-measurable sets (An)n∈N
we have

µ

[ ⋃
n∈N

An

]
=
∑
n≥1

µ
[
An
]
. (1.2.1)

The measure is called σ-finite if there exists an increasing sequence of S-measurable sets

A1 ⊂ A2 ⊂ · · ·

such that ⋃
n∈N

An = Ω and µ
[
An
]
<∞, ∀n ∈ N.

The measure is called finite if µ
[
Ω
]
< ∞. A probability measure is a measure P such that

P
[
Ω
]
= 1. We will denote by Prob(Ω, S) the set of probability measures on (Ω, S). ⊓⊔

Remark 1.2.2. The σ-additivity condition (1.2.1) is equivalent to a pair of conditions that
are more convenient to verify in concrete situations.

(i) µ is finitely additive, i.e., for any finite collection of S-measurable sets A1, . . . , An
we have

µ

[
n⋃
k=1

Ak

]
=

n∑
k=1

µ
[
Ak
]
.

(ii) µ is increasingly continuous i.e., for any increasing sequence of S-measurable sets
A1 ⊂ A2 ⊂ · · ·

µ

[⋃
n∈N

An

]
= lim

n→∞
µ
[
An
]
. (1.2.2)

If µ
[
Ω
]
< ∞ and µ is finitely additive, then the increasing continuity condition (ii)

is equivalent with the decreasing continuity condition, i.e., for any decreasing sequence of
S-measurable sets B1 ⊃ B2 ⊃ · · ·

µ

[⋂
n∈n

Bn

]
= lim

n→∞
µ
[
Bn
]
. (1.2.3)

Indeed, the sequence Bc
n = Ω \ Bn is increasing and µ

[
Bc
n

]
= µ

[
Ω
]
− µ

[
Bn
]
. This last

equality could be meaningless if µ
[
Ω
]
= ∞ ⊓⊔

Definition 1.2.3. (a) A measured space is a triplet (Ω, S, µ), where (Ω, S) is a measurable
space and µ : S → [0,∞] is a measure. ⊓⊔
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Our next result shows that a finite measure is uniquely determined by its restriction to
an algebra generating the sigma-algebra where it is defined.

Proposition 1.2.4. Consider a measurable space (Ω, S) and two finite measures µ1, µ2 : S → [0,∞]

such that µ1
[
Ω
]
= µ2

[
Ω
]
<∞, then the collection

E :=
{
S ∈ S; µ1

[
S
]
= µ2

[
S
] }

is a λ-system. In particular, if µ1
[
C
]
= µ2

[
C
]
for any set C that belongs to a π-system C,

then µ1 and µ2 coincide on the σ-algebra generated by C.

Proof. Clearly ∅,Ω ∈ E. If A,B ∈ E and A ⊂ B, then

µ1
[
A
]
= µ2

[
A
]
<∞, µ1

[
B
]
= µ2

[
B
]
<∞

so

µ1
[
B \A

]
= µ1

[
B
]
− µ1

[
A
]
= µ2

[
B
]
− µ2

[
A
]
= µ2

[
B \A

]
,

so B \ A ∈ C. The condition (iii) in the Definition 1.1.5 of a λ-system follows from the
σ-additivity of the measures µ1, µ2. ⊓⊔

Definition 1.2.5. A probability space, or sample space, is a measured space (Ω, S,P), where
P is a probability measure. In this case we use the following terminology.

• The subsets S ∈ S care called the events of the sample space.

• An event S ∈ S is called almost sure (or a.s.) if P
[
S
]
= 1. An event S is called

improbable if P
[
S
]
= 0.

• The measurable functions X : (Ω, S,P) →R are called random variables.

• A random variable X : (Ω, S,P) →R is called a.s. finite if

P
[
|X| <∞

]
= 1.

• A random variable on (Ω, S,P) is called deterministic if there exists c ∈ R such that
X = c a.s..

⊓⊔

✍ Traditionally the random variables have capitalized names X,Y, Z etc to distinguish them
from deterministic quantities that are indicated in small caps. We will try to adhere to this
convention throughout this book

Example 1.2.6. (a) If (Ω, S) is a measurable space, then for any ω0 ∈ Ω, the Dirac measure
concentrated at ω0 is the probability measure

δω0 : S → [0,∞), δω0

[
S
]
=

{
1, ω0 ∈ S,

0, ω0 ̸∈ S.

(b) Suppose that S is a finite or countable set. A measure on (S,2S) is uniquely determined
by the function

w : S → [0,∞], w(s) = µ
[
{s}

]
.
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We say that µ[{s}] is the mass of s with respect to µ. The function w is referred to as the
weight function of the measure. Often, for simplicity, we will write

µ
[
s
]
:= µ

[
{s}

]
.

The associated measure µw is a probability measure if∑
s∈S

w(s) = 1.

When S is finite and

w(s) =
1

|S|
, ∀s ∈ S,

then the associated probability measure µw is called the uniform probability measure on the
finite set S.

(c) Suppose that F : (Ω, S) → (Ω′, S′) is a measurable map between measurable spaces. Then
any measure µ on Ω induces a measure F#µ on Ω′ according to the rule

F#µ
[
S′ ] := µ

[
F−1(S′)

]
.

The measure F#µ is called the pushforward of µ via F .

(d) Fix a set T with two elements, T = {0, 1}. For any p ∈ (0, 1) the probability measure
βp : 2

T → [0,∞) defined by

βp
[
1
]
= p, βp

[
0
]
= q := 1− p

is called the Bernoulli distribution with success probability p. We abbreviate it by Ber(p).

(e) Given finite or countable sets Ω1, . . . ,Ωn, and probability measures µi : 2
Ωi → [0, 1], we

obtain a probability measure

µ := µ1 ⊗ · · · ⊗ µn : 2Ω1×···×Ωn → [0, 1]

by setting

µ
[
(ω1, . . . , ωn)

]
= µ1

[
ω1

]
· · ·µn

[
ωn
]
, ∀(ω1, . . . , ωn) ∈ Ω1 × · · · × Ωn.

In particular, there exists a probability measure β⊗np on {0, 1}n.
Note that we have a random variable

N : {0, 1}n → N0, N
(
(ϵ1, . . . , ϵn)

)
= ϵ1 + · · ·+ ϵn, ∀ϵ1, . . . , ϵn ∈ {0, 1}.

The push-forward P = Pn,p := N#β
⊗n
p is a probability measure on {0, 1, . . . , n} called the

binomial distribution corresponding to n independent trials with success probability p and
failure probability q = 1− p. It is abbreviated Bin(n, p). Note that Bin(1, p) = Ber(p). For
any k ∈ {0, 1, . . . , n} we have

P =

n∑
k=0

P
[
k
]
δk,

where

P
[
k
]
= β⊗np [N = k] =

∑
ϵ1+···+ϵn=k

β⊗np
[
(ϵ1, . . . , ϵn)

]
=

∑
ϵ1+···+ϵn=k

pkqn−k =

(
n

k

)
pkqn−k.
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(f) The Lebesgue measure λ defines a measure on BR. For any compact interval [a, b] the
uniform probability measure on [a, b] is

1

b− a
I [a,b]λ. ⊓⊔

Definition 1.2.7. Let X be a topological space. As usual BX denotes the σ-algebra of Borel
subsets of X. A measure on X is called Borel if it is defined on BX . ⊓⊔

The Lebesgue measure on R is a Borel measure.

Definition 1.2.8. Suppose that X ∈ L0(Ω, S,P). Its distribution is the Borel probability
measure PX on R̄ defined by

PX
[
B
]
= P

[
X ∈ B

]
, ∀B ∈ BR̄.

In other words, PX is the pushforward of P by X, PX = X#P. ⊓⊔

Definition 1.2.9. Suppose that µ is a measure on the measurable space (Ω, S).

(i) A set N ⊂ Ω is called µ-negligible if there exists a set S ∈ S such that

N ⊂ S and µ
[
S
]
= 0.

We denote by Nµ the collection of µ-negligible sets.

(ii) The σ-algebra S is said to be complete with respect to µ (or µ-complete) if it
contains all the µ-negligible subsets.

(iii) The µ-completion of S is the σ-algebra Sµ := σ(S,Nµ).

⊓⊔

Remark 1.2.10. (a) It may be helpful to think of a sample space (Ω, S,P) as the collection
of all possible outcomes ω of an experiment with unpredictable results. The observer may
not be able to distinguish through measurements all the possible outcomes, but she is able
to distinguish some features or properties of various outcomes. An event can be understood
as the collection of the all outcomes having an observable or measurable property. The
probability P associates a likelihood of a certain property to be observed at the end of such
a random experiment.

Take for example the experiment of flipping n times a coin with 0/1 faces. One natural
sample space for this experiment is based on the set Ω =

{
0, 1

}n
.

If we assume that the coin is fair, then it is natural to conclude that each outcome ω ∈ Ω
is equally likely. Suppose that we can distinguish all the outcomes. In this case

S = 2
Ω.

Since there are 2n outcomes that are equally likely to occur we obtain a probability measure
P given by

P
[
S
]
=

|S|
2n
, ∀S ∈ S.

A random variable on a sample space is a numerical attribute X that we can assign to each
outcome ω of a random experiment with the following feature: for any c ∈ R the property
X(ω) ≤ c is observable, i.e., the set X−1

(
(−∞, c]

)
belongs to the collection S of observable
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properties. For example, in the situation of n fair coin tosses, the number N of 1’s observed
at the end of n tosses is a random variable.

(b) Often one speaks of sampling a probability distribution on R. Modern computer systems
can sample many distributions. More concretely, we say that a probability measure µ on
(R,BR) can be sampled by a computer system if that computer can produce a random2

experiment whose outcome is a random number X so that, when we run the experiment a
large number of times n, it generates numbers x1, . . . , xn and, for any c ∈ R, the fraction of
these numbers that is ≤ c is very close to µ

[
(−∞, c]

]
.

When we speak of sampling a random variable X, we really mean sampling its probability
distribution PX . ⊓⊔

Clearly Sµ is the smallest µ-complete σ-algebra containing S. The proof of the following
result can be safely left to the reader.

Proposition 1.2.11. Suppose that µ is a measure on the σ-algebra S ⊂ 2
Ω.

(i) The completion Sµ has the alternate description

Sµ =
{
S ∪N ; S ∈ S, N ∈ Nµ

}
⊂ 2

Ω.

(ii) The measure µ admits a unique extension to a probability measure µ̄ : Sµ → [0,∞).
More precisely

∀S ∈ S, N ∈ Nµ µ̄
[
S ∪N

]
= µ

[
S
]
.

⊓⊔

Definition 1.2.12. A set S ⊂ R is called Lebesgue measurable if it belongs to the λ-
completion of BR. ⊓⊔

The most versatile method of constructing measures is Carathéodory Extension Theorem.
We need to introduce the appropriate concepts.

Definition 1.2.13. Fix a set Ω and an algebra F ⊂ 2
Ω

(i) A function µ : F → [0,∞] is called a premeasure if it satisfies the following condi-
tions.
(a) µ

[
∅
]
= 0

(b) µ is finitely additive, i.e., for any finite collection of disjoint sets A1, . . . , An ∈ F

we have

µ

[
n⋃
k=1

Ak

]
=

n∑
k=1

µ
[
Ak
]
.

(c) µ is conditional countably additive, i.e., for any sequence (An)n∈N of disjoint
sets in F whose union is a set A ∈ F we have

µ
[
A
]
=
∑
n≥1

µ
[
An
]
.

2The precise term is pseudo-random since one cannot algortitmically simulate randomness.
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(ii) The premeasure µ is called σ-finite if there exists a sequence of sets (Ωn)n∈N in F

such that

Ω =
⋃
n∈N

Ωn, µ
[
Ωn
]
<∞, ∀n ∈ N.

⊓⊔

Remark 1.2.14. Suppose that µ : F → [0,∞) is a finitely additive function on an algebra
F of subsets of a set Ω such that µ

[
Ω
]
<∞. Then µ is a premeasure if and only if, for any

decreasing sequence (Fn)n∈N of sets in F with empty intersection we have

lim
n→∞

µ
[
Fn
]
= 0.

Indeed, if (An)n∈N is a sequence of disjoint sets of F whose union A is also a set in F, then
the sequence

Fn = A \
n⋃
k=1

Ak

is a decreasing sequence in F with empty intersection and

µ
[
Fn
]
= µ

[
A
]
−

n∑
k=1

µ
[
Ak
]
.

⊓⊔

The (conditional) countable additivity condition in the definition of a premeasure could
be challenging to verify. The next result whose proof is left to you as an exercise give a
simpler sufficient condition guaranteeing this countable additivity.

Theorem 1.2.15 (Alexandrov). Suppose that that K is a compact topological space, F is
an algebra of subsets of K and µ : F → [0, 1] is a finitely additive function satisfying the
following regularity property: for any F ∈ F and any ε > 0 there exists a set F− ∈ F such
that

cl(F−) ⊂ F, µ
[
F \ F−

]
< ε.

Then µ is a premeasure. ⊓⊔

Proof. Let us introduce a convenient terminology. For ε > 0 we define an ε-squeeze of a set
F ∈ F to be a set G ∈ F such that cl(G) ⊂ F and µ

[
F \G

]
< ε.

Lemma 1.2.16. Suppose that F1, F2 ∈ F, F2 ⊂ F1, and for i = 1, 2, Gi is an εi-squeeze of
Fi. Then G1 ∩G2 is an (ε1 + ε2)-squeeze of F2.

Proof of Lemma 1.2.16. Clearly

cl(G1 ∩G2) ⊂ cl(G2) ⊂ F2,

F2 \ (G1 ∩G2) = F2 ∩ (G1 ∩G2)
c = F2 ∩ (Gc1 ∪Gc2) = (F2 ∩Gc1) ∪ (F2 ∩Gc2),

and

µ
[
F2 \ (G1 ∩G2)

]
= µ

[
(F2 \G1) ∪ (F2 \G2)

]
≤ µ

[
F2 \G1

]
+ µ

[
F2 \G2

]
≤ µ

[
F1 \G1

]
+ µ

[
F2 \G2

]
≤ ε1 + ε2.

⊓⊔
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To prove that µ is a pre-measure it suffices to show that if (Fn)n∈N is a decreasing sequence
in F with empty intersection, then

lim
n→∞

µ
[
Fn
]
= 0.

Fix ε > 0. For n ∈ N, fix an ε
2n -squeeze Gn of Fn. Define

Hn :=

n⋂
k=1

Gn, εn :=

n∑
k=1

ε

2k
= ε
(
1− 2−n

)
.

Applying Lemma 1.2.16 iteratively we deduce thatHn is an εn-squeeze of Fn. By construction
the sequence Hn is decreasing and thus the sequence of closures cl(Hn) is decreasing as well.
Note that ⋂

n

cl(Hn) ⊂
⋂
Fn = ∅.

Since K is compact we deduce that there exists N = N(ε) ∈ N such that cl(HN ) = ∅. Hence
HN = ∅ and since HN is an εN -squeeze we deduce that, ∀n ≥ N

µ
[
Fn
]
≤ µ

[
FN
]
= µ

[
FN \HN

]
≤ εN < ε.

⊓⊔

For a proof of the next central result we refer to [6, Sec. 1.3], [56, Chap. 3] or [99,
Thm.1.53, 1.65].

Theorem 1.2.17 (Carathéodory Extension Theorem). Suppose that F is an algebra of sub-
sets of Ω and µ : F → [0,∞] is a σ-finite premeasure on F. Then the following hold.

(i) The premeasure µ admits a unique extension to a measure µ̃ : σ(F) → [0,∞].

(ii) For any A ∈ σ(F) and any ε > 0 there exist mutually disjoint sets A1, . . . , Am ∈ F

and B1, . . . , Bn ∈ F such that

A ⊂
m⋃
j=1

Aj , µ̃

 m⋃
j=1

Aj \A

 < ε,

and

µ̃

[
A ∆

n⋃
k=1

Bk

]
< ε.

⊓⊔

Example 1.2.18. Let F denote the collection of subsets of R that are union of intervals of
the type (a, b], −∞ ≤ a < b < ∞. This is an algebra of sets. Any F can be written in a
(non)unique way as a union

F =
n⋃
j=1

(ai, bi], ai < bi ≤ ai+1 < bi+1, ∀i = 1, . . . , n− 1.

While this decomposition is not unique the sum

λ
[
F
]
=

n∑
i=1

(bi − ai)
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depends only on F and not on the decomposition. It is not very hard to show that the
correspondence

F ∋ F 7→ λ
[
F
]
∈ [0,∞]

is finitely additive. The fact that λ is a premeasure, i.e., it is (conditionally) sigma-additive,
is much more subtle, and it is ultimately rooted in the compactness of the closed and bounded
intervals of R. More precisely if we denote by Fn the trace of F to [−n, n] and by λn the
restriction of λ to Fn, then Alexandrov’s Theorem 1.2.15 implies that λn is a premeasure for
any n ∈ N. A simple argument then implies that λ itself is a premeasure. For details we
refer to [6, Sec. 1.4] or [56, Chap. 3]. The resulting measure on BR is called the Lebesgue
measure on R and we continue to denote it by λ . ⊓⊔

Definition 1.2.19. A distribution function is a right-continuous nondecreasing function

F :R→ [0, 1]

such that F (−∞) = 0 and F (∞) = 1. ⊓⊔

Example 1.2.20. Suppose that X is a random variable defined on the probability space
(Ω, S,P). The function

FX : R → [0, 1], FX(x) = P[X ≤ x]

is a distribution function called the cumulative distribution function or cdf of the random
variable X. ⊓⊔

Example 1.2.21 (Lebesgue-Stieltjes measures). Suppose that F :R→ [0, 1] is a distribution
function. Then there exists a unique Borel probability measure µ = µF on BR such that

µ
[
(x, y]

]
= F (y)− F (x), ∀x ≤ y ∈ R. (1.2.4)

The uniqueness follows from the fact the collection of intervals (−∞, x] is a π-system that
generates the Borel algebra of R. The existence follows from Caratheodory’s extension theo-
rem; see [6, Sec. 1.4] or [56, Chap 3.]. Below we will describe another existence proof that
relies only the existence of the usual Lebesgue measure.

The above measure µF is called the Stieltjes probability measure associated to the dis-
tribution function F . Its extension to the completion B

µ
R is called the Lebesgue-Stieltjes

measure associated to the distribution function F .

Conversely, if µ is a Borel probability, measure on R, then µ is the Stieltjes measure
associated to its cumulative distribution function (cdf) F : R→ [0, 1], F (x) = µ

[
(−∞, x]

]
.
⊓⊔

Example 1.2.22 (Quantiles). Here is an alternate description of this measure based on

a construction frequently used in statistics. Suppose that F : R → [0, 1] is a cumulative
distribution function. The quantile function of F is a generalized inverse of the nondecreasing
function F . Here is a geometric description of Q.

The non-decreasing function F has at most countable many discontinuities, all of jump
type. Graph F in the xy plane and the fill in the gaps at its discontinuities by vertical
segments; see Figure 1.1. The result is the completed graph of F . It ”continuous” curve in
the plane that may contain vertical segments. Given p ∈ (0, 1), the horizontal line y = p
intersects this curve at a point or along a closed horizontal segment. The quantile Q(p) is
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Figure 1.1. Visualising a cdf and its quantile.

the leftmost/smallest abscissa of a point on this intersection. For example, for F as in Figure
1.1 we have Q(0.3) = 1.

Formally

Q : [0, 1] →R, Q(p) := inf
{
x : p ≤ F (x)

}
= inf F−1

(
[p, 1]

)
.

(1.2.5)

Since F is right-continuous the above definition is equivalent to

F−1
(
[p, 1]

)
=
[
Q(p),∞

]
.

Suppose that x0 is a point of discontinuity of F and we set

p−0 := lim
x↗x0

F (x) < F (x0) =: p0.

Note that Q(p0) = x0 and if p ∈ (p−0 , p0], then Q(p) = x0.

Note that for any x ∈ R we have

0 ≤ y ≤ F (x)⇐⇒Q(y) ≤ x, (1.2.6)

Q−1
(
[−∞, x]

)
= [0, F (x)]. (1.2.7)

Indeed, ℓ ∈ Q−1
(
[−∞, x]

)
if and only if Q(ℓ) ≤ x, i.e., ℓ ≤ F (x). In particular,

Q−1
(
(x, y]

)
=
(
F (x), F (y)

]
, ∀ −∞ ≤ x ≤ y ≤ ∞.

The quantile is left continuous. Indeed, let pn ↗ p0. We will show that

lim
n
Q(pn) = Q(p0).

Note that limnQ(pn) ≤ Q(p0) since Q is nondecreasing. To prove that we have equality we
argue by contradiction. Set xn := Q(pn), x0 = Q(p0). Suppose

lim
n
xn = x∞ < x0 = inf

{
x; F (x) ≥ p0

}
.

From the definition of inf as the greatest lower bound we deduce that there exists x∗ ∈ (x∞, x0)
such that F (x∗) < p0. Thus F (xn) ≤ F (x∗) Since pn ↗ p0 we deduce pn > F (x∗) for all n
sufficiently large. This implies

x∗ ̸∈
{
x; F (x) ≥ pn

}
= [Q(pn),∞)

i.e., xn = Q(pn) > x∗, for all n sufficiently large. This contradicts the fact that xn → x∞ < x∗.
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If λ[0,1] denotes the Lebesgue measure3 on [0, 1], then

Q#λ[0,1]

[
(x, y]

]
= λ

[
Q−1

(
(x, y]

) ]
= F (y)− F (x).

Hence the pushforward measure Q#λ[0,1] satisfies (1.2.4) since it coincides with µF on the
π-system consisting of the the intervals of the form (a, b] it coincides with µF on the sigma-
algebra of Borel sets.

When F is the cumulative distribution function of a random variable, the associated
quantile function is called the quantile of the random variable X and it is denoted by QX .

The intersection of the horizontal line y = 1
2 is a, possibly degenerate, horizontal segment.

The abscissas of points on this segment are called the medians of X. ⊓⊔

1.2.2. Independence and conditional probability. The next concepts are purely prob-
abilistic in nature. They have no natural counterpart in the traditional measure theory.

Definition 1.2.23. (a) The events A1, A2, . . . , An of a sample space (Ω, S,P) are called
independent if, for any nonempty subset {i1, . . . , ik} ⊂ {1, . . . , n}, we have

P
[
Ai1 ∩ · · · ∩Aik

]
= P

[
Ai1

]
· · ·P

[
Aik

]
.

(b) The families of events A1, . . . ,An ⊂ S are called independent if for any Ai ∈ Ai,
i = 1, . . . , n, the events A1, . . . , An are independent.

(c) The (possibly infinite) collection of families of events (Ai)i∈I is called independent if for
any i1, . . . , in ∈ I the finite collection Ai1 , . . . ,Ain is independent.

(d) An independency is an independent collection (Si)i∈I of sigma-subalgebras of S.

(e) The collection of random variables Xi ∈ L0(Ω, S), i ∈ I, is called independent if the
collection of σ-algebras

(
σ(Xi)

)
i∈I is independent. ⊓⊔

☞ We will use the notation X ⊥⊥ Y to indicate that the random variables X,Y are indepen-
dent.

Remark 1.2.24. (a) We want to emphasize that the independence condition is sensitive to
the choice of probability measure involved in this definition.

(b) It is possible that n + 1 events be dependent although any n of them are independent.
Here is one such instance, [163, Ex. 3.5]. Suppose we flip a fair coin n times. In this case a
natural sample space is

Ω = 2
In = {0, 1}n,

with the uniform probability measure. (Above, 1= Heads.) For k = 1, . . . , n we denote by k
the event “Heads at the k-th flip”, i.e.,

Ek =
{
ω = (ω1, . . . , ωn) ∈ Ω; ωk = 1

}
.

Denote by E0 the event “the number of heads in these n flips is even”, i.e.,

E0 =
{
ω ∈ Ω; ω1 + · · ·+ ωn ∈ 2Z

}
3The proof of the existence of the Lebesgue measure is based on Caratheodory’s extension theorem.
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Clearly

P
[
Ek
]
=

1

2
, ∀k = 1, . . . , n.

Since the probability of flipping an even number of Heads is equal to the probability of flipping
an odd number of Heads, we deduce that

P
[
E0

]
=

1

2
.

For any subset I ⊂ {0, 1, . . . , n} we set

EI :=
⋂
i∈I

Ei.

The events E1, . . . , En are independent. Observe that for any subset I ⊂ In, |I| = k < n, we
have

P
[
E0 ∩ EI

]
= P

[ {
ω ∈ Ω; ωi = 1 ∀i ∈ I,

∑
j ̸∈I

ωi ≡ |I| mod 2
} ]
.

= P
[ {
ω ∈ Ω; ωi = 1 ∀i ∈ I

} ]
︸ ︷︷ ︸

1

2k

·P
[ {
ω ∈ Ω;

∑
j ̸∈I

ωj ≡ |I| mod 2
} ]

︸ ︷︷ ︸
1
2

=
1

2k+1
= P

[
E0

]
·
∏
i∈I

P
[
Ei
]
.

Thus, any n of the events E0, E1, . . . , En are independent. Finally, note that
n∏
i=0

P
[
Ei
]
=

1

2n+1
and P

[
E0 ∩ E1 ∩ · · · ∩ En

]
=

{
0, n odd,
1
2n , n even.

This shows the events E0, E1, . . . , En are dependent.

(c) If Ω is contained in each of the families of events A1, . . . ,An, then these families are
independent if and only if

P
[
A1 ∩ · · · ∩An

]
= P

[
A1

]
· · ·P

[
An
]
, ∀Ak ∈ Ak, k = 1, . . . , n. ⊓⊔

Proposition 1.2.25. Let (Ω, S,P) be a sample space and that P1, . . . ,Pn ⊂ S are π-systems
each containing Ω. The following statements are equivalent

(i) The families P1, . . . ,Pn are independent

(ii) The collection of σ-algebras σ(P1), . . . , σ(Pn) is independent .

Proof. Clearly it suffices to prove only (i) ⇒ (ii). Fix Si ∈ Pi, i = 2, . . . , n. Let

I :=
{
S ∈ S : P

[
S ∩ S2 ∩ · · · ∩ Sn

]
= P

[
S
]
P
[
S2
]
· · ·P

[
Sn
] }
.

Note that P1 ⊂ I. Next let us observe that I is a λ-system. Indeed if A,B ∈ I and A ⊂ B
then

P
[
(B \A) ∩ S2 ∩ · · · ∩ Sn

]
= P

[
(B ∩ S2 ∩ · · · ∩ Sn) \ (A ∩ S2 ∩ · · · ∩ Sn)

]
= P

[
B
]
P
[
S2
]
· · ·P

[
Sn
]
− P

[
A
]
P
[
S2
]
· · ·P

[
Sn
]
= P

[
B \A

]
P
[
S2
]
· · ·P

[
Sn
]
.

If A1 ⊂ A2 ⊂ · · · ⊂ Aν ⊂ is an increasing sequence of events in I and

A = lim
ν∞

Aν =
⋃
ν≥1

Aν
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then

P
[
A ∩ S2 ∩ · · · ∩ Sn

]
= lim

ν→∞
P
[
Aν ∩ S2 ∩ · · · ∩ Sn

]
= lim

ν→∞
P
[
Aν
]
P
[
S2
]
· · ·P

[
Sn
]
= P

[
A
]
P
[
S2
]
· · ·P

[
Sn
]
.

The π − λ theorem implies that σ(P1) ⊂ I so that

P
[
A1 ∩ S2 ∩ · · · ∩ Sn

]
= P

[
A1

]
P
[
S2
]
· · ·P

[
Sn
]
,

for all A1 ∈ σ(P1), Si ∈ Pi, i = 2, . . . , n. Repeating the above argument we deduce

P
[
A1 ∩A2 ∩ · · · ∩An

]
= P

[
A1

]
P
[
A2

]
· · ·P

[
An
]
, ∀Ak ∈ σ(Pk), k = 1, . . . , n.

Remark 1.2.24 shows that the σ-algebras σ(P1), . . . , σ(Pn) are independent. ⊓⊔

Corollary 1.2.26. Consider the random variables X1, . . . , Xn : (Ω, S,P) → R. The following
statements are equivalent.

(i) The random variables X1, . . . , Xn are independent.

(ii) For any x1, . . . , xn ∈ R

P
[
X1 ≤ x1, . . . , Xn ≤ xn

]
= P[X1 ≤ x1] · · ·P[Xn ≤ xn]

Proof. It follows from Proposition 1.2.25 applied to the π-systems

Pk :=
{
{Xk ≤ xk} : xk ∈ (−∞,∞]

}
, k = 1, . . . , n.

⊓⊔

Corollary 1.2.27 (Partition of independencies). Suppose that (Si)i∈I is an independency of
(Ω, S,P). For any partition (Iα)α∈A of I we set

Fα :=
∨
i∈Iα

Si, α ∈ A.

Then the collection (Fα)α∈A is also an independency.

Proof. Denote by Cα the π-system obtained by taking intersections of finitely many events
from

⋃
i∈Iα Si. Note that ⋃

i∈Iα

Fi ⊂ Λ
(
Cα
)

The π − λ theorem implies

Fα = σ(Cα), ∀α ∈ A.

The family (Cα)α∈A is clearly independent. The conclusion now follows from Proposition
1.2.25. ⊓⊔

Corollary 1.2.28. Suppose that the random variables X1, . . . , Xn ∈ L0(Ω, S,P) are indepen-
dent. Then for any 1 < k < n and any Borel measurable functions f : R̄k → R̄, g : R̄n−k → R̄
the random variables

f(X1, . . . , Xk), g(Xk+1, . . . , Xn)

are independent. ⊓⊔
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Definition 1.2.29 (Tail algebra). Consider a sequence (Sn)n∈N of sub-σ-algebras of (Ω, S,P).
The tail algebra of this sequence is σ-algebra

T = T(Sn) :=
⋂
m∈N

Tm, Tm :=
∨
n>m

Sn. (1.2.8)

The events in T are called tail events. ⊓⊔

Remark 1.2.30. (a) An event S is a tail event of the sequence (Sn)n∈N if

∀m ∈ N ; S ∈
∨
n>m

Sn.

The sequence of σ-algebras (Sn)n∈N can be viewed as an information stream. The tail events
are described by a stream of information and are characterized by the fact that their occur-
rence is unaffected by information at finitely moments of time in the stream.

(b) To a sequence of random variables Xn : (Ω, S,P) → R we associate the sequence of σ-
algebras Sn = σ(Xn) and the event C:= ”the sequence

(
Xn(ω)

)
n≥1

converges” is a tail event

since is belong to Tm for any m. Indeed, for any m we have

C :=
{
ω ∈ Ω; ∀ν ∈ N, ∃N > m, ∀k1, k2 > N

∣∣Xk1(ω)−Xk2(ω)
∣∣ < 1

ν

}
⋂
ν

⋃
N>m

⋂
k1,k1>N

{ ∣∣Xk1(ω)−Xk2(ω)
∣∣ < 1

ν

}
︸ ︷︷ ︸

=:Cm,ν

.

Next, observe that for k1, k2 > N > m and r > 0 the event{ ∣∣Xk1(ω)−Xk2(ω)
∣∣ < r

}
is Tm-measurable since Xk1 and Xk2 are Tm-measurable and so is their difference. Hence
CM,ν ∈ Tm and thus

C =
⋂
ν

Cm,ν ∈ Tm, ∀m.

Heence C ∈ T. ⊓⊔

Theorem 1.2.31 (Kolmogorov’s 0-1 law). If A is a tail event of the independency (Sn)n∈N,

then P
[
A
]
= 0 or P

[
A
]
= 1.

Proof. Let Tm as in (1.2.8). According to the principle of partition of independencies the
collection S1, . . . , Sm,Tm is an independency and, since T ⊂ Tm, the collection S1, . . . , Sm,T
is also an independency, ∀m ∈ N. We deduce that the σ-algebras

T, S1, S2, . . .

are independent. The principle of partition of independencies implies so {T,T0} is an inde-
pendency. Hence, for any A ∈ T, and any B ∈ T0, we have

P
[
A ∩B

]
= P

[
A
]
P
[
B
]
.

If above we choose B = A ∈ T ⊂ T0 we deduce

P
[
A
]
= P

[
A
]2
, ∀A ∈ T ⇒ P

[
A
]
∈ {0, 1}, ∀A ∈ T.

⊓⊔
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Definition 1.2.32. Let (Ω, S,P) be a probability space. A zero-one event is an event S ∈ S

such that P
[
S
]
∈ {0, 1}. A zero-one algebra is a sigma-subalgebra F ⊂ S consisting of

zero-one events. ⊓⊔

Corollary 1.2.33. Suppose that (Xn)n∈N is a sequence of independent random variables on
the probability space (Ω, S,P). Then the series∑

n∈N
Xn

is either almost surely convergent, or almost surely divergent. In other words, the almost sure
convergence is a zero-one event. ⊓⊔

Definition 1.2.34. Suppose that A,B are events in the sample space (Ω,P, S) such that
P
[
B
]
̸= 0. The conditional probability of A given B is the number

P
[
A
∣∣B ] := P

[
A ∩B

]
P
[
B
] . ⊓⊔

Note that we have the useful product formula

P
[
A ∩B

]
= P

[
A
∣∣B ]P[B ]. (1.2.9)

In particular, we deduce that A,B are independent if and only if P
[
A
]
= P

[
A|B

]
. Note

that the map

P
[
−
∣∣B ] : S → [0, 1], S 7→ P

[
S
∣∣B ]

is also a probability measure on S. We say that it is the probability measure obtained by
conditioning on B.

Remark 1.2.35. Observe that n events A1, . . . , An, n ≥ 2, are independent if and only if,
for any nonempty subset I ⊂ {1, . . . n} of cardinality < n, and any j ̸∈ I we have

P
[
Aj
∣∣AI ] = Aj , where AI :=

⋂
i∈I

Ai. ⊓⊔

Suppose we are given a finite or countable measurable partition of (Ω, S,P)

Ω =
⊔
i∈I

Ai, I ⊂ N, P
[
Ai
]
̸= 0, ∀i.

The law of total probability states that

P
[
S
]
=
∑
i∈I

P
[
S
∣∣Ai ]P[Ai ], ∀S ∈ S. (1.2.10)

Indeed,

P
[
S
]
=
∑
i∈I

P
[
S ∩Ai

] (1.2.9)
=

∑
i∈I

P
[
S
∣∣Ai ]P[Ai ].

Example 1.2.36. Suppose that we have an urn containing b black balls and r red balls. A
ball is drawn from the urn and discarded. Without knowing its color, what is the probability
that a second ball drawn is black?
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For k = 1, 2 denote by Bk the event “the k-th drawn ball is black”. We are asked to find
P
[
B2

]
. The first drawn ball is either black (B1) or not black (Bc

1). From the law of total
probability we deduce

P
[
B2

]
= P

[
B2|B1

]
P
[
B1

]
+ P

[
B2|Bc

1

]
P
[
Bc

1

]
.

Observing that

P
[
B1

]
=

b

b+ r
and P

[
Bc

1

]
=

r

b+ r
,

we conclude

P
[
B2

]
=

b− 1

b+ r − 1
· b

b+ r
+

b

b+ r − 1
· r

b+ r
=

b(b− 1) + br

(b+ r)(b+ r − 1)

=
b(b+ r − 1)

(b+ r)(b+ r − 1)
=

b

b+ r
= P

[
B1

]
.

Thus, the probability that the second extracted ball is black is equal to the probability that
the first extracted ball is black. This seems to contradict our intuition because when we
extract the second ball the composition of available balls at that time is different from the
initial composition.

This is a special case of a more general result, due to S. Poisson, [35, Sec. 5.3].

Suppose in an urn containing b black and r red balls, n balls have been
drawn first and discarded without their colors being noted. If another ball
is drawn drawn next, the probability that it is black is the same as if we
had drawn this ball at the outset, without having discarded the n balls
previously drawn.

To quote John Maynard Keynes, [97, p.394],

This is an exceedingly good example of the failure to perceive that a
probability cannot be influenced by the occurrence of a material event
but only by such knowledge as we may have, respecting the occurrence of
the event.

This example hides an even subtler phenomenon, namely exchangeability. We discuss this
phenomenon in greater detail in Subsection 3.2.8. ⊓⊔

Example 1.2.37 (The ballot problem). This is one of the oldest problems in probability.

Suppose that during an election between candidate H and T votes were cast successively.
In the end H obtained a votes and T obtain votes and a > b so H won. Denote by B the
event that H was always in the lead while the voting took place. The ballot problem asks to
find the probability of B given a and n.

We can visualize the voting process as a random walk on Z. At the initial moment we
are at the origin. A vote for H would move us a unit size step to the tight, while a vote for
T would move us one step to the left. The event B occurs if during this walk we always stay
to the right of the origin,

Think of voting as flipping a fair coin with two sides, Heads and Tails. We denote by
Sn its location after n coin flips. The sequence of random variables (Sn)n∈N is called the
standard (or unbiased) random walk on Z.
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Formally we have a sequence of independent random variables (Xn)n∈N such that

P
[
Xn = 1

]
= P

[
Xn = −1

]
=

1

2
, ∀n ∈ N.

The random variables with this distribution are called Rademacher random variables. Then

S0 = 0, Sn = S0 +X1 + · · ·+Xn.

Define a zig-zag to be a finite sequence of points or nodes in Z2

ω =
{
(n0, y0), (n0 + 1, y1), . . . , (n0 + k)

}
such that |yj −yj−1| = 1. We can visualize a zig-zag as the graph of piecewise linear function
obtained by connecting by line segments the succesive nodes of the zig-zag; see Figure 1.2.

The node (n0, y0) is called the initial node of the zig-zag and (n0 + k, yk) is called the
final node of the zig-zag. We will refer to the natural number k as the length of the zig-zag.
We will denote by (Ω(n0,y0),(n1,y1) the set of zig-zags that start at (n0, y0) and end at (n1, y1).
We set ∆n = n1 − n0, ∆y = y1 − y0. Then ∆n > 0 and

∆y ≡ ∆n mod 2, #(Ω(n0,y0),(n1,y1) =

(
∆n

h

)
, h =

∆n+∆y

2

It is convenient to visualize the random walk as a zig-zag obtained by successively connecting
by a line segment the point (n − 1, Sn−1) to the point (n, Sn), n ∈ N. The connecting line
segment has slope Xn;

Figure 1.2. A zig-zag describing a random walk started at S0 = 0

The sample space in this problems is the space Ωn,y of zig-zags ω that start at the origin
and end at (n, y). There are

#Ωn,y =

(
n

a

)
=

(
a+ b

b

)
,

equally likely zig-zags in this sample space. The eventB occurs iff Sk > 0, ∀k = 1, . . . , n = a+b.

Denote by Ω+
n,y the set of zig-zags, ω ∈ Ωn,y that touch the horizontal axis only at (0, 0).

Thus

P
[
B
]
=

#Ω+
n,y

#Ωn,y
.
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Note that all but the first node of a zig-zag in Ω+
n,y is strictly above the horizontal axis. Thus,

the first step of such a zig-zag is upwards, so Ω+
(n,y) is in bijection with the space Ω+

(1,1),(n,y)

consisting of zig-zags from (1, 1) to (n, y) that do not touch the horizontal axis so that

#Ω+
n,y = #Ω+

(1,1),(n,y) = #Ω(1,1),(n,y) −#Ω0
(1,1),(n,y).

where Ω0
(1,1),(n,y) ⊂ Ω(1,1),(n,y) consists of zig-zags that touch the horizontal axis.

For each zig-zag ω ∈ Ω0
(1,1),(n,y) denote by k(ω) the first moment it touches the horizontal

axis. Denote by ωr the zig-zag obtained from ω by reflecting in the horizontal axis the part
of ω from k(ω) to n; see Figure 1.3. The end point of ωr is (n,−(a− b)).

Figure 1.3. The zigzag ωr traces ω until ω hits the horizontal axis. At this moment the
zigzag ωr follows the opposite motion of ω (dashed line).

The transformation ω → ωr produces a bijection

Ω0
(1,1),(n,−y) → Ω(1,1),(n,−y).

Indeed, any zig-zag ω′ : (1, 1) → (n, b−a) must cross the horizontal axis. After the first touch
we reflect it in this axis and obtain a zigzag (1, 1) → (n, a− b) such that ωr = ω′. Clearly ω
touches the horizontal axis. Hence

#Ω0
(1,1),(n,−y) =

(
n− 1

b− 1

)
=

(
a+ b− 1

a

)
, (1.2.11)

#Ω+
(1,1),(n,y) = #Ω(1,1),(n,y) −#Ω0

(1,1),(n,−y) =

(
a+ b− 1

a− 1

)
−
(
a+ b− 1

a

)
. (1.2.12)

Note that (
a+ b− 1

a− 1

)
−
(
a+ b− 1

a

)
=

(a+ b− 1)!

(a− 1)!(b− 1)!

( 1

b
− 1

a

)
=
a− b

a+ b
· (a+ b)!

a!b!
=
a− b

a+ b

(
a+ b

a

)
,

P
[
B
]
=

#Ω+
n,y

#Ωn,y
=

(
a+b−1
b−1

)
−
(
a+b−1
a

)(
a+b
b

) =
a− b

a+ b
=
y

n
. (1.2.13)

⊓⊔
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Proposition 1.2.38 (Bayes’ formula). Suppose we are given a finite or countable measurable
partition of (Ω, S,P)

Ω =
⊔
i∈I

Ai, I ⊂ N, P
[
Ai
]
̸= 0, ∀i.

Then, for any S ∈ S such that P
[
S
]
̸= 0 and i0 ∈ I we have

P
[
Ai0 |S

]
=

P
[
S|Ai0

]
P
[
Ai0

]∑
i∈I P

[
S|Ai

]
P
[
Ai
] . (1.2.14)

Proof. According to the law of total probability, the denominator in the right-hand-side of
(1.2.14) equals P

[
S
]
. Thus, the equality (1.2.14) is equivalent to

P
[
Ai0 |S

]
P
[
S
]
= P

[
S|Ai0

]
P
[
Ai0

]
.

The product formula shows that both sides of the above equality are equal to P
[
Ai0 ∩ S

]
.

⊓⊔

Remark 1.2.39. We should mention here a terminology favored by statisticians.

• The events Ak are called hypotheses.

• The probability P
[
Ak
]
is called prior (probability).

• The probability P
[
Ak|S

]
is called posterior (probability).

• The probability P
[
S|Ak

]
is called likelihood.

Here is one frequent application of Bayes’ principle. Suppose that we observed a random
event S we know that it can be caused only by one of the random events Ai. To decide
which of the events Ai is more likely to have caused S we need to find the larges of the pos-
teriors P

[
Ai|S

]
. Bayes’ formula shows that the most likely cause maximizes the numerator

P
[
S|Ai

]
P
[
Ai
]
. ⊓⊔

Example 1.2.40 (Biased coins). We say that a coin has bias θ ∈ (0, 1) if the probability
of showing Heads when flipped is θ. Suppose that we have an urn containing c1 coins with
bias θ1 and c2 coins with bias θ2. Let n := c1 + c2 denote the total number of coins and set
pi :=

ci
n , i = 1, 2. We assume that

c1 < c2 and θ1 > θ2, (1.2.15)

i.e., there are fewer coins with higher bias. We draw a coin at random we flip it twice and we
get Heads both times. What is the probability that the coin we have drawn has higher bias.

If θ denotes the (unknown) bias of the coin drawn at random, then we can think of θ as
a random variable that takes two values θ1, θ2 with probabilities

P
[
θi
]
:= P

[
θ = θi

]
= pi, i = 1, 2.

Denote by E the event that two successive flips produce Heads. Then

P
[
E
∣∣ θi ] := P

[
E
∣∣ θ = θi

]
= θ2i .

Bayes’ formula shows that

P
[
θ1
∣∣E ] = P

[
E
∣∣ θ1 ]P[ θ1 ]

P
[
E
∣∣ θ1 ]P[ θ1 ]+ P

[
E
∣∣ θ2 ]P[ θ2 ] = p1θ

2
1

p1θ21 + p2θ22
=

1

1 + p2
p1

(
θ2
θ1

)2 .
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Our assumption (1.2.15) shows that

c2
c1

=
p2
p1

> 1 >
θ2
θ1
.

Observe that if c2θ
2
2 > c1θ

2
1, then

P
[
θ1
∣∣E ] < 1

2
.

Thus, in this case, if we observe two Heads, then the coin we randomly drew from the urn is
less likely to be the one with bigger bias. For example if θ1 = 2

3 and θ2 = 1
3 and c2 > 8c1,

then

P
[
θ1
∣∣E ] < 1

3
,

so the randomly drawn coin is less likely to be the one heavily biased towards Heads. ⊓⊔

1.2.3. Integration of measurable functions. We outline below, mostly without proofs,
the construction and the basic facts about integration of measurable functions. For details
we refer to [56, 109, 167].

Fix a measured space (Ω, S, µ). Recall that Elem(Ω, S) denotes the vector space of elemen-
tary S-measurable functions (see Definition 1.1.20). We denote by Elem+(Ω, S) the convex
cone of Elem(Ω, S) consisting of nonnegative elementary functions. Define

µ : Elem+(Ω, S) → [0,∞], f 7→ µ
[
f
]
=

∫
Ω
f(ω)µ

[
dω
]
,

as follows. If

f =
M∑
k=1

aiIAi , A1, . . . , AM disjoint,

then

µ
[
f
]
=

∫
Ω
f(ω)µ

[
dω
]
:=

M∑
i=1

aiµ
[
Ai
]
.

Note that if

f =
N∑
j=1

bjIBj , B1, . . . , Bn disjoint,

then ai = bj if Ai ∩Bj ̸= ∅. Hence∑
i

aiµ
[
Ai
]
=
∑
i

∑
j

aiµ
[
Ai ∩Bj

]
=
∑
j

∑
i

bjµ
[
Ai ∩Bj

]
=
∑
j

bjµ
[
Bj
]
.

This shows that the value of
∫
Ω f(ω)µ(dω) is independent of the decomposition of f as a

linear combination of indicators of pairwise disjoint measurable sets.

The above integration map satisfies the following elementary properties.

∀f, g ∈ Elem+(Ω, S) f ≤ g ⇒ µ
[
f
]
≤ µ

[
g
]
. (1.2.16a)

∀a, b ≥ 0, f, g ∈ Elem+(Ω, S) : µ
[
af + bg

]
= aµ

[
f
]
+ bµ

[
g
]
. (1.2.16b)

For f ∈ L0
+(Ω, S) we set

E
f
+ :=

{
g ∈ Elem+(Ω, S); g ≤ f

}
.
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The set Ef+ is nonempty since 0 ∈ E
f
+. Define

µ
[
f
]
=

∫
Ω
fdµ =

∫
Ω
f(ω)µ

[
dω
]
:= sup

g∈Ef
+

∫
Ω
g(ω)µ

[
dω
]
∈ [0,∞) . (1.2.17)

Definition 1.2.41. A measurable function f ∈ L0(Ω, S) is called µ-integrable if

µ
[
f+
]
, µ

[
f−
]
<∞.

In this case we define its Lebesgue integral to be∫
Ω
fdµ =

∫
Ω
f(ω)µ

[
dω
]
= µ

[
f
]
:= µ

[
f+
]
− µ

[
f−
]
.

We denote by L1(Ω, S, µ) the set of µ-integrable functions and by L1
+(Ω, S, µ) the set of

µ-integrable nonnegative functions. ⊓⊔

Note that

∀f, g ∈ L0
+(Ω, S) f ≤ g ⇒ µ

[
f
]
≤ µ

[
g
]
. (1.2.18)

Moreover,

∀f ∈ L0
+(Ω, S) : µ[f > 0] = 0 ⇐⇒

∫
Ω
fdµ = 0. (1.2.19)

The integral L0
+ ∋ f 7→ µ

[
f
]
∈ [0,∞] enjoys the following key continuity property which

is the “workhorse” of the Lebesgue integration theory.

Theorem 1.2.42 (Monotone Convergence theorem). Suppose that (fn)n∈N is a sequence
in L0

+(Ω, S) that converges increasingly to f ∈ L0
+(Ω, S). Then

µ
[
fn
]
↗ µ

[
f
]
as n→ ∞.

⊓⊔

Proof. The sequence µ
[
fn

]
is nondecreasing and is bounded above by µ

[
f
]
. Hence it has a, possibly infinite, limit

and

lim
n→∞

µ
[
fn

]
≤ µ

[
f
]
.

The proof of the opposite inequality

lim
n→∞

µ
[
fn

]
≥ µ

[
f
]
.

relies on a clever a clever trick. Fix g ∈ E
f
+, c ∈ (0, 1), and set

Sn :=
{
ω ∈ Ω; fn(ω) ≥ cg(ω)

}
.

Since f = lim fn and (fn) is a nondecreasing sequence of functions we deduce that Sn is a nondecreasing sequence of
measurable sets whose union is Ω. For any elementary function h the product ISnh is also elementary. For any n ∈ N
we have fn ≥ fnISn ≥ cgISn so that

µ
[
fn

]
≥ µ

[
ISnfn

]
≥ cµ

[
gISn

]
.

If we write g as a finite linear combination

g =
∑
j

gjIAj

with Aj pairwise disjoint, then we deduce

µ
[
fn

]
≥ cµ

[
gISn

]
= c

∑
j

gjµ
[
Aj ∩ Sn

]
.

The sequence of sets (Aj ∩ Sn)n∈N is nondecreasing and its union is Aj so that

lim
n→∞

µ
[
fn

]
≥ c

∑
j

gj lim
n→∞

µ
[
Aj ∩ Sn

]
= c

∑
j

gjµ
[
Aj

]
= cµ

[
g
]
.
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Hence

lim
n→∞

µ
[
fn

]
≥ cµ

[
g
]
, ∀g ∈ E

f
+, ∀c ∈ (0, 1),

so that

lim
n→∞

µ
[
fn

]
≥ cµ

[
f
]
, ∀c ∈ (0, 1).

Letting c↗ 1 we deduce limn→∞ µ
[
fn

]
≥ µ

[
f
]
. ⊓⊔

Corollary 1.2.43. For any f ∈ L0
+(Ω, S) we have

µ
[
f
]
= lim

n→∞
µ
[
Dn[f ]

]
. ⊓⊔

Corollary 1.2.44. For any f, g ∈ L1(Ω, S, µ) and a, b ∈ R such that af + bg is well defined
we have af + bg ∈ L1(Ω, S, µ) and∫

Ω
(af + bg)dµ = a

∫
Ω
fdµ+ b

∫
Ω
gdµ. (1.2.20)

Moreover, if f, g ∈ L1(Ω, S, µ) and f(ω) ≤ g(ω), ∀ω ∈ Ω then∫
Ω
fdµ ≤

∫
Ω
gdµ.

⊓⊔

Since |f | = f+ + f− we deduce the following resullt.

Corollary 1.2.45. Let f ∈ L0(Ω, S). Then

f ∈ L1(Ω, S, µ)⇐⇒|f | ∈ L1(Ω, S, µ). ⊓⊔

Corollary 1.2.46 (Markov’s Inequality). Suppose that f ∈ L1
+(Ω, S, µ). Then, for any

C > 0, we have

µ
[
{f ≥ C}

]
≤ 1

C

∫
Ω
fdµ. (1.2.21)

In particular, f <∞, µ-a.e..

Proof. Note that

CI{f≥C} ≤ f ⇒ Cµ
[
{f ≥ C}

]
=

∫
Ω
CI{f≥C} ≤

∫
Ω
fdµ.

⊓⊔

Corollary 1.2.47. If f ∈ L1(Ω, S, µ), then µ
[
{|f | = ∞}

]
= 0.

Proof. Note that

µ
[
{|f | = ∞}

]
=
⋂
n∈N

µ
[
{f > n}

]
.

On the other hand, Markov’s inequality implies

µ
[
{f > n}

]
≤
µ
[
|f |
]

n
→ 0.

⊓⊔
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Proposition 1.2.48. Suppose f, g ∈ L0(Ω, S) and f = g, µ-a.e.. Then

f ∈ L1(Ω, S, µ)⇐⇒ g ∈ L1(Ω, S, µ).

Moreover, if one of the above equivalent conditions hold, then µ
[
f
]
= µ

[
g
]
. ⊓⊔

Remark 1.2.49. The presentation so far had to tread carefully around a nagging problem:
given f, g in L1(Ω, S, µ), then f(ω) + g(ω) may not be well defined for some ω. For example,
it could happen that f(ω) = ∞, g(ω) = −∞. Fortunately, Corollary 1.2.47 shows that the
set of such ω’s is negligible. Moreover, if we redefine f and g to be equal to zero on the set
where they had infinite values, then their integrals do not change. For this reason we alter
the definition of L1(Ω, S, µ) as follows.

L1(Ω, S, µ) :=

{
f : (Ω, S) → R; f measurable

∫
Ω
|f |dµ <∞

}
.

Thus, in the sequel the integrable functions will be assumed to be everywhere finite.

With this convention, the space L1(Ω, S, µ) is a vector space and the Lebesgue integral is
a linear functional

µ : L1(Ω, S, µ) → R, f 7→ µ
[
f
]
. ⊓⊔

Remark 1.2.50 (Daniell-Stone integral). A Daniell-Stone integral is a triplet (Ω,E, L),
where Ω is a set, E is a vector space of bounded functions Ω → R and L : E → R is a linear
map satisfying the following properties.

(i) ∀f, g ∈ E, max(f, g),min(f, g) ∈ E.

(ii) ∀f ∈ E, min(f, 1) ∈ E.

(iii) If f, g ∈ E and f ≤ g then L
[
f
]
≤ L

[
g
]
.

(iv) If (fn)n∈N is a sequence if E such that fn ↘ 0 as n→ ∞, then L
[
fn
]
↘ 0.

For example, if (Ω, S, µ) is a sigma-finite measured space and E = E(Ω, S, µ) is the sub-
space of elementary functions spanned by indicators of sets of finite measure, then the triplet
(Ω,E, µ[−]) is a Daniell-Stone integral.

The Daniell-Stone theorem states that there is only one way of producing Daniell-Stone
integrals. More precisely, if S denotes the sigma-algebra of subsets of Ω generated by the
functions f ∈ E, then there exists a unique measure µ on S such that

E ∈ L1(Ω, S, µ) and µ
[
f
]
= L

[
f
]
, ∀f ∈ E.

For a proof we refer to [56, Sec.4.5] or [117, Chap.III]. ⊓⊔

Recall that for any sequence (xn)n∈N of real numbers we have

lim inf
n→∞

xn = lim
k→∞

x∗k := inf
n≥k

xn.

The sequence (x∗k) is nondecreasing. The Monotone Convergence Theorem has the following
useful immediate consequence.

Theorem 1.2.51 (Fatou’s Lemma). Suppose that (fn)n∈N is a sequence in L0
+(Ω, S). Then∫

Ω
lim inf
n→∞

fn(ω)µ
[
dω
]
≤ lim inf

n→∞

∫
Ω
fndµ .
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⊓⊔

Proof. Set

gk := inf
n≥k

fn.

Proposition 1.1.18(iii) implies that gk ∈ L0
+(Ω, S). The sequence (gk) is nondecreasing and

lim inf
n→∞

fn = lim
k→∞

gk.

The Monotone Convergence Theorem implies that∫
Ω
lim inf
n→∞

fn(ω)µ
[
dω

]
= lim

k→∞

∫
Ω
gkdµ.

Note that gk ≤ fn, ∀n ≥ k, and thus ∫
Ω
gkdµ ≤

∫
Ω
fndµ, ∀n ≥ k,

i.e., ∫
Ω
gkdµ ≤ inf

n≥k

∫
Ω
fndµ.

Letting k → ∞ we deduce

lim
k→∞

∫
Ω
gkdµ ≤ lim

k→∞
inf
n≥k

∫
Ω
fndµ = lim inf

n→∞

∫
Ω
fndµ.

⊓⊔

The next result illustrates one of the advantages of the Lebesgue integral over the Riemann
integral: one needs less restrictive conditions to pass to the limit under the Lebesgue integral.

Theorem 1.2.52 (Dominated Convergence). Suppose (fn)n∈N is a sequence in L1(Ω, S, µ)
satisfying the following properties

(i) There exists f ∈ L0(Ω, S) such that

lim
n→∞

fn(ω) = f(ω), ∀ω ∈ Ω.

(ii) There exists g ∈ L1(Ω, S, µ) such that

|fn(ω)| ≤ g(ω), ∀ω ∈ Ω, n ∈ N.

Then f ∈ L1(Ω, S, µ) and

lim
n→∞

fndµ =

∫
Ω
fdµ, (1.2.22a)

lim
n→∞

∫
Ω
|fn(ω)− f(ω)|dµ = 0. (1.2.22b)

Proof. Set gn = |f | − fn. Then gn ≥ 0 and lim gn = |f | − f . Fatou’s Lemma implies∫
Ω
(|f | − f)dµ ≤ lim inf

∫
Ω
(|f | − fn)dµ =

∫
Ω
|f |dµ− lim sup

∫
Ω
fndµ.

We deduce

lim sup

∫
Ω
fndµ ≤

∫
Ω
fdµ.

Arguing in the same fashion using the sequence fn − |f | we deduce∫
Ω
fdµ ≤ lim inf

∫
Ω
fndµ.

Hence ∫
Ω
fdµ ≤ lim inf

∫
Ω
fndµ ≤ lim sup

∫
Ω
fndµ ≤

∫
Ω
fdµ.

This proves (1.2.22a). The equality (1.2.22b) follows by applying (1.2.22a) to the sequence gn = |fn − f |. ⊓⊔
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Theorem 1.2.53 (Change in variables). Suppose that (Ω0, S0), (Ω1, S1) are measurable spaces
and

Φ : (Ω0, S0) → (Ω1, S1)

is a measurable map. Fix a measure µ0 : S0 → [0,∞] and a measurable function f ∈ L0(Ω1, S1).
Then

f ∈ L1(Ω1, S1,Φ#µ0)⇐⇒Φ∗(f) := f ◦ Φ ∈ L1(Ω0, S0, µ0)

and ∫
Ω0

Φ∗(f) dµ0 =

∫
Ω1

f dΦ#µ0. (1.2.23)

Proof. Note that it suffices to prove the theorem in the case f ≥ 0. The result is obviously
true if f ∈ Elem+(Ω1, S1). The general case follows from the Monotone Convergence Theorem
using the increasing approximation Dn[f ] ↗ f of f by elementary functions; see (1.1.7). This
has the property that Dn[Φ

∗(f)] = Φ∗(Dn[f ]
)
. ⊓⊔

Remark 1.2.54. Unlike the well known change-in-variables formula, the map T in (1.2.23)
need not be bijective, only measurable.

If T is bijective with measurable inverse, then for any measure µ1 on
(
Ω1, S1) then (1.2.23)

applied to the map T−1 reads∫
Ω1

f
(
ω1

)
µ1
[
dω1

]
=

∫
Ω0

f(Tω0)T
−1
# µ1

[
dω0

]
, (1.2.24)

∀f ∈ L1(Ω1, S1, µ1).

In particular, if Ωi are open subsets of Rn, T : Ω0 → Ω1 is a C1-diffeomorphism onto,
and µ1 is the Lebesgue measure on Ω1, then (1.2.24) reads∫

Ω1

f(y)λ
[
dy
]
=

∫
Ω0

f
(
Tx
)∣∣ det JT (x) ]λ[ dx ], (1.2.25)

where JT (x) is the Jacobian of the C1 map x→ Tx. ⊓⊔

Proposition 1.2.55. Let f ∈ L0
+(Ω, S). Suppose that µ : S → [0,∞] is a sigma-finite

measure. Define

µf : S → [0,∞], µf [S] =

∫
S
fdµ :=

∫
Ω
ISfdµ.

Then, µf is a measure. Moreover

µf0 = µf1 ⇐⇒ f0 = f1, µ− almost everywhere. ⊓⊔

The above result has an important converse. To state it we need to introduce the concept
of absolute continuity.

Definition 1.2.56. Suppose that µ, ν are two measures on the measurable space (Ω, S). We
say that ν is absolutely continuous with respect to µ, and we write this ν ≪ µ if

∀S ∈ S : µ
[
S
]
= 0 ⇒ ν

[
S
]
. ⊓⊔

For a proof of the next result we refer to [17, 37, 167].

Theorem 1.2.57 (Radon–Nikodym). Suppose that µ, ν are two σ-finite measures on the
measurable space (Ω, S). The following statements are equivalent.
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(i) ν ≪ µ.

(ii) There exists ρ ∈ L0
+(Ω, S) such that ν = µρ, i.e.,

ν[S] =

∫
S
ρµ
[
dω
]
, ∀S ∈ S.

The function ρ is not unique, but it defines a unique element in L0
+(Ω, S, µ) which we

denote by dν
dµ and we will refer to it as the density of ν relative to µ. ⊓⊔

1.2.4. Lp spaces. We recall here an important class of Banach spaces. For proofs and many
more details we refer to [56, 109, 167]. We define an equivalence relation ∼µ on L0(Ω, S)
by declaring f ∼µ g iff µ

[
f ̸= g

]
= 0. Note that

f ∈ L1(Ω, S, µ) and g ∼µ f ⇒ g ∈ L1(Ω, S, µ) and

∫
Ω
g dµ =

∫
Ω
fdµ.

We set

L0(Ω, S, µ) := L0(Ω, S, µ)/ ∼µ, L1(Ω, S, µ) := L1(Ω, S, µ)/ ∼µ .

For p ∈ [1,∞) we set

Lp(Ω, S, µ) :=
{
f ∈ L0(Ω, S, µ); |f |p ∈ L1(Ω, S, µ)

}
,

Lp(Ω, S, µ) := Lp(Ω, S, µ)/ ∼µ .

We will refer to the functions in Lp(Ω, S, µ) as p-integrable functions. For p ∈ [1,∞) and
f ∈ Lp(Ω, S, µ) we set

∥f∥p :=
(∫

Ω
|f |pdµ

) 1
p

.

Define

L∞(Ω, S, µ) :=
{
[f ] ∈ L0(Ω, S, µ); ∃g ∈ L∞(Ω, S), g ∼µ f

}
.

For f ∈ L0(Ω, S) we define

∥f∥∞ = ess sup |f | := inf
{
a ≥ 0; µ[ |f | > a ] = 0

}
.

Note that this quantity only depends on the ∼µ-equivalence class of f and

L∞(Ω, S, µ) =
{
f ∈ L1(Ω, S, µ); ∥f∥∞ <∞

}
.

In this fashion we obtain for every p ∈ [1,∞] maps

∥ − ∥p : Lp(Ω, S, µ) → [0,∞).

Theorem 1.2.58 (Hölder inequality). Let p, q ∈ [1,∞] such that

1

p
+

1

q
= 1.

Then for any f ∈ Lp(Ω, S, µ) and g ∈ Lq(Ω, S, µ) we have fg ∈ L1(Ω, S, µ) and∫
Ω
|fg|dµ ≤ ∥f∥p · ∥g∥q. (1.2.26)

⊓⊔
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Theorem 1.2.59 (Minkowski’s inequality). Let p ∈ [1,∞], Then,

∀f, g ∈ Lp(Ω, S, µ) : ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

⊓⊔

Theorem 1.2.60. Fix a sigma-finite measured space (Ω, S, µ).

(i) For any p ∈ [1,∞], the pair
(
Lp(Ω, S, µ), ∥ − ∥p

)
is a Banach space.

(ii) If p ∈ [1,∞), the vector subspace of p-integrable elementary functions is dense
in Lp(Ω, S,P). In particular, if S is generated as a sigma-algebra by a countable
collection of sets, then Lp(Ω, S, µ) is separable. ⊓⊔

The above density result follows from a combined application of the Monotone Class
Theorem and the Monotone Convergence Theore; see Exercise 1.9.

Suppose that (Ω, S, µ) is a measured space and p ∈ [1,∞]. Denote by q the exponent
conjugate to p, i.e.,

1

p
+

1

q
= 1⇐⇒ q =

p

p− 1
.

If g ∈ Lq(Ω, S, µ), then Hölder’s inequality shows that fg ∈ L1, ∀f ∈ Lp(Ω, S, µ) and the
resulting linear map

Lp(Ω, S, µ) ∋ f 7→ ξg(f) :=

∫
Ω
gfdµ ∈ R

is continuous.

Theorem 1.2.61. Suppose that (Ω, S, µ) is a sigma-finite measured space and p ∈ (1,∞).
Then the map

Lq(Ω, S, µ) ∋ g 7→ ξg ∈ Lp(Ω, S, µ)∗ = the dual of the Banach space Lp(Ω, S, µ)

is a bijective isometry of Banach spaces. ⊓⊔

1.2.5. Measures on compact metric spaces. Up to this point we have indicated how one
can use a measure to define an integral. The integral is a linear functional on an appropriate
space of measurable spaces.

On certain measurable spaces one can invert this process. Suppose that X is a topological
space and B = BX is the sigma algebra of Borel sets. We denote by Cb(X) the vector space
of bounded continuous functions on X. This is equipped with the sup-norm

∥ f ∥∞ = sup
x∈X

| f(x) |.

Any finite Borel measure µ on B defines via integration a continuous linear functional

Iµ : Cb(X) → R, Iµ
[
f
]
=

∫
X
f(x)µ

[
dx
]
.

This linear functional satisfies the positivity condition

Iµ
[
f
]
≥ 0, ∀f ∈ Cb(X), f ≥ 0. (Pos)

On metric spaces the measure µ is uniquely determined by the associated functional µ. More
precisely we have the following fact.
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Proposition 1.2.62. If X is a metric space and µ, ν are two finite Borel measures such that

Iµ
[
f
]
= Iµ

[
f
]
, ∀f ∈ Cb(X),

then µ
[
B
]
= ν

[
B
]
for any subset B ⊂ X.

Proof. Since the Borel sigma-algebra of X is generated by the π-system CX of closed subsets it suffices to show that

µ
[
C

]
= ν

[
C

]
, ∀C ∈ CX .

To see that this indeed the case fix C ∈ CX and, for any n ∈ N denote by Dn the closed set

Dn :=
{
x ∈ X; dist(x,C) ≥ 1/n

}
.

Define fn ∈ Cb(X)

fn(x) :=
dist(x,Dn)

dist(x,Dn) + dist(x,C)
.

The function fn is identically 1 on C and identically 0 on Dn. Moreover

lim
n→∞

fn(x) = IC(x), ∀x ∈ X.

Using the Dominated Convergence Theorem we deduce

µ
[
C

]
= lim

n→∞
Iµ

[
fn

]
= lim

n→∞
Iν

[
fn

]
= ν

[
C

]
.

⊓⊔

We want to include a useful consequence of the above proof.

Corollary 1.2.63. Suppose that X is a metric space and µ is a finite Borel measure on X.
Then the space Cb(X) is dense in L1(X,BX , µ). ⊓⊔

We have the following remarkable result.

Theorem 1.2.64 (Riesz Representation). Suppose that X is a compact metric space and L
is a linear functional on C(X) satisfying the positivity condition (Pos). Then there exists a
unique finite Borel measure µ on X such that

L
[
f
]
= Iµ

[
f
]
, ∀f ∈ C(X).

Idea of proof. Observe that the triplet (K,C(K), L) is a Daniell-Stone integral; see Remark
1.2.50. Indeed, observe that L is continuous since∣∣L[ f ] ∣∣ ≤ L

[
1
]
· ∥f∥∞, ∀f ∈ C(K).

If (fn)n≥0 is a sequence of continuous functions converging decreasingly to 0, then Dini’s
theorem implies that fn converge uniformly to 0, so L

[
fm
]
↘ 0. Moreover, the sigma-

algebra generated by the continuous functions on K coincides with the Borel sigma-algebra
since any closed set S ⊂ K is the zero set of the continuous function x 7→ dist(x,C). Theorem
1.2.64 is now obviously a special case of the Daniell-Stone theorem; see Remark 1.2.50. ⊓⊔

For a details we refer to [58, Sec. IV.6, Thm.3] or [167, Thm. 13.5].

Example 1.2.65. We can use the above result to construct probability measures on a smooth
compact manifold M of dimension m. As shown in e.g. [134, Sec. 3.4.1] a Riemann metric
g on M , defines a continuous linear functional

C(M) ∋ f 7→
∫
M
fdVg ∈ R,
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usually referred to as the integral with respect to the volume element determined by g.The
Riesz Representation Theorem shows that this corresponds to the integral with respect to a
finite Borel measure Volg on M called the metric measure. The metric volume of M is then

Volg
[
M
]
=

∫
M

IMdVg.

We can associate to it the metric probability measure Pg

Pg
[
B
]
:=

1

Volg
[
M
] Volg [B ],

for any Borel subset B ⊂M .

In particular, if M is a compact submanifold of an Euclidean space RN , then it comes
equipped with an induced metric and as such, with a finite metric measure µM and thus
with a probability measure PM . We will refer to this probability measure as the Euclidean
probability measure.

Suppose for example that M = Sm is the unit sphere in Rm

Sm :=
{
(x0, x1 . . . , xm) ∈ Rm=1; x20 + · · ·+ xm = 1

}
.

The Euclidean volume of Sm is (see e.g. [134, Eq. (9.1.10)])

σm :=
2π(m+1)/2

Γ
(
m+1
2

)
and the Euclidean probability measure is

PSm =
1

σm
µSm .

For example, if m = 1, then µS1 is expressed traditionally as dθ, where θ is the angular
coordinate. Hence

PS1

[
dθ
]
=

1

2π
dθ. (1.2.27)

If we use spherical coordinates (φ, θ) on S2, where φ denotes the Latitude and θ the Longitude,
then

PS2

[
dφdθ

]
=

1

4π
sinφdφdθ. (1.2.28)

⊓⊔

1.3. Invariants of random variables

We have defined the random variables as measurable functions on a probability space. In
concrete examples this probability space is not specifically mentioned. In fact there could be
different looking random variables describing essentially the same random quantity.

Consider for example the simplest example of rolling a fair die and observing the number
N that shows up. The possible values of N are {1, . . . , 6}. We equip I6 with the uniform
probability measure and then we can view N as the map

N : I6 → R, N(k) = k, ∀k ∈ I6.

Consider now a different experiment. Pick a point x uniformly random in (0, 1]. We receive
a reward R(x) = k ∈ I6 if ⌈6x⌉ = k. The functions N and R are obviously different but
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the random quantities they described are very similar and they should have many things in
common.

This is analogous to the situation we encounter in geometry or physics when the same
physical or geometric object can be given different descriptions using different coordinates.
The laws of physics or geometry are however independent of coordinates. Technically, this
means they are described in terms of tensors.

In this section we explain a few basic techniques for describing the behavior of random
variables that capture the similarities we observe intuitively.

1.3.1. The distribution and the expectation of a random variable. Fix a probabil-
ity space (Ω, S,P). For any random variable X ∈ L0(Ω, S) the most basic invariant is its
probability distribution or the law of X, i.e., the pushforward

PX := X#P. (1.3.1)

Thus PX is a Borel probability measure on R̄ and, as such, it is uniquely determined by
the cumulative distribution function (cdf)

F (x) = FX(x) := P
[
X ≤ x

]
.

More precisely, PX can be identified with the associated Lebesgue-Stieltjes measure,

PX = dFX .

When the random variable X is discrete, i.e., the range of X is a finite or countable discrete
subset X ⊂ R, then PX is completely determined by the “mass” of each x ∈ X,

PX
[
{x}

]
= P

[
X = x

]
.

For this reason in this case the probability distribution of X is often referred as the probability
mass function (or pmf) of X.

The quantile of X is the quantile of its cdf; see Example 1.2.22. More precisely, the
quantile is the function

QX : [0, 1] →R, QX(p) = inf
{
x ∈ R̄; P

[
X ≤ x

]
≥ p

}
. (1.3.2)

✍ Given a Borel probability measure µ on R̄, we will use the notation X ∼ µ to indicate that
the probability distribution of X is µ, i.e., PX = µ.

Any probability measure µ on (R̄,BR̄) tautologically defines a random variable with
probability distribution µ. If we denote by 1R̄ the identity map R̄ → R̄, then the random
variable

X = 1R̄ : (R̄,BR̄, µ) → R̄

has probability distribution PX = µ. Because of this fact random variables are often identified
with their probability distributions. We will use the notations

X
d
= Y or X ∼ Y

to indicate that X and Y have the same distribution.
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Definition 1.3.1 (Expectation). The expectation or the mean of the integrable random
variable X ∈ L1(Ω, S,P) is the quantity

E
[
X
]
= EP

[
X
]
:=

∫
Ω
X(ω)P

[
dω
]
. ⊓⊔

We deduce from the Change in Variables Theorem 1.2.53 that∫
R
xPX

[
dx
]
=

∫
R
1R(x)X#P

[
dx
]
=

∫
Ω
1R(X(ω))P

[
dω
]
= E

[
X
]

so that obtain the useful formula

E
[
X
]
=

∫
R
xPX

[
dx
]
. (1.3.3)

If F (x) = FX(x) is the cdf of X, F (x) = P
[
X ≤ x

]
, then the distribution PX is the

Lebesgue-Stieltjes measure dF determined by F and (1.3.3) takes the classical form

E
[
X
]
=

∫
R
xdF (x). (1.3.4)

The above equality shows that

X
d
= Y ⇒ E

[
X
]
= E

[
Y
]
.

More generally, for any Borel measurable function f : R → R such that f(X) is integrable or
nonnegative we have4

E
[
f(X)

]
=

∫
R
f(x)PX

[
dx
]
. (1.3.5)

In other words, the expectation of a random variable is determined by its probability distri-
bution alone, and not on the precise nature of the sample space on which it is defined.

For example, the random variables N and R described at the beginning of this section
have the same distribution and thus they have the same mean

E
[
N
]
= E

[
R
]
=

1 + · · ·+ 6

6
=

7

2
.

Remark 1.3.2 (Bertrand’s paradox). More often than not, in concrete problems the sample
space where a random variable is defined is not explicitly mentioned. Sometimes this can
create a problem. Consider the following classical example.

Pick a chord at random on a unit circle. What is the probability that its length is at
least

√
3, the length of the edge of an equilateral triangle inscribed in that unit circle?

The answer depends on the concept of “at random” we utilize.

For example, we can think that a chord is determined by two points θ1, θ2 on the circle
or, equivalently, by a pair of numbers in [0, 2π]. The corresponding chord has length ≤

√
3 if

and only if |θ1−θ2| ≥ 2π
3 . The region in the square [0, 2π] occupied by pairs (θ1, θ2) satisfying

|θ1− θ2| ≥ 2π
3 consists of two isosceles right triangles with legs of size 2π

3 with vertices (0, 2π)
and (2π, 0). By gluing these triangles along their hypothenuses we get a square one third the
size of [0, 2π]. Assuming that the point (θ1, θ2) is chosen uniformly inside the square [0, 2π]
we deduce that the probability that the chord has length at most

√
3 is 1

9 .

4In undergraduate probability classes this formula is often referred as LOTUS: the Law Of The Unconscious

Statistician.
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On the other hand, a chord is uniquely determined by the location of its midpoint inside
the unit circle. The chord has length at least

√
3 if and only if the midpoint is at distance at

least 1
2 from the center. Assuming that the midpoint is chosen uniformly inside this circle,

we deduce that the probability that the chord is at least
√
3 is 3

4 since the disk of radius 1
2

occupies 1
4 of the unit disk.

We can try to decide empirically which is correct answer, but any simulation/experiment
must adopt a certain model of randomness. Things are even more complex. The set of chords
has a natural symmetry given by the group of rotations about the origin. Any “reasonable”
model of randomness ought to be compatible with with this symmetry. In mathematical
terms this means that the underlying probability measure ought to be invariant with respect
to this symmetry.

As a set, we can identify the set of chords with the unit disk: we can describe a chord
by indicating the location of its midpoint. The problem boils down to choosing a rotation
invariant Borel measure on the unit disk. The quotient of the disk with respect to the group
of rotation is a segment. In particular, any probability measure µ on the unit interval defines
a rotation invariant probability measure Pµ defined on the unit disk, determined by the
requirements

Pµ
[
0 ≤ r ≤ r1, θ0 ≤ θ ≤ θ1

]
=
θ1 − θ0
2π

µ
[
[0, r1]

]
.

Hence, there are infinitely may geometric randomness models. In our first model of random-
ness, the measure µ is the distribution the Lebesgue measure on [0, 1] and Pµ = drdθ. In
the second model of randomness the measure µ is 2rdr and Pµ = 1

π rdrdθ, the normalized
Lebesgue measure on the unit disk. ⊓⊔

If X,Y ∈ L1(Ω, S,P) and a, b ∈ R, then aX + bY ∈ L1(Ω, S,P) and

E
[
aX + bY

]
= aE

[
X
]
+ bE

[
Y
]

(1.3.6)

The above linearity of the expectation is a very powerful tool. Here is a simple illustration.

Example 1.3.3. Suppose that n ≥ 3 birds are arranged along a circle looking towards the
center. At a given moment each bird randomly and independently turns his head to the left
or to the right, with equal probabilities. After they turn their heads, some birds will be visible
by one of their neighbors, and some not. Denote by Xn the number of birds that are invisible
to their neighbors. We want to compute E

[
Xn

]
, the expected number of invisible birds. We

leave the reader to convince herself/himself that Xn is indeed a well defined mathematical
object.

For k = 1, . . . , n we denote by Bk the event that the k-th bird is invisible to its neighbors.
Then

Xn =
n∑
k=1

IBk
and E

[
Xn

]
=

n∑
k=1

E
[
IBk

]
=

n∑
k=1

P
[
Bk
]
= nP

[
B1

]
.

The probability that the first bird is invisible to is neighbors is computed by observing that
this happens iff its right neighbor turns his head right and its left neighbor turns his head
left. Since they do this independently with probabilities 1

2 we deduce

P
[
B1

]
=

1

2
· 1
2
=

1

4
.
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Hence

E
[
Xn

]
=
n

4
.

To appreciate how efficient this computation is we present an alternate method.

We will determine the expectation by determining the probability distribution of Xn, or equivalently its probability

generating function (pgf)

GXn (t) = E
[
tXn

]
=

∑
k≥0

P
[
Xn = k

]
tk.

I learned the argument below from Luke Whitmer, a student in one of my undergraduate probability courses.

Assume the birds sit on the edges of a convex n-gone Pn. Orienting an edge corresponds to describing in which

direction the corresponding bird is looking. We will refer to a choice of orientations of the edges of Pn as an orientation
of Pn. We denote by Ωn the collection of orientations of Pn. Note that |Ωn| = 2n.

Fix a cyclic clockwise labelling of the vertices of n-gon, v1, v2, . . . , vn and define vm for m ∈ N by requiring vi = vj
if i ≡ j mod n. The i-th bird sits on the edge Ei := [vi, vi+1]. The i-th bird, or equivalently the edge Ei, is invisible to

its neighbors if Ei−1 is oriented from vi to vi−1 and Ei+1 is oriented from vi+1 to vi+2. Given an orientation ω of Pn

we denote by xn(ω) the number of invisible edges in this orientation. Thus

P
[
Xn = j

]
=

#
{
ω ∈ Ωn; xn(ω) = j

}
2n

.

We distinguish two cases.

1. n = 2k. Denote by P+
n the polygon obtained from Pn by collapsing the edges E1, E3, E5, . . . . As vertices of the new

polygon we can take the collapsed edges. The edges of the new polygon are

E+
1 = E2, E

+
2 = E4, . . . , E

+
k = E2k.

Similarly, we denote by P−
n the polygon obtained from Pn by collapsing the edges E2, E4, . . . . We can take the collapsed

edges as vertices of the new polygon. Its edges are

E−
1 = E1, E

−
2 = E3, . . . , E

−
k = E2k−1.

Note that an orientation of Pn induces orientations of P±
n and conversely, orientations P±

n determine an orientation of

Pn. We denote by Ω±
n the set of orientations of P±

n . We thus have a bijection

Ωn ∋ ω 7→ (ω+, ω−) ∈ Ω+
n × Ω−

n .

Suppose now that we have an oriented m-gon Qm. If q1, . . . , qm are the vertices Qm we say that vi is an out-vertex if

both edges at vi are oriented away from vi and it is an in-vertex, if both edges at vi are oriented towards vi. A neutral
vertex is a vertex with an incoming edge and one outgoing edge. For an orientation ω of Qm we denote by ym(ω) the

number of out-vertices.

Fix an orientation on Pn. An edge Ei is an invisible in this orientation if and only if the corresponding vertex in

P
(−1)i

n is an out vertex. More explicitly, if i is even/odd, then the corresponding vertex in P±
n is an out-vertex. Note

that,

x2k(ω) = yk(ω+) + yk(ω−). (1.3.7)

We denote by xn,j the number of oriented n-gons with j invisible edges and we set

Pn(t) =
∑
j≥0

xn,jt
i =

∑
ω∈Ωn

txn(ω).

Note that

GXn (t) =
1

2n
Pn(t).

We denote by ym,j the number of oriented m-gons with j out-vertices and we set

Qm(t) :=
∑
j≥0

ym,jt
j =

∑
ω∈Ωm

tym(ω).

From (1.3.7) we deduce

P2k(t) = Qk(t)
2. (1.3.8)

2. n = 2k + 1. Fix an orientation of Pn. Consider a new oriented n-gon Qn with edges, in clockwise order

E′
1, E

′
2, . . . , E

′
n,

where E′
i carries the orientation of the edge E(2i−1) mod n of Pn. Denote the vertices of Qn by q1, q2, . . . , qn, so the two

edges that meet at qi are E′
i−1 and E′

i.
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Imagine stepping in a clockwise fashion on the edges of Pn and skipping every other edge and labelling by E′
i the

i-th edge we stepped on. Observe that the edge E2i mod n of Pn is invisible iff the vertex qi+1 (where E′
i ↔ E2i−1 and

E′
i+1 ↔ E2i+1 meet) is an out-vertex. Thus, the number of invisible edges of Pn is equal to the number of out-vertices

of Qn. Hence

P2k+1(t) = Q2k+1(t). (1.3.9)

To determine Qm(t) fix an orientation ω of an m-gon Qm. As we travel clockwise from one vertex to the next,

the out- and in-vertices alternate: once we leave an out-vertex, the first non-neutral vertex we meet is an in-vertex
and similarly once we leave an in-vertex the first non-neutral vertex we encounter is an out-vertex. In particular this

shows that there is an equal number of in and out-vertices. Fix a cyclic labelling {1, 2, . . . ,m} of the vertices of Qm. If

ym(ω) = j then zm(ω) = j so the set S of locations of in-/out-vertices has cardinality 2j,

S =
{
1 ≤ ℓ1 < ℓ2 < · · · < ℓ2j ≤ m,

}
.

The above discussion shows that if ℓ1 is an out/in- vertex, then all vertices ℓ3, ℓ5, . . . are out/in-vertices while the even

vertices ℓ2, ℓ4, . . . are in/out-vertices. This shows that

ym,j = 2
(n
2j

)
, Qm(t) =

∑
j≥0

(n
2j

)
tj ,

Qm(t2) = (1 + t)m + (1− t)m.

Hence

P2k(t
2) =

(
(1 + t)k + (1− t)k

)2
= (1 + t)2k + (1− t)2k + 2(1− t2)k,

P2k+1(t
2) = (1− t)2k+1 + (1 + t)2k+1.

We conclude that

GXn (t) =
1

2n
×


(
1−

√
t
)2k+1

+
(
1 +

√
t
)2k+1

, n = 2k + 1,

(
1 +

√
t
)2k

+
(
1−

√
t
)2k

+ 2
(
1− t

)k
, n = 2k.

The mean of Xn is

E
[
Xn

]
= G′

Xn
(1).

⊓⊔

Theorem 1.3.4. Suppose that (Ω, S,P) and F,G ⊂ S are two independent sigma-subalgebras.
If X ∈ L1(Ω,F,P), Y ∈ L1(Ω,G,P), then XY ∈ L1(Ω, S,P) and

E
[
XY

]
= E

[
X
]
E
[
Y
]
. (1.3.10)

Proof. Observe that the equality (1.3.10) is bilinear in X and Y . The equality holds for
X = IF , F ∈ F and Y = IG, G ∈ G and thus, by bilinearity, it holds for X ∈ Elem(Ω,F)
and Y ∈ Elem(Ω,G).

If X,Y are nonnegative, then Dn[X]Dn[Y ] ↗ XY and the Monotone Convergence The-
orem shows that (1.3.10) holds for X,Y ≥ 0. ⊓⊔

Corollary 1.3.5. Suppose that X,Y ∈ L1(Ω, S,P) are independent random variables such
that XY ∈ L1(Ω, S,P). Then

E
[
XY

]
= E

[
X
]
E
[
Y
]
. (1.3.11)

Proof. Use Theorem 1.3.4 with F = σ(X) and G = σ(Y ). ⊓⊔

Corollary 1.3.6. Suppose that the random variables X1, . . . , Xn : (Ω, S,P) → R are inde-
pendent. Then, for any Borel measurable functions f1, . . . , fn : R → R such that

fi(Xi) ∈ L1(Ω, S,P)

we have f1(X1) · · · fn(Xn) ∈ L1(Ω, S,P) and

E
[
f1(X1) · · · fn(Xn)

]
= E

[
f1(X1)

]
· · ·E

[
fn(Xn)

]
.
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Proof. Follows inductively from Corollary 1.3.5 by observing that for any k = 2, . . . , n the
random variables f1(X1) · · · fk−1(Xk−1) and fk(Xk) are independent. ⊓⊔

Corollary 1.3.7. Let X ∈ L1(Ω, S,P) and suppose that F ⊂ S is sigma-subalgebra. Then the
following are equivalent.

(i) For any Borel measurable function f : R → R such that f(X) ∈ L1 and any F ∈ F

E
[
f(X)IF

]
= P

[
F
]
E
[
f(X)

]
.

(ii) The random variable X is independent of F.

Proof. The implication (i) ⇒ (ii) follows by using f = I(−∞,x], x ∈ R. The converse follows
from Theorem 1.3.5. ⊓⊔

The following is not the usual definition of a convex function (see Exercise 1.30) but it
has the advantage that it is better suited for the applications we have in mind.

Definition 1.3.8. Let I be an interval of the real axis. A continuous function φ : I → R is
called convex if for any x0 ∈ I there exists a linear function ℓ(x) such that5

ℓ(x0) = φ(x0), ℓ(x) ≤ φ(x), ∀x ∈ I.

The convex function is called strictly convex if for any x0 ∈ I there exists a linear function
ℓ(x) such that

ℓ(x0) = φ(x0), ℓ(x) < φ(x), ∀x ∈ I \ {x0}. ⊓⊔

For example, if φ : I → R is C2, then φ is convex (resp. strictly convex) if φ′′(x) ≥ 0
(resp. φ′(x) > 0 ), ∀x ∈ I.

Theorem 1.3.9 (Jensen’s Inequality). Suppose that (Ω, S,P) is a probability space, X ∈ L1(Ω, S,P),
and φ : I → R is a convex function defined on an interval I that contains the range of X.
Then E

[
φ(X)

]
is well defined (possibly infinite )and

φ
(
E
[
X
] )

≤ E
[
φ(X)

]
. (1.3.12)

Moreover, if φ is strictly convex, then φ
(
E
[
X
] )

= E
[
φ(X)

]
iff X is a.s. constant.

Proof. Observe that when φ is linear theorem is valid in the stronger form

φ
(
E[X]

)
= E

[
φ(X)

]
.

We can find a linear function ℓ : R → R such that φ(x) ≥ ℓ(x), ∀x ∈ I and it is clear that if
the theorem is valid for the nonnegative convex function g := φ− ℓ, then it is also valid for
φ. Note that E

[
g(X)

]
∈ [0,∞] and thus the addition E

[
g(X)

]
+ ℓ
(
E
[
X
] )

is well defined

and yields a well defined E
[
φ(X)

]
, when φ(X) is integrable or nonnegative. Moreover φ(X)

is integrable if and only if g(X) is so. Because of this, we set

E
[
φ(X)

]
:= ∞ if φ(X) is not integrable.

Set µ := E
[
X
]
and observe that µ ∈ I since X ∈ I a.s.. Choose a linear function ℓ : R → R

such that

ℓ(x) ≤ φ(x), ∀x ∈ I and ℓ(µ) = φ(µ).

5The graph of such an ℓ is tangent to the graph of φ at x0.
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Then

φ
(
E
[
X
] )

= φ(µ) = ℓ(µ) = E
[
ℓ(X)

]
≤ E

[
φ(X)

]
.

If φ is strictly convex, then we can choose ℓ(x) such that

ℓ(x) < φ(x), ∀x ∈ I \ {µ} and ℓ(µ) = φ(µ).

If X is not a.s. constant neither is the nonnegative random variable φ(X)− ℓ(X) so

E
[
φ(X)− φ(µ)

]
= E

[
φ(X)− ℓ(X)

]
> 0.

⊓⊔

For any convex function φ : R → R we define the φ-entropy of an integrable random
variable X to be the quantity

Hφ

[
X
]
:= E

[
φ(X)

]
− φ

(
E
[
X
] )
. (1.3.13)

Jensen’s inequality shows that Hφ

[
X
]
≥ 0.

1.3.2. Higher order integral invariants of random variables. On a probability space
(Ω, S,P) we have the inclusions

Lp1(Ω, S,P) ⊂ Lp0(Ω, S,P), ∀1 ≤ p0 < p1 ≤ ∞.

Indeed, let X ∈ Lp1(Ω, S,P). Set

p :=
p1
p0
, φ(x) = xp, x ≥ 0, Y = |X|p0 .

Since p1 > p0 the function φ is convex and we have(
∥X∥p0

)p1 = E
[
|X|p0

]p
= φ

(
E
[
Y
] ) (1.3.12)

≤ E
[
φ(Y )

]
=
(
∥X∥p1

)p1 .
In particular, if p0 = 1 ≤ p we deduce

E
[
|X|

]p ≤ E
[
|X|p

]
. (1.3.14)

Given k ∈ N and X ∈ Lk(Ω, S,P) we define the k-th momentum of X to be the quantity

µk
[
X
]
:= E

[
Xk
]
.

Note that µ1
[
X
]
= E[X].

Definition 1.3.10 (Variance). Let (Ω, S,P) be a probability space. Suppose thatX ∈ L2(Ω, S,P)
is a random variable with mean µ := E[X]. The variance of X is the real number

Var
[
X
]
= E

[
(X − µ)2

]
.

The standard deviation of X is the quantity

σ
[
X
]
:=
√
Var

[
X
]
. ⊓⊔

Observe that

Var
[
X
]
= 0⇐⇒X = E

[
X
]
a.s..

The quadratic function

q(t) = E
[
(X − t)2

]
= t2 − 2µt+ E

[
X2
]
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achieves its minimum at t = µ so that

Var
[
X
]
= min

t∈R
E
[
(X − t)2

]
.

Thus the standard deviation is the distance fromX to the 1-dimensional space of deterministic
quantities. The variance can be given the alternate description

Var
[
X
]
= E

[
X2
]
− µ2 = µ2

[
X
]
− µ1

[
X
]2
. (1.3.15)

Indeed, if we set µ := E[X], then

Var
[
X
]
= q(µ) = E

[
X2
]
− µ2.

This shows that the variance is a special case of φ-entropy. More precisely,

Var
[
X
]
= Hφ

[
X
]
= E

[
φ(X)

]
− φ

(
E
[
X
] )
, φ(x) = x2.

Note that

Var
[
aX + b

]
= a2Var

[
X
]
, ∀a, b ∈ R. (1.3.16)

Indeed, set X̄ := X − µ and Z := aX + b. Then

Var
[
X
]
= E

[
X̄2
]
, Z − E[Z] = a

(
X − E[X]

)
= aX̄,

Var
[
Z
]
= E

[
a2X̄2

]
= a2Var

[
X
]
.

Theorem 1.3.11 (Chebyshev’s inequality). Let X ∈ L2(Ω, ]S,P) Set µ := E[X] and σ = σ[X].
Then

P
[
|X − µ| ≥ cσ

]
≤ 1

c2
, ∀c > 0. (1.3.17)

Equivalently

P
[
|X − µ| ≥ r

]
≤ Var[X]

r2
=
σ2

r2
, ∀r > 0. (1.3.18)

Proof. Set Y := |X − µ|2. Then

P
[
|X − µ| > r

]
= P

[
Y > r2

] (1.2.21)

≤ 1

r2
E
[
Y
]
=

Var[X]

r2
.

Chebyshev’s inequality (1.3.17) now follows from (1.3.18) by setting r = cσ. ⊓⊔

Definition 1.3.12. Let (Ω, S,P) be a probability space and X,Y ∈ L2(Ω, S,P). We set

µX := E
[
X
]
, µY := E

[
Y
]
.

(i) The covariance of X,Y is the quantity

Cov
[
X,Y

]
:= E

[
(X − µX)(Y − µY )

]
.

(ii) If X,Y are not deterministic we define the correlation coefficient of X and Y to be

ρ
[
X,Y

]
:=

Cov
[
X,Y

[
σ
[
X
]
σ
[
Y
] .

⊓⊔

Proposition 1.3.13. Let X,Y ∈ L2(Ω, S,P). Then the following hold.

(i) Cov
[
X,Y

]
= E

[
XY

]
− E

[
X
]
E
[
Y
]
.
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(ii) If X,Y are independent, then Cov
[
X,Y

]
= 0.

(iii) Var
[
X + Y

]
= Var

[
X
]
+Var

[
Y
]
+ 2Cov

[
X,Y

]
.

(iv) If X,Y are independent, then Var
[
X + Y

]
= Var

[
X
]
+Var

[
Y
]
.

Proof. Set

µX := E
[
X
]
, X̄ = X − µX , µY = E

[
Y
[
, Ȳ = Y − µY .

(i) We have

Cov
[
X,Y

]
= E

[
X̄Ȳ

]
= E

[
XY

]
− E

[
µXY

]︸ ︷︷ ︸
µXµY

−E
[
µYX

]︸ ︷︷ ︸
µXµY

+µXµY

= E
[
XY

]
− µXµY .

(ii) Corollary 1.3.5 shows that ifX,Y are independent, then E
[
XY

]
= µXµY , i.e., Cov

[
X,Y

]
= 0.

(iii) Next

Var
[
X + Y

]
= E

[
(X̄ + Ȳ )2

]
= E

[
X̄2
]
+ E

[
Ȳ 2
]
+ 2E

[
X̄Ȳ

]
= Var

[
X
]
+Var

[
Y
]
+ 2Cov

[
X,Y

]
.

(iv) This follows from (ii) and (iii). ⊓⊔

Corollary 1.3.14. If X1, . . . , Xn ∈ L2(Ω, S,P) are independent, then

Var
[
X1 + · · ·+Xn

]
= Var

[
X1

]
+ · · ·+Var

[
Xn

]
. (1.3.19)

⊓⊔

Example 1.3.15. Consider a probability space (Ω, S,P) and two events A,B ∈ S. We have

Cov
[
IA, IB

]
= P

[
A ∩B

]
− P

[
A
]
P
[
B
]
.

Thus A,B are independent iff Cov
[
IA, IB

]
= 0. ⊓⊔

Definition 1.3.16 (Moment generating function). Let X be a random variable defined on a
probability space (Ω, S,P) such that etX ∈ L1(Ω, S,P) for all t in an open interval I containing
0. The moment generating function or mgf of X is the function

MX : I → R, MX(t) = E
[
etX

]
. ⊓⊔

The proof of following result is left to you as an exercise.

Proposition 1.3.17. Let X ∈ L0(Ω, S,P) be a random variable.

(i) If MX(t) = E
[
etX

]
is well defined for all t ∈ (−t0, t0), then all the momenta of X

of X are well defined and

MX(t) =

∞∑
n=0

µn
[
X
] tn
n!
, ∀|t| < t0. (1.3.20)
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(ii) If all the momenta of X are well defined and power series

∞∑
n=0

µn
[
X
] tn
n!
,

converges ∀t ∈ (−t0, t0), then its sum is MX(t), ∀|t| < t0 .

⊓⊔

Corollary 1.3.18. Suppose that X1, . . . , Xn ∈ L0(Ω, S,P) are independent random variables
such that etXk ∈ L1(Ω, S,P) for any k = 1, . . . , n and any t in an open interval I ⊂ R that
contains the origin. Then

MX1+···+Xn(t) = MX1(t) · · ·MXn(t), ∀t ∈ I.

Proof. This is a special case of Corollary 1.3.6 corresponding to the choices

f1(x) = · · · = fn(x) = etx, t ∈ I.

⊓⊔

Remark 1.3.19 (The moment problem). Denote by Prob the set of Borel probability mea-
sures on the real axis and by Prob∞− the subset of Prob consisting of probability measures
p such that ∫

R
|x|kp[dx] <∞, ∀k ∈ N.

For p ∈ Prob∞− and k ∈ N0 we set

µk
[
p
]
:=

∫
R
xkp

[
dx
]
.

We denote by RN0 the set of sequences of real numbers s = (sn)n≥0. We have a map

µ : Prob∞− → RN0 , µ[p] =
(
µn
[
p
] )

n≥0
.

The moment problem asks the following.

(i) Describe the range of µ, i.e., given a sequence of real numbers s = s0, s1, . . . , decide
if there exists p ∈ Prob∞− such that µn[p] = sn, ∀n ≥ 0.

(ii) Is it true that the moments uniquely determine a probability measure, i.e., given
s in the range of µ is it true that there exists a unique p ∈ Prob∞− such that
µ[p] = s?

Party (i) of the moment problem is completely understood in the sense that there are known
several necessary and sufficient conditions for a sequence s to be the sequence of momenta of
a probability measure on R. We refer to [153, Chap. 3] for more details.

As for part (ii), it is known that a sequence s can be the sequence of momenta of sev-
eral probability measures; see Exercise 1.37. On the other hand, there are known sufficient
conditions on s guaranteeing the uniqueness of measure with that sequence of momenta; see
[153, Chap. 4] for more details. In particular, if X is a random variable such that etX is
integrable for any t in an open interval containing 0, then PX is uniquely determined by its
moments, [153, Cor. 4.14]. ⊓⊔
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We formulate for the record the last uniqueness result mentioned above. In Exercise 2.53
we outline a proof of this special case.

Theorem 1.3.20. Let X,Y ∈ L0(Ω, S,P) such that there exist r > 0 with the property that

E
[
etX

]
, E

[
etX

]
<∞, ∀|t| < r.

Then

X
d
= Y ⇐⇒ MX(t) = MY (t), ∀|t| < r. ⊓⊔

Corollary 1.3.21. Suppose that P0,P1 are Borel probability measures on R supported on
[0, 1], i.e.,

P0

[
R \ [0, 1]

]
= P1

[
R \ [0, 1]

]
= 0.

Then

P0 = P1 ⇐⇒
∫
R
xnµ0

[
dx
]
=

∫
R
xnµ1

[
dx
]
, ∀n ∈ N.

⊓⊔

Proof. Note that ∫
R
xn Pi

[
dx
]
≤ 1 ⇒

∫
R
etxPi

[
dx
]
<∞, ∀t ∈ R

and ∫
R
etxP0

[
dx
]
=

∫
R
etxP1

[
dx
]
, ∀t ∈ R

⇐⇒
∫
R
xn P0

[
dx
]
=

∫
R
xn P1

[
dx
]
, ∀n ∈ N0.

⊓⊔

To a random variable X with range contained in N0 = {0, 1, 2, . . .
}
we can associate its

probability generating function (or pgf)

GX(t) :=
∑
n≥0

P
[
X = n

]
tn = E

[
tX
]
.

Note that

GX(1) = 1, G′
X(1) = E

[
X
]
, G′′

X(1) = E
[
X(X − 1)

]
. (1.3.21)

Similarly, if X, Y are two independent N0-valued random variables, then

GX+Y (t) = E
[
tX+Y

]
= E

[
tX
]
E
[
tY
]
= GX(t)GY (t).

1.3.3. Classical examples of discrete random variables. The theory of probability
has grown mostly from concrete intriguing examples. In this process people encountered
various frequently occurring patterns encoded by some ubiquitous random variables. We
describe a few of them in the following subsections. These examples are part of the theory
of probability and have many and varied uses. Their knowledge is absolutely necessary for a
genuine understanding of probability.

Before Kolmogorov (and currently in most undergraduate probability courses), the world
of random variables was divided into three categories: discrete, continuous and neither, or
mixed. The discrete random variables are those whose ranges are discrete subsets of R.
A random variable X is called continuous if its probability distribution PX is absolutely
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continuous with respect to the Lebesgue measure on R. We throw in the third category
the random variables that do not fit in these two categories. We want to describe a few
classical example of discrete and continuous random variables that play an important role in
probability. Throughout our presentation we will frequently assume that given a sequence
(µn)n∈N of Borel probability measures on R there exists a probability space (Ω, S,P) and
independent random variables Xn : (Ω, S,P) → R such that PXn = µn, ∀n ∈ N. The fact
that such a thing is possible is a consequence of Kolmogorov’s existence theorem, Theorem
1.5.6.

We begin by introducing some frequently occurring discrete random variables by describ-
ing the random experiments where they appear.

Example 1.3.22 (Bernoulli random variables). Suppose we perform a random experiment
aiming to observe the occurrence of a certain event S, p := P

[
S
]
. When S has occurred we

say that we have registered a success. Traditionally such an experiment is called a Bernoulli
trial with success probability p. When the event S is not observed we say that the experiment
was a failure. The failure probability is q := 1 − p. The Bernoulli trial is encoded by the
random variable IS which takes the value 1 when we register a success, and the value 0
otherwise. We also say that IS is a Bernoulli random variable . Observe that

E
[
IS
]
= p, Var

[
IS
]
= E

[
I2
S

]
−
(
E
[
IS
] )2

= p− p2 = pq.

Note that any random variable with range {0, 1} is a Bernoulli random variable since

X = I{X=1}. ⊓⊔

Example 1.3.23 (Binomial random variables). Suppose that we perform the experiment in
the above example n times, and the results of these experiments are independent of each
other. We denote by N the number of successes observed during these n trials.6 We say that
N is a binomial random variable corresponding to n trials with success probability p and we
indicate this N ∼ Bin(n, p).

For k = 1, . . . , n we denote by Sk the event “the k-th trial was a success”. Then

N =
n∑
k=1

ISk
and E

[
N
]
=

n∑
k=1

E
[
ISk

]
= np.

Since the events (Sk)1≤k≤nare independent we deduce from Corollary 1.3.6 that

Var
[
N
]
=

n∑
k=1

Var
[
ISk

]
= npq.

Next observe that

GN (s) = q + ps, MN (t) = q + pet,

so

GN (s) = GIS1
(t)n = (q + ps)n, MN (t) = MIS1

(t)n = (q + pet)n. ⊓⊔
This string of Bernoulli trials can be realized abstractly in the probability space(

{0, 1}n,2{0,1}n , β⊗np
)

6Think for example that you roll a pair of dice 10 times and you aim to count how many times the sum of the
numbers on the dice is 7. In this case success is when the sum is 7 and it is not hard to see that the probability of

success is 1
6
.
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described in Example 1.2.6(e). The events

Sk :=
{
(ϵ1, . . . , ϵn) ∈ {0, 1}n; ϵk = 1

}
, k = 1, . . . , n,

are independent and P
[
Sk
]
= p, ∀k = 1, . . . , n. Then

ISk
(ϵ) = ϵk, ∀ϵ = (ϵ1, . . . , ϵn) ∈ {0, 1}n.

As explained in Example 1.2.6(e), the probability distribution of N is given by the equalities

P
[
N = k

]
=

(
n

k

)
pkqn−k, k = 0, 1, . . . , n.

Equivalently,

PN =

n∑
k=0

(
n

k

)
pkqn−kδk.

⊓⊔

Example 1.3.24 (Waiting for successes). Suppose that we perform independent Bernoulli
trials until we register the first success. We denote by T1 the moment we observe the first
success, T1 ∈ N∪ {∞}. The random variable T1 is a geometric random variable with success
probability p. We write this T1 ∼ Geom(p).

Observe that T1 = n iff the first n−1 trials where failures and the n-th trial was a success.
Thus

P
[
T1 = n

]
= qn−1p.

In particular, P
[
N1 = ∞

]
= 0. We deduce that the probability distribution of T1 is

PT1 =
∑
n≥1

pqn−1δn.

Moreover

E
[
T1
]
=
∑
n≥1

npqn−1 = p
∑
n≥1

nqn−1 = p
d

dq

∑
n≥0

qn =
p

(1− q)2
=

1

p
. (1.3.22)

Here is a simple plausibility test for this result. Suppose we role a die until we first roll a 1.
The probability of rolling a 1 is 1

6 so it is to be expected that we need 6 rolls until we roll
our first 1.

We have

E
[
T 2
1

]
− E

[
T1
]
=

∞∑
n=1

n(n− 1)pqn−1 =

∞∑
n=2

n(n− 1)pqn−1

= pq

∞∑
n=2

n(n− 1)pqn−2 = pq
d2

dq2

( 1

1− q

)
=

2pq

(1− q)3
=

2q

p2
.

We deduce that

E
[
T 2
1

]
=

2q

p2
+

1

p
, Var

[
T1
]
=

2q

p2
+

1

p
− 1

p2
=

q

p2
.

Note that

MT1(t) = E
[
etT1

]
=

∞∑
n=1

pqn−1ent = pet
∞∑
m=0

(
qet
)m

=
pet

1− et
.
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Consider now a more general situation. Fix k ∈ N and perform independent Bernoulli trials
until we observe the k-th success. Denote by Tk the number trials until we record the k-th
success. Note that

Tk = T1 + (T2 − T1) + (T3 − T2) + · · ·+ (Tk − Tk−1).

Due to the independence of the trials, once we observe the i-th success it is as if we start
the experiment anew, so the waiting time Ti+1 − Ti until we observe the next success, the
(i+ 1)-th, is a random variable with the same distribution as T1

Ti+1 − Ti
d
= T1, ∀i ∈ N.

Hence E
[
Ti+1 − Ti

]
= E

[
T1
]
= 1

p so

E
[
Tk
]
= kE

[
T1
]
=
k

p
. (1.3.23)

The probability distribution of Tk is computed as follows. Note that Tk = n if during the first
n − 1 trials we observed exactly k − 1 successes, and at the n-th trial we observed another
success. Hence

P
[
Tk = n

]
=

(
n− 1

k − 1

)
pk−1qn−k · p =

(
n− 1

k − 1

)
pkqn−k, (1.3.24)

and

MTk(t) =

(
pet

1− et

)k
.

Since the waiting times between two consecutive successes are independent random variables
we deduce

Var
[
Tk
]
= kVar

[
T1
]
=
kq

p2
.

The above probability measure on R is called the negative binomial distribution and Tk is
called a negative binomial random variable corresponding to k sucesses with probability p.
We write this Tk ∼ NegBin(k, p). ⊓⊔

Let us describe a classical and less than obvious application of the geometric random
variables.

Example 1.3.25 (The coupon collector problem). The coupon collector’s problem arises
from the following scenario. Suppose that each box of cereal contains one of m different
coupons. Once you obtain one of every type of coupons, you can send in for a prize. Ann
wants that prize and, for that reason, she buys one box of cereals everyday. Assuming that the
coupon in each box is chosen independently and uniformly at random from the m possibilities
and that Ann does not collaborate with others to collect coupons, how many boxes of cereal
is she expected to buy before she obtain at least one of every type of coupon?

Let N denote the number of boxes bought until Ann has at least one of every coupon.
We want to determine E

[
N
]
. For i = 1, . . . , n − 1 denote by Ni the number of boxes she

bought while she had exactly i coupons. The first box she bought contained one coupon.
Then she bought N1 boxes containing the coupon you already had. After 1 +N1 boxes she
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has two coupons. Next, she bought N2 boxes containing one of the two coupons you already
had etc. Hence7

N = 1 +N1 + · · ·+Nm−1.

Let us observe first that for i = 1, · · · ,m− 1 we have

Ni ∼ Geom(pi), pi =
m− i

m
, qi = 1− pi =

i

m
.

Indeed, at the moment she has i coupons, a success occurs when she buys one of the remaining
m − i coupons. The probability of buying one such coupon is thus m−i

m . Think of buying a

box at this time as a Bernoulli trial with success probability m−i
m . The number Ni is then

equal to the number of trials until you register the first success. This argument also shows
that the random variables Ni are independent. In particular,

E[Ni] =
1

pi
=

m

m− i
.

From the linearity of expectation we deduce

E
[
N
]
= 1 + E

[
N1

]
+ E

[
N2

]
+ · · ·+ E

[
Nm−1

]
= m

(
1 +

1

2
+ · · ·+ 1

m− 1
+

1

m

)
︸ ︷︷ ︸

=:Hm

.

AsymptoticallyHm differs from logm by the mysterious Euler-Mascheroni constant γ ≈ 0.5772,
i.e.,

lim
m→∞

(Hm − logm) = γ.

Thus the expected number of boxes needed to collect all them coupons is aboutm logm+mγ.
⊓⊔

Remark 1.3.26. We can ask a more general question. For k ≥ 1 we denote by Xk = Xk,m

the number of boxes Ann has to buy until she has at least k of each of these m coupons. We
have seen that that E

[
X1,m

]
= mHm. One can show that as m→ ∞ we have

E
[
Xk,m

]
= m

(
logm+ (k − 1) log logm+ γ − log(k − 1)! + o(1)

)
,

where γ is the Euler-Mascheroni constant. For details we refer to [61, 132]. ⊓⊔

Example 1.3.27 (The hypergeometric distribution). Suppose that we have a bin containing
w white balls and b black balls. We select n balls at random from the bin and we denote
by X the number of white balls among the selected ones. This is a random variable with
range 0, 1, . . . , n called the hypergeometric random variable with parameters w, b, n. We will
use the notation X ∼ HGeom(w, b, n) to indicate this and we will refer to its pmf as the
hypergeometric distribution. For example, if A is the number of aces in a random poker
hand, then A ∼ HGeom(4, 48, 5).

7Here we tacitly assume that we can describe quantities Ni as measurable functions defined on the same probability

space. In Exercise 1.13 we ask the reader to do this. It is more challenging than it looks.
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To compute P
[
X = k

]
when X ∼ HGeom(w, b, n) note that a favorable outcome for the

event X = k is determined by a choice of k white balls (out of w) and another independent
choice of n− k black balls (out of b) so that the number of favorable outcomes is(

w

k

)(
b

n− k

)
.

The number of possible outcomes of a random draw of n balls
(
w+b
n

)
. Hence

P
[
X = k

]
=

(
w
k

)(
b

n−k
)(

w+b
n

) .

Its probability generating function is

GX(s) =
1(
N
n

) w∑
k=0

(
w

k

)(
b

n− k

)
sk, N := w + b.

We can identify GX(s) as the coefficient of xn in the polynomial

Q(s, x) =
1(
N
n

)(1 + sx)w(1 + x)b.

We have
∂Q

∂s
(s, x) =

wx(1 + x)b(
N
n

) (1 + sx)w−1.

The mean of X is G′
X(1) and it is equal to the coefficient of xn in

∂Q

∂s
(1, x) =

wx(
w+b
n

)(1 + x)N−1 =
w
(
N−1
n−1

)(
N
n

) =
wn

N
=

wn

w + b
.

Hence

E
[
HGeom(w, b, n)

]
=

w

w + b
· n. (1.3.25)

⊓⊔

Example 1.3.28 (Poisson random variables). These random variables count the number N
of random rare events that occur in a given unit of time. E.g., N could mean the number
of computers in a large organization that die during one fiscal year. They depend on a
parameter λ and we indicate this using the notation N ∼ Poi(λ). If N ∼ Poi(λ), then

P
[
N = n

]
= e−λ

λn

n!
, i.e., PN =

∞∑
n=0

e−λ
λn

n!
δn

Then

E
[
N
]
=
∑
n≥0

e−λ
nλn

n!
= λe−λ

∑
n≥1

λn−1

(n− 1)!
= λ.

The moment generating function of N is

MN (t) = E
[
etN

]
= e−λ

∑
n≥0

(λet)n

n!
= eλ(e

t−1).

We have

M′
N (t) = λeteλ(e

t−1), M′′
N (t) = λeteλ(e

t−1) + (λet)2eλ(e
t−1)
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so

E
[
N2
]
= M′′

N (0) = λ+ λ2, Var
[
N
]
= λ.

⊓⊔

Example 1.3.29 (The inclusion-exclusion principle). Suppose that (Ω, S,P) is a prob-
ability space and A1, . . . , An ∈ S. We want to compute the probability distribution of the
random variable

N =
n∑
k=1

IAk
.

If the events Ak were independent and had identical probabilities, then N ∼ Bin(n, p). Set

In :=
{
1, . . . , n

}
.

For m = 0, 1, . . . , n we denote by Ωm set of points ω ∈ Ω that belong to exactly m of the sets
A1, . . . , An. In other words Ωm = {N = m}. Note that

Ωc0 = A1 ∪ · · · ∪An.

For I ⊂ In we set

AI :=

{⋂
i∈I Ai, I ̸= ∅,

Ω, I = ∅.

For k ∈ {0, 1, 2, . . . n} we define

sk = snk :=
∑
I⊂In,
|I|=k

P
[
AI
]
. (1.3.26)

The inclusion-exclusion principle states that

P
[
N = m

]
= P

[
Ωm

]
=

n−m∑
k=0

(−1)k
(
m+ k

m

)
sm+k, ∀m = 0, 1, . . . ,m. (1.3.27)

Using the above equality with m = 0 we obtain the better known formula

P
[
A1 ∪ · · · ∪An

]
= 1− P

[
Ω0

]
=

n∑
k=1

(−1)k−1
∑
I⊂In,
|I|=k

P
[
AI
]
=

n∑
k=1

(−1)k−1sk. (1.3.28)

To prove (1.3.27) we set

Sk = Snk :=
∑
I⊂In,
|I|=k

IAI
. (1.3.29)

Note that

snk = E
[
Snk
]
.

We will prove that

IΩm =

n−m∑
k=0

(−1)k
(
m+ k

m

)
Sm+k. (1.3.30)
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Indeed, using the equality IA∩B = IA · IB we deduce

IΩm =
∑
I⊂In
|I|=m

∏
i∈I

IAi

∏
j∈In\I

IAc
j

 =
∑
I⊂In
|I|=m

∏
i∈I

IAi

∏
j∈In\I

(
1− IAj

)

=
n−m∑
k=0

(−1)k
∑

|J |=m+k

c(J)IAJ
.

Now observe that for any subset J ⊂ In of cardinality m + k there are
(
m+k
m

)
different way

of writing IAJ
as a product

IAJ
= IAI

IAJ\I , |I| = m.

Thus c(J) =
(
m+k
m

)
for |J | = m+ k. We deduce∑

|J |=m+k

c(J)IAJ
=

(
m+ k

m

)
Sm+k.

Using the linearity of expectation we deduce from (1.3.30) that

P
[
Ωm

]
= E

[
IΩm

]
=

n−m∑
k=0

(−1)k
(
m+ k

m

)
E
[
Sm+k

]
,

where E
[
Sm+k

]
= sm+k.

Associated to the equality (1.3.27) there is a sequence of inequalities called the Bonferroni
inequalities. For ℓ ∈ N and n−m

2 ≥ ℓ

2ℓ−1∑
k=0

(−1)k
(
m+ k

m

)
sm+k ≤ P

[
Ωm

]
≤

2ℓ∑
k=0

(−1)k
(
m+ k

m

)
sm+k. (1.3.31)

The above inequalities follow from the “motivic” Bonferroni inequalities

2ℓ−1∑
k=0

(−1)k
(
m+ k

m

)
Sm+k ≤ IΩm

≤
2ℓ∑
k=0

(−1)k
(
m+ k

m

)
Sm+k, 1 ≤ ℓ ≤ n−m

2
.

(1.3.32)

To prove this we fix ω ∈ Ω. We have to show that

2ℓ−1∑
k=0

(−1)k
(
m+ k

m

)
Sm+k(ω) ≤ IΩm(ω) ≤

2ℓ∑
k=0

(−1)k
(
m+ k

m

)
Sm+k(ω) (1.3.33)

for k ≤ n−m
2 . Define

Iω :=
{
i ∈ In; ω ∈ Ai

}
, r(ω) := |Iω| =

n∑
k=1

IAk
(ω).

Note that IAI
(ω) = 0 if |I| > r(ω). In particular, this shows that all the terms in the

inequality (1.3.32) are equal to zero if r(ω) < m.
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Suppose that r(ω) ≥ m. Then, for any k ≤ r, we have

Sk(ω) =
∑
I⊂Iω
|I|=k

IAI
(ω) =

(
r

k

)
.

Thus, the inequality (1.3.33) evaluated at ω is equivalent to

2ℓ−1∑
k=0

(−1)k
(
m+ k

m

)(
r

m+ k

)
≤ IΩm(ω) ≤

2ℓ∑
k=0

(−1)k
(
m+ k

m

)(
r

m+ k

)
. (1.3.34)

The inclusion-exclusion identity (1.3.27) shows that the inequalities become equalities for
2ℓ > r −m so we assume 2ℓ ≤ r −m.

For r = m the inequality (1.3.34) is obvious since the sums in the left and right-hand
sides consist of a single term equal to 1 = IΩm(ω). Assume r > m. In this case (1.3.34) is
equivalent to

2ℓ−1∑
k=0

(−1)kak ≤ 0 ≤
2ℓ∑
k=0

(−1)kak, ak :=

(
m+ k

m

)(
r

m+ k

)
. (1.3.35)

Observe that

ak =

(
r

m

)(
p

k

)
, p = r −m.

The inequality (1.3.35) reduces to(
p

0

)
−
(
p

1

)
+ · · ·+

(
p

2ℓ− 2

)
−
(

p

2ℓ− 1

)
≤ 0

0 ≤
(
p

0

)
−
(
p

1

)
+

(
p

2

)
+ · · · −

(
p

2ℓ− 1

)
+

(
p

2ℓ

)
,

where 2ℓ ≤ p. These inequalities are immediate consequences of two well known properties
of the binomial coefficients, namely their symmetry(

p

k

)
=

(
p

p− k

)
,

and their unimodality(
r

0

)
≤
(
p

1

)
≤ · · · ≤

(
p

⌊p/2⌋

)
=

(
p

⌊(p+ 1)/2⌋

)
≥
(

p

⌊p/2⌋+ 1

)
≥ · · · ≥

(
p

p

)
.

For m = 0 we obtain the inequalities

n∑
k=1

P
[
Ak
]
−

∑
1≤i<j≤n

P
[
Ai ∩Aj

]
≤ P

[
A1 ∪ · · · ∪An

]
≤

n∑
k=1

P
[
Ak
]
.

The right-hand-side inequality is referred to as the union bound. ⊓⊔

Remark 1.3.30 (Binomial inversion). Consider the upper triangular matrices

A = (aℓm)0≤ℓ,m, aℓm =

{
(−1)m+ℓ

(
m
ℓ

)
, ℓ ≤ m,

0, ℓ > m,
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and

B = (bkn)0≤k≤n, bkn =

{(
n
k

)
, k ≤ n,

0, k > n.

The collections
(
(x − 1)m

)
m≥0

and
(
xn
)
n≥0

are bases of the space R
[
x
]
of polynomials

with real coefficients. Newton’s binomial formula implies

(x− 1)m =
∑
ℓ

aℓmx
ℓ, xn =

∑
k

bkn(x− 1)k.

Hence A−1 = B, B−1 = A. This fact is known as binomial inversion. Note that (1.3.27)
reads

P
[
Ωℓ
]
=
∑
m≥ℓ

aℓmsm,

We deduce that

sk =
∑
m≥k

bkmP
[
Ωm

]
.

We set X = IA1 + · · ·+ IAn . In Exercise 1.23 we ask the reader to prove that

sk = E
[(

X

k

)]
.

⊓⊔

Example 1.3.31 (Sieves and poissonization). Suppose now that we have an upper triangular
array of measurable sets (An,i)i∈In , n ∈ N.

A1,1

A2,1, A2,2
...

...
An,1, An,2, An,3 · · · An,n
...

...
...

...
...

For n ≥ q we denote by Ωnm the set of points in Ω that belong to exactly m of the sets
An,1 . . . , An,n, i.e., Ω

n
m = {Xn = m}. Using Bonferroni’s inequalities we deduce that for fixed

ℓ and n > 2ℓ+m we have

2ℓ−1∑
k=0

(−1)k
(
m+ k

m

)
snm+k ≤ P

[
Ωnm

]
≤

2ℓ∑
k=0

(−1)k
(
m+ k

m

)
snm+k. (1.3.36)

Suppose now that there exists λ > 0 such that, for any q ∈ N we have

lim
n→∞

snq =
λq

q!
. (1.3.37)

If we let n→ ∞ in (1.3.36) we obtain

1

m!

2ℓ−1∑
k=0

(−1)k
λk

k!
≤ lim inf

n→∞
P
[
Ωnm

]
≤ lim sup

n→∞
P
[
Ωnm

]
≤ 1

m!

2ℓ∑
k=0

(−1)k
λk

k!
.

If we now let ℓ→ ∞ we deduce

lim
n→∞

P
[
Ωnm

]
=
e−λλm

m!
.
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We can rephrase this in an equivalent way. Set

Xn :=
n∑
k=1

IAn,k
.

Then Ωnm = {Xn = m} and thus we showed that if (1.3.36) holds, then

lim
n→∞

P
[
Xn = m

]
= P

[
Poi(λ) = m

]
,

where we recall that Poi(λ) denotes a Poisson random variable with parameter λ.

The phenomenon depicted above is referred under the generic name of poissonization
or Poisson approximation. Let us observe that if the events An,k are independent and

P
[
An,i

]
= λ

n , then

snk =

(
n

k

)(
λ

n

)k
∼ λk

k!
as n→ ∞.

In this case Xn = Bin(n, λ/n). The success probability λ
n is small for large n and for this

reason the Poisson distribution is sometimes referred as the law of rare events.

The estimation techniques based on various versions of the inclusion-exclusion principle
are called sieves. We refer to [160, Chap. 2, 3] for a more detailed description of far reaching
generalizations of the inclusion-exclusion principle and associated sieves. ⊓⊔

Example 1.3.32 (Fixed points of random permutations). Let us show how the above argu-
ments work on the classical derangements problem . Denote by Sn the group of permutations
of In, We equip it with the uniform probability measure so each permutation σ has probability
1
n! . For each σ ∈ Sn we denote by F (σ) = Fn(σ) its number of of fixed points, i.e.,

F (σ) = #
{
k ∈ In; σ(k) = k

}
.

Thus F : Sn → {0, 1, . . . , n} can be viewed as a random variable.

A derangement is a permutation σ with no fixed points, i.e., F (σ) = 0. A concrete oc-
currence of a derangement can be observed when a group of n, slightly inebriated, passengers
board a plane and pick seats at random. A derangement occurs when none of them sits on
his/her preassigned seat.

We want to compute the probability distribution of Fn, i.e., the probabilities

P
[
Fn = m

]
, k = 0, 1, . . . , n.

For j ∈ In we denote by Ej the event σ(j) = j. The set of permutations that fix j can be
identified with the set of permutations of In \ {j} so

P
[
Ej
]
=

(n− 1)!

n!
=

1

n
.

Observe that

Fn =
n∑
k=1

IEk
,

so

E
[
Fn
]
=

n∑
k=1

E
[
IEk

]
=

n∑
k=1

P
[
Ek
]
= 1. (1.3.38)
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Thus the expected number of fixed points is rather low: a random permutation has, on
average, one fixed point.

Let us compute the probability distribution of F . For each I ⊂ In we set

EI =
⋃
i∈I

Ei.

Thus σ ∈ EI if and only if the permutation σ fixes all the points in I. We deduce that if
|I| = k, then

P
[
EI
]
=

(n− k)!

n!
and sk = snk :=

∑
|I|=k

P
[
EI
]
=

(
n

k

)
(n− k)!

n!
=

1

k!
.

Note that if Fn(σ) = m, then σ fixes exactly k points and (1.3.27) yields

P
[
Fn = m

]
=

n−m∑
k=0

(−1)k
(
m+ k

m

)
sm+k =

1

m!

n−m∑
k=0

(−1)k
1

k!
.

In particular, the number of derangements is

P
[
Fn = 0

]
=

n∑
k=0

(−1)k
1

k!
.

The equality E
[
Fn
]
= 1 yields an interesting identity

1 =
n∑

m=1

mP
[
Fn = m

]
=

n∑
m=1

1

(m− 1)!

(
n−m∑
k=0

(−1)k
1

k!

)
.

Note that

lim
n→∞

P
[
Fn = m

]
=
e−1

m!
. (1.3.39)

The sequence e−1

m! , m ≥ 0 describes the Poisson distribution Poi(1). ⊓⊔

1.3.4. Classical examples of continuous probability distributions. We want to de-
scribe a few example of random variables whose probability distributions are absolutely con-
tinuous with respect to the Lebesgue measure on the real axis. They all have the form

P
[
dx
]
= p(x)λ

[
dx
]
, p ∈ L1

+

(
R,BR,λ

)
,

∫
R
p(x)λ

[
dx
]
= 1.

The function p is called the probability density of the Borel probability measure on R. To
ease the notational burden we will use the simpler notation

p(x)dx := p(x)λ
[
dx
]

Such distributions are classically known as continuous probability distributions. The proba-
bilistic significance of the examples discussed in this section will gradually be revealed in the
book.

Example 1.3.33 (Uniform distribution). A random variable X is said to be uniformly
distributed or uniform in the interval [a, b], and we write this X ∼ Unif(a, b), if

PX
[
dx
]
=

1

b− a
I [a,b]dx.
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When X ∼ Unif(a, b) we have

MX(t) =
1

b− a

∫ b

a
etxdx =

etb − eta

t(b− a)
=
∑
n≥1

bn − an

n(b− a)

tn−1

(n− 1)!
.

In particular we deduce

µn
[
X
]
=

1

n+ 1

bn+1 − an+1

b− a
. (1.3.40)

⊓⊔

Figure 1.4. The graph of γ0,σ for σ = 1 (dotted red curve) and σ = 0.1 (continuous blue curve).

Example 1.3.34 (Gaussian random variables ). The Gaussian or normal random variables
form a 2-parameter family N(µ, σ2), µ ∈ R, σ > 0 where X ∼ N(µ, σ2) iff

PX
[
dx
]
= γµ,σ2(x)dx, γµ,σ2(x) :=

1√
2π σ

e−
(x−µ)2

2σ2 .

We will use the simpler notation γσ2(x) := γ0,σ2 . The measure

Γµ,σ2

[
dx
]
:= γµ,σ2(x)dx

is called the Gaussian measure on R with mean µ and variance σ2. Let us observe

X ∼ N(µ, σ2) ⇐⇒ 1

σ
(X − µ) ∼ N(0, 1).

Indeed if we set

Y :=
1

σ

(
X − µ

)
,

then

P
[
Y ≤ y

]
= P

[
(x− µ)/σ ≤ y

]
= P

[
x ≤ σy + µ

]
=

∫ σy+µ

−∞
γµ,σ2(x)dx

= σ

∫ y

−∞
γµ,σ2

(
σt+ µ

)
dt =

∫ y

−∞
γ0,1(t)dt.

Thus
E
[
X
]
= E

[
Y
]
+ µ, Var

[
X
]
= σ2Var

[
Y
]
.
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We have

E
[
Y
]
=

1√
2π

∫
R
ye−y

2/2dy = 0,

and

Var
[
Y
]
= E

[
Y 2
]
=

1√
2π

∫
R
y2e−y

2/2dy =
2√
2π

∫ ∞

0
y2e−y

2/2dy

(s = y2/2, y =
√
2s)

=
2√
π

∫ ∞

0
s1/2e−sds =

2√
π
Γ(3/2) =

2√
π
· 1
2
Γ(1/2) = 1,

where at the last two steps we used basic facts about the Gamma function recalled in Propo-
sition A.1.2. We deduce that

X ∼ N(µ, σ2) ⇒ E
[
X
]
= µ, Var

[
Y
]
= σ2. (1.3.41)

A variable X ∼ N(0, 1) is called a standard normal random variable. Its cdf is

Φ(x) := P
[
X ≤ x

]
=

1√
2π

∫ x

−∞
e−x

2/2dx, (1.3.42)

plays an important role in probability and statistics. The quantity

P
[
X > x

]
γ1(x)

is called the Mills ratio of the standard normal random variable. It satisfies the inequalities

x

x2 + 1
γ1(x) ≤ P

[
X > x

]
≤ 1

x
γ1(x). (1.3.43)

In Exercise 1.32 we outline a proof of this inequality.

Observe that if X ∼ N(0, 1), and σ ∈ R, then σX ∈ N(0, σ2) and

MσX(t) = E
[
etσX

]
= MX [σt].

On the other hand, if X ∼ N(0, 1), then

MX(t) =
1√
2π

∫
R
etx−x

2/2dx =
1√
2π

∫
R
e(2tx−x

2−t2)/2et
2/2dx

= et
2/2 · 1√

2π

∫
R
e−(x−t)2/2dx︸ ︷︷ ︸
=1

= et
2/2.

Thus

µ2m
[
X
]
=

(2m)!

2mm!
= (2m− 1)!!, µ2m−1

[
X
]
= 0, ∀m ∈ N. ⊓⊔

Example 1.3.35 (Gamma distributions). The Gamma distributions with parameters ν, λ
are defined by

Γν,λ
[
dx
]
= gν(x;λ)dx.

where the densities gν(x;λ), λ, ν > 0 are given by

gν(x;λ) =
λν

Γ(ν)
xν−1e−λxI(0,∞). (1.3.44)
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From the definition of the Gamma function we deduce that gν(x;λ) is indeed a probability
density, i.e., ∫ ∞

0
gν(x;λ)dx = 1.

We will use the notation X ∼ Gamma(ν, λ) to indicate that PX = Γν,λ.

The Gamma(1, λ)-random variables play a special role in probability. They are called
exponential random variables with parameter λ. We will use the notation X ∼ Exp(λ) to
indicate that X is such a random variable. The distribution of Exp(λ) is

Exp(λ) ∼ λe−λxI(0,,∞)dx.

We will have more to say about exponential variables in the next subsection.

The parameter ν is sometimes referred to as the shape parameter. Figure 1.5 may explain
the reason for this terminology.

Figure 1.5. The graphs of gν(x;λ) for ν > 1 and ν < 1.

For n = 1, 2, 3, . . . the distribution Gamma(n, λ) is also known as an Erlang distribution
and has a simple probabilistic interpretation. If the waiting time T for a certain event is
exponentially distributed with rate λ, e.g., the waiting time for a bus to arrive, then the
waiting time for n of these events to occur independently and in succession is a Gamma(n, λ)
random variable. We will prove this later.

The distribution gn/2(x; 1/2), where n = 1, 2, . . . , plays an important role in statistics it
also known as the chi-squared distribution with n degrees of freedom and it is traditionally
denoted by χ2(n). One can show that if X1, . . . , Xn are independent standard normal random
variables, then the random variable

X2
1 + · · ·+X2

n

has a chi-squared distribution of degree n.

If X ∼ Gamma(ν, λ) is a Gamma distributed random variable, then X is s-integrable for
any s ≥1. Moreover, for any k ∈ {1, 2, . . . } we have

µk
[
X
]
=

λν

Γ(ν)

∫ ∞

0
xk+ν−1e−λxdx
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(x = λ−1t, dx = λ−1dt, λx = t, xk+ν−1 = λ−(k+ν−1)tk+ν−1)

=
1

λkΓ(ν)

∫ ∞

0
tk+ν−1e−tdt =

Γ(k + ν)

λkΓ(ν)
.

We deduce

E
[
X
]
= µ1

[
X
]
=

Γ(ν + 1)

λΓ(ν)
=
ν

λ
,

Var
[
X
]
= µ2

[
X
]
− µ1

[
X
]2

=
Γ(ν + 2)

λ2Γ(ν)
− ν2

λ2
=
ν(ν + 1)− ν2

λ2
=

ν

λ2
.

Finally, if X ∼ Gamma(ν, λ), then for t < λ we have

MX(t) =
λν

Γ(ν)

∫ ∞

0
xν−1e−(λ−t)xdx

x = y/(λ− t)

=
λν

Γ(ν)(λ− t)ν

∫ ∞

0
yν−1e−ydy =

(
λ

λ− t

)ν
.

⊓⊔

Example 1.3.36 (Beta distributions). The Beta distribution with parameters a, b > 0 is
defined by the probability density function

βa,b(x) =
1

B(a, b)
xa−1(1− x)b−1I(0,1).

The normalizing constant B(a, b) is the Beta function (A.1.2),

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

We will use the notation X ∼ Beta(a, b) to indicate that the pdf of X is a Beta distribution
with parameters a, b.

Suppose that X ∼ Beta(a, b). Then

E
[
X
]
=

1

B(a, b)

∫ 1

0
xa(1− x)b−1dx =

B(a+ 1, b)

B(a, b)

(A.1.4)
=

Γ(a+ 1)Γ(a+ b)

Γ(a)Γ(a+ b+ 1)
=

a

a+ b
,

E
[
X2
]
=

1

B(a, b)

∫ 1

0
xa+1(1− x)b−1dx =

Γ(a+ 2)Γ(a+ b)

Γ(a)Γ(a+ b+ 2)
=

a(a+ 1)

(a+ b)(a+ b+ 1)
.

Hence

Var
[
X
]
= E

[
X2
]
− E

[
X
]2

=
a

a+ b

(
a+ 1

a+ b+ 1
− a

a+ b

)
=

a

a+ b
· (a+ 1)(a+ b)− a(a+ b+ 1)

(a+ b)(a+ b+ 1)
=

ab

(a+ b)2(a+ b+ 1)
.

Note that Beta(1, 1) = Unif
(
[0, 1]

)
. The distribution Beta(1/2, 1/2) is called the arcsine

distribution. In this case

β1/2,1/2(x) =
1

π

1√
x(1− x)

,
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and ∫ x

0
β1/2,1/2(s)ds =

2

π
arcsin

√
x.

We refer to Exercise 1.43 for an alternate interpretation of Beta(1/2, 1/2). ⊓⊔

In Appendix A.2 we have listed the basic integral invariants of several frequently occurring
probability distributions.

1.3.5. Product probability spaces and independence. Suppose (Ωi, Si), i = 0, 1, are
two measurable spaces. Recall that S0⊗S1 is the sigma-algebra of subsets of Ω0×Ω1 generated
by the collection R of “rectangles” of the form S0 × S1, Si ∈ Si, i = 0, 21.

The goal of this subsection is to show that two sigma-finite measures measures µi on Si,
i = 0, 1 induce in a canonical way a measure µ0 ⊗ µ1 uniquely determined by the condition

µ0 ⊗ µ1
[
S0 × S1

]
= µ0

[
S0
]
µ1
[
S1
]
, ∀Si ∈ Si, i = 0, 1.

The collection A of subsets of Ω0 × Ω1 that are finite disjoint unions of rectangles is an
algebra. This suggests using Carathéodory’s existence theorem to prove this claim.

We choose a different route that bypasses Carathéodory’s existence theorem. This alter-
nate, more efficient approach, is driven by the Monotone Class Theorem and simultaneously
proves a central result in integration theory, the Fubini-Tonelli Theorem. For every measur-
able space (Ω, S) we denote by L0(Ω, S)∗ the space of S measurable functions f : Ω → R.

Lemma 1.3.37. Suppose that

f ∈ L0(Ω0 × Ω1, S0 ⊗ S1)∗ ∪ L0
+(Ω0 × Ω1, S0 ⊗ S1).

Then, for any ω1 ∈ Ω1 the function f0ω1
: Ω0 → R,

f0ω1
(ω0) = f(ω0, ω1)

is S0-measurable and, for any ω0 ∈ Ω0, the function f1ω0
: (Ω1, S1) → R,

f1ω0
(ω1) = f(ω0, ω1)

is S1-measurable.

Proof. We prove only the statement concerning f0ω1
. For simplicity will write fω1 instead of f0ω1

. We will use the

Monotone Class Theorem 1.1.22.

Denote by M the collection of functions f ∈ L0(Ω0 × Ω1, S0 × S1)∗ such that fω1 is S0-measurable, ∀ω1 ∈ Ω1.

Clearly is f, g ∈ M are bounded then af + bg ∈ M, ∀a, b ∈ R
The collection R of rectangles is a π-system. Note that for any rectangle R = S0 ×S1 the function f = IR belongs

to M. Indeed, for any ω1 ∈ Ω1 we have

fω1 =

{
IS0 , ω1 ∈ S1,

0, ω1 ∈ Ω1 \ S1.

If (fn) is an increasing sequence of functions in M so is the sequence of slices fn,ω1 so the limit f is also in M. By

the Monotone Class Theorem the collection M contains all the nonnegative measurable functions. Since M is a vector
space, it must coincide with L0(Ω0 × Ω1, S0 ⊗ S1)8.

When f ∈ L0
+, but f is allowed to have infinite values, the function f is the increasing limit of a sequence in M.

Hence this situation is also included in the conclusions of the lemma. ⊓⊔

Theorem 1.3.38 (Fubini-Tonelli). Let (Ωi, Si, µi), i = 0, 1 be two sigma-finite measured
spaces.
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(i) There exists a measure µ on S0 ⊗ S1 uniquely determined by the equalities

µ
[
S0 × S1

]
= µ0

[
S0
]
µ1
[
S1
]
, ∀S0 ∈ S0, S1 ∈ S1.

We will denote this measure by µ0 ⊗ µ1.

(ii) For each nonnegative function f ∈ L0
+(Ω0 × Ω1, S0 ⊗ S1) the functions

ω0 7→ I1

[
f
]
(ω0) :=

∫
Ω1

f(ω0, ω1)µ1
[
dω1

]
∈ [0,∞],

ω1 7→ I0

[
f
]
(ω1) :=

∫
Ω0

f(ω0, ω1)µ0
[
dω0

]
∈ [0,∞]

are measurable and∫
Ω0

(∫
Ω1

f(ω0, ω1)µ1
[
dω1

])
µ0
[
dω0

]
=

∫
Ω0×Ω1

f(ω0, ω1)µ0 ⊗ µ1
[
dω0dω1

]
=

∫
Ω1

(∫
Ω0

f(ω0, ω1)µ0
[
dω0

])
µ1
[
dω1

]
.

(1.3.45)

In particular, if only one of the three terms above is finite, then all three are finite
and equal.

(iii) Let f ∈ L1(Ω0 × Ω1, S0 ⊗ S1, µ0 ⊗ µ1). Then each of the three terms in (1.3.45) is
well defined, finite and the equalities (1.3.45) hold.

Proof. We will carry the proof in several steps.

Step 1. We will prove that for every positive function f ∈ L0(Ω0 × Ω1, S0 × S1) the nonnegative function

ω0 7→ I1

[
f
]
(ω0) =

∫
Ω1

f(ω0, ω1)µ1
[
dω1

]
is measurable so the integral

I1,0
[
f
]
:=

∫
Ω0

(∫
Ω1

f(ω0, ω1)µ1
[
dω1

])
µ0

[
dω0

]
∈ [0,∞]

is well defined.

This follows from Dynkin’s π − λ Theorem arguing exactly as in the proof of Lemma 1.3.37. For S ∈ S0 ⊗ S1 we
set

µ1,0
[
S
]
= I1,0

[
IS

]
.

Note that

I1

[
IS0×S1

]
=

∫
Ω1

IΩ0×Ω1
(ω0, ω1)µ1

[
dω1

]
.

If ω0 ∈ Ω0 \ S0 the integral is 0. If ω0 ∈ S0 the integral is∫
Ω1

IS1
dµ1 = µ1

[
S1

]
.

Hence

I1

[
IS0×S1

]
= µ1

[
S1

]
IS0 .

We deduce

I1,0
[
S0 × S1

]
= µ1

[
S1

] ∫
Ω0

IS0
dµ0 = µ0

[
S0

]
· µ1

[
S1

]
.

Clearly if A,A′ ∈ S are disjoint, then IA∪A′ = IA + IA′ so that

I1,0
[
IA∪A′

]
= I1,0

[
IA

]
+ I1,0

[
I′
A

]
and

µ1,0
[
A ∪A′ ] = µ1,0

[
A
]
+ µ1,0

[
A′ ].
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If

A1 ⊂ A2 ⊂ · · ·

is an increasing sequence of sets in S and

A =
⋃
n≥1

An,

then invoking the Monotone Convergence Theorem we first deduce that I1,0
[
IAn

]
is a nondecreasing sequence of

measurable functions converging to I1,0
[
IA

]
and then we conclude that µ1,0

[
An

]
converges to µ1,0

[
A
]
. Hence µ1,0

is a measure on S = S0 ⊗ S1.

Step 2. A similar argument shows that

µ0,1[S] =

∫
Ω1

(∫
Ω0

IS(ω0, ω1)µ0
[
dω0

])
µ1

[
dω1

]
is also a sigma-finite measure on S = S0 ⊗ S1. Note that

µ1,0
[
S0 × S1

]
= µ0,1

[
S0 × S1], ∀S0 ∈ S0, S1 ∈ S1.

Thus µ1,0
[
R
]
= µ0,1

[
R
]
, ∀R ∈ R.

We want to show that if ν is another measure on S such that ν
[
R
]
= µ1,0

[
R
]
for any R ∈ R, then ν

[
A
]
= µ1,0

[
A
]
,

∀A ∈ S.

To see this assume first that µ0 and µ1 are finite measures. Then Ω0 × Ω1 ∈ R

µ1,0
[
Ω0 × Ω1

]
= ν

[
Ω0 × Ω1

]
<∞

and since R is a π-system we deduce from Proposition 1.2.4 that µ1,0 = ν on S.

To deal with the general case choose two increasing sequences Ei
n ∈ Si, i = 0, 1 such that

µi
[
Ei

n

]
<∞, ∀n and Ωi =

⋃
n≥1

Ei
n, i = 0, 1.

Define

En := E0
n × E1

n, µ
n
i

[
Si

]
:= µi

[
Si ∩ Ei

n

]
, Si ∈ Si, i = 0, 1,

νn
[
A
]
:= ν

[
A ∩ En

]
, ∀A ∈ S.

Using the measures µni we form as above the measures µn1,0 and we observe that

µn1,0
[
A
]
= µ0,1

[
A ∩ En

]
, ∀n, ∀A ∈ S.

For any rectangle R, the intersection R ∩ En is a rectangle and

µn1,0
[
R
]
= νn

[
R
]
, ∀n.

Thus

µn1,0
[
A
]
= µn

[
A
]
, ∀n ∈ N, A ∈ S.

If we let n→ ∞ in the above equality we deduce that µ1,0 = ν on S.

We deduce that µ0,1 = µ1,0. Thus the measures µ0,1 and µ1,0 coincide on the algebra of sets generated by the
rectangles and thus they must coincide on the S0 ⊗ S1. This common measure is denoted by µ0 ⊗ µ1 and it clearly

satisfies statement (i) in the theorem

Step 3. From Step 2 we deduce that (1.3.45) is true for f = IS , ∀S ∈ S0 ⊗ S1. From this, using the Monotone Class

Theorem exactly as in the proof of Lemma 1.3.37 we deduce (1.3.45) in its entire generality. The claim in (iii) follows
from the fact that any integrable function f is the difference of two nonnegative integrable functions f = f+ − f− and
the claim is true for f±. ⊓⊔

The above construction can be iterated. More precisely, given sigma-finite measured
spaces (Ωk, Sk, µk), k = 1, . . . , n, we have a measure µ = µ1 ⊗ · · · ⊗ µn uniquely determined
by the condition

µ
[
S1 × S2 × · · · × Sn

]
= µ1

[
S1
]
µ2
[
S2
]
· · ·µn

[
Sn
]
, ∀Sk ∈ Sk, k = 1, . . . , n.
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Remark 1.3.39. Recall that λ denotes the Lebesgue measure on R. The measure λ⊗n on
BRn is called the n-dimensional Lebesgue measure and will denoted by λn or simply λ, when
no confusion is possible. A subset of Rn is called Lebesgue measurable if it belongs to the
completion of the Borel sigma-algebra with respect to the Lebesgue measure.

One can prove that if a function f : Rn → R is absolutely Riemann integrable (see [133,
Chap.15]), then it is also Lebesgue integrable with respect to the Lebesgue measure on Rn
and, moreover ∫

Rn

f(x) |dx| =
∫
Rn

f(x)λ
[
dx
]
,

where the left-hand-side integral is the (improper) Riemann integral.

We recommend the reader to try to prove this fact or at least to try to understand why a
Riemann integrable function defined on a cube is Lebesgue measurable. This is not obvious
because there exist Riemann integrable functions that are not Borel measurable.

For example, if C ⊂ [0, 1] is the Cantor set, then there exists a subset A of C that are
not Borel because the cardinality of the set 2C is bigger than the cardinality of the family
of Borel subsets of C. The subset A is Lebesgue measurable since C is Lebesgue negligible.
The indicator function IA is Riemann integrable but not Borel measurable.

The change in variables for the Riemann integral shows that if U, V are open subsets of
Rn and F : U → V is a C1-diffeomorphism onto V , then

F−1
# λV

[
dx
]
= |det JF (x)|λU

[
dx
]
.

⊓⊔

Let us present a few useful consequences of Fubini’s theorem.

Proposition 1.3.40. Suppose that X is a nonnegative random variable defined on the prob-
ability space (Ω, S,P). For any p ∈ [1,∞) we have

E
[
Xp
]
= p

∫ ∞

0
xp−1P[X > x]dx. (1.3.46)

In particular,

E
[
X
]
=

∫ ∞

0
P[X > x]dx. (1.3.47)

Proof. We have

p

∫ ∞

0
xp−1P[X > x]dx =

∫ ∞

0

(∫
Ω
I{X>x}(ω)P

[
dω
])

pxp−1dx

=

∫
(ω,x)∈Ω×[0,∞)

0≤x<X(ω)

pxp−1P⊗ λ
[
dωdx

]
(use Fubini-Tonelli)

=

∫
Ω

(∫ X(ω)

0
pxp−1dx

)
P
[
dω
]
=

∫
Ω
Xp(ω)P

[
dω
]
= E

[
Xp
]
.

⊓⊔
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We want to point out that when p = 1 the equality∫
(ω,x)∈Ω×[0,∞)

0≤x<X(ω)

P⊗ λ
[
dωdx

]
= E

[
X
]

simply says that E
[
X
]
is equal to the “area” below the graph of the function X : Ω → [0,∞).

Example 1.3.41. Suppose that X is a random variable that takes only nonnegative integral
values. Then

PX =
∑
n≥0

P
[
X = n

]
δn,

and

E
[
X
] (1.3.46)

=

∫ ∞

0
P
[
X > x

]
dx

=
∑
n≥0

∫ n+1

n
P
[
X > x

]
dx =

∑
n≥0

P
[
X > n

]
.

(1.3.48)

Let us apply this identity to a geometric random variable with success probability p, T ∼ Geom(p).
Note that P

[
T > n

]
is the probability that the waiting time for a success is > n or, equiva-

lently, the probability that the first n trials are failures. Hence

P
[
T > n

]
= qn so E

[
T
]
=
∑
n≥0

qn =
1

1− q
=

1

p
.

Similarly

µ2
[
T
]
= E

[
T 2
]
= 2

∑
n≥0

nP
[
T > n

]
= 2

∑
n≥1

nqn = 2q
∑
n≥1

nqn−1 =
2q

(1− q)2
=

2q

p2
.

In particular

Var[T ] = E
[
T 2
]
− E

[
T
]2

=
q

p2
. ⊓⊔

Example 1.3.42. Suppose that T is an exponential random variable with parameter λ, i.e.,
a random variable with the exponential probability distribution

PT
[
dt
]
= λe−λtI(0,∞)dt

This random variable describes the waiting time for an event to happen, e.g., the waiting
time for a laptop to crash, or the waiting time for a bus to arrive at a bus station. The
quantity λe−λtdt is the probability that the waiting time is in the interval (t, t+ dt]. Then

P
[
T > t

]
=

∫ ∞

t
λe−λτdτ = e−λ, E

[
T
]
=

∫ ∞

0
e−λtdt =

1

λ
.

We see that 1
λ is measured in units of time. For this reason λ is called the rate and describes

how many rare events take place per unit of time.

Similarly

µ2
[
T
]
= E

[
T 2
]
= 2

∫ ∞

0
tP[T > t]dt = 2

∫ ∞

0
te−λtdt =

2

λ2

∫ ∞

0
se−sds
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=
2

λ2
Γ(2) =

2

λ2
.

The function S(t) := P
[
T > t

]
is called the survival function. For example, if T denotes the

life span of a laptop, then S(t) is the probability that a laptop survives more than g units of
time.

The exponential distribution enjoys the so called memoryless property

P
[
T > t+ s|T > s

]
= P

[
T > t

]
. (1.3.49)

For example, if T is the waiting time for a bus to arrive then, given that you’ve waited more
that s units of time, the probability that you will have to wait at least t extra is the same as
if you have not waited at all. The proof of (1.3.49) is immediate.

P
[
T > t+ s|T > s

]
=

P
[
T > t+ s

]
P
[
T > s

] =
e−λ(t+s)

e−λs
= e−λt = P

[
T > t

]
. ⊓⊔

Example 1.3.43 (Integration by parts). Suppose that µ0, µ1 are two Borel probability mea-
sures on R supported on [0,∞), i.e.

µk
[
(−∞, 0)

]
= 0, k = 0, 1.

We set

Fk(x) = µk
[
(−∞, x]

]
, k = 0, 1,

so that µk is the Lebesgue-Stieltjes measure determined by Fk. Note that

Fk(0) = µk
[
{0}

]
.

Classically, the integral ∫
[0,a]

u(x)µk
[
dx
]

was denoted by ∫ a

0
u(x)dFk(x).

This classical notation is a bit ambiguous due to the following simple fact∫
[0,a]

u(x)µk
[
dx
]
= u(0)Fk(0) +

∫
(0,a]

u(x)µk
[
dx
]
.

We want to prove a version of the integration by parts formula. Namely, we will show that
if one of the functions F0, F1 is continuous, then∫ a

0
F0(x)dF1(x) = F0(a)F1(a)− F0(0)F1(0)−

∫ a

0
F1(x)dF0(x). (1.3.50)

Assume for simplicity that F1 is continuous so F1(0) = 0. Set µ := µ0 ⊗ µ1. Observe that
since

F0(a)F1(a)− F0(0)F1(0) = F0(a)F1(a) = µ
[
[0, a]× [0, a]︸ ︷︷ ︸

Sa

]
.

Using the Fubini-Tonelli theorem we deduce∫ a

0
F1(x)dF1(x) =

∫
[0,a]

(∫
R

I(−∞,x](y) µ1
[
dy
])

µ0
[
dx
]
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(F1 is continuous)

=

∫
[0,a]

(∫
[0,a]

I [0,x)(y) µ1
[
dy
])

µ0
[
dx
]
= µ

[
R0

]
,

where

R0 :=
{
(x, y) ∈ R2; 0 ≤ y < x ≤ a, y < x

}
.

Similarly ∫ a

0
F0(y)dF1(y) =

∫
[0,a]

(∫
[0,a]

I[0,y]µ0
[
dx
])

µ1
[
dy
]
= µ

[
R1

]
,

R1 :=
{
(x, y) ∈ R2; 0 ≤ x ≤ y ≤ a

}
,

Observe that the regions R0, R1 are disjoint.

The region R0 is the part of the square Sa = [0, a] × [0, a] strictly below the diagonal
y = x, while R1 is the part of this square above or this diagonal. Hence Sa = R0 ∪ R1 and
thus

µ
[
R0

]
+ µ

[
R1

]
= µ

[
Sa
]
.

Let us observe that the integration by parts formula is not true if both F0, F1 are discontin-
uous. Take for example the case µ0 = µ1 =

1
2

(
δ1 + δ3

)
. Then

F0(x) = F1(x) = F (x) =


0, x < 1.
1
2 , 1 ≤ x < 3,

1, x ≥ 3.

In this case we have∫ 2

0
F (x)dF (x) =

∫
[0,2]

F (x)µ0
[
dx
]
=

1

2
F (1) =

1

4
, F (2)2 =

1

4
.

so

2

∫ 2

0
F (x)dF (x) ̸= F (2)2.

The reason for this failure has a simple geometric origin: the diagonal {y = x} may not
be µ0 ⊗ µ1-negligible. The continuity assumption allowed us to discard the diagonal of the
square because in this case it is indeed negligible. ⊓⊔

Definition 1.3.44. Fix a probability space (Ω, S,P).

(i) Suppose that V is a finite dimensional vector space. We denote by BV the sigma-
algebra of Borel subsets of V . A V -valued random vector is a measurable map

X : (Ω, S,P) → (V,BV ).

Its probability distribution is the pushforward measure PX := X#P. By definition,
PX is a Borel probability measure on V .

(ii) The joint probability distribution of the random variables

X1, . . . , Xn : (Ω, S,P) → R

is the probability distribution of the random vector

X := (X1, . . . , Xn) : (Ω, S,P) → Rn.
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We will denote by PX1,...,Xn the joint distribution.

⊓⊔

Observe that joint probability distribution PX1,...,Xn is uniquely determined by the prob-
abilities

P
[
X1 ≤ x1, . . . , Xn ≤ xn

]
, x1, . . . , xn ∈ R.

Note also that if πi : Rn → R denotes the natural projection (x1, . . . , xn) 7→ xi, i = 1, 2, . . . , n,
then

PXi = (πi)#PX1,...,Xn .

The probability distributions PXi are often referred as the marginals (or marginal distribu-
tions) of the joint probability distribution PX1,...,Xn .

Proposition 1.3.45. Suppose that (Ω, S,P) is a probability space and

X1, . . . , Xn ∈ L0(Ω, S,P)
are random variables with probability distributions PX1 , . . . ,PXn. The following statements
are equivalent.

(i) The random variables X1, . . . , Xn are independent.

(ii) PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn.

Proof. The random variablesX1, . . . , Xn are independent iff for any Borel setsB1, . . . , Bn ⊂ R
we have

P
[
X1 ∈ B1, . . . , Xn ∈ Bn

]
= P[X1 ∈ B1] · · ·P[Xn ∈ Bn]

⇐⇒ PX1,...,Xn

[
B1 × · · · ×Bn

]
= PX1 ⊗ · · · ⊗ PXn

[
B1 × · · · ×Bn

]
.

Thus the random variables X1, . . . , Xn are independent iff the measures PX1,...,Xn and
PX1 ⊗ · · · ⊗ PXn coincide on the set of rectangles B1 × · · · ×Bn, i.e.,

PX1,...,Xn = PX1 ⊗ · · · ⊗ PXn .

This set of rectangles is a π-system that generates the Borel algebra of Rn. The conclusion
follows from Proposition 1.2.4. ⊓⊔

1.3.6. Convolution of Borel measures on the real axis.

Definition 1.3.46. Let µ, ν be two finite Borel measures on (Rk,BRk). The convolution of
µ with ν is the Borel measure µ ∗ ν on (Rk,BRk) defined by

µ ∗ ν
[
B
]
=

∫
Rk

µ
[
B − y

]
ν
[
dy
]
, ∀B ∈ BRk . (1.3.51)

⊓⊔

For y ∈ Rk we denote by Sy the shift Sy : Rk → Rk, Sy(x) = x+ y and set µy := (Sy)#µ.

Note that for any Borel set B ⊂ Rk we have

µy
[
B
]
= µ

[
S−1(B)

]
= µ

[
B − y

]
,

so we can rewrite(1.3.51) in the form

µ ∗ ν
[
−
]
=

∫
Rk

µy
[
−
]
ν
[
dy
]
.
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A simple argument based on the Monotone Convergence Theorem shows that µ ∗ ν is indeed
a Borel measure on R. By letting B = R in (1.3.51) we see that µ ∗ ν is indeed a finite
measure. It is a probability measure if both µ and ν are.

Note that µ ∗ ν is a mixture in the sense that it is obtained by averaging of the family of
probability measures (µy)y∈R with respect to the probability measure ν[dy]. For example, if

ν =
n∑
i=1

1

n
δxi ,

then

µ ∗ ν =
1

n

n∑
i=1

µxi .

In the remainder of this section I will concentrate exclusively on the one-dimensional case,
k = 1.

Proposition 1.3.47. Let µ, ν be probability measures on (R,BR) and

Φ : R2 → R, Φ(x, y) = x+ y.

Then µ ∗ ν = Φ#(µ⊗ ν) = ν ∗ µ.

Proof. Let B ∈ BR and set B̂ = Φ−1(B). Set

B̂y :=
{
x; (x, y) ∈ B̂

}
= B − y.

Then

Φ#(µ⊗ ν)
[
B
]
=

∫
R2

IB̂µ⊗ ν
[
dxdy

]
(use Fubini-Tonelli)

=

∫
R

(∫
R
IB̂y

µ
[
dx
])

ν
[
dy
]
=

∫
R
µ
[
B − y

]
ν
[
dy
]
= µ ∗ ν

[
B
]
.

The equality µ ∗ ν = ν ∗ µ follows by changing the order of integration in the Fubini-Tonelli
theorem. ⊓⊔

Corollary 1.3.48. Let X,Y ∈ L0(Ω, S,P) be two independent random variables with distri-
butions PX and PY . Then

PX+Y = PX ∗ PY .

Proof. Since X,Y are independent we have PX,Y = PX ⊗ PY . Note that PX+Y = Φ#PX,Y .
The conclusion now follows from Proposition 1.3.47. ⊓⊔

Remark 1.3.49. (a) Suppose that Fµ is the cdf of the probability measure µ, i.e.,

Fµ(c) = µ
[
(−∞, c]

]
, ∀c ∈ R.

Then the cdf Fµ∗ν of µ ∗ ν satisfies

Fµ∗ν(c) =

∫
R
Fµ(c− x)ν

[
dx
]
, ∀c ∈ R.

We write this equality as

Fµ∗ν = Fµ ∗ ν. (1.3.52)
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If µ is absolutely continuous with respect to the Lebesgue measure λ on R so

µ
[
dx
]
= ρµ(x)dx, ν

[
dx
]
= ρν(x)dx, ρµ, ρν ∈ L1(R,λ),

then µ ∗ ν ≪ λ and

µ ∗ ν
[
dx
]
= ρµ∗ν(x)dx, ρµ∗ν(x) = ρµ ∗ ρν(x) :=

∫
R
ρµ(x− y)ν

[
dy
]
.

To see this it suffices to check that for any c ∈ R we have

µ ∗ ν
[
(−∞, c]

]
=

∫ c

−∞
ρµ∗ν(x)dx.

We have

µ ∗ ν
[
(−∞, c]

]
=

∫
R
µ
[
(−∞, c− y]

]
ν[dy] =

∫
R

(∫ c−y

∞
ρµ(x)dx

)
ν[dy]

=

∫
R

(∫ c−y

∞
ρµ(x)dx

)
ν[dy] =

∫
R

(∫ c

∞
ρ(z − y)dz

)
ν[dy]

(use Fubini)

=

∫ c

−∞

(∫
R
ρµ(z − y)ν[dy]

)
dz =

∫ c

−∞
ρµ∗ν(z)[dz].

(b) Any Borel probability measure µ on R is the probability distribution of the random
variable

1R : (R,BR, µ) → R, 1R(x) = x.

If µ1, µ2, µ3 are diferent Borel probability measures on R, then we can define three indepndent
random variables

X1, X2, X3 :
(
R3,BR3 , µ1 ⊗ µ2 ⊗ µ2

)
→ R,

Xk(x1, x2, x3) = xk, k = 1, 2, 3.

Note that PXk
= µk , ∀k = 1, 2, 3. Since (X1 +X2) ⊥⊥ X3 and X1 ⊥⊥ (X2 +X3) we deduce

(µ1 ∗ µ2) ∗ µ3 = P(X1+X2)+X3
= PX1+(X2+X3) = µ1 ∗ (µ2 ∗ µ3).

Similarly

µ1 ∗ µ2 = PX1+X2 = PX2+X1 = µ2 ∗ µ1.
Note that µ ∗ ν

[
R
]
= µ

[
R
]
· ν
[
R
]
. In particular, the space Prob(R) of Borel probability

measures on R has a structure of commutative semigroup with respect to the convolution.
The Dirac measure δ0 is the identity element of this semigroup. ⊓⊔

1.3.7. Poisson processes. Suppose that we have a stream of events occurring in succession
at random times S1 ≤ S2 ≤ S3 ≤ · · · such that the waiting times between two successive
occurrences

T1 = S1, T2 = S2 − S1, . . . , Tn = Sn − Sn−1, . . .

are i.i.d. exponential random variables Tn ∼ Exp(λ), n = 1, 2, . . . . We set S0 := 0.

It may help to think of the sequence (Tn) as inter-arrival times for a bus. The first bus
arrives at the station at time S1 = T1. Once the n-th bus has left the station, the waiting
time for the next bus to arrive is an exponential random variable Tn+1, independent of the
preceding waiting times. From this point of view, Sn is the arrival time of the n-th bus.
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For t > 0 we denote by N(t) the number events that of occurred during the time interval
[0, t]. In terms of streams of busses, N(t) would count the number of buses that have arrived
at the station in the interval [0, t]. In other words

N(t) = max
{
n ≥ 1; Sn ≤ t

}
= #

{
n ≥ 1; Sn ≤ t

}
.

This is a discrete random variable with range {0, 1, 2, 3, . . . }. The collection of random
variables

{
N(t), t ≥ 0

}
is called the Poisson process with intensity λ. Note that

N(t) =
∞∑
n=1

I [0,t](Sn).

Let us find the distribution (pmf) of N(t). We have

P
[
N(t) = 0

]
= P

[
T1 > t

]
= e−λt = the survival function of Exp(λ).

If n > 0, then N(t) = n if and only if the n-th bus arrived sometime during the interval [0, t],
i.e., Sn ≤ t, but the (n+ 1)-th bus has not arrived in this time interval. We deduce

P
[
N(t) = n

]
= P

[
{Sn ≤ t} \ {Sn+1 ≤ t}

]
= P

[
Sn ≤ t

]
− P

[
Sn+1 ≤ t

]
.

If we denote by Fn(t) the cdf of Sn, then we can rewrite the above equality in the form

P
[
N(t) = n

]
= Fn(t)− Fn+1(t).

We have

PSn = Exp(λ) ∗ · · · ∗ Exp(λ)︸ ︷︷ ︸
n

= Gamma(λ, 1) ∗ · · · ∗Gamma(λ, 1)︸ ︷︷ ︸
n

(1.6.6a)
= Gamma(λ, n).

Hence, for n > 0

Fn+1(t) =
λn+1

Γ(n+ 1)

∫ t

0
sne−λsds =

λn+1

n!

∫ t

0
sne−λsds.

For n > 0, we integrate by parts to obtain

Fn+1(t) = −
(
λn

n!
sne−λs

)∣∣∣∣∣
s=t

s=0

+
λn

(n− 1)!

∫ t

0
sn−1e−λsds = −(tλ)n

n!
e−λt + Fn(t).

Hence

P
[
N(t) = n

]
= Fn(t)− Fn+1(t) =

(tλ)n

n!
e−λt, n > 0. (1.3.53)

This shows that N(t) is a Poisson random variable, N(t) ∼ Poi(λt).

The family of random variables (N(t) is nondecreasing and thus there exist right and left
limits

N(t− 0) = lim
s↗t

N(s), N(t+ 0) = lim
s↘t

N(s).

It is not difficult to see that

∀t ≥ 0, N(t) = N(t+ 0), N(t)−N(N − 0) ∈ {0, 1} a.s. (1.3.54)

The Poisson process plays an important role in probability since it appears in many situations
and displays many surprising phenomena. One such interesting phenomenon is the waiting
time paradox, [65, I.4]. To better appreciate this paradox we consider two separate situations.
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Suppose first that buses arrive at a bus station following a Poisson stream with frequency
λ. Bob arrives at the bus station at a time t ≥ 0, the bus is not there and he is waiting for
the next one. His waiting time is

Wt := SN(t)+1 − t

We want to compute its expectation wt := E
[
Wt

]
. There are two possible heuristic argu-

ments.

(i) The memoryless property of the exponential distribution shows that wt should be
independent of t so wt = w0 =

1
λ .

(ii) Bob’s arrival time t is uniformly distributed in the inter-arrivals interval(
SN(t), SN(t)+1

)
of expected length 1

λ and, as in the earlier deterministic compu-

tation, the expectation should be half its length, 1
2λ .

We will show that (i) provides the correct answer. However, even the reasoning ( ii) holds
a bit of truth. To see what is happening we compute the expectations of SN(t) and SN(t)+1.
We have

E
[
SN(t)

]
=

∫ t

0
P
[
SN(t) > x

]
dx.

Note that

P
[
SN(t) > x

]
=
∑
n≥0

P
[
SN(t) > x, N(t) = n

]
.

On the other hand,

P
[
SN(t) > x, N(t) = n

]
= P

[
x < Sn ≤ t, Sn + Tn+1 > t

]
.

The random variables Sn and Tn+1 are independent and the joint distribution of (Sn, Tn+1)
is

PSn, Tn+1

[
dsdt

]
=

λn

(n− 1)!
sn−1e−λsλe−λτ︸ ︷︷ ︸
ρ(s,τ)

dsdτ

so

P
[
x < Sn < t, Sn + Tn+1 > t

]
=

∫
x<s≤t
s+τ>t

ρ(s, τ)dsdτ

=

∫ t

x

(∫ ∞

t−s
ρ(s, τ)dτ

)
ds =

∫ t

x
P
[
Tn+1 > t− s

] λn

(n− 1)!
sn−1e−λsds

=

∫ t

x
e−λ(t−s)

λn

(n− 1)!
sn−1e−λsds =

e−λtλn

(n− 1)!

∫ t

x
sn−1ds =

e−λtλn

n!

(
tn − xn

)
.

We deduce

P
[
SN(t) > x

]
=
∑
n≥0

e−λtλn

n!

(
tn − xn

)
= 1− e−λ(t−x),

E
[
SN(t)

]
=

∫ t

0

(
1− e−λ(t−x)

)
dx = t− e−λt

∫ t

0
eλxdt = t− e−t

λ
(eλt − 1).

Hence

E
[
SN(t)

]
= t− 1

λ
+
e−λt

λ
=

1

λ
E
[
N(t)− 1 + e−λt

]
. (1.3.55)
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Let us compute E
[
SN(t)+1

]
. Again, we have

P
[
SN(t)+1 > x

]
=
∑
n≥0

P
[
SN(t)+1 > x, N(t) = n

]
,

and

P
[
SN(t)+1 > x, N(t) = n

]
= P

[
Sn ≤ t Sn+1 ≥ max(t, x)

]
=

{
P
[
Sn ≤ t, Sn + Tn+1 ≥ t

]
, x ≤ t,

P
[
Sn ≤ t, Sn + Tn+1 ≥ x

]
, x > t.

For any c ≥ t we have

P
[
Sn ≤ t, Sn + Tn+1 ≥ c

]
=

∫
s≤t,
s+τ≥c

ρ(s, t)dsdτ

=

∫ t

0

(∫ ∞

c−s
ρ(s, τ)dτ

)
ds =

λn

(n− 1)!

∫ t

0
e−λ(c−s)sn−1e−λsds =

e−λc(λt)n

n!
.

Observing that ∑
n≥0

e−λc(λt)n

n!
= e−λ(c−t)

we deduce that

P
[
SN(t) > x

]
=

{
1, x ≤ t,

e−λ(x−t), x > t.

Hence

E
[
SN(t)+1

]
=

∫ t

0
dx+ eλt

∫ ∞

t
e−λxdx = t+

1

λ
=

1

λ
E
[
N(t) + 1

]
, (1.3.56)

and

wt = E
[
SN(t)+1

]
− t =

1

λ
.

In fact much more is true. One can show (see [145, Sec. 3.6]) that the waiting time Wt

is an exponential random variable, Wt ∼ Exp(λ), in agreement with the conclusion of the
argument (i).

The above computation show that the expectation of Lt = SN(t)+1 − SN(t) is

E
[
Lt
]
=

2

λ
− e−λt

λ
≈ 2

λ
for t large.

We have reached counterintuitive conclusions. The expected waiting time from the moment
bus N(t) left the station until bus N(t) + 1 arrives in the station is twice the expected
inter-arrival times E

[
Tn
]
!

On the other hand, the actual expected time wt from epoch t until the arrival of bus
N(t) + 1 is the usual expected inter-arrival time. This shows that even the argument (ii)
captures a bit of what is going on since wt is close to half the expected length of the inter-
arrival interval

(
SN(t), SN(t)+1

)
.

The number of busses arriving during a time interval [0, t] is N(t). The busses arrive
with a frequency of 1

λ per unit of time, so we should expect to wait t = 1
λE
[
N(t)

]
units of

time for N(t) busses to arrive. However, formula (1.3.55) shows that we should expect less
than t units of time for N(t) busses to arrive. On the other hand, formula (1.3.56) shows
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that we should expect t+ 1 = 1
λE
[
N(t) + 1

]
units of time for N(t) + 1 busses to arrive! We

refer to Remark 3.2.34 for another (technical) explanation for this paradoxical divergence of
conclusions.

The Poisson processes are special cases of renewal processes. For an enjoyable and highly
readable introduction to renewal processes we refer to [65] or [145, Chap. 3]. For a more
in-depth presentation of these processes and some of their practical applications we refer to
[7]. ⊓⊔

1.3.8. Modes of convergence of random variables. Fix a probability space (Ω, S,P).

Definition 1.3.50 (Almost sure convergence). We say that the sequence of random variables

Xn ∈ L0(Ω, S,P), n ∈ N,

converges almost surely (or a.s.) to X ∈ L0(Ω, S,P) if there exist Ω0 ∈ S such that

P
[
Ω0

]
= 1, lim

n→∞
Xn(ω) = X(ω), ∀ω ∈ Ω0.

We will use the notation Xn
a.s.−→ X to indicate the a.s. convergence. ⊓⊔

Tautologically, the a.s. convergence is well defined in L0. To describe a useful criterion
for a.s. convergence we need to rely on a very versatile classical result.

Definition 1.3.51. For any sequence of events (An)n∈N ⊂ S we denote by An i.o. the event
“An occurs infinitely often”,

An i.o. :=
⋂
m≥1

⋃
n≥m

An.

Thus

ω ∈ An i.o.⇐⇒ ∀m ∈ N ∃n ≥ m : ω ∈ An. ⊓⊔

Theorem 1.3.52 (Borel-Cantelli Lemma). Consider a sequence of events (An)n∈N ⊂ S.

(i) If ∑
n≥1

P
[
An
]
<∞.

Then P
[
An i.o.

]
= 0.

(ii) Conversely, if the events (An)n∈N are independent then P
[
An i.o.

]
∈ {0, 1}, and

P
[
An i.o.

]
= 0⇐⇒

∑
n≥1

P
[
An
]
<∞. (1.3.57)

Proof. (i) We set

N :=
∑
n≥1

IAn .

Note that {An i.o.} = {N = ∞}. From the Monotone Convergence Theorem we deduce

E
[
N
]
=
∑
n≥q

E
[
IAn

]
=
∑
n≥1

P
[
An
]
<∞

so P
[
N = ∞

]
= 0.
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(ii) Kolmogorov’s 0-1 theorem shows that when the events (An)n≥1 are independent we have
P
[
An i.o.

]
∈ {0, 1}.

To prove (1.3.57) we have to show that if∑
n≥1

P
[
An
]
= ∞,

then P
[
An i.o.

]
= 1. We have

P

[ ⋃
n≥m

An

]
= 1− P

[ ⋂
n≥m

Acn

]
(use the independence of An)

= 1−
∏
n≥m

(
1− P

[
An
] )

(1− x ≤ e−x, ∀x ∈ R)
≥ 1− e−

∑
n≥m P[An] = 1.

Hence

P
[
An i.o.

]
= lim

m→∞
P

[ ⋃
n≥m

An

]
= 1.

⊓⊔

Remark 1.3.53. Statement (i) in Theorem 1.3.52 is usually referred to as the First Borel-
Cantelli Lemma while statement (ii) is usually referred to as the Second Borel-Cantelli
Lemma. Exercises 3.12 and 3.19 present refinements of the Borel-Cantelli lemmas. ⊓⊔

Observe that Xn → X a.s. if and only if, for any ν ∈ N

P
[ {

|Xn −X| > 1/ν
}
i.o.
]
= 0.

The Borel-Cantelli Lemma now implies the following result.

Corollary 1.3.54. Suppose that there exists X ∈ L0(Ω, S,P) such that the sequence Xn ∈ L0(Ω, S,P)
satisfies ∑

n≥1

P
[
|Xn −X| > ε

]
<∞, ∀ε > 0.

Then Xn
a.s.−→ X. ⊓⊔

Proof. The Borel-Cantelli Lemma implies that

P
[
|Xn −X| > ε i.o.

]
= 0, ∀ε > 0.

Hence, for any ε > 0 there exists a negligible set Sε ∈ S such that, for any ω ∈ Ω\Sε we have

lim sup
n→∞

∣∣Xn(ω)−X(ω)
∣∣ ≤ ε.

Set

S∞ =
⋃
k∈N

S1/k.
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We deduce that for any ω ∈ Ω \ S∞ we have

lim sup
n→∞

∣∣Xn(ω)−X(ω)
∣∣ ≤ 1/k, ∀k ∈ N.

⊓⊔

Definition 1.3.55. We say that the sequence Xn ∈ L0(Ω, S,P) converges in probability to
the random variable X ∈ L0(Ω, S,P) if, ∀ε > 0, we have

lim
n→∞

P
[
|Xn −X| > ε

]
= 0.

We will use the notation Xn
p−→ X to indicate convergence in probability. ⊓⊔

Observe that if Xn → X in probability and, for any n ∈ N, we have Xn = X ′
n a.s.,

then X ′
n → X in probability. Thus the convergence in probability is correctly defined in

L0(Ω, S,P).
The convergence in probability is equivalent to the convergence defined by a metric on

L0(Ω, S,P). For X,Y ∈ L0(Ω, S,P) we set

dist(X,Y ) := E
[
min(|X − Y |, 1)

]
(1.3.58)

Clearly dist(X,Y ) = dist(Y,X) and

dist(X,Z) ≤ dist(X,Y ) + dist(Y,Z).

Note that dist(X,Y ) = 0 iff X = Y a.s. so “dist” is a metric on L0(Ω, S,P).

Proposition 1.3.56. Let X,Xn ∈ L0(Ω, S,P). Then the following statements are equivalent.

(i) Xn → X in probability as n→ ∞.

(ii) dist(Xn, X) → 0 as n→ ∞.

Proof. Set

ρ(x) := min(|x|, 1), Yn := Xn −X.

Using Markov’s inequality we deduce that for any n ≥ 1 and any ε ∈ (0, 1) we have

εP
[
|Yn| > ε

]
= εP

[
ρ(Yn) > ε

]
≤ E

[
ρ(Yn)

]
= dist(Yn, 0).

This shows that (ii) ⇒ (i).

Conversely, observe that, for any ε > 0, we have

E
[
ρ(Yn)

]
=

∫
|Yn|≤ε

ρ(Yn)dP+

∫
|Yn|>ε

ρ(Yn)dP ≤ ε+ P
[
|Yn| > ε

]
.

This proves that 0 ≤ lim inf dist(Yn, 0) ≤ lim sup dist(Yn, 0) ≤ ε, ∀ε > 0. ⊓⊔

The next result describes the relationships between a.s. convergence and convergence in
probability.

Theorem 1.3.57. Let X,Xn ∈ L0(Ω, S,P). Then the following hold.

(i) If Xn → X a.s., then Xn → X in probability.

(ii) If Xn → X in probability, then (Xn) contains a subsequence that converges a.s. to
X.
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(iii) The sequence Xn converges in probability to X if and only if any subsequence con-
tains a further subsequence that is a.s. convergent to X.

Proof. (i) Set Yn := Xn − X. Since Yn → 0 a.s. we have min(|Yn|, 1) → 0 a.s.. From the
Dominated Convergence Theorem we deduce

dist(Xn, X) = E
[
|Yn|

]
→ 0,

so that Yn
p→ 0.

(ii) Suppose that Yn → 0 in probability. We deduce that for any k ∈ N there exists nk ∈ N
such that

∀n ≥ nk : P
[
|Yn| > 1/k

]
<

1

2k
.

Now observe that for any m > 0, the series∑
k≥1

P
[
|Ynk

| > 1/m
]

is convergent since, for k > m we have

P
[
|Ynk

| > 1/m
]
≤ P

[
|Ynk

| > 1/k
]
<

1

2k
.

The desired conclusion now follows from Corollary 1.3.54 .

(iii) Recall that a sequence in a metric space converges to a given point if and only if any
subsequence contains a sub-subsequence converging to that point. The properties (i) and (ii)
show that the seqeunce (Xn) satisfies this condition with respect to the metric dist defined
by ρ. ⊓⊔

Corollary 1.3.58. If the sequence (Xn) in L0(Ω, S,P) converges in probability to X, then
for any continuous function f : R → R the sequence f(Xn) converges in probability to f(X).

Proof. The sequence (Xn) satisfies the necessary and sufficient conditions (iii) in Theorem
1.3.57. Since f is continuous, the sequence f(Xn) satisfies these necessary and sufficient
conditions as well. ⊓⊔

The next result is also an immediate consequence of Theorem 1.3.57(iii).

Corollary 1.3.59. Suppose that (Xn) and (Yn) are two sequences of a.s. finite random vari-
ables converging in probability to the a.s. finite variables X and respectively Y . Then Xn+Yn
converges in probability to X + Y . ⊓⊔

Definition 1.3.60. Let p ∈ [1,∞). We say that the sequence (Xn)n∈N ⊂ L0(Ω, S,P) coverges
in p-mean or in Lp to X ∈ L0(Ω, S,P) if

X, Xn ∈ Lp(Ω, S,P), ∀n ∈ N,

and

lim
n→∞

E
[
|Xn −X|p

]
= 0.

The convergence in the L∞-norm is rerred to as a.s. uniform convergence. ⊓⊔
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Proposition 1.3.61. If Xn → X in p-mean, then Xn → X in probability. In particular, Xn

admits a subsequence that converges a.s. to X.

Proof. Set Yn := Xn −X. Then

P
[
|Yn| > ε

]
= P

[
|Yn|p > εp

] (1.2.21)

≤ 1

εp
E
[
|Yn|p

]
→ 0 as n→ ∞.

⊓⊔

Example 1.3.62. For each n ∈ N and each 1 ≤ k ≤ n we set

Ak,n = [(k − 1)/n, k/n], Xk,n = IAk,n
: [0, 1] → R.

Then the sequence of random variables

X1,1, X1,2, X2,2, X1,3, X2,3, X3,3, . . .

converges in mean and in probability to 0. It does not converge a.s. to 0 because for any
x ∈ [0, 1] infinitely many of these random variables are equal to 1 at x.

The related sequence Yk,n = nXk,n converges in probability to 0 but not in mean since
∥Yk,n∥L1 = 1. ⊓⊔

Example 1.3.63 (Bernoulli). Suppose that (Xn)n≥1 is a sequence of i.i.d. Bernoulli random
variables with wining probability p = 1

2 . Set

Sn = X1 + · · ·+Xn ∼ Bin(n, 1/2), Mn =
1

n
Sn.

Then

Var
[
Mn

]
=

1

n2
Var

∣∣Sn ] = 1

n
Var

[
Ber(1/2)

]
=

1

4
n.

Hence

∥Mn − 1/2∥L2 =
1

2
√
n
→ 0 as n→ ∞,

so that Mn converges in 2-mean to 1
2 and thus, in probability to 1

2 . Intuitively, Mn is the
fraction of Heads in a string on n independent fair con flips. From Chebyshev’s inequality
we deduce that

P
[
|Mn − 1/2| > ε

][
≤ ε2

4n
.

It turns out that this deviation probability is much smaller. In (2.3.12a) we will show that

P
[
|Mn − 1/2| > ε

]
≤ 2e−2nε2 .

For example if ε = 10−2, n = 105 then

P
[
|M105 − 1/2| > 0.01

]
≤ 2e−20 ≈ 4.2× 10−9. ⊓⊔

Example 1.3.64 (Longest common subsequence). Consider a finite set A, |A| = k, called
alphabet. A word of length n in the alphabet A is a finite sequence of the form

x := (x1, . . . , xn) ∈ An.

A subsequence of such a word is a word of the form

(xf(1), . . . xf(ℓ)) ∈ Aℓ,
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where f an increasing function f : {1, . . . , ℓ} → {1, . . . , n}. The natural number ℓ is called
the length of the subsequence.

A common subsequence of two words x, y ∈ An is a word w ∈ Aℓ that is a subsequence
of both. For example, if A = {H,T}, then H,T,H, T, T is a subsequence of both words

H,T , T,H,H, T, T and T,H, T,H, T, T ,H

We are interested in the length of the longest common subsequence of two random words of
length n on the alphabet A. Such a problem arises in genetics. In that case the alphabet
is {A,C, T,G}. The DNA molecules are described by (very long) words in this alphabet.
The existence a long common subsequence of two such words is an indication of a common
ancestor of two living organisms with those DNAs.

From a mathematical point of view, we fix a probability measure π on an alphabet A and
we choose independent random variables{

Xn, Yn; n ∈ N
}

where Xn, Yn are A-valued and have common distribution π.

One can think that these random variables are obtained as follows. Two individuals in-
dependently roll identical ”dice” with faces labeled by A and whose occurrences are governed
by π. The first individual generates the sequence (Xn) while the second individual generates
the sequence Yn. We denote by Ln the length of the longest common subsequence of the
words

(X1, . . . , Xn) and (Y1, . . . , Yn).

We want to prove at a.s. and L1 we have

lim
n→∞

Ln
n

= R(π) := sup
n≥1

Ln
n

(1.3.59)

In particular, this shows that

lim
n→∞

Ln
n
> L1 > 0.

Note that L1 is a Bernoulli random variable with success probability

p =
∑
a∈A

π
[
a
]2
.

The equality (1.3.59) is due to Chvátal and Sankoff [36], but we will follow the presentation
in [161, Chap. 1].

The key observation is that the sequence (ℓn)n∈N is superadditive, i.e.,

ℓn + ℓm ≤ ℓm+n, ∀m,n ∈ N. (1.3.60)

The proof is very simple. We set Zn = (Xn, Yn) and we observe that the random variable Ln
is an invariant of the sequence of pairs (Z1, . . . , Zn), Ln = L(Z1, . . . , Zn). Clearly

Lm = L(Zn+1, . . . , Zn+m), ∀m,n ∈ N.

If we concatenate the longest common subsequence of (Z1, . . . , Zn) with the longest common
subsequence of (Zn+1, . . . , Zn+m) we obtain a common subsequence of (Z1, . . . , Zn, Zn+1, . . . , Zn+m)
of length

L(Z1, . . . , Zn) + L(Zn+1, . . . , Zn+m)
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showing that

L(Z1, . . . , Zn) + L(Zn+1, . . . , Zn+m) ≤ L(Z1, . . . , Zn, Zn+1, . . . , Zn+m),

i.e.,
Lm + Ln ≤ Lm+n, ∀m,n ∈ N. (1.3.61)

Taking the expectations of both sides in the above inequality we obtain (1.3.60).

The conclusion (1.3.59) is now an immediate consequence of the following elementary
result.

Lemma 1.3.65 (Fekete). Suppose that (xn)n≥1 is a subadditive sequence of real numbers,
i.e.,

xm+n ≤ xm + xn, ∀m,n ∈ N.
Then

lim
n→∞

xn
n

= µ := inf
n≥1

xn
n

Proof. Then, for any c > µ we can find k = k(c) > 0 such that xk ≤ c. The subadditivity
condition implies xkn ≤ nxk, ∀n ∈ N, so that

µ ≤ xnk
nk

< c, ∀n ∈ N.

Hence
µ ≤ lim inf

n→∞

xn
n

≤ c, ∀c > µ,

i.e.,

µ = lim inf
n→∞

xn
n
.

Now observe that for any n ≥ k(c) > 0, there exist m ∈ N and r ∈ {0, 1, . . . , k(c) − 1} such
that n = mk(c) + r. Hence

xn ≤ mxk(c) + rr < mc+ xr

so that
xn
n
<

(n− r)c

n
+
Mc

n
, Mc = sup

{
|x1|+ · · ·+ |xk(c)|

}
.

Hence

lim sup
n→∞

xn
n

≤ lim sup
n→∞

(n− r)c

n
= c, ∀c > µ.

This completes the proof of the lemma. ⊓⊔

The conclusion (1.3.59) follows from Fekete’s Lemma applied to the sequence xn = −Ln.
The inequality (1.3.61) show that

Ln
n

→ R := sup
n

Ln
n
.

Set r = r(π) := E
[
R
]
. We deduce from the Cauchy-Schwartz inequality that

r ≥ E
[
L1

]
=
∑
a∈A

π
[
a
]2 ≥ 1

k

(∑
a∈A

π(a)

)2

=
1

k
> 0.

The Dominated Convergence Theorem implies that

r = lim
n→∞

1

n
E
[
Ln
]
.
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The exact value of r(π) is not known in general. In Example 3.1.35, using more sophisti-
cated techniques, we will show that the limit R(π) is constant, R(π) = r and Ln

n is highly
concentrated around its mean rn. ⊓⊔

The concept of convergence in probability is weaker than the concepts of convergence a.s.
or in p-mean. In many applications it is useful to know sufficient additional assumptions that
will guarantee that a sequence convergent in probability is also convergent in p-mean. The
a.s. convergence does not guarantee convergence in mean. The next elementary example is
typical of what can go wrong.

Example 1.3.66. Consider the interval [−1, 1] equipped with the uniform probability mea-
sure 1

2dx. Consider the sequence of nonnegative random variables

Xn = 2nI [−2−n,2−n].

Note that Xn → 0 a.s. but

E
[
Xn

]
=

2n

2

∫ 2−n

−2−n

dx = 1, ∀n.

As we will see later in Chapter 3, the reason why the convergence in mean fails is the high
concentration of Xn on sets of smaller and smaller measures. ⊓⊔

Our next result is an example of a sufficient condition for a sequence converging in
probability to also converge in the mean. It is a stepping stone towards the more refined
results that we will discuss in Chapter 3.

Theorem 1.3.67 (Bounded Convergence Theorem). Suppose that (Xn) is a sequence in
L1(Ω, S,P) that converges in probability to X ∈ L1(Ω, S,P). If the sequence (Xn) is bounded
in L∞(Ω, S,P),i.e.,

M := sup
n∈N

∥Xn∥∞ <∞,

then Xn → X in L1 and

lim
n→∞

E
[
Xn

]
= E

[
X
]

(1.3.62)

Proof. We follow the approach in [174, Thm. 1.4]. Since∣∣E[Xn

]
− E

[
X
] ∣∣ ≤ E

[
|Xn −X|

]
,

and |Xn − X| → 0 in probability, it suffices to consider only the special case X = 0, and
Xn ≥ 0 a.s.. In such an instance it suffices to prove only the equality (1.3.62).

For any ε > 0 we have

E
[
Xn

]
= E

[
XnI{Xn≤ε}

]
+ E

[
XnI{Xn>ε}

]
≤ ε+MP

[
Xn > ε

]
.

Letting n→ ∞ taking to account that Xn ≥ 0 and Xn → 0 in probability we deduce

0 ≤ lim inf
n→∞

E
[
Xn

]
≤ lim sup

n→∞
E
[
Xn

]
≤ ε, ∀ε > 0.

⊓⊔
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Remark 1.3.68. The Bounded Convergence theorem does not follow immediately from the
Dominated Convergence Theorem which involves a.s. convergence. However, using Theorem
1.3.57(iii) we can use the Dominated Convergence Theorem to provide an alternate proof of
the Bounded Convergence Theorem. ⊓⊔

1.4. Conditional expectation

The concept of conditioning is a central pillar of the theory of probability. It has a genuinely
probabilistic origin and very rich and subtle ramifications. Also, it takes some time getting
used to it. This concept is one important reason why in probability sigma-algebras play a
much more important role than in analysis.

Fix a probability space (Ω, S,P).

1.4.1. Conditioning on a sigma subalgebra. The main formal constructions of this
section are best understood if we first consider a special but very useful example.

Example 1.4.1 (Conditioning on a partition). Suppose that (Ω, S,P) and (Fα)α∈A, A ⊂ N,
is a finite or countable partition of Ω with measurable and nonnegligible chambers, i.e.,

Fα ∈ S, P
[
Fα
]
> 0, ∀α ∈ A.

We denote by F the sigma-algebra generated by this partition. In other words, F ⊂ F if and
only if it is a union of chambers Fα. This means that ∃B ⊂ A such that

F =
⋃
β∈B

Fβ.

Observe that a function Y : Ω → R is F-measurable if and only there exist real numbers
(yα)α∈A such that

Y =
∑
α∈A

yαIα, Iα := IFα .

Moreover
Y ∈ L1 ⇐⇒

∑
α

|yα|P
[
Fα
]
<∞.

Suppose now that X ∈ L1(Ω, S,P). We define the expectation of X given the event Fα to
be the the expectation of X with respect to the conditional probability P

[
−
∣∣Fα ], i.e., the

number

x̄α = E
[
X
∣∣Fα ] := 1

P
[
Fα
]E[XIα

]
=

1

P
[
Fα
] ∫

Fα

X(ω)P
[
dω
]
. (1.4.1)

We obtain an F-measurable random variable

X =
∑
α

x̄αIα.

Note that

|x̄α| ≤
1

P
[
Fα
]E[ |X|Iα

]
so

E
[
|X|
]
≤
∑
α

E
[
|X|Iα

]
= E

[
|X|

]
<∞.

Since
E
[
XIα

]
= E

[
XIα

]
, ∀α ∈ A,
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we deduce

E
[
XIF

]
= E

[
XIF

]
, ∀F ∈ F. (1.4.2)

Note that if

X̂ =
∑
α

x̂αIα

is another F-measurable, integrable random variable that satisfies (1.4.2), then

P
[
Fα
]
xα = E

[
XIα

]
= E

[
X̂Iα

]
= P

[
Fα
]
x̂α, ∀α ∈ A,

so that x̂α = x̄α, ∀α, i.e.,X is uniquely determined by (1.4.2).

As a special case, suppose that Y ∈ L0(Ω, S,P) that has finite or countable range Y. We
obtain a countable measurable partition of Ω (Fy)y∈Y, Fy = {Y = y}. In this case

x̂y =
1

P
[
{Y = y}

] ∫
{Y=y}

X(ω)P
[
dω
]
.

If, additionally, the range of X is also finite or countable, then X̄ coincides with the random
variable E

[
X ∥Y

]
defined in Exercise 1.16.

If in (1.4.2) we set F = Ω we deduce

E
[
X
]
= E

[
X
]
=
∑
α

x̄αP
[
Fα
]
=
∑
α

E
[
X
∣∣Fα ]P[Fα ]. (1.4.3)

When X = IS , then

E
[
IS
∣∣Fα ] = P

[
S ∩ Fα

]
P
[
Fα
] = P

[
S
∣∣Fα ].

In this special case the equality (1.4.3) becomes the law of total probability

P
[
S
]
=
∑
α

P
[
S
∣∣Fα ]P[Fα ]. (1.4.4)

⊓⊔

The next result explains why the condition (1.4.2) is key to our further developments.

Proposition 1.4.2. If F ⊂ S is a sigma-subalgebra and Y0, Y1 ∈ L1(Ω,F,P) are two F-measurable
random variables such that

E
[
Y0IF

]
= E

[
Y1IF

]
, ∀F ∈ F, (1.4.5)

then Y0 = Y1 a.s..

Proof. Set Z = Y0 − Y1. Then Z is F-measurable, integrable and satisfies

E
[
ZIF

]
= 0, ∀F ∈ F. (1.4.6)

If we let F = {Z > 1/n}, n ∈ N, we deduce that

1

n
P
[
Z > 1/n

]
≤ E

[
ZI{Z>1/n}

]
= 0, ∀n ∈ N.

Thus

P
[
Z > 1/n

]
= 0, ∀n ∈ N ⇒ P

[
Z > 0

]
= 0.

A similar argument shows that P
[
Z < 0

]
= 0. ⊓⊔
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Definition 1.4.3. Let (Ω, S,P) be a probability space, F ⊂ S a sigma subalgebra, and
X ∈ L1(Ω, S,P). A version of the conditional expectation of X given F is an F-measurable

random variableX ∈ L1(Ω,F,P) such that

E
[
XIF

]
= E

[
XIF

]
, ∀F ∈ F. (1.4.7)

⊓⊔

According to Proposition 1.4.2, any two random variablesX0,X1 ∈ L1(Ω,F,P) satisfying
(1.4.7) are a.s. equal. Their equivalence class in L1(Ω,F,P) is denoted by E

[
X ∥F

]
and it

is called the conditional expectation of X given F. Also, if X = Y a.s. and E
[
X ∥F

]
exists,

then E
[
Y ∥F

]
also exists and E

[
X ∥F

]
= E

[
Y ∥F

]
a.s..

✍ About the notation. I am using different notations, one for the conditional expecta-
tion given and event, E

[
X
∣∣F ], and another for the conditional expectation given a sigma-

subalgebra, E
[
X ∥F

]
, for a simple reason: I want to emphasize visually that the first is a

number and the latter is a function.

Remark 1.4.4. Using the Monotone Convergence Theorem and the Monotone Class Theo-
rem we deduce that the following are equivalent.

(i) The random variableX ∈ L1(Ω,F,P) is a representative of E
[
X ∥F

]
(ii) For any Y ∈ L∞(Ω,F,P)

E
[
XY

]
= E

[
XY

]
. (1.4.8)

(iii) There exists a π-system A ⊂ F that contains Ω, generates F, and

E
[
XIA

]
= E

[
XIA

]
, ∀A ∈ A. (1.4.9)

From Corollary 1.3.7 we deduce that

X is F measurable, E
[
X −X

]
= 0 and (X −X) ⊥⊥ F ⇒ X = E

[
X ∥F

]
. (1.4.10)

⊓⊔

We will soon prove (Theorem 1.4.8) that the conditional expectation of an integrable
random variable given a sigma-subalgebra exists.

Definition 1.4.5. Given random variables X ∈ L0(Ω, S,P), Y ∈ L1(Ω, S,P) we write

E
[
Y ∥X

]
:= E

[
Y ∥σ(X)

]
,

where σ(X) denotes the sigma-subalgebra generated by X. This random variable is called
the conditional expectation of Y given X. ⊓⊔

Remark 1.4.6. A function Y ∈ L1(Ω, σ(X),P) represents E
[
Y ∥X

]
if, for any x ∈ R we

have ∫
{X≤x}

Y (ω)P[dω] =
∫
{X≤x}

Y (ω)P[dω].

Since E
[
Y ∥X

]
is σ(X)-measurable we deduce from Dynkin’s Theorem 1.1.24 that there

exists a Borel measurable function f : R → R such that

f(X) = E
[
Y ∥X

]
a.s.
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This is equivalent to the statement

E
[
Y I{X≤x}

]
= E

[
f(X)I{X≤x}

]
, ∀x ∈ R. (1.4.11)

“The value f(x) of the function f at x”8 is called the conditional expectation of Y given
X = x and it is denoted by E

[
Y
∣∣X = x

]
. Think of it as the conditional expectation of Y

given the possible negligible event {X = x}. The graph of x 7→ E
[
Y ∥X = x

]
was classically

referred to as the regression curve.

Note that

E
[
Y
]
= E

[
Y
]
= E

[
E
[
Y
∣∣X ] ] = E

[
f(X)

]
.

Thus

E
[
Y
]
= E

[
f(X)

]
=

∫
R
f(x)PX

[
dx
]
.

We can rewrite the last equality as

E
[
Y
]
=

∫
R
E
[
Y
∣∣X = x

]
PX
[
dx
]
. (1.4.12)

This approach to computing the expectation of Y by relying on the above identity is referred
to computing the expectation of Y by conditioning on X. This generalizes the elementary
situation in Exercise 1.16. ⊓⊔

Example 1.4.7. Suppose that X,Y : (Ω, S,P) → R are two random variables such that their
joint probability distribution PX,Y ∈ Prob(R2) is absolutely continuous with respect to the
Lebesgue measure on R2. This means that there exists a Lebesgue integrable function

pX,Y : R2 → [0,∞)

such that

P
[
(X,Y ) ∈ B

]
=

∫
B
pX,Y (x, y)dxdy, ∀B ∈ BR2 .

We denote by PX and respectively PY the probability distributions of X and respectively Y .
Note that the cumulative distribution function FX of X is

FX(c) = P
[
X ≤ c

]
=

∫ c

−∞

(∫
R
pX,Y (x, y)dy

)
︸ ︷︷ ︸

=:pX(x)

dx =

∫ c

−∞
pX(x)dx.

This shows that PX is absolutely continuous with respect to the Lebesgue measure on R and

PX
[
dx
]
= pX(x)dx.

Similarly

PY
[
dy
]
= pY (y)dy =

∫
R
pX,Y (x, y)dx.

Classically, the probability distributions PX and PY are called the marginal distributions of
the random vector (X,Y ). We define

pY |X=x(y) :=


pX,Y (x,y)
pX(x) , pX(x) ̸= 0,

0, pX(x) := 0.

8We used quotes since “the value at a point” is not a precise concept for a function defined almost everywhere.
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Assume that Y is integrable. Define

f : R → R, f(x) =

∫
R
ypY |X=x(y)dy =


1

pX(x)

∫
R ypX,Y (x, y)dy, pX(x) ̸= 0,

0, pX(x) = 0.

Using the Fubini-Tonelli theorem and the integrability of Y we deduce that the above integrals
are well defined and the resulting function f is Borel measurable. Note that

f(x)pX(x) =

∫
R
ypX,Y (x, y)dy, ∀x ∈ R.

We want to show that f(x) = E
[
Y
∣∣X = x

]
, i.e., f(X) is a version of E

[
Y ∥X

]
. We will

show that it satisfies (1.4.11).

Let c ∈ R. We have

E
[
f(X)IX≤c

]
=

∫ c

−∞
f(x)pX(x)dx =

∫
R

(∫
R
ypX,ydy

)
I(−∞,c](x)dx

=

∫
R2

yI(−∞,c](x)pX,Y (x, y)dxdy = E
[
Y IX≤c

]
.

(1.4.13)

The function f(x) is the conditional expectation E
[
Y |X = x

]
discussed in Remark 1.4.4.

Note that the event {X = x} has probability zero so this nomenclature should be taken
with a grain of sand since we cannot apply (1.4.1). Intuitively

E
[
Y |X = x

]
= lim

ε↘0
E
[
Y
∣∣ {|X − x| < ε}

] (1.4.1)
= lim

ε↘0

E
[
Y I |X−x|<ε

]
P
[
|X − x| < ε

] .
⊓⊔

One issue we need to address is the existence of the conditional expectation. There is a
fast proof based on the Radon–Nikodym theorem. We will use a more roundabout approach
that sheds additional light on probabilistic the nature of conditional expectation. As an
aside, let us mention that this approach leads to an alternate proof of the Radon–Nikodym
theorem that does not rely on the concept of signed-measure.

Theorem 1.4.8. For any X ∈ L1(Ω, S,P) and any sigma subalgebra F ⊂ S there exists a
conditional expectation E

[
X ∥F

]
∈ L1(Ω,F,P).

Proof. We follow the approach in [182]. We establish the existence gradually, first under
more restrictive assumptions.

Step 1. Assume X ∈ L2(Ω, S,P). Then L2(Ω,F,P) is a closed subspace of L2(Ω, S,P).
Denote by PFX the orthogonal projection of X on this closed subspace. We claim that

PFX = E
[
X ∥F

]
, (1.4.14a)

X ≥ 0 ⇒ E
[
X ∥F

]
≥ 0. (1.4.14b)

Set Y := PFX. Since X − Y ⊥ L2(Ω,F,P) we deduce

E
[
(X − Y )Z

]
= 0, ∀Z ∈ L2(Ω,F,P).

In particular,

E
[
(X − Y )IF

]
= 0, ∀F ∈ F.
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This proves (1.4.14a). Now suppose that X ≥ 0. For any n ∈ N we have

0 ≤ E
[
XI{Y≤−1/n}

]
= E

[
Y I{Y≤−1/n}

]
≤ − 1

n
P
[
Y ≤ −1/n

]
,

so

P
[
Y ≤ −1/n

]
= 0, ∀n ∈ N.

This proves (1.4.14b). Clearly, the resulting map

L2(Ω, S,P) ∋ X 7→ E
[
X ∥F

]
∈ L2(Ω,F,P)

is linear.

Step 2. Assume X ∈ L1(Ω, S,P). Decompose X = X+ −X− and, for n ∈ N, set

X±
n = min

(
X±, n

)
.

Note that X±
n ∈ L∞(Ω, S,P) and, as n → ∞, X±

n ↗ X± a.s.. From Step 1 we deduce that
the random variables X±

n have conditional expectations given F. Choose versions

Y ±
n := E

[
X±
n ∥F

]
.

Since X±
n −X±

m ≥ 0 a.s. if m ≤ n we deduce from (1.4.14b) that

0 ≤ Y ±
m ≤ Y ±

n , a.s., ∀m ≤ n.

We set

Y ± := lim
n→∞

Y ±
n .

From the Monotone Convergence Theorem we deduce that

∞ > E
[
X± ] = lim

n→∞
E
[
X±
n

]
= lim

n→∞
E
[
Y ±
n

]
= E

[
Y ± ].

This shows that the random variables Y± are integrable and in particular a.s. finite. We set

Y := Y + − Y −.

We will show that Y is a version of the conditional expectation of X given F. Let F ∈ F.
Then

E
[
XIF

]
= E

[
X+IF

]
− E

[
X−IF

]
= lim

n→∞
E
[
X+
n IF

]
− lim
n→∞

E
[
X−
n IF

]
= lim

n→∞
E
[
Y +
n IF

]
− lim
n→∞

E
[
Y −
n IF

]
= E

[
Y +IF

]
− E

[
Y −IF

]
= E

[
Y IF

]
.

This proves that Y is a version of E
[
X ∥F

]
. ⊓⊔

Remark 1.4.9. (a) The sigma-subalgebra F should be viewed as encoding partial informa-
tion that we have about a random experiment. Following a terminology frequently used in
statistics, we refer to the F-measurable random variables as predictors determined by the
information contained in F.

Step 1 in the above proof shows that the conditional expectationX of a random variable
X, given the partial information F, should be viewed as the predictor that best approximates
X given the information F. The missing part X −X is independent of F so it is unknowable
given only the information encoded by F.

Intuitively, suppose we perform a random experiment with space of outcomes Ω. The
result of one experiment is an outcome ω. We have at our disposal a “dæmon”9 who can

9Use the concept of dæmon in Socratic sense
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only give yes or no answers to questions of the type: given F ∈ F, does ω belong to F? Then
X(ω) is the best guess about X(ω) using the “dæmonic information”available to us.

Note that when F = {∅,Ω}, then

E
[
X
]
= E

[
X
]
IΩ.

To put it differently, if the only information we have about a random experiment is that there
will be an outcome, then the most/best we can predict about a numerical characteristic of
that outcome is its expectation.

(b) There is an alternate approach to proving the existence of conditional expectation. A
random variable X ∈ L1(Ω, S,P) defines a signed measure

µX : F → [0,∞), µX
[
F
]
=

∫
F
X(ω)P

[
dω
]
, ∀F ∈ F.

This measure is absolutely continuous with P (restricted to F). The Radon-Nikodym theorem
implies that there exists an F-measurable integrable function ρX ∈ L1(Ω,F,P) such that
µX
[
dω
]
= ρX(ω)P

[
dω
]
, i.e.,∫
F
X(ω)P

[
dω
]
=

∫
F
ρX(ω)P

[
dω
]
, ∀F ∈ F.

This shows that ρX = E
[
X ∥F

]
a.s..

Conversely, one can show with considerable effort and ingenuity that the existence of
conditional expectations implies the Radon-Nicodym Theorem. We refer to [182, Sec. 14.15]
for details. ⊓⊔

Definition 1.4.10. Given a sigma subalgebra F ⊂ S, and an event S ∈ S, we define the
conditional probability of S given F to be the random variable

P
[
S ∥F

]
:= E

[
IS ∥F

]
. ⊓⊔

Example 1.4.11 (Conditioning on an event). Suppose that S ∈ S is an event such 0 < P[S] < 1.
Let Y ∈ L1(Ω, S,P). Then

E
[
Y ∥ IS

]
= E

[
Y
∣∣S ]IS + E

[
Y
∣∣Sc ]ISc ,

where we recall that (see (1.4.1))

E
[
Y
∣∣S ] = 1

P
[
S
]E[Y IS

]
. ⊓⊔

Our next result lists the main properties of the conditional expectation.

Theorem 1.4.12. Suppose that F ⊂ S is a sigma subalgebra. Then the following hold.

(i) Let X ∈ L1(Ω, S,P). If Y is any version of E
[
X ∥F

]
, then E

[
Y
]
= E

[
X
]
. In

other words

E
[
E
[
X ∥F

] ]
= E

[
X
]
. (1.4.15)

(ii) If X,Y ∈ L1(Ω, S,P) and X ≤ Y a.s., then E
[
X ∥F

]
≤ E

[
Y ∥F

]
a.s..
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(iii) The map

L1(Ω, S,P) ∋ X 7→ E
[
X ∥F

]
∈ L1(Ω,F,P)

is a linear contraction, i.e., it is linear and satisfies∥∥E[X ∥F
] ∥∥

L1 ≤ ∥X∥L1 , ∀X ∈ L1(Ω, S,P).

(iv) If X ∈ L1(Ω, S,P) and Y ∈ L∞(Ω,F,P), then

E
[
XY ∥F

]
= Y E

[
X ∥F

]
.

(v) If G ⊂ F is another sigma subalgebra, then for any X ∈ L1(Ω, S,P) we have

E
[
X ∥G

]
= E

[
E
[
X ∥F

] ∥∥G ].
(vi) If 0 ≤ Xn ↗ X a.s., X ∈ L1(Ω, S,P), then

E
[
Xn ∥F

]
↗ E

[
X ∥F

]
, a.s. and L1.

(vii) If Xn ∈ L1(Ω, S,P), n ∈ N, Xn ≥ 0 a.s., lim infXn ∈ L1 a.s., then

E
[
lim infXn ∥F

]
≤ lim inf E

[
Xn ∥F

]
a.s..

(viii) If Xn → X a.s. and there exists Y ∈ L1(Ω, S,P) such that |Xn| ≤ Y a.s., then

E
[
Xn ∥F

]
→ E

[
X ∥F

]
a.s..

(ix) If X ∈ L1(Ω, S,P) and φ : R → R is a convex function such that φ(X) is integrable,
then

φ
(
E
[
X ∥F

] )
≤ E

[
φ(X) ∥F

]
a.s..

In particular, if we choose φ(x) = |x|p, p ≥ 1 we deduce that the conditional
expectation defines a linear map

E
[
− ∥F

]
: Lp(Ω, S,P) → Lp(Ω,F,P)

that is linear contraction, i.e.,∥∥∥E[X ∥F
] ∥∥∥

Lp
≤ ∥X∥Lp .

(x) If G is another sigma-algebra that is independent of σ(X) ∨ F, then

E
[
X ∥F ∨ G

]
= E

[
X ∥F

]
.

In particular, if X ∈ L1(Ω, S,P) is independent of G, then

E
[
X ∥G

]
= E

[
X
]
.

Proof. (i) Follows by choosing F = Ω in (1.4.7). (ii) Follows from the proof of Theorem
1.4.8.

(iii) The linearity follows from the fact that the defining condition (1.4.7) is linear in X. Now
let X ∈ L1(Ω, S,P). We have X = X+ − X−. Choose versions Y ± of E

[
X± ∥F

]
. Then

Y± ≥ 0 and∣∣∣E[X ∥F
] ∣∣∣ = ∣∣Y + − Y − ∣∣ ≤ Y + + Y − = E

[
X+ +X− ∥F

]
= E

[
|X| ∥F

]
.

Hence ∥∥∥E[X ∥F
] ∥∥∥

L1
≤ E

[
E
[
|X| ∥F

] ]
= E

[
|X|

]
= ∥X∥L1 .
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(iv) Choose a version Z of E
[
X ∥F

]
. Let Y ∈ L∞(Ω,F,P). We have to show that Y Z is a

version of E
[
XY ∥F

]
, i.e.,

E
[
XY IF

]
= E

[
ZY IF

]
, ∀F ∈ F. (1.4.16)

Let F ∈ F. Since Z is a version of E
[
X ∥F

]
we deduce from (1.4.8) that

E
[
XU

]
= E

[
ZU

]
, ∀U ∈ L∞(Ω,F,P).

In particular, ∀F ∈ F we have

EX Y IF︸︷︷︸
U

]
= E

[
ZU

]
= E

[
ZY IF

]
.

Thus ZY satisfies (1.4.16).

(v) Choose a version Y of E
[
X ∥F

]
, and a version Z of E

[
Y ∥G

]
. We have to show that Z

is also a version of E
[
X ∥G

]
. Let G ∈ G. We have

E
[
Y IB

]
= E

[
ZIB

]
,

E
[
XIG

] G∈F
= E

[
Y IG

]
= E

[
ZIB

]
.

(vi) Choose versions Yn of E
[
Xn ∥F

]
and Y of E

[
X ∥F

]
. Note that Yn is increasing. The

Monotone Convergence theorem implies that ∥X −Xn∥L1 → 0. From (iii) we deduce

∥Yn − Y ∥L1 ≤ ∥Xn − Y ∥L1 .

Proposition 1.3.61 implies that Yn admits a subsequence that converges a.s. to Y . Since the
sequence Yn is increasing we deduce that the whole sequence converges a.s. to Y .

(vii) Set
Yk = inf

n≥k
Xn.

The sequence of random variables (Yk) is increasing and converges a.s. to X := lim infXn.
We deduce from (vi) that

E
[
Yk ∥F

]
↗ E

[
X ∥F

]
.

Note that since Yk ≤ Xn, ∀n ≥ k, we have

E
[
Yk ∥F

]
≤ Zk := inf

n≥k
E
[
Xn ∥F

]
so

E
[
X ∥F

]
= lim

k
E
[
Yk ∥F

]
≤ lim

k
Zk = lim inf E

[
Xn ∥F

]
.

(viii) Set Yn := Xn + Y . Then Yn ≥ 0 and Yn → X + Y a.as. We deduce from (vii) that

E
[
X ∥F

]
+ E

[
Y ∥F

]
≤ lim inf E

[
Xn ∥F

]
+ E

[
Y ∥F

]
i.e.,

E
[
X ∥F

]
≤ lim inf E

[
Xn ∥F

]
.

Similarly, we set Zn = Y −Xn. Then Zn ≥ 0 and Zn → Y −X a.s.. Applying (vii) to Zn we
deduce

lim supE
[
Xn ∥F

]
≤ E

[
X ∥F

]
.

(ix) We need to use a less familiar property of convex functions, [6, Thm.6.3.4]. More
precisely, there exist sequences of real numbers (an)n∈N and (bn)n∈N such that

φ(x) = sup
n∈N

(anx+ bn), ∀x ∈ R.
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Set ℓn(x) = anx+ bn.
10 Clearly

ℓn

(
E
[
X ∥F

] )
= E

[
ℓn(X) ∥F

]
≤ E

[
φ(X) ∥F

]
.

Hence

φ
(
E
[
X ∥F

] )
= sup

n∈N
ℓn

(
E
[
X ∥F

] )
= sup

n∈N
E
[
ℓn(X) ∥F

]
≤ E

[
φ(X) ∥F

]
.

(x) Let G ∈ G and F in F. Then, the random variables IG and XIF are independent so

E
[
XIF∩G

]
= E

[
XIF IG

]
= E

[
XIF

]
P
[
G
]
.

If Y is a version of E
[
X ∥F

]
, then Y is F-measurable and thus independent of G, so

E
[
Y IF∩G

]
= E

[
Y IF IG

]
= E

[
Y IF

]
P
[
G
]

= E
[
XIF

]
P
[
G
]
= E

[
XIF∩G

]
, ∀F ∈ F, G ∈ G.

Since the collection {
F ∩G; F ∈ F, G ∈ G

}
is a π-system generating F ∨ G, we deduce from Dynkin’s (π − λ) theorem that

E
[
Y IS

]
= E

[
XIS

]
, ∀S ∈ F ∨ G,

so that E
[
X ∥F ∨ G

]
= Y , i.e., E

[
X ∥F

]
= E

[
X ∥F ∨ G

]
. ⊓⊔

1.4.2. Some applications of conditioning. To give the reader a taste of the power and
uses of conditional expectation we describe some nontrivial and less advertised uses of con-
ditional expectation.

Example 1.4.13. Suppose that a player rolls a die an indefinite amount of times. More for-
mally, we are given a sequence independent random variables (Xn)n∈N, uniformly distributed
on I6 := {1, 2, . . . , 6}.

For k ∈ N, we say that a k-run of length k occurred at time n if n ≥ k and

Xn = Xn−1 = · · · = Xn−k+1 = 6.

We set

R = Rk :=
{
n; a k-run occurred at time n

}
⊂ N ∪ {∞}, T = Tk = inf Rk,

where inf ∅ := ∞. Thus T is the moment when the first k-run is observed. We want to show
that E

[
T
]
<∞.

Note that for each n ∈ N the event {T ≤ n} belongs to the sigma algebra Fn generated
by X1, . . . , Xn. The explanation is simple: if we know the results of the first n rolls of the
die we can decide if a k-run was occurred. Consider the conditional probability

P
[
{T ≤ n+ k} ∥Fn

]
= E

[
I{T≤n+k} ∥Fn

]
.

This conditional probability is a random variable. Since the sigma-algebra Fn is defined by
the partition

Si1,...,in := {X1 = i1, . . . , Xn = in}, ij ∈ {1, . . . , 6},

10When φ is C1 the family ℓn coincides with the family of tangent lines (ℓq)q∈Q, ℓq(x) = φ′(q)(x− q) + φ(q).
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we see that P
[
T ≤ n+ k ∥Fn

]
has the form

P
[
T ≤ n+ k ∥Fn

]
=

6∑
i1,...,in=1

pi1,...,in|kISi1,...,in
,

where

pi1,...,in|k = P
[
T ≤ n+ k

∣∣X1 = i1, . . . , Xn = in
]
.

Note that, irrespective of the ij-s, we have

pi1,...,in|k ≥
1

6k
=: r.

Hence

P
[
T ≤ n+ k ∥Fn

]
≥ r, ∀n.

In particular,

P
[
T > n+ k ∥Fn

]
≤ (1− r) < 1, ∀n ∈ N.

Now observe that for any n ∈ N, ℓ ∈ N0 we have {T > n+ ℓk ∈ Fn+ℓk}. Hence
P
[
T > n+ (ℓ+ 1)k

]
= E

[
I{T>n+(ℓ+1)k}I{T>n+ℓk}

]
= E

[
I{T>n+ℓk}E

[
T > n+ (ℓ+ 1)k ∥Fn+ℓk

] ]
≤ (1− r)E

[
I{T>n+ℓk}

]
= (1− r)P

[
T > n+ ℓk

]
.

Iterating, we deduce that for any i ∈ {1, . . . , k} and any ℓ ∈ N we have

P
[
T > i+ ℓk

]
< (1− r)ℓP

[
T > i

]
≤ (1− r)ℓ.

Now observe that

E
[
T
]
=
∑
n∈N0

P
[
T > n

]
=

k∑
i=1

∑
ℓ∈N0

P
[
T > i+ ℓk

]
<

k∑
i=1

∑
ℓ∈N0

(1− r)ℓ =
k

r
<∞.

This proves that E
[
T
]
is finite. In Example 3.1.32 we will use martingale techniques to show

that

E
[
T
]
=

6k+1 − 6

5
.

⊓⊔

Example 1.4.14 (Optimal stopping with finite horizon). Let us consider the following ab-
stract situation. Suppose we are given N random variables

X1, . . . , XN ∈ L0
(
Ω, S,P

)
.

For n ∈ IN := {1, 2, . . . , N} we denote by Fn the sigma-algebra generated by X1, . . . , Xn.
Suppose that we are also given a sequence of rewards

Rn ∈ L1
(
Ω,Fn,P

)
, n ∈ IN .

A stopping time is a random variable T : (Ω, S,P) → IN such that {T ≤ n} ∈ Fn, ∀n ∈ IN .
Equivalently, T is a stopping time if and only if {T = n} ∈ Fn, ∀n. Note that if T is a
stopping time, then {T ≥ n} = Ω \ {T ≤ n− 1} ∈ Fn−1.

One should think of the collection X1, . . . , XN as a finite stream of random quantities
flowing in time, one quantity per unit of time. The reward Rn depends only on the observed
values X1, . . . , Xn, i.e., Rn = Rn(X1, . . . , Xn). A stopping time describes a decision when to



1.4. Conditional expectation 99

stop the stream based only on the information accumulated up to the decision moment. After
we observe the first quantity X1, we can decide if T = 1. If this not the case, we observe a
second quantity and, using the information about X1, and X2 we can decide to stop, i.e., if
T = 2 or not. We continue until we either observe all the random quantities or at the first n
such that T = n.

We set

RT =
∑
n∈IN

RnI{T=n}.

In other words RT is the reward at the random stopping time T . We denote by T the
collection of all possible stopping times. Note that

E
[
|RT |

]
≤

N∑
n=1

E
[
|Rn|

]
<∞, ∀T ∈ T.

We want to show that there exists T∗ ∈ T such that

E
[
RT∗

]
= r := sup

T∈T
E
[
RT
]

Such a T∗ is called an optimal stopping time. To prove the existence of an optimal time
we establish a Fermat-like optimality condition that the optimal stopping times satisfy. We
follow [32, Chap. 3].

For n ∈ IN we set

Tn :=
{
T ∈ T; T ≥ n

}
.

Note that

T = T1 ⊃ T2 ⊃ · · · ⊃ TN .

A stopping time T belongs to Tn if and only if the decision to stop comes only ofter we have
observed the first n random variables in the stream, X1, . . . , Xn.

We will detect an optimal stopping strategy using a process of “successive approxima-
tions”. The first approximation is the simplest strategy: pick the reward only at the end,
after we have observed all the N variables in the stream. In this case the reward is YN = RN .
This may not give us the largest expected reward because some of the up-stream rewards
could have been higher. We tweak this strategy a bit to produce a better outcome.

We wait to observe the first N − 1 variables in the stream, and then decide what to do.
At this moment our reward is RN−1. To decide what to do next we compare this reward
with the expected reward RN given that we observed X1, . . . , XN−1, i.e., with the conditional
expectation E

[
YN ∥FN−1

]
= E

[
RN ∥FN−1

]
. This is an FN−1-measurable quantity, i.e., a

quantity that is computable from the knowledge of X1, . . . , XN−1.

If the reward RN−1 that what we have in our hands is bigger than we expect to gain
given our current information, we choose it and we stop. If not, we wait one more step
to stop. More formally, we stop after N − 1 steps if RN−1 ≥ E

[
RN ∥FN−1

]
and we

continue one more step otherwise. The decision is thus based on the random variable
YN−1 = max

(
RN−1,E

[
YN ∥FN−1

] )
This heuristic suggests the following backwards induction.
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YN := RN , Yn := max
{
Rn, E

[
Yn+1 ∥Fn

] }
,

Tn := min
{
i ≥ n; Ri ≥ Yi

}
= min

{
i ≥ n; Ri = Yi

}
.

(1.4.17)

Note that Tn ≥ n and, for any k ≥ n,{
Tn > k

}
=
{
Rk < E

[
Yk+1 ∥Fk

] }
∈ Fk.

Hence Tn ∈ Tn. We claim that for any n = 1, . . . , N we have

Yn ≥ E
[
RT ∥Fn

]
, ∀T ∈ Tn. (1.4.18a)

E
[
RTn ∥Fn

]
= Yn. (1.4.18b)

Hence

E
[
RTn ∥Fn

]
≥ E

[
Yn
]
= E

[
RT ∥Fn

]
, ∀T ∈ Tn.

By taking expectations we deduce

E
[
RTn

]
= sup

T∈Tn
E
[
RT
]
. (1.4.19)

In particular, this shows that the stopping time T1 is optimal.

The optimal stopping strategy T1 has a natural description: stop at the first moment when
the reward at hand is not smaller than the expected future reward, given the information we
have at that moment. The stopping strategy Tn is similar, but delayed for n units of times.

We will prove (1.4.18a) and (1.4.18b) by backwards induction on n.

The inequality (1.4.18a) is clearly true for n = N . Assume it is true for n. Let T ∈ Tn−1

and set T ′ = max{T, n}. Then T ′ ∈ Tn. For A ∈ Fn−1 we have∫
A
RT =

∫
A∩{T=n−1}

Rn−1 +

∫
A∩{T≥n}

RT ′

({T ≥ n} ∈ Fn−1)

=

∫
A∩{T=n−1}

Rn−1 +

∫
A∩{T≥n}

E
[
RT ′ ∥Fn−1

]
=

∫
A∩{T=n−1}

Rn−1 +

∫
A∩{T≥n}

E
[
E
[
RT ′ ∥Fn

] ∥∥Fn−1

]
(use the induction assumption E

[
RT ′ ∥Fn

]
≤ Yn)

≤
∫
A∩{T=n−1}

Rn−1︸ ︷︷ ︸
≤Yn−1

+

∫
A∩{T≥n}

E
[
Yn ∥Fn−1

]︸ ︷︷ ︸
≤Yn−1

≤
∫
A
Yn−1.

This proves the inequality (1.4.18a).

To prove the equality (1.4.18b), we run the above argument with T = Tn−1. Observe
that in this case

Un := {T = n− 1} =
{
Rn−1 ≥ E

[
Yn ∥Fn−1

]
} =

{
Yn−1 = Rn−1

}
, (1.4.20a)

Vn :=
{
Tn−1 > n− 1} =

{
Rn−1 < E

[
Yn ∥Fn−1

]}
=
{
Yn−1 = E

[
Yn ∥Fn−1

]}
.

(1.4.20b)
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We have Tn−1 = n− 1 on Un and Tn−1 = Tn on Vn so that∫
A
RTn−1 =

∫
A∩Un

Rn−1 +

∫
A∩Vn

RTn

(Vn ∈ Fn−1)

=

∫
A∩Un

Rn−1 +

∫
A∩Vn

E
[
E
[
RTn ∥Fn

]
∥Fn−1

]
(Yn = E

[
RTn ∥Fn

]
by induction)∫

A∩Un

Rn−1 +

∫
A∩Vn

E
[
Yn ∥Fn−1

]
.

(use (1.4.20a) and (1.4.20b))

=

∫
A
max

{
Rn−1, E

[
Yn ∥Fn−1

] }
=

∫
A
Yn−1.

⊓⊔

Remark 1.4.15. The procedure for determining the optimal time T1 outlined in the above
example is a bit counterintuitive. The maximal expected reward is E

[
Y1
]
. By construction,

the random variable Y1 is F1-measurable, by construction, and thus has the form f(X1) for
some Borel measurable function f : R → R. Thus we can determine Y1 knowing only the
initial input X1. On the other hand the definition of Y1 by descending induction used the
knowledge of the entire stream X1, . . . , XN , not just the initial input X1.

What it is true is that we can compute the maximal expected reward without running
the stream. On the other hand, the moment we stop, and the actual reward when we stop are
random quantities. It is conceivable that if we do not stop when T1 tells us to stop we could
get a higher reward later on. However, on average, we cannot beat the stopping strategy T1.

We will illustrate this process on the classical secretary problem. ⊓⊔

Example 1.4.16 (The secretary problem). Suppose we have a box with N prizes with values
v1 < · · · < vN . Bob would like to pick the most valuable item but he does not know the
actual values vn. He is allowed to sample them successively without replacement. At the
j-th draw he is told the value Vj of the j-th prize. He can either accept the j-th prize or he
can decline it and ask to sample another one. A prize once declined cannot be accepted later
on. We are interested in a strategy that maximizes the probability that Bob picks the most
valuable prize.11

Consider the relative rankings

Xn := #
{
j ≤ n; Vj ≥ Vn

}
. (1.4.21)

Thus, Xn counts how may gifts unveiled up to the moment n are at least as valuable as
the n-gift revealed. In particular, if Xn = 1, then Vn is the largest of the observed values
V1, . . . , Vn.

11Think of N secretaries interviewing for a single job and the values v1, . . . , vN rank their job suitability, the higher

the value the more suitable. The interviewer learns the value vk only at the time of the interview.
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We might be tempted to set the reward Rn = I{Vn=vN}, but this is not Fn-measurable.
We can fix this issue by setting

Rn := E
[
I{Vn=vN} ∥Xn

]
.

Observe that for any stopping time T we have

E
[
RT
]
=

N∑
n=1

∫
T=n

Rn =
N∑
n=1

∫
T=n

I{Vn=vN}

=

N∑
n=1

P
[
Vn = VN , T = n

]
= P

[
VT = vN

]
.

We want to find a stopping time T that maximizes E
[
RT
]
, i.e., the probability that Bob

pick the biggest prize. Let us make a few remarks.

1. Observe that rankings (Xn)n∈N defined in (1.4.21) are independent and

P
[
Xn = j

]
=

1

n
, ∀1 ≤ j ≤ n ≤ N. (1.4.22)

Indeed, the random vector (V1, . . . , VN ) can be identified with a random permutation φ ∈ SN

of IN
(V1, . . . , VN ) = (vφ(1), . . . , vφ(N)).

The rank Xn is then a function of φ

Xn(φ) := #
{
j ≤ n; φ(j) ≥ φ(n)

}
.

To reach the desired conclusion observe that the map

X⃗ : SN → I1 × I2 × · · · × IN , φ 7→
(
X1(φ), . . . , XN (φ)

)
is a bijection.12

2. We have
Rn =

n

N
I{Xn=1} =

n

N
I{Vn=vN}.

Indeed, the conditional expectation Rn = E
[
I{Vn=vN} ∥Xn

]
is a function of xn ∈ In and we

have
Rn(xn) = E

[
I{Vn=vN}

∣∣Xn = xn
]
= P

[
Vn = vN

∣∣Xn = xn
]
.

This probability is zero if Xn > 1. Now observe that

P
[
Vn = vN

∣∣Xn = 1
]
=

P
[
Vn = vN

]
P
[
Xn = 1

] =
(N − 1)!(

N
n

)
(n− 1)!(N − n)!

=
n

N
.

Following (1.4.17) and (1.4.18a) we set yn = E
[
Yn
]
. The quantity yn is the probability of

Bob obtaining the largest prize among the strategies that discard the first (n − 1) selected
prizes. We have

YN = RN = I{VN=vN}, yN =
1

N
.

Since {VN = vN} = {XN = 1} is independent of FN−1 we deduce

E
[
I{VN=vN} ∥FN−1

]
= E

[
I{VN=vN}

] (1.4.22)
=

1

N
= yN ,

12From the equality φ−1(N) = max{j, Xj(φ) = 1} we deduce inductively that X⃗ is injective. It is also surjective

since SN and
∏N

n=1 In have the same cardinality.



1.4. Conditional expectation 103

YN−1 = max
{
RN−1, E

[
I{VN=vN} ∥FN−1

] }
= max

{
RN−1, yN

}
=
N − 1

N
I{XN−1=1} +

1

N
I{XN−1>1},

yN−1 =
1

N
+

(N − 2)

(N − 1)
yN .

Similarly

E
[
YN−1 ∥FN−2

]
= E

[
YN−1

]
= yN−1

YN−2 = max
{
RN−2, yN−1

}
= max{(N − 2)/N, yN−1}I{XN−2=1} + yN−1I{XN−2>1},

yN−2
(1.4.22)
= max{(N − 2)/N, yN−1}

1

N − 2
+
N − 3

N − 2
yN−1

Iterating we deduce

Yn = max
{
Rn, yn+1

}
= max{n/N, yn+1}I{Xn=1} + yn+1I{Xn>1},

yn = max{n/N, yn+1}
1

n
+
n− 1

n
yn+1.

While it is difficult to find an explicit formula for yn, the above equalities can be easily
implemented on a computer. The optimal probability is pN = y1. Here is a less than optimal
but simple R code that computes y1 given N .

optimal<-function(N){

p<-1/N

m<-N-1

for (i in 1:m){

p<-max((N-i)/N,p)/(N-i)+((N-i-1)/(N-i))*p

}

p

}

Here are some results. Below, pN denotes the optimal probability of choosing the largest
among N prizes.

N 3 4 5 6 8 100 200

pN 0.5 0.458 0.433 0.4277 0.4098 0.3710 0.3694

Note that yn+1 < yn with equality when yn+1 >
n
N . We deduce that

yn+1 ≥
n

N
⇒ yn+1 = yn = · · · = y1.

We set

N∗ := max{n; yn ≥ (n− 1)/N
}
.

so yN∗+1 < yN∗ = yN∗−1 = · · · = y1. The optimal strategy is given by the stopping time TN∗ :
reject the first N∗ − 1 selected gifts and then pick the first gift that is more valuable than
any of the preceding ones.

N 3 4 8 10 50 100 1000

N∗ 3 3 5 5 20 39 370
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For example, for N = 10 we have

n 1 2 3 4 5 6 7 8 9 10

yn 0.398 0.398 0.398 0.398 0.398 0.372 0.32 0.26 0.18 0.1

In this case N∗ = 5 and the optimal strategy corresponds to the stopping time T5: reject the
first four gifts and then accept the first gift more valuable then any of the previously chosen.
In this case the probability of choosing the most valuable gifts is p10 ≈ 0.398.

Let us sketch what happens as N → ∞. Consider the sequence zN := (zn)1≤n≤N+1

defined by backwards induction

zN+1 = 0, zn =
n− 1

n
zn+1 +

1

N
, 1 ≤ n ≤ N.

One can show by backwards induction that zn ≤ yn, ∀n ≤ N and zn = yn, ∀n ≥ N∗.

Denote by fN : [0, 1] → R the continuous function [0, 1] → R that is linear on each on the
intervals [(i− 1)/N, i/N ] and such that

fN (i/N) = zN+1−i, i = 0, 1, . . . , N.

Note that

fN
(
(i+ 1)/N

)
− f(i/N) = zN−i − zN−i+1 =

1

N
− 1

N − i
zN−i+1

=
1

N

(
1− 1

1− i/N
fN
(
i/N

))
.

We recognize here the Euler scheme for the initial value problem

f ′ = 1− 1

1− t
f, f(0) = 0 (1.4.23)

corresponding to the subdivision i/N of [0, 1].

The unique solution of this equation is f(t) = −(1 − t) log(1 − t) and fN (t) converge to
f(t) uniformly on the compacts of [0, 1). In fact, (see [28, Sec. 212]) for every T ∈ (0, 1),
there exists C = CT > 0 such that

sup
t∈[0,T ]

∣∣ fN (t)− f(t)
∣∣ ≤ CT

N
.

Set gN (t) = fN (1− t); see Figure 1.6.

Figure 1.6. The graph of g100.
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Note that zn = zNn = gN
(
(n−1)/N

)
, n = 1, . . . , N+1. We deduce that if n/N → τ ∈ (0, 1]

as N → ∞ we have

zNn → g(τ) = −τ log τ, N

n
zn → − log τ.

From the equality

N(zn − zn+1) = 1− N

n
zn+1, ∀1 ≤ n ≤ N

we deduce that

lim
N/n→τ

N(zn − zn+1) = 1 + log τ =

{
< 0, τ > 1/e,

> 0, τ < 1/e.

This implies that as N → ∞ we have

N∗
N

→ 1

e
≈ 0.368, yN∗ = zN∗ → 1

e

as N → ∞. For details we refer to [32, Sec.3.3] or [75].

As explained in [75] a (nearly) optimal strategy is as follows. Denote by m the largest
integer satisfying

N − 1/2

e
+

1

2
≤ m ≤ N − 1/2

e
+

3

2
.

Reject the first m prizes and accept the next prize more valuable than any of the preceding
ones. ⊓⊔

1.4.3. Conditional independence. Suppose that (Ω, S,P) is a probability space.

Definition 1.4.17. Fix a sigma-subalgebra G of S. The family (Fi)i∈I of sigma-subalgebras
of S is said to be conditionally independent given G if, for any finite subset J ⊂ I and any
events Fj ∈ Fj , j ∈ J , we have

E
[ ∏
j∈J

IFj ∥G
]
=
∏
j∈J

E
[
IFj ∥G

]
a.s..

Given sigma algebras F,G,H ⊂ S we use the notation F ⊥⊥ GH to indicated that F is
independent of H given G. ⊓⊔

The next proposition generalizes the result in Exercise 1.10.

Proposition 1.4.18 (Doob-Markov). Given sigma algebras F±,F0,⊂ S the following are
equivalent.

(i) E
[
X+ ∥F− ∨ F0

]
= E

[
X+ ∥F0

]
a.s.., ∀X+ ∈ L1(Ω,F+,P).

(ii) F+ ⊥⊥ F0 F−.

Proof. The condition (i) is equivalent to

E
[
XX+

]
= E

[
XE
[
X+ ∥F0

] ]
, ∀X ∈ L∞(Ω,F0 ∨ F−,P). (1.4.24)

The condition (ii) equivalent to

E
[
X+X− ∥F0

]
= E

[
X+ ∥F0

]
E
[
X− ∥F0

]
, ∀X± ∈ L∞(Ω,F±,P).
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Note that since E
[
X+ ∥F0

]
is an F0-measurable random variable we have

E
[
X+ ∥F0

]
E
[
X− ∥F0

]
= E

[
X−E

[
X+ ∥F0

]
∥F0

]
.

Thus, (ii) is equivalent to

E
[
X+X− ∥F0

]
= E

[
X−E

[
X+ ∥F0

]
∥F0

]
,

i.e., for any nonnegative, bounded, F0-measurable random variable X0 we have

E
[
X0X−X+

]
= E

[
X0X−E

[
X+ ∥F0

] ]
.

Since F0 ∨ F− coincides with the sigma-algebra generated collection of random variables
X0X−, X0 ∈ L∞(Ω,F0,P), X− ∈ L∞(Ω,F−,P) we deduce that the last equality is equivalent
to (1.4.24), i.e., (i) is equivalent to (ii). ⊓⊔

Remark 1.4.19. You should think of a system evolving in time. Then F0 collects the present
information about the system, F− collects the past information and F+ collects the future
information. Roughly speaking, the above proposition shows that the information about an
event given the present and the past coincides with the information given the present if and
only if the future is independent of the past given the present. ⊓⊔

1.4.4. Kernels and regular conditional distributions. Suppose that (Ω0,F0) and (Ω1, S1)
are two measurable spaces.13 A kernel from (Ω0,F0) to (Ω1, S1) is a function

K : Ω0 × S1 → [0,∞], (ω0, S1) 7→ Kω

[
S1
]

with the following properties.

(K1) For each ω0 ∈ Ω0, the map

S1 ∋ S1 7→ Kω0

[
S1
]
∈ [0,∞]

is a measure. We will denote this measure by Kω0

[
dω1

]
.

(K2) For each S1 ∈ S1 the function

Ω0 ∋ ω0 7→ Kω0

[
S1
]
∈ [0,∞]

is F0-measurable. We will denote this random variable by K□
[
S1
]

The kernel K is called a probability kernel or a Markovian kernel if Kω0

[
−
]
is a

probability measure on (Ω1, S1), for any ω0 ∈ Ω0.

We will use the notation K : (Ω0,F0) ⇝ (Ω1, S1) to indicate that K is a kernel from
(Ω0,F0) to (Ω1, S1)

The condition (K1) above shows that a kernel is a family (Kω0 [−])ω0∈Ω0 of measures on
(Ω1, S1) parametrized by Ω0. Condition (K2) is a measurability condition on this family. For
this reason kernels are also know as random measures.

13In the story of kernels, the sigma-algebras F0, S1 play rather different roles and, for this reason, we chose to

indicate them using visually distinctive notation.
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Example 1.4.20. Consider the Bernoulli measure

βp := qδ0 + pδ1 ∈ Prob(R), p ∈ [0, 1], q = 1− p.

To obtain a randommeasure we let p be a random quantity. More precisely, if f : (Ω, S) → [0, 1]
is a measurable function, then

βf(ω) =
(
1− f(ω)

)
δ0 + f(ω)δ1

defines a Markov kernel K : (Ω, S)⇝ (R,BR),

Kω

[
B
]
=
(
1− f(ω)

)
δ0
[
B
]
+ f(ω)δ1

[
B
]
. ⊓⊔

Given a measure µ on the measurable space (Ω,F) and a nonnegative measurable function
f ∈ L0

+(Ω,F) we set

⟨µ, f⟩ := µ
[
f
]
=

∫
Ω
f(ω)µ

[
dω
]
∈ [0,∞].

Theorem 1.4.21. Suppose that K : (Ω0,F0)⇝ (Ω, S1).

(i) For any f ∈ L0
+(Ω1, S1) we define its pullback by K to be the function

K∗f : Ω0 → [0,∞], K∗f(ω0) =

∫
Ω1

f(ω1)Kω0

[
dω1

]
Then K∗f ∈ L0

+(Ω0,F0).

(ii) For any measure µ : F0 → [0,∞] we define its push-forward by K to be the function
K∗µ : S1 → [0,∞] defined by

K∗µ
[
F1

]
:=

∫
Ω0

Kω0

[
S1
]
µ
[
dω0

]
∈ [0,∞], S1 ∈ S1. (1.4.25)

Then K∗µ is a measure on (Ω1, S1).

(iii) The pullback and push-forward by K are adjoints of each other. More precisely, for
any measure µ on (Ω0,F0) and any measurable function f ∈ L0

+(Ω1, S1) we have

⟨µ,K∗f⟩ = ⟨K∗µ, f⟩. (1.4.26)

Proof. (i) For any S ∈ S1 we have K∗IS(ω0) = Kω0

[
S
]
so K∗IS ∈ L0(Ω0,F0). Clearly

the correspondence f 7→ K∗f is monotone and the conclusion follows from the fact that
a nonnegative function is measurable iff it is the limit of an increasing sequence of simple
functions.

The statement (ii) follows from the Monotone Convergence theorem and (K1). For part
(iii), fix the measure µ. Observe that for S ∈ S1 we have

⟨µ,K∗IS⟩ =
∫
Ω0

K∗IS(ω0)µ
[
dω0

]
=

∫
Ω0

(∫
Ω1

IS(ω1)Kω0

[
dω1

] )
µ
[
dω0

]
=

∫
Ω0

Kω0

[
S
]
µ
[
dω0

]
= K∗µ

[
S
]
= ⟨K∗µ, IS⟩.

Thus (1.4.26) holds for f = IS , S ∈ S1. The general case follows by invoking the Monotone
Class Theorem. ⊓⊔
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When K is a Markovian kernel and µ is a probability measure, then the pushforward
K∗µ is also a probability measure. For any S1 ∈ S1 the measure K∗µ

[
S1
]
is the expectation

of the random variable ω0 7→ Kω0

[
S1
]
with respect to µ. The measure K∗µ is said to be a

mixture of the random measure ω0 7→ Kω0

[
−
]
driven by µ.

Example 1.4.22. (a) Suppose that (Ω0,F0), (Ω1,F1) are two measurable spaces and

T : (Ω0,F0) → (Ω1,F1)

is a measurable map. Then T defines a kernel KT : (Ω0,F0)⇝ (Ω1,F1)

KT
ω0

[
F1

]
= δT (ω0)

[
F1

]
,

where δω1 denotes the Dirac measure on (Ω1,F1) concentrated at ω1; see Example 1.2.6(a).

Observe that for any measure µ on F0 and any f ∈ L0
+(Ω1,F1) we have

KT
∗ µ = T#µ, (KT )∗f = T ∗f := f ◦ T.

Thus, (1.4.26) contains as a special case the change in variables formula (1.2.23).

(b) Any measurable function f : (Ω, S) →→ [0, 1] defines as in Example 1.4.20 the random
Bernoulli measure

Kω

[
−
]
=
(
1− f(ω)

)
δ0 + f(ω)δ1.

Given a probability measure µ on (Ω, S) we have

K∗µ = Ber(f̄) =
(
1− f̄

)
δ0 + f̄ δ1, f̄ := Eµ

[
f
]
.

(c) Suppose that X is a finite or countable set. A kernel (X,2X) ⇝ (X,2X) is defined by a
function (matrix) K : X× X → [0,∞], via the equality

Kx

[
S
]
=
∑
s∈S

K(x, s), ∀x ∈ X, S ⊂ X.

The kernel is Markovian if ∑
x′∈X

K(x, x′) = 1, ∀x ∈ X.

(d) Suppose that f : R2 → [0,∞) is an integrable function such that∫
R
f(x, y)dy = 1, ∀x ∈ R.

It defines a Markovian kernel K : (R,BR)⇝ (R,BR)

Kx

[
B
]
=

∫
B
f(x, y)dy,

∀x ∈ R and any Borel subset B ⊂ R. The measurability of the map x 7→ Kx

[
B
]
follows

from Fubini’s theorem. We can rewrite this as Kx

[
dy
]
= f(x, y)dy.

(e) Suppose that ν is a finite Borel measure on R. It defines a kernel

Kν : (R,BR)⇝ (R,BR), Kν,y

[
B
]
= ν

[
B − y

]
.

In Exercise 1.60 we ask the reader to prove that the map y 7→ Kν,y

[
B
]
is measurable for any

Bores set B ⊂ R. Then, for any finite Borel measure µ on R we have (Kν)∗µ = µ ∗ ν. ⊓⊔
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Suppose that (Ω, S,P) is a probability space and F ⊂ S is a sigma subalgebra. For every
event S ∈ S the random variable

P
[
S ∥F

]
:= E

[
IS ∥F

]
is called the conditional probability of S given F. The random variable P

[
S ∥F

]
is unique

up to equality off a negligible set.

Note that for any increasing family (Sn)n≥1 ⊂ S there exists a negligible set N ⊂ Ω such
that

lim
n

P
[
Sn ∥F

]
(ω) = P

[
lim
n
Sn ∥F

]
(ω), ∀ω ∈ Ω \N.

A priori, the negligible set N depends on the family (Sn)n≥1, and there might not exist one
neglible set that works for all such increasing families. When such a thing is possible we
say that the conditional probability P

[
− ∥F

]
admits a regular version. Here is the precise

definition.

Definition 1.4.23. Let (Ω, S,P) be a probability space and F ⊂ S a sigma-subalgebra. A
regular version of P

[
− ∥F

]
is a kernel Q : (Ω,F) ⇝ (Ω, S) such that, for any S ∈ S, the

random variable Ω ∋ ω 7→ Qω
[
S
]
is a version of P

[
S ∥F

]
. In other words,

• the map ω 7→ Qω
[
S
]
is F-measurable and

• for any S ∈ S, F ∈ F we have

P
[
S ∩ F

]
=

∫
F
Qω
[
S
]
P
[
dω
]
.

⊓⊔

Proposition 1.4.24. If Q : (Ω,F)⇝ (Ω, S) is a regular version of P
[
−∥F

]
, then ∀X ∈ L1(Ω, S,P),

E
[
X ∥F

]
= Q∗X,

i.e.,

E
[
X ∥F

]
ω
=

∫
Ω
X(η)Qω

[
dη
]
= Q∗X(ω) a.s.. (1.4.27)

Proof. Note that (1.4.27) holds in the special case X = IS because

Q∗IS(ω) = Qω
[
S
]
= P

[
S ∥F

]
(ω) = E

[
IS ∥F

]
(ω).

The general case follows from the Monotone Class theorem. ⊓⊔

The equality (1.4.27) can be written in the less precise, but more intuitive way

E
[
X ∥F

]
=

∫
Ω
X(η)P

[
dη ∥F

]
. (1.4.28)

More generally, consider a measurable map T :
(
Ω̃, S̃

)
→ (Ω, S). Let P̃ be a probability

measure on
(
Ω̃, S̃

)
and suppose that F̃ ⊂ S̃ is a sigma subalgebra. For every S ∈ S we set

PT
[
S ∥ F̃

]
:= P̃

[
T ∈ S ∥ F̃

]
= EP̃

[
T ∗IS ∥ F̃

]
= EP̃

[
IT−1(S) ∥ F̃

]
. (1.4.29)

We will refer to PT
[
− ∥ F̃

]
as the conditional distribution of T given F̃. Observe that when(
Ω̃, S̃

)
= (Ω, S), P̃ = P and T = 1Ω,



110 1. Foundations

then
P1Ω

[
− ∥ F̃

]
= P

[
− ∥ F̃

]
.

Note that for any increasing family (Sn)n≥1 ⊂ S we have

lim
n→∞

PT
[
Sn ∥ F̃

]
= PT

[
lim
n
Sn ∥ F̃

]
a.s..

We say that PT
[
− ∥ S̃

]
admits a regular version if we can choose representatives for each

PT
[
F ∥ S̃

]
, F ∈ F so that the above equality holds for any increasing sequence (Sn). Here is

a more precise definition.

Definition 1.4.25. Let
(
Ω̃, S̃, P̃

)
be a probability space and T :

(
Ω̃, S̃

)
→ (Ω, S) be a mea-

surable map. Fix a sigma-subalgebra F̃ ⊂ S̃. A regular version of the conditional probability

distribution PT
[
− ∥ F̃

]
of the map T conditioned on F̃ is a kernel Q :

(
Ω̃, F̃

)
⇝ (Ω, S) such

that, for any S ∈ S, the random variable Q□
[
S
]
is a version of PT

[
S ∥ F̃

]
. In other words,

• the random variable Q□
[
S
]
(on Ω̃) is F̃-measurable and

• for any F̃ ∈ F̃, S ∈ S we have

P̃
[
F̃ ∩ T−1(S)

]
=

∫
F̃
Qω̃
[
S
]
P̃
[
dω̃
]
. (1.4.30)

⊓⊔

A conditional probability distribution need not admit a regular version. For that to
happen we have to impose conditions on S, the sigma algebra in the target space. This
requires a brief topological digression.

Definition 1.4.26. A Lusin space is a topological space homeomorphic to a Borel subset of
a compact metric space. ⊓⊔

Remark 1.4.27. (a) The above is not the usual definition of a Lusin space but it has the
advantage that emphasizes the compactness feature we need in the proof of Kolmogorov’s
existence theorem.

There are plenty of Lusin spaces. In fact, a topological space that is not Lusin is rather
unusual. We refer to [17, 39, 44] for a more in depth presentation of these spaces and their
applications in measure theory and probability. To give the reader a taste of the fauna of
Lusin spaces we list a few examples.

• The Euclidean spaces Rn are Lusin spaces.

• A Borel subset of a Lusin space is also Lusin space.

• The Cartesian product of two Lusin spaces is a Lusin space.

• A less obvious example is that of Polish spaces, i.e., complete separable metric
spaces. More precisely every Polish space is homeomorphic to a countable intersec-
tion of open subsets of [0, 1]N; see [20], Chap, IX, Sec.6.1, Corollary 1.

• A Hausdorff space is Lusin iff it is the image of a continuous bijection from a Polish
space.

• A Hausdorff space is Lusin if and only if it is homeomorphic to a Borel subset of a
Polish space.
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(b) From a measure theoretic point of view the Lusin spaces are indistinguishable from the
Polish spaces. More precisely, for any Lusin space X, there exists a Polish space Y and a
Borel measurable bijection Φ : X → Y such that the inverse is also Borel measurable; see
[39, Prop. 8.6.13].

The Polish spaces have another important property. More precisely, a Polish space
equipped with the σ-algebra of Borel subsets is isomorphic as a measurable space to a Borel
subset E of [0, 1] equipped with the σ-algebra of Borel subsets. For a proof we refer to [139,
Sec.I.2]. Moreover, any two Borel subsets of R are measurably isomorphic if and only if they
have the same cardinality, [139, Ch.I, Thm.2.12].

On the other hand, it is known that the continuum hypothesis holds for the Borel subsets
of a Polish space; see [44, Appendix III.80] or [104, XII.6]. In particular, any Borel subset of
R is either finite, countable or has the continuum cardinality. We deduce from this a theorem
of Kuratwoski that a Lusin space is isomorphic as a measurable space with either a finite set,
N, or [0, 1] equipped with their natural Borel sigma-algebra. Hence any Lusin space is Borel
isomorphic to a compact metric space! ⊓⊔

We have the following general existence result.

Theorem 1.4.28 (Existence of regular conditional probabilities). Suppose that

• (Ω, S,P) is a probability space,

• Y is a Lusin space and

• BY is the sigma-algebra of Borel subsets of Y.

Then, for every measurable map Y : (Ω, S) → (Y,BY), and every σ-subalgebra F ⊂ S there ex-
ists a regular version Q : (Ω,F)⇝ (Y,BY), (ω,B) 7→ Qω

[
B
]
, of the conditional distribution

PY
[
− ∥F

]
. This means that

Q□
[
B
]
= P

[
Y ∈ B ∥F

]
a.s., ∀B ⊂ BY.

Moreover, for any measurable function f : (Y,BY ) → R, we have

E
[
f ◦ Y ∥F

]
(ω) =

∫
Y

f(y)Qω
[
dy
]
, ∀ω ∈ Ω. (1.4.31)

Ideea of proof. For a complete proof we refer to [37, Th. IV2.10], [44, III.71], [45, IX.11]
or [149, II.89].

We can assume that Y is a compact metric space. Fix a dense countable subset U ⊂ C(Y )
such that 1 ∈ U and U is a vector space over Q. We can find representatives Φ(u) of
E
[
u(Y ) ∥F

]
such that the map

U ∋ u 7→ Φ(u) ∈ L1
(
Ω,F,P)

is Q-linear, Φ(1) = 1 and Φ(u) ≥ 0 if u ≥ 0. For every nonnegativef ∈ C(U) we set

Φ∗(f) := sup
{
Φ(u); u ∈ U, 0 ≤ u ≤ f

}
.

One can show that

Φ∗(f) := inf
{
Φ(u); u ∈ U, u ≥ f

}
.

For arbitrary f ∈ C(Y) we set

Φ∗(f) = Φ∗(f+)− Φ∗(f−).
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One can show that the resulting map

C(Y) ∋ f 7→ Φ∗(f) ∈ L1
(
Ω,F,P)

is R-linear, Φ∗(1) = 1 and Φ∗(f) ≥ 0 if f ≥ 0. The Riesz Representation Theorem 1.2.64
implies that for ay ω ∈ Ω there exists a probability measure µω : BY → [0, 1] such that

Φ∗(f)(ω) =

∫
Y
f(y)µω

[
dy
]
.

One then shows that for any B ∈ BY the map Ω ∋ ω 7→ µω
[
B
]
∈ [0, 1] is F-measurable and

thus it is a regular version of the conditional distribution of Y given F. ⊓⊔

In the special case case when F is the σ-algebra generated by a measurable mapX : Ω → X,
X some measurable space, we use the notation

PY
[
dy ∥X

]
:= PY

[
dy ∥σ(X)

]
to denote a regular version for the conditional distribution of Y given X. This is a random
Borel measure on Y.

Example 1.4.29. Consider the special case of Theorem 1.4.28 where Y = R and Y ∈ L1(Ω, S,P).
For any sigma subalgebra F ⊂ S there exists a kernel Q : (Ω,F)⇝ (R,BR) such that

P
[
Y ≤ y ∥F

]
= Q□

[
(−∞, y]

]
.

Moreover

E
[
Y ∥F

]
=

∫
R
yQ□

[
dy
]
, P− a.s. on Ω.

⊓⊔

Example 1.4.30. Suppose that X0, Y0, X1, Y1 are random variables and T : R2 → Rk is a
Borel measurable map. Denote by P0 the joint probability distribution of (X0, Y0). Suppose
that the joint distribution of (X1, Y1) has the form

P1
[
dxdy

]
= g
(
T (x, y)

)
P0
[
dxdy

]
for some nonnegative measurable function g : Rk → [0,∞).

We denote by Pi
[
− ∥T

]
the regular conditional probability Pi

[
− ∥σ(T )

]
. In other

words, for any bounded nonnegative measurable function f : Rk → [0,∞) and any Borel set
B ⊂ R2 we have Pi

[
B ∥T

]
∈ L0

+

(
R2, σ(T )

)
) and∫

R2

IBf
(
T (x, y)

)
Pi
[
dxdy

]
=

∫
R2

Pi
[
B ∥T

]
f
(
T (x, y)

)
Pi
[
dxdy

]
, i = 0, 1.

Note that ∫
R2

IBf
(
T (x, y)

)
P1
[
dxdy

]
=

∫
R2

IBf
(
T (x, y)

)
g
(
T (x, y)

)
P0
[
dxdy

]
=

∫
R2

P0
[
B ∥T

]
f
(
T (x, y)

)
g
(
T (x, y)

)
P0
[
dxdy

]
=

∫
R2

P0
[
B ∥T

]
f
(
T (x, y)

)
P1
[
dxdy

]
.

Hence

P1
[
B ∥T

]
= P0

[
A ∥T

]
, ∀B ∈ BR2 .
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Suppose that the distribution P0 is known and would like to get information about the
distribution of (X1, Y1) by investigating T (X0, Y0). The above equality shows that knowledge
of T adds nothing to our understanding of the density g

(
T (x, y)

)
beyond what we know from

(X0, Y0). ⊓⊔

1.4.5. Disintegration of measures. Suppose that (Ωi, Si), i = 0, 1 are two measurable
spaces and K : (Ω0, S0) ⇝ (Ω1, S1) is a kernel from (Ω0, S0) to (Ω1, S1). Then any measure
µ0 on (Ω0, µ0) defines a measure µ = µK,µ0 on (Ω, S) := (Ω0 × Ω1, S0 ⊗ S1) via the equality

µ
[
S
]
=

∫
Ω0

(∫
Ω1

IS(ω0, ω1)Kω0

[
dω1

])
µ0
[
dω0

]
. (1.4.32)

We say that a measure µ on (Ω0 ×Ω1, S0 ⊗ S1) is disintegrated by µ0 or that µ0 disintegrates
µ if µ is of the form µK,µ0 defined above. In this case K is called a disintegration kernel,
and we say that K disintegrates µ with respect to µ0. Often we will use the notation

µ
[
dω0dω1

]
= µ0

[
dω0

]
Kω0

[
dω1

]
(1.4.33)

Observe that if K is a Markovian kernel and µ0 is a probability measure, then µK,µ0 is a
probability measure. In this case, for emphasis, we use the notation PK,µ0
Example 1.4.31. For any probability measures µi on (Ωi, Si), i = 0, 1, the product measure
µ = µ0 ⊗ µ1 is disintegrated by µ0 since

µ = PK,µ0 , Kω0

[
−
]
= µ1

[
−
]
.

⊓⊔

Example 1.4.32. Consider a measure ν on (Ω0 × Ω1, S0 ⊗ S1), a measure µ on (Ω0, S0).
Suppose that f : (Ω0, S0) → [0,∞) is a nonnegative measurable function. Denote by µf the
measure µf

[
dω0

]
= f(ω0)µ

[
dω0

]
.

If ν is disintegrated by µf then it is also disintegrated by µ. Indeed if K is the disinte-
gration kernel of ν with respect to µf , K = Kω0

[
dω1

]
so that

ν
[
dω0dω1

]
= µf

[
dω0

]
Kω0

[
dω1

]
= µ

[
dω0

]
f(ω0)Kω0

[
dω1

]
.

Hence, the kernel Kf given by Kf
ω0

[
dω1

]
= f(ω0)Kω0

[
dω1

]
disintegrates ν with respect to

µ. ⊓⊔

Consider two measurable spaces (Ωi, Si), i = 0, 1. We have natural projections

πi : Ω → Ωi, πi(ω0, ω1) = ωi, i = 0, 1,

and we set S̃0 := π−1
0 (S0) ⊂ S := S0 ⊗ S1.

Suppose that the probability measure µ on (Ω, S) := (Ω0 × Ω1, S0 ⊗ S1) is disintegrated
by µ0 := (π0)#µ, i.e., µ = µK,µ0 . We can rewrite (1.4.33) as

µ
[
dω0dω1

]
= (π0)#µ

[
dω0

]
Kω0

[
dω1

]
. (1.4.34)

Note that if µ1 := (π1)#µ, then, for any S1 ∈ S1, we have

µ1
[
S1
]
= µ

[
Ω0 × S1

]
=

∫
S0

Kω0

[
S1
]
µ0
[
dω0

]
.
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In other words, µ1 = K∗µ0. Thus, µ1 is a mixture of the measures
(
Kω0

[
−
] )

ω0∈Ω0
driven

by µ0.

Observe next that for any S̃0 = S0 × Ω1 ∈ S̃0, and any S1 ∈ S1, we have

µ
[
π−1
1 (S1) ∩ S̃0

]
= µ

[
S0 × S1

] (1.4.32)
=

∫
S0

Kω0

[
S1
]
µ0
[
dω0

]
.

This shows that the the map

K̃ : Ω× S1 → [0, 1],
(
(ω0, ω1), S1) → K̃(ω0,ω1)

[
S1
]
= Kω0

[
S1
]

a regular version of the conditional distribution of the measurable map π1 conditioned on S̃0;
see (1.4.30).

Conversely, any regular version of the conditional distribution Pπ1
[
− ∥ S̃0

]
of π1 given

S̃0. produces a disintegration kernel of the measure µ. Indeed, if Q(ω0,ω1)

[
−
]
is such a

regular distribution, then its S̃0-measurability implies that for any S1 ∈ S1 the function

(ω0, ω1) 7→ Q(ω0,ω1)

[
S1
]

is independent14 of ω1. Then

µ
[
S0 × S1

]
= µ

[
π−1
1 (S1) ∩ S̃0

] (1.4.30)
=

∫
S0×Ω1

Qω0

[
S1
]
µ
[
dω0dω1

]
=

∫
S0

Qω0

[
S1
]
µ0
[
dω0

]
, µ0 := (π0)#µ.

Thus µ is disintegrated by µ0 and Q is the disintegration kernel. Theorem 1.4.28 implies the
next result.

Corollary 1.4.33. If (Ω1, S1) is isomorphic as a measurable space with a Lusin space equipped
with the Borel sigma algebra then, for any measurable space (Ω0, S0), any probability measure
by P on (Ω0 × Ω1, S0 ⊗ S1) is disintegrated by its marginal P0 := (π0)#P. ⊓⊔

Example 1.4.34. Consider a random 2-dimensional vector (X,Y ) with joint distribution

PX,Y ∈ Prob(R2).

According to Corollary 1.4.33, the distribution PX of X disintegrates the joint distribution
PX,Y . Suppose that Kx

[
dy
]
is a disintegration kernel of PX,Y , i.e.,

PX,Y
[
dxdy

]
= Kx

[
dy
]
PX
[
dx
]
.

Let f : R → R be a measurable function such that f(Y ) ∈ L1. Then E
[
f(Y ) ∥X

]
is well

defined and has the form E
[
f(Y ) ∥X

]
= h(X), for some measurable function h. Traditionally

h(x) is denoted by E
[
f(Y )

∣∣X = x
]
.

We can give a more explicit description of E
[
f(Y )

∣∣X = x
]
using the disintegration

kernel. More precisely, we will show that

E
[
f(Y )|X = x

]
=

∫
R
f(y)Kx

[
dy
]
=: g(x). (1.4.35)

14For any S̃0 ∈ S̃0, the indicator IS̃0
(ω0, ω1) is independent of ω1 and thus any S̃0-elementary function is inde-

pendent of ω1.
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A Monotone Class argument shows that the g(x) is Borel measurable. For any x0 ∈ R we
have

E
[
f(Y )I{X≤x0}

]
=

∫
R2

f(y)I(−∞,x0](x)PX,Y
[
dxdy

]
=

∫
R

(∫
R
f(y)Kx

[
dy
])

I(−∞,x0](x)PX
[
dx
]
=

∫
R
g(x)I(−∞,x0](x)PX

[
dx
]

= E
[
g(X)I{X≤x0}

]
.

Since the sets {X ≤ x0} form a π-system that generate σ(X) we deduce that

E
[
f(Y )IS

]
= E

[
g(X)IS

]
, ∀S ∈ σ(X).

Thus

g(X) = E
[
f(Y ) ∥X

]
.

We write this as

E
[
f(Y ) ∥X

]
=

∫
R
f(y)KX

[
dy
]
.

Hence the conditional expectations E
[
f(Y ) ∥X

]
are determined by the kernel K that disin-

tegrates the joint probability distribution PX,Y .
In particular, if B ⊂ R is a Borel set, and f = IB we have the law of total probability

P
[
Y ∈ B

]
= E

[
IB(Y )

]
=

∫
R
E
[
IB(Y )

∣∣X = x
]
PX
[
dx
]
,

where

E
[
IB(Y )

∣∣X = x
]
= P

[
Y ∈ B

∣∣X = x
]
=

∫
B
Kx

[
dy
]
.

This proves that the disintegration kernel Kx

[
dy
]
is a regular conditional distribution of Y

given X, i.e.,

Kx

[
dy
]
= P

[
Y ∈ [y, y + dy]

∣∣X ∈ [x, x+ dx]
]
“ = ”

P
[
X ∈ [x, x+ dx], Y ∈ [y, y + dy]

]
P
[
X ∈ [x, x+ dx]

] .

For this reason Kx

[
dy
]
is called the conditional distribution of Y given that X = x and it

is sometimes denoted by PY |X=x

[
dy
]
. Hence we can rewrite (1.4.35) as

E
[
f(Y )|X = x

]
=

∫
R
f(y)PY |X=x

[
dy
]
. (1.4.36)

Observe that if PX,Y is absolutely continuous with respect to the Lebesgue measure on R2

so that

PX,Y
[
dxdy

]
= p(x, y)dxdy,

then

PY |X=x

[
dy
]
=
p(x, y)

p0(x)
dy, p0(x) =

∫
R
p(x, y)dy,

where we set p(x,y)
p0(x)

= 0 if p0(x) = 0. Then

E
[
f(Y )

∣∣X = x
]
=

∫
R
f(y)

p(x, y)

p0(x)
dy.

⊓⊔
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Example 1.4.35. Suppose that X1, . . . , Xn are independent and uniformly distributed in
the interval [0, L]. Set

X(n) := max
1≤k≤n

Xk, X(1) := min
1≤k≤n

Xk

Note that

P
[
X(n) ≤ x

]
= P

[
Xk ≤ x, ∀k = 1, . . . , n

]
=
(x
L

)n
,

so that the probability distribution of X(n) is

Pn
[
dx
]
= n

xn−1

Ln
I [0,L](x)dx.

Similarly,

P
[
X(1) > x

]
= P

[
Xk > x, ∀k = 1, . . . , n

]
=

(
(L− x)

L

)n
,

so the probability distribution of X(1) is

P1

[
dx
]
= n

(L− x)n−1

Ln︸ ︷︷ ︸
=:ρ1(x)

I [0,L](x)dx.

Let us compute the conditional distribution PX(n)|X(1)=x1

[
dxn

]
. We begin by computing the

random variables.

P
[
X(n) ≤ xn ∥X(1)

]
, 0 ≤ xn ≤ L.

Observe first that ∀0 ≤ x1, xn ≤ L,

E
[
IX(n)≤xnIX(1)≥x1

]
= P

[
x1 ≤ X1, . . . Xn ≤ xn

]
=

(xn − x1)
n
+

Ln
.

We need to find a function f
(
x1
)
= fxn

(
x1
)
such that

E
[
f
(
X(1)

)
IX(1)≥x1

]
=

(xn − x1)
n
+

Ln
, ∀x1,

i.e., ∫
[x1,L]

f(x)ρ1(x)dx =
(xn − x1)

n
+

Ln
, ∀x1.

Derivating with respect to x1 we deduce

f(x1)ρ1(x1) = n
(xn − x1)

n−1
+

Ln
.

Hence

P
[
X(n) ≤ y

∣∣X(1) = x1] = n
(xn − x1)

n−1
+

Lnρ1(x1)
=

(
y − x1

)n−1

+

(L− x1)n−1
.

Thus, the conditional distribution of X(n) given that X(1) = x1 is

PX(n)|X(1)=x1

[
dxn

]
=

(n− 1)
(
xn − x1

)n−2

+

(L− x1)n−1
dxn.

We define the empirical gap or sample range to be the random variable G = X(n) − X(1).
To find the distribution of G we condition on X(1) and we have

P
[
G ≤ g

]
=

∫
[0,L]

P
[
X(n) ≤ x1 + g

∣∣X(1) = x1
]
PX(1)

[
dx1

]
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=

∫
[0,L]

P
[
X(n) ≤ X(1) + g

∣∣X(1) = x1
]
ρ1(x1)dx1.

Now observe that

P
[
X(n) ≤ X(1) + g

∣∣X(1) = x1
]
=

∫
[0,min(L,x1+g)]

PX(n)|X(1)=x1

[
dxn

]
=

∫
[0,min(L,x1+g)]

(n− 1)
(
xn − x1

)n−2

+

(L− x1)n
dxn

=
gn−1

(L− x1)n−1
I [0,L−g](x1) + I [L−g,L](x1).

Thus

P
[
G ≤ g

]
=
ngn−1

Ln

∫ L−g

0
dx1 +

∫
[L−g,L]

ρ1(x1)dx1 =
ngn−1(L− g)

Ln
+
gn

Ln
.

We deduce

d

dg
P
[
G ≤ g

]
=
n(n− 1)gn−2

Ln−1
+
n2gn−1

Ln
− ngn−1

Ln
=
n(n− 1)gn−2

Ln−1

(
1− g

L

)
.

Thus, the probability distribution of G is

PG
[
dg
]
=
n(n− 1)gn−2

Ln−1

(
1− g

L

)
I [0,L](g) dg.

If L = 1, then the above distribution is the Beta distribution Beta(n− 1, 2). ⊓⊔

Example 1.4.36. Suppose that f : [0, 1] → R is a C1-function whose graph has length L,
i.e.,

L =

∫ 1

0

√
1 + |f ′(x)|2dx.

Define a random measure K :
(
[0, 1],B

)
⇝
(
R,B

)
, Kx = δf(x).

Let

µ0
[
dx
]
=

√
1 + |f ′(x)|2

L
· λ
[
dx
]
∈ Prob

(
[0, 1]

)
.

Then the Borel probability measure PK,µ0 on [0, 1] × R corresponds to the integration with
respect to the normalized arclength along the graph of f . ⊓⊔

Example 1.4.37. Suppose that X1, . . . , Xn are independent random variables with common
distribution p(x)λ

[
dx
]
. Denote by X the random vector (X1, . . . , Xn). Let f : Rn → R be a

Borel measurable function. Denote by P the distribution of the random vector
(
X, f(X)

)
.

This is disintegrated by the distribution µ0 := PX of the random vectorX. The disintegration
kernel K is the conditional distribution of f(X) given X. We deduce that

Kx1,...,xn

[
−
]
= δf(x1,...,xn).

If B0 is a Borel subset of Rn and B1 is a Borel subset of R, then

P
[
B0 ×B1

]
=

∫
B0

IB1

(
f(x1, . . . , xn)

)
p(x1) · · · p(xn)dx1 · · · dxn.

Using a notation dear to theoretical physicists we can rewrite the above equality as

P
[
dx1 · · · dxndy

]
=
(
δ
(
y − f(x1, . . . , xn)

)
p(x1) · · · p(xn)

)
dy
)
dx1 · · · dxn,
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where δ(z) denotes the Dirac “function” on the real axis. ⊓⊔

Remark 1.4.38. We refer to [29] for a very enlightening presentation of a more general
concept of disintegration and some of its application to statistics. ⊓⊔

1.5. What are stochastic processes?

We have already met stochastic processes though we have not called them so. This section
has a rather restricted goal namely, to explain what they are, describe a few basic features
and more importantly, show that stochastic processes with prescribed statistics do exist as
mathematical objects.

1.5.1. Definition and examples. A stochastic process is simply a family (Xt)t∈T of ran-
dom variables parametrized by a set T . They are all defined on the same probability space
(Ω, S,P). The variables could be real valued, vector valued or we can allow them to be valued
in a measurable space (X,F), where F is a sigma-algebra of subsets of X. Frequently X = Rn
for some n but, as we will see below, it is very easy to produce more complicated examples

Obviously stochastic processes exist, but once we impose some restriction on their behav-
ior, the existence of such stochastic processes is less obvious. A classical situation, intensely
investigated in probability, is that of families (Xt)t∈T of real valued random variables that
are independent, identically distributed (or i.i.d. for brevity). We denote by PX common
distribution.

A basic question arises. Given a Borel probability measure µ on R and a set T , can we
find a probability space (Ω, S,R) and independent random variables

Xt : (Ω, S,R) → R, t ∈ T,

such that PXt = µ, ∀t ∈ T?

When T is finite, say T := {1, 2, . . . , n} the answer is positive. As probability space we
can take

(Ω, S,P) :=
(
Rn,BRn , µ⊗n

)
.

The random variables are then the coordinate functions

Xk : Rn → R, Xk(x1, . . . , xn) = xk, k = 1, . . . , n.

Using the notation RT instead of Rn we see that we have defined a probability measure on
the space of functions T → R.

If T is infinite, say T = N, the question is then about the existence of a sequence (Xn)n∈N
of i.i.d. random variables with common probability distribution µ. A substantial portion of
probability is devoted to such sequences and it would be embarrassing, to say the least, if it
turned out they do not exist. We will see that this is not the case.

It is also very easy to stumble into situations in which the random variables are not
independent, or take value in some infinite dimensional space. We have encountered a such
a situation already.

Suppose that (Ω, S,P) is a probability space and F ⊂ S is a sigma-subalgebra. For any
S ∈ S choose a version XS ∈ L1(Ω,F,P) of the conditional probability P

[
S ∥F

]
. The
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collection (XS)S∈S is a stochastic process on (Ω,F,P) parametrized by S. We can view it as
a map

X : Ω → [0, 1]S = the space of functions S → [0, 1].

Here is another such situation, of a different nature.

Example 1.5.1. Suppose that A0, A1, . . . , An is a family of i.i.d. (real valued) random vari-
ables defined on the probability space (Ω, S,P). For every t ∈ [0, 1] we set

Xt := A0 +A1t+ · · ·+Ant
n.

We now have on our hands a family of random variables (Xt)t∈[0,1]. These are dependent. To
understand why suppose, for simplicity, that the variables Ak have mean zero and variance
1. Then Xt has mean zero and for any s, t ∈ [0, 1]

Cov
[
Xs, Xt

]
= E

[
XsXt

]
= 1 + (st) + · · ·+ (st)n > 1.

Thus the random variables (Xt)t∈[0,1] are dependent.

Let X denote the Banach space C
(
[0, 1]

)
equipped with the sup norm. The family (Xt)

defines a map

X : Ω → X, Ω ∋ ω 7→ Xt(ω) =
n∑
k=0

Ak(ω)t
k ∈ X.

The space C
(
[0, 1]

)
comes with a natural family of linear functionals

Et : C
(
[0, 1]

)
→ R, t ∈ [0, 1], Et(f) = f(t), ∀f ∈ C

(
[0, 1]

)
.

Note that Xt = Et ◦X. The Borel sigma-algebra of C([0, 1]) coincides with the sigma-algebra
generated by the collection of functions Et, t ∈ [0, 1]; see Exercise 1.4. This implies that
the map X : Ω → X is measurable with respect to the Borel sigma-algebra of X. The push-
forward of P via the map X defines a Borel probability PX measure on X so (X,BX,PX) is
a probability space. Thus we can view X• as a random continuous function. ⊓⊔

Suppose now that (Xt)t∈T is a general family of random variables

Xt : (Ω, S,P) → (X,F),

where (X,F) is a measurable space. This family defines a map

X : T × Ω → X, T × Ω ∋ (t, ω) 7→ X(t, ω) := Xt(ω) ∈ X,

such that Xt is measurable for any t.

Equivalently, we can view this as a map

X : Ω → XT = the space of functions f : T → X, (1.5.1)

where to each ω ∈ Ω we associate the function X(ω) : T → X, t 7→ Xt(ω).

It is convenient to regard XT as a product of copies Xt of X, t ∈ T ,

XT =
∏
t∈T

Xt.

Each copy Xt is equipped with a copy Ft of the sigma-algebra F.
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The map (1.5.1) is measurable with respect to the sigma-algebra FT in XT , the smallest
sigma-algebra S in XT such that all the evaluation maps

Evt :
(
XT , S

)
→
(
X,F

)
, Evt(f) := f(t),

are measurable. Equivalently,

FT =
∨
t∈T

Ev−1
t (F).

Any measurable map X : (Ω, S,P) → (XT ,FT ) defines a stochastic process

Xt(ω) = Evt
(
X(ω)

)
.

Note that any probability measure on FT is the distribution of a stochastic process, namely
the tautological process

1 :
(
XT ,FT ,P

)
→
(
XT ,FT ,P

)
, 1t(ω) = ω(t), ∀ω ∈ XT .

Suppose thatX : (Ω, S,P) → (XT ,FT ) is a stochastic process. For any finite set I = {t1, . . . , tm} ⊂ T
we have a sigma-algebra FI in XI ,

FI = Ft1 ⊗ · · · ⊗ Ftm ,

and we obtain a random “vector”

XI :
(
Ω, S

)
→
(
XI ,FI), ω 7→

(
Xt1(ω), . . . , . . . , Xtm(ω)

)
∈ XI .

We denote by PI its probability distribution PI := (XI)#P. Note that we have a a tautological
measurable projection ΠI : XT → XI , and

PI = (ΠI)#
(
PX
)
.

Suppose now that J ⊂ T is another finite set containing I

J = {t1, . . . , tm, tm+1, . . . , tn}, n > m.

We get in a similar fashion a probability measure on XJ . We have a canonical projection

PIJ : XJ → XI ,
(
xt1 , . . . , xtm , xtm+1 , . . . , xtn

)
7→
(
xt1 , . . . , xtm

)
.

and, since XI = PIJ(XJ), we have

(PIJ)#PJ = PI . (1.5.2)

Observe that FT is generated by the collection of subsets Π−1
I (FI), I ⊂ T finite, FI ∈ FI .

This collection is an algebra of subsets of XT . Proposition 1.2.4 shows that PX is the unique
probability measure P on XT such that for any finite subset I ⊂ T , and any FI ⊂ FI we have

P
[
Π−1
I (FI)

]
= PI

[
FI
]
.

Equivalently, this means

PI = (ΠI)#
(
P
)
.

A family of measures PI on XI , I finite subset of T , constrained by the compatibility condition
(1.5.2) for any finite subsets I ⊂ J ⊂ T is said to be a projective or consistent family.

We have thus shown that to any probability measure P on
(
XT ,FT ) we can naturally

associate a projective the family of probability measures PI := (πI)#
(
P
)
. Moreover, P is

uniquely determined by this projective family.

There are other ways of constructing projective families.
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Example 1.5.2. Suppose that we are given a sequence of measurable spaces (Xn,Fn)n≥0 is

a measurable space. For n ∈ N0 := {0, 1, . . . } we set În = {0, 1, . . . , n},

XÎn :=

n∏
k=0

Xk, FÎn :=

n⊗
k=0

Fk.

Consider a family of Markovian kernels Kn : (XÎn ,FÎn) → (Xn+1,Fn+1), n ∈ N0. In other
words we have random probability measure

XÎn ∋ (x0, . . . , xn) → Kx0,x1,...,xn

[
dxn+1

]
on (Xn+1,Fn+1). Then, starting with a probability measure µ0 on (X,F), we obtain a family

of probability measures Pn on XÎn described inductively by the disintegration formula (1.4.32)

P0 = µ0, Pn+1 = PKn,Pn . (1.5.3)

This means that for any S ∈ FÎn+1 we have

Pn+1

[
S
]
=

∫
X

∫
XÎn

Kx⃗

[
dxn+1

]
IS(x⃗, xn+1)Pn

[
dx⃗
]
, x⃗ = (x0, . . . , xn).

Equivalently, Pn disintegrates Pn+1 and Kn is the disintegration kernel.

Denote by Pn,n+1 the natural projection XÎn+1 → XÎn ,

(x0, x1, . . . , xn, xn+1) 7→ (x0, x1, . . . , xn).

Since K is a Markovian kernel, i.e.,∫
X
Kx⃗

[
dx′
]
= 1, ∀x⃗ ∈ XÎn ,

we deduce that Pn = (Pn,n+1)#Pn+1, ∀n ∈ N0. This shows that the collection (P̂n)n∈N0 is a
projective family of probability measures.

Note that if Kx0,...,xn

[
−
]
is independent of x0, . . . , xn, then we can think of Kn as a

probability measure µn on X. In this case

Pn = µ0 ⊗ · · · ⊗ µn.

If (Xn,Fn) = (X,F) for all n ≥ 0 can obtain kernels Kn as above starting from a single
Markovian kernel K = (X,F) → (X,F)

K : X× F → [0, 1], (x, F ) 7→ Kx

[
F
]
.

More precisely, we set Kx0,...,xn

[
dx
]
:= Kxn

[
dx
]
.

In this case the measures Pn on FÎn are defined by

Pn
[
dx0dx1 · · · dxn

]
= µ0

[
dx0

]
Kx0

[
dx1

]
· · ·Kxn−1

[
dxn

]
.

More precisely, for any S ∈ FÎn we have

Pn
[
S
]
=

∫
XÎn

IS
(
x⃗
)
µ0
[
dx0

]
Kx0

[
dx1

]
· · ·Kxn−2

[
dxn−1

]
Kxn−1

[
dxn

]
. (1.5.4)

The above is an iterated integral, going from right to left, i.e., we first integrate with respect
to xn, next with respect to xn−1 etc.

Such a situation occurs in the context of Markov chains. ⊓⊔
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1.5.2. Kolmogorov’s existence theorem. Fix a topological space X and a parameter set
T . We denote by 2

T
0 the collection of finite subsets of T . For I ∈ 2

T
0 we denote by BI the

Borel σ-algebra in XI equipped with the product topology. For any finite subsets I ⊂ J ⊂ T
we denote by PIJ the natural projection XJ → XI . This associates to a function J → X its
restriction to I.

For t ∈ T we denote by πt the natural projection

πt : XT → X, πt(x) = xt.

More generally, for any I ∈ 2
T
0 we define πI : XT → XI by setting

XT ∋ x 7→ πI(x) = (xi)i∈I ∈ XI .

Definition 1.5.3. The natural σ-algebra ET in XT is the smallest σ-algebra E ⊂ 2
XT

such
that all the maps πt, t ∈ T , are (E,BX)-measurable, i.e., the σ-algebra generated by the
family of σ-algebras π−1

t (BX). ⊓⊔

Remark 1.5.4. The sigma-algebra ET can also be identified with the σ-algebra of the Borel
subsets of XT equipped with the product topology. ⊓⊔

A cylinder is a subset of XT of the form

π−1
I (S) = S × XT\I , I ∈ 2

T
0 , S ∈ BI .

We denote by CT the collection of cylinders. Clearly CT is an algebra of sets that generates
the natural σ-algebra ET .

Definition 1.5.5. A projective family of probability measures on XT is a family PI of prob-
ability measures on (XI ,BI), I ∈ 2

T
0 , such that for any I ⊂ J in 2

T
0 we have

PI = (PIJ)#PJ . (1.5.5)

⊓⊔

As discussed in the previous subsection any Borel measure on XT defines a canonical
projective family. Kolmogorov’s existence (or consistency) theorem states that, under mild
topological constraints on X, all the projective families are obtained in this fashion.

Theorem 1.5.6 (Kolmogorov existence theorem). Suppose that X is a Lusin space, i.e.,
a Borel subset of a compact metric space; see Definition 1.4.26. For any projective family

(PI)I∈2T
0

of Borel probability measures on XI there exists a probability measure P̂ on ET

uniquely determined by the requirement: ∀I ∈ 2
T
0 and PI = (PI)#

(
P̂
)
. This means that for

any BI ∈ BI ,

P̂
[
π−1
I (BI)

]
= PI

[
BI
]
. (1.5.6)

Proof. The uniqueness follows from Proposition 1.2.4.

The existence is a rather deep result ultimately based on Tikhonov’s compactness result.
We follow the approach in [149, Sec. 30, 31].

Observe that C is a cylinder if and only if

∃I ∈ 2
T
0 and BI ∈ BI such that C = π−1

I (BI).
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For I ∈ 2
T
0 we set CIT := π−1(BI) ⊂ ET . Note that

C ∈ CIT ⇐⇒C = BI × XT\I , BI ∈ BI , (1.5.7a)

C ∈ CIT ∩ CJT ̸= ∅ ⇒ C ∈ CI∩JT . (1.5.7b)

Define

P̂I : CIT → [0,∞), P̂I
[
C
]
= PI

[
πI(C)

]
.

Note that if C ∈ CIT ∩ CJT , then, according to (1.5.7b), C ∈ CKT for some K ⊂ I ∩ J . Then

πI(C) = P−1
KI

(
πK(C)

)
, πJ(C) = P−1

KJ

(
πK(C)

)
.

Thus

PI
[
πI(C)

]
= PI

[
P−1
KI

(
πK(C)

) ]
= (PKI)#PI

[
πK(C)

] (1.5.5)
= PK

[
πK(C)

]
,

and, similarly,

PJ
[
πJ(C)

]
= PI

[
P−1
KJ

(
PK(C)

) ]
= (PKJ)#PJ

[
πK(C)

] (1.5.5)
= PK

[
πK(C)

]
,

Hence, if C ∈ CIT ∩ CJT , then P̂I
[
C
]
= P̂J

[
C
]
.

We have thus defined a finitely additive measure P̂ on the algebra

CT =
⋃
I∈2T

0

CIT .

To invoke Carathéodory’s extension theorem (Theorem 1.2.17) it suffices to show that P̂ is
countably additive of CT . We will achieve this step by relying on Alexandrov’s Theorem
1.2.15, but to complete this step we need to make a brief foundational digression.

Digression 1.5.7 (Regularity of Borel measures). When dealing with measures on topologi-
cal spaces there are several desirable compatibility conditions between the measure-theoretic
objects and the topological ones.

Definition 1.5.8. Let X be a topological space and µ a Borel measure on X.

(i) The measure µ is called outer regular if for any Borel set B ∈ BX we have

µ
[
B
]
= inf

U⊃B,
U open

µ
[
U
]
.

(ii) The measure µ is called inner regular if for any Borel set B ∈ BX we have

µ
[
B
]
= sup

C⊂B,
C closed

µ
[
C
]
.

(iii) The measure µ is called regular if it is both inner and outer regular.

(iv) The measure µ is called Radon if it is outer regular, and for any Borel set B ∈ BX ,
we have

µ
[
B
]
= sup

K⊂B,
K compact

µ
[
K
]
.
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Note that a finite Borel measure is regular iff it is inner regular. From the above definition
it is clear that

µ is Radon ⇒ µ is regular.

A deep result in measure theory states that any Borel probability measure on a Lusin space
is Radon, [17, Thm. 7.4.3]. For our immediate needs we can get away by with a lot less. We
have the following useful result, [139, Chap. II, Thm.1.2]. A proof is outlined in Exercise
1.64.

Theorem 1.5.9. Any Borel probability measure on a metric space is regular.

From Theorem 1.5.9 we deduce the following result.

Lemma 1.5.10. Let Y be a compact metric space. Then any Borel probability measure on
Y is Radon. ⊓⊔

This concludes our digression. ⊓⊔

As mentioned in Remark 1.4.27(b), any Lusin space is Borel isomorphic to a compact
metric space. Thus it suffices to prove Kolmogorov’s theorem only in the special when X is a
compact metric space. In this case Kolmogorov’s theorem follows from Alexandrov’s Theorem
1.2.15.

Note first that Tikhonov’s compactness theorem implies that the space XT is compact
with respect to the product topology. Suppose that C ∈ CT is a cylinder. Thus, there exists
a finite subset I ⊂ T and a Borel subset BI of XI such that C = π−1

I

(
Bi
)
. Theorem 1.5.9

implies that for any ε > 0 there exists a closed subset Kε ∈ XI such that

PI
[
BI \Kε

]
< ε.

Note that the set Fε := π−1
I

(
Kε

)
is also a cylinder contained in C, it is closed as a subset of

XT and

P̂
[
C \ Fε

]
= PI

[
BI \Kε

]
< ε.

Alexandrov’s Theorem 1.2.15 implies that P̂ is a premeasure and thus extends to a probability
measure on T. ⊓⊔

The real axis R is a Lusin space. Given a Borel probability measure P on R we can
construct trivially a projective family PI , I ∈ 2

N
0 . More precisely PI = P⊗|I| on RI . We

deduce that we have a natural Borel probability measure RN. We have natural random
variables on this probability space

Xn : RN → R, Xn(x) = xn, ∀x = (x1, x2, . . . , ) ∈ RN.

Note that PXn = P, ∀n and the joint distribution of X1, . . . , Xn is P⊗n. Thus, the random
variables (Xn) are independent and have identical distributions. We have thus proved the
following fact.

Corollary 1.5.11. For any probability measure P ∈ Prob(R,BR), there exists a probability

space (Ω, S,P) and a sequence of independent identically distributed (or i.i.d. for brevity)

random variables Xn : (Ω, S,P) → R, n ∈ N, with common distribution P. ⊓⊔
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Remark 1.5.12. (a) An earlier version of the Existence Theorem 1.5.6 was proved by P. J.
Daniell [42]. We refer to [3] for an interesting historical perspective on this theorem. The
existence theorem can be substantially generalized; see e.g. [17, Sec. 7.7].

(b) The proof of Theorem 1.5.6 uses in an essential fashion the topological nature of the
projective family of measures

(
PI
)
I∈2T

0
. We want to emphasize that in this theorem the set

of parameters T is arbitrary.

If the set of parameters T is countable, say T = N0, then one can avoid the topological
assumptions.

Consider for example the projective family of measures Pn constructed in Example 1.5.2.
Recall briefly its construction that we are given a sequence of measurable spaces (Xn,Fn)n≥0

and measures Pn on (
X0 × · · · × Xn,F0 ⊗ · · · ⊗ Fn

)
such that Pn disintegrates Pn+1, ∀n ≥ 0. (Observe that this codition is automatically satisfied
if each Xn is a Lusin space.) Set

X∞ :=
∞∏
n=0

Xn,

denote by πn the natural projection X∞ → Xn and by F⊗∞ the sigma-algebra

F⊗∞ :=
∨
n≥0

π−1
n

(
Fn
)
.

A theorem of C. Ionescu-Tulcea (see e.g. [92, Thm. 8.24] or [99, Thm. 14.32]) states that
there exists a unique probability measure P∞ on F⊗∞ such that

(Pn)#P∞ = Pn, ∀n ≥ 0,

where Pn denotes the natural projection X∞ → X0 × · · · × Xn.

As a special case of this result let us mention an infinite-dimensional version of Fubini-
Tonelli: given measures µn on Fn, there exists a unique measure µ∞ on F⊗∞ such that

(Pn)#µ∞ =

n⊗
k=0

µk.

For this reason we will denote the measure µ∞ by
⊗∞

n=0 µn. ⊓⊔
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1.6. Exercises

Exercise 1.1. Let S0, S1 be two sigma-algebras of a set Ω. Prove that the following are
equivalent.

(i) The union S0 ∪ S1 is a sigma-algebra.

(ii) Either S0 ⊂ S1 or S1 ⊂ S0.

⊓⊔

Exercise 1.2. Construct a bijection F : [−1, 1] → R such that both F and F−1 are Borel
measurable. ⊓⊔

Exercise 1.3. Fix a set Ω. Denote by B(Ω) the space of bounded functions Ω → R. Let
F ⊂ B(Ω) be a vector subspace with the following property: if (fn) is a nondecreasing
sequence of nonnegative functions in F converging pointwisely to a function f∞ ∈ B(Ω),
then f∞ ∈ F. Suppose that M ⊂ F is a collection closed under multiplication. Then F
contains every bounded σ(M)-measurable function. ⊓⊔

Exercise 1.4. Let Ω denote the space C([0, 1]) of continuous functions ω : [0, 1] → R
equipped with the topology defined by the sup-norm

∥ω∥ := sup
t∈T

∣∣ω(t) ∣∣.
Denote by B the resulting Borel sigma-algebra. For each t ∈ [0, 1] we have an evaluation map

Et : Ω → R, Et
(
ω
)
= ωt.

Denote by E the sigma-algebra generated by the evaluation maps

E :=
∨

t∈[0,1]

E−1
t

(
BR
)
.

Prove that B = E.
Hint. Prove first that

∥ω∥ = sup
t∈[0,1]∩Q

∣∣Et(ω)
∣∣, ∀ω ∈ C([0, 1]).

Use next the fact that the Banach space C([0, 1]) is separable. ⊓⊔

Exercise 1.5. Suppose that (X, d) is a complete, separable metric space. Denote by BX

the Borel sigma-algebra generated by the open subsets of X, and by BX×X the Borel sigma-
algebra generated by the product topology on X ×X. Prove that

BX×X = BX ⊗BX .

⊓⊔

Exercise 1.6. Fix a set Ω of finite cardinality m and a probability measure P on Ω. Assume
that P

[
{ω}

]
̸= 0, ∀ω ∈ Ω. Set Ω∞ := ΩN so the elements of Ω∞ are functions ω : N → Ω,

n 7→ ωn := ω(n). For every n ∈ N define

πn : Ω∞ → Ωn, πn(ω) = (ω1, . . . , ωn),
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and denote by Cn the collection of sets of the form

C = π−1
n (S), S ⊂ Ωn, n ∈ N.

Note that C1 ⊂ C2 ⊂ · · · . Set
C :=

⋃
n∈N

Cn.

The sets in C are called cylinders.

(i) Show that Cn is a σ-algebra of subsets of Ω∞, ∀n ∈ N.
(ii) For any n ∈ N define βn = βn,π : Cn → [0, 1],

βn
[
π−1
n (S)

]
:= π⊗n

[
S
]
=

∑
(ω1,...,ωn)∈S

n∏
j=1

P
[
{ωj}

]
.

Show that βn is a well defined measure on Cn and

βn+1

∣∣
Cn

= βn.

(iii) Equip Ω∞ with the metric

d(ω, η) =
∑
n∈N

1

2n
h(ωn, ηn), h(ω, η) =

{
0, ω = η,

1, ω ̸= η.

Prove that
(
Ω∞, d

)
is a compact metric space. Hint. Use the diagonal procedure to show

that any sequence if Ω admits a convergent subsequence.

(iv) Define β = βP : C → [0, 1],

β
∣∣
Cn

= βn.

Show that β is a well defined premeasure on C. Hint. Use Theorem 1.2.15. Prove first that

any cylinder is simultaneously closed and open.

(v) Prove that σ(C) coincides with the Borel sigma-algebra of the metric space (Ω∞, d).

(vi) Denote by β̄ = β̄P the extension of β as measure to the σ-algebra σ(C). (Its existence
is guaranteed by the Caratheodory extension theorem.) For ω0 ∈ Ω we set

∆ω0 :=
{
ω ∈ Ω : ∃m ∈ N such that ωn = ω0, ∀n > m

}
.

Show that ∆ω0 ∈ σ(C) and β̄
[
∆ω0

]
= 0.

(vii) Define Xn : Ω∞ → Ω, Xn(ω) = ωn. Show that the collection of random variables
(Xn)n∈N is independent and have the same distribution P.

(viii) Let Ω = {0, 1}, P=the uniform measure on {0, 1}, and consider Ω∞ = {0, 1}N
equipped with the measure β̄ = β̄P constructed as above. Show that the map

B : (Ω∞, σ(C)) →
(
[0, 1],B[0,1]

)
, B =

∑
n∈N

1

2n
Xn

is measurable and find B#β̄. ⊓⊔

Exercise 1.7. Suppose that (Ω,F, µ) is a measured space and (S, d) a metric space. Consider
a function

F : S × Ω → R, (s, ω) 7→ Fs(ω)

satisfying the following properties.
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(i) For any s ∈ S the function Ω ∋ ω 7→ Fs(ω) ∈ R is measurable.

(ii) For any ω ∈ Ω the function S ∋ s 7→ Fs(ω) ∈ R is continuous.

(iii) There exists h ∈ L1(Ω, S, µ) such that |Fs(ω)| ≤ h(ω), ∀(s, ω) ∈ S × Ω.

Prove that Fs ∈ L1(Ω, S, µ), ∀s ∈ S, and the resulting function

S ∋ s 7→
∫
Ω
Fs(ω)µ

[
dω
]
∈ R

is continuous. Hint. Use the Dominated Convergence Theorem. ⊓⊔

Exercise 1.8. Suppose that (Ω,F, µ) is a measured space and I ⊂ R is an open interval.
Consider a function

F : I × Ω → R, (t, ω) 7→ F (t, ω)

satisfying the following properties.

(i) For any t ∈ I the function F (t,−) : Ω → R is integrable,∫
Ω
|F (t, ω)|µ

[
dω] <∞.

(ii) For any ω ∈ Ω the function I ∋ t 7→ F (t, ω) ∈ R is differentiable at t0 ∈ I. We
denote by F ′(t0, ω) its derivative.

(iii) There exists h ∈ L1(Ω, S, µ) and c > 0 such that

|F (t, ω)− F (t0, ω)| ≤ h(ω)|t− t0|, ∀(t, ω) ∈ I × Ω.

Prove that the function

I ∋ t 7→
∫
Ω
F (t, ω)µ

[
dω
]
∈ R

is differentiable at t0 and

d

dt

∣∣∣
t=t0

(∫
Ω
F (t, ω)µ

[
dω
])

=

∫
Ω
F ′(t0, ω)µ

[
dω
]
. ⊓⊔

Exercise 1.9. Suppose that (Ω, S, µ) is a finite15 measured space and A ⊂ S a countable
π-system that generates S, σ(A) = S. Assume Ω ∈ A. Denote by R

[
A
]
the vector space

spanned by IA, A ∈ A. Fix p ∈ [1,∞) and denote by Mp the intersection of L∞(Ω, S, µ) with
the Lp-closure of R[A].

(i) Prove Mp = L∞(Ω, S,P).
(ii) Prove that R[A] is dense in Lp(Ω, S, µ).

(iii) Prove that Lp(Ω, S, µ) is separable. ⊓⊔

Exercise 1.10 (Markov). Let (Ω, S,P) be a sample space and A−, A0, A+, P[A0 ∩ A−] ̸= 0.
We say that A+ is independent of A− given A0 if

P
[
A+ ∩A−

∣∣A0

]
= P

[
A+

∣∣A0

]
P
[
A−
∣∣A0

]
.

Show that A+ is independent of A− given A0 if and only if

P
[
A+

∣∣A0 ∩A−
]
= P

[
A+

∣∣A0

]
. ⊓⊔

15The sigma-finite situation follows from the finite situation in a standard fashion.
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Exercise 1.11 (M. Gardner). A family has two children. Find the conditional probability
that both children are boys in each of the following situations.

(i) One of the children is a boy.

(ii) One of the children is a boy born on a Thursday. ⊓⊔

Exercise 1.12. A random experiment is performed repeatedly and the outcome of an exper-
iment is independent of the outcomes of the previous experiments. While performing these
experiments we keep track of the occurrence of the mutually exclusive events A and B, i.e.,
A ∩ B = ∅. We assume that A and B have positive probabilities.16 What is the probability
that A occurs before B? Hint. Consider the event C = (A ∪ B)c = neither A, nor B. Condition on the result

of the first experiment which can be A,B or C.

⊓⊔

Exercise 1.13. Prove that the random variables N1, . . . , Nm that appear in Example 1.3.25
on the coupon collector problem can be realized as measurable functions defined on the same
probability space. Hint. Use Exercise 1.6. ⊓⊔

Exercise 1.14. Construct a probability space (Ω, S,P) and random variables

X,Y : (Ω, S,P) → (0,∞)

such that

E
[
X
]
< E

[
Y
]
<∞ and P

[
X > Y

]
< P

[
X < Y

]
. ⊓⊔

Exercise 1.15 (Your neighbor has more neighbors). Consider a connected finite unoriented
graph. Denote by V its set of vertices and by E the set of edges. For each v ∈ V we denote
by deg(v) the number of neighbors of v. Pix a vertex A ∈ V uniformly randomly, and then
choose a neighbor B of A, equally likely among the deg(A) neighbors of A. Prove that

E
[
deg(A)

]
≤ E

[
deg(B)

]
.

⊓⊔

Exercise 1.16. Suppose that X,Y : (Ω, S,P) → R are two random variables whose ranges
X and Y are countable subsets of R. Assume additionally that X ∈ L1

(
Ω, S,P

)
. We set

E
[
X ∥Y

]
=
∑
y∈Y

E
[
X
∣∣Y = y

]
I{Y=y} ∈ L0(Ω, σ(Y ),P),

where

E
[
X
∣∣Y = y

]
:=
∑
x∈X

xP
[
X = x

∣∣Y = y
]
=

1

P
[
{Y = y}

] ∫
{Y=y}

X(ω)P
[
dω
]
.

The random variable E
[
X ∥Y

]
is called the conditional expectation of X given Y . Prove

that

E
[
X
]
= E

[
E
[
X ∥Y

] ]
. ⊓⊔

16For example if we roll a pair of dice, A could be the event “the sum is 4” and B could be the event “the sum is

7”. In this case

P
[
A
]
=

3

36
=

1

12
, P

[
B

]
=

6

36
=

1

6
.
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Exercise 1.17 (Polya’s urn). An urn U contains r0 red balls and g0 red balls. At each stage
a ball is selected at random from the urn, we observe its color, we return it to the urn and
then we add another ball of the same color. We denote by by Rn the number of red balls and
by Gn the number of green balls at stage n. Finally, we denote by Cn the “concentration” of
red balls at stage n,

Cn =
Rn

Rn +Gn
.

(i) Show that E
[
Cn+1 ∥Rn

]
= Cn, where the conditional expectation E

[
Cn+1 ∥Rn

]
is defined in Exercise 1.16.

(ii) Show that E
[
Cn
]
= r0

r0+g0
, ∀n ∈ N.

⊓⊔

Exercise 1.18. Prove the claim about the events Sk at the end of Example 1.3.23. ⊓⊔

Exercise 1.19 (Banach’s matchbox problem). An eminent mathematician fuels a smoking
habit by keeping matches in both trouser pockets. When impelled by need, he reaches a
hand into a randomly selected pocket and grabs about for a match. Suppose he starts with
n matches in each pocket. What is the probability that when he first discovers a pocket to
be empty of matches the other pocket contains exactly m matches? ⊓⊔

Exercise 1.20. Suppose that Xn ∈ L1(Ω, S,P), n ∈ N, is a sequence of independent and
identically distributed (i.i.d.) random variables and T ∈ L1(Ω, S,P) is a random variable with
range contained in N and independent of the variables Xn. Define ST : Ω → R

ST (ω) =

T (ω)∑
n=1

Xn(ω).

Prove Wald’s formula

E
[
ST
]
= E

[
T
]
E
[
X1

]
. (1.6.1)

⊓⊔

Exercise 1.21. A box contains n identical balls labelled 1, . . . , n. Draw one ball, uniformly
random, and record its label N . Next flip a fair coin N times. What is the expected number
of heads you roll? Hint. Use Wald’s formula. ⊓⊔

Exercise 1.22. Suppose that X ∈ L0(Ω, S,P) is a nonnegative random variable. Prove that
if the range of X is contained in N0, then

E
[
X
]
− 1 ≤

∑
n≥0

P[X > n] ≤ E[X].

In particular, conclude that

X ∈ L1(Ω, S,P) ⇐⇒
∑
n≥0

P[X > n] <∞.

Hint. Use (1.3.48) ⊓⊔

Exercise 1.23. Let X be a random variable with range contained in {0, 1, . . . , n}.
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(i) Prove that for any k ∈ {0, . . . , n}

P
[
X = k

]
=

n−k∑
j=0

(−1)j
(
k + j

j

)
E
[
Bk+j(X)

]
,

where,

Bm(x) =

(
x

m

)
:=

1

m!
x(x− 1) · · · (x−m+ 1) ∈ R

[
x
]
.

Hint. Set pk = P
[
X = k

]
. Then E

[
Bm(X)

]
=

∑n
k=m

( k
m

)
pk. Conclude using the binomial inversion

trick, Remark 1.3.30.

(ii) Let A1, . . . , An be a collection of measurable subsets of a probability space
(
Ω, S,P

)
and set

X :=
n∑
k=1

IAk
.

Prove that

E
[
Bk(X)

]
= snk

for any k ∈ {0, 1, . . . , n}, where snk is defined in (1.3.26). Hint. Use binomial inversion.

⊓⊔

Exercise 1.24. Consider the standard random walk on Z started at 0. More precisely, are
given a sequence of i.i.d random variables (Xn)n∈N such that P

[
Xn = 1

]
= P

[
Xn = −1

]
= 1

2 ,
∀n and we set

Sn := X1 + · · ·+Xn.

Let T denote the time of the first return to 0,

T := min{n ∈ N; Sn = 0
}
,

where min ∅ := ∞. Set fn = P
[
T = n

]
, un := P

[
Sn = 0

]
.

(i) Prove that u2n = P
[
S1 ̸= 0, S2 ̸= 0, . . . , S2n ̸= 0

]
. Deduce that f2n = u2n−2−u2n.

Hint. Use André’s reflection principle in Example 1.2.37.

(ii) Prove that P
[
T <∞

]
= 1, but E

[
T
]
= ∞. Hint. Use (i) and (1.3.48).

(iii) Visualize the random walk as a zig-zag of the kind depicted in Figure 1.2. For such
a zigzag we denote by Ln(z) the number of its first n segments that are above the
x axis. Equivalently,

Ln(z) := #{ k; 1 ≤ k ≤ n; max(Sk−1, Sk) > 0
}
.

For example, for the zig-zag z in Figure 1.2 we have

L8(z) = L9(z) = L10(z) = 8.

Show that

P
[
L2n = m

]
=

{
u2ku2n−2k, m = 2k ≤ 2n,

0, m ≡ 1 mod 2.

(iv) Prove that P
[
L2n = 2k

∣∣S2n = 0
]
= 1

n+1 . ⊓⊔
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Exercise 1.25. Consider the group Sn of permutation of n ordered objects. We equip it
with the uniform probability measure. Let Zn denote the number of inversions of a random
permutation, i.e.,

Zn(φ) := #
{
(i, j); 1 ≤ i < j ≤ n, φ(i) > φ(j)

}
.

Compute the mean and variance of Zn. Hint. For φ ∈ Sn and 1 ≤ k ≤ n− 1 set

Zn,k(φ) = #
{
j; n ≥ j > k and φ(j) < φ(k)

}
.

Prove that Zn =
∑n−1

k=1 Zn,k and that the random variables Zn,1, . . . , Zn,n−1 are independent. You will also need to

use the classical identities

1 + 2 + · · ·+m =
m(m+ 1)

2
, 12 + 22 + · · ·+m2 =

m(m+ 1)(2m+ 1)

6
.

⊓⊔

Exercise 1.26. There are n unstable molecules m1, . . . ,mn in a row. One of the n− 1 pairs
of neighbors, chosen uniformly at random, combine to form a stable dimer. This process
continues until there remain Un isolated molecules, no two of which are adjacent.

(i) Show that the probability pn that m1 remains uncombined satisfies

(n− 1)pn = p1 + p2 + · · ·+ pn−2.

Deduce that

pn =
n−1∑
k=0

(−1)k

k!
→ e−1 as n→ ∞.

Hint. Condition on the first pair of molecules (mr,mr+1) that gets combined.

(ii) Show that the probability qr,n that the moleculemr remains uncombined is prpn−r+1.

(iii) Show that

E
[
Un
]
=

n∑
r=1

qr,n.

(iv) Show that

lim
n→∞

1

n
E
[
Un
]
= e−2.

Hint. At some point you may need to take for granted the result in Exercise 2.6.

⊓⊔

Exercise 1.27. Let N = Nm be the random variable defined in the coupon collector problem
described in Example 1.3.25. Show that

Var
[
Nm

]
= m

m∑
k=1

m− k

k2
. ⊓⊔

Exercise 1.28 (The Birthday Problem). Let N ∈ N. Consider a sequence (Xn)n∈N of
independent random variables uniformly distributed on the finite set {1, . . . , N}. Define BN
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to be the birthday random variable17

BN (ω) = min
{
j ∈ N : ∃1 ≤ i < j such that Xj(ω) = Xi(ω)

}
.

Compute the probabilities
P
[
BN ≤ k

]
, k = 1, . . . , N. ⊓⊔

Exercise 1.29 (Buffon’s Problem). A needle of length ℓ is thrown at random on a plane
ruled by parallel lines distance d apart. Denote by Nℓ the number of lines that intersect the
needle.

(i) Compute P
[
Nℓ = 1

]
when ℓ ≤ d.

(ii) Prove that E
[
Nℓ0+ℓ1

]
= E

[
Nℓ0

]
+ E

[
Nℓ1

]
, ∀ℓ0, ℓ1 > 0.

(iii) Compute E
[
Nℓ

]
, ℓ > 0.

⊓⊔

Exercise 1.30. Suppose that I is an interval of the real axis and f : I → R is a continuous
function. Prove that the following are equivalent.

(i) For any x, y ∈ I, and any t ∈ (0, 1) we have f
(
(1− t)x+ ty

)
≤ (1− t)f(x)+ tf(y).

(ii) For any x0 ∈ I there exists a linear function ℓ : R → R such that

ℓ(x0) = f(x0), ℓ(x) ≤ f(x), ∀x ∈ I.

⊓⊔

Exercise 1.31 (Hermite polynomials). Suppose that X ∼ N(0, 1) so

PX [dx] = Γ1

[
dx] := γ1(x)λ

[
dx
]
, γ1(x) =

1√
2π
e−

x2

2 .

For k ∈ N0 we denote by R[x] the space of polynomial with real coefficients. Define the linear
operators

P, Q : R
[
x
]
→ R

[
x
]
,

(Pf)(x) = f ′(x), (Qf)(x) = −f ′(x) + xf(x). (1.6.2)

The operator P is called the annihilation operator and the operator Q is called the creation
operator.

(i) Prove that for any f ∈ R
[
x
]
we have

(PQ−QP )f = f.

(ii) Denote by H0 ∈ R
[
x
]
the constant polynomial identically equal to 1. Show that

for any n ∈ N the function

Hn := QnH0

is a degree n polynomial satisfying

PHn = nHn−1, QPHn = nHn, ∀n ∈ N,

17You should think of BN as follows. Suppose that you have an urn with N balls labelled 1, . . . , N . Suppose we
perform the following experiment: draw a ball at random, record its label, put it back in the box, and then repeat

until you notice that the label you’ve drawn has appeared before. The random variable BN is the first moment when
you’ve noticed a label that was drawn before. Note that BN ≤ N + 1. The classical birthday problem is the special
case N = 365.
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and

Hn = xHn−1 − (n− 1)Hn−2, ∀n ≥ 2.

The polynomials Hn(x) are called the Hermite polynomials. The operator −QP is
called the Ornstein-Uhlenbeck operator.

(iii) Show that for any f, g ∈ R
[
x
]∫

R
Pf(x)g(x)Γ1[dx] =

∫
R
f(x)Qg(x)Γ1[dx]. (1.6.3)

(iv) Show that

Hn(x) = (−1)ne
x2

2 Pn
(
e−

x2

2
)
, ∀n ∈ N. (1.6.4)

(v) Show that for any m,n ∈ N0 we have∫
R
Hn(x)Hm(x)Γ1[dx] = n!δmn.

(vi) Show that ∑
n≥0

Hn(x)
λn

n!
= eλx−λ

2/2. (1.6.5)

(vii) Suppose that f ∈ R[x], deg f ≤ n. Recall that X ∼ N(0, 1). Prove that

f(x) =
n∑
k=1

1

k!
E
[
f (k)(X)

]
Hk(x).

⊓⊔

Exercise 1.32. Suppose that X ∼ N(0, 1), i.e.,

PX
[
dx
]
= γ1(x)dx, γ1(x) =

1√
2π
e−

x2

2 .

Set Φ(x) := P
[
X > x

]
. Prove the Mills ratio inequalities (1.3.43) , i.e.,

x

x2 + 1
γ1(x) ≤Φ(x) ≤ 1

x
γ1(x), ∀x > 0.

Hint. For the upper bound observe that

−QΦ=

∫ ∞

x
Φ(x)dx > 0,

where Q is the operator defined in (1.6.2). Next express∫ ∞

x
QΦ(t)dt ≤ 0

in terms of Φ and γ1. ⊓⊔

Exercise 1.33. We denote by Dens(R) the space of probability densities on R, i.e., functions
p ∈ L1(R,λ) such that∫

R
p(x)dx = 1 and p(x) ≥ 0 almost everywhere.

For p ∈ Dens(R) we set

E
[
p
]
:=

∫
R
xp(x)dx, Var

[
p
]
:=

∫
R
x2p(x)dx− E

[
p
]2
.
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The entropy18 of p ∈ Dens(R) is the quantity

Ent
[
p
]
:= −

∫
R
p(x) log p(x)dx ∈ [0,∞],

where we set 0 · log 0 = 0.

(i) Show that if

γ1(x) :=
1√
2π
e−x

2/2,

then

Ent
[
γ1

]
=

1 + log 2π

2
.

(ii) Show that if p, q ∈ Dens(R) and q(x) > 0, ∀x ∈ R, then

Ent
[
p
]
≤ −

∫
R
p(x) log q(x)dx

if the integral on the right hand side is finite. Moreover equality holds iff p = q.
Hint. Show that p(x)− p(x) log p(x) ≤ q(x)− p(x) log q(x), ∀x ∈ R.

(iii) Show that if p ∈ Dens(R) satisfies

E
[
p
]
= 0 = E

[
γ1

]
, Var

[
p
]
= 1 = Var

[
γ1

]
,

then Ent
[
p
]
≤ Ent

[
γ1

]
with equality iff p = γ1.

⊓⊔

Exercise 1.34. Let X : (Ω, S,P → N0) be a random variable and λ > 0. Prove that the
following are equivalent.

(i) X ∼ Poi(λ).

(ii) E
[
λf(X + 1)−Xf(X)

]
= 0, for any bounded function f : N0 → R.

⊓⊔

Exercise 1.35. Prove Proposition 1.3.17. ⊓⊔

Exercise 1.36. Show that

MN (t) =
pet

1− qet
if N ∼ Geom(p),

MN (t) = eλ(e
t−1) if N ∼ Poi(λ),

and

MX(t) =
λ

λ− t
if X ∼ Exp(λ).

⊓⊔

Exercise 1.37. Let Y ∼ N(0, 1) be a standard normal random variable and setX := exp(Y ).

18The entropy is a measure of disorder or randomness of the probability density: the higher the entropy the less

predictable is the associated random variable.
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(i) Show that

E
[
Xn

]
= en

2/2, ∀n ∈ N.
(ii) Prove that the probability distribution PX of X is given by the log-normal law

PX
[
dx
]
= p(x)dx, p(x) =

{
1

x
√
2π
e−

1
2
(log x)2 , x > 0,

0, x ≤ 0,

where log denotes the natural logarithm.

(iii) For α ∈ [−1, 1] we set

pα(x) =

{
p(x)

(
1 + α sin(2π log x)

)
, x > 0,

0, x ≤ 0.

Prove that for any α ∈ [−1, 1] and any n ∈ N0 we have∫
R
xnpα(x)dx = en

2/2.

Thus, for any α ∈ [−1, 1], the function pα(x)dx is a probability density on R and
the probability measure pα(x) has the same moments as X,

⊓⊔

Exercise 1.38. Let X : (Ω, S,P) → R be a random variable with range contained in

N0 = {0, 1, 2, . . . }.

Its probability generating function (or pgf for brevity) is the formal power series

PGX(s) =
∑
n≥0

P[X = n]sn.

(i) Show that the power series defining PGX is convergent for any |s| < 1. Moreover,
∀t ≤ 0 we have

MX(t) = PGX(e
t).

(ii) Compute PGX when X ∼ Bin(n, p), X ∼ Geom(p), X ∼ Poi(λ).

⊓⊔

Exercise 1.39. Show that

Gamma(ν0, λ) ∗Gamma(ν1, λ) = Gamma(ν0 + ν1, λ), ∀ν0, ν1 > 0, (1.6.6a)

N(0, v0) ∗N(0, v1) = N(0, v0 + v1), ∀v0, v1 > 0, (1.6.6b)

Poi(λ0) ∗ Poi(λ1) = Poi(λ0 + λ1), ∀λ0, λ1 > 0. (1.6.6c)

Hint. Use Theorem 1.3.20, Corollary 1.3.18 and Corollary 1.3.48. ⊓⊔

Exercise 1.40. Let µ0, µ1 ∈ Prob([0, 1]) be two Borel probability measures. Prove that the
following statements are equivalent.

(i) ∫ 1

0
xn µ0

[
dx
]
=

∫ 1

0
xn µ1

[
dx
]
, ∀n ∈ N.
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(ii) For any Borel subset B ⊂ [0, 1], µ0
[
B
]
= µ1

[
B
]
.

⊓⊔

Exercise 1.41. Suppose that µ is a Borel probability measure on R≥0. We define its Laplace
transform to be the function

Lµ : [0,∞) → R, Lµ(λ) =

∫
R≥0

e−λxµ
[
dx
]
.

Consider the measurable map F : [0,∞) → [0, 1], F (x) = e−x. We set µ̃ := F#µ.

(i) Prove that

Lµ(λ) =

∫
[0,1]

yλµ̃
[
dy
]
.

(ii) Prove that the measure µ is uniquely determined by its Laplace transform Lµ.

⊓⊔

Exercise 1.42. Denote by Prob = Prob(R,BR) the space of probability measures on (R,BR).
Show that (Prob, ∗) is a commutative semigroup with unit δ0, the Dirac measure concentrated
at 0. ⊓⊔

Exercise 1.43. Consider the interval [−π/2, π/2] equipped with the probability measure

P
[
dx
]
=

1

π
λ
[
dx
]
,

λ = the Lebesgue measure. We regard the function

X : [−π/2, π/2] → R, X(t) = sin2 t

as a random variable on this probability spaces. Prove that X ∼ Beta(1/2, 1/2). ⊓⊔

Exercise 1.44. For any a, b > 0 we define the incomplete Beta function

Ba,b : (0, 1) → R, Ba,b(x) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt, .

where B(a, b) is the Beta function (A.1.2).

(i) Prove that

xa(1− x)b

aB(a, b)
= Ba,b(x)−Ba+1,b(x). (1.6.7a)

xa(1− x)b

bB(a, b)
= Ba,b+1(x)−Ba,b(x). (1.6.7b)

(ii) Show that if k, n ∈ N, k < n we have

Bk,n+1−k(x) =

n∑
a=k

(
n

a

)
xa(1− x)n−a. (1.6.8)

⊓⊔
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Exercise 1.45. Suppose that X1, . . . , Xn : (Ω, S, µ) → R are random variables with joint
probability distribution

PX1,...,Xn

[
dx1 · · · dxn

]
= p(x1, . . . , xn)dx1 · · · dxn,

p ≥ 0,

∫
Rn

p(x1, . . . , xn)dx1 · · · dxn = 1.

Consider the new random variables

Yi =

n∑
k=1

aijXj , aij ∈ R

where the matrix A =
(
aij
)
1≤i,j≤n is invertible with inverse A−1 =

(
aij
)
1≤i,j≤n Prove that

the joint distribution of Y1, . . . , Yn is given by the density

q(y1, . . . , yn) =
1

|detA|
p
(
a11y1 + · · ·+ a1,nyn, . . . , a

n1y1 + · · ·+ annyn
)
. ⊓⊔

Exercise 1.46. Suppose that X1, . . . , XN are independent standard normal random vari-
ables. For n = 1, . . . , we denote by R2

n the random variable X2
1 + · · ·+X2

n.

(i) Prove that

R2
n ∼ χ2(n) := Gamma(ν, λ), ν =

n

2
, λ =

1

2
.

(ii) Prove that

R2
n

R2
N

∼ Beta(a, b), where a =
n

2
, b =

N − n

2
.

⊓⊔

Exercise 1.47. Fix a probability space (Ω, S,P). Show that L0(Ω, S,P) equipped with the
metric dist defined in (1.3.58) is a complete metric space. More precisely, show that if a
sequence of random variables Xn ∈ L0(Ω, S,P) is Cauchy in probability, i.e.,

lim
m,n→∞

P
[
|Xm −Xn| > r

]
= 0, ∀r > 0,

then there exists a random variable X ∈ L0(Ω, S,P) such that Xn → X in probability. ⊓⊔

Exercise 1.48. Fix a probability space (Ω, S,P). Prove that if a sequence of random variables
Xn ∈ L0(Ω, S,P) converges a.s. to a random variable X ∈ L0

(
Ω, S,P

)
iff it satisfies

lim
m,n→∞

P
[

sup
m<k≤n

∣∣Xk −Xm

∣∣ > r
]
= ∀r > 0.

⊓⊔

Exercise 1.49. Prove the claim in Remark 1.4.4. ⊓⊔

Exercise 1.50. Suppose that X,Y are independent random variables with distributions PX
and respectively PY . Let f : R2 → R be a Borel measurable function such that f(X,Y ) is
integrable. Show that

E
[
f(X,Y ) ∥X

]
= h(X),
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where

h(x) =

∫
R
f(x, y)PY

[
dy
]
. ⊓⊔

Exercise 1.51. Suppose that (Ω, S,P) is a probability space, F ⊂ S a sigma-subalgebra and
X ∈ L0(Ω, S), Y ∈ L0(Ω,F). Prove that the following are equivalent.

(i) X = Y a.s..

(ii) For any bounded Borel measurable function f : R → R, E
[
f(X) ∥F

]
= f(Y ) a.s.

⊓⊔

Exercise 1.52. Suppose that the sequence of independent random variables (Xn)n∈N con-
verges in probability to a random variable X. Prove that X is a.s. constant. Hint. Use

Kolmogorov’s 0-1 theorem. ⊓⊔

Exercise 1.53 (Strong memoryless property). Suppose that T is an exponential random
variable and T0, S ≥ 0 are nonnegative random variables so that T, T0, S are pairwise inde-
pendent. Then

P
[
T > T0 + S

∣∣T > S
]
= P

[
T > T0

]
.

Note that when T0, S are deterministic we recover the memoryless property (1.3.49). ⊓⊔

Exercise 1.54. For n ∈ N we denote by Cn the cone in Rn defined by

Cn :=
{
(x1, . . . , xn) ∈ Rn : x1 ≤ x2 ≤ · · · ≤ xm

}
.

Define ord : Rn → Cn

(x1, . . . , xn) 7→ ord(x1, . . . , xn) = (x(1), x(2), . . . , x(n)),

where

x(1) = min{x1, . . . , xn}, x(2) = min
(
{x1, . . . , xn} \ {x(1)}

)
, . . . .

In other words, x(1), . . . , x(n) are the numbers x1, . . . , xn rearranged in increasing order.

Suppose X1, . . . , Xn are n i.i.d. random variables with common cdf

F (x) =

∫ x

−∞
p(s)ds, p ∈ L1(R,λ).

The order statistics of the random variables X1, . . . , Xn is the random vector

ord(X) := (X(1), . . . , X(n)),

where X = (X1, . . . , Xn).

(i) Show that the distribution of ord(X) is

Pord(X)[dx1 · · · dxn] = n!p(x1) · · · p(xn)ICn(x1, . . . , xn)dx1 · · · dxn.

(ii) Denote by F(j) the cdf of the component X(j), F(j)(x) = P
[
X(j) ≤ x

]
. Prove that

F(j)(x) =

n∑
k=j

(
n

k

)
F (x)k

(
1− F (x)

)n−k
.
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(iii) Suppose that X1, . . . , Xn ∼ Unif(0, 1). Show that

X(j) ∼ Beta(j, n+ 1− j), E
[
X(j)

]
=

j

n+ 1
.

(iv) Suppose that X1, . . . , Xn ∼ Unif(0, 1) and consider the random vector

Y = (X(2), . . . , X(n)).

Compute the conditional distribution of Y given X(1)

PY
[
dy2 · · · dyn ∥X(1) = x

]
.

(v) Suppose that X1, . . . , Xn ∼ Exp(λ). Show that19

X(1) ∼ Exp(nλ), E
[
X(1)

]
=

1

nλ
.

(vi) Suppose that X1, . . . , Xn ∼ Exp(λ). Show that

nX(1), (n− 1)
(
X(2) −X(1)

)
, . . . , 2

(
X(n−1) −X(n−2)

)
, X(n) −X(n−1)

are independent Exp(λ) random variables. Hint. Use (i) and Exercise 1.45 to prove first that
the spacings

S1 = X(1), S2 = X(2) −X(1), . . . , Sn = X(n) −X(n−1)

are independent exponential random variables.

⊓⊔

Exercise 1.55. Suppose that X1, . . . , Xn−1 are independent and uniformly distributed in
[0, 1]. Consider their order statistics

X(1) ≤ · · · ≤ X(n−1)

and the corresponding spacings20

S1 = X(1), S2 = X(2) −X(1), . . . , Sn = 1−X(n−1).

Denote by Ln the largest spacing, Ln = max
(
S1, . . . , Sn).

(i) Prove that (S1, . . . , Sn) is uniformly distributed in the simplex

∆n :=
{
(s1, . . . , sn) ∈ [0, 1]n;

n∑
k=1

sk = 1
}
.

Deduce that E
[
Sk
]
= 1

n , ∀k = 1, . . . , n.

(ii) Show that

E
[
Ln
]
=

1

n

n∑
k=1

(−1)k+1 1

k

(
n

k

)
.

Hint. Let For x ∈ [0, 1] denote by Ek = Ek(x) the event {Sk > x}. Then {Ln > x} =
⋂n

k=1 Ek(x).

Conclude using inclusion-exclusion, (i) and (1.3.47) .

19To appreciate how surprising then concusion (v) think that an institution buys a large number n of computers,
all of the same brand, and X1, . . . , Xn denote the lifetimes of these machines. Each is expected to last 1/λ years. The

random variable X(1) is the lifetime of the first computer that breaks down. The result in (v) show that we should

expect the first break down pretty soon, in 1
nλ

years!
20The n− 1 points X1, . . . , Xn−1 divide the interval [0, 1] into n subintervals and the spacings are the lengths of

these subintervals.
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(iii) Let Y1, . . . , Yn be independent Exp(1) random variables. Set Tn = Y1 + · · · + Yn.
Find the joint distribution of (Y1, . . . , Yn, Tn) and show that the random variables

Y1
Tn
, . . . ,

Yn
Tn

has the same joint distribution as the spacings S1, . . . , Sn. Deduce that Ln has the
same distribution as

max1≤k≤n Yk
Tn

=
Y(n)

Tn
.

(iv) Prove that Ln and

1

Tn

n∑
k=1

Yk
k

have the same distribution.Hint. Use (iii) and Exercise 1.54(vi). Deduce that21

E
[
Ln
]
:=

1

n

n∑
k=1

1

k
.

⊓⊔

Remark 1.6.1. Observe that the above exercise produces a strange identity,
n∑
k=1

1

k
=

n∑
k=1

(−1)k+1 1

k

(
n

k

)
.

⊓⊔

Exercise 1.56. Consider the Poisson process (N(t))t≥0 with intensity λ described in Example
1.3.7 .

(i) Find the distribution of Wt = N(t) + 1− t.

(ii) Show that N(t+ h)−N(t) ∼ Poiλh, t ≥ 0, h > 0.

⊓⊔

Exercise 1.57. Consider the Poisson process (N(t))t≥0 with intensity λ described in Example
1.3.7. Let S be a nonnegative random variable independent of the arrival times (Tn)n≥0 of
the Poisson process. For any arrival time Tn we denote by ZTn,S the number of arrival times
located in the interval (Tn, Tn + S]

ZTn,S := #
{
k > n; Tn < Tk ≤ Tn + S

}
.

Prove that

P
[
ZTn,S = k

]
=

∫ ∞

0
e−kλs

(λs)k

k!
PS
[
ds
]
. ⊓⊔

Exercise 1.58. Suppose that N(t) is a Poisson process (see Example 1.3.7 ) with intensity
λ and arrival times

T1 ≤ T2 ≤ · · · .

21This equality shows that E
[
Ln

]
∼ logn

n
, which is substantially higher than the mean of each individual spacing,

E
[
Sk

]
= 1

n
, ∀k.
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Fix t > 0 and let (Xn)n≥1 be i.i.d. random variables uniformly distributed in [0, t]. Prove
that, conditional on N(t) = n, the random vectors(

T1, . . . , Tn
)

and
(
X(1), . . . , X(n)

)
have the same distribution. ⊓⊔

Exercise 1.59. Suppose that the 20 contestants at a quiz show are each given the same
question, and that each answers it correctly, independently of the others, with probability P .
However, the probability of success P itself is a random variable.22 Suppose, for the sake of
illustration, that P is uniformly distributed over the interval (0, 1].

(i) What is the probability that exactly two of the contestants answer the question
correctly?

(ii) What is the expected number of contestants that answer the question correctly?

⊓⊔

Exercise 1.60. Let ν be a Borel probability measure on R. Prove that for any Borel subset
B ⊂ R the map ΨB : R → R, ΨB(y) = ν

[
B − y

]
is measurable. ⊓⊔

Exercise 1.61 (Skhorohod). Denote by Prob0(R) the set of Borel probability measures on
R such that ∫

R
xµ
[
dx
]
= 0.

Clearly Prob0(R) is a convex subset of the set Prob(R) of Borel probability measures on R.
For u, v ≥ 0 such that u+ v > 0 we define the bipolar measure

βu,v :=
v

u+ v
δ−u +

u

u+ v
δv ∈ Prob0(R)..

Let Q :=
{
(u, v) ∈ R2; u, v ≥ 0, u + v ≥ 0

}
. We regard βu,v as a random measure (or

Markov kernel) β : Q×BR → R
β
(
(u, v), B) = βu,v

[
B
]
.

Prove that for any µ ∈ Prob0(R) there exists a Borel probability measure ν on Q such that
µ := β∗ν. In other words, any measure µ ∈ Prob0(R) is a mixture of bipolar measures. ⊓⊔

Exercise 1.62. Given sigma algebras F±,F0,⊂ S, prove that the following are equivalent.

(i) F+ ⊥⊥ F0 F−.

(ii) F+ ⊥⊥ F0 F0 ∨ F−.

⊓⊔

Exercise 1.63. Given sigma algebras F±,F0,⊂ S, prove that the following are equivalent.

(i) F+ ⊥⊥ F0 ∨ F−

(ii) F+ ⊥⊥ F0 and F+ ⊥⊥ F0 F−.

⊓⊔
22Think of P as a random Bernoulli measure of the kind discussed in Example 1.4.20. The source of randomness

could be due to the fact that the difficulty of the questions could change randomly from one show to another.
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Exercise 1.64. Suppose that µ is a Borel probability measure on the metric space (X, d).
Denote by C the collection of Borel subsets S of X satisfying the regularity property: for any
ε0 there exists a closed subset Cε ⊂ S and an open subset Oε ⊃ S such that

µ
[
Oε \ Cε

]
< ε.

(i) Show that S ∈ C ⇒ Sc := X \ C ∈ C.

(ii) Show that any closed set belongs to C.23

(iii) Show that C is a π-system.

(iv) Show that C is a λ-system.

(v) Show that C coincides with the family of Borel subsets.

⊓⊔

Exercise 1.65. Suppose that (X, d) is a compact metric space and µ is a finite Borel measure
on X. Prove that for any p ∈ [1,∞) the space C(X) of continuous functions on X is dense
in Lp(X,µ). Hint. Use Exercise 1.64 to show that for any Borel subset B ⊂ X the indicator function IB can be

approximated in Lp by continuous functions. ⊓⊔

23This is where the fact is a X metric space plays an important role.





Chapter 2

Limit theorems

The limit theorems have preoccupied mathematicians from the dawns of probability. The first
law of large numbers goes back to Jacob Bernoulli at the end of the seventeenth century. The
Golden Theorem in his Ars Conjectandi is what we call today a weak law of large numbers.
Bernoulli considers an urn that contains a large number of black and white balls. If p ∈ (0, 1)
is the proportion of white balls in the urn and we draw with replacement a large number n of
balls, then the proportion pn of white balls among the extracted ones is with high confidence
within a given open interval containing p.

His result lacked foundations since the concept of probability lacked a proper definition.
The situation improved at the beginning of the twentieth century when E. Borel proved a
strong form of Bernoulli’s law. Borel too lacked a good definition of a probability space, but
he worked rigorously. In modern terms, he used the interval [0, 1] with the Lebesgue measure
as probability space. He then proceeded to construct explicitly a sequence of functions
Xn : [0, 1] → R which, viewed as random variables are i.i.d. with common distribution
Bin(1/2).

It took the efforts of Hinchin and Kolmogorov to settle the general case. The strong law
of large numbers states that if (Xn)n∈N are i.i.d. random variables with finite mean µ, then
the empirical mean

Mn =
1

n

n∑
k=1

Xn

converges a.s. to the theoretical mean µ.

This chapter is devoted to these limit theorems. In the first section we investigate the
SLLN= Strong Law of Large Numbers. The approach we use is due to Kolmogorov. It
reduces this law to the convergence of random series of independent random variables.

The second section is devoted to the Central Limit Theorem stating that the distribution
of Mn is very close to the distribution of a Gaussian random variable with the same mean
and variance as Mn. The third section, is more modern, and it is devoted to concentration
inequalities. These state in a quantitative fashion that the probability that Mn deviates
from the mean µ by a certain amount is extremely small under certain conditions. The
fourth section is devoted to uniform limit theorem of the Glivenko-Cantelli type. We have

145
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included this section due to its applications in machine learning. In particular, we show how
such results coupled with the concentration inequalities lead to Probably Approximatively
Correct, or PAC, learning.

The last section of this chapter is devoted to a brief introduction to the Brownian motion.
This is such a fundamental object that we thought that any student of probability ought to
make its acquaintance as soon as possible. As always, along the way we present many, we
hope, interesting examples.

2.1. The Law of Large Numbers

This section is devoted to the (Strong) Law of Large numbers. We follow Kolmogorov’s
approach based on random series, a subject of independent interest.

2.1.1. Random series. Fix a probability space (Ω, S,P) and consider a sequence of inde-
pendent random variables

Xn : (Ω, S,P) → R, n ∈ N.
The independence of the random variables (Xn) allows us to invoke Kolmogorov’s 0-1 theorem
and conclude that the random series ∑

n∈N
Xn (2.1.1)

either converges almost surely, or diverges almost surely. We want to describe by describing
one simple sufficient condition for convergence.

Theorem 2.1.1 (Kolmogorov’s one series). Suppose that

E
[
Xn

]
= 0, ∀n ∈ N, (2.1.2a)∑

n≥1

Var
[
Xn

]
<∞. (2.1.2b)

Then the series (2.1.1) converges almost surely and in L2.

Proof. For n ∈ N we denote by Sn the n-th partial sum of the series (2.1.1),

Sn :=
n∑
k=1

Xk.

The L2-convergence follows immediately from (2.1.2b) which, coupled with the independence
of the random variables (Xn) implies that the sequence (Sn) is Cauchy in L2 since

∥Sn+k − Sn∥2L2 =

k∑
j=1

Var
[
Xn+j

]
, ∀k, n ∈ N.

The proof of the a.s. convergence is more difficult. It relies on a fundamental inequality which
we will further generalize in the next chapter. The independence of the random variables
(Xn) is used crucially in its proof.

Lemma 2.1.2 (Kolmogorov’s maximal inequality). Set

Mn := max
1≤k≤n

|Sk|.
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Then, for all a > 0, we have

P
[
Mn > a

]
≤ 1

a2
Var

[
Sn
]
=

1

a2

n∑
k=1

Var
[
Xk

]
. (2.1.3)

Additionally if ∃c > 0 such that |Xn| ≤ c , ∀n, then

1− (a+ c)2

Var
[
Sn
] ≤ P

[
Mn > a

]
. (2.1.4)

Proof of Kolmogorov’s maximal inequality. Define

N : Ω → N ∪ {∞}, N(ω) := inf
{
n ≥ 1; |Sn(ω)| > a

}
.

Notice that N(ω) is the first n ∈ N ∪ {∞} such that Sn(ω) > a, i.e.,

N(ω) = k⇐⇒S1(ω), . . . , Sk−1(ω) ≤ a and Sk(ω) > a.

This shows that the event Ak = {N = k} is in the σ-algebra generated by X1, . . . , Xk. Since
Sn−Sk = Xk+1+ · · ·+Xn we deduce that IAk

, IAk
Sk are independent of Sn−Sk. We have

Var
[
Sn
]
= E

[
S2
n

]
≥ E

[
S2
nI{Mn≥a}

]
=

n∑
k=1

E
[
IAk

S2
n

]
=

n∑
k=1

E
[
IAk

(
S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2
]

(IAk
, IAk

Sk ⊥⊥ Sn − Sk)

=
n∑
k=1

(
E
[
IAk

S2
k

]
+ 2E

[
IAk

Sk
]
E
[
Sn − Sk

]︸ ︷︷ ︸
=0

+E
[
IAk

]
E
[
(Sn − Sk)

2
]︸ ︷︷ ︸

≥0

)

≥
n∑
k=1

E
[
IAk

S2
k

]︸ ︷︷ ︸
S2
k≥a2 on Ak

≥ a2
n∑
k=1

P
[
Ak
]
= a2P

[
Mn ≥ a

]
.

This proves (2.1.3).

To prove (2.1.4) we argue as in [115, Sec.17.2] and we set

B0 := Ω, Bk := {N > k} =
{
Mk ≤ a

}
.

Observe that, ∀k = 1, . . . , n, Bk−1 ⊃ Bk and

Ak = {N = k } =
{
N > k − 1

}
\
{
N > k

}
= Bk−1 \Bk,

Sk−1IBk−1
+XkIBk−1

= SkIBk−1
= SkIBk

+ SkIAk
.

Since Bk−1 ∈ σ(X1, . . . , Xk−1) we have Xk ⊥⊥ Sk−1IBk−1
. Hence

E
[
(Sk−1IBk−1

) · (XkIBk−1
)
]
= E

[
(Sk−1IBk−1

) ·Xk

]
= 0.

We deduce that

E
[ (
Sk−1IBk−1

+XkIBk−1

)2 ]
= E

[
(Sk−1IBk−1

)2
]
+ E

[
(XkIBk−1

)2
]

(Xk ⊥⊥ IBk−1
)

= E
[
(Sk−1IBk−1

)2
]
+Var

[
X2
k

]
P
[
Bk−1

]
.

On the other hand, IBk
IAk

= 0 so

E
[ (
SkIBk

+ SkIAk

)2 ]
= E

[
(SkIBk

)2
]
+ E

[
(SkIAk

)2
]
.
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Hence

E
[
(Sk−1IBk−1

)2
]
+Var

[
X2
k

]
P
[
Bk−1

]
= E

[
(SkIBk

)2
]
+ E

[
(SkIAk

)2
]
.

Since |Xk| ≤ c and |Sk−1| ≤ a on Ak we deduce

|SkIAk
| ≤ |Sk−1|IAk

+ |Xk|IAk
≤ |Sk−1|IAk

+ cIAk
≤ (a+ c)IAk

Observe that P
[
Bk−1

]
≥ P

[
Bn
]
. We deduce

≤ E
[
(Sk−1IBk−1

)2
]
+Var

[
X2
k

]
P
[
Bn
]
≤ E

[
(SkIBk

)2
]
+ (a+ c)2P

[
Ak
]
.

Hence
Var

[
X2
k

]
P
[
Bn
]
≤ E

[
(SkIBk

)2
]
− E

[
(Sk−1IBk−1

)2
]
+ (a+ c)2P

[
Ak
]

and
n∑
k=1

Var
[
X2
k

]
P
[
Bn
]
≤ E

[
(SnIBn)

2
]
+ (a+ c)2

n∑
k=1

P
[
Ak
]

≤ a2P
[
Bn
]
+ (a+ c)2P

[
Bc
n

]
≤ (a+ c)2

In other words,
Var

[
Sn
](

1− P
[
Mn > a

] )
≤ (a+ c)2

This proves (2.1.4). ⊓⊔

We can now complete the proof of Theorem 2.1.1. Using Kolmogorov’s maximal inequality
for the sequence (Xm+n)n∈N we deduce that for any n ∈ N we have

P
[

max
1≤k≤n

|Sm+k − Sm| > ε
]
≤ 1

ε2
Var

[
Sm+n − Sm

]
=

1

ε2

n∑
k=1

Var
[
Xm+k

]
≤ 1

ε2

∑
k≥1

Var
[
Xm+k

]
︸ ︷︷ ︸

=:rm

.

Thus

P
[
sup
n≥1

|Sm+n − Sm| > ε
]
≤ rm

ε2
. (2.1.5)

We set
Ym := sup

i,j≥m
|Si − Sj |, Zm := sup

n≥1
|Sm+n − Sm|.

Now observe that Sm converges a.s. iff Ym → 0 a.s. The sequence Ym is nonincreasing and
thus it converges a.s. to a random variable Y ≥ 0. We will show that Y = 0 a.s..

Note that, for i, j > m we have

|Si − Sj | ≤ |Si − Sm|+ |Sj − Sm| ≤ 2Zm,

so Ym ≤ 2Zm, ∀m so

Ym > 2ε⇒ Zm > ε⇒ P
[
Ym > 2ε

]
≤ P

[
Zm > ε

] (2.1.5)

≤ rm
ε2

∀m ≥ 1, ∀ε > 0.

Hence
lim
m→∞

P
[
Ym > ε

]
= lim

m→∞
P
[
|Zm| > ε

]
= 0.

In other words, the sequence (Ym) converges in probability to 0. Since it also converges a.s.
to Y we deduce that Y = 0 a.s.. ⊓⊔
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Kolmogorov also established necessary and sufficient conditions for convergence in his
three series theorem. Before we state it let us introduce a convenient notation. For any
random variable X and any positive constant C we denote by XC the truncation

XC := XI{|X|≤C} =

{
X, |X| ≤ C,

0, |X| > C.
(2.1.6)

Theorem 2.1.3 (Kolmogorov’s three series theorem). Consider a sequence of independent
random variables Xn ∈ L0(Ω, S,P). The following statements are equivalent.

(i) The series ∑
n≥1

Xn (2.1.7)

converges almost surely.

(ii) There exists C > 0 such that the following three series are convergent.∑
n≥1

P
[
|Xn| > C

]
=
∑
n≥1

P
[
Xn ̸= XC

n

]
, (2.1.8a)

∑
n≥1

E
[
XC
n

]
,
∑
n≥1

Var
[
XC
n

]
. (2.1.8b)

Proof. (ii) ⇒ (i) Note that that condition (2.1.8a) coupled with the first Borel-Cantelli
lemma (Theorem 1.3.52(i)) implies that P

[
Xn ̸= XC

n i.o.
]
= 0. Hence the series

∑
n>0Xn

converges a.s. iff the series
∑

n>0X
C
n convergence. The convergence of the latter follows from

(2.1.8b) and Kolmogorov’s one series theorem.

(i) ⇒ (ii) Since the series
∑

n>0Xn is a.s. convergent we deduce that Xn → 0 a.s.. Thus, for
any c > 0

P
[
|Xn| > c i.o.

]
= 0

and the second Borel-Cantelli Lemma (Theorem 1.3.52(ii)) implies∑
n>0

P
[
|Xn| > C i.o.

]
<∞.

This proves (2.1.8a). Hence P
[
Xn ̸= XC

n i.o.
]
= 0. Since the series

∑
n>0Xn converges a.s.

we deduce that
∑

n>0X
C
n converges a.s.. The conditions (2.1.8b) are now a consequence of

the following result of independent interest.

Lemma 2.1.4. Suppose that (Yn)n∈N is a sequence of independent random variables that are
uniformly bounded and such the series

∑
n Yn converges a.s.. Then the numerical series∑

n

E
[
Yn
]

and
∑
n

Var
[
Yn
]
.

converge.

Proof of Lemma 2.1.4. We follow the approach in [115, Sec.17.3]. The proof uses a clever
symmetrization trick.

Choose a sequence of independent random variables (Y ′
n), that are independent of (Yn)

and such that Yn and Y ′
n have the same distribution for any n. We set Y ∗

n := Yn − Y ′
n. The
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random variables Y ∗
n are symmetric in the sense that for any Borel subset B ⊂ R we have

P
[
Y ∗
n ∈ B

]
= P

[
− Y ∗

n ∈ B
]
.

Fix C > 0 such that |Yn| ≤ c, ∀n. Then
|Y ∗
n | ≤ |Yn|+ |Y ′

n| ≤ 2C, E
[
Y ∗
n

]
= 0, Var

[
Y ∗
n

]
= 2Var

[
Yn
]
.

Since
∑

n Yn converges a.s. so does
∑

n Y
∗
n . We set

S∗
n =

n∑
k=1

Y ∗
k .

For m ≤ n
Mm,n = max

1≤k
|S∗
m+k − S∗

m|.

Using (2.1.4) we deduce that for any ε > 0 and any 0 ≤ m < nwe have

1− (ε+ c)2

Var
[
S∗
n − S∗

m

] ≤ P
[
Mm,n > ε

]
.

Since S∗
n converges a.s. we deduce that for any ε > 0

lim
m,n→∞

P
[
Mm,n > ε

]
= 0.

Choose m0 > 0 such that P
[
Mm0,n > ε

]
< 1

2 , ∀n > m0. Hence, ∀n > m0

2
∑

m0<k≤n
Var

[
Yk
]
=

∑
m0<k≤n

Var
[
Y ∗
k

]
= Var

[
S∗
n − S∗

m0

]
≤ 2(ε+ c)2.

This proves that the series ∑
n>0

Var
[
Yn
]

is convergent. Kolmogorov’s one series theorem implies that the series∑
n>0

(
Yn − E

[
Yn
] )

converges a.s.. We deduce that
∑

n>0 E
[
Yn
]
is convergent since

∑
n>0 Yn converges a.s.. ⊓⊔

This completes the proof of Theorem 2.1.3. ⊓⊔

Example 2.1.5. Consider a sequence of i.i.d. Bernoulli random variables (Bn)n∈N with
success probability 1

2 . The resulting random variables Rn = (−1)Bn are called Rademacher
random variables and take only the values ±1 with equal probabilities.

Suppose that ∑
n≥1

ak

is a deterministic series with bounded positive terms.We obtain the random series∑
n≥1

Rnan. (2.1.9)

We have E
[
Rnan

]
= 0 and Kolmogorov’s one series theorem shows that if∑

n≥1

a2n <∞
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the random series (2.1.9) is a.s. convergent. Conversely, if the random series (2.1.9) is a.s.
convergent, then Lemma 2.1.4 implies that is

∑
n≥1 a

2
n <∞ .

As a special case, suppose that an = 1
n , ∀n ≥ 1. Consider the harmonic series with

random signs

∑
n≥1

Rn
n

= ±1± 1

2
± 1

3
± · · · , (2.1.10)

We know that if all the terms are positive, a probability zero event, then we obtain the
harmonic series which is divergent. On the other hand,∑

k≥1

1

k2
<∞,

and we deduce from Kolmogorov’s one series theorem that the series (2.1.10)is a.s. convergent.
Thus, if we flip a fair coin with two sides, a + side and a − side and we assign the signs in
(2.1.10) according to the coin flips, the resulting series is convergent with probability 1! ⊓⊔

Remark 2.1.6. The so called Lévy’s equivalence theorem, [53, §III.2,Cor. 2], [56, §9.7], [112,
§43], [115, Sec.18.2] or [174, Thm.3.9] states that a series with independent terms converges
a.s. iff converges in probability, iff converges in distribution; see Definition 2.2.3(iii).The proof
that the convergence in probability implies convergence a.s. is outlined in Exercises 2.1 and
2.2. ⊓⊔

2.1.2. The Law of Large Numbers. The frequentist interpretation of probability asserts
that the probability of an event is roughly the frequency of the occurrence of that event in a
very large number of independent trials. The Law of Large Numbers formalizes this intuition.
The surprising thing, at least to this author, is that reality respects the theory so closely: the
Law of Large Numbers adds a surprising level of predictability to uncertainty!

Throughout this section (Xn)n≥1 is a sequence of iid random variables Xn ∈ L1(Ω, S,P).
Set

µ := E
[
Xn

]
, Sn := X1 + · · ·+Xn.

The various versions of the Law of Large Numbers state that the empirical means Sn/n
converge in an appropriate sense to the theoretical mean µ. The convergence in probability is
usually referred to as the Weak Law of Large Numbers (or WLLN) while the a.s. convergence
is known as the Strong Law of Large Numbers (or SLLN). We begin by presenting a few
special, but historically important, cases.

Theorem 2.1.7 (Markov). If Xn ∈ L2(Ω, S,P), then 1
nSn → µ in L2 and thus also in probability.

Proof. Denote by σ2 the common variance of the random variables Xn. Since they are
independent we have Var

[
Sn
]
= nσ2, so

Var
[
Sn/n

]
=

1

n2
Var

[
Sn
]
=

1

nσ2
.

Let ε > 0. Note that E
[
Sn/n

]
= µ so∥∥Sn/n− µ

∥∥2
L2 = Var

[
Sn/n

]
=

1

nσ2
.
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Hence Sn
n converges to µ in L2. Proposition 1.3.61 implies that Sn/n→ µ in probability. ⊓⊔

Theorem 2.1.8 (Cantelli). If Xn ∈ L4(Ω, S,P), then 1
nSn → µ almost surely.

Proof. By replacing Xn with Yn := Xn − µ we can assume µ = 0. We set

σ2 := µ2
[
Xk

]
, r4 := µ4

[
Xk

]
, Mn := Sn/n.

Note that

P
[
|Mn| > ε

]
= P

[
|Mn|4 > ε4

]
≤ 1

ε4
E
[
M4
n

]
=

1

n4ε4
E
[
S4
n

]
.

Observe that

E
[
S4
n

]
=

n∑
i,j,k,ℓ=1

E
[
XiXjXkXℓ

]
. (2.1.11)

Let i ̸= j. Due to the independence of the random variables (Xn)n∈N we have

E
[
X2
iX

2
j

]
= E

[
X2
i

]
E
[
X2
j

]
= σ4, E

[
XiX

3
j

]
= E

[
Xi

]
E
[
X3
j

]
= 0

Similarly, for distinct i, j, k, ℓ we have

E
[
XiXjXkXℓ

]
= 0.

Thus

E
[
Sn
]
= n4r4 + 2

(
4

2

)∑
j<k

σ4 = nr4 + 6

(
n

2

)
σ4 = O(n2) as n→ ∞.

Hence E
[
M4
n

]
= O

(
1
n2

)
, so

P
[
|Mn| > ε

]
= O

(
1

n2ε4

)
as n→ ∞.

Since the series
∑

n≥1
1
n2 is convergent we deduce that, for any ε > 0,∑

n≥1

P
[
|Mn| > ε

]
<∞.

Corollary 1.3.54 implies that Mn → 0 a.s.. ⊓⊔

Remark 2.1.9. The above Strong Law of Large Numbers is not the most general, but its
proof makes the role of independence much more visible. More precisely the independence,
or the small correlations force the fourth moment of Sn to be “unnaturally” small and thus
the large fluctuations around the mean are highly unlike, i.e. the P

[
|Mn| > ε

]
is very small

for large n. ⊓⊔

The next result, due to Kolmogorov, generalizes both results above.

Theorem 2.1.10 (The Strong Law of Large Numbers). Suppose that (Xn)n≥1 is a sequence
of iid random variables Xn ∈ L1(Ω, S,P). Then

lim
n→∞

1

n
Sn = µ a.s..
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Proof. We accomplish this in several steps.

Step 1. Truncate. Set

Yn := XnI{|Xn|<n}, Tn := Y1 + · · ·+ Yn.

Obviously |Yn| ≤ n, ∀n. We claim that

P
[
Xn ̸= Yn i.o.

]
= 0. (2.1.12)

Indeed, since the random variables (Xn) are identically distributed we have∑
k≥1

P
[
|Xk| > k

]
=
∑
k≥1

P
[
|X1| > k

]
≤
∫ ∞

0
P
[
|X1| > t

]
dt

(1.3.46)
= E

[
|X1|

]
<∞

and Borel-Cantelli’s Lemma implies implies that

P
[
|Xk| > k i.o.

]
= 0.

This is equivalent to (2.1.12). We deduce from (2.1.12) that

lim
n→∞

1

n

∣∣Sn − Tn
∣∣ = 0 a.s..

Thus, it suffices to show that

lim
n→∞

1

n
Tn = µ a.s.. (2.1.13)

Step 2. Centering. The sequence
(
E
[
Yk
])
k≥1

converges to µ = E
[
X
]
as k → ∞. Indeed,

since the random variables are identically distributed we have

E
[
Yk
]
= E

[
XkI{|Xk|≤k}

]
= E

[
X1I{|X1|≤k}

]
→ E

[
X1

]
,

where at the last step we used the Dominated Convergence theorem. It follows that the
sequence E

[
Yn
]
is also Cèsaro convergent1 to the same limit, i.e.,

lim
n→∞

1

n
E
[
Tn
]
= lim

n→∞

1

n

n∑
k=1

E
[
Yk
]
= µ.

Thus, it suffices to prove that

lim
n→∞

(
1

n

n∑
k=1

Yk −
1

n

n∑
k=1

E
[
Yk
])

= 0, a.s.

Zn := Yn − E
[
Yn
]
.

The random variables Zn are bounded, centered, independent but not identically distributed.
We have to prove that the Cèsaro means of Zn converge to 0 a.s., i.e.,

lim
n→∞

1

n

n∑
k=1

Zk = 0 a.s.. (2.1.14)

Step 3. Conclusion. We will rely on the following elementary result.

Lemma 2.1.11 (Kronecker’s Lemma). Suppose that (an)n∈N and (xn)n∈N are sequences of
real numbers satisfying the following conditions.

(i) The sequence (an) is increasing, positive and unbounded.

1Use Exercise 2.6 with pk,n = 1/n.
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(ii) The series
∑

n≥1
xn
an

is convergent.

Then

lim
n→∞

1

an

n∑
k=1

xk = 0.

Assume temporarily the validity of Kronecker’s lemma. Thus, to prove (2.1.14) it suffices
to show that the random series ∑

n≥1

Zn
n

is a.s. convergent. The independence assumption will finally play a role because we will invoke
the one-series theorem. Clearly the random variables Zn

n are independent. We claim that∑
k≥1

Var[Zk]

k2
<∞. (2.1.15)

We have

Var
[
Zk
]
= Var

[
Yk
]
= E

[
Y 2
k

]
− E

[
Yk
]2 ≤ E

[
Y 2
k

]
(1.3.46)
=

∫ ∞

0
2yP

[
|Yk| > y

]
dy =

∫ ∞

0
2yP

[
k ≥ |Xk| > y

]
I{y<k} dy

≤
∫ ∞

0
2yP

[
|Xk| > y

]
I{y<k} dy.

Thus ∑
k≥1

Var[Zk]

k2
≤
∑
k≥1

1

k2

∫ ∞

0
2yP

[
|Xk| > y

]
I{y<k} dy

=

∫ ∞

0

∑
k≥1

1

k2
I{y≤k}

 2yP
[
|X1| > y

]
dy =

∫ ∞

0

∑
k≥y

1

k2

 2y

︸ ︷︷ ︸
=:w(y)

P
[
|X1| > y

]
dy.

We claim that

w(y) < 6, ∀y ≥ 0. (2.1.16)

Indeed, for y ≤ 1 we have

w(y) = 2y
∑
k≥1

1

k2
≤ 4y < 4.

For y ∈ (1, 2] we have

w(y) = 2y
∑
k≥2

1

k2
< 2y ≤ 4.

For y > 2 we have ∑
k≥y

1

k2
≤
∫ ∞

⌊y⌋−1

1

t2
dt =

1

⌊y⌋ − 1

so

w(y) ≤ 2y

⌊y⌋ − 1
≤ 2⌊y⌋+ 2

⌊y⌋ − 1
= 2 +

4

⌊y⌋ − 1
< 6.
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Using (2.1.16) we deduce∑
k≥1

Var[Zk]

k2
< 6

∫ ∞

0
P
[
|X1| > y

]
dy = 6E

[
|X1|

]
<∞.

This proves (2.1.15) and completes the proof of the SLLN, assuming Lemma 2.1.11. ⊓⊔

Proof of Lemma 2.1.11. Set

yk :=
xk
ak
, s0 = a0 := 0, sk :=

k∑
j=1

yj , k ≥ 1,

so that the sequence (sn)n≥1 is convergent. We have to show that

lim
n→∞

1

an

n∑
k=1

akyk = 0.

We have2

n∑
k=1

akyk =
n∑
k=1

ak(sk − sk−1) = a1
(
s1 − s0

)
+ a2

(
s2 − s1

)
+ · · ·+ an

(
sn − sn−1

)
= ansn −

n∑
k=1

sk−1(ak − ak−1).

Now set

wk := ak − ak−1, pn,k :=
wk
an
.

Since (an)n∈N is increasing, positive and unbounded we deduce
n∑
k=1

pn,k = 1, ∀n ≥ 1, lim
n→∞

pn,k = 0, ∀k. (2.1.17)

Observe that
1

an

n∑
k=1

akyk = sn −
n∑
k=1

pn,ksk−1.

The conditions (2.1.17) imply that (see Exercise 2.6)

lim
n→∞

n∑
k=1

pn,ksk−1 = lim
n→∞

sn.

⊓⊔

Since a.s. convergence implies convergence in probability we deduce from the SLLN the
Weak Law of Large Numbers (or WLLN)

Corollary 2.1.12. Suppose that Xn ∈ L1(Ω, S,P), n ∈ N, is a sequence of i.i.d. random
variables with common mean µ. We set

Sn =
n∑
k=1

Xk.

2This is classically known as Abel’s trick. It is a discrete version of the integration by parts trick.
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Then the empirical mean 1
nSn converges in probability to µ. ⊓⊔

Remark 2.1.13. (a) With a bit more effort one can show that in Strong Law of Large
Number the empirical mean 1

nSn not jus a.s. but also in L1; see Corollary 3.2.61.

(b) Let us observe that in the Weak Law of Large Numbers Theorem 2.1.7 the random
variables Xn need not be independent or identically distributed. Assuming all have mean 0,
all we need for that for the Weak Law of Large numbers to hold is that the random variables
are pairwise uncorrelated,

E
[
XmXn

]
= E

[
Xm

]
E
[
Xn

]
, ∀m ̸= n, (2.1.18)

and the only constraint on their distribution is

sup
n

E
[
X2
n

]
<∞.

In Exercise 2.9 we ask the reader to show that the WLLN holds even the random variables
are not identically or dependent. It suffices to we assume something weaker than (2.1.18)
namely that if |m− n| ≫ 1, the random variables Xm and Xn are weakly correlated, i.e.,

lim
k→∞

sup
m∈N

∣∣E[XmXm+k

] ∣∣ = 0. (2.1.19)

If the random variables are independent, but not necessarily identically distributed, there are
known necessary and sufficient conditions for the WLLN to hold. We refer to [65, IX], [76,
§22.], or [140, Chap. 4] for details.

Similarly, in the Strong Law of Large Numbers the variables need not be independent.
The theorem continues to hold if the variables are identically distributed, integrable and only
pairwise independent. For a proof we refer to [59, Sec. 2.4]. In Chapters 4 and 5 we describe
examples of identically distributed integrable random variables satisfying SLLN yet they are
not even pairwise independent. Another principle is at work in these cases, namely ergodicity.
In fact Theorem 2.1.10 is a special case of Birkhoff’s Ergodic Theorem 5.1.19.

The arguments in the proof Theorem 2.1.8 show that the SLLN holds even when the
variables Xn are neither independent, nor identically distributed. Assuming that all the
variables have mean zero, the SLLN holds if any four of them are independent, and the only
assumptions about their distributions is

sup
n

E
[
X4
n

]
<∞.

This can be substantially strengthened. For example, this happens if ∃C > 0 such that∣∣E[XnXm

] ∣∣ ≤ C

1 + |m− n|
, ∀m,n. (2.1.20)

We refer to [120] for more details. Note that (2.1.20) is a stronger version of (2.1.19).

A natural philosophical question arises. What makes the Law of Large Numbers possible?
The above discussion suggests that it is a consequence of a mysterious form of “asynchronic-
ity”: their fluctuations around the mean are not n resonance and they cancel each other out.
These features can be observed in the other Laws of Large Numbers we will discuss in this
text. ⊓⊔
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Remark 2.1.14. Suppose that (Xn)n≥1 is a sequence of i.i.d. variables. The Strong Law of
Large Numbers shows that if they have finite mean µ, then the empirical means

Mn =
1

n

(
X1 + · · ·+Xn

)
converge a.s. to µ. If µ = ∞ and Mn converge a.s. to a random variable M∞, then M∞ is
a.s. constant. Exercise 2.12 outlines a proof of this fact. ⊓⊔

Example 2.1.15. Suppose we roll a fair die a large number n of times and we denote by Sn
the number of times we roll a 1. Intuition tells us that if the die is fair, then for large n, the
fraction of times we get a 1 should be close to 1

6 , i.e.,

Sn
n

≈ 1

6
for n≫ 0.

This follows from the SLLN. Indeed, the above experiment is encoded by a sequence (Xn)n∈N
of i.i.d. Bernoulli random variables with success probability p = 1

6 . Then

Sn =
n∑
k=1

Xk,

and the SLLN
Sn
n

→ E
[
X1

]
=

1

6
a.s. as n→ ∞.

It helps to visualize a computer simulation of such an experiment. Suppose we roll a die a
large number N of times. For i = 1, . . . , N we denote by fi the frequency of 1-s during the
first i trials, i.e.,

fi =
Si
i
.

The resulting vector (fi)1≤i≤N ∈ RN is called relative or cumulative frequency.

The R-code below simulates one such experiment when we roll the die 12, 000 times.

N<-12000

x<-sample(1:6, N, replace=TRUE)

rolls<-x==1

rel_freq<-cumsum(rolls)/(1:N)

plot(1:N,rel_freq,type="l", xlab="Number of rolls",

ylab="The frequency of occurrence of 1",

main="Average number 1-s during random rolls of die")

abline(h=1/6,col="red")

The output is a plot of the collection of points (i, fi) depicted in Figure 2.1. ⊓⊔

Example 2.1.16 (The Monte-Carlo method). Consider a box (parallelepiped)

Bk := I1 × · · · × Ik ⊂ Rk

where I1, . . . , Ik ⊂ R are nontrivial bounded intervals. Consider independent random vari-
aables X1, . . . , Xk, where Xj is uniformly distributed on Ij . The the probability distribution
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Figure 2.1. The frequencies fi fluctuates wildly initially and then stabilizes around the
horizontal line y = 1/6 in perfect agreement with SLLN .

of the random vector X = (X1, . . . , Xk) is

1

λk
[
Bk
]IBk

λk,

where we recall that λk denotes the Lebesgue measure on Rk. If f : Bk → R is integrable,
then

1

λk
[
Bk
] ∫

Bk

f(x)λk(dx) = E
[
f(X)

]
.

Suppose that Xn = (Xn,1, . . . , Xn,k), n ∈ N, is a sequence of i.i.d. random vectors uniformly
distributed in Bk, then the sequence of random variables ( f(Xn) )n∈N is i.i.d., with the same
distribution as f(X). The SLLN implies that the sequence random variables

Zn =
1

n

(
f(X1) + · · ·+ f(Xn)

)
converges a.s. to

1

λk
[
Bk
] ∫

Bk

f(x)λk(dx).

This fact can be used to produce approximations to integrals using probabilistic methods.
When the dimension k is large these methods are, to this day, the only viable methods for
approximating integrals of functions of many variables.

In Example A.3.19 we describe a computer implementation of this strategy using the
programming language R. ⊓⊔

2.1.3. Entropy and compression. Let us describe a surprising application of the law of
large numbers. Suppose that we are given a finite set X equipped with a probability measure
P defined by the function p : X → [0, 1]

p(x) := P
[
{x}

]
.

We will refer to the pair (X, p) as alphabet.

Example 2.1.17. A good example to have in mind is the “alphabet” of the English language.
In this alphabet we throw in not just the letters, but also the punctuation signs and the blank
space. The elements xi are letters/symbols of the alphabet. The probabilities p(xi) can be
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viewed as the frequency of the symbol xi in the written texts. One way to estimated these
frequencies3 is to count the number of their occurrences in a large text, say Moby Dick.

Another good example is the alphabet {0, 1} used in computer languages. The frequencies
p(0) = p(1) = 1

2 . ⊓⊔

For a letter xi of the alphabet we define the “surprise” or “information” contained in the
letter xi to be the quantity

S(xi) := − log2 p(xi).

The base 2 of the logarithm is the convention used in information theory and we will stick
with it. The unit of measure of surprise/information is the bit. Note that S(xi) ∈ [0,∞].
Observe that the less likely the letter xi, the bigger the surprise. The Shanon entropy or the
information entropy of the alphabet is the quantity

Ent2
[
p
]
:= Ep

[
S
]
:= −

∑
x∈X

p(x) log2 p(x), (2.1.21)

where we adhere to the convention 0 · log 0 = 0. Thus the entropy is the expected “surprise”
of the alphabet. For example, if an urn contains 99 black balls and only one white ball. We
would be extremely surprised if when we randomly draw a ball from the urn it urns out to
be the white one. The average amount of surprise in this case is

−0.99 log2(0.99)− 0.01 log2(0.01) ≈ 0.08.

If p0 is the uniform probability measure on X, then

Ent2
[
p0
]
= log2 |X|.

Let m := |X|. Note that Prob(X) can be identified with the (m− 1)-dimensional simplex

∆m =
{
p = (p1, . . . , pm) ∈ [0,∞)m; p1 + · · ·+ pm = 1

}
.

We can view the entropy as a function Ent2 : ∆m−1 → [0,∞). One can check that it is
concave since the function [0,∞) ∋ x 7→ f(x) = −x log2 x is strictly concave. We have

Ent2
[
p
]
=

m∑
i=1

f(pi).

Jensen’s inequality shows that

1

m

m∑
i=1

f(pi) ≤ f

(
1

m

m∑
i=1

pi

)
= f

(
1/m

)
=

log2m

m
,

with equality if and only if p1 = · · · = pm = 1
m . We deduce

Ent2
[
p
]
≤ log2 |X|, ∀p ∈ Prob(X), (2.1.22)

with equality if and only if p is the uniform probability measure. We will see later that the
above is a special case of the Gibbs’ inequality (2.3.9). Intuitively, this inequality says that
among all the probability measures on a finite set, the uniform one is the the most “chaotic”,
the least “predictable”.

3As a curiosity, the letter “e” is the most frequent letter of he English language; it appears 13% of the time in

large texts. It is for this reason that it has the simplest Morse code, a dot.
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We will refer to the elements of Xn as words of length n. The term “word” is a bit
misleading. For example, when X is the English alphabet as above, an element of Xn with
large n can be thought of as the sequence of symbols appearing in a large text. On the other
hand, we can think of Xn itself as a new alphabet with frequencies

pn(x1, . . . , xn) = p(x1) · · · p(xn).

The amount of “surprise” of a word (x1, . . . , xn) is

S(x1, . . . , xn) =
n∑
k=1

S(xk).

The entropy of (Xn, pn) is

Ent2
[
pn
]
= nEnt2

[
p
]
.

We denote by X∗ the disjoint union of the sets Xn,

X∗ =
⊔
n∈N

Xn,

and we will refer to it as the vocabulary of the alphabet X

Fix and alphabet (X, p). We want to describe an efficient way of encoding the words in Xn

by words in the vocabulary of the binary alphabet B := {0, 1}. Thus, we want to construct
a code map C : Xn → B∗ such that the words x ∈ Xn with high frequency are encoded by
words in B∗ of short length. Normally we would require that C be injective but we are willing
to sacrifice precision a bit for the sake of efficiency. We would be happy if the probability
that two different words have the same code is very small, i.e., the event

x, x′ ∈ Xn, x ̸= x′ and C(x) = C(x)

has a very small probability.

Definition 2.1.18. Let ε > 0. The ε-typical set A
(n)
ε with respect to p(x) is the set A

(n)
ε ⊂ Xn

consisting of words (x1, x2, . . . , xn) with the property

2−n(Ent2[p]+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(Ent2[p]−ε). (2.1.23)

⊓⊔

Theorem 2.1.19 (Asymptotic Equipartition Property). For any ε > 0 there exists N = N(ε)
such that for any n > N(ε), the following hold.

(i) pn
[
A

(n)
ε

]
> 1− ε .

(ii) |A(n)
ε | ≤ 2n(Ent2[ p ]+ε).

(iii) |A(n)
ε | ≥ (1− ϵ)2n(Ent2[ p ]−ε).

Proof. We sample (X, p) it according to the frequencies p(xk) and we obtain a sequence
(Xn)n∈N of i.i.d. X-valued random variables distributed according to p. We obtain random
words (X1, . . . , Xn), n ∈ N. The average amount of surprise per letter in this word is

1

n
S(X1, . . . , Xn) =

1

n

n∑
k=1

S(Xk).
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The law of large numbers shows that the random variables 1
nS(X1, . . . , Xn) converge in

probability to Ent2
[
p
]
. Now observe that

(X1, . . . , Xn) ∈ A(n)
ε ⇐⇒ Ent2

[
p
]
− ε ≤ 1

n

n∑
k=1

S(Xk) ≤ Ent2
[
p
]
+ ε

so

Pn
[
A(n)
ε

]
= P

[
Ent2

[
p
]
− ε ≤ 1

n

n∑
k=1

S(Xk) ≤ Ent2
[
p
]
+ ε

]
→ 1

as n→ ∞. Fix N = N(ε) such that

pn
[
A(n)
ε

]
> 1− ε, ∀n > N(ε).

Note that for n > N(ε)

1 =
∑
x∈X n

p(x) ≥
∑

x∈A(n)
ε

pn(x) ≥ 2−n(Ent2[ p ]+ε)|A(n)
ϵ |,

and thus we have

|A(n)
ε | ≤ 2n(Ent2[ p ]+ϵ).

Finally, for n > N(ε) we have

1− ε < Pn
[
A(n)
ε

]
≤

∑
x∈A(n)

ϵ

2−n(Ent2[ p ]−ε) = 2−n(Ent2[ p ]−ϵ)|A(n)
ε |,

and conclude that |A(n)
ε | ≥ (1− ε)2n(Ent2[ p ]−ε). ⊓⊔

The Asymptotic Equipartion Property (or AEP) shows that a typical set has probability

nearly 1, all its elements are nearly equiprobable, and its cardinality is nearly 2nEnt2[ p ]. The
inequality (2.1.22) shows that if p is not he uniform probability measure on X, then

2Ent2[ p ] ≪ |X|.

Hence, if ε > 0 is sufficiently small, then

|A(n)
ε |

|Xn|
→ 0

exponentially fast as n→ ∞. That is, the typical sets have high probability and are “extremey
small” if the entropy is small.

This suggests the following coding procedure. Fix ε > 0 so that 1−ε will be our confidence
level. For n > N(ε) the set A

(n)
ε has about 2L elements where L =

⌈
nEnt2

[
p
] ⌉

elements
and thus we can find an injection

I : A(n)
ε → BL.

For x ∈ A
(n)
ε we attach the symbol 1 at the beginning of the word I(x) ∈ BL and the resulting

word in BL+1 will encode x. It uses L+1 bits. The first bit is 1 and indicates that the word
x is typical.

We are less careful with the atypical words. Chose any map

J : Xn \A(n)
ε → BL
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and we encode an atypical word x using the binary word J(x) with a prefix 0 attached to
indicate that it is atypical. The resulting map C : Xn → BL+1 is not injective, but if two
words have the same code, they must be atypical and thus occur with very small frequency.
This is an example of compression.

Take for example the English language. There are various estimates for its entropy,
starting with the pioneering word of Claude Shannon. Most recent ones4 vary from 1 to 1.5
bits. How do we encode efficiently texts consisting of n = 106 symbols say? For example, the
book “Moby Dick” has 206, 052 words and the average length of an English word is 5 letters
so “Moby Dick” consists of about 1.03 million symbols.

Forgetting capitalization and punctuation there are 26n such texts and a brute encoding
would require 26n codewords to cover all the possibilities. The above result however says that
roughly 21.5n texts suffice to capture nearly surely almost everything. The term compression
is fully justified since this is a much smaller fraction of the total number of possible texts.
Also we only need codewords of lengths 1.5 million. Thus we need is roughly 1.5 gigabits
to encode such a text. If the letters of the alphabet where uniformly distributed in human
texts5 then the entropy would be log2(26) ≈ 4.70 > 3 × 1.5 and we would need more than
three times amount of memory to store it.

Remark 2.1.20. The story does not end here and much more precise results are available.
To describe some of them note first that for any alphabet X there is an obvious operation of
concatenation

∗ : Xm × Xn → Xm+n, (x, x′) 7→ x ∗ x′

where the word x∗x′ is obtained by by writing in succession the word x followed by x′. Note
that this code uses on average L+1

n ≈ Ent2
[
p
]
bits per symbol in a word. This is an example

of compression.

A binary code for the alphabet (X, p) is an injection

C : X → B∗

For each x ∈ X we denote by LC(x) the length of the code word C(x). The expected lengh
of a codeword is

ℓC := E
[
LC
]
=
∑
x∈X

LC(x)p(x).

Note that C extends to a map

C∗ : X∗ → B∗, C∗(x1, . . . , xn) = C(x1) ∗ · · · ∗ C(xn).
The code C is called uniquely decodable if its extension C∗ : X∗ → B∗ is also injective.

An important subclass of uniquely decodable codes are instantaneous codes. A code C is
called instantaneous if no codeword is a prefix of some other code word. E.g., if one of the
codewords is 10, then no other codeword can begin with 10.

Here is a very revealing example. Consider an alphabet A consisting of four letters
A := {a, b, c, d} with frequencies

pa = 1/2, pb = 1/3, pc = pd = 1/12.

4A Google search with the keywords “entropy of the English language” will provide many more details on this

subject.
5The famous monkey on a typwriter produces texts where the letters are uniformly distributed, but we can safely

call the resulting texts highly atypical of the English texts humans are used to.
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Consider the following instantaneous code

a→ 1, b→ 01, c→ 001 d→ 000.

The expected code length is

1

2
+

2

3
+

3

12
+

3

12
=

5

3
≈ 1.666

The entropy of alphabet is

Ent2
[
A
]
=

log 2

2
+

log 3

3
+

log 12

6
≈ 1.625

Kraft’s inequality shows that for any uniquely decodable code C we have

ℓC ≥ Ent2
[
A
]
.

Moreover, there exist optimal codes C such that

ℓC ≤ Ent2
[
A
]
+ 1.

Such codes are called Shannon codes. The above code is a Shannon code. In fact it is a
special example of the famous Huffman code, [41].

Let us discuss a particularly suggestive experiment that highlights a defining feature of
Huffman codes and reveals one interpretation of the entropy of an alphabet.

Suppose we have an urn containing the letters a, b, c, d, in proportions pa, pb, pc, pd. A
person randomly draws a letter from the urn and you are supposed to guess what it is by
asking YES/NO question. Think YES = 1, NO= 0. The above code describes an optimal
guessing strategy. Here it is.

(1) Ask first if the letter is a → 1. If the answer is YES (= 1), the game is over. The
game has length 1 with probability 1/2

(01) If the answer is NO (= 0) the letter can only be b, c or d. Ask if the letter is
b→ 01. If the answer is YES (= 1) the game is over. The game has length 2 with
probability 1/3

(001) If the answer is NO (= 0) ask if the letter is c→ 001. The game has length 3 with
probability 1/6.

For more details about information theory and its application we refer to [41, 122]. For
a more informal introduction to information theory we refer to [66]. The eminently readable
[77] contains historical perspective on the evolution of information theory. Kolmogorov’s
brief but very rich in intuition survey [101] is a good place to start learning about the
mathematical theory of information. ⊓⊔

2.2. The Central Limit Theorem

The goal of this section is to prove a striking classical result that adds additional information
to the Law of Large numbers.

Suppose that (Xn)n∈N is a sequence of i.i.d. random variables with mean µ and finite
variance σ2. Note that the sum Sn := X1+ · · ·+Xn has mean nµ and variance nσ2. Loosely
speaking, the central limit theorem states that for large n the probability distribution of Sn
“resembles” very much a Gaussian with the same mean and variance.
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Figure 2.2. Visualizing the Central Limit Theorem.

For example, if the Xn-s are Bernoulli random variables with success probability p, then
µ = p, σ2 = pq and Sn ∼ Bin(n, p). In Figure 2.2 we have illustrated what happens in the
case p = 0.3 and n = 65.

The vertical lines depict the probability mass function of the binomial distribution while
the curve wrapping them is the Gaussian with the same mean and variance. They obviously
do “resemble”. However, we need to define precisely what we mean by “resemble”.

2.2.1. Weak and vague convergence. Let (X, d) be a metric space. Denote by Meas(X)
the set of finite Borel measures on X, Prob(X) ⊂ Meas(X) the space of Borel probability
measures on X, and by Probs(X) the space of subprobability measures6 on X, i.e., Borel
measures µ on X such that µ

[
X
]
≤ 1.

We denote by Ccpt(X) the space of continuous functions X → R with compact support
and by Cb(X) the space of bounded continuous functions X → R. This is a Banach space
with respect to the sup-norm

∥f∥∞ := sup
x∈X

∣∣ f(x) ∣∣.
For any f ∈ Cb(X) and µ ∈ Meas(X) we set

µ
[
f
]
:=

∫
X
f(x)µ[dx] <∞.

Definition 2.2.1. Consider a sequence (µn)n∈N of finite Borel measures on X.

(i) We say that the sequence (µn) converges vaguely to µ ∈ Meas(X), and we write
this µn 99K µ if

lim
n→∞

∫
R
f(x)µn

[
dx
]
=

∫
R
f(x)µ

[
dx
]
, ∀f ∈ Ccpt(X). (2.2.1)

(ii) We say that the sequence (µn) converges weakly to µ ∈ Meas(X), and we write this
µn ⇒ µ if

lim
n→∞

∫
R
f(x)µn

[
dx
]
=

∫
R
f(x)µ

[
dx
]
, ∀f ∈ Cb(X). (2.2.2)

6Some authors refer to subprobability measures as defective distributions.
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(iii) A sequence of random variables (Xn)n∈N valued in X is said to converge in law or
in distribution if

PXn ⇒ PX in Prob(X),

i.e.,

lim
n→∞

E
[
f(Zn)

]
= E

[
f(Z)

]
, ∀f ∈ Cb(X). (2.2.3)

We will use the notation Zn
d−→ Z or Zn ⇒ Z to indicate that Zn converges to Z

in distribution. ⊓⊔

Remark 2.2.2. The weak convergences of Borel probability measures on Polish space
(
X, d

)
admits an surprising characterization due to I.I. Skorokhod. More precisely, Skorokhod’s
representation theorem a sequence of Borel probability measures µn ∈ Prob(X), n ∈ N,
converges weakly to the Borel probability measure µ∞ ∈ Prob(X) if and only if there exists
a probability space

(
Ω, S,P

)
and Borel measurable maps Xn : Ω → X, n ∈ N ∪ {∞} such

that PXn = µn, ∀n ∈ N ∪ {∞} and d
(
Xn, X∞) → 0, P-a.s..

For a proof and more details we refer to [14, Thm. 6.7] or [56, Thm. 11.7.2]. Exercise
2.23 asks you to prove a refined version of this theorem in the special case X = R. ⊓⊔

Definition 2.2.3. A collection F ⊂ Cb(X) is called separating if given µ0, µ1 ∈ Meas(Rk)
such that µ0

[
f
]
= µ1

[
f
]
, ∀f ∈ F , then µ0 = µ1. ⊓⊔

As shown in Proposition 1.2.62, the collection Cb(X) is separating so the above definition
is not vacuous for any metric space.

In the remainder of the subsection we will focus exclusively on the special case when
X = Rk equipped with its natural metric.

Lemma 2.2.4. The collection Ccpt(Rk) is separating. More precisely, let µ0, µ1 ∈ Meas(Rk).
If

µ0
[
f
]
=

∫
R
µ1
[
f
]
, ∀f ∈ Ccpt(Rk),

then µ0 = µ1.

Proof. According to Proposition 1.2.4 it suffices so show that for any compact subsetK ⊂ Rn

µ0
[
K
]
= µ1

[
K
]
.

Set

Sn :=
{
x ∈ Rk; dist(x,K) ≥ 1/n

}
.

For n ∈ N define fn : R → [0, 1]

fn(x) =
dist(x, Sn)

dist(x,K) + dist(x, Sn)
.

Observe that fn is continuous, and fn
∣∣
Sn=0, so fn has compact support. Moreover and

lim
n→∞

fn(x) = IK a.s..

The Dominated Convergence Theorem implies that∫
R
IK(x)µ0[dx] = lim

n→∞

∫
R
fn(x)µ0[dx] = lim

n→∞

∫
R
fn(x)µ1[dx] =

∫
R
IKµ1[dx].
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⊓⊔

Lemma 2.2.4 shows a sequence of Borel probability measures on Rk has at most one vague
limit, i.e., if µn 99K and µn 99K µ′, then µ = µ′.

Proposition 2.2.5. Let µn ∈ Prob(Rk), n ∈ N be a sequence of probability measures.

(i) If µn converge vaguely to a measure µ ∈ Meas(Rk), then µ is a subprobability
measure.

(ii) If µn converge weakly to a measure µ ∈ Meas(Rk), then µ is a probability measure.

Proof. (i) For each ε > 0 fix a radius Rε such that µ
[
Rk \ B̄Rε(0)

]
≤ ε.

Consider the continuous function φ : R → [0, 1] uniquely determined by the requirements

φ(t) =


1, t ≤ 0,

0, t ≥ 1,

1− t, t ∈ [0, 1].

We set φR(t) = φ(t−R) and define

ηR : Rk → [0, 1], ηR(x) = φR
( ∣∣x ∣∣ ) = φ

( ∣∣x ∣∣−R
)
.

Note that φR is supported in B̄R+1(0) and IBR
≤ φR ≤ 1. We have µn

[
φRε

]
≤ 1, ∀n ∈ N.

Letting n→ ∞ we deduce

µ
[
Rk
]
− ε ≤ µ

[
B̄Rε

]
≤ µ

[
φRε

]
≤ 1, ∀ε > 0.

This proves µ
[
Rk
]
≤ 1.

(ii) We have

µ
[
Rk
]
= µ

[
1
]
= lim

n→∞
µn
[
1
]
= 1.

⊓⊔

Example 2.2.6. Let

µn =
1

n

n∑
k=1

δk/n.

Then

µn ⇒ µ = I [0,1](x)dx ∼ Unif(0, 1).

Indeed, if f ∈ Cb(R), then ∫
R
f(x)µn[dx] :=

1

n

n∑
k=1

f(k/n).

The sum in the right-hand-side of the above equality is a Riemann sum for f corresponding
to the uniform partition

0 <
1

n
<

2

n
< · · · < n− 1

n
< 1.

Since f is Riemann integrable we deduce

lim
n→∞

1

n

n∑
k=1

f(k/n) =

∫ 1

0
f(x)dx =

∫
R
f(x)µ

[
dx
]
.
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⊓⊔

Example 2.2.7. There exist vaguely convergent sequences of Borel probability measures on
R that are not weakly convergent. Take for example µn = δn, n ∈ N. Then µn 99K 0 yet µn
does not converge weakly to 0 since µn

[
R
]
= 1, ∀n. ⊓⊔

Theorem 2.2.8 (Mapping theorem). Suppose that F : Rk → Rm is a continuous function
and Xn : (Ω, S,P) → Rk, n ∈ N is a sequence of random vectors converging in distribution
to the random vector X. Then the sequence of random vectors Yn = F (Xn) converges in
distribution to Y = F (X).

Proof. Let f ∈ Cb(Rm). Then f ◦ F ∈ Cb(Rn) and

E
[
f(Yn)

]
= E

[
f ◦ F (Xn)

]
→ E

[
f ◦ F (X)

]
= E

[
f(Yn)

]
.

⊓⊔

Proposition 2.2.9. If the random variables Xn converge in probability to X, then they also
converge in law to X. In particular, if Xn converge in p-mean to X, then they also converge
in law to X.

Proof. We deduce from Corollary 1.3.58 that for any f ∈ Cb(R) the random variables f(Xn)
converge in probability to f(X). The Bounded Convergence Theorem implies

lim
n→∞

E
[
f(Xn)

]
= E

[
f(X)

]
, ∀f ∈ Cb(R).

⊓⊔

Example 2.2.10. Fix a standard normal random variable X. Then PX = P−X so −X is a
standard normal random variable as well. Consider the constant sequence

Xn = X, n ∈ N.

Then PXn ⇒ P−X , but Xn does not converge to −X in probability. ⊓⊔

Theorem 2.2.11 (Portmanteau theorem). Let µn ∈ Prob(Rk), n ∈ N, be a sequence of Borel
probability measures on Rk. The following statements are equivalent.

(i) The sequence (µn)n∈N converges weakly to µ ∈ Meas(Rk).
(ii) For any open set U ⊂ Rk we have

µ
[
U
]
≤ lim inf µn

[
U
]
.

(iii) For any closet set C ⊂ Rk we have

µ
[
C
]
≥ lim supµn

[
C
]
.

(iv) For any Borel set B ⊂ Rk such that µ
[
∂B
]
= 0 we have

µ
[
B
]
= lim

n→∞
µn
[
B
]
.

Proof. (i) ⇒ (ii) According to Theorem 1.5.9 the measure µ is regular, i.e., for any ε > 0
there exists a closed set Cε ⊂ U such that

µ
[
U
]
> µ

[
Cε
]
> µ

[
U
]
− ε.
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Consider the continuous function

f : R → [0, 1], f(x) =
dist(x, U c)

dist(x, U c) + dist(x,Cε)
.

Note that f = 1 on Cε and f = 0 outside U so ICε ≤ f ≤ IU , and thus

µn
[
f
]
≤ µn

[
U
]
, ∀n ∈ N.

In particular, we deduce that, ∀ε > 0, we have

µ
[
U
]
− ε < µ

[
Cε
]
≤ µ

[
f
]
= lim

n→∞
µn
[
f
]
≤ lim inf

n
µn
[
U
]
.

This proves (ii).

(ii) ⇐⇒ (iii) Follows from the following facts

• The set U is open iff U c is closed

• For any Borel set B ⊂ R, µ
[
Bc
]
= 1− µ

[
B
]
.

(ii) + (iii) ⇒ (iv). Let B ⊂ Rk be a Borel set such that µ
[
∂B
]
= 0. Denote by U the interior

of B and by C its closure so that ∂B = C \ U . We deduce

µ
[
B
]
= µ

[
C
]
= µ

[
U
]
.

Thus

lim supµn
[
C
]
≤ µ

[
C
]
= µ

[
B
]
= µ

[
U
]
≤ lim inf µn

[
U
]
.

Since ∂B is closed we deduce

lim supµn
[
∂B
]
≤ µ

[
∂B
]
= 0.

Hence

µn
[
U
]
= µn

[
C
]
+ µn

[
∂B
]
, lim

n
µn
[
∂B
]
= 0,

so

lim inf µn
[
U
]
= lim inf µn

[
C
]
.

Hence

lim
n
µn
[
C
]
= µ

[
C
]
, lim

n
µn
[
B
]
= lim

n
µn
[
C
]
+ lim

n
µn
[
∂B
]
= µ

[
B
]
.

(iv) ⇒ (i). Clearly it suffices to show that µn
[
f
]
→ µ

[
f
]
, for any nonnegative, bounded,

continuous function f on Rk.
Suppose that f be such a function. Set K := sup f . For any ν ∈ Prob

(
Rk
)
we can

regard f as a random variable (Rk,BRk , ν) → R. The integral ν
[
f
]
is then the expectation

of this random variable. Using Proposition 1.3.40 with p = 1 we deduce that

Eν
[
f
]
=

∫
R
f(x)ν

[
dx
]
=

∫
R
ν
[
f > t

]
=

∫ K

0
ν
[
f > t

]
dt.

Note that

ν
[
f = t

]
= 0 ⇒ ν

[
∂{f > t}

]
= 0.

Observe next that for any n ∈ N we have

#
{
t ∈ R; ν

[
f = t

]
≥ 1/n

}
≤ n,

so, for any ν ∈ Prob(Rk) the set {
t ∈ R; µ

[
f = t

]
> 0

}
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is at most countable. We deduce from (iv) that

lim
n→∞

µn
[
f > t

]
= µ

[
f > t

]
for almost any t.

From the Dominated Convergence Theorem we deduce

lim
n→∞

µn
[
f
]
= lim

n→∞

∫ K

0
µn
[
f > t

]
dt =

∫ K

0
µ
[
f > t

]
dt = µ

[
f
]
.

⊓⊔

Corollary 2.2.12. Let Xn, n ∈ N, be a sequence of random variables. Denote by Fn(x) the
cdf of Xn,

Fn(x) = P
[
Xn ≤ x

]
, x ∈ R.

The following statements are equivalent.

(i) The random variables Xn converge in law to the random variable X.

(ii) If F (x) is the cdf of X, then

lim
n→∞

Fn(x) = F (x),

for any point of continuity x of F .

Proof. Set µn := PXn , µ := PX The condition (ii) is a special case of condition (iv) of the
Portmanteau Theorem so (i) ⇒ (ii).

(ii) ⇒ (i) Denote by X ⊂ R the set of points continuity of F . Note that its complement R\X
is at most countable so X is dense. Note that for a, b ∈ X, a < b we have

P
[
a < X < b

]
= F (b)− F (a).

For any a, b ∈ R, a < b and any ε > 0 there exist aε, bε ∈ X, a < aε < bε < b such that

F (bε)− F (aε) = P
[
aε < X < bε

]
> P

[
a < X < b

]
− ε.

Hence

lim
n→∞

(
Fn(bε)− Fn(aε)

)
= F (bε)− F (aε) > P

[
a < X < b

]
− ε.

On the other hand

P
[
a < Xn < b

]
≥ P

[
aε < Xn < bε

]
, ∀n,

so that

lim inf
n→∞

P
[
a < Xn < b

]
≥ P

[
a < X < b

]
− ε, ∀ε > 0,

i.e.,

lim inf
n→∞

P
[
a < Xn < b

]
≥ P

[
a < X < b

]
, ∀a < b ∈ R.

Thus, the sequence µn satisfies the condition (ii) in the Portmanteau Theorem 2.2.11, where
U is any open interval of the real axis. Since any open set of the real axis is a disjoint union
of countably many open intervals, we deduce that condition (ii) in the Portmanteau Theorem
is satisfied for all the open sets U ⊂ R.

Indeed suppose that

U =
⋃
k≥1

Ik
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where Ik are pairwise disjoint open intervals. For K ∈ N we set

UK :=
⋃

1≤k≤K
Ik.

Then
P
[
X ∈ UK

]
≤ lim inf

n→∞
P
[
Xn ∈ UK

]
≤ lim inf

n→∞
P
[
Xn ∈ U

]
, ∀K ∈ N.

Letting K → ∞ we deduce the desired conclusion. ⊓⊔

Theorem 2.2.13 (Slutsky). Suppose that (Xn)n∈N and (Yn)n∈N are sequences of random
variables such that (Xn) converges in distribution to X and Yn converges in probability to
c ∈ R. Then the sum Xn + Yn converges in distribution to X + c.

Proof. Without loss of generality we can assume c = 0. We follow the argument in [14,
Chap. 1, Sec. 3]. Fix a closed subset C ⊂ R. For ε > 0 set

Cε :=
{
x ∈ R; dist(x,C) ≤ ε

}
.

The set Cε is closed and we have{
Xn + Yn ∈ C

}
⊂
{
|Yn| > ε

}
∪
{
Xn ∈ Cε

}
.

and thus
P
[
Xn + Yn ∈ C

]
≤ P

[
|Yn| > ε

]
+ P

[
Xn ∈ Cε

]
.

Letting n→ ∞ we deduce from the assumptions and the Portmanteau Theorem that

lim sup
n→∞

P
[
Xn + Yn ∈ C

]
≤ lim sup

n→∞
P
[
Xn ∈ Cε

]
≤ P

[
X ∈ Cε

]
.

Now let ε↘ 0 observing that Cε ↘ C.

⊓⊔

We can now formulate and prove the main convergence criterion of this subsection.

Theorem 2.2.14. Suppose that (µn)n∈N is a sequence of nonzero finite Borel measures on
Rk and µ ∈ Meas(Rk). The following statements are equivalent.

(i) The sequence (µn) converges weakly to µ ∈ Meas
(
Rk
)
.

(ii) The sequence (µn) converges vaguely to µ and

lim
n→∞

µn
[
Rk
]
= µ

[
Rk
]
.

(iii) There exists a collection F ⊂ Cb
(
Rk
)
whose closure in Cb(Rk) contains Ccpt

(
Rk
)

and such that

lim
n→∞

∫
Rk

f(x)µn
[
dx
]
=

∫
Rk

f(x)µ
[
dx
]
, ∀f ∈ F,

lim
n→∞

µn
[
Rk
]
= µ

[
Rk
]
.

(2.2.4)

Proof. In each of the statements (i)-(iii) we have

0 < C := sup
n
µn
[
Rk
]
<∞.

Replacing the measures µn by 1
Cµn we can assume that all the measures µn are subprobability

measures.
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Obviously (i) ⇒ (ii) and (ii) ⇒ (iii). It suffices to prove that (ii) ⇒ (i) and (iii) ⇒ (ii).
We will need the following result.

Lemma 2.2.15. Any finite Borel measure µ ∈ Meas(Rk) is on Rk is Radon, i.e., for any
Borel set B ⊂ R and any ε > 0, there exists a compact set K ⊂ B such that µ

[
B \K

]
< ε.

Proof. Let B ⊂ Rk be a Borel set and ε > 0. According to Theorem 1.5.9, the measure µ is
regular. Hence, there exists a closed set C ⊂ B such that

µ
[
B \ C

]
<
ε

2
.

On the other hand, we can find R > 0 sufficiently large such that

µ
[
BR(0)

]
> µ

[
Rk
]
− ε

2
.

We set K :=BR ∩ C. The set K is clearly compact and

µ
[
C \K

]
≤ µ

[
Rk \BR(0)

]
<
ε

2
.

Thus µ
[
B \K

]
= µ

[
B \K

]
+ µ

[
C \K

]
< ε. ⊓⊔

(ii) ⇒ (i) We will show that the sequence (µn) satisfies the condition (ii) in the Portmanteau
Theorem. Now let U ⊂ Rk be an open set and ε > 0. Lemma 2.2.15 shows that for any ε > 0
there exists a compact set K ⊂ U such that µ

[
K
]
> µ

[
U
]
− ε.

Choose r < 1
2 dist(K,U

c) and set

Cr :=
{
x ∈ Rk; dist(x,K) ≥ r

}
.

The set Cr is closed and its complement

Vr :=
{
x ∈ Rk; dist(x,K) < r

}
⊂ U

is precompact. Consider the continuous function

φ : Rk → [0, 1], φ(x) =
dist(x,Cr)

dist(x,K) + dist(x,Cr)
.

Observe that it vanishes on Cr and thus it has compact support contained in U . Moreover,
φ = 1 on K. Thus IK ≤ φ ≤ IU so that

µn
[
K
]
≤ µn

[
φ
]
≤ µn

[
U
]
.

Letting n→ ∞ we deduce

µ
[
U
]
− ε < µ

[
K
]
≤ µ

[
φ
]
= lim

n
µn
[
φ
]
≤ lim inf

n
µn
[
U
]
, ∀ε > 0.

This establishes condition (ii) of the Portmanteau Theorem.

(iii) ⇒ (ii) Let φ ∈ Ccpt(Rk). For any ε > 0 choose fε ∈ F such that ∥φ− fε∥∞ < ε
2 . Then∣∣ ν[ fε ]− ν

[
φ
] ∣∣ < ε

2
, ∀ν ∈ Probs(Rk).

We deduce
lim sup
n→∞

∣∣µ[ fε ]− µn
[
φ
] ∣∣ = lim sup

n→∞

∣∣µn[ fε ]− µn
[
φ
] ∣∣ ≤ ε

2
On the other hand ∣∣µ[φ ]− µ

[
fε
] ∣∣ < ε

2
.
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so that, ∀ε > 0,

lim sup
n→∞

∣∣µ[φ ]− µn
[
φ
] ∣∣ ≤ ∣∣µ[φ ]− µ

[
fε
] ∣∣+ lim sup

n→∞

∣∣µ[ fε ]− µn
[
φ
] ∣∣ < ε.

Hence

lim
n→∞

∣∣µn[φ ]− µ
[
φ
] ∣∣ = 0.

⊓⊔

Corollary 2.2.16. Consider a sequence µn ∈ Prob
(
Rk
)
and µ ∈ Meas

(
Rk
)
. Then the

following are equivalent.

(i) The sequence (µn) converges weakly to µ.

(ii) For any bounded Lipschitz function f : Rk → R we have

µn
[
f
]
= µ

[
f
]
.

Proof. The implication (i) ⇒ (ii) is obvious. To prove that (ii) ⇒ (i) observe first that
any compactly supported continuous function can be uniformly approximated by compactly
supported smooth functions7 so the closure in Cb(Rk) of the set of bounded Lipschitz functions
contains Ccpt(Rk). The measure µ is a probability measure since the constant function IRk

is bounded and Lipschitz and thus

µ
[
IRk

]
= lim

n→∞
µn
[
IRk

]
= 1.

The conclusion now follows from Theorem 2.2.14. ⊓⊔

Corollary 2.2.17. If a sequence µn ∈ Prob
(
Rk
)
converges vaguely to a probability measure,

then it also converges weakly. ⊓⊔

Corollary 2.2.18. Suppose that (Xn)n∈N and X are random variables with ranges contained
in Z. Then Xn ⇒ X if and only if

lim
n→∞

P
[
Xn = k

]
= P

[
X = k

]
, ∀k ∈ Z. (2.2.5)

Proof. The condition (2.2.5) is clearly satisfied if Xn ⇒ X since

P
[
X = k

]
= P

[
k − 1/2 < X ≤ k + 1/2

]
= lim

n→∞
P
[
k − 1/2 < Xn ≤ k + 1/2

]
= lim

n→∞
P
[
Xn = k

]
.

Conversely, if (2.2.5) is satisfied, then ∀φ ∈ Ccpt(R) the set Z ∩ suppφ is finite and thus

E
[
φ(Xn)

]
=

∑
k∈Z∩suppφ

φ(k)P
[
Xn = k

]
→

∑
k∈Z∩suppφ

φ(k)P
[
X = k

]
= E

[
φ(X)

]
.

The conclusion now follows from Theorem 2.2.14. ⊓⊔

Corollary 2.2.19. The topology of weak convergence on Prob(Rk) is metrizable, i.e., there
exists a metric d on Prob(Rk) such that

µn ⇒ ν⇐⇒d(µn, ν) → 0.

7On simple way to see this is to use Weierstrasss approximation theorem.
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Proof. Let

F = {f0, f1, . . . }
be a countably subset on Cb(R) whose closure contains 1 and Ccpt(Rn). Define

d : Prob(R)× Prob(R) → [0,∞), d(µ, ν) =
∑
ℓ≥0

1

2ℓ
max(

( ∣∣µ[fℓ]− ν[fℓ]
∣∣, 1 ).

According to Theorem 2.2.14 we have

µn ⇒ ν⇐⇒µn
[
fℓ
]
→ µn

[
fℓ
]
→ ν

[
fℓ
]
, ∀ℓ ≥ 0.

⊓⊔

Remark 2.2.20. For any metric space X there exists a metric dLP on Prob(X) called the
Lévy-Prokhorov metric such that, the convergence with respect to this metric implies the
weak convergence, i.e.,

dLP (µn, µ) → 0 ⇒ µn ⇒ µ.

If moreover the metric space X is separable, the convergence in the Lévy-Prokhorov metric
is equivalent to the weak convergence. To describe this metric we need a bit of notation. For
any subset S ⊂ X and any ε > 0 we set

Sε :=
{
x ∈ X; dist(x, S) < ε

}
.

The function x 7→ dist(x, S) is Lipschitz so Sε for any S ⊂ X. Given µ0, µ1 ∈ Meas(X) we
define

dLP (µ0, µ1) := inf
{
ε > 0; µ0

[
B
]
< µ1

[
Bε
]
+ ε, µ1

[
B
]
< µ0

[
Bε
]
+ ε, ∀B ∈ BX

}
.

For more details and proofs we refer to [14, Sec.6] or [56, Sec.11.3]. ⊓⊔

The next result generalizes Fatou’s Lemma. However, our proof relies on Fatou’s Lemma.

Proposition 2.2.21. Suppose that the sequence of random variables (Xn)n∈N converges in
distribution to X. Then

E
[
|X|

]
≤ lim inf

n→∞
E
[
|Xn|

]
.

In particular, X is integrable if the sequence (Xn)n∈N is bounded in L1, i.e.,

sup
n

E
[
|Xn|

]
<∞.

Proof. The Mapping Theorem 2.2.8 implies that the sequence (|Xn|)n∈N converges in dis-
tribution to |X|. Thus

lim
n∈N

P
[
|Xn| > t

]
= P

[
|X| > t

]
,

for all t outside a countable subset of [0,∞). Using (1.3.46) we deduce

E
[
|X|

]
=

∫ ∞

0
P
[
|X| > t

]
dt, E

[
|Xn|

]
=

∫ ∞

0
P
[
|Xn| > t

]
dt, ∀n.

Fatou’s Lemma implies∫ ∞

0
P
[
|X| > t

]
dt ≤ lim inf

n→∞

∫ ∞

0
P
[
|Xn| > t

]
dt.

⊓⊔
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At this point it is profitable to look at the concept of weak convergence from a functional
analytic viewpoint. If (K, d) is a compact metric space, then Riesz’s Representation Theorem
1.2.64 shows that Meas(K) is a closed convex cone in C(K)∗, the topological dual of the
Banach space C(K) (with the sup-norm).

The weak convergence of finite measures corresponds to the convergence in the weak*
topology on the dual space; see [24, Sec. 3.4]. Since C(K) is separable, the weak* topology
on C(K)∗ is defined by a countable family of seminorms and thus it is metrizable. The
Banach-Alaoglu theorem [24, Thm. 3.16] implies that the unit ball in C(K)∗ is compact, so
any abounded subsequence in C(K)∗ admits a convergent subsequence. In particular, this
shows that any sequence (µn)n∈N such that

sup
n
µn
[
K
]
<∞

admits a subsequence that converges weakly to a finite Borel measure on K.

To see this principle at work consider the compactification R= [−∞,∞] of R. The map
tan : (−π/s, π/2) → R induces a homeomorphism [−π/2, π/2] and thus the compactification

[−∞,∞] is metrizable. The continuous functions on R are the continuous functions on R
that have finite limits at ±∞. In particular, C

(
R
)
⊂ Cb(R). A finite measure µ ∈ Meas(R)

extends to a measure µ̄ ∈ Meas(R), namely, µ̄
[
B̄
]
= µ

[
B̄ ∩R

]
, for any Borel subset B̄ ⊂R.

We thus have an inclusion

Meas(R) ⊂ Meas(
(
R
)
.

This inclusion is strict: the Dirac measures δ±∞ do no belong to Meas(R).
Suppose that (µn)n≥1 is a sequence in Prob(R). The sequence (µ̄n))n≥1 in Prob

(
R
)

admits a subsequence µ̄nk
that converges weakly to a measure µ̃∞. This defines a measure

µ∞ ∈ Meas(R) by setting

µ∞
[
B
]
= µ̃∞

[
B
]
, ∀B ∈ BR ⊂ BR.

In particular, we deduce that for any compactly supported continuous function f : R → R
we have

lim
k→∞

µnk

[
f
]
= lim

k→∞
µ̄nk

[
f
]
= µ̃∞

[
f
]
= µ∞

[
f
]
.

Note that the limit µ∞ need not be a probability measure since

µ∞
[
R
]
= µ̃∞

[
R\ {±∞}

]
= 1− µ̃∞

[
{±∞}

]
.

Theorem 2.2.22 (Helly’s selection theorem). Any sequence (νn)n≥1 of finite, nontrivial
Borel probability measures on R such that

sup
n
νn
[
R
]
<∞

admits a vaguely convergent subsequence.

Proof. After extracting a subsequence we can assume that sequence νn
[
R
]
converges to

ν∞ ≥ 0. Set

µn :=
1

νn
[
R
]νn.

The above discussion shows that the sequence of probability measures µn admits a subse-
quence (µnk

) that converges vaguely to µ∞ ∈ Meas(R). The subsequence νnk

[
−
]
converges

ν∞ · µ∞
[
−
]

⊓⊔
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Proposition 2.2.23. Suppose that (µn) is a sequence in Meas(R) that converges vaguely to
a measure µ∞ ∈ Meas(R) and

sup
n
µn
[
R
]
<∞.

Then following are equivalent

(i) The sequence converges weakly to µ∞.

(ii) µ∞
[
R
]
= limn→∞ µn

[
R
]
.

(iii) The sequence (µn) is tight, i.e.,

lim
L→∞

sup
n∈N

µn
[
R \ [−L,L]

]
= 0.

Proof. We proved the equivalence (i) ⇒ (ii) In Theorem 2.2.14. Let us show that (iii) ⇒
(ii). Fix L > 0 such that

µ∞
[
R \ [−L,L]

]
< ε.

Fix L > 0. As in the proof Theorem 2.2.14 choose φL ∈ Ccpt(R) such that

I [−L,L] ≤ φL ≤ 1 = IR

Hence

µn
[
R
]
− ε ≤ µn

[
φL
]
≤ µn

[
R
]
, ∀n ∈ N ∪ {∞}

The tightness condition implies that for any ε > 0 we can choose L = L(ε) such that

∀n ∈ N ∪ {∞}, µn
[
[−L,L]

]
≥ µn

[
R
]
− ε.

Letting n→ ∞ we deduce

∀ε > 0, lim sup
n→∞

µn
[
R
]
− ε ≤ µ∞

[
φL(ε)

]
≤ lim inf

n→∞
µn
[
R
]
.

Since this holds for any ε > 0 we deduce that

lim inf
n→∞

µn
[
R
]
= lim

n→∞
µn
[
R
]
.

Thus, for any ε > 0∣∣ lim
n→∞

µn
[
R
]
− µ∞

[
φL(ε)

] ∣∣ < ε,
∣∣µ∞[φL(ε) ]− µ∞

[
R
] ∣∣ < ε.

Hence

lim
n→∞

µn
[
R
]
= µ∞

[
R
]
.

This proves (ii).

Finally, let us prove that (i) ⇒ (iii). For each L > 0 choose as above fL ∈ Ccpt(R) such
that I [−L,L] ≤ fL ≤ 1. Next, for any ε > 0 choose L = L(ε) such that

µ∞
[
R
]
≥ µ∞

[
fL(ε)

]
≥ µ∞

[
[−L(ε), L(ε)]

]
> µ∞

[
R
]
− ε

2
.

Let gε = 1− fL(ε) ∈ Cb(R). Then µn
[
gε
]
→ µ∞

[
gε
]
so that

lim
n∞

(
µn
[
R
]
− µn

[
fL(ε)

] )
= µ∞

[
R
]
− µ∞

[
fL(ε)

]
≤ ε

2
.

Thus there exists N = N(ε) such that, for any n > N(ε)

µn
[
R
]
− µn

[
[−L(ε), L(ε)]

]
≤ µn

[
R
]
− µn

[
fL(ε)

]
< ε.
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For each k = 1, . . . , N(ε), choose Lk(ε) > 0 such that

µk
[
R
]
− µk

[
[−Lk(ε), Lk(ε)]

]
< ε.

If we set

L∗(ε) = max
{
L1(ε), . . . , LN(ε)(ε), L(ε)

}
,

then we deduce that for any n ∈ N and any L > L∗(ε) we have

µn
[
R
]
− µn

[
[−L,L]

]
< ε.

⊓⊔

Proposition 2.2.24. Suppose that (Xn)n∈N∪{∞} is a family of random variables with the
following properties

(i) For any k ∈ N, and any n ∈ N ∪ {∞}, E
[
|Xn|k

]
<∞.

(ii) For any k ∈ N
lim
n→∞

E
[
Xk
n

]
= E

[
Xk

∞
]
.

(iii) The probability distribution of X∞ is uniquely determined by its momenta. E.g.,
this happens if ∃T > 0 such that

E
[
etX∞

]
<∞, ∀|t| < T.

Then Xn converges in distribution to X∞.

Proof. Set µn := PXn . Observe that the family (µn) is tight. Indeed, if

M := sup
k∈N∪{∞}

E
[
X2
n

]
,

then we deduce from Chebyshev’s inequality that for any L > 0 and any n ∈ N we have

µn
[
{|x| > L}

]
≤ M

L2
.

We will first prove that that the whole sequence µn converges vaguely to a finite measure
µ∞.

Helly’s Selection Theorem implies that any subsequence of µn has vaguely convergent
sub-subsequences. Thus it suffices to show that all the vaguely convergent subsequence of
(µn) have the same limit.

Suppose that µ∞ is the vague limit of a subsequence. To ease the presentation assume
that the subsequence is (µn). Since the sequence (µn) is tight the convergence is weak and
µ∞ is a probability measure. We will prove that µ∞ has finite moments and, more precisely∫

R
xkµ∞

[
dx
]
= E

[
Xk

∞
]
, ∀k ∈ N.

Since the distribution of X∞ is assumed to be uniquely determined by its moments we deduce
that µ∞ = PX∞ .

Fix k ∈ N. Define the finite measures

νn
[
dx
]
= νn,k

[
dx
]
= (1 + x2k)µn

[
dx
]
.

We set ν∞
[
dx
]
:= (1 + x2k)µ∞

[
dx
]
. Let us first show that ν∞ is a finite measure.
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To see this choose for any L > 0 a compactly supported functions such that

I [−L,L] ≤ φL ≤ 1.

Since φL(x)(1 + x2k) is compactly supported we deduce that

ν∞
[
[−L,L]

]
≤ ν∞

[
φL
]
=

∫
R
φL(x)(1 + x2k)µ∞

[
dx
]

= lim
n→∞

∫
R
φL(x)(1 + x2k)µn

[
dx
]
≤ lim

n→∞

∫
R
(1 + x2k)µn

[
dx
]
=
(
1 + E

[
X2k

∞
] )
.

Hence
ν∞
[
R
]
= lim

L→∞
ν∞
[
[−L,L]

]
≤ 1 + E

[
X2k

∞
]
<∞.

Since µn converges vaguely to µ∞ and φ(x)(1+x2k) has compact support for any compactl;y
supported φ we deduce that νn converges vaguely to the finite measure ν∞. We will show
that in fact that the sequence (νn) is tight so that it converges weakly to ν∞.

For any L > 0 we have

L2kνn
[
{|x| > L}

]
≤
∫
|x|>L

x2kνn
[
dx
]
≤
∫
R
x2k(1 + x2k)µn

[
dx
]
≤M2k +M4k,

where
Mj :=

∑
n

E
[
|Xn|j

]
, ∀j ∈ N.

Hence

νn
[
{|x| > L}

]
≤ M2k +M4k

L2k
, ∀n ∈ N, L > 0.

proving that the sequence (νn) is tight.

Consider now the bounded continuous function f(x) = xk

1+x2k
. Then

E
[
Xk

∞
]
= lim

n→∞
E
[
Xk
n

]
= lim

n→∞
νn
[
f
]
= ν∞

[
f
]
=

∫
R
xkµ∞

[
dx
]
.

Thus µ∞ has finite moments of any order all equal to the moments of PX∞ . ⊓⊔

2.2.2. The characteristic function. Suppose that E is a finite dimensional real Eu-
clidean space with inner product (−,−) and associated norm. Denote by E∗ the dual of
V , V ∗ = Hom(V,R). For ξ ∈ E∗ and x ∈ E we set

⟨ξ, x⟩ := ξ(x).

The inner product on E induces by duality an inner product and Euclidean norm on E∗

denoted by the same corresponding symbols.

The key ingredient in the proof of the CLT is that of Fourier transform or characteristic
function of a finite Borel measure µ ∈ Meas(E),

µ̂ : E∗ → C, µ̂(ξ) =

∫
E
ei⟨ξ,x⟩µ

[
dx
]
.

Note that µ is a probability measure if and only if µ̂(0) = 1.

From the Dominated Convergence Theorem we deduce that µ̂ is a continuous function
E∗ → C. Thus, the Fourier transform is a map

Prob(E) ∋ µ 7→ µ̂ ∈ Cb(E
∗,C).
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The characteristic function of a random variable X is the Fourier transform ΦX(ξ) of its
probability distribution PX ∈ Prob(R),

ΦX(ξ) = P̂X(ξ) = E
[
eiξX

]
=

∫
R
eiξxPX

[
dx
]
.

Note that

|ΦX(ξ) | ≤ 1, ∀ξ ∈ C.
Moreover, ΦX(0) = E

[
1
]
= 1.

Proposition 2.2.25. Let X ∈ L2(Ω, S,P). Then ΦX ∈ C2(R) and

Φ′
X(0) = iE

[
X
]
, Φ′′

X(0) = −E
[
X2
]
.

Proof. Denote by PX the probability distribution of X so PX ∈ Prob(R). Then

ΦX(ξ) =

∫
R
eixξ PX

[
dx
]
.

Note that since X ∈ L2 we have∫
R
|x|PX [dx],

∫
R
x2 PX

[
dx
]
<∞

so

∂ξe
ixξ = ixeixξ ∈ L1

(
R,PX

)
,

∂2ξ e
ixξ = −x2eixξ ∈ L1

(
R,PX

)
.

This shows (see Exercise 1.8) that the integral∫
R
eixξPX

[
dx
]

is twice differentiable with respect to the parameter ξ and we have

Φ′
X(ξ) = −i

∫
R
xeiξxPX

[
dx
]
, Φ′′

X(ξ) = −
∫
R
x2eiξxPX

[
dx
]
.

Using the Dominated Convergence Theorem we deduce that the function

ξ 7→ −
∫
R
x2eiξxPX

[
dx
]
.

is continuous so ΦX ∈ C2(R). ⊓⊔

For v > 0 we denote Γv ∈ Meas(E) the measure

Γv
[
dx
]
= γv(x)λdx

]
, γv(x) =

1

(2πv)
dimE

2

e−
∥x∥2
2v , (2.2.6)

where λ is the Lebesgue measure on E.

Suppose that m = dimE. Choose Euclidean coordinates (x1, . . . , xm), m = 1, . . . ,m.
Then we observe Γv is the product of m Gaussian measures on R with mean 0 and variance
v

Γv
[
dx
]
=

m⊗
k=1

1√
2πv

e−
x2k
2v dxk. (2.2.7)

Thus Γv is a Borel probability measure on E.
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Proposition 2.2.26. Let m := dimE. Then∫
E
∥x∥2Γv

[
dx
∣∣ = mv, (2.2.8)

Γ̂v(ξ) = e−
v∥ξ∥2

2 =

(
2π

v

)m
2

γ1/v(ξ), ∀v > 0. (2.2.9)

Proof. We choose an orthonormal frame of E with Euclidean coordinates (x1, . . . , xm). Then∫
E
∥x∥2Γv

[
dx
∣∣ = m∑

k=1

∫
Rm

x2kΓv
[
dx
∣∣ (2.2.7)=

m∑
k=1

1√
2πv

∫
R
x2ke

−x2

2v dxk︸ ︷︷ ︸
=v

.

Γ̂v(ξ1, . . . , xn) =
1

(2πv)
m
2

∫
Rm

(
m∏
k=1

eiξkxk−
x2k
2v

)
dx1 · · · dxm

=

m∏
k=1

(
1√
2πv

∫
R
eiξkxk−

x2k
2v dx

)
=

(
1√
2πv

∫
R
eiξx−

x2

2v dx

)m
.

Thus, it suffices to consider only the case V = R.We have

Γ̂v(ξ) =
1√
2πv

∫
R
e−

x2

2v eiξxdx =
1√
2π

∫
R
e−

y2

2 ei
√
vξydy = Γ̂1(

√
v η).

Hence only need to determine

f(ξ) = Γ̂1(ξ) =
1√
2π

∫
R
e−

x2

2 eiξxdx.

The imaginary part of the above integrand is odd function (in x) so f(ξ) is real , ∀ξ, i.e.,

f(ξ) =
1√
2π

∫
R
e−

x2

2 cos(ξx)dx.

The function
d

dξ

(
e−

x2

2 cos(ξx)
)
= −xe−

x2

2 sin(ξx)

is integrable (in the x variable). This shows that f(ξ) is differentiable (see Exercise 1.8) and

f ′(ξ) = − 1√
2π

∫
R
xe−

x2

2 sin(ξx)dx =
1√
2π

∫
R

d

dx

(
e−

x2

2
)
sin(ξx)dx

(integrate by parts)

= − ξ√
2π

∫
R
e−

x2

2 cos(ξx)dx = −ξf(ξ).

Thus

f ′(ξ) + ξf(ξ) = 0

so that
d

dξ

(
eξ

2/2f(ξ)
)
= 0⇐⇒ f(ξ) = Ce−

ξ2

2 .

Since f(0) = 1 we deduce C = 1 and thus Γ̂1(ξ) = e−
ξ2

2 . ⊓⊔
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Theorem 2.2.27. A probability measure µ ∈ Prob(E) is uniquely determined by its charac-
teristic function, i.e., the map

Prob(E) ∋ µ 7→ µ̂ ∈ Cb(E
∗,C).

is injective.

Proof. For any v > 0 and µ ∈ Prob(E) we set µv := Γv ∗ µ.We have

µv
[
dx
]
:= ρv(x)dx, ρv(x) =

∫
E
γv(x− y)µ

[
dy
]
.

The theorem follows from the following two facts.

Fact 1. The family (µv)v>0 is completely determined by µ̂.

Fact 2. The family (µv)v>0 converges weakly to µ as v ↘ 0, i.e.,

lim
v↘0

µv
[
f
]
= µ

[
f
]
, ∀f ∈ Cb(R).

Proof of Fact 1. The idea behind this fact is that the Fourier transform and the convolution
interact in a nice way. More precisely we will show that

ρv(x) =
1

(2πv)
m
2

∫
E∗
eixξγ1/v(ξ)µ̂(−ξ)dξ. (2.2.10)

Using (2.2.9) with the roles of x and ξ reversed (i.e., we think of E as the dual of E∗) we
deduce (

2πv
)m

2 γv(x) = e−
x2

2v =

∫
E∗
ei⟨x,ξ⟩γ1/v(ξ)dξ.

Hence

ρv(x) =
1

(2πv)
m
2

∫
E

(∫
E∗
ei(x−y)ξγ1/v(ξ)dξ

)
µ
[
dy
]

(use Fubini)

=
1

(2πv)
m
2

∫
E∗
eixξγ1/v(ξ)

(∫
E
e−iyξµ

[
dy
])

dξ =
1√
2πv

∫
R
eixξγ1/v(ξ)µ̂(−ξ)dξ.

Proof of Fact 2. Let f ∈ Cb(E). Using Fubini’s theorem we deduce that∫
E
f(x)µv

[
dx
]
=

∫
E
f(x)

(∫
E
γv(x− y)µ

[
dy
])

dx

=

∫
E

(∫
E
γv(x− y)f(x)dx

)
︸ ︷︷ ︸

=:fv(y)

µ
[
dy
]
.

The function y 7→ fv(y) is obviously continuous. If C := supx∈E |f(x)|, then∣∣ fv(y) ∣∣ ≤M

∫
E
γv(x− y)dx

x→z+y
= C

∫
R
γv(z)dz = C, ∀y ∈ E, v > 0.

On the other hand

fv(y) =

∫
E
γv(y − t)f(t)dt =

∫
E
γv(t− y)f(t)dt =

∫
E
γv(z)f(z + y)dz = Γv

[
Tyf

]
,
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where Tyf(z) := f(z + y). Fix y, ε > 0 and a δ = δ(ε, y) > 0 such that

sup
∥z∥<δ

∣∣ f(z + y)− f(y)
∣∣ < ε

2
.

Then ∣∣ fv(y)− f(y)
∣∣ = ∣∣Γv[Tyf ]− f(y)

∣∣ = ∣∣∣∣ ∫
R

(
f(z + y)− f(y)

)
Γv[dz]

∣∣∣∣
≤
∫
∥z∥<δ

∣∣ f(z + y)− f(y)
∣∣Γv[dz] + ∫

∥z∥≥δ

∣∣ f(z + y)− f(y)
∣∣Γv[dz]

≤ sup
∥z∥<δ

∣∣ f(z + y)− f(y)
∣∣+ 2C

∫
∥z∥≥δ

Γv[dz]

≤ sup
|z|<δ

∣∣ f(z + y)− f(y)
∣∣+ 2C

δ2

∫
∥z∥≥δ

∥z∥2Γv[dz]
(2.2.8)
<

ε

2
+

2Cmv

δ2
.

Hence

∀ε > 0, lim sup
v↘0

∣∣ fv(y)− f(y)
∣∣ ≤ ε

2
, ∀ε > 0, ∀y ∈ R,

so that

lim
v↘0

fv(y) = f(y), ∀y ∈ R.

The Dominated Convergence Theorem implies

lim
v↘0

µv
[
f
]
= lim

v↘0
µ
[
fv
]
= µ

[
lim
v↘0

fv
]
= µ

[
f
]
.

⊓⊔

Remark 2.2.28. (a) In the above proof set

oscf
(
y, δ

)
:= sup

∥z∥<δ

∣∣ f(y + z)− f(x)
∣∣, oscf (δ) = sup

y∈E
oscf

(
y, δ

)
.

We proved that∣∣ fv(y)− f(y)
∣∣ ≤ oscf

(
y, δ

)
+

2m∥f∥∞v
δ2

≤ oscf (δ) +
2m∥f∥∞v

δ2
.

In particular, if f is uniformly continuous, i.e., limδ→0 ωf (δ) = 0, we deduce that fv converges

uniformly to f . More precisely, if we set δ = v1/4 we deduce

∥fv − f∥∞ ≤ oscf
(
v1/4

)
+ 2m∥f∥∞v1/2. (2.2.11)

(b) The above theorem can be rephrased as stating that the collection of trigonometric
functions {

R ∋ x 7→ cos(ξx), sin(ξx); ξ ∈ R
}

is separating. However, the smaller family{
R ∋ x 7→ cos(ξx), sin(ξx); |ξ| < 1

}
,

is not separating ! More precisely, there exists two distinct probability measures µ0, µ1 such
that

µ̂0(ξ) = µ̂1(ξ), ∀|ξ| < 1.

We refer to [115, Chap. IV, Sec. 15, p.231] for more details.
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(b) The range of the Fourier transform

Prob(R) ∋ µ 7→ µ̂ ∈ Cb(R)

can also be characterized. Note first that ∀µ ∈ Prob(R)

µ̂(0) = µ
[
R
]
= 1, µ̂(−ξ) = µ̂(ξ), ∀ξ ∈ R.

Additionally, the function µ̂ is positive definite. This means that, for any n ∈ N and any
ξ1, . . . , ξn ∈ R, the hermitian matrix(

µ̂(ξi − ξj)
)
1≤i,j≤n

is positive semidefinite, i.e., for any z1, . . . , zn we have∑
1≤i,j≤n

µ̂(ξi − ξj)ziz̄j ≥ 0.

This follows by observing that∑
1≤i,j≤n

µ̂(ξi − ξj)ziz̄j =

∫
R

∣∣∣ n∑
i=1

zke
iξkx

∣∣∣2 µ[ dx ].
It turns out that these above necessary conditions characterize the range of the Fourier
transform: it consists of continuous positive semidefinite functions σ : R → C such that
σ(0) = 1. This is the content of the celebrated Bochner theorem. For various proofs we
refer to [65, Sec. XIX.2], [74, §II.3], [149, I.24], [150, Sec. 1.4], [157, Thm. 9.17], or [178,
Chap.6]. ⊓⊔

Corollary 2.2.29. Suppose that X1, . . . , Xm are real random variables. Denote by PX⃗ ∈ Prob(Rm)
the distribution of the random vector X⃗ = (X1, . . . , Xm). Then the following are equivalent

(i) The random variables X1, . . . , Xm are independent.

(ii) For any ξ1, . . . , ξm ∈ R

P̂X⃗(ξ1, . . . , xm) =
m∏
k=1

ΦXk
(ξk).

Proof. Note that

P̂X⃗(ξ1, . . . , ξm) =
∫
Rm

ei⟨ξ,x⟩PX⃗
[
dx
]
.

We denote by QX⃗ the product measure

QX⃗ =
m⊗
k=1

PXk
.

Note that

Q̂X⃗(ξ1, . . . , ξm) =

∫
Rm

ei⟨ξ,x⟩PX1 ⊗ · · ·PXm

[
dx
]
=

m∏
k=1

ΦXk
(ξk).

The random variables X1, . . . , Xm are independent iff PX⃗ = QX⃗ . The corollary now follows
from Theorem 2.2.27. ⊓⊔

Theorem 2.2.30 (Lévy’s Continuity Theorem). Let (µn)n∈N be a sequence in Prob(R) and
µ ∈ Prob(R). The following statements are equivalent.
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(i) The sequence (µn)n∈N converges weakly to µ.

(ii) For any ξ ∈ R
lim
n→∞

µ̂n(ξ) = µ̂(ξ).

Proof. Our presentation is influenced by Le Gall’s course notes [109].

(i) ⇒ (ii) Since µn ⇒ µ we deduce that for any ξ ∈ R we have

lim
n→∞

∫
R
cos(ξx)µn

[
dx
]
=

∫
R
cos(ξx)µ

[
dx
]
,

lim
n→∞

∫
R
sin(ξx)µn

[
dx
]
=

∫
R
sin(ξx)µ

[
dx
]
.

(ii) ⇒ (i) For any v > 0 and any f ∈ Cb(R) we define fv : R → R

fv(x) =

∫
R
f(x− y)Γv

[
dy
]
.

It is easy to see that fv ∈ Cb(R). We set

F :=
{
fv; f ∈ Ccpt(R), v > 0

}
.

We will prove that the closure of F in Cb(R) contains Ccpt(R) and then

lim
n→∞

µn
[
fv
]
= µ

[
fv
]
, ∀v > 0, ∀f ∈ Ccpt(R). (2.2.12)

Let f ∈ Ccpt(R). Observe that

fv(x) =

∫
R
f(x− y)γv(y)dy =

∫
R
f(z)γv(x− z)dz.

Since f has compact support f is uniformly continuous and according to Remark 2.2.28 (a),
the function fv converges uniformly to f . Thus the closure of F in Cb(R) contains Ccpt(R).

Let ν ∈ Prob(R). Then

ν
[
fv
]
=

∫
R

(∫
R
f(z)γv(z − x)dz

)
ν
[
dx
]
=

∫
R
f(z)

(∫
R
γv(z − x))ν

[
dx
])

︸ ︷︷ ︸
ρv(z)

dz

(2.2.10)
=

1√
2πv

∫
R

(∫
R
eixξγ1/v(ξ)ν̂(−ξ)dξ

)
f(x)dx

=
1√
2πv

∫
R

(∫
R
eixξf(x)dξ

)
︸ ︷︷ ︸

=:f̂(ξ)

γ1/v(ξ)ν̂(−ξ)dξ =
1√
2πv

∫
R
f̂(ξ)γ1/v(ξ)ν̂(−ξ)dξ.

The function f̂(ξ) is well defined since f ∈ Ccpt(R). The Dominated Convergence theorem

shows that f̂ is continuous. Moreover∣∣f̂(ξ) ∣∣ ≤ ∫
R
|f(x)| dx.

We deduce that, ∀n ∈ N,

µn
[
fv
]
=

1√
2πv

∫
R
f̂(ξ)γ1/v(ξ)µ̂n(−ξ)dξ.
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Note that for any ν ∈ Prob(R)∣∣ f̂(ξ)γ1/v(ξ)ν̂(−ξ)
∣∣ ≤ ( sup

x∈R

∣∣ f(x) ∣∣ ) · γ1/v(ξ) ∈ L1
(
R,λ

)
.

The Dominated Convergence theorem shows that

lim
n→∞

∫
R
f̂(ξ)γ1/v(ξ)µ̂n(−ξ)dξ =

∫
R
f̂(ξ)γ1/v(ξ)µ̂(−ξ)dξ = µ

[
fv
]
.

As explained in Remark 2.2.28(a), if f ∈ Cb(R) is uniformly continuous, then fv converges to
f uniformly as v ↘ 0. In particular, if f has compact support, then fv converges uniformly
to f as v → 0. We deduce that the family

F :=
{
φv; v > 0, φ ∈ Ccpt(R)

}
contains Ccpt(R) in its closure and µn

[
f
]
→ µ

[
f
]
for any f ∈ F. The conclusion follows

from Theorem 2.2.14. ⊓⊔

Remark 2.2.31. (a) One can show that if a sequence µn ∈ Prob(R) converges weakly to
a probability measure µ, then µ̂n(ξ) converges to µ̂(ξ) uniformly on compacts; see Exercise
2.44.

(b) In Theorem 2.2.30 we assumed that the pointwise limit of the sequence of characteristic
functions

(
µ̂n
)
n∈N is the characteristic function of a probability measure µ. This assumption

is not necessary. A lot less suffices.

More precisely, the general version of Lévy’s continuity theorem states the following.

If the characteristic functions of probability measures µn ∈ Prob(R) con-
verge pointwisely to a function that is continuous at the origin, then the
limit itself is the characteristic function of a probability measure µ ∈ Prob(R)
and µm ⇒ µ as n→ ∞.

This is not obvious and requires additional effort. In Exercise 2.43 we describe the main
steps of a proof of this fact. In fact, as shown in [65, Sec. XIX.2] or [164, Thm. 1.1.10], one
can used this stronger version of the continuity theorem to prove Bochner’s theorem. ⊓⊔

Remark 2.2.32. P. Lévy, [112, §17, p.47], introduced a metric dL on Prob(R). More
precisely, given µ0, µi ∈ Prob(R) with cumulative distribution functions

Fi(x) = µi
[
(−∞, x]

]
, x ∈ R, i = 0, 1,

then the Lévy metric is the length of the largest segment cut-out by the graphs Γ0,Γ1 of
F0, F1 along a line of the form x + y = a. The graphs are made continuous by adding
vertical segments connecting Fi(x − 0) to Fi(x) at the points of discontinuity. Intuitively,
the distance is the diagonal if the largest square with sides parallel to the axes that can be
squeezed between the curves Γ0 and Γ1.

More precisely

dL(µ0, µ1) = sup
a∈R

distR2

(
p0(a), p1(a)

)
,
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where pi(a) is the intersection of the graph Γi with the line x+ y = a. Note that if we write
pi(a) = (xi, yi), then yi = F (xi),

8 then

dL(µ0, µ1) = sup
{√

2|x0 − x1|; x0 + F0(x0) = x1 + F1(x1)
}
.

Lévy refers to the convergence with respect to the metric dL as “convergence from the point
of view of Bernoulli”. He shows (see [112, §17]) that a sequence of probability measures
µn converges in the metric dL to a probability measure µ if and only if the characteristic
functions µ̂n converge to the characteristic function µ. Hence, the convergence in the metric
dL is the weak convergence so that dL metrizes the weak convergence. ⊓⊔

2.2.3. The Central Limit Theorem. We can now state and prove the main result of this
section.

Theorem 2.2.33 (Central Limit Theorem). Suppose that Xn ∈ L2(Ω, S,P) is a sequence of
i.i.d. with common mean µ and common variance v. Set

X̄n = Xn − µ, Sn =

n∑
k=1

(Xk − µ), Zn =
1√
nv
Sn =

1√
nv

(
n∑
k=1

Xk − nµ

)
.

Then Zn ⇒ N(0, 1).

Proof. According to Lévy’s continuity theorem it suffices to show that

lim
n→∞

ΦZn(ξ) = ΦΓ1(ξ) = e−
ξ2

2 .

Observe thatXn are i.i.d. with mean 0 and variance v, while Zn has mean 0 and variance 1.

Denote by Φ(ξ) their common characteristic function, Φ(ξ) = E
[
eiX̄1

]
. We have

ΦZn(ξ) = ΦS̄n/
√
nv(ξ) = ΦS̄n

(ξ/
√
nv) = E

[ n∏
k=1

exp
(
i
ξ√
nv
Xk

) ]
(the variables exp

(
i ξ√

nv
Xk

)
, 1 ≤ k ≤ n are independent)

=
n∏
k=1

E
[
exp

(
i
ξ√
nv
Xk

) ]
= Φ

(
ξ/
√
nv
)n
.

Proposition 2.2.25 shows that the function Φ(η) is C2, so as η → 0 we have

Φ(η) = Φ(0) + Φ′(0)η +
1

2
Φ′′(0)η2 + o(η2) = 1 + iE

[
X1

]
η − 1

2
E
[
X

2
1

]
η2 + o(η2)

(E
[
X1

]
= 0, E

[
X

2
1

]
= Var

[
X1

]
= v)

= 1− v

2
η2 + o(η2).

Now let η = ξ/
√
nv, n≫ 0. We deduce

Φ
(
ξ/
√
nv
)n

=

(
1− ξ2

2n
+ o(1/n)

)n
.

At this point we want to invoke the following result.

8At a point of discontinuity this reads yi ∈
(
Fi(xi − 0), Fi(xi)

)
.
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Lemma 2.2.34. Suppose that (cn)n≥1 is a convergent sequence of complex numbers and

c = lim
n→∞

cn.

Then

lim
n→∞

(
1 +

cn
n

)n
= ec.

Assuming Lemma 2.2.34 we deduce that, for any ξ ∈ R we have

lim
n→∞

ΦZn(ξ) = lim
n→∞

(
1− ξ2

2n
+ o(1/n)

)n
= e−

ξ2

2 = ΦΓ1(ξ).

Proof of Lemma 2.2.34. Set c = a+ bi, cn = an + bni, so that an → a, bn → b. We set

zn = 1 +
cn

n
= 1 +

an

n
+
bn

n
i.

For large n zn = rneiθn , where

rn =
√

(1 + an/n)2 + b2n/n
2 =

(
1 + 2a/n+ o(1/n)

)1/2
,

|θn| <
π

2
, tan θn =

1

n

bn

1 + an/n
.

Thus

θn = arctan

(
1

n

bn

1 + an/n

)
=
b

n
+ o(1/n) as n→ ∞.

We deduce that as n→ ∞ we have

znn =
(
1 + 2a/n+ o(1/n)

)n/2
· ei(b+o(1)) → ea · eib = ec.

⊓⊔

2.2.4. Semigroup approach to CLT. We want to describe an alternate approach to the
Central Limit Theorem that bypasses the usage of Fourier transform. The presentation is
heavily inspired from [65, Chap. VIII].

Denote by C0(R) the space of continuous functions f : R → R such that

lim
x→±∞

f(x) = 0.

This is a Banach space with respect to the sup-norm

∥f∥ = sup
x∈R

∣∣ f(x) ∣∣.
Denote by B the Banach space of bounded linear operators

T : C0(R) → C0(R).

For any Borel probability measure µ ∈ Prob(R) and f ∈ C0(R) we denote by Aµ[f ] the
function R → R given by

Aµ[f ](x) =

∫
R
f(x+ y)µ

[
dy
]
.

The Dominated Convergence Theorem implies that Aµ[f ] ∈ C0(R). Note that∣∣Aµ[f ](x) ∣∣ ≤ ∫
R

∣∣ f(x+ y)µ
[
dy
]
≤ ∥f∥, ∀x ∈ R

so Aµ is a bounded operator C0(R) → C0(R) of norm ≤ 1. We thus have a correspondence

Prob(R) ∋ µ 7→ Aµ ∈ B.
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Clearly Aδ0 = 1. Observe that if Y is a random variable with distribution µ then

Aµ[f ](x) = E
[
f(x+ Y )

]
, ∀x ∈ R.

For this reason, for any random variable Y we set

AY := APX
.

Proposition 2.2.35. Suppose that µ1, µ2 ∈ Prob(R). Then

Aµ1∗µ2 = Aµ1Aµ2 ,

where ∗ denotes the convolution of probability measures on R.

Proof. Let Y1, Y2 be independent random variables such that PYi = µi, i = 1, 2. Fix
f ∈ C0(R). For any x ∈ R we have

Aµ1∗µ2 [f ](x) = E
[
f(x+ Y1 + Y2)

]
=

∫
R2

f(x+ y1 + y2)µ1 ⊗ µ2
[
dy1dy2

]
=

∫
R

(∫
R
f(x+ y1 + y2)µ

[
dy2

])
µ
[
dy1

]
=

∫
R
Aµ2 [f ](x+ y1)µ

[
dy1

]
= Aµ1

[
Aµ2 [f ]

]
(x).

⊓⊔

Thus the map

Prob(R) ∋ µ 7→ Aµ ∈ B

is a morphism of semigroups.

Proposition 2.2.36. Let n ∈ N and suppose that µi, νj ∈ Prob(R), 1 ≤ i, j ≤ n. Then, for
any f ∈ C0(R) we have

∥Aµ1∗···∗µnf − Aν1∗···∗νnf∥ ≤
n∑
i=1

∥Aµif − Aνif∥. (2.2.13)

Proof. For n = 2 we have

∥Aµ1Aµ2f − Aν1Aν2f∥ ≤ ∥Aµ1(Aµ2 − Aν2)f∥+ ∥Aµ1Aν2f − Aν1Aν2f∥

= ∥Aµ1(Aµ2 − Aν2)f∥+ ∥Aν2(Aµ1 − Aν1)f∥
≤ ∥(Aµ2 − Aν2)f∥+ ∥(Aµ1 − Aν1)f∥

since ∥Aµ1∥, ∥Aν2∥ ≤ 1. The general case follows inductively using the inequality

∥Aµ1∗···∗µnf − Aν1∗···∗νnf∥ ≤ ∥Aµ1(Aµ2 − Aν2)f∥+ ∥Aµ2∗···∗µnf − Aν2∗···∗νnf∥.

⊓⊔

Define inductively inductively

Ck0 (R) =
{
f ∈ C1(R) ∩ Ck−1

0 (R); f ′ ∈ Ck−1
0 (R)

}
.

Theorem 2.2.37. Let (µn)n∈N be a sequence in Prob(R) and µ ∈ Prob(R). The following
statements are equivalent.

(i) The sequence (µn) converges weakly to µ.



188 2. Limit theorems

(ii) For any f ∈ C0(R)
lim
n→∞

∥Aµnf − Aµf∥ = 0.

(iii) There exists k ∈ N0 such that, for any f ∈ Ck0 (R)

lim
n→∞

∥Aµnf − Aµf∥ = 0.

Proof. Clearly (ii) ⇒ (iii). To prove that (iii) ⇒ (i) note that for any smooth compactly
supported function f ∈ Ck0 (R) we have

µn
[
f
]
= Aµn [f ](0)] → Aµ[f ](0) = µ

[
f
]
.

Now conclude using Theorem 2.2.14.

(i) ⇒ (ii) Let f ∈ C0(R). For each x ∈ R we define

fx : R → R, fx(y) = f(x+ y), ∀y ∈ R.

Then

Aµnf(x) = µn
[
fx
]
.

Since f is uniformly continuous the map

R ∋ x 7→ fx ∈ C0(R)

is also uniformly continuous with respect to the sup-norm.

Fix ε > 0. Since µn ⇒ µ there exists M > 0 such that

µn
[
{|y| > M}

]
, µn

[
{|y| > M}

]
< ε, ∀n ∈ N

We can assume that

µn
[
{|Y | ≤M}

]
→ µ

[
{|Y | ≤M}

]
.

We have ∣∣µn[ fx ]− µ
[
f
]∣∣ ≤ ∣∣∣∣∣

∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µ[dy]

∣∣∣∣∣
+

∫
|y|>M

|f |µn|dy] +
∫
|y|>M

|f |µ[dy]

≤

∣∣∣∣∣
∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µn[dy]

∣∣∣∣∣+ 2ε∥f∥.

Hence

sup
x∈R

∣∣µn[ fx ]− µ
[
f
]∣∣ ≤ sup

x∈R

∣∣∣∣∣
∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µn[dy]

∣∣∣∣∣+ 2ε∥f∥.

Since f ∈ C0(R), ∀ε > 0 there exists K > 0 such that

sup
y∈[−M,M ]

|fx(y)| < ε, ∀|x| > K.

Hence ∣∣∣∣∣
∫
[−M,M ]

fx(y)µn[dy]−
∫
[−M,M ]

fx(y)µn[dy]

∣∣∣∣∣ < 2ε, ∀|x| > K, ∀n ∈ N. (2.2.14)
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We deduce from (2.2.14) that

sup
|x|>K

∣∣µn[ fx ]− µ
[
f
]∣∣ ≤ 2ε+ 2ε∥f∥. (2.2.15)

Consider now the continuous functions

g, gn : [−K,K] → R, gn(x) =
∫
[−M,M ]

fx(y)µn[dy], g(x) =

∫
[−M,M ]

fx(y)µn[dy].

We deduce

gn(x) → g(x), ∀x ∈ [−K,K].

The sequence (gn) is equicontinuous since x 7→ fx is uniformly continuous with respect to the
sup-norm. Hence gn converges uniformly to g on [−K,K], i.e.,

lim
n→∞

sup
|x|≤K

|gn(x)− g(x)| = 0.

We have

sup
|x|≤K

∣∣µn[ fx ]− µ
[
f
]∣∣ ≤ sup

|x|≤K
|gn(x)− g(x)|+ 2ε∥f∥.

Hence

lim sup
n→∞

sup
|x|≤K

∣∣µn[ fx ]− µ
[
f
]∣∣ ≤ 2ε∥f∥.

Using (2.2.15) we deduce that ∀ε > 0 we have

lim sup
n→∞

sup
x∈R

∣∣µn[ fx ]− µ
[
f
]∣∣ ≤ 2ε+ 2ε∥f∥.

This proves (ii). ⊓⊔

Proposition 2.2.38. Suppose that Y is a random variable such that

E
[
Y 2
]
= σ2 > 0, E

[
Y
]
= 0. (2.2.16)

Then for any f ∈ C3
0 (R), t > 0 and r > 0 we have∥∥∥∥(AtY f − f
)
− t2σ2

2
f ′′
∥∥∥∥ ≤

(
1

2
r(tσ)2 + t2

∫
|y|>r/t

y2µ
[
y
])

∥f∥C3 (2.2.17)

Proof. Set µ := PY . Let f ∈ C3
0 (R). Using (2.2.16) we deduce that(

AtY − 1
)
f(x) =

∫
R

(
f
(
x+ ty

)
− f(x)− tyf ′(x)

)
µ
[
dy
]
,

(
AtY − 1

)
f(x)− t2σ2

2
f ′′(x) =

∫
R

(
f
(
x+ ty

)
− f(x)− f ′(x)ty − 1

2
f ′′(x)ty2

)
︸ ︷︷ ︸

=Ut(x,y)

µ
[
dy
]
.

Using Taylor’s formula with Lagrange remainder A

f
(
x+ ty

)
− f(x)− f ′(x)ty =

1

2
f ′′(ξ)ty2

for some ξ = ξx,y ∈ (x, x+ ty). Hence∣∣∣ f(x+ ty
)
− f(x)− f ′(x)ty − t2

2
f ′′(x)ty2

∣∣∣ = ∣∣∣ 1
2
f ′′(ξ)− 1

2
f ′′(x)

∣∣∣ · ty2
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≤ min
(
t2∥f∥C2 |y|2,

1

2
∥f∥C3t3|y|3

)
≤ t∥f∥C3 min

(
|y|2, 1

2
t|y|3

)
, ∀t > 0, x, y ∈ R.

Hence

0 ≤ Ut(x, y) ≤ t2∥f∥C3 min
(
|y|2, 1

2
t|y|3

)
, ∀t > 0, x, y ∈ R

For any R > 0 we have∥∥∥(AtY − 1
)
f − t2σ2

2
f ′′
∥∥∥ ≤ t2∥f∥C3

∫
R
min

(
|y|2, 1

2
t|y|3

)
µ
[
dy
]

≤

(
1

2

∫
|y|<R

t3|y|3µ
[
dy
]
+ t2

∫
|y|>R

|y|2µ
[
dy
])

∥f∥C3

≤

(
1

2
t3R

∫
R
y2µ
[
dy
]
+ t2

∫
|y|>R

y2µ
[
y
])

∥f∥C3

=

(
1

2
tR(tσ)2 + t2

∫
|y|>R

y2µ
[
y
])

∥f∥C3 .

Now set R := r/t. ⊓⊔

Corollary 2.2.39. Suppose that X is a random variable such that

E
[
X2
]
= σ2, E

[
X
]
= 0.

Then for any f ∈ C3
0 (R) we have

lim
t↘0

∥∥∥∥1t (At1/2Xf − f
)
− σ2

2
f ′′
∥∥∥∥ = 0.

Theorem 2.2.40 (Lindeberg). Suppose that (Xn)n≥1 be a sequence of independent random
variables with mean zero and variances

E
[
X2
n

]
= σ2n.

Set

S2
n =

n∑
k=1

σ2k

and assume that the variables (Xn) satisfy the Lindeberg condition

∀ε > 0 lim
n→∞

1

S2
n

∑
k=1

∫
|x|>εSn

|x|2PXk

[
dx
]
. (2.2.18)

Then the random variables

Xn =
1

Sn

(
X1 + · · ·+Xn

)
converge weakly to a standard normal random variable.

Proof. We set

vn := sup
1≤k≤n

σk
Sn
.
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Lemma 2.2.41.

lim
n→∞

vn = 0. (2.2.19)

Proof. Observe that the Lindeberg condition can be rewritten as

lim
n→∞

n∑
k=1

∫
|z|>ε

z2PS−1
n Xk

[
dx
]
= 0

Observe that for any ε > 0 and any 1 ≤ k ≤ n we have

σ2k
S2
n

= Var
[
S−1
n Xk

]
=

∫
|z|≤ε

z2PS−1
n Xk

[
dx
]
+

∫
|z|>ε

z2PS−1
n Xk

[
dx
]

≤ ε2 +

∫
|z|>ε

z2PS−1
n Xk

[
dx
]
≤ ε2 +

n∑
k=1

∫
|z|>ε

z2PS−1
n Xk

[
dx
]
.

Thus, for any ε > 0 and any n ∈ N we have

v2n ≤ ε2 +
n∑
k=1

∫
|z|>ε

z2PS−1
n Xk

[
dx
]
.

The equality (2.2.19) now follows from the Lindeberg condition. ⊓⊔

Let (Yn)n∈N be independent normal variables with mean zero and variances

Var
[
Y 2
n

]
= σ2n.

Then

Yn =
1

Sn

(
Y1 + · · ·+ Yn

)
is a standard normal random variable. It suffices to show that

lim
n→∞

∥A
Xn

− A
Yn

f∥ = 0, ∀f ∈ C3
0 (R). (2.2.20)

Fix f ∈ C3
0 (R) and ε > 0. Using (2.2.13) we deduce

∥A
Xn

− A
Yn

)f∥ ≤
n∑
k=1

∥AS−1
n Xk

− AS−1
n Yk

)f∥

Using (2.2.17) with r = ε and t = S−1
n we deduce that

∥AS−1
n Xk

− AS−1
n Yk

)f∥ ≤
∥∥∥∥(AS−1

n Xk
− 1)f −

σ2k
2S2

n

f ′′
∥∥∥∥+ ∥∥∥∥(AS−1

n Yk
− 1)f −

σ2k
2S2

n

f ′′
∥∥∥∥

≤

(
εσ2k
2S2

n

+
1

S2
n

∫
|x|>εSn

x2PXk

[
dx
])

∥f∥C3

+

(
εσ2k
2S2

n

+
1

S2
k

∫
|x|>εSn

y2Γσ2
k

[
dy
])

∥f∥C3 ,
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where Γσ2
k
denotes the normal distribution with mean zero and variance σ2k. Hence

∥A
Xn

− A
Yn

)f∥ ≤

(
n∑
k=1

εσ2k
S2
n

)
∥f∥C3︸ ︷︷ ︸

=ε∥f∥C3

+

(
n∑
k=1

1

S2
k

∫
|x|>εSn

x2PXk

[
dx
]
+

n∑
k=1

1

S2
n

∫
|y|>εSn

y2Γσ2
k

[
dy
])

∥f∥C3

= ε∥f∥C3 +

(
n∑
k=1

1

S2
n

∫
|x|>εSn

x2PXk

[
dx
])

|f∥C3︸ ︷︷ ︸
=:An

+

(
n∑
k=1

1

S2
n

∫
|y|>εSn

y2Γσ2
k

[
dy
])

∥f∥C3︸ ︷︷ ︸
=:Bn

The Lindeberg condition implies that An → 0 as n→ ∞. To deal with Bn note that

1

S2
n

∫
|y|>εSn

y2γσ2
k

[
dy
]
=
σ2k
S2
n

∫
|z|>εSnσk

y2Γ1

[
dz
]
≤
σ2k
S2
n

∫
|z|>ε/vn

y2Γ1

[
dz
]

Hence

Bn ≤
∫
|z|>ε/vn

y2Γ1

[
dz
]
.

The equality (2.2.19) implies Bn → 0. ⊓⊔

Remark 2.2.42. (a) The above argument is due to H. F. Trotter [170]. The correspondence

Prob(R) ∋ µ 7→ Aµ ∈ B

used in the above proof has a wider range of applications and we refer to [65] for more
information.

(b) Note that if the random variables Xn are also identically distributed with common vari-
ances σ2, then S2

n = nσ2. then

1

S2
n

n∑
k=1

E
[
I{|Xk|>tSn}X

2
k

]
=

1

σ2
E
[
I{|X1|>tσ

√
n}X

2
1

]
→ 0

as n→ ∞. Hence the Lindeberg’s condition is satisfied when the random variables are i.i.d..

If p > 2, then Hölder’s inequality implies

E
[
I{|Xk|>tSn}X

2
k

]
≤ P

[
{|Xk| > tSn}

]1− 2
pE
[
|Xk|p

] 2
p

≤

(
E
[
|Xp|p

]
tpSpn

)1− 2
p

E
[
|Xk|p

] 2
p =

1

tp−2Sp−2
n

E
[
|Xk|p

]
.
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This shows that Lindeberg condition is also satisfied if the sequence satisfied Lyapunov’s
condition of order p

lim
n→∞

1

Spn

n∑
k=1

E
[
|Xk|p

]
= 0.

For even more general versions of the CLT we refer to [78, 140]. ⊓⊔

2.3. Concentration inequalities

Suppose that (Xn)n∈N is a sequence of i.i.d. random variables with mean 0. Let

Sn := X1 + · · ·+Xn.

The Strong Law of Large of Numbers shows that 1
nSn → 0 a.s. A concentration inequality

offers a quantitative information on the probability that 1
nSn deviates from 0 by a given

amount ε. More concretely, it gives an upper bound for the probability that 1
n |Sn| > ε. If the

random variables Xn have finite second moments, σ2 = Var
[
X1

]
, then we have seen that

Chebyshev’s inequality yields the estimate

P
[
|Sn| > nε

]
= P

[
S2
n > n2ε2

]
<

Var
[
Sn
]

n2ε2
=

σ2

nε2
.

In the proof of Theorem 2.1.8 we have shown that if the variables Xn have a stronger inte-
grability property namely E

[
X4
n

]
<∞, then there exists a constant C > 0 such that for any

ε > 0 and any ε > 0 we have

P
[
|Sn| > nε

]
≤ C

n2ε4
,

showing that 1
nSn is even more concentrated around its mean. Loosely speaking, we expect

higher concentration around if Xn have lighter tails, i.e., the probabilities

P
[
|Xn| > x

]
decay fast as x→ ∞.

In this section we want to describe some quantitative results stating that, under appropri-
ate light-tail assumptions, for any ε > 0 the probability P

[
|Sn| > nε

]
decays exponentially

fast to 0 as n → ∞. The subject of concentration inequalities has witnessed and explosive
growth in the last three decades so we will only be able to scratch the surface. For more on
this subject we refer to [19].

2.3.1. The Chernoff bound. Many useful concentration inequalities are based on the
Chernoff method. Let us describe its basics.

Suppose that X is a centered, i.e., mean zero, random variable such that

MX(λ) := E
[
eλX

]
<∞, ∀λ ∈ J,

where J is an open interval containing the origin. We set

J± :=
{
λ ∈ I; ±λ > 0

}
.

Note that this implies thatX has moments of any order and thus it imposes severe restrictions
on the tail of X. We define the cumulant of X to be the function,

ΨX : J → R, ΨX(λ) := logMX(λ)
]
.
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The function x 7→ etx is convex and Jensen’s inequality shows

E
[
eλX

]
≥ eλE[X] = 1

so ΨX(λ) ≥ 0.

Here is the key idea of Chernoff’s method. For x > 0 we have

P
[
X > x

]
= P

[
eλX > eλx

]
≤ 1

eλx
E
[
eλX

]
, ∀λ ∈ J+,

where at the last step we used Markov’s inequality. Hence

P
[
X > x

]
≤ e−

(
xλ−ΨX(λ)

)
, ∀λ ∈ J+.

Set

I+(x) := sup
λ∈J+

(
xλ−ΨX(λ)

)
.

We obtain in this fashion the Chernoff bound

P
[
X > x

]
≤ e−I+(x), I+(x) := sup

λ∈(0,r)

(
xλ−ΨX(λ)

)
, ∀x > 0. (2.3.1)

Note that I+(x) ≥ 0 since ΨX(λ) ≥ 0. Arguing in a similar fashion we deduce

P
[
X < x

]
≤ e−I−(x), I−(x) := sup

λ∈J−

(
xλ−ΨX(λ)

)
, ∀x < 0. (2.3.2)

More generally, if X has a nonzero mean µ, then X = X − µ is centered. If E
[
eλX

]
exists

for λ ∈ J , then

ΨX̄(λ) = ΨX(λ)− λµ,

and we deduce

P
[
X > x+ µ

]
≤ e−I+(x), I+(x) := sup

λ∈J+

(
(x+ µ)λ−ΨX(λ)

)
, ∀x > 0. (2.3.3)

and

P
[
X < x+ µ

]
≤ e−I−(x), I−(x) := sup

λ∈J−

(
(x+ µ)λ−ΨX(λ)

)
, ∀x < 0. (2.3.4)

Suppose that (Xn)n∈N is a sequence of i.i.d. random variables such that

M(λ) = MXk
(λ) <∞,

for any λ in an open interval J containing 0. Set

µ := E
[
Xk

]
, Sn := X1 + · · ·+Xn.

Then

E
[
Sn
]
= nµ, MSn(λ) = M(λ)n, ΨSn(λ) = nΨ(Λ).

We deduce that

sup
λ∈J+

(
(nx+ nµ)λ−ΨSn(λ)

)
= nI+(x), ∀x > 0,

and

sup
λ∈J−

(
(nx+ nµ)λ−ΨSn(λ)

)
= nI−(x), ∀x < 0.

We deduce

P
[ 1
n
Sn − µ > x

]
= P

[
Sn − nµ > nx

]
≤ e−nI+(x), ∀x > 0, (2.3.5a)
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P
[ 1
n
Sn − µ < x

]
= P

[
Sn − nµ < nx

]
≤ e−nI−(x), ∀x < 0. (2.3.5b)

In particular

P
[ ∣∣∣ 1
n
Sn − µ

∣∣∣ > x
]
≤ e−nI+(x) + e−nI−(−x), ∀x > 0. (2.3.6)

We have reached a remarkable conclusion. The assumption M(λ) < ∞ for λ in an open
neighborhood of the origin implies that the probability that the empirical mean 1

nSn deviates
from the theoretical mean µ by a fixed amount x decays exponentially to 0 as n → ∞. In
other words, 1

nSn is highly concentrated around its mean and the above inequalities quantify
this fact.

To gain some more insight on the above estimates it is useful to list a few properties of
the function I+(x)

Proposition 2.3.1. Suppose that the centered random variable X satisfies

MX(λ) = E
[
eλX

]
<∞, ∀λ ∈ J,

where J ⊂ R is an open interval containing 0. Set

J± :=
{
λ ∈ J ; ±λ > 0

}
, ΨX(λ) := logMX(λ).

Then the following hold.

(i) MX(0) = 1, M′
X(0) = 0, M′′

X(0) = Var
[
X
]
.

(ii) The function J ∋ λ 7→ ΨX(λ) ∈ R is convex and nonnegative. Moreover Ψ′′
X(0) > 0.

(iii) The function

I : R → [0,∞], I(x) = sup
λ∈J

(
λx−ΨX(λ)

)
is convex. If

I±(x) = I(x) = sup
λ∈J±

(
λx−ΨX(λ)

)
,

then I±(x) = I(x) for ±x > 0.

(iv) I(x) > 0 if x ̸= 0.

Proof. (i) Proposition 1.3.17 implies that M(k)
X (0) = E

[
Xk
]
, ∀k = 0, 1, 2, . . . .I

(ii) To prove that ΨX(λ) is convex let t1, t2 ∈ (0, 1) such that t1 + t2 = 1. Then, using
Hölder’s inequality with p = 1

t1
and q = 1

t2
we deduce that for any λ1, λ2 ∈ R we have

E
[
et1λ1X+t2λ2X

]
≤ E

[ (
et1λ1X

)1/t1 ]t1E[ ( et2λ2X )1/t2 ]t2 = E
[
eλ1X

]t1E[ eλ2X ]t2 .
Taking the logarithm of both sides of the above inequality we obtain the convexity of ΨX(λ).
Next observe that

Ψ′
X(0) =

M′
X(0)

MX(0)
= 0.

Since ΨX(λ) is convex is graph sits above the tangent at λ = 0 so ΨX(λ) ≥ 0, ∀λ ∈ J .

(iii) For t1, t2 ∈ (0, 1) such that t1 + t2 = 1 and for x1, x2 > 0 we have

I+(t1x1 + t1x2) = sup
λ∈(0,r)

(
(t1x2 + t2x2)−ΨX(λ)

)
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= sup
λ∈(0,r)

(
t1(x1 −ΨX(λ))− (t2x2 −ΨX(λ))

)
≤ t1I+(x1) + t2I+(x2).

Observe that for x > 0 we have

λx−ΨX(λ) ≤ 0, ∀λ ≤ 0

proving that
I(x) = sup

λ∈J

(
λx−ΨX(λ)

)
= sup

λ∈J+

(
λx−ΨX(λ)

)
.

(iv) Observe that

Ψ′′
X(λ) =

M′′
X(λ)MX(λ)−M′

X(λ)
2

MX(λ)2
(2.3.7)

so Ψ′′
X(0) = M′′

X(0) = Var
[
X
]
> 0. This proves that λx−ΨX(λ) > 0 for |λ| small and x ̸= 0

so I(x) > 0 if x ̸= 0. ⊓⊔

Remark 2.3.2. As explained in [148, §12], to any convex lower semicontinuous function
f : Rn → (0,∞] we can associate a conjugate

f∗ : Rn → (−∞,∞], f∗(p) = sup
x∈Rn

(
⟨p, x⟩ − f(x)

)
,

where ⟨−,−⟩ denotes the canonical inner product in Rn. One can show that f∗ is also
convex and lower semicontinuos and f = (f∗)∗. The conjugate f∗ is sometimes called the
Fenchel-Legendre conjugate of f . Observe that I(x) is the conjugate of the convex function
ΨX(λ). ⊓⊔

Example 2.3.3. Suppose that X ∼ Bin(p). Then E
[
X
]
= p, MX−p(λ) =

(
q + peλ

)
e−pλ.

For x ∈ R we set

fx(λ) := xλ−ΨX−p(λ) = (x+ p)λ− log(q + peλ), I(x) = sup
λ∈R

fx(λ).

We will show that

I(x) =

{
(x+ p) log x+p

p + (q − x) log q−x
q , x ∈ [−q, p],

∞, x ̸∈ [−q, p].
Observe that

f ′x(λ) :=
d

dλ
fx(λ) = x+ p− peλ

q + peλ

and f ′x(λ) = 0 if

p(x+ p− 1)eλ = −q(x+ p), i.e., peλ = q
x+ p

q − x
.

This shows that if x+p
q−x < 0, i.e., x ∈ R \ (−p, q), then f ′x(λ) > 0, ∀λ and I(x) = ∞.9 If

x ∈ (−p, q), then fx(λ) = 0 iff

λ = log q − log p+ log(x+ p)− log(q − x) = log
x+ p

p
− log

q − x

q
.

I(x) = (x+ p) log
x+ p

p
− (x+ p) log

q − x

q
+ log

q − x

q

= (x+ p) log
x+ p

p
+ (q − x) log

q − x

q
, x ∈ (−p, q).

9Can you think of a simple reason why this happens?
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One can verify that I(q) = − log p and I(−p) = − log q. ⊓⊔

Remark 2.3.4. Suppose that P,Q are two Borel probability measures on R that are mutually
absolutely continuous,

P ≪ Q and Q ≪ P.
We denote by ρP|Q := dP

dQ the density of P with respect to Q. We define the Kullback-Leibler

divergence

DKL
[
P ∥Q

]
:=

∫
R
log

dP
dQ

P
[
dx
]

(2.3.8)

(a) Suppose that P is the probability distribution Bin(p),

P = qδ0 + pδ1.

For x ∈ (−p, q) consider the probability distribution

Qx = (q − x)δ0 + (p+ x)δ1.

Then

DKL
[
Qx ∥P

]
= (x+ p) log

x+ p

p
+ (q − x) log

q − x

q
.

This is the rate I(x) we found in Example 2.3.3.

(b) Let X be a random variable with probability distribution Q and set Z := ρP|Q(X). Then

E
[
Z
]
=

∫
R

dP
dQ

dQ =

∫
R
dP = 1,

E
[
Z logZ

]
=

∫
R

dP
dQ

log
dP
dQ

dQ =

∫
R
log

dP
dQ

dP = DKL
[
P ∥Q

]
.

Thus

E
[
Z logZ

]
− E

[
Z
]
logE

[
Z
]
= DKL

[
P ∥Q

]
showing that Kullback-Leibler divergence is a special case of φ-entropy (1.3.13). More pre-
cisely, the above equality shows that

DKL
[
P ∥Q

]
= Hφ

[
Z
]
, φ(z) = z log z, z > 0.

In particular this yields Gibbs’ inequality

DKL
[
P ∥Q

]
≥ 0. (2.3.9)

Above, we could have used instead of the natural logarithm any logarithm in a base > 1 and
reach the same conclusion. In particular, if we work with log2 and we set

D2

[
P ∥Q

]
=

∫
R
log2

dQ
dP

P
[
dx
]
.

Then Gibbs’ inequality continues to hold in this case as well

D2

[
P ∥Q

]
≥ 0. (2.3.10)

Let X be a finite subset of R. Assume that we are given a function p : X → (0, 1] such that∑
x∈X

p(x) = 1
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so p defines the probability measure

Pp =
∑
x∈X

p(x)δx ∈ Prob(R).

Recall that its Shannon entropy is (see (2.1.21) is the quantity

Ent2
[
p
]
= −

∑
x∈X

p(x) log2 p(x).

The uniform probability measure on X is

P0 =
∑
x∈X

p0(x)δx =
1

|X|
∑
x∈X

δx.

Note that Pp and P0 are mutually absolutely continuous. Gibbs’ inequality shows that

D2

[
P ∥P0

]
≥ 0.

On the other hand

D2

[
P ∥P0

]
=
∑
x∈X

log2
(
|X| · p(x)

)
p(x) = log2 |X|+

∑
x∈X

p(x) log2 p(x) ≥ 0.

We have obtained again the inequality (2.1.22).

Ent2
[
p
]
≤ log2 |X| = Ent2

[
p0
]
. (2.3.11)

⊓⊔

Example 2.3.5. Suppose that X ∼ N(0, 1). Then, for any λ ∈ R,

MX(λ) =
1√
2π

∫
R
eλxe−x

2/2dx =
1√
2π

∫
R
e−(x2−2λx+λ2)/2eλ

2/2dx = eλ
2/2.

Note that Y = σX ∼ N(0, σ) and

MY (λ) = MX(σλ) = eσ
2λ2/2, ΨY (λ) =

σ2λ2

2
.

The supremum

I(x) := sup
λ∈R

(
xλ− σ2λ2

2

)
is achieved for λ = λx = x

σ2 and it is equal to

I(x) =
x2

2σ2
.

In other words, if X ∼ N(0, σ2), then

P
[
X| > ε

]
≤ 2max

(
P
[
X < −x

]
, P

[
X > x

] )
≤ 2e−

x2

2σ2 .

⊓⊔
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2.3.2. Some applications. Often an explicit description of ΨX(λ) may either not be pos-
sible, or it could be too complicated to be useful. That is why it is more practical to have
simple ways of producing upper bounds for the moment generating function.

Definition 2.3.6. A random variable X with mean µ said to be subgaussian of type σ2, and
we write this X ∈ G(σ2), if E

[
eλX

]
<∞, ∀λ ∈ R, and

ΨX−µ(λ) ≤ ΨN(0,σ2) =
σ2λ2

2
, ∀λ ∈ R⇐⇒E

[
eλ(X−µ) ] ≤ e

λ2σ2

2 , ∀λ ∈ R. ⊓⊔

Note that if X ∈ G(σ2), and ±x > 0, then

sup
±λ≥0

(
xλ−ΨX−µ(λ)

)
≥ sup

±λ≥0

(
xλ− λ2σ2

2

)
=

x2

2σ2
,

and thus

max
(
P
[
X − µ < −x

]
,P
[
X − µ > x

] )
≤ e−

x2

2σ2 , ∀x > 0, (2.3.12a)

P
[
|X − µ| > x

]
≤ 2e−

x2

2σ2 , ∀x > 0. (2.3.12b)

Observe that if X1, X2 are independent random variables and Xk ∈ G(σ2k), k = 1, 2, then

a1X1 + a1X2 ∈ G(a21σ
2
1 + a22σ

2
2), ∀a1, a2 ∈ R.

In particular, if X1, . . . , Xn are centered, independent random variables in G(σ2), then we
have

1

n

(
X1 + · · ·+Xn

)
∈ G(σ2/n),

and thus we obtain Hoeffding’s inequality

P
[ ∣∣∣ 1
n

(
X1 + · · ·+Xn

)∣∣∣ > x
]
≤ 2e−

nx2

2σ2 , ∀x > 0. (2.3.13)

Example 2.3.7. Suppose that R is a Rademacher random variable, i.e., it takes only the
values ±1 with equal probabilities. Then

E
[
eλR

]
= coshλ ≤ eλ

2/2, (2.3.14)

where the last inequality is obtained by inspecting the Taylor series of the two terms and
using the inequality 2nn! ≤ (2n)!. Hence R ∈ G(1). Similarly, cR ∈ G(1), ∀c ∈ [0, 1]. ⊓⊔

For these estimates to be useful we need to have some simple ways of recognizing sub-
gaussian random variables.

Proposition 2.3.8. Suppose that X is a centered random variable, i.e., E
[
X
]
= 0. If there

exists C > 0 such that

E
[
X2k

]
≤ k!Ck, ∀k ∈ N,

then X ∈ G(4C).

Proof. We rely on a very useful symmetrization trick. Choose a random variable X ′ inde-
pendent of X but with the same distribution as X. Then the random variable Y = X−X ′ is
symmetric, i.e., Y and −Y have the same probability distributions. Observe next that since
−X ′ is centered we have

E
[
e−λX

′ ] ≥ e−λE[X
′] = 1, ∀λ ∈ R.



200 2. Limit theorems

We deduce

E
[
eλX

]
≤ E

[
eλX

]
· E
[
e−λX

′ ]
= E

[
eλ(X−X′)

]
=

∞∑
k=0

λ2k

(2k)!
E
[
(X −X ′)2k

]
.

Since the function x2k is convex we have

(x+ y)2k ≤ 22k−1
(
x2k + y2k

)
, ∀x, y ∈ R

so

E
[
(X −X ′)2k

]
≤ 22kE

[
X2k

]
≤ 22kk!Ck =

(2k)!

(2k − 1)!!
(2C)k ≤ (2k)!

k!
(2C)k

Hence

E
[
eλX

]
≤

∞∑
k=0

(2Cλ2)k

k!
= e2Cλ

2
.

Hence X ∈ G(4C). ⊓⊔

Example 2.3.9. Suppose that R is a Rademacher random variable. Clearly

E
[
R2k

]
= 1 ≤ k!1k, ∀k ∈ N

so that R ∈ G(4). We see that this estimate is not as good as the one in Example 2.3.7. ⊓⊔

The next result offers a sharper estimate under certain conditions.

Proposition 2.3.10 (Hoeffding’s lemma). Suppose that X is a random variable such that
X ∈ [a, b] a.s.. Then X ∈ G

(
σ2
)
, where σ = b−a

2 , i.e.,

E
[
eλ(X−µ) ] ≤ e

λ2(b−a)2

8 , ∀λ ∈ R. (2.3.15)

Proof. Let us first observe that that any random variable Y such that Y ∈ [a, b] a.s. satisfies

Var
[
Y
]
≤ (b− a)2

4
.

Indeed, if µ = E
[
Y
]
, then Y − µ ∈

[
a− µ, b− µ

]
. If

m =
(a− µ) + (b− µ)

2

is the midpoint of
[
a− µ, b− µ

]
, then

|(Y − µ)−m| ≤ b− a

2

and

Var
[
Y
]
≤ E

[
(Y − µ)2

]
+m2 = E

[ (
(Y − µ)−m

)2 ] ≤ (b− a)2

4
.

Observe next that we can assume that X is centered. Indeed, if µ = E
[
X
]
, then the centered

variable X − µ satisfies X − µ ∈
[
a− µ, b− µ

]
and (b− a) = (b− µ)− (a− µ).

Denote by P the probability distribution of X. For any λ ∈ R we denote by Pλ the
probability measure on R given by

Pλ
[
dx
]
=

eλx

E
[
eλX

]P[ dx ] (2.3.16)
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Note that Pλ is also supported on [a, b]. Since E
[
X
]
= 0 we have Ψ′

X(0) = 0. We deduce
from (2.3.7) that

Ψ′′
X(λ)

(2.3.7)
=

1

E
[
eλX

]E[X2eλX
]
−

(
E
[
XeλX

]
E
[
eλX

] )2

=

∫
R
x2Pλ

[
dx
]
−
(∫

R
xPλ

[
dx
])2

.

The last term is the variance of a random variable Z with probability distribution Pλ. Since
Pλ is supported in [a, b] we have Z ∈ [a, b] and we deduce

Ψ′′
X(λ) = Var

[
Z
]
≤ (b− a)2

4
. (2.3.17)

Using the Taylor approximation with Lagrange remainder we deduce that for some ξ ∈ [0, λ]
we have

ΨX(λ) = ΨX(0) + λΨ′
X(0)︸ ︷︷ ︸

=0

+
1

2
Ψ′′
X(ξ)λ

2 ≤ λ2(b− a)2

8
.

Hence X ∈ G
(
(b− a)2/4). ⊓⊔

Hoeffding’s Lemma shows that if R is a Rademacher random variable, then R ∈ G(1) as
in Example 2.3.7. which is an improvement over Proposition 2.3.8.

IfR1, . . . , Rn are independent Rademacher random variables, then for any c1, . . . , cn ∈ [−1, 1]
we have ckRk ∈ G(1) and we deduce from Hoeffding’s inequality that

P
[ 1
n

∣∣∣ c1R1 + · · ·+ cnRn

∣∣∣ > r
]
≤ 2e−

nr2

2 . (2.3.18)

Example 2.3.11 (The Poincaré phenomenon). Suppose thatX is a standard normal random
variable and Y = X2

MY (λ) = E
[
eλX

2 ]
=

1√
2π

∫
R
e

(2λ−1)x2

2 dt.

This integral converges only for λ < 1
2 and in this case it is equal to

MY (λ) =
1√

1− 2λ
.

In particular, X2 is not subgaussian since its moment generating function is not defined vor
all λ ∈ R. Note that E

[
Y
]
= E

[
X2
]
= 1. Hence

MY−1(λ) =
e−λ√
1− 2λ

, ΨY−1(λ) = −λ− 1

2
log(1− 2λ).

Since Y ≥ 0 we have P
[
Y − 1 < y

]
= 0 for y ≤ −1. For y ∈ (−1,∞) the supremum

I(y) := sup
λ<1/2)

(
λy −ΨY−1(λ)

)
is achieved when

d

dλ

(
λy −ΨY−1(λ)

)
= y + 1− 1

1− 2λ
= 0.
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Solving this equation for λ we get

1− 2λ =
1

y + 1
⇐⇒λ =

y

2(y + 1)
.

and

I(y) =
y2

2(y + 1)
+

y

2(y + 1)
− 1

2
log(1 + y) =

y

2
− 1

2
log(y + 1) ≥ y2

4
, ∀y > −1.

Hence

P
[
|Y − 1| > y

]
≤ 2e−

y2

4 , ∀ ∈ (0, 1).

Suppose now that

X⃗ = (X1, . . . , Xn)

is a Gaussian random vector, where Xk are independent standard normal random variables.
The square of its Euclidean norm is the chi-squared random variable

Zn = ∥X⃗∥2 =
n∑
k=1

X2
k .

We deduce that

P
[ ∣∣∣ 1
n
Zn − 1

∣∣∣ > y
]
< 2e−

ny2

4 , ∀0 ≤ y < 1.

Thus, for large n the random vector 1√
n
X⃗ is highly concentrated around the unit sphere in

Rn. This is one facet of the so called Poincaré phenomenon. In Exercise 2.63 we describe
another facet of this phenomenon. ⊓⊔

We conclude this section with a remarkable application of the Poincaré phenomenon.
Consider a Gaussian random vector in RN

X⃗ = (X1, . . . , XN ),

where the components Xk are independent standard normal random variables. Note that for
any unit vector u⃗ = (u1, . . . , uN ) the inner product

⟨u⃗, X⃗⟩ = u1X1 + · · ·+ uNXN

is a mean zero Gaussian random random variable. Moreover

Var
[
⟨u⃗, X⃗⟩

]
= E

[
|⟨u⃗, X⃗⟩|2

]
= 1 = ∥u⃗∥2.

Suppose that we are now given d such independent10 random vectors

X⃗j =
(
X1,j , . . . , XN,j

)
, 1 ≤ j ≤ d.

We obtain a random map

A : RN → Rd, RN ∋ u⃗ 7→ (V1, . . . , Vd) :=
(
⟨u⃗, X⃗1⟩, . . . , ⟨u⃗, X⃗d⟩

)
. (2.3.19)

If ∥u⃗∥ = 1 components of Au⃗ are independent standard normal random variables so that
∥Au⃗∥2 is a chi-squared random variable. We set B := 1√

d
A. We deduce from Example 2.3.11

that for any ε ∈ (0, 1) and any unit vector u⃗ we have

P
[ ∣∣∥Bu⃗∥2 − 1

∣∣ > ε
]
≤ 2e−

dε2

4 .

10Independence is meant in probabilistic sense, not linear independence.
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Suppose now that we have a cloud of points in a large dimensional Euclidean space

C =
{
x1, . . . , xm

}
⊂ RN , N ≫ 1.

For 1 ≤ i < j ≤ m we write vij = xj − xi. We deduce that

P
[
1− ε ≤ ∥Bvij∥

∥vij∥
≤ 1 + ε, ∀1 ≤ i < j ≤ m

]
≤ 2

(
m

2

)
e−

dε2

4 ≤ m2e−
dε2

2 .

Now fix a confidence level 0 < p0 < 1 and observe that

m2e−
dε2

2 < p0⇐⇒ dε2 > 4 log
m

p0
⇐⇒ d >

4

ε2
log

m

p0
.

We have thus proved the following remarkable result.

Theorem 2.3.12 (Lindenstrauss-Johnson). Fix ε > 0 and p0 ∈ (0, 1) and a cloud of C of m
points in RN . If

d = d(m, ε, p0) :=

⌈
4

ε2
log

m

p0

⌉
, (2.3.20)

then, with probability at least 1 − p0, the random Gaussian map B = 1√
d
A, where A is

described by (2.3.19), distorts very little the relative distances between the points in C, i.e.,
with probability at least 1− p0

(1− ε)∥Bx−By∥ ≤ ∥x− y∥ ≤ (1 + ε)∥Bx−By∥, ∀x, y ∈ C.

⊓⊔

Remark 2.3.13. Let us highlight some remarkable features of the above result. Note first
that the dimension d(m, ε, p0) is independent of the dimension of the ambient space RN
where the cloud C resides. Moreover, d(m, ε, p0) is substantially smaller than the size N of
the cloud.

For example, if we choose the confidence level p0 = 10−3, the distortion factor ε = 10−1

and the size of the cloud m = 1012, then

4

ε2
log

N

p0
= 60 · 102 log 10 < 14 · 103 ≪ 1012.

The cloud C could even be chosen in an infinite dimensional Hilbert space and we can choose
as ambient space the subspace span(C) that has dimension N ≤ m. In this case the vectors

Yk :=
1√
N
X⃗k, k = 1, . . . , d, have with high confidence norm 1.

P
[ ∣∣ ∥Yk∥ − 1

∣∣ > δ, ∀1 ≤ k ≤ d
]
≤ 2de−

mδ2

4 , d ≈ C logm.

The vectors Yk are also, with high confidence, mutually orthogonal. Indeed, Exercise 2.59
shows that for |r| < 1

2

P
[ ∣∣⟨Yi, Yj⟩∣∣ > r, ∀i < j

]
≤ 2

(
d

2

)
e−

Nr2

12 , d ≈ C logN.

This shows that the operator 1√
d
A is, with high confidence, very close to the orthogonal

projection PX⃗1,...,X⃗d
onto the random d-dimensional11 subspace span{X⃗1, . . . , X⃗d}. This shows

11It is not hard to see that dim span{X⃗1, . . . , X⃗d} = d a.s.
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that, with high confidence, the operator√
N

d
PX⃗1,...,X⃗d

distorts very little the distances between the points in C. The projected cloud has identical
size, similar geometry but lives in a subspace of much smaller dimension. ⊓⊔

2.4. Uniform laws of large numbers

Fix a Borel probability measure µ on R. Suppose that

Xn : (Ω, S,P) → R, n ∈ N

is a sequence of i.i.d. random variables with common probability distribution µ. For any
Borel set B ⊂ R the random variables IB(Xn) are i.i.d. and have have finite means

mB := P
[
X1 ∈ B

]
= µ

[
B
]
.

The Strong Law of Large Numbers shows that the empirical means

Mn

[
B
]
:=

1

n

(
IB(X1) + · · ·+ IB(Xn)

)
=

#{ 1 ≤ k ≤ n; Xk ∈ B}
n

converge a.s. to µ
[
B
]
. In particular, this provides an asymptotic confirmation of the “fre-

quentist” interpretation of probability as the ratio of favorable cases to the number of possible
cases.

If we choose B of the form (−∞, x
]
, then we obtain the empirical cdf

Fn(x) =Mn

[
(−∞, x]

]
=

1

n

#{ 1 ≤ k ≤ n; Xk ≤ x}
n

.

This is a random quantity (variable), Fn(x) = Fn(x, ω), ω ∈ Ω. For each n ∈ N, the collection(
Fn(x)

)
x∈R is an example of empirical process.

For any x ∈ R, the random variable Fn(x) converges a.s. to F (x), where F is the cdf of
µ

F (x) = µ
[
(−∞, x]

]
.

For x ∈ Ω the set Nx ⊂ Ω such that Fn(x, ω) does not converge to F (x) is negligible but,
since R is not countable, the union

N =
⋃
x∈R

Nx

need not be negligible. In other words, the set of ω’s such that the functions Fn(−, ω) do not
converge pointwisely to the function F (−) need not by negligible. We will show that this is
not the case.

2.4.1. The Glivenko-Cantelli theorem. Define

Dn = DF
n : Ω → [0,∞), Dn(ω) := sup

x∈R

∣∣Fn(x, ω)− F (x)
∣∣. (2.4.1)

For a fixed ω ∈ Ω the sequence of functions
(
Fn(−, ω)

)
n∈Ω converges uniformly to F (−) if

and only if Dn(ω) → 0. We will show that this is the case for almost all ω.
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Denote by U(y) the cdf of the uniform distribution on [0, 1],

U(y) =


0, y < 0,

y, y ∈ [0, 1],

1, y > 1,

and by Q the quantile of F defined in (1.2.5), Q : [0, 1] →R

Q(ℓ) := inf
{
x : ℓ ≤ F (x)

}
= inf F−1

(
[ℓ,∞]

)
= inf F−1

(
[ℓ, 1]

)
.

Lemma 2.4.1. The function DF
n is measurable and DF

n ≤ DU
n , with equality if F is contin-

uous.

Proof. Let us first show that Dn is indeed measurable. We will show that

DF
n = sup

x∈Q

∣∣Fn(x)− F (x)
∣∣ (2.4.2)

According to Proposition 1.1.18(iii) the quantity in the right-hand-side is measurable.

Fix ω ∈ Ω. There exists then a sequence of real numbers (xk)k∈N such that

lim
k→∞

∣∣Fn(xk, ω)− F (x)
∣∣ = Dn(ω).

Now observe that the functions x 7→ Fn(x, ω), F (x) are right-continuous so there exists a
sequence of rational numbers (qk)k∈N such that qk > xk and∣∣∣ ∣∣Fn(xk, ω)− F (xk)

∣∣− ∣∣Fn(qk, ω)− F (qk)
∣∣ ∣∣∣ < 1

k
.

Hence
lim
k→∞

∣∣Fn(qk, ω)− F (qk)
∣∣ = lim

k→∞

∣∣Fn(xk, ω)− F (xk)
∣∣

thus proving that the functions (2.4.2) are measurable.

Consider now a sequence of i.i.d. random variables (Yn)n∈N uniformly distributed on
[0, 1]. Denote by Un the associated empirical c.d.f.-s,

Un(x) =
1

n

n∑
k=1

I(−∞,x](Yk).

Then Xn = Q(Yn) are i.i.d. with common cdf F . Note that

Un
(
F (x)

)
− F (x) =

1

n

n∑
k=1

I{Yk≤F (x)} − F (x)

(1.2.6)
=

1

n

n∑
k=1

I{Q(Yk)≤x} − F (x) = Fn(x)− F (x).

Thus
DF
n = sup

x∈R

∣∣Fn(x)− F (x)
∣∣ = sup

x∈R

∣∣Un(F (x))− U(F (x))
∣∣

≤ sup
y∈R

∣∣Un(y)− U(y)
∣∣ = DU

n .

Observe that if F is continuous, then ∀y ∈ (0, 1), ∃x ∈ R, such that F (x) = y so∑
x∈R

∣∣U(Fn(x))− U(F (x))
∣∣ = sup

y∈R

∣∣Un(y)− U(y)
∣∣.
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⊓⊔

Theorem 2.4.2 (Glivenko-Cantelli). Suppose that (Xn)n∈N is a sequence of i.i.d. random
variables with common distribution µ and cdf F . Denote by Fn(x) the empirical cdf-s

Fn(x) =
1

n

n∑
k=1

I(−∞,x](Xk).

Then, almost surely, Fn(x) converges uniformly to F (x), i.e.,

DF
n → 0 a.s. as n→ ∞,

where Dn is defined by (2.4.1).

Proof. Lemma 2.4.1 shows that it suffices to prove the theorem only in the special case
when that random variables are uniformly distributed. Thus we assume F = U . Note that
Un(x) = U(x) for x ∈ R \ [0, 1]. Thus is suffices to prove that Un(x) → U(x) a.s. uniformly
on [0, 1]. This is a manifestation of a more general phenomenon.

Lemma 2.4.3. Suppose that fn : [0, 1] → R is a sequence nondecreasing functions that
converges pointwisely to a function f : [0, 1] → R. If the limit function f is continuous, then
fn converges uniformly to f .

Proof of Lemma 2.4.3. Set

Df
n := sup

x∈[0,1]

∣∣ fn(x)− f(x)
∣∣.

we will show that Df
n → 0 as n→ ∞.

Fix a partition P of [0, 1], P = {0 = x0 < x1 < x2 < · · · < xm = 1}. Set

∥P∥ := max
1≤k≤m

(xk − xk−1), ∥P∥f := max
1≤k≤m

(
f(xk)− f(xk−1)

)
.

For x ∈ [xk−1, xk] and n ∈ N we have

fn(xk−1) ≤ fn(x) ≤ fn(xk),

f(xk)− fn(xk) ≤
(
f(xk)− f(x)

)
+
(
f(x)− fn(x)

)
≤ ∥P∥f +

(
f(x)− fn(x)

)
,

f(x)− fn(x) ≤ f(x)− f(xk−1) + f(xk−1)− fn(xk−1) ≤ ∥P∥f + f(xk−1)− fn(xk−1),

Hence

f(xk)− fn(xk)− ∥P∥f ≤ f(x)− fn(x) ≤ ∥P∥f + f(xk−1)− fn(xk−1),

fn(xk−1)− f(xk−1)− ∥P∥f ≤ fn(x)− f(x) ≤ ∥P∥f + fn(xk)− f(xk).

If we set

D+
n (P) := max

0≤k≤m

(
f(xk)− fn(xk)

)
, D−

n (P) := max
0≤k≤m

(
fn(xk)− f(xk)

)
,

Dn(P) := max
(
D+
n (P), D

−
n (P)

)
we deduce that for any partition P of [0, 1] we have

Dn(P) = max
0≤k≤m

∣∣ f(xk)− fn(xk)
∣∣,

and

0 ≤ Df
n ≤ Dn(P) + ∥P∥f . (2.4.3)
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Since f is uniformly continuous, there exists a sequence Pk of partitions of [0, 1] such that

∥Pk∥f <
1

k
, ∀k ∈ N.

Since fn converges pointwisely to f we deduce

∀k ∈ N, lim
n→∞

Dn(Pk) = 0 a.s..

Hence

0 ≤ lim inf
n→∞

Df
n ≤ lim sup

n→∞
Df
n ≤ ∥Pk∥f <

1

k
, ∀k ∈ N.

Letting k → ∞ we deduce the desired conclusion. ⊓⊔

The Strong Law of Large Numbers implies that, for any x ∈ [0, 1],

Un(x) → U(x) a.s. as n→ ∞.

Thus, for every partition P = {0 = x0 < · · · < xm = 1} of [0, 1] there exists a negligible
subset NP ⊂ Ω such that, ∀ω ∈ Ω \NP we have

Dn(P, ω) = sup
x∈P

∣∣Un(x, ω)− U(x)
∣∣→ 0 as n→ ∞.

We deduce from (2.4.3) with f(x) = U(x) = x and fn(x) = Un(x, ω)

∀ω ∈ Ω \NP, 0 ≤ lim inf
n→∞

DU
n (ω) ≤ lim sup

n→∞
DU
n (ω) ≤ ∥P∥U = ∥P∥.

Now choose a sequence of partitions Pk such that ∥Pk∥ → 0 as k → ∞. If we set

N =
⋃
k

NPk
,

then we deduce that for any ω ∈ Ω \N we have

lim inf
n→∞

DU
n (ω) = lim sup

n→∞
DU
n (ω) = 0.

⊓⊔

Remark 2.4.4. (a) Lemma 2.4.3 resembles Dini’s theorem and seems to be rather old. The
earliest reference to this result that I could find is the 1908 paper [27] by H. E. Buchanan
and T. H. Hildebrandt. For two different proofs of this lemma I refer to [146, Sec.0.1].

(b) Suppose that (Xn)n∈N is a sequence of i.i.d. random variables with common cdf F (x).
Form the empirical (cumulative) distribution function

Fn(x) =
1

n

n∑
k=1

I(−∞,x]

(
Xk

)
,

and the corresponding deviation Dn := supx∈R
∣∣Fn(x)− F (x)

∣∣. The Glivenko-Cantelli theo-
rem shows that Dn → 0 a.s..

On the other hand, observe that for each x ∈ R the random variables I(−∞,x](Xn) are
i.i.d. random Bernoulli random variables with success probability F (x). The central limit
theorem shows √

n
(
Fn(x)− F (x)

)
⇒ N

(
0, F (x)(1− F (x) )

)
.
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The Kolmogorov-Smirnov theorem states that
√
nDn ⇒ D∞, P

[
D∞ > c

]
= 2

∑
m≥1

(−1)m−1e−2c2m2
.

For an “elementary” proof of this fact we refer to [63]. For a more sophisticated proof that
reveals the significance of the strange series above we refer to [14] or [57]. ⊓⊔

2.4.2. VC-theory. We want to present a generalization of the Glivenko-Cantelli theorem
based on ideas pioneered by V. N. Vapnik and A. Ja. Cervonenkis [172] that turned out
to be very useful in machine learning. Our presentation follows [142, Chap. II]. For more
recent developments we refer to [57, 76, 171, 177].

Fix a Borel probability measure µ on X := RN . Any sequence of i.i.d. random vectors

Xn : (Ω, S,P) → X = RN

with common distribution µ defines empirical probabilities

Pn :=
1

n

n∑
k=1

δXk
.

The empirical probabilities are random measures on
(
X,BX

)
. More precisely, for any Borel

subset B ⊂ X, Pn
[
B
]
is the random variable

Pn
[
B
]
=

1

n

n∑
k=1

IB(Xk).

Suppose we are given a family F := (Bt)t∈T of Borel subsets of X = RN , N ≥ 1, parametrized
by a set T . We assume T is a Borel subset of another Euclidean space Rp and we denote by
BT its Borel algebra. For example, we can choose X = R,

Bt = (−∞, t], t ∈ T = R.

For each n ∈ N we obtain a stochastic process parametrized by T ,

Pn : T × Ω → [0, 1], Pn(t, ω) = Pn
[
Bt
]
(ω) =

1

n

n∑
k=1

IBt

(
Xk(ω)

)
.

For ech n ∈ N we obtain a random variable

Pn(t) : Ω → [0, 1], ω 7→ Pn(t, ω).

The collection of random variables (Pn(−))t∈T is an example of empirical process. Note that

E
[
Pn(t)

]
= µ

[
Bt
]
, Var

[
Pn(t)

]
=

1

n
Var

[
P1(t)

]
=
vt
n
,

where

vt := µ
[
Bt
](

1− µ
[
Bt
] )

≤ 1

4
.

The Strong Law of Large Numbers implies that

Zn(t) := Pn(t)− µ
[
Bt
]
=

1

n

n∑
k=1

(
Yk(t)− E

[
Yk(t)

] )
→ 0 a.s. as n→ ∞.
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Moreover, Chebyshev’s inequality shows that

P
[
|Zn(t)| > ε

]
≤ vt
nε

≤ 1

4nε2
. (2.4.4)

Can we conclude that Zn(t) → 0 uniformly a.s. in the precise sense described in Glivenko-
Cantelli’s theorem?

To proceed further we will need to make some further assumptions on the family (Bt)t∈T .
Later we will have a few things to say about their feasability. Set

Dn := sup
t∈T

|Zn(t)| : Ω → [0, 1].

Here is our first measure theoretic assumption.

M1. The function Dn is measurable

To prove that Dn → 0 a.s. we will employ a different strategy than before. More precisely
we intend to show that, under certain assumptions on the family (Bt)t∈T , the probability
P
[
Dn > ε

]
decays very fast as n→ ∞, for any ε > 0. This will guarantee that the series∑

n∈N
P
[
Dn > ε

]
is convergent for any ε > 0 and thus, according to Corollary 1.3.54, the sequenceDn converges
a.s. to 0. To obtain these tail estimates we will rely on some clever symmetrization tricks.

To state the first symmetrization result choose another sequence X ′
n : Ω → X, n ∈ N, of

i.i.d. random variables, independent of (Xn)n∈N, but with the same distribution. Set

Y ′
k(t) := IBt

(
X ′
k

)
, Z ′

n(t) :=
1

n

n∑
k=1

(
Y ′
k(t)− µ

[
Y ′
k(t)

] )
, ∀n ∈ N, t ∈ T,

Dn,n := sup
t∈T

∣∣Z ′
n(t)− Zn(t)

∣∣. (2.4.5)

Equivalently,

Dn,n = sup
t∈T

1

n

∣∣∣ n∑
k=1

(
Yn+k(t)− Yk(t)

)∣∣∣.
Here are our next measure theoretic assumption.

M′
1. The function Dn,n is measurable

M2. For any n > 0 and any ε > 0 there exists a measurable map

τ :
(
Ω, σ(X1, . . . , Xn)

)
→ (T,BT )

such that |Zn(τ)| > ε on {Dn > ε}, i.e.,

Dn(ω) > ε ⇒
∣∣Zn( τ(ω) ∣∣ > ε. (2.4.6)

Lemma 2.4.5 (First symmetrization lemma).

P
[
Dn > ε

]
≤ 2P

[
Dn,n > ε/2

]
, ∀ε > 0, ∀n > 1

2ε2
. (2.4.7)
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Proof. Choose a measurable map τ :
(
Ω, σ(X1, . . . , Xn)

)
→
(
T,BT

)
satisfying M2. Then

τ is independent of Z ′
n and we deduce

E
[
I{|Z′

n(τ) |≤ε/2} ∥σ(X1, . . . , Xn)
]
= E

[
I{|Z′

n(τ(x1,...,xn) |≤ε/2}
] (2.4.4)

≥ 1− 1

nε2
,

P
[ ∣∣Z ′

n(τ)
∣∣ ≤ ε/2 ∥Dn

]
= E

[
E
[
I{|Z′

n(τ) |≤ε/2} ∥σ(X1, . . . , Xn)
] ∥∥Dn

]
≥ 1− 1

nε2
.

Integrating over {Dn > ε} we deduce(
1− 1

nε2

)
P
[
Dn > ε

]
≤ P

[ ∣∣Z ′
n(τ)

∣∣ ≤ ε/2, Dn > ε
]

(2.4.6)

≤ P
[ ∣∣Z ′

n(τ)
∣∣ ≤ ε/2,

∣∣Zn(τ) ∣∣ > ε
]
≤ P

[ ∣∣Z ′
n(τ)− Zn(τ)

∣∣ > ε/2
]

≤ P
[
sup
t∈T

∣∣Z ′
n(t)− Zn(t)

∣∣ > ε/2
]
.

The inequality (2.4.7) follows by observing that for n > 1
2ε2

we have 1− 1
nε2

> 1
2 . ⊓⊔

Note that the variables (Yn(t))n∈N are independent Bernoulli random variables with suc-
cess probability pt = µ

[
Bt
]
. The random variables (Y ′

n(t)) are also of the same kind and
also independent of the Y ’s. The key gain is that the random variables

Ξn = Y ′
k(t)− Yk(t)

are symmetric, i.e., Ξn and −Ξn have the same distributions. They take only the values
−1, 0, 1 with distributions

P
[
Ξt = ±1

]
= p1(1− pt), P

[
Ξt = 0

]
= 1− 2pt(1− pt).

The advantage of working with symmetric random variables will become apparent after de-
scribe our second symmetrization trick known as Rademacher symmetrization.

Recall that a Rademacher random variable is a random variable that takes the only
the values ±1, with equal probabilities. Suppose that (Rn)n∈N is sequence of independent
Rademacher random variables12 that are also independent of the variables Xn and X ′

n.

Observe that the random variables Yn := RnYn are also symmetric.

Lemma 2.4.6 (Rademacher symmetrization). For any n ∈ N we have

P
[
sup
t∈R

1

n

∣∣∣ n∑
k=1

(
Y ′
k(t)− Yk(t)

) ∣∣∣ > ε

2

]
≤ 2P

[
sup
t∈R

1

n

∣∣∣ n∑
k=1

Yk(t)
∣∣∣ > ε

4

]
. (2.4.8)

Proof. The key observation is that, because Ξk(t) = Y ′
k(t) − Yk(t) is symmetric, it has the

same distribution as RkΞk(t). Set

Sn(t) :=
1

n

n∑
k=1

RkYk(t), S′
n(t) :=

1

n

n∑
k=1

RkY
′
k(t).

12Here we are making a tacit assumption that there exists such a sequence random variables Rn defined on Ω.
For example if we can choose Ω to be the probability space (X, µ⊗N)⊗ (X, µ⊗N)⊗ {−1, 1}⊗N all the above choices are

possible. The choice of Ω is irrelevant because the Glivenko-Cantelli theorem is a result about (X, µ⊗N).
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P
[
sup
t∈R

1

n

∣∣∣ n∑
k=1

(
Y ′
k(t)− Yk(t)

) ∣∣∣ > ε

2

]
= P

[
sup
t∈R

1

n

∣∣Sn(t)− S′
n(t)

∣∣ > ε

2

]
≤ P

[
sup
t∈R

1

n

∣∣∣Sn(t) ∣∣∣ > ε

4

]
+ P

[
sup
t∈R

1

n

∣∣∣S′
n(t)

∣∣∣ > ε

4

]
= 2P

[
sup
t∈R

1

n

∣∣Sn(t) ∣∣ > ε

4

]
,

where we used the fact that RkY
′
k(t) and RkYk(t) have the same distributions. ⊓⊔

Putting together all of the above we deduce

P
[
Dn > ε

]
≤ 4P

[
sup
t∈R

1

n

∣∣∣ n∑
k=1

RkYk

∣∣∣ > ε

4

]
, ∀ε > 0, n >

1

2ε2
. (2.4.9)

To make further progress we condition on the variables (Xn) and we deduce

P
[
sup
t∈R

1

n

∣∣∣ n∑
k=1

RkYk(t)
∣∣∣ > ε

4

]
=

∫
Xn

P
[
sup
t∈R

1

n

∣∣∣ n∑
k=1

Rkyk(t, x⃗)
∣∣∣︸ ︷︷ ︸

=:St(x⃗)

>
ε

4

]
µ⊗n

[
dx1 · · · dxn

]
,

where x⃗ := (x1, . . . , xn) ∈ Xn and

yk(t, x⃗) = IBt(xk) ∈ {0, 1}, ∀k = 1, . . . , n, t ∈ T.

Hence

P
[
Dn > ε

]
≤ 4

∫
Xn

P
[
sup
t∈R

St(x⃗) >
ε

4

]
µ⊗n

[
dx1 · · · dxn

]
. (2.4.10)

For each n ∈ N, t ∈ T and x⃗ ∈ Xn we set In := {1, . . . , n},

Ct(x⃗) :=
{
k ∈ In; yk(t, x⃗) = 1

}
=
{
k ∈ In; xk ∈ Bt

}
.

Roughly speaking, Ct(x⃗) = Bt ∩ {x1, . . . , xn}.

Cn(x⃗) :=
{
C ⊂ In; ∃t ∈ T, C = Ct(x⃗)

}
.

For every C ⊂ In we set

SC :=
1

n

∣∣∣ ∑
k∈C

Rk

∣∣∣,
so that St(x⃗) = SCt(x⃗). Hence

P
[
sup
t∈T

St(x⃗) > ε/4
]
= P

[
sup

C∈Cn(x⃗)
SC > ε/4

]
≤

∑
C∈Cn(x)

P
[
SC > ε/4

]
.

We can now finally understand the role of the Rademacher symmetrization. The sums
n∑
k=1

Rkyk(t, x⃗)

are of the type appearing in Hoeffding’s inequality (2.3.13), where Rkyk(t, x⃗) ∈ G(1) by the
computation in Example 2.3.7. We deduce

P
[
SC > ε/4

]
≤ 2e−n

2ε2/32, ∀C ⊂ In.
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We deduce

P
[
sup
t∈T

St(x⃗) > ε/4
]
≤ 2|Cn(x⃗)|e−nε

2/32. (2.4.11)

Using this in (2.4.10) we deduce

P
[
Dn > ε

]
≤ 8e−nε

2/32

∫
Xn

|Cn(x⃗)|µ⊗n
[
dx1 · · · dxn

]
. (2.4.12)

We have a rough bound |Cn(x⃗)| ≤ 2n but it is not helpful. At this point we add our last and
crucial assumption.

VC. The family F = (Bt)t∈T satisfies V C-condition.13 This means that there exists d ∈ N
such that

sup
x⃗∈Xn

|Cn(x⃗)| = O(nd) as n→ ∞.

With this assumption in place we deduce that there exists K > 0 such that

2|Cn(x⃗)| ≤ K(nd + 1), ∀n ∈ N, ∀x⃗ ∈ Xn

so that

P
[
Dn > ε

]
≤ 8Ke−nε

2/32(nd + 1). (2.4.13)

In the above estimate the constant K is independent of the distribution µ. Since the series∑
n∈N

e−nε
2/32(nd + 1) <∞, ∀ε > 0,

we deduce that Dn → 0 a.s.. We have thus proved the following wide ranging generalization
of the Glivenko-Cantelli theorem.

Theorem 2.4.7 (Vapnik-Chervonenkis). Suppose that F = (Bt)t∈T is a family of Borel
subsets of X = RN parametrized by a Borel subset T of some Euclidean space, and µ is a a
Borel probability measure on X. Assume that µ,F satisfy the conditions M1, M1,, M2.

Fix a sequence of independent random vectors Xn : Ω → X with common distribution µ.
Form the empirical measures

µn : Ω×BX → [0,∞], µωn
[
B
]
=

1

n

n∑
k=1

IB
[
Xk(ω)

]
.

If F satisfies the V C-condition, then, almost surely,

µn
[
B
]
→ µ

[
B
]
as n→ ∞

uniformly in B ∈ F, i.e.,

lim
n→∞

sup
B∈F

∣∣µn[B ]− µ
[
B
] ∣∣ = 0 a.s..

⊓⊔

Remark 2.4.8. (a) The technical assumptionsM1, M
′
1, M2 are measure-theoretic in nature

and are automatically satisfied if the space of parameters T is countable. There are quite
general (and very technical) results that guarantee that these results hold in a rather broad
range of situations, [142, Appendix C].

13V C = Vapnik-Chervonenkis
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There are more sophisticated ways of bypassing M1 and M′
1 and we refer to [57], [76] or

[171] for details. Section 1.1 in [171] does a particularly clear and efficient job of describing
these measurability issues and the methods that were proposed over the years to circumvent
them.

If one assumes the condition VC, one can bypass assumption M2 by using a weaker form
of the first symmetrization trick. Observe first that

E
[
Dn

]
≤ E

[
Dn,n

]
. (2.4.14)

Indeed

1

n

∣∣∣∣∣
n∑
k=1

(
Yk(t)− E

[
Yk(t)

) ] ∣∣∣∣∣ = 1

n

∣∣∣∣∣E[
n∑
k=1

Yk(t)− E
[
Y ′
k(t)

]
∥Yk, 1 ≤ k ≤ n

] ∣∣∣∣∣
=

1

n

∣∣∣∣∣E[
n∑
k=1

(
Yk(t)− Y ′

k(t)
)
∥Yk, 1 ≤ k ≤ n

] ∣∣∣∣∣
≤ E

[ ∣∣∣ n∑
k=1

(
Yk(t)− Y ′

k(t)
) ∣∣∣ ∥Yk, 1 ≤ k ≤ n

]
≤ E

[
Dn,n ∥Yk, 1 ≤ k ≤ n

]
Hence

Dn(t) = sup
1

n

∣∣∣∣∣
n∑
k=1

(
Yk(t)− E

[
Yk(t)

] ∣∣∣∣∣ ≤ E
[
Dn,n ∥Yk, 1 ≤ k ≤ n

]
.

By taking the expectations of both sides of the above inequality we obtain (2.4.14). A similar
argument as in the proof of the Rademacher symmetrization lemma yields

E
[
Dn,n

]
≤ 2 E

[
sup
t∈T

1

n

∣∣∣ n∑
k=1

Y k(t)
∣∣∣ ]︸ ︷︷ ︸

=:Rn(T )

.

The sequence Rn(T ) is called the Rademacher complexity of the family (Bt)t∈T .

McDiarmid’s inequality (3.1.21), a refined concentration inequality, shows that Dn is
highly concentrated around its mean. The VC condition can be used to show that the
Rademacher complexity goes to 0 as n → ∞. Thus the mean of Dn goes to 0 as n → ∞.
Combining these facts one can obtain an inequality very similar to (2.4.12). For details we
refer to [177, Sec. 4.2] or Subsection 3.1.7

(b) One can obtain bounds for the tails of Dn by a Chernoff-like technique, by obtaining
bounds for E

[
Φ(Dn)

]
, where Φ : [0,∞) → R is a convex increasing function; see Exercise

2.65. We refer to [143] or[171] for details. ⊓⊔

The key assumption is VC and we want to discuss it in some detail and describe several
nontrivial examples of families of sets satisfying this condition.

Fix an ambient space X and F ⊂ 2
X a family of subsets of X. The shadow of F on a

subset A is the family

FA :=
{
F ∩A; F ∈ F

}
⊂ 2

A.

Note that for a finite set A we have

|FA| ≤ 2|A|.
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When we have equality above we say that A is shatterred by F. Thus, A is shattered by F if
any subset of A is in the shadow of F. We set

sF(n) := max
{
|FA|; |A| = n

}
.

Thus sF(n) is the size of the largest shadow on a subset of X of cardinality n. Note that
sF(n) ≤ 2n.

For a nonempty F we define its VC-dimension to be

dimV C(F) := max
{
n ∈ N; sF(n) = 2n

}
.

Thus, any subset A such that |A| ≤ dimV C(F) is shattered by F. In other words, if
k = dimV C(F), then for any n ≤ k we have

sF(n) = 2n =

min(n,k)∑
j=1

(
n

j

)
.

We have the following remarkable dichotomy. For proof we refer to [57, Thm. 4.1.2] or [76,
Thm. 3.6.3].

Theorem 2.4.9 (Sauer Lemma). If dimV C(F) = k <∞, then

∀n > k : sF(n) ≤ Pk(n) :=

min(n,k)∑
j=0

(
n

j

)
.

Note that Pk(n) is a polynomial of degree k in n. ⊓⊔

Define the density of F to be

dens(F) = inf{r > 0; sF(n) = O(nr), as n→ ∞
}
.

We see that the family F satisfies the condition VC if and only if dens(F) < ∞. Sauer’s
lemma implies that dens(F) = dimV C(F) so that

dens(F) <∞⇐⇒ dimV C(F) <∞.

We see that a family F satisfies the condition VC if and only if its VC-dimension is finite.
A family with finite VC-dimension is called a VC-family.

Note that dimV C(F) < k if and only if any set A ⊂ X of cardinality k contains a subset
A0 with the property that any set in F that contains A0 also contains an element in A \A0.
Intuitively, the sets in F cannot separate A0 from its complement in A. Let us give some
examples of VC families.

(i) Suppose that F consists of all the lower half-lines (−∞, t] ⊂ R, t ∈ R. Note that if
A = {a1, a2}, a1 < a2, then any half-line that contains a2 must also contain a1 so
that dimV C(F) ≤ 1.

(ii) Suppose that F consists of all the open-half spaces of the vector space Rn. A
classical theorem of Radon [124, Thm. 1.3.1] shows that any subset A ⊂ Rn of
cardinality n+2 contains a subset A0 that cannot be separated from its complement
A \ A0 by a hyperplane. Thus dimV C(F) ≤ n + 1. With a bit more work one can
show that in fact we have equality.

(iii) The above example is a special case of the following general result, [57, Thm. 4.2.1].



2.4. Uniform laws of large numbers 215

Theorem 2.4.10. Let X be a set. Suppose that V is a finite dimensional dimen-
sional vector space of functions f : X → R. The space V defines two families of
subsets of X,

F>0
V =

{
{f > 0}, f ∈ V

}
, F

≥0
V =

{
{f ≥ 0}, f ∈ V

}
.

Then
dimV C

(
F>0
V

)
= dimV C

(
F
≥0
V

)
= dimV.

(iv) If F0,F1 are two VC-families of subsets of a set X, then F0∪F1 is also a VC family.
Moreover (see [57, Thm. 4.5.1])

dens(F0 ∪ F1) = max
(
dens(F0),dens(F1)

)
,

and (see [57, Prop. 4.5.2])

dimV C

(
F0 ∪ F1

)
≤ dimF0 + dimF1 + 1.

The above equality is optimal.

(v) If F0,F1 are two VC-families of subsets of a set X and we set

F0 ⊓ F1 :=
{
F0 ∩ F1; Fk ∈ Fk, k = 0, 1

}
,

then (see [57, Thm. 4.5.3])

dens
(
F0 ⊓ F1

)
≤ dens(F0) + dens(F1).

(vi) If Fk is a VC family of subsets of Xk, k = 0, 1, and we define

F0 ⊗ F1 :=
{
F0 × F1; Fk ∈ Fk, k = 0, 1

}
,

then F0 ⊗ F1 is a VC family of X0 × X1; see [57, Thm. 4.5.3]. Moreover

dens(F0 ⊗ F1) ≤ dens(F0) + dens(F1).

2.4.3. PAC learning. Let us explain why the above results are relevant in machine learning.
Suppose that we are dealing with a 0-1 good/bad decision/classification problem.

More precisely we want to determine when a parameter x ∈ RN is “good”, i.e., determine
the set G of “good” parameters. For example, we know from other considerations that a
parameter x ∈ R is good if and only if x ≤ t0, but we do not know the precise value of t0.
However, we have some information about the “good” set: it is of the form (−∞, t], t ∈ R.

More generally, for one reason or another we are lead to believe that the set G belongs
to a family (Bt)t∈T , where T ⊂ Rp and Bt is a Borel subset of RN . The family is (Bt)t∈T
called a hypothesis class. Thus we seek t0 ∈ T such that Bt0 = G. On the the simplest
hypothesis classes is that of perceptrons, i.e., the collection of open half-spaces in a given
Euclidean space.

Consider a silly but suggestive example. Suppose that we want to decide when a banana is
good. The goodness of a banana is decided by say, three parameters: Color, Flavor, Softness,
or CFS. Hence the good bananas are defined by some measurable subset in the CFS space.
Suppose we have a collection F of categories of bananas, each category being defined by
constraints in the CFS.

We are allowed to ask an Oracle to pick banana at random and answer then following
yes/no questions. Does the chosen banana belong to a given category Bt? Is the chosen
banana a good banana? However, the Oracle won’t tell us which of the categories of bananas
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is the good category. Saying that a banana is good and it belongs to a category Bt only
says that the banana belongs to Bt ∩ G. We are suppose to learn the good category G by
repeating the above experiment many, many times and recording the answers.

Technically, the Oracle puts at our disposal a sequence of i.i.d. RN -valued random vectors
(RN plays the role of the CFS space)

Xn :
(
Ω, S,P

)
→ RN , n ∈ N,

and the values Yn = IG
(
Xn

)
, n ∈ N. However, we do not know the common probability

distribution µ of these random vectors.

If we knew this probability distribution, then we could find G = Bt0 as a minimizer of
the deterministic functional Lµ : T → [0, 1]

Lµ(t) =
1

n

n∑
k=1

P
[
IBt(Xk) ̸= Yk

]
=

1

n

n∑
k=1

P
[
IBt(Xk) ̸= IG(Xk)

]
=

1

n

n∑
k=1

P
[
IBt∆G(Xk) = 1

]
= µ

[
Bt∆G

]
.

In fact Lµ(t0) = 0. Note that

µ
[
Bt∆G

]
= E

[
IBt∆G

]
= E

[
IBt + IG − 2IBt∩G

]
.

The law of large numbers shows that P-a.s. we have

lim
n→∞

1

n

n∑
k=1

(
IBt(Xk) + IG(Xk)− 2IBt∩G(Xk)

)
= E

[
IBt + IG − 2IBtIG

]
= Lµ(t).

Thus, even if we do not know µ we can estimate Lµ(t) using the random functionals

Ln(t) =
1

n

n∑
k=1

(
IBt(Xk) + IG(Xk)− 2IBt∩G(Xk)

)
=

1

n

n∑
k=1

(
IBt(Xk) + Yk − 2YkIBt(Xk)

)
.

If (Bt)t∈Bt is a VC-family, then so is the family (Bt ∩ G)t∈T and (2.4.12) shows that there
exist constants K, c > 0, independent of the mysterious µ, such that

P
[
sup
t∈T

|Ln(t)− Lµ(t)| > ε
]
≤ Ke−cnε

2
, ∀n.

Thus, if we ask the oracle to give us a large sample (x1, y1) . . . , (xn, yn) of (X1, Y1), . . . , (Xn, Yn)
we obtain a deterministic functional

Ln(t;x1, . . . , xn) =
1

n

n∑
k=1

(
IBt(xk) + yk − 2IBt(xk)yk

)
.

If we find tn such that Ln(tn;x1, . . . , xn) <
ε
2 , then

P
[
Lµ(tn) > ε

]
≤ P

[
|Ln(tn)− Lµ(tn)| > ε/2

]
≤ Ke−cnε

2/4

Thus, for large n, Ln(tn) is, with high confidence, within ε of the absolute minimum LP(t0) = 0.
Hopefully, this signifies that tn is close to t0. In the language of machine learning, we
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say that the hypothesis class (Bt)t∈T is PAC learnable, where PAC stands for Probably
Approximatively Correct. For more details we refer to [155, 129, 173].

Remark 2.4.11. The results in this section only scratch the surface of the vast subject
concerned with the limits of empirical processes. We have limited our presentation to 0-1-
functions. The theory is more general than that.

Suppose that (U,U) is a measurable space and

Xn :
(
Ω, S, µ

)
→ (U,U)

is a sequence of i.i.d. measurable maps with common distribution P = (Xn)#µ, ∀n. Fix a
family F of bounded measurable functions U → R. We obtain a random measure

Pn :=
1

n

n∑
k=1

δXn

We obtain a stochastic process parametrized by f ∈ F(
Pn − P

)[
f
]
:=

1

n

n∑
k=1

(
f(Xn)− E

[
f(Xn)

] )
∈ L∞(Ω, S, µ), f ∈ F.

When F consists of indicator functions of measurable sets we obtain the situation described
in this section.

For each f the SLLN shows that(
Pn − P

)[
f
]
→ 0 a.s.

while the CLT shows that
√
n
(
Pn − P

)[
f
]
⇒ N

(
0, v(f)

)
, v(f) := Var

[
f(Xn)

]
, ∀n.

What can be said about the limit of the process Pn − P?
Just like there are different flavors of convergence of random variables, there are many

ways in which stochastic processes can converge. Various measurability issues make empirical
processes trickier to handle. We refer to [4, 57, 76, 142, 171, 177] for more details about
this problem. ⊓⊔

2.5. The Brownian motion

The Brownian motion bears the name of its discoverer, the botanist R. Brown who observed
in 1827 the chaotic motion of a particle of pollen in a fluid. Its study took off at the beginning
of the 20th century and has since witnessed dramatic growth. It popped up in many branches
of sciences and has lead to the development of many new branches of mathematics. In the
theory of stochastic processes it plays a role similar to the role of Gaussian random variables
in classical probability. It is such a fundamental and rich object that I believe any student
learning the basic principles of probability needs to have a minimal introduction to it.

I drew my inspiration from many sources and I want to mention a few that I used more
extensively, [14, 59, 110, 113, 152, 162]. My approach is not the most “efficient” one since
I wanted to use the discussion of the Brownian motion as an opportunity to introduce the
reader to other several important concepts concerning stochastic processes.
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2.5.1. Heuristics. To get a grasp on the Brownian motion on a line, we consider first a
discretization. We assume that the pollen particle performs a random walk along the line
starting at the origin. Every unit of time τ it moves to the right or to the left, with equal

probabilities, a distance δ. We denote by Sδ,τn its location after n steps, or equivalently, its
location at time nτ , assuming we start the clock when the motion begins.

When δ = τ = 1 we obtain the standard random walk on Z

S1,1
n = Sn :=

n∑
k=1

Xk,

where (Xn)n≥1 is a sequence of independent Rademacher variables, i.e., random variables
taking the values ±1 with equal probabilities.

We assume that during the (n+ 1)-th jump the particle travels with constant speed 1 so
we can assume that its location at time t ∈ [n, n+ 1) is

W 1(t) = Sn + (t− n)Xn+1 = S⌊t⌋ +
(
t− ⌊t⌋

)
X⌊t⌋+1.

If we sample the random variables (Xn), then of W 1(t) is a piecewise linear function with
linear pieces of slopes ±1. Its graph is a zig-zag of the type depicted in Figure 2.3

Figure 2.3. The zig-zag depicting a random walk.

Suppose now that the pollen particle performs these random jumps at a much faster rate,
say ν jumps per second, and the size (in absolute value) of the jump is δ meters. We choose
δ to depend on the frequency ν and we intend to let ν → ∞. Assuming that during a jump
its speed is constant we deduce that this speed is δν meters per second and its location at
time t will be

W ν,δ(t) = δS⌊νt⌋ + δ
(
νt− ⌊νt⌋

)
X⌊νt⌋+1︸ ︷︷ ︸

=:Rν,δ(t)

.

To understand this formula observe that in the time interval [0, t] the particle performed ⌊νt⌋
complete jumps of size δ. It completed the last one at time ⌊νt⌋

ν . From this moment to t it

travels in the direction X⌊νt⌋+1 with speed δν for a duration of time t− ⌊νt⌋
ν .

Assuming that in finite time the particle will stay within a bounded region it is reasonable
to assume that

∀t, sup
ν

E
[
W ν,δ(t)2

]
<∞. (2.5.1)

Now observe that δS⌊νt⌋ and Rν,δ are mean zero independent random variables so that

E
[
W ν,δ(t)2

]
= δ2E

[
S2
⌊νt⌋

]
+ E

[
Rν,δ(t)

2
]
= δ2⌊νt⌋+ E

[
Rν,δ(t)

2
]
.



2.5. The Brownian motion 219

Clearly E
[
Rν,δ(t)

2
]
∈ [0, δ| so for (2.5.1) to hold we need

sup
ν
δ2ν <∞.

We achieve this by setting δ = ν−1/2 and we set

W ν(t) :=W ν,ν−1/2
(t) = ν−1/2S⌊νt⌋ +Rν(t),

Rν(t) := ν−1/2
(
νt− ⌊νt⌋

)
X⌊νt⌋+1.

(2.5.2)

In this case W ν(t) looks like a zig-zag with steep slopes of sizes ±
√
ν; see Figure 2.4.

Figure 2.4. Approximating the Brownian motion.

For each ν, the collection (W ν(t))t≥0 is a real valued random process parametrized by
[0,∞). Think of it as a random real valued function defined on [0,∞). It turns out that the
random processes (W ν(t))t≥0 have a sort of limit as as ν → ∞. The next result states this
in a more precise form.

Proposition 2.5.1. Let 0 ≤ s < t. Then as ν → ∞ the random variable W ν(t) −W ν(s)
converges in distribution to a Gaussian random variable with mean zero and variance t− s.
In particular, since W ν(0) = 0 we deduce that the limit

W (t) = lim
ν
W ν(t)

exists in distribution and it is a Gaussian random variable with mean zero and variance t.
Moreover, if

0 ≤ s0 < t0 ≤ s1 < t1 ≤ · · · ≤ sk < tk, k ≥ 1,

then the increments

W (t0)−W (s0), W (t1)−W (s1), . . . , W (tk)−W (sk)

are independent.
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Proof. Fix 0 ≤ s < t. For ν sufficiently large we have ⌊νs⌋ < ⌊νt⌋ and

W ν(t)−W ν(s) = ν−1
(
S⌊νt⌋ − S⌊νs⌋

)︸ ︷︷ ︸
Yν

+
(
(Rν(t)−Rν(s)

)︸ ︷︷ ︸
Zν

.

Observe first that

lim
n→∞

E
[
Z2
ν

]
= 0.

In particular, this shows that Zν converges in probability to 0. On the other hand

Yν =

√
⌊νt⌋ − ⌊νs⌋√

ν
· 1√

⌊νt⌋ − ⌊νs⌋

⌊νt⌋∑
k=⌊νs⌋+1

Xk︸ ︷︷ ︸
Y ν

The Central Limit Theorem shows that Y ν converges in distribution to a standard normal
random variable. Since

lim
ν→∞

√
⌊νt⌋ − ⌊νs⌋√

ν
=

√
t− s

we deduce that Yν converges in distribution to a Gaussian random variable with mean zero
and variance t − s. Invoking Slutsky’s theorem (Theorem 2.2.13) we deduce that Yν + Zν
converges in distribution to a Gaussian random variable with mean zero and variance t− s.

Now let

0 ≤ s0 < t0 ≤ s1 < t1 ≤ · · · ≤ sk < tk, k ≥ 1.

For large ν the random variables

ν−1/2
(
S⌊tj⌋ − S⌊sj⌋

)
, j = 0, 1, . . . , k

are independent and the above argument shows that they converge in law to the Gaussian

W (tj)−W (sj), j = 0, 1, . . . , k.

Corollary 2.2.12 implies that these increments are also independent. ⊓⊔

Definition 2.5.2 (Pre-Brownian motion). A pre-Brownian motion on [0,∞) is a collection
of real valued random variables

(
W (t)

)
t≥0

with the following properties.

(i) W (0) = 0.

(ii) For any 0 ≤ s < t the increment W (t)−W (s) is a Gaussian random variable with
mean zero and variance t− s.

(iii) For any

0 ≤ s0 < t0 ≤ s1 < t1 ≤ · · · ≤ sk < tk, k ≥ 1,

increments

W (t0)−W (s0), W (t1)−W (s1), . . . , W (tk)−W (sk)

are independent.

A pre-Brownian motion on [0, 1] is a collection of real valued random variables
(
W (t)

)
t∈[0,1]

satisfying (i)-(iii) above with the s’s and t’s in [0, 1]. ⊓⊔
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We have thus proved that a suitable rescaling of the standard random walk on Z converges
to a pre-Browning motion. In Figure 2.4 we have depicted the graph of a sample of W ν(t)
for ν = 100. Its graph is also a piecewise linear curve, but its linear pieces are much steeper,
of slopes ±ν1/2.

2.5.2. Gaussian measures and processes. Suppose that
(
W (t)

)
t≥0

is a pre-Brownian

motion on [0,∞). As explained in Subsection 1.5.1, this process defines a probability measure

on R[0,∞) equipped with the product sigma-algebra B
[0,∞)
T called the distribution of the

process. We want to show that any two pre-Brownian motions have the same distributions.
This requires a small digression in the world of Gaussian measures and processes. In this
subsection we survey some basic facts concerning these concepts. In Exercise 2.68 we ask the
reader to fill in some of the details of this digression. We refer to [164] for a more in depth
presentation of these topics.

Let V be an n-dimensional real vector space. We denote by V ∗ its dual, V ∗ = Hom(V,R).
We have a natural pairing

⟨−,−⟩ : V ∗ × V → R, ⟨ξ, x⟩ := ξ(x), ∀ξ ∈ V ∗, x ∈ V.

A Borel probability measure µ ∈ Prob(V ) is called Gaussian if for every linear functional
ξ ∈ V ∗, the resulting random variable ξ : (V,BV , µ) → R is Gaussian with mean m

[
ξ
]
and

variance v
[
ξ
]
, i.e., (see Example 1.3.34)

Pξ
[
dx
]
= Γm[ξ],v[ξ]

[
dx
]
=


1

(2π)n/2 .e
− (x−m[ξ])2

2v[ξ] dx, v[ξ] ̸= 0,

δm[ξ], v[ξ] = 0.

Equivalently, this means that the characteristic function of Pξ is

P̂ξ(t) = E
[
eitξ

]
= e−

v[ξ]t2

2
+itm[ξ].

A random vector X : (Ω, S,P) → V is called Gaussian if its probability distribution is a
Gaussian measure on V . The random variables X1, . . . , Xn : (Ω, S,P) → R are called jointly
Gaussian if the random vector

X⃗ : Ω → Rn, X⃗(ω) =
(
X1(ω), . . . , Xn(ω)

)
,

is Gaussian. This means that for any real constants ξ1, . . . , ξn, the linear combination

ξ1X1 + · · ·+ ξnXn

is a Gaussian random variable.

For any Gaussian measure µ on the finite dimensional vector space V with mean mµ

[
ξ
]

and variance vµ
[
ξ
]
we define its covariance form to be

C = Cµ : V ∗ × V ∗ → R,

C(ξ, η) =
1

4

(
vµ
[
ξ + η

]
− vµ

[
ξ − η

] )
= Eµ

[ (
ξ −mµ

[
ξ
] )(

η −mµ

[
η
] ) ]

.

Then (see Exercise 2.68(ii) +(iii)) the mean mµ is a linear functional mµ : V ∗ → R and the
covariance Cµ is a symmetric and positive semidefinite bilinear form on V ∗. Equivalently, we
can view the covariance as an element in the tensor product V ⊗ V .
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Proposition 2.5.3. A Gaussian measure on a vector space is uniquely determined by its
mean and covariance form. ⊓⊔

The proof of the above result is based on the Fourier transform and its main steps are
described in Exercise 2.68. In the sequel we will refer to the mean zero Gaussian measures
as centered.

Example 2.5.4. (a) If X1, . . . , Xn are independent Gaussian random variables, then any
linear combination

ξ1X1 + · · ·+ ξnXn

is also Gaussian, with mean
∑

i ξ)iE
[
Xi

]
and variance

∑
i ξ

2
i Var

[
Xi

]
. In particular, if

X1, . . . , Xn are independent standard normal random variables, then the random vector

X⃗ = (X1, . . . , Xn) is Gaussian and its distribution is the standard Gaussian measure on
Rn

Γ1
[
dx
]
=

1

(2π)n/2
e−

1
2
∥x∥2dx.

(b) If X⃗ = (X1, . . . , Xn) is a Gaussian random vector, then the mean of its distribution is
the vector

m
[
X⃗
]
:=
(
E
[
X1

]
, . . . ,E

[
Xn

] )
and the covariance form of its distribution is the n×n matrix C with entries the covariances
of the components, i.e.,

Cij = Cov
[
Xi, Xj

]
= E

[ (
Xi − E

[
Xi

] )(
Xj − E

[
Xj

] ) ]
, 1 ≤ i, j ≤ n.

(c) If µ is Gaussian measure on a finite dimensional vector space and A : U → V is a linear
map to another vector space then the pushforward A#µ is also a Gaussian measure on V . In
particular if

X⃗ = (X1, . . . , Xn)

is a Gaussian vector and A is an m ×m matrix, then the vector Y⃗ = AX⃗ is also Gaussian.
Note that

Y⃗ = (Y1, . . . , Ym), Yi =
n∑
j=1

aijXj , i = 1, . . . ,m.

(d) Suppose (−,−) is an inner product on the vector space V with associated norm ∥ − ∥.
We can then identify V ∗ with V and the symmetric bilinear forms on V ∗ with symmetric
operators. The centered Gaussian measure on V whose covariance form is given by the inner
product is

Γ1
[
dx
]
=

1

(2π)dimV/2
e−

1
2
∥x∥2dx.

If A : V → V is a symmetric linear operator, then pushforward A#Γ1 is the Gaussian mesure
with covariance form C = A2. More precisely,

C(v1, v2) = (Av1, Av2) = (A2v1, v2).

If, additionally A is invertible, then

A#Γ1
[
dx
]
=

1√
det(2πA2)

e−
1
2
∥A−2x∥2dx.
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We deduce that for any bilinear, symmetric positive semidefinite form

C : V ∗ × V ∗ → R

there exists a centered Gaussian measure admitting C as covariance form. Indeed, if we fix a
metric on V then we can identify C with a symmetric, positive semidefinite operator C → V .
If A =

√
C, then the Gaussian measure A#Γ1 is centered and has covariance form C. ⊓⊔

Definition 2.5.5 (Gaussian processes). A Gaussian process parametrized by a set T is a
collection of random variables

(
X(t)

)
t∈T defined on the same probability space (Ω, S,P) such

that, for any finite subset I = {t1, . . . , tn} ⊂ T , the random vector XI :=
(
X(t1), . . . , X(tn)

)
is Gaussian. We denote by ΓI its distribution. The process is called centered if E

[
X(t)

]
= 0,

∀t ∈ T . ⊓⊔

Suppose that
(
X(t)

)
t∈T is a Gaussian process. Its distribution is a probability measure

on RT uniquely determined by the Gaussian measures ΓI , I finite subset of T . In turn, these
probability measures are uniquely determined by the mean function

m : T → R, m(t) = E
[
X(t)

]
and the covariance kernel

K : T × T → R, K(s, t) = Cov
[
X(s), X(t)

]
.

Example 2.5.6. Suppose that
(
W (t)

)
t≥0

is a pre-Brownian motion. For any 0 ≤ t1 < · · · < tn
the random vector(

X1, . . . , Xn

)
=
(
W (t1),W (t2)−W (t1), . . . ,W (tn)−W (tn−1

)
is Gaussian since its components are independent Gaussian random variables; see Example
2.5.4(a). Observing that(

(W (t1), . . . ,W (tn)
)
= (X1, X1 +X2, . . . , X1 + · · ·+Xn

)
we deduce from Example 2.5.4(c) that the vector

(
(W (t1), . . . ,W (tn)

)
is also Gaussian as

linear image of a Gaussian vector. Thus, any pre-Brownian motion is a Gaussian process. It is
centered since all the random variablesW (t) have mean zero. Its distribution is a probability

measure on then path space R[0,∞) uniquely determined by the covariance kernel

K : [0,∞)× [0,∞) → R, K(s, t) = E
[
W (s)W (t)

]
.

We claim that

K(s, t) = min(s, t), ∀s, t ≥ 0. (2.5.3)

Indeed, assume without any loss of generality that s ≤ t. Then

E
[
W (s)W (t)

]
= E

[
W (s)2

]
+ E

[
W (s)

(
W (t)−W (s)

) ]
.

The first summand is equal to s according to property (ii) of a pre-Brownian motion. Property
(iii) implies

E
[
W (s)

(
W (t)−W (s)

) ]
= E

[
W (s)

]
· E
[
W (t)−W (s)

]
= 0.

Hence

E
[
W (s)W (t)

]
= s = min(s, t).
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We see that all pre-Brownian motions have the same covariance form and thus they all have
the same distribution.

Conversely, suppose that
(
X(t)

)
t≥0

is a centered Gaussian process whose covariance form

is given by (2.5.3). Then this process is a pre-Brownian motion. Indeed,

E
[
X(0)2

]
= K(0, 0) = 0

so X(0) = 0 a.s.. Next, observe that

E
[
X(t)2

]
= K(t, t) = t.

Each increment X(t)−X(s), s < t, is Gaussian and

Var
[
X(t)−X(s)

]
= K(t, t)− 2K(s, t) +K(s, s) = t− s.

Finally suppose that 0 ≤ s1 < t1 ≤ · · · ≤ sn < tn. Then the n-dimensional random vector of
increments

Y⃗ :=
(
X(t1)−X(s1), . . . , X(tn)−X(sn)

)
is centered Gaussian. The equality (2.5.3) implies that

Cov
[
Yi, Yj

]
= 0, ∀i ̸= j

and we deduce from Exercise 2.69 that the components of Y⃗ are independent. This proves
that

(
X(t)

)
t≥0

is a pre-Brownian motion. ⊓⊔

Remark 2.5.7 (Brownian events). Consider an arbitrary pre-Brownian motion

Bt : (Ω,F,P) → R, t ≥ 0.

We define the σ-algebra of Brownian events to be the σ-subalgebra of F generated by the
family of random variables Bt, t ≥ 0. Concretely, any Brownian event E has the form(

Bτ(n)
)
n∈N ∈ S,

where S ⊂ [0,∞)N is a measurable subset and τ : N → [0,∞) is an injection.

The restriction of P to the σ-algebra of Brownian events is uniquely determined by the
distributions of the Gaussian random vectors

(Bt1 , . . . , Btn), n ∈ N, t1, . . . , tn.

In turn, the distribution of such a vector is uniquely determined by the covariances

E
[
BsBt

]
= E

[
Bs(Bs +Bt −Bs)

]
= E

[
B2
s

]
= s = min(s, t).

We see that these distributions are independent of the choice of pre-Brownian motion B.
This shows that if

Bi : (Ωi,Fi,Pi) → R, i = 1, 2,

are two pre-Brownian motions, then for any measurable set S ⊂ [0,∞) and any injection
τ : N → [0,∞) we have

P1
[ (
B1
τ(n)

)
n∈N ∈ S

]
= P2

[ (
B2
τ(n)

)
n∈N ∈ S

]
. ⊓⊔
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Example 2.5.8 (Gaussian random functions). Suppose that fn : T → R, n ∈ N, is a
sequence of functions defined on a set T and (Xn)n∈N is a sequence of independent standard
normal random variables defined on a probability space (Ω, S,P). For each t ∈ T we have a
series of random variables

F (t) =
∑
n∈N

Xnfn(t).

We want to emphasize that F (t) also depends on the random parameter ω ∈ Ω,

F (t) = F (t, ω) =
∑
n∈N

Xn(ω)fn(t). (2.5.4)

The above is a series of real numbers.

Observe that if the sequence of functions fn satisfies the condition∑
n∈N

fn(t)
2 <∞, ∀t ∈ T, (2.5.5)

then the series defining F (t) converges in L2
(
Ω, S,P

)
, for any t ∈ T . To see this, consider

the partial sums

Fn(t) =
n∑
k=1

Xkfk(t).

Then, for m < n, we have

E
[ (
Fn(t)− Fm(t)

)2 ]
=

n∑
k=m+1

fk(t)
2E
[
X2
k

]
=

n∑
k=m+1

fk(t)
2

This proves that the sequence
(
Fn(t)

)
n∈N is Cauchy in L2

(
Ω, S,P

)
. The family F =

(
F (t)

)
t∈T

is a centered Gaussian random process. It is convenient to think of F as a random function.
Its value F (t) at t is not a deterministic quantity, it is random.

The covariance kernel is

K(s, t) = KF (s, t) = E
[
F (s)F (t)

]
=
∑
n∈N

fn(s)f(t).

The above series is absolutely convergent since

2|fn(s)f(t)| ≤ fn(s)
2 + fn(t)

2, ∀n, s, t.

Note that since the random vector (F (s), F (t)) is Gaussian, the random variables are inde-
pendent iff they are not correlated, i.e., E

[
F (s)F (t)

]
= 0. Thus the covariance kernel can

be viewed as a measure of dependency between the values of F at different points s, t ≥ 0.

Using Kolmogorov’s one series theorem we deduce from the L2 convergence that for any
t ∈ T there exists a measurable subset Nt ⊂ Ω such that P

[
Nt

]
= 0 and, for any ω ∈ Ω \Nt

the series F (t, ω) in (2.5.4) converges. We will denote by F (t, ω) its sum. Set

N :=
⋃
t∈T

Nt.

For ω ∈ Ω \N we obtain a genuine function

Fω : T → R, Fω(t) = F (t, ω).
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The function Fω is referred to as a path of the stochastic process. We encounter here one of
the recurring headaches in the theory of stochastic processes. Namely, if T is not countable,
the set N may not negligible so the paths may not exists a.s..

If the parameter space T has additional structure, one could ask if the paths are compat-
ible in some fashion with that structure. For example, if T is an interval of the real axis, we
could ask if the paths are continuous functions of t. ⊓⊔

Example 2.5.9. A Gaussian white noise is a triplet
(
H, (Ω, S,P),W

)
, where

• H is a separable real Hilbert space,

• (Ω, S,P) is a probability space and,

• W : H → L2(Ω, S,P), h 7→ W
(
h
)
is an isometry of H into L2(Ω, S,P) such that,

for any h ∈ H, the random variable Wh is centered Gaussian.

Since X is an isometry we deduce that

Var
[
W (h)

]
= E

[
W (h)2

]
= ∥h∥2H .

In particular, this also shows that the image image W (H) of X is a closed subspace of
L2(Ω, S,P) consisting of centered Gaussian random variables. Such a subspace is called a
Gaussian Hilbert space. Obviously there is a natural bijection between Gaussian white noises
and Gaussian Hilbert spaces.

Here is how one can construct Gaussian white noises. Fix a separable Hilbert space H
with inner product (−,−). Next, fix a Hilbert basis of (en)n∈N. Every element in H can then
be decomposed along this basis

h =
∑
n∈N

an(h)en, an(h) := (h, en).

Choose a sequence of independent standard normal random variables (Xn)n∈N defined on a
probability space (Ω, S,P). For h ∈ H we set

W
(
h
)
=
∑
n∈N

an(h)Xn.

From Parseval’s identity we deduce that∑
n∈N

an(h)
2 = ∥h∥2H

proving that the series defining W
(
h
)
converges in L2. The collection

(
W (h)

)
h∈H is a

Gaussian process and its covariance is

K(h0, h1) = E
[
W
(
h0
)
W
(
h1
) ]

=
∑
n∈N

an(h0)an(h1) = (h0, h1).

In particular, this proves that the correspondence h 7→ W
(
h
)
is an isometry, and thus we

have produced a Gaussian white noise.

As a special example, suppose that H = L2
(
[0,∞),λ). Fix a Hilbert basis (fn)n∈N and

construct the Gaussian noise as above

L2
(
[0,∞),λ

)
∋ f 7→Wf =

∑
an(h)Wn an(f) =

∫ ∞

0
f(t)fn(t)dt.
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For each t ∈ [0,∞) we set

B(t) :=W
(
I [0,t]

)
=
∑
n∈N

(∫ t

0
fn(s)ds

)
Xn. (2.5.6)

Note that

E
[
B(s)B(t)

]
=

∫ ∞

0
I [0,s](x)I [0,t](x)dx = min(s, t).

This shows that W (t) is a pre-Brownian motion.

Observe that if s ̸= t and |u| < |t− s|/2, then the random variables

1

u

(
B(s+ u)−B(s)

)
and

1

u

(
B(t+ u)−B(t)

)
are independent.

Now we need to make a leap of faith and pretend we can derivate with respect to t. (We
really cannot.) Letting u → 0 we deduce that F ′(t) and F ′(s) are independent Gaussian
random variables. Derivating with the same abandon the equality (2.5.6) we deduce

B′(t) =
∑
n∈N

fn(t)Xn. (2.5.7)

Thus, the elusive B′(t) is a random “function” of the kind described in Example 2.5.8 with
one big difference: in this case the condition (2.5.5) is not satisfied. Observe that the “value”
of F ′ at a point t is independent of its value at a point s. Thus, the value F ′ at a point carries
no information about its value at a different point so F ′(t) is a completely chaotic random
“function” and it is what is commonly referred to as white noise.

As we will see in the next subsection the function B(t) cannot be derivated at any point.
Moreover, the series (2.5.7) does not converge in a classical sense. However it can be shown
to converge in the sense of distributions. For an excellent discussion of this aspect we refer
to [74, Sec. III.4 ].

For any function f ∈ L2
(
[0,∞)

)
we define its Wiener integral∫ t

0
f(s)dB(s) :=W

(
I [0,t]f

)
. (2.5.8)

In Exercise 2.75 we give an alternate definition of the this object that justifies this choice of
notation. In particular we deduce that

B(t) =

∫ t

0
dB(s)

Even though B′(t) does not exist in any any meaningful way, the above intuition is neverthe-
less very important since it is what lead to the very important concepts of Ito integral and
stochastic differential equations. ⊓⊔

2.5.3. The Brownian motion. We have almost everything we need to define the concept
of Brownian motion and prove its existence.

Definition 2.5.10. A stochastic process
(
B(t)

)
t≥0

defined on a probability space (Ω, S,P)
is called a standard Brownian motion or Wiener process if the following hold.

(i) B(t) is a pre-Brownian motion.
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(ii) For any ω ∈ Ω the path

Bω : [0,∞) → R, t 7→ B(t, ω)

is continuous.

⊓⊔

To prove the existence of a standard Brownian motions we need a bit more terminology
and another fundamental result of Kolmogorov.

Definition 2.5.11. Let (Ω, S,P) be a probability space, T a set, and (X,F) a measurable
set. Consider stochastic processes

X,Y : T × Ω → X, (t, ω) 7→ Xt(ω), Yt(ω).

(i) The process Y is said to be a modification or version X, and we denote this X ∼ Y
if for any t ∈ T there exists a negligible subset Nt ∈ S such that

Xt(ω) = Yt(ω), ∀ω ∈ Ω \Nt.

(ii) The processes X,Y are said to be indistinguishable and we denote this X ≈ Y , if
there exists a negligible subset N such that

Xt(ω) = Yt(ω), ∀t ∈ T, ∀ω ∈ Ω \N.

(iii) The processes X,Y are said to be stochastically equivalent, and we denote this
X ∼s Y , if for any finite subset I ⊂ T the random vectors XI and Y I have the
same distribution.

⊓⊔

Note that ≈,∼,∼s are equivalence relations and

X ≈ Y =⇒ X ∼ Y =⇒ X ∼s Y.

Clearly, any two pre-Brownian motions are stochastically equivalent. We want to prove
something stronger namely, that any pre-Brownian motion admits a version whose paths are
almost surely continuous maps [0,∞) → R. We begin by proving a more general result.

Theorem 2.5.12 (Kolmogorov’s Continuity Theorem). Suppose that T is a compact interval
of the real axis, (Ω,F,P) is a probability space and

X : T × Ω → R, (t, ω) 7→ Xt(ω)

is a stochastic process such that, there exist constant q, r,K > 0 with the property that

E
[
|Xs −Xt|q

]
≤ K|s− t|1+r, ∀s, t ∈ T. (2.5.9)

Then, for any α ∈ (0, r/q), the process X admits a modification Y whose paths are almost
surely Hölder continuous with exponent α. This means, that for any α ∈ (0, r/q) there exists
a stochastic process (Yt)t∈T , a negligible subset Nα ⊂ Ω and a measurable function

C = Cα : Ω → [0,∞),

such that

• ∀t ∈ T , Xt = Yt a.s. and,
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• for any ω ∈ Ω \Nα, and any s, t ∈ T we have∣∣Ys(ω)− Yt(ω)
∣∣ ≤ C(ω)|s− t|α.

Proof. We follow the presentation in [152, Sec. 10.1]. In the sequel we will denote various
evolving universal positive constants by the same symbol, K. Without loss of generality we
can assume that T = [0, 1]. We denote by D the set of dyadic numbers in [0, 1]

D =
⋃
n≥0

Dn, Dn =
{ k
2n

; 0 ≤ k ≤ 2n
}
, D∗

n = Dn \ {1}.

For r ∈ D∗
n we set

Ir,n =

{[
r, r + 1/2n

)
, r < 1− 1/2n,[

1− 1/2n, 1
]
, r = 1− 1/2n.

.

Every t ∈ [0, 1] admits a binary/dyadic decomposition

t =
∞∑
k=1

ϵk(t)

2k
, ϵk(t) ∈ {0, 1},

such that

πn(t) :=
n∑
k=1

ϵk(t)

2k
↗ t as n→ ∞.

More precisely,πn(t) ∈ Dn and t ∈ Iπn(t),n, for any t ∈ [0, 1], ∀n ≥ 1. For n ≥ 1 we set

Cn :=
{
(u, v) ∈ Dn ×Dn; |u− v| ≤ 2−(n−1)

}
.

Note that

#Cn ≤ K2n.

Let

oscn := sup
(u,v)∈Cn

∣∣Xu −Xv

∣∣.
We deduce

E
[
oscqn

]
≤

∑
(u,v)∈Cn

E
[
|Xu −Xv|q

] (2.5.9)

≤ (#Cn)2
−(n−1)(1+r) ≤ K2−nr. (2.5.10)

Let s, t ∈ [0, 1], s ̸= t. We set

m = m(s, t) := min
{
k ∈ N; ϵk(t) ̸= ϵk(s)

}
= min

{
k ∈ N; πk(t) ̸= πk(s)

}
.

For m ∈ N define

Pm :=
{
(s, t) ∈ [0, 1]2; m(s, t) = m

}
.

Note that if

(s, t) ∈ Pm⇐⇒2−m ≤ |s− t| ≤ 2−m+1.

Let (s, t) ∈ Pm. Then

Xt = Xπm(t) +
∑
n≥m

(
Xπn+1(t) −Xπn(t)

)
,

Xs = Xπm(s) +
∑
n≥m

(
Xπn+1(s) −Xπn(s)

)
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Xt −Xs = Xπm(t) −Xπm(s) +
∑
n≥m

(
Xπn+1(t) −Xπn(t)

)
−
∑
n≥m

(
Xπn+1(s) −Xπn(s)

)
.

Note that(
πm(t), πm(s)

)
∈ Cm,

(
πn(t), πn+1(t)

)
,
(
πn(s), πn+1(s)

)
∈ Cn, ∀n ≥ m.

Hence

∀(s, t) ∈ Pm,
∣∣Xt −Xs

∣∣ ≤ oscm+2
∑
n≥m

oscn ≤ 3
∑
n≥m

oscn︸ ︷︷ ︸
=:Tm

.

We deduce from (2.5.10) that

∥Tm∥Lq ≤ K
∑
n≥m

2
−nr

q ≤ K2
−m r

q . (2.5.11)

We have

sup
(s,t)∈Pm

∣∣Xs −Xt

∣∣
|s− t|α

≤ 2αm sup
(s,t)∈Pm

∣∣Xs −Xt

∣∣ ≤ 2αmTm.

Invoking (2.5.11) we conclude that∥∥∥∥∥ sup
(s,t)∈Pm

∣∣Xs −Xt

∣∣
|s− t|α

∥∥∥∥∥
Lq

≤ K2
m(α− r

q
)
, ∀m ∈ N.

Fix α ∈ (0, r/q). Then 2
m(α− r

q
)
< 1, ∀m ∈ N and we deduce∥∥∥∥∥∥∥ sup

s,t∈D,
s ̸=t

∣∣Xs −Xt

∣∣
|s− t|α

∥∥∥∥∥∥∥
Lq

= sup
m≥1

∥∥∥∥∥ sup
(s,t)∈Pm

∣∣Xs −Xt

∣∣
|s− t|α

∥∥∥∥∥
Lq

≤ K.

We conclude that there exists a measurable negligible subsetN ⊂ Ω and a measurable function
C : Ω → [0,∞) such that∣∣Xt(ω)−Xs(ω)

∣∣ ≤ C(ω)|t− s|α, ∀s, t ∈ D. (2.5.12)

We can now produce the claimed modification. For every ω ∈ Ω \N the map

D ∋ t 7→ Xt(ω)

admits a unique α-Hölder extension T ∋ t 7→ Yt(ω) ∈ R. For t0 ∈ T and ω ∈ Ω \N we have

Yt0(ω) = lim
t→t0
t∈D

Xt(Ω).

Since

lim
t→t0
t∈D

E
[
|Xt −Xt0 |q

]
= 0

we deduce that Xt0 = Yt0 a.s.. Hence the process
(
Yt
)
t∈T is a modification of

(
Xt

)
t∈T whose

paths are a.s. α-Hölder continuous. ⊓⊔
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Remark 2.5.13. (a) Using Exercise 2.74 one can modify the modification in Theorem 2.5.12
to be α-Hölder continuous for any α ∈ (0, q/r), not just for a fixed α in this range.

(b) The argument in the proof of Theorem 2.5.12 is an elementary incarnation of the chain-
ing technique. For a wide ranging generalization of the continuity Theorem 2.5.12 and the
chaining technique we refer to [108, Chap. 11] or [166]. ⊓⊔

Corollary 2.5.14. Suppose that (Wt)t≥0 is a pre-Brownian motion. Then for any α ∈ (0, 1/2)
the process (Wt) admits a modification whose paths are a.s. α-Hölder continuous. In partic-
ular, Brownian motions exist.

Proof. Set δ := 1
2 −α. Note that since Wt−Ws is Gaussian with with mean 0 and variance

|t− s|. Then D := 1√
|t−s|

(
Wt −Ws

)
∼ N(0, 1) so that, ∀q ≥ 1, we have

E
[
|Wt −Ws|q

]
= |t− s|q/2E

[
|D|q

]
.

If we choose q > 1
δ , then we deduce that

q/2− 1

q
=

1

2
− 1

q
> α

and Theorem 2.5.12 implies that (Wt) admits a modification
(
Wt

)
t≥0

whose paths are a.s.

α-Hölder continuous.

Recall that this means that there exists a measurable negligible set N ⊂ Ω such that
∀ω ∈ Ω \N the path t 7→Wt(ω) is continuous. Now define

B : [0,∞)× Ω, (t, ω) 7→ Bt(ω) =

{
Wt(ω), ω ∈ Ω \N,
0, ω ∈ N.

Clearly (Bt)t≥0 is a (standard) Brownian motion. ⊓⊔

Remark 2.5.15. I want to say a few words about Paul Lévy’s elegant construction of the
Brownian motion, [113, Sec. 1].

He produces the Brownian motion on [0, 1] as a limit of random piecewise linear functions
Ln with nodes on the dyadic sets

Dn :=

{
k

2n
; 0 ≤ k ≤ 2n

}
, n ≥ 0.

They are successively better approximations of the Brownian motion. The 0-th order ap-
proximation is the random linear function L0(t) such that L0(0) = 0 and L0(1) is a standard
normal random variable.

The n-th order approximation Ln satisfies the following conditions.

• It is linear on each of the intervals
(
(k − 1)/2n, k/2n

)
, Ln(0) = 0.

• The increments

Ln
(
k/2n)− Ln

(
(k − 1)/2b

)
, k = 1, . . . , 2n

are normal random variables with mean zero and variance 1/2n.

• Ln(t) = Ln−1(t), ∀t ∈ Dn−1.
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To explain how to produce Ln(t) given Ln−1(t) we only need to explain how to produce
Ln
(
(2k − 1)/2n

)
given that

Ln
(
j/2n−1

)
= Ln−1

(
j/2n−1

)
, j = k − 1, k.

To “guess” what Ln
(
(2k − 1)/2n

)
should be, we take our inspiration from the Brownian

motion that we want to approximate.

Consider two moments of time t0 < t1 in [0, 1]. Then B(t0) ∼ N(0, t0), B(t1) ∼ N(0, t1)
and B(t1)−B(t0) is a normal random variable with mean 0, variance t1 − t0, independent of
B(t0). Denote by t∗ the midpoint of [t0, t1], t∗ = (t0 + t1)/2.

Consider the linear interpolation

Z =
1

2

(
B(t0) +B(t1)

)
.

The difference

∆ := B(t∗)− Z =
1

2

(
B(t∗)−B(t0)

)
+

1

2

(
B(t∗)−B(t1)

)
is a sum of two independent normal random variables, that are also independent of B(t0).
Thus ∆ is a normal random variable with mean 0, variance (t1− t0)/4, independent of B(t0).
We write

B(t∗) = Z +∆ =
1

2

(
B(t0) +B(t1)

)
+

√
t1 − t0
2

X, (2.5.13)

where X is a standard normal random variable independent of B(t0). We can now describe
Lévy’s prescription. We set

D :=
⋃
n≥0

Dn,

and consider a family (Xt)t∈D of independent standard normal random variables. Then

L0(t) := tX1,

The approximation Ln+1 is obtained from Ln as follows. If t0 < t1 are two consecutive points
in Dn and t∗ ∈ Dn+1 is the midpoint of [t0, t1], then Ln+1(t∗) is obtained by mimicking
(2.5.13), i.e.,

Ln+1(t∗) =
1

2

(
Ln(t0) + Ln(t1)

)
+

√
t1 − t0
2

Xt∗ = Ln(t∗) +
1

21+n/2
Xt∗ .

On each of the intervals [t0, t∗] and [t∗, t1] the function t 7→ Ln+1(t) is linear so it is uniquely
determined by its values at endpoints.

To prove that the sequence Ln(t) converges uniformly a.s. it suffices to show that the
series of random variables ∑

n≥0

sup
t∈[0,1]

∣∣Ln+1(t)− Ln(t)
∣∣︸ ︷︷ ︸

=:Un

converges a.s..

Denote byMn the set of midpoints of the 2n intervals determined byDn,Mn = Dn+1\Dn.
From the construction of Ln we deduce that

Un =
1

21+n/2
max
τ∈Mn

|Xτ |.
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We deduce that for any n > 0 and any cn > 0 we have

P
[
Un > cn

]
≤
∑
τ∈Mn

P
[
|Xτ | > 21+n/2cn

]
= 2n+1P

[
Y > 21+n/2cn

]
, Y ∼ N(0, 1).

The Mills ratio inequalities (1.3.43) imply that

2n+1P
[
Y > 21+n/2cn

]
≤ 2n/2√

2π cn
e−2nc2n .

When

cn =
√
rn2−n log 2, r > 1,

we have

P
[
Un > cn

]
≤ 2(1−r)n√

2rπn log 2
.

Observing that the series ∑
n≥1

2(1−r)n√
2rπn log 2

is convergent we deduce from the Borel-Cantelli lemma that

P
[
Un < cn i.o.

]
= 0.

Hence Un → 0 a.s. since cn → 0. ⊓⊔

Let us observe that if (B(t)) is a standard Brownian motion, then B(0) = 0 a.s.. For this
reason, the standard Brownian motion is also referred to as the Brownian motion started at
0. For x ∈ R we set Bx(t) = x+B(t). We will refer to Bx(t) as the Brownian motion started
at x.

Remark 2.5.16 (The Wiener measure). The space C := C
(
[0,∞)

)
of continuous functions

[0,∞) → R is equipped with a natural metric d,

d(f, g) =
∑
n∈N

1

2n
min

(
1, dn(f, g)

)
, dn(f, g) := sup

t∈[n−1,n]
|f(t)− g(t)|.

The topology induced by this metric is the topology of uniform convergence on the compact
subsets of [0,∞). One can prove (see Exercise 2.76) that the Borel algebra of this metric
space coincides with the sigma algebra generated by the functions

Evt : C → R, Evt(f) = f(t).

More generally, for any finite subset I ⊂ [0,∞) we have a measurable evaluation maps

EvI : C → RI , f 7→ f |I .

Proposition 1.2.4 shows that if µ0, µ1 are two probability measures on C such that

(EvI)#µ0 = (EvI)#µ1

for any finite subset I ⊂ [0,∞), then µ0 = µ1.

Note that if
(
Xt

)
t≥0

is a stochastic process defined on a probability space (Ω, S,P) whose
paths are continuous, then it defines a map

X : Ω → C, Ω ∋ ω 7→ X(ω) ∈ C, X(ω)(t) = Xt(ω).
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The map X is measurable since its composition with all the evaluation maps EvI are mea-
surable. Thus the stochastic process defines a probability measure

PX := X#P ∈ Prob
(
C,BC

)
called the distribution of the process.

Suppose that B0, B1 are two Brownian motions defined on possibly different probability
spaces. They have distributions

W0,W1 ∈ Prob
(
C,BC

)
.

These distributions coincide since the finite dimensional distributions πIWj , i = 0, 1 are
centered Gaussian with identical covariances

E
[
Bi
t1B

i
t1

]
= min(t1, t2), ∀t1, t2 ∈ I, i = 0, 1.

Thus, the Brownian motions determine a probability measure W on C uniquely determined
by the requirement that for any finite subset {t1, . . . , tn} ⊂ [0,∞) the random vector(

Evt1 , . . . ,Evtn
)

is centered Gaussian with covariances E
[
Evti Evtj

]
= min(ti, tj). This measure is known

as the Wiener measure. We denote it by W.

Note that W is unique probability measure on C such that the canonical process

Bt :
(
C,BC,W

)
→ R, C ∋ f 7→ Evt(f) = f(t)

is itself a Brownian motion, i.e.,

EW
[
BsBt

]
= min(s, t), ∀s, t ≥ 0. (2.5.14)

We have proved the existence of Wiener’s measure by relying on the existence of Brownian
motion. Conversely, if by some other method we can construct the Wiener measure on C,
then as a bonus we deduce the existence of Brownian motions. Here is one such alternate
method.

Consider a sequence of i.i.d. random variables (Xn)n∈N with mean 0 and variance 1. We
set

S0 = 0, Sn = X1 + · · ·+Xn, n ∈ N.
Imitating (2.5.2), for ν ∈ N and t ≥ 0 we set

W ν(t) := ν−1/2S⌊νt⌋ +Rν(t), Rν(t) := ν−1/2
(
νt− ⌊νt⌋

)
X⌊νt⌋+1. (2.5.15)

For each ν, the paths of the random process are continuous and piecewise linear. The above
discussion shows that it defines a Borel probability measure Pν = PW ν on C.

Donsker’s Invariance Principle shows that the the sequence Pν converges weakly to a
probability measure on P∞ satisfying (2.5.14). In other words, P∞ is the Wiener measure.
We can view the Invariance Principle as a functional version of the Central Limit Theorem.
Its proof requires an in depth investigation of the space of probability measures on Polish
spaces14 and is beyond the scope of this text. For a most readable presentation of Donsker’s
theorem and some of its consequences we refer to [14], [21, Chap. 13]. ⊓⊔

14Recall that a Polish space is a complete separable metric space.
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The next result suggests that the paths of a Brownian motion are very rough, i.e., they
have poor differentiability properties.

Proposition 2.5.17 (The quadratic variation of Brownian paths). Consider a Brownian
motion Bt)t≥0 defined on the probability space (Ω, S,P). Fix c > 0 and let

0 = tn0 < tn1 < · · · < tnpn = c, n ∈ N

be a sequence of subdivisions of [0, t] with mesh

µn := sup
1≤k≤pn

(tnk − tnk−1)

tending to 0 as n→ ∞. Define the quadratic variations

Qn(c) :=

pn∑
k=1

(
Btnk −Btnk−1

)2
.

Then E
[
Qn(c)

]
= c, ∀n and Qn(c) → c in L2(Ω, S,P) as n→ ∞.

Proof. The Gaussian random variables Xn
k = Btnk − Btnk−1

, 1 ≤ k ≤ pn, are independent,

have mean zero and momenta

E
[
(Xn

k )
2
]
= tnk − tnk−1, E

[
(Xn

k )
4
]
= 3
(
tnk − tnk−1

)2
.

From the first equality we deduce E
[
Qn(c)

]
= c. Moreover

pn∑
k=1

(
Xn
k

)2 − c =

pn∑
k=1

( (
Xn
k

)2 − ( tnk − tnk−1

) )
︸ ︷︷ ︸

=:Y n
k

.

The random variables Y n
k are independent and have mean zero so∥∥∥ pn∑

k=1

(
Xn
k

)2 − c
∥∥∥2
L2

=
n∑
k=1

∥Y n
k ∥2L2 .

Now observe that

∥Y n
k ∥2L2 = E

[ (
Xn
k

)4 ]− 2(tnk − tnk−1)E
[ (
Xn
k

)2 ]
+ (tnk − tnk−1)

2 = 2(tnk − tnk−1)
2.

Hence ∥∥∥∥∥
pn∑
k=1

(
Xn
k

)2 − c

∥∥∥∥∥
2

L2

= 2

pn∑
k=1

(
tnk − tnk−1

)2
≤ 2µn

pn∑
k=1

(
tnk − tnk−1

)
= 2µnc→ 0 as n→ ∞.

⊓⊔

On a subsequence nj we have Qnj (c) → c > 0 a.s.. On the other hand, if for some ω ∈ Ω
the function t→ Bt(ω) where Hölder with exponent α > 1/2 on [0, c], then for some constant
C = Cω > 0 independent of n we would have

0 ≤ Qn(t)(ω) ≤ C2
ω

∑
k

∣∣ tnk − tnk−1

∣∣2α ≤ C2
ωµ

2α−1
n c→ 0.

This prove that Bt is a.s. not α-Hölder on [0, c], α > 1/2.
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On the other hand, we know that the paths of the Brownian motion are Hölder continuous
for any exponent < 1/2. A 1933 result of Paley, Wiener, Zygmund [137] shows that they
have very poor differentiability properties. First, let me offer some historical context.

One question raised in the 19th century was whether there exist continuous functions on
an interval that are nowhere differentiable. Apparently Gauss believed that there are no such
functions. K. Weierstrass explicitly produced in 1872 such examples defined by lacunary (or
sparse) Fourier series. In 1931 S. Banach [9] and S. Mazurkewicz [125] independently showed
showed that the complement of the set of nowhere differentiable functions in the metric space
of continuous functions on a compact interval is very small, meagre in the Baire category
sense.

The 1933 result of Paley, Wiener, Zygmund that we want discuss is similar in nature.
They prove that the complement set of continuous nowhere differentiable functions f ∈ C is
negligible with respect to the Wiener measure.

Theorem 2.5.18 (Paley, Wiener, Zygmund). The paths of a Brownian motion (Bt)t≥0 are
a.s. nowhere differentiable.

Proof. We follow the very elegant argument of Dvoretzky, Erdös, Kakutani [60]. We will
show that for any interval I = [a, b) ⊂ [0,∞) the paths of (Bt) are a.s. nowhere differentiable
on I. Assume the Brownian motion is defined on a probability space (Ω, S,P). This probabil-
ity space could be the space C equipped with the Wiener measure. For ease of presentation
we assume that I = [0, 1). Consider the set

S :=
{
ω ∈ Ω; the path Bt(ω) is nowhere differentiable on [0, 1)

}
The set S may not be measurable15 but we will show that its complement is contained in a
measurable subset of Ω of measure zero.

Let us observe that if ω ∈ Ω \ S, i.e., the path t 7→ Bt(ω) is differentiable at a point
t0 = t0(ω) ∈ [0, 1], then there exist M,N ∈ N such that for any n ≥ N there exists
k ∈ {1, . . . , n− 2} with the property that∣∣B(k−1+i)/n(ω)−B(k+i)/n(ω)

∣∣ ≤ M

n
, ∀i = 0, 1, 2.

To see this, set f(t) := Bt(ω), m = |f ′(t0)|, M = ⌊m⌋+ 2. Then there exists ε > 0 so that if
s, t ∈ (t0 − ε, t0 + ε), s < t we have

|f(s)− f(t)| ≤M(t− s).

Now choose N such that 1
N < ε

6 and, for n ≥ N choose k ∈ {1, 2, . . . , n} such that

t0 − ε <
k − 1

n
,
k

n
,
k + 1

n
,
k + 2

n
< t0 + ε. (2.5.16)

We deduce that

Ω \ S ⊂
⋃
M∈N

⋃
N∈N

 ⋂
n≥N

n⋃
k=1

2⋂
i=0

{ ∣∣B(k−1+i)/n −B(k+i)/n

∣∣ ≤M/n
}

︸ ︷︷ ︸
=:XM,N

.

15In 1936 S. Mazurkewicz proved that the set S is not a Borel subset of C.
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Clearly, the set XM,N is measurable and it suffices to show it is negligible. We have

P
[
XM,N

]
≤ inf

n≥N

n−2∑
k=1

P
[
max
0≤i≤2

∣∣B(k−1+i)/n −B(k+i)/n

∣∣ ≤M/n
]
. (2.5.17)

Now observe that the increments B(k−1)/n−Bk/n are independent Gaussians with mean zero
and variance 1/n. We deduce

P
[
XM,N

]
≤ inf

n≥N

n−2∑
k=1

P
[ ∣∣B(k−1)/n −Bk/n

∣∣ ≤M/n
]3
.

The exponent 3 above will make all the difference. It appears because of the constraint
(2.5.16) onN . Since

√
n
∣∣B(k−1)/n−Bk/n

∣∣ is standard normal, the random variable
∣∣B(k−1)/n−Bk/n

∣∣
is normal with variance 1

n and we have

P
[ ∣∣B(k−1)/n −Bk/n

∣∣ ≤M/n
]
= 2

√
n

2π

∫ M/n

0
e−x

2n/2dx

(x =My/n)

2

√
n

2π

M

n

∫ 1

0
e−

My2

2n dy ≤ 2√
2π︸ ︷︷ ︸

=:C

Mn−1/2.

Hence
n−2∑
k=1

P
[ ∣∣B(k−1)/n −Bk/n

∣∣ ≤M/n
]3 ≤ nC3M3n−3/2 = C3M3n−1/2, ∀n ≥ N,

and (2.5.17) implies that P
[
XM,N

]
= 0. ⊓⊔
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2.6. Exercises

Exercise 2.1 (Ottaviani-Skorokhod). Suppose that X1, . . . , Xn are independent random
variables. We set S0 = 0, Sk = X1 + · · ·+Xk, k = 1, . . . n. Let α > 0 and set

c := sup
0≤j≤n

P
[
|Sn − Sj | > α

]
, Mn := sup

1≤j≤n
|Sj |.

Prove that if c < 1, then16

P
[
Mn > 2α

]
≤ 1

1− c
P
[
|Sn| > α

]
≤ c

1− c
.

Hint. Denote by J the first j such that |Sj | > 2α. Note that P
[
Mn > 2α

]
= P

[
J ≤ n

]
P
[
|Sn| > α

]
≥ P

[
|Sn| > α, Mn > 2α

]
=

n∑
j=1

P
[
|Sn| > α, J = j

]
≥

n∑
j=1

P
[
|Sn − Sj | ≤ α, J = j

]
.

Observe that the event {J = j} is independent of Sn − Sj and P
[
|Sn − Sj | ≤ α

]
≥ 1− c. ⊓⊔

Exercise 2.2. Suppose that (Xn)n≥1 is a sequence of independent random variables. Prove
that the following statements are equivalent.

(i) The series
∑

n≥1Xn converges in probability.

(ii) The series
∑

n≥1Xn converges a.s.

Hint. Use Exercises 2.1 and 1.48. ⊓⊔

Exercise 2.3. A random variable X is called symmetric if X and −X have identical dis-
tributions. Suppose that X1, . . . , Xn are independent, symmetric random variable. We set
Sn = X1 + · · ·+Xn.

1

2
P
[

max
1≤k≤n

|Xk| > u
]
≤ P

[
|Sn| > u

]
.

Hint. Set T = min
{
k; 1 ≤ j ≤ n, |Xj | := max1≤k≤n |Xk|

}
, RT := Sn −XT . ⊓⊔

Exercise 2.4. Let X be a real valued random variable. The median set of X is the collection

med(X) :=
{
c ∈ R; P

[
X < c

]
≤ 1/2 ≤ P

[
X ≤ c

] }
.

The numbers in med(X) are called medians of X.

(i) Prove that med(X) ̸= ∅.
(ii) Let x̄ ∈ med(X). Suppose that X ′ is an independent copy of X, i.e., X,X ′ are

i.i.d. and set X∗ = X −X ′. Prove that for any ε > 0, and any a ∈ R
1

2
P
[
X − x̄| ≥ ε

]
≤ P

[
|X∗ ≥ ε

]
≤ 2P

[
|X − a| ≥ ε/2

]
.

(iii) Let x̄ ∈ med(X) Prove that for any a ∈ R and any p ∈ [1,∞)

1

2
E
[
|X − x̄|p

]
≤ E

[
|X∗|p

]
≤ 2pE

[
|X − a|p

]
.

Hint. For (iii) you need to use Proposition 1.3.40 and the integration by parts formula (1.3.50). ⊓⊔

16The weaker inequality, P
[
Mn > 2α

]
≤ c

1−c
, is also known as Lévy’s inequality.
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Exercise 2.5. Suppose that (Xn)n≥1 is a sequence of independent random variables. Fix
another sequence (X ′

n)n≥1 of independent random variables, independent of (Xn)n≥1, and
such that Xn and X ′

n have the same distributions for any n. Form the symmetrizations
X∗
n = Xn −X ′

n. Prove that the following statements are equivalent.

(i) The series, and set

S∗
n =

n∑
n≥

X∗
n

is a.s. convergent.

(ii) There exists a sequence of real numbers (an)n≥1 such that the series∑
n≥1

(Xn − an)

is a.s. convergent.

Hint. Use Kolmogorov’s three series theorem and Exercise 2.4. ⊓⊔

Exercise 2.6. Consider an infinite array of nonnegative numbers P = (pn,k)k,n≥1 satisfying
the following conditions.

(i) The array is lower triangular, i.e., pn,k = 0, ∀k > n.

(ii) For every n, the n-th row of P defines a probability distribution on In = {1, 2, . . . , n},
i.e.,

n∑
k=1

pn,k = 1, ∀n ≥ 1.

(iii) The sequence determined by each column of P converges to 0, i.e.,

lim
n→∞

pn,k = 0, ∀k ≥ 1.

Show that if (xn) is a sequence of real numbers that converges to a number x, then the
sequence of weighted averages

yn :=
n∑
k=1

pn,kxk

converges to the same number x. ⊓⊔

Exercise 2.7 (J. von Neumann). In this exercise we describe the acceptance-rejection method
frequently used in Monte-Carlo simulations. For any nonnegative function f : R → [0,∞) we
denote by Gf the region bellow its graph

Gf :=
{
(x, y) ∈ R2; 0 ≤ y ≤ f(x((x)

}
.

(i) Suppose that we are given a probability density p : R → [0,∞)∫
R
p(x)dx = 1.

For any positive constant c we set

µcp =
1

c
IGcp(x, y)dxdy.
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Since area(Gcp) = c we deduce that µcp defines a Borel probability measure on R2.

The natural projection R2 ∋ (x, y) 7→ x ∈ R is a random variable X defined on
the probability space (R2,BR2 , µcp). Prove that the probability distribution of X is
p(x)dx.

(ii) Suppose that X is a random variable with probability distribution p(x)dx. Let U
be a random variable independent of X and uniformly distributed over [0, 1]. Prove
that the probability distribution of the random vector (X, cp(X)U) is µcp.

(iii) Let q : R → [0,∞) be another probability density such that, there exists c > 0 with
the property that

q(x) ≤ cp(x), ∀x ∈ R.
Suppose that (Un)n∈N is a sequence of i.i.d. random variables uniformly distributed
on [0, 1] and (Xn)n∈N is a sequence of i.i.d., independent of the Un’s and with
common distribution p(x)dx. Denote by N the random variable

N = inf
{
n ∈ N : cp(Xn)Un ≤ q(Xn)

}
.

Prove that
E
[
N
]
= c.

Hint. Consider the random vector Vn =
(
Xn, cp(Xn)Un

)
, observe that

N = inf
{
n ∈ N; Vn ∈ Gq

}
,

and use part (ii) to show that N is a geometric random variable.

(iv) Define Y = XN , i.e.,
Y (ω) = XN(ω)(ω).

From (iii) we know that P
[
N <∞

]
= 1 so Y is defined outside a probability zero

set. Prove that the probability distribution of the random variable Y is q(y)dy.

⊓⊔

Remark 2.6.1 (Acceptance-Rejection method). Suppose that a computer can sample the
distribution Unif(0, 1) and it can sample the distribution p(x)dx. We can then sample the
distribution q(y)dy as follows. Sample succesively and independently Unif(0, 1) and p(x)dx
and denote by Un and respectively Xn the samples obtained at the n-th trial. Stop at the

first trial N when the inequality cUn ≤ q(Xn)
p(Xn)

is observed. Set Y = XN . The results in the

above exercise show that the expected waiting time to observe this inequality is c and the
random number Y samples the distribution q(y)dy. ⊓⊔

Exercise 2.8 (Bernstein). For each x ∈ [0, 1] we consider a sequence (Bx
k )k∈N of i.i.d.

Bernoulli random variables with probability of success x. We set

Sxn =
∑
k=1

Bx
k .

Note that Sxn/n ∈ [0, 1] and the SLLN shows that

Sxn/n→ x a.s. as n→ ∞.

The dominated converges theorem implies that for any continuous function f : [0, 1] → R we
have

lim
n→∞

E
[
f(Sxn/n)

]
= f(x).
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Set
Bf
n(x) := E

[
f(Sxn/n)

]
.

(i) Show that

Bf
n(x) =

n∑
k=0

(
n

k

)
xk(1− x)kf(k/n).

(ii) Prove that as n→ ∞ the polynomials Bf
n(x) converge uniformly on [0, 1] to f(x).

Hint. For (ii) imitate the argument in Step 2 of the proof of Theorem 2.2.30. ⊓⊔

Figure 2.5. The graph of f(x) = sin(4πx) (the continuous blue curve) and of the degree

50 Bernstein polynomial Bf
50(x) (the dotted red curve).

Exercise 2.9. Suppose that Xn ∈ L2(Ω, S,P) is a sequence of random variables with mean
zero and variance one such that

lim
k→∞

E
[
XmXm+k

]
= 0, uniformly in m.

Prove that
1

n

(
X1 + · · ·+Xn

) p−→ 0 as n→ ∞. ⊓⊔

Exercise 2.10. Suppose that a player rolls a die an indefinite amount of times. More for-
mally, we are given a sequence independent random variables (Xn)n∈N, uniformly distributed
on I6 := {1, 2, . . . , 6}. For k ∈ N, we say that a k-run occurred at time n if n ≥ k and

Xn = Xn−1 = · · · = Xn−k+1 = 6.

For n ∈ N we set

Rn = Rkn := #
{
m ≤ n; a k-run occurred at time m

}
,

T = Tk = min
{
n ≥ k; Rn > 0

}
.

Thus T is the moment when the first k-run occurs. As shown in Example 1.4.13, E
[
T
]
<∞.

(i) Compute E
[
T
]
.

(ii) Prove that Rn
n converges in probability to 1

6k
. Hint. For n ≥ k set

Yn := I{Xn=6} · · · IX{n−k+1=6}.

Observe that Rn = Yk + · · ·+ Yn.
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⊓⊔

Exercise 2.11 (A. Renyi). Suppose that (An)n≥0 is a sequence of events in the sample space
(Ω, S,P) with the following properties.

• A0 = Ω.

• P
[
An
]
̸= 0, ∀n ≥ 0.

• There exists ρ ∈ (0, 1] satisfying

lim
n→∞

P
[
An|Ak

]
= ρ, ∀k ≥ 0. (2.6.1)

Set Xn := IAn − ρ.

(i) Prove that

lim
n→∞

E
[
XnXk

]
= 0, ∀k ∈ N.

(ii) Prove that for any X ∈ L2(Ω, S,P) we have

lim
n→∞

E
[
XnX

]
= 0.

(iii) Conclude that the sequence (An) satisfies the mixing condition with density ρ

lim
n→∞

P
[
An ∩A

]
= ρP

[
A
]
, ∀A ∈ S. (2.6.2)

Thus, in the long run, the set An occupies the same proportion ρ of any measurable
set A.

⊓⊔

Exercise 2.12 (A. Renyi). Suppose that (Xn)n∈N is a sequence of i.i.d., almost surely finite
random variables. Set

Mn :=
X1 + · · ·+Xn

n
.

Assume that the empirical means Mn converge in probability to a random variable M . The
goal of the exercise is to prove that M is a.s. constant. We argue by contradiction. Assume
M is not a.s. constant. Let F : R → [0, 1] the cdf of M , F (m) = P

[
M ≤ m

]
.

(i) Prove that there exist two continuity points a < b of F (x) such that

p0 := F (b)− F (a) = P
[
a < M ≤ b

]
∈ (0, 1).

(ii) Prove that there exists ν0 ∈ N such that

P
[
a < Mn ≤ b

]
> 0, ∀n ≥ ν0.

(iii) Set A0 = Ω and

An =
{
a < Mν0+n ≤ b

}
, n ≥ 1.

Prove that the sequence (An) satisfies the condition (2.6.1) with ρ = p0.

(iv) Set B :=
{
a < M ≤ b

}
. Prove that the restriction of Mn to (B, S|B, P

[
− |B

]
)

converges in probability to M |B. Here
S|B =

{
S ∩B; S ∈ S

}
.

(v) Deduce that p0 = 1, thus contradicting (i).

⊓⊔
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Exercise 2.13 (Vitali-Hahn-Saks). Suppose that (Ω, S, µ) is a probability space. Define an
equivalence relation ∼µ on S by setting S ∼µ S′ if µ

[
S∆S′ ] = 0, where ∆ denotes the

symmetric difference S∆S′ =
(
S \ S′ ) ∪ (S′ ∪ S

)
. Define d = dµ : S× S → [0,∞)

d
(
S0, S1

)
= µ

[
S0∆S1

]
.

(i) Prove that ∀S0, S1, S2 ∈ S we have

d
(
S0, S1

)
= d
(
S1, S0), d

(
S0, S2

)
≤ d
(
S0, S1

)
+ d
(
S1, S2

)
and d

(
S0, S1

)
= 0 iff S0 ∼µ S1.

(ii) Prove that d defines a complete metric d on S := S/ ∼µ.

(iii) Suppose that λ : S → [0,∞) is a finite measure that is absolutely continuous with
respect to µ. Hence λ

[
S0
]
= λ

[
S1
]
= 0 if S0 ∼µ S1. Prove that the induced

function
λ : S→ R

is continuous with respect to the metric d.

(iv) Suppose that (λn) is a sequence of finite measure such that λn ≪ µ for any n ∈ N
and, ∀S ∈ S , the sequence λn

[
S
]
has a finite limit λ

[
S
]
. Prove that λ : S → R is

finitely additive and λ
[
S
]
= 0 if µ

[
S
]
= 0.

(v) For any ε > 0 and k ∈ N we set

Sk,ε :=
{
S ∈ S; sup

m∈N

∣∣λk[S ]− λk+m
[
S
] ∣∣ ≤ ε

}
.

Prove that the sets Sk,ε ⊂ S are closed with respect to the metric d and

S=
⋃
k∈N

Sk,ε, ∀ε > 0.

(vi) Prove that λ̄ : S → [0,∞] is continuous and deduce that λ̄ is a finite measure. Hint.

It suffice to show that for any decreasing sequence sequence (Sn) in S with empty intersection we have

limλ
[
Sn

]
= 0. Deduce this from (v) and Baire’s theorem.

⊓⊔

Exercise 2.14 (A. Renyi). Let (Ω, S,P) be a probability space and suppose that (An) is a
stable sequence of events, i.e., for any B ∈ S the sequence P

[
An ∩B

]
has a finite limit λ

[
B
]

and λ
[
Ω
]
∈ (0, 1). Prove that λ : S → [0, 1] is a finite measure absolutely continuous with

respect to P, λ≪ P. Denote by ρ the density of λ with respect to P, ρ = dλ
dP . The function ρ

is called the density of the stable sequence of events. Hint. Use Exercise 2.13. ⊓⊔

Exercise 2.15 (A. Renyi). Let (Ω, S,P) be a probability space and suppose that (An)n∈N is
a sequence of events such that the limits

λ0 = lim
n→∞

P
[
An
]
, λk := lim

n→∞
P
[
Ak ∩An

]
, k ∈ N

exist and λ0 ∈ (0, 1). Denote by X linear span of the indicators IAn and byX its closure in
L2.

(i) Prove that ∀ξ ∈X there exists a limit

L(ξ) := lim
n→∞

E
[
ξIAn

]
= E

[
ρξ
]
.



244 2. Limit theorems

(ii) Prove that ∀ξ ∈ L2(Ω, S,P) there exists a limit

L(ξ) = lim
n→∞

E
[
ξIAn

]
= E

[
ρξ
]
.

(iii) Show thatX = L2(Ω, S,P) and ∃ρ ∈ L2(Ω, S,P) such that L(ξ) = E
[
ρξ
]
, ∀ξ ∈ L2(Ω, S,P).

(iv) Show that (An)n∈N is a stable sequence with density ρ. (Note that when ρ is
constant the sequence satisfies the mixing condition (2.6.1) with density ρ = λ0.)

⊓⊔

Exercise 2.16. Suppose that f : [0, 1] → [0, 1] is a continuous function that is not identically
0 or 1. For n ∈ N we set

An =

n−1⋃
k=0

[
k/n, k/n+ f(k/n)

]
.

Show that (An)n≥1 is a stable sequence of events and compute its density. ⊓⊔

Exercise 2.17. Let (Xn)n≥1 be a sequence of i.i.d. random variables such E
[
|X1|r

]
< ∞

that for some r ∈ (0, 2). Set

Yn := XnI{|Xn|≤n1/r}
Prove that ∑

n≥1

1

n2/r
Var

[
Yn
]
<∞.

Hint. Have a look at the proof of (2.1.15). ⊓⊔

Exercise 2.18 (Marcinkiewicz-Zygmund). Let (Xn)n≥1 be a sequence of i.i.d. random vari-
ables such E

[
|X1|r

]
<∞ that for some r ∈ (0, 1). Set

Yn := XnI{|Xn|≤n1/r}, Sn =
n∑
k=1

Xk, Tn =
n∑
k=1

Yk.

(i) Show that P
[
Xn ̸= Yn i.o.

]
= 0.

(ii) Show that

lim
n→∞

1

n1/r
(
Tn − E

[
Tn
] )

= 0, a.s..

(iii) Prove that

lim
n→∞

1

n1/r
E
[
Tn
]
= 0.

(iv) Prove that

lim
n→∞

1

n1/r
Sn = 0, a.s.

Hint. Use the proof of the SLLN as inspiration. To prove (ii) use Exercise 2.17. Part (iii) requires a bit more ingenuity.

Note that∣∣E[Tn ] ∣∣ ≤ n∑
k=1

E
[
|Xk|1−r · |Xk|rI{|Xk|≤k1/r}, I{|Xk|≤k1/r} = I

{|Xk|≤k
1
2r }

+ I
{k

1
2r <|Xk|≤k1/r}

,

and for any α > 0
n∑

k=1

kα = O(nα+1) as n→ ∞.

⊓⊔
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Exercise 2.19. Suppose that π is a probability measure on In =
{
1, 2, . . . , n

}
, pi = π

[
{i}
]
.

Consider a sequence (Xn)n∈N of i.i.d. random variables uniformly distributed on [0, 1]. For
j ∈ In and m ∈ N we set

Zm,j := #

{
1 ≤ k ≤ m;

j−1∑
i=0

pi ≤ Xk <

j∑
i=0

pi

}
, Hm :=

1

m

n∑
j=1

Zm,j log2 pj .

Prove that

lim
m→∞

Hm = −Ent2
[
π
]
=

n∑
j=1

pj log2 pj , a.s..

⊓⊔

Exercise 2.20. Let (Xn)n∈N be a sequence of i.i.d. Bernoulli random variables with suc-
cess probability 1

2 and (Yn)n∈N a sequence of i.i.d. Bernoulli random variables with success

probability 1
3 . (The sequences (Xn) and (Yn) may not be independent of each other.) Set

B = {0, 1} and denote by Fn the sigma-algebra of BN generated by the cylinders

Ckϵ :=
{
x = (x1, x2, . . . ) ∈ BN; xk = ϵ

}
, k = 1, 2, . . . , n, ϵ = 0, 1.

We set

F :=
⋃
n∈N

Fn.

The sequence (Xn) (resp. Yn) define a probability measures P = Ber(1/2)⊗N (resp Q
= Ber(1/3)⊗N) on BN; see Subsection 1.5.1. Denote by Pn (resp. Qn) the restrictions of P
(resp. Q) to Fn.

(i) Prove that for any n ∈ N the measure Qn is absolutely continuous with respect to

Pn. Compute the density dQn

dPn
of Qn with respect to Pn.

(ii) Prove that Q is not absolutely continuous with respect to P. Hint. Use the Law of Large

Numbers.

⊓⊔

Exercise 2.21. Suppose that (µn)n∈N is a sequence in Meas(R≥0). Denote by Ln the Laplace
transform of µn

Ln(τ) =

∫
R≥0

e−τtµn
[
dt
]
, τ ≥ 0.

(i) If (µn)n≥0 converges vaguely to µ∞ ∈ Meas(R≥0) if and only if

∀τ > 0, lim
n→∞

Ln(τ) = L∞(τ),

where L∞ is the Laplace transform of µ∞.

(ii) If (µn)n≥0 converges weakly to µ∞ if and only if

∀τ ≥ 0, lim
n→∞

Ln(τ) = L∞(τ).

⊓⊔
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Exercise 2.22. For a ≥ 0 we denote by Measa(R≥0) the set of Borel probability measures µ
on [0,∞) such that ∫

R≥0

e−τtµ
[
dt
]
<∞, ∀τ > a.

The Laplace transform of µ ∈ Measa(R≥0) is the nonincreasing function

Lµ : (a,∞) → [0,∞), Lµ(τ) =

∫
R≥0

e−τtµ
[
dt
]
.

(i) Prove that a measure in Measa(R≥0) is uniquely determined by its Laplace trans-
form.

(ii) Suppose that if (µn)n∈N is a sequence in Measa(R≥0) such that their Laplace trans-
forms converge pointwisely to a function L∞ : (a,∞) → R. Then L∞ is the Laplace
transform of a measure µ∞ ∈ Measa(R≥0) and the measures µn converge vaguely
to µ∞, i.e.

lim
n→∞

∫
R≥0

f(t)µn
[
dt
]
=

∫
R≥0

f(t)µ∞
[
dt
]
, ∀f ∈ Ccpt(R≥0).

(iii) Suppose that (µn)n∈N is a sequence in Measa(R≥0) that converges vaguely to a
measure µ∞ ∈ Measa(R≥0). Prove that if

sup
n

sup
τ>a

Lµn(τ) <∞,

then Lµn converges pointwisely to Lµ∞ on (a,∞). ⊓⊔

Exercise 2.23. For any Borel probability measure µ ∈ Prob(R) we denote by Fµ its cdf and
by Qµ its quantile; see Example 1.2.22. Prove that a sequence of Borel probability measures
µn converges weakly to µ ∈ Prob(R) if and only if the sequence of quantiles Qµn : [0, 1] → R
converges almost everywhere to Qµ. ⊓⊔

Exercise 2.24. We say that Borel probability measure on R is discrete if µ
[
F
]
= for some

finite subset of R. Let ρ ∈ Cb(R) be a nonnegative continuous function such that∫
R
ρ(x)dx = 1.

Denote by λρ the measure given by λρ
[
dx
]
= ρ(x)λ

[
dx
]
. Prove that there exists a sequence

of discrete probability measures converging weakly to λρ. ⊓⊔

Exercise 2.25. Suppose that ρ ∈ Cb(R) is nonnegative and∫
R
ρ(x)dx = 1.

For ε > 0 we set ρε(x) = ε−1ρ
(
x/ε

)
and define as in Exercise 2.24

λρε
[
dx
]
= ρε(x)λ

[
dx
]
.

Fix µ ∈ Prob(R).

(i) Prove that the convolutions λρε ∗ µ converge weakly to µ as ε↘ 0. in

(ii) Prove that there exists a sequence of discrete probability measures on R that con-
verge weakly to µ.
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⊓⊔

Exercise 2.26. Let (Xn) be a sequence of geometric random variables Xn ∼ Geom(1/n).
Prove that

Yn :=
1

n
Xn ⇒ X ∼ Exp(1).

Hint. Show that P
[
Yn > y

]
→ e−y as n→ ∞, ∀y ∈ R. ⊓⊔

Remark 2.6.2. Let X be a geometric random variable with success probability p. In other
words, X is the number of independent Bernoulli trials with success probability p until we
record the first success. Suppose that we perform one trial per unit of time τ , where τ
is measured in seconds. Then τX is the waiting time until we observe the first success.
Suppose that p = 1

n we perform n trials per second so τ = 1
n . Then τX = 1

nXn. This

exercise shows that, for n large, the distribution of the random time 1
nXn is close to an

exponential distribution. This partially explains the interpretation of exponential random
variables as waiting times of rare (unlikely) events. ⊓⊔

Exercise 2.27. Fix λ > 0. Show that as n → ∞ we have Bin(n, λ/n) ⇒ Poi(λ), where
Bin(n, λ/n) denotes the binomial probability distribution corresponding to n independent
trials with success probability λ/n and Poi(λ) denotes the Poisson distribution with parameter
λ. ⊓⊔

Exercise 2.28. When Bob gets bored, he goes to a nearby bus station with an urn containing
balls of c colors in proportions p1, p2, . . . , pc, p1 + · · ·+ pc = 1.

Each time a bus arrives at the bus station, Bob draws a ball at random from the urn,
records its color, puts it back in the urn and waits for the next arrival. It is known that the
waiting time for the next bus to arrive is exponential with rate λ > 0.

For each i = 1, . . . , c and t ≥ 0 denote by Ni(t) the number of balls of color i the person
has drawn from the urn during the interval [0, t]. Set N(t) = N1(t) + · · · +Nc(t) so N(t) is
a Poisson process with parameter λ; see Example 1.3.7.

(i) Prove that, for any t ≥ 0, Ni(t) = Poi(λpit) Hint. Condition on N(t).

(ii) Prove that for any 0 ≤ s < t, Ni(t)−Ni(s) has the same distribution as Ni(t− s).
Hint. Use the memoriless property of the exponential distribution.

(iii) Prove that for any 0 ≤ t1 < t2 · · · < tn, the increments

Ni(t1), Ni(t2)−Ni(t1), . . . , Ni(tn)−Ni(tn−1)

are independent.

(iv) Denote by Ti the waiting time until the first ball of color i extracted. Prove that
Ti ∼ Exp(λpi). Hint. Use (i), (ii) and Exercises 2.26.

⊓⊔

Exercise 2.29 (P. Diaconis). Suppose that (An)n≥1 is a sequence of independent events of
a probability space

(
Ω, S,P). Set pn := P

[
An
]
.
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(i) Prove that if
∑

n≥1 pnpn+1 <∞, then the random series∑
n≥1

IAn∩An+1

converges a.s..

(ii) Prove that if pn = 1
n , ∀n, then the sum S of the above series is a Poisson random

variable, S ∼ Poi(1).

⊓⊔

Exercise 2.30 (Occupancy Problem). Suppose that b balls are successively and randomly
placed in u urns, i.e., all urns are equally likely to be the destination of a given ball. Let
Xu = Nu,b the number of empty boxes after all balls have been distributed.

(i) Compute the expectation and variance of Xu. Hint. Xr =
∑u

k=1 IUk,u
, Uk,u = “box k is

empty after all the b balls have been randomly placed in the u urns.

(ii) Show that if b/u→ c > 0 as r → ∞, then Xu
u → e−c in probability.

(iii) Compute P
[
Xu,b = m

]
. Hint. Use the inclusion-exclusion equality (1.3.27).

(iv) Show that if ue−b/u → λ as b → ∞, then Xu,b converges in distribution to Poi(λ).
Hint. Use the technique in Example 1.3.31. ⊓⊔

Remark 2.6.3. Let me comment why the result in Exercise 2.30 is surprising. Consider the
following concrete situation.

Assume b = 2u and suppose that we want to distribute 2u gifts to u children. We want to
do this in the “fairest” possible way since the gifts, of equal value, are different, and several
kids may desire the same gift. To remove any bias, “common sense” suggests that each gift
should be given to a child chosen uniformly at random. There are twice as many gifts as
children so what can go wrong? Part (ii) of this exercise shows that for u large nearly surely
e−2u ≈ 0.13r children will receive no gifts! ⊓⊔

Exercise 2.31 (Coupon collector problem). For n ∈ N denote by Nn the number of boxes of
cereals one has to purchase in order to obtain all the n coupons of a collection; see Example
1.3.25. Recall that E

[
Nn

]
∼ n log n as n→ ∞. Prove that17

lim
n→∞

P
[
Nn − n log n ≤ nx

]
= exp

(
− e−x

)
.

Hint. Reduce to Exercise 2.30(iv). ⊓⊔

Exercise 2.32. For N ∈ N denote by BN the birthday random variable defined in Exercise
1.28. Its range is {2, 3, . . . , N +1}. Prove that as N → ∞, the sequence of random variables

XN :=
1√
N
BN

converges in law to a Raleigh random variable, i.e., a random variable X with probability
distribution

PX [dx] = xe−
x2

2 I [0,∞)(x)dx.

17The distribution with cdf F (x) = exp
(
− e−x

)
is called a Gumbel distribution.
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Hint. Observe that P
[
X > x

]
= e−

x2

2 . Show that

lim
N→∞

log P
[
XN > x

]
= −

x2

2
, ∀x > 0.

Note. With considerably more effort one can prove that

lim
N→∞

E
[
XN

]
= E

[
X

]
=

√
π

2
.

⊓⊔

Exercise 2.33 (P. Lévy). Consider the random variables Ln defined in Exercise 1.24. Prove
that as n → ∞ the random variables Ln

n converge in distribution to the arcsine distribution
Beta(1/2, 1/2); see Example 1.3.36. Hint. You need to use Stirling formula (A.1.8) with error estimate

(A.1.9). ⊓⊔

Exercise 2.34. Suppose that (Xn)n∈N is a sequence of i.i.d. random variables uniformly
distributed in [0, L], L > 0. For n ∈ N we set

X(n) := max
(
X1, X2, . . . , Xn

)
.

Prove that limn→∞ E
[
X(n)

]
= L and X(n) → L in probability. Hint. Have a look at Exercise 1.54.⊓⊔

Exercise 2.35. Suppose that (Xn)n∈N is a sequence of i.i.d. random variables uniformly dis-
tributed in [0, 1]. Denote by Xn

(1), X
n
(2), . . . , X

n
(n) the order statistics of the first n of them; see

Exercise 1.54. Prove that for any k ∈ N the random variable nXn
(k) converges in distribution

to Gamma(k, 1). ⊓⊔

Exercise 2.36. Suppose that (Xn)n∈N and (Yn)n∈N are two sequences of random vectors
such that Xn → X and |Xn − Yn| → 0 in distribution. Then Yn → X in distribution. ⊓⊔

Exercise 2.37. Suppose that (Xn)n∈N and (Yn)n∈N are two sequences of random variables
such that Xn converges in distribution to X and Y converges in probability to the constant
c. Prove that the random vector (Xn, Yn) converges in distribution to (X, c). Hint. Prove that

(Xn, c) converges in probability to (X, c) and then use Exercise 2.36. ⊓⊔

Exercise 2.38. Suppose that (Xn)n∈N and (Yn)n∈N are two sequences of random variables
such that

• Xn converges in distribution X.

• Yn converges in distribution to Y .

• Xn is independent of Yn for every n and X is independent of Y .

Prove the following.

(i) The random vector (Xn, Yn) converges in distribution to (X,Y ).

(ii) The sum Xn + Yn converges in distribution to X + Y .

⊓⊔

Exercise 2.39. Suppose that (Xn)n∈N and (Yn)n∈N are sequences of random variables with
the following properties.
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(i) The random variables (Xn)n∈N are identically distributed.

(ii) The sequence of random vectors (Xn, Yn) converges in distribution to the random
vector (X,Y ).

Prove that for any Borel measurable function f : R → R the sequence of random vectors
( f(Xn), Yn) converges in distribution to ( f(X), Y ). Hint. Fix a Borel measurable function f . It suffices

to show that for any continuous and bounded functions u, v : R → R we have

lim
n→∞

E
[
u
(
f(Xn)

)
v(Yn)

]
= E

[
u
(
f(X)

)
v(Y )

]
.

Consider the Borel measurable functions vn defined by vn(Xn) = E
[
v(Yn) ∥Xn

]
. ⊓⊔

Exercise 2.40. Suppose that (Xn)n∈N is a sequence of i.i.d. L2 random variables with
µ = E

[
Xn

]
, σ2 = Var

[
Xn

]
. Set

Xn =
1

n

(
X1 + · · ·+Xn

)
, Yn =

1

n− 1

n−1∑
k=1

(
Xk − X̄n

)2
.

Prove that E
[
Yn
]
= σ2 and Yn → σ2 in probability. ⊓⊔

Exercise 2.41. Suppose that (Xn)n∈N is a sequence of i.i.d. Bernoulli random variables with
success probability p = 1

2 . For each n ∈ N we set

Sn :=
b∑

k=1

1

2k
Xk.

(i) Find the probability distribution of Sn.

(ii) Prove that for any p ∈ [1,∞] the sequence Sn converges a.s. and Lp to a random
variable S uniformly distributed on [0, 1].

(iii) Compute the characteristic functions Fn(ξ) = E
[
exp(iξSn)

]
and deduce Viète’s

formula

sin ξ

ξ
=

∞∏
n=1

cos
(
ξ/2n

)
.

(iv) Suppose that µ is a Borel probability measure on R with quantile Q : [0, 1] → R,

Q(p) = inf
{
x ∈ R; µ

[
(−∞, x]

)
≥ p

}
.

Prove that the sequence Q(Sn) converges a.s. to a random variable with distribution
µ. Have a look at Example 1.2.22.

⊓⊔

Remark 2.6.4. Part (iv) of the above exercise is essentially a universality property of the
simplest random experiment: tossing a fair coin. If we are able to perform this experiment
repeatedly and independently, then we can approximate any probability distribution. In other
words, we can approximatively sample any probability distribution by flipping fair coins. ⊓⊔

Exercise 2.42. Let µ ∈ Prob(R) be a Borel probability measure with characteristic function
µ̂. Prove that for any r > 1 we have

µ
[
{|x| > r}

]
≤ 1

C

∫ 1

0

∣∣ 1−Re µ̂(t/r)
∣∣dt, C := inf

|x|≥1

(
1− sinx

x

)
.
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Hint. Set h(x) = 1− sin x
x

, x ∈ R, so, h(x) > 0 for x ̸= 0, and Cµ
[
{|x| > r}

]
≤

∫
|x|≥r h(x/r)µ

[
dx

]
. ⊓⊔

Exercise 2.43. This exercise describes a strengthening of Levy’s continuity theorem. Sup-
pose that (µn) is a sequence of Borel probability measures on R with characteristic functions
µ̂n(ξ). Assume that the functions µ̂n(ξ) converge pointwisely to a function f : R → C that
is continuous at 0.

(i) Prove that the sequence (µn)n∈N is tight, i.e.,

lim
r→∞

sup
n≥1

µn
[
{|x| > r}

]
= 0.

Hint. Use Exercise 2.42.

(ii) Show that f is the characteristic function of a Borel probability measure µ. Hint.

Use Helly’s Selection Theorem 2.2.22 and Proposition 2.2.23.

(iii) Prove that µn converges weakly to µ.

⊓⊔

Exercise 2.44. Suppose that (µn) is a sequence of Borel probability measures on R that
converges weakly to a probability measure µ. Prove that the characteristic functions µ̂n
converge to µ̂ uniformly on the compacts of R. ⊓⊔

Exercise 2.45. Suppose that X is a random variable and φ(ξ) is its characteristic function

φ(ξ) = E
[
eiξX

]
.

Prove that the following are equivalent.

(i) X is a.s. constant.

(ii) There exists r > 0 such that |φ(ξ)| = 1, ∀ξ ∈ [−r, r].

Hint. Use an independent copy X′ of X. ⊓⊔

Exercise 2.46. A probability measure µ ∈ Prob(R) is said to be an infinitely divisible
distribution if for any n ∈ N, there exists µn ∈ N such that

µ = µ∗nn := µ ∗ · · · ∗ µ︸ ︷︷ ︸
n

.

We denote by Prob∞(R) the collection of infinitely divisible distributions. A random variable
is called infinitely divisible if its distribution is such.

(i) Prove that the Poi(λ), N(0, σ2) ∈ Prob∞, ∀λ, σ > 0.

(ii) Prove that any linear combination of independent infinitely divisible random vari-
ables is an infinitely divisible random variable. In particular, the convolution of
two infinitely divisible distributions is infinitely divisible.

(iii) Suppose that (Xn)n∈N is a sequence of i.i.d. random variables with common distri-
bution ν ∈ Prob(R). Denote by N(t), t ≥ 0 a Poisson process with intensity λ > 0;
see Example 1.3.7. For t ≥ 0 we set

Y (t) =

N(t)∑
k=1

Xk.
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The distribution of Y (t) denoted by Qt, is called a compound Poisson distribution.
The distribution ν is called the compounding distribution. Show that

Qt = e−λt
∞∑
n=0

(λt)n

n!
ν∗n

and deduce that Qt ∗Qs = Qt+s, ∀t, s ≥ 0. In particular, Qt is infinitely divisible.
We will denote Qt by Poiν(λt).

(iv) Compute the characteristic function of Qt.

⊓⊔

Exercise 2.47. For any µ ∈ Prob(]R) we denote by µ− the measure defined by

µ−
[
B
]
= µ

[
−B

]
, ∀B ∈ BR,

where −B :=
{
y ∈ R; −y ∈ B

}
and we set µs := µ ∗ µ−.

(i) Prove that µ̂s(ξ) =
∣∣µ(ξ) ∣∣2, ∀ξ. Deduce that for any n ∈ N the function

∣∣ µ̂(ξ) ∣∣2/n
is the characteristic function of a measure µn ∈ Prob(R) such that µ∗nn = µs.

(ii) Prove that µ̂(ξ) ̸= 0, ∀ξ ̸= 0. Hint. Show that
∣∣µ(ξ) ∣∣2/n converges as n → ∞ and the conclude

using Exercise 2.43.

(iii) Deduce that there exists a continuous function ψ : R → C uniquely determined by

the conditions ψ(0) = 0 and µ̂(ξ) = eψ(ξ), ∀ξ ∈ R.
(iv) Prove that for any n ∈ N there exists a unique measure ν ∈ Prob(R) such that

ν∗n = µ. We will use the notation ν := µ∗1/n.

(v) Prove that any weak limit of infinitely divisible distributions is also an infinitesimal
distribution.

⊓⊔

Exercise 2.48. Give an example of a sequence of random variables Xn ∈ L1(Ω, S,P) such
that Xn converge in distribution to 0 but

lim
n→∞

E
[
Xn

]
= ∞. ⊓⊔

Exercise 2.49 (Skhorokhod). Suppose that µn ∈ Prob(R), n ∈ N, is a sequence converging
weakly to µ. Denote by Fn : R → [0, 1] the distribution function of µn,

Fn(x) = µn
[
(−∞, x]

]
,

and by Qn the associated quantile function (see (1.2.5))

Qn : [0, 1] → R, Qn(t) = inf
{
x; t ≤ Fn(x)

}
.

We can regard Qn as random variables defined on the probability space

([0, 1],B[0,1],λ[0,1]),

where λ[0,1] denotes the Lebesgue measure on [0, 1]. As shown in Example 1.2.21,

µn = (Qn)#λ[0,1],

so that µn is the probability distribution of Qn. Prove that the sequence Qn converges a.s.
on [0, 1] to a random variable with probability distribution µ.
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In other words, given any sequence µn ∈ Prob(R) that converges weakly to µ ∈ Prob(R),
we can find a sequence of random variables Xn, defined on the same probability space with
PXn = µn and such that Xn converges a.s. to a random variable X with distribution µ. ⊓⊔

Exercise 2.50. Suppose that the sequence of random variables Xn : (Ω, S,P) → R, n ∈ N,
converges in distribution to the random variable X. Prove that for any continuous function
f : R → R the random variables f(Xn) converge in distribution to f(X). Hint. Use Exercise

2.49. ⊓⊔

Exercise 2.51. Fix n ∈ R and denote by Cb(Rn,C) the space of continuous, bounded
functions Rn → C. Denote by Tn the complex subspace of Cb(Rn,C) spanned by the functions{

eξ(x) = ei(ξ,x⟩)
}
ξ∈Rn ,

where (−,−) denotes the canonical inner product in RN .

(i) Prove that Tn is a C-algebra of functions.

(ii) Consider the continuous cut-off function η : R → [0,∞) defined by

η(x) =


0, |x| ≥ 2,

1, |x| ≤ 1,

linear, 1 < |x| < 2.

For L > 0 define ρL : Rn → R ρL(x1, . . . , xn) =
∏n
j=1 η(xj/L). Note that ρL is

supported in the cube CL = [−2L, 2L]n. Let f ∈ Cb(R,C). Prove that for any
ε > 0 and any L > 0 there exists a trigonometric polynomial T = Tε,L such that

sup
x∈CL

∣∣ ρL(x)f(x)− T (x)
∣∣ < ε and ∥T∥ < ∥f∥+ 1.

(iii) Prove that for any f ∈ Cb(R,C) there exists a sequence (Tν)ν∈N in Tn such that Tν
converges to F uniformly on compacts and ∥Tν∥ < ∥f∥+ 1, ∀ν.

(iv) Use (iii) to give a new proof that a probability measure on Rn is uniquely determined
by its characteristic function.

⊓⊔

Exercise 2.52. Let µ be a Borel probability measure on R satisfying

∃r0 > 0 :

∫
R
etxµ

[
dx
]
<∞, ∀|t| < r0.

(i) Let p ∈ [1,∞). Prove that the map

Lp(R, µ) ∋ f 7→ Tf ∈ Cb(R,C), (Tf)(ξ) =

∫
R
eiξxf(x)µ

[
dx
]

is injective. Hint. Reduce to Theorem 2.2.27 by writing f = f+ − f−.

(ii) Let f ∈ L2(R, µ). Prove that there exists r1 > 0 such that for any complex number
such that | Im z| < r1 the complex valued function R ∋ x 7→ eizxf(x) ∈ C is µ
integrable and the resulting function

z 7→ f̂(z) =

∫
R
eizxf(x)µ

[
dx
]
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is holomorphic in the strip
{
| Im z| < r1

}
.

(iii) Prove that R
[
x
]
, the space of polynomials with real coefficients, is dense in L2(R, µ).

Hint. You have to show that if f ∈ L2(R, ν) satisfies∫
R
f(x)xnµ

[
dx

]
= 0, ∀n ≥ 0,

the f = 0 µ-a.s. Prove that f̂ (n)(0) = 0, ∀n = 0, 1, 2, . . . .

(iv) Consider the Hermite polynomials
(
Hn(x)

)
n≥0

described in Exercise 1.31. Prove

that the collection
1√
n!
Hn, n ≥ 0

is a complete orthonormal basis of the Hilbert space L2(R,γ1), where γ1 is the
standard Gaussian measure on R.

⊓⊔

Exercise 2.53. Suppose that µ0, µ1 are two Borel probability measures such that ∃t0 > 0∫
R
etxµ0

[
dx
]
=

∫
R
etxµ1

[
dx
]
, ∀|t| < t0.

Fix r > 0 as in Exercise 2.52(ii) such that for any complex number the functions

z 7→ Fk(z) =

∫
R
eizxf(x)µk

[
dx
]
, k = 0, 1,

are well defined and holomorphic in the strip
{
| Im z| < r

}
. Show that F0 = F1 and deduce

that µ0 = µ1. Hint. Set F = F1 − F0. Use the Cauchy-Riemann equations to prove that dnF
dzn

∣∣
z=t

= 0, ∀n ∈ N,

∀t ∈ (−r, r). ⊓⊔

Exercise 2.54. Suppose that (Xn)n∈N∪∞ is a family of random variables such that there
exists T > 0 with the following properties

(i)

sup
n∈N∪∞

E
[
etXn

]
<∞, ∀|t| ≤ T.

(ii)

lim
n→∞

E
[
etXn

]
= E

[
etX∞

]
, ∀|t| ≤ T.

Prove that Xn converge in distribution to X∞. Hint. Fix t0 ∈ (0, T ) and consider the measures

νn
[
dx

]
= cosh(t0x)PXn

[
dx

]
and argue as in the proof of Proposition 2.2.24 that νn ⇒ ν∞. ⊓⊔

Exercise 2.55. A function F : RN → C is called nonnegative definite if it is continuous and
for any n ∈ N, any ξ1, . . . , ξn ∈ RN and any z1, . . . , zn ∈ C we have

n∑
i,j=1

F (ξi − ξj)ziz̄j ≥ 0. (2.6.3)

It is called positive definite if it is nonnegative definite and in (2.6.3) we have equality iff
z1 = · · · = zn = 0. Denote by Ccpt(RN ,C) the space of compactly supported continuous
functions RN → C

(i) Let µ ∈ Prob(Rn). Prove that its Fourier transform µ̂ is a positive definite function.
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(ii) Suppose F : RN → X is nonnegative definite. Then the following hold.
(a) F (0) ∈ [0,∞).

(b) F (−x) = F (x).
(c) For any φ : Ccpt(RN ,C).∫

RN×RN

F (ξ − η)φ(ξ)φ(η)dξdη ≥ 0. (2.6.4)

(iii) Conversely, prove that if the continuous function F : RN → C satisfies (i)(c) then
it is nonnegative definite.

Hint. (i)(c) Use Riemann sums to approximate the integral in (2.6.4). Fix a nonnegative continuous function

ρ : RN → R supported inside the unit ball of RN and such that
∫
RN ρ(ξ)dξ = 1. For t > 0 we set ρt(ξ) = t−Nρ(ξ/t)

(ii). In (2.6.4) choose φ of the form

φ(ξ) =
n∑

j=1

zjρε(ξ − ξj),

and then let ε↘ 0. ⊓⊔

Exercise 2.56 (De Moivre). Let Xn ∼ Bin(n, 1/2) and Y ∼ N(0, 1). Prove that

lim
n→∞

P
[
|Xn − n/2| ≤ r

2

√
n
]

P
[
|Y | < r

] = 1, ∀r > 0. ⊓⊔

Exercise 2.57 (t-statistic). Suppose that (Xn)n∈N is a sequence of i.i.d. random variables
such that E

[
Xn

]
= 0, E

[
X2
n

]
= σ2 <∞, ∀n. We set

Mn =
1

n

n∑
k=1

Xn, Vn =
1

n− 1

n∑
k=1

(
Xk −Mn

)2
, Tn =

√
n
Mn√
Vn
.

(i) Prove that Vn converges in probability to σ2.

(ii) Prove that Tn converges in distribution to a standard normal random variable. Hint.

Use CLT and Slutsky’s theorem. ⊓⊔

Exercise 2.58. Suppose that X = Xλ is a Gamma(1, λ) random variable (see Example
1.3.35) and Y = Yλ is a random variable such that

P
[
Y = n ∥X

]
=
Xn

n!
e−nX , ∀n = 0, 1, 2, . . .

In other words, conditioned on X = x the random variable Y is Poi(x).

(i) Compute the characteristic function of Y .

(ii) Show that the random variable

1√
Var

[
Yλ
](Yλ − E

[
Yλ
] )

converges in distribution to N(0, 1) as λ→ ∞.

⊓⊔

Exercise 2.59. Suppose that X,Y are independent random normal variables. Set Z = XY .
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(i) Show that

MZ(λ) =
1√

1− λ2
, |λ| < 1,

and deduce that

ΨZ(λ) ≤
λ2

2(1− λ2)
, ∀λ ∈ (−1, 1).

(ii) Prove that IZ (see Proposition 2.3.1) satisfies

IZ(z) ≥
1

3
(sin z)2 ≥ 1

12
z2, ∀|z| < π

6
.

⊓⊔

Exercise 2.60. Given any zero mean random variable X the following are equivalent.

(i) The random variable X is sub-gaussian (of some type σ2).

(ii) There exists c ≥ 0 and a Gaussian random variable Z such that

P
[
|X > s

]
≤ cP

[
|Z| > s

]
, ∀s ≥ 0.

(iii) There exists a constant θ ≥ 0 such that

E
[
X2k ≤ (2k)!

2kk!
θ2k, ∀k ∈ N.

There exists a constant σ ≥ 0 such that

E
[ λ

2σ2
X
]
≤ 1√

1− λ
, ∀λ ∈ [0, 1).

⊓⊔

Exercise 2.61. Let X be a finite set. The entropy of a random variable X : (Ω, S,P) → X is

Ent2
[
X
]
:= Ent2

[
PX
]
= −

∑
x∈X

pX(x) log2 p(x), pX(x) = P
[
{X = x}

]
.

Given two random variables Xi : (Ω, S,P) → Xi, i = 1, 2, we define their relative entropy to
be

Ent2
[
X2

∣∣X1

]
:=

∑
(x1,x2)∈X1×X2

pX1,X2(x1, x2) log2

(
pX1.X2(x1, x2)

pX1(x1)

)
,

where pX1,X2(x1, x2) = P
[
{X1 = x1, X2 = x2}

]
.

(i) Show that if Xi : (Ω, S,P) → Xi, i = 1, 2, are random variables, then

Ent2
[
X2

]
− Ent2

[
X2

∣∣X1

]
= DKL

[
P(X1,X2),PX1 ⊗ PX2

]
,

where DKL is the Kullback-Leibler divergence defined in (2.3.8).

(ii) Suppose that we are given n finite sets Xi, i = 1, . . . , n and n maps

Xi : (Ω, S,P) → Xi.

We denote by Ent2(X1, . . . , Xn) the entropy of the product random variable

(X1, . . . , Xn) : Ω → X1 × · · · × Xn.
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Prove that

Ent2
[
X1, . . . , Xn

]
=

n∑
k=1

Ent2
[
Xk

∣∣ (Xk−1, . . . , X1)
]
. ⊓⊔

Exercise 2.62 (Herbst). Let ϕ : [0,∞) → R, ϕ(x) = x log x, where 0 · log 0 := 0. For any
nonnegative random variable Z we set

H
[
Z
]
= Endϕ

[
Z
]
= E

[
ϕ(Z)

]
− ϕ

(
E
[
Z
] )
.

Suppose that X is a random variable such that MX(λ) = E
[
eλX

]
<∞, for all λ is an open

interval J containing 0. We set HX(λ) := H
[
eλX

]
. Prove that if

HX(λ) ≤
λ2σ2

2
MX(λ),

then X ∈ G(σ2). ⊓⊔

Exercise 2.63 (Poincaré phenomenon). Denote by Sn the unit sphere in Rn+1,

Sn :=
{
(x0, x1, . . . , xn);

n∑
k=0

x2k = 1
}
.

Suppose that (X0, . . . , Xn) is a random point uniformly distributed on Sn with respect to
the canonical Euclidean volume on Sn.

(i) Prove that there exists C > 0 such that

∀n ∈ N, r ∈ [0, 1]; P
[
|X0| > r

]
≤ Ce−

nr2

2 .

Thus, for spheres of large dimension n most of the volume is concentrated near the
Equator {x0 = 0}!

(ii) Prove that
√
nX0 converges a.s. to a standard normal random variable.

Hint. Choose independent standard normal random variables Y0, . . . , Yn set Zn = Y 2
0 + · · · + Y 2

n . Show that the

random vector

(X0, . . . , Xn) =
1

√
Z

(
Y0, . . . Yn

)
is uniformly distributed on Sn. You can take for granted the fact that any finite Borel measure on Sn that is invariant

under the action of SO(n + 1) on Sn is a multiple of the Euclidean volume measure.18 For (i) use Exercise 1.46 and

Appendix A.1. Reduce (ii) to the SLLN. ⊓⊔

Exercise 2.64. Let X be a random variable such that
∣∣X ∣∣ < 1, a.s.. Assume E

[
X
]
= 0

and σ2 := Var
[
X
]
<∞.

(i) Prove that

E
[
eλX

]
≤ exp

(
σ2
(
eλ − 1− λ

) )
, ∀λ > 0.

(ii) Prove that

P
[
X > x

]
≤ exp

(
− x2

2σ2 + 2x/3

)
.

⊓⊔
18Can you prove this?
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Exercise 2.65. Suppose that ψ : [0,∞) → [0,∞) is an Young function, i.e., it is convex,
increasing, ψ(0) = 0, and ψ(x)/x→ ∞ as x→ ∞. Fix a probability space (Ω, S,P). For any
Young function ψ and any random variable X ∈ L0(Ω, S,P) we set

∥X∥ψ = inf
{
t > 0; E

[
ψ(X/t)

]
≤ 1

}
,

where inf ∅ := ∞. We set

Lψ(Ω, S,P) =
{
X ∈ L0(Ω, S,P); ∥X∥ψ <∞

}
and we denote by Lψ the quotient of Lψ modulo the a.s. equality.

(i) Prove that Lψ(Ω, S,P) is a normed space, called the Orlicz space determined by the
young function ψ.

(ii) Show that when ψ(x) = xp, p ∈ [1,∞) we have Lψ = Lp.

(iii) Let Ψ(x) = ex
2 − 1. Prove that X is subgaussian if and only if X ∈ LΨ. ⊓⊔

Exercise 2.66. Suppose that Y1, Y2 are independent and uniformly distributed on [0, 1].
Prove that

X1 =
√
−2 log(Y1) · cos

(
2πY2

)
, X2 =

√
−2 log(Y1) · sin

(
2πY2

)
are independent standard normal random variables. ⊓⊔

Exercise 2.67 (Cramér-Wold Device). Let V be a finite dimensional vector space. Fix a
sequence of probability measure µn ∈ Prob(V ). Prove that the following statements are
equaivalent.

(i) The sequence (µn) converges weakly to µ ∈ Prob(V ).

(ii) For any ξ ∈ V ∗, µ̂n(ξ) → µ̂(ξ).

(iii) For any ξ ∈ V ∗, ξ#(µn) ⇒ ξ#(µ), where we recall that for any ν ∈ Prob(V ) and
any ξ ∈ V ∗ we denote by ξ#(ν) the pushforward of ν via the function ξ : V → R.

⊓⊔

Exercise 2.68. Let V be an n-dimensional real vector space. We denote by V ∗ its dual,
V ∗ = Hom(V,R). We have a natural pairing

⟨−,−⟩ : V ∗ × V → R, ⟨ξ, x⟩ := ξ(x), ∀ξ ∈ V ∗, x ∈ V.

A Borel probability measure µ ∈ Prob(V ) is called Gaussian if for every linear functional
ξ ∈ V ∗, the resulting random variable

ξ : (V,BV , µ) → R

is Gaussian with mean m
[
ξ
]
and variance v

[
ξ
]
, i.e., (see Example 1.3.34)

Pξ
[
dx
]
= Γm[ξ],v[ξ]

[
dx
]
=

1

(2π)n/2
.e

− (x−m[ξ])2

2v[ξ] dx.

A random vector X : (Ω, S,P) → V is called Gaussian if its probability distribution is a
Gaussian measure on V
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(i) Show that the map V ∗ ∋ ξ 7→ m[ξ] ∈ R is linear and thus defines an element
m = mµ ∈ (V ∗)∗ called the mean of the Gaussian measure. Moreover, using the
natural isomorphism19J : V → V ∗∗ we have

J−1
(
mµ

)
=

∫
V
xµ
[
dx
]
∈ V.

(ii) Define C = Cµ : V ∗ × V ∗ → R

C(ξ, η) =
1

4

(
v
[
ξ + η

]
− v
[
ξ − η

] )
= Eµ

[
(ξ −m[ξ])(η −m[η])

]
.

Show that C is a bilinear form, it is symmetric and positive semidefinite. It is called
the covariance form of the Gaussian measure µ.

(iii) Show that if µ0, µ1 are Gaussian measures on V0 and respectively V1, then the
product µ0 ⊗ µ1 is a Gaussian measure on V0 ⊕ V1. Moreover,

m[µ0 ⊗ µ1] = mµ0 ⊕mµ1 , Cµ0⊗µ1 = Cµ0 ⊕ Cµ1 .

We set
Γ1n := Γ1 ⊗ · · · ⊗ Γ1︸ ︷︷ ︸

n

.

Γ1n is called the canonical Gaussian measure on Rn. More explicitly

Γ1n [dx] =
1

(2π)n/2
e−

|x|2
2 dx,

where |x| denotes the Euclidean norm of the vector x ∈ Rn.
(iv) Suppose that V0, V1 are real finite dimensional vector spaces, µ is a Gaussian mea-

sure on V0 and A : V0 → V1 is a linear map. Denote by µA the pushforward of µ
via the map A, µA := A#µ. Prove that µA is a Gaussian measure on V1 with mean
mµA = Amµ and covariance form

CA : V ∗
1 × V ∗

1 → R, CA(ξ1, η1) = Cµ(A
∗ξ1, A

∗η1), ∀ξ1, η1 ∈ V ∗
1 .

Above, A∗ : V1 → V ∗
0 is the dual (transpose) of the linear map A.

(v) Fix a basis {e1, . . . , en} of V so we can identify V and V ∗ with Rn and C with a
symmetric positive semidefinite matrix. Denote by A its unique positive semidefi-
nite square root. Show that the pushforward A#Γ1n is a Gaussian measure on Rn
with mean zero and covariance form C = A2.

(vi) Show that if µ is a Gaussian measure on V with mean m covariance form C, then
its Fourier transform is

µ̂(ξ) = eim[ξ]e−
1
2
C(ξ,ξ), ∀ξ ∈ V ∗.

(vii) Show that a Gaussian measure is uniquely determined by its mean and covariance
form. We denote by Γm,C the Gaussian measure with mean m and covariance C.

(viii) Suppose that C is a symmetric positive definite n × n matrix. Prove that the
Gaussian measure on Rn with mean 0 and covariance form C is

Γ0,C

[
dx
]
=

1(
det(2πC)

)n/2 e− ⟨C−1x,x⟩
2 dx

19For a vector v ∈ V , J(u) is the linear functional on V ∗ that associated to ξ ∈ V ∗ the number ⟨ξ, v⟩,, i.e.

J(v)(ξ) = ⟨ξ, v⟩. The map J is an isomorphism when V is finite dimensional.
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where ⟨−,−⟩ denotes the canonical inner product on Rn. Hint. Analyze first the case

when C is a diagonal matrix. ⊓⊔

Exercise 2.69. Let (Ω, S,P) be a probability space and E a finite dimensional real vector
space. Recall that a Borel measurable map X : (Ω, S,P) → E is called a Gaussian random
vector if its distribution PX = X#P is a Gaussian measure on E; see Exercise 2.68.

Suppose that X1, . . . , Xn ∈ L0(Ω, S,P) are jointly Gaussian random variables, i.e., the

random vector X⃗ = (X1, . . . , Xn) : Ω → Rn is Gaussian.

(i) Prove that each of the variables X1, . . . , Xn is Gaussian and the covariance form

C : Rn × Rn → R
of the Gaussian measure PX⃗ ∈ Prob(Rn) is given by the matrix (cij)1≤i,j≤n

cij = Cov
[
Xi, Xj

]
, ∀1 ≤ i, j ≤ n.

(ii) Prove that X1, . . . , Xn are independent if and only if the matrix (cij)1≤i,j≤n is
diagonal, i.e.,

E
[
XiXj

]
= E

[
Xi

]
E
[
Xj

]
, ∀i ̸= j.

Hint. Use the results in Exercise 2.68. ⊓⊔

Exercise 2.70 (Gaussian regression). Suppose that X0, X1, . . . , Xn are jointly Gaussian ran-

dom variables with zero means. LetX0 denote the orthogonal projection of X0 ∈ L2(Ω, S,P)
onto the finite dimensional subspace

span
{
X1, . . . , Xn

}
⊂ L2(Ω, S,P).

(i) Prove thatX0 = E
[
X0 ∥X1, . . . , Xn

]
and Y := X0 −X0 ⊥⊥ (X1, . . . , Xn).

(ii) Suppose that the covariance matrix C of the Gaussian vector (X1, . . . , Xn) is in-
vertible. Denote by L = [ℓ1, . . . , ℓn] the 1× n matrix

ℓi = E
[
X0Xi

]
, i = 1, . . . , n.

Prove that

X0 = L · C−1 ·X, X :=

 X1
...
Xn

 ,
E
[
Y
]
= 0, Var

[
Y
]
= Var

[
X0

]
− L · C−1 · L⊤,

where L⊤ is the transpose of the 1× n matrix L.

(iii) Suppose that f : R → R is bounded and measurable. Then

E
[
f(X0)

∣∣X1 = x1, . . . , Xn = x1
]
= g(x1, . . . , xn),

where for

x⃗ =

 x1
...
xn

 ,
we have

g
(
x⃗
)
=

∫
R
f
(
y + LC−1(x⃗)

)
PY
[
dy
]
.

Hint. For (i) use Exercise 2.69(ii) and (1.4.10). ⊓⊔
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Remark 2.6.5. The result in Exercise 2.70 is remarkable. Let us explain its typical use in
statistics.

Suppose we want to understand the random quantity X0 and all we truly understand
are the random variables X1, . . . , Xn. A quantity of the form f(X1, . . . , Xn) is called a pre-
dictor, and the simplest predictors are of the form Ccpt + c1X1 + · · · + cnXn. These are
called linear predictors. The conditional expectation E

[
X0 ∥X1, . . . , Xn

]
is the predictor

closest to X0. The linear predictor closest to X0 is called the linear regression. The coeffi-
cients Ccpt, c1, . . . , cn corresponding to the linear regression are obtained via the least squares
approximation.

The result in the above exercise shows that, when the random variables X0, X1, . . . , X1

are jointly Gaussian, the best predictor of X0, given X1, . . . , Xn is the linear predictor.
This is another reason why the Gaussian variables are extremely convenient to work with in
practice. ⊓⊔

Exercise 2.71 (Maxwell). Suppose that (Xn)n∈N is a sequence of mean zero i.i.d. random
variables. For each n ∈ N we denote by Vn the random vector Vn := (X1, . . . , Xn). Prove
that the following are equivalent.

(i) The random variables Xn are Gaussian.

(ii) For any n ∈ N and for any orthogonal map T : Rn → Rn the random vectors Vn
and RVn have identical distributions.

⊓⊔

Exercise 2.72. Suppose thatX1, . . . , Xn are independent standard normal random variables.
Set

X :=
1

n

(
X1 + · · ·+Xn

)
, S2 :=

1

n− 1

n∑
i=1

(
Xi −X

)2
.

(i) Let R = (rij)1≤i,j≤n be an n× n orthogonal matrix such that

R1i =
1√
n
, ∀i = 1, . . . , n

and set

Yi =
n∑
j=1

rijXj

(ii) Prove that Y1, . . . , Yn are independent standard normal random variables.

(iii) Prove that (n− 1)S2 = Y 2
2 + · · ·+ Y 2

n ∼ χ2(n− 1).

(iv) Set

Tn :=
X

S
.

Prove that
√
nTn ∼ Studn−1, where Studp denotes the Student t-distribution with

p degrees of freedom

Studp =
1

√
pπ

Γ(p+1
2 )

Γ(p2)

1(
1 + t2/p

)(p+1)/2
dt, t ∈ R, p > 0.

Hint. Note that
√
nX̄ = Y1 and S̄ are independent. Conclude using (ii)
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⊓⊔

Exercise 2.73. Suppose that X is a standard normal random variable and Z is a Bernoulli
random variable, independent of X, with success probability p = 1

2 .

(i) Prove that Y = XZ is also a standard normal random variable.

(ii) Prove that X + Y is not Gaussian.

⊓⊔

Exercise 2.74. Suppose that T is a compact interval of the real axis, and (Xt)t∈T, (Yt)t∈T,
(Zt)t∈T are real valued stochastic processes such that (Yt) and (Zt) are modifications of (Xt)
with a.s. continuous paths. Prove that the processes (Yt) and (Zt) are indistinguishable. ⊓⊔

Exercise 2.75. Fix a Brownian motion (Bt)t≥0 defined on a probability space (Ω, S,P).
Denote by E the vector subspace of L2

(
[0, 1],λ

)
spanned by the functions I(s,t], 0 ≤ s < t ≤ 1.

(i) Prove that any function f ∈ E admits a convenient representation, i.e., a represen-
tation of the form

f =

n∑
k=1

ckI(sk,tk], ck ∈ R,

where the intervals (sj , tj ] , (sk, tk] are disjoint for j ̸= k.

(ii) Let f ∈ E and consider two convenient representations of f

n∑
k=1

ckI(sk,tk] = f =

m∑
i=1

c′kI(s′k,t
′
k]
.

Show that
n∑
k=1

ck
(
Btk −Bsk

)
=

m∑
i=1

c′k
(
Bt′k −Bs′k

)
=:W (f).

(iii) Show that for any f ∈ E we haveW (f) ∈ L2(Ω, S,P) and ∥W (f)∥L2(Ω) = ∥f∥L2([0,1]).

(iv) Prove that the map W : E → L2(Ω, S,P) is linear and extends to a linear isometry
W : L2([0, 1]λ) → L2(Ω, S,P) whose image consists of Gaussian random variables.
In other words, this isometry is a Gaussian white noise. The map W is called the
Wiener integral. It is customary to write

W (f) =

∫ 1

0
f(s)dBs. ⊓⊔

Exercise 2.76. The space F := C
(
[0,∞)

)
of continuous functions [0,∞) → R is equipped

with a natural metric d,

d(f, g) =
∑
n∈N

1

2n
min

(
1, dn(f, g)

)
, dn(f, g) := sup

t∈[n−1,n]
|f(t)− g(t)|.

Denote by BF the Borel algebra of F . For each t ≥ 0 we define Et : F → R, Et(f) = f(t).
We set

St = E−1
t

(
BR

)
, ∀t ≥ 0, S =

⋃
t≥0

St.
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(i) Prove that (F, d) is a complete separable metric space.

(ii) Prove that Et is a continuous function on F , ∀t ≥ 0.

(iii) Prove that BF = S. Hint. Compare with Exercise 1.4.

(iv) Suppose that (Ω,A) is a measurable space and W : Ω → F is a map

Ω ∈ ω 7→Wω ∈ F.

Prove that W is (A,BF )-measurable if and only if for any t ≥ 0 the function

W t : (Ω,A) → R, ω 7→Wω(t)

is measurable. Hint. Use (iii).

(v) For any 0 ≤ t1 < t2 < · · · tn define

Evt1,...,tn : F → Rn, Evt1,...,tn(f) =
(
f(t1), . . . , f(tn)

)
.

Suppose that µ0, µ1 are two Borel probability measures on F such that(
Evt1,...,tn

)
#
µ0 =

(
Evt1,...,tn

)
#
µ1,

for any n ∈ N and any 0 ≤ t1 < · · · < tn. Prove that µ0 = µ1. Hint. Use (iii) and

Proposition 1.2.4 .

⊓⊔





Chapter 3

Martingales

The usefulness of the martingale property was recognized by P. Lévy (condition (C) in [112,
Chap. VIII]), but it was J. L. Doob [53] who realized its full potential by discovering its most
important properties: optional stopping/sampling, existence of asymptotic limits, maximal
inequalities.

I have to admit that when I was first introduced to martingales they looked alien to me.
Why would anyone be interested in such things? What are really these martingales?

I can easily answer the first question. Martingales are ubiquitous, they appear in the most
unexpected of situations, though not always in an obvious way, and they are “well behaved”.
Since their appearance on the probabilistic scene these stochastic processes have found many
applications.

As for the true meaning of this concept let me first remark that the name “martingale”
itself is a bit unusual. It is a French word that has an equestrian meaning (harness) but,
according to [123], the term was used among the French gamblers when referring to a gam-
bling system. I personally cannot communicate clearly, beyond a formal definition, what is
the true meaning of this concept. I believe it is a fundamental concept of probability theory
and I subscribe to R. Feynman’s attitude: it is more useful to know how the electromagnetic
waves behave than knowing what they look like. The same could be said about the concept
of martingale and, why not, about the concept of probability. I hope that the large selection
of examples discussed in this chapter will give the reader a sense of this concept.

This chapter is divided into two parts. The first and bigger part is devoted to discrete
time martingales. The second and smaller part is devoted to continuous time martingales.
I have included many and varied applications of martingales with the hope that they will
allow the reader to see the many facets of this concept and convince him/her of its power
and versatility. My presentation was inspired by many sources and I want to single out
[81, 37, 53, 59, 109, 110, 149, 182] that influenced me the most.

3.1. Basic facts about martingales

We need to introduce some basic terminology.

265
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3.1.1. Definition and examples. Suppose that (Ω, S,P) is a probability space and T ⊂ R.
Recall that a random or stochastic process with parameter space T is a family of random
variables

Xt : (Ω, S,P) → R, t ∈ T.
A T-filtration of the probability space (Ω, S,P) is a family F• = (Ft)t∈T of sub-σ-algebras of
S such that

Fs ⊂ Ft, ∀s ≤ t.

We set
F∞ :=

∨
t∈T

Ft.

A family of random variables Xt :
(
Ω, S,P

)
→ R, t ∈ T, is said to be adapted to the filtration

F• = (Ft )t∈T, if Xt is Ft-measurable for any t.

Remark 3.1.1. If we think of a σ-algebra as encoding all the measurable information in
a given random experiment, then we can think of a T-filtration as an increasing flow of
information. For example, if T = N0, and (Xn)n≥0 is a sequence of random variables, then
the collection

Fn = σ(X0, X1, . . . , Xn), n ∈ N0,

is a filtration of σ-algebras. At epoch n, information about Xn becomes available to us, on
top of the information about X0, X1, . . . , Xn−1 that we have collected along the way. ⊓⊔

Definition 3.1.2. Suppose that (Ω, S,P) equipped with a filtration F• = (Ft)t∈T. An F•-
martingale is a family of random variables Xt : (Ω, S,P) → R, t ∈ T, satisfying the following
two conditions.

(i) The family is adapted to the filtration F• and Xt is integrable for any t ∈ T.
(ii) For all s, t ∈ T, s < t, we have E

[
Xt ∥Fs

]
= Xs.

The family of integrable random variables (Xt)t∈T is called a F•-submartingale (resp.
supermartingale) if it is adapted to the filtration and for any s, t ∈ T, s < t, we have
Xs ≤ E

[
Xt∥Fs

]
(resp. Xs ≥ E

[
Xt∥Fs

]
).

When T is a discrete subset of R we say that the (sub- or super-)martingale is a discrete
time (sub/super)martingale. ⊓⊔

Note that a sequence of integrable random variables (Xn)n∈N0 is a discrete time sub-
martingale (resp. martingale) with respect to a filtration (Fn)n∈N0 of F if

E
[
Xn+1∥Fn

]
≥ Xn, (resp. E

[
Xn+1∥Fn

]
= Xn), ∀n ∈ N0 .

Note that if (Xn)n∈N0 is a martingale with respect to a filtration (Fn)n∈N0 ,

E
[
Xn+1

]
= E

[
E
[
Xn+1 ∥Fn

] ]
= E

[
Xn

]
, ∀n ≥ 0.

Remark 3.1.3. Suppose that (Xn)n≥0 is a sequence of integrable random variables and

Fn = σ(X1, . . . , Xn).

Then E
[
Xn+1 ∥Fn

]
is a measurable function of the variables X0, . . . , Xn,

E
[
Xn+1 ∥Fn

]
= fn+1(X0, X1, . . . , Xn), fn+1 : Rn+1 → R.
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If the joint distribution of (X0, . . . , Xn) is described by a density pn(x0, . . . , xn), then

fn+1(x0, . . . , xn) =

∫
R
xn+1

pn+1(x0, . . . , xn, xn+1)

pn(x0, . . . , xn)
dxn+1.

The sequence (Xn)n≥0 is a martingale if and only if fn+1(x0, x1, . . . , xn) = xn, ∀n ≥ 0,
∀x0, . . . , xn ∈ R. ⊓⊔

Example 3.1.4 (Closed martingales). Suppose that F• = (Fn)n∈N0 is a filtration of S and
X ∈ L1(Ω, S,P). Then the sequence of random variables

Xn = E
[
X∥Fn

]
∈ L1(Ω,Fn,P), n ∈ N0,

is a martingale since

E
[
Xn+1 ∥Fn

]
= E

[
E
[
X ∥Fn+1

∥∥Fn ] = E
[
X ∥Fn

]
= Xm.

Such a martingale is called closed or Doob martingale. ⊓⊔

Example 3.1.5 (Unbiased random walk). Suppose that (Xn)n∈N is a sequence of indepen-
dent integrable random variables such that E

[
Xn

]
= 0, ∀n ∈ N0.

One should think that Xn is the size of the n-th step so that the location after n steps is

Sn = X1 + · · ·+Xn.

Set Fn := σ(X1, . . . , Xn), S0 := 0. Then the sequence (Sn)n∈N0 is a martingale adapted to
the filtration Fn. Indeed,

E
[
Sn+1∥Fn

]
= E

[
Xn+1∥X1, . . . , Xn

]
+ E

[
X1 + · · ·+Xn∥X1, . . . , Xn

]
= E

[
Xn+1

]
+X1 + · · ·+Xn = Sn. ⊓⊔

Example 3.1.6 (Random products). Suppose that (Yn)n∈N are positive i.i.d. random vari-
ables such that E

[
Y1
]
= 1. Then the sequence of products

Zn = Y1Y2 · · ·Yn, n ∈ N,

is a martingale adapted to the filtration Fn = σ(Y1, . . . Yn). Indeed

E
[
Zn+1 ∥Y1, . . . , Yn

]
= E

[
Y1 · · ·YnYn+1 ∥Y1, . . . , Yn

]
= E

[
Yn+1

]
Y1 · · ·Yn = Zn. ⊓⊔

Example 3.1.7 (Biased random walk). Suppose that (Xn)n∈N are i.i.d. random variables
such that the moment generating function

µ(λ) := E
[
eλXn

]
is well defined for λ in some interval Λ. We set

Sn := X1 + · · ·+Xn, Mn =Mn(λ) := eλSnµ(λ)−n, Fn := σ(X1, . . . , Xn).

If we define

Yn :=
1

µ(λ)
eλXn ,

then we deduce that

E
[
Yn
]
= 1, Mn = Y1 · · ·Yn.

From the previous example we deduce that
(
Mn(λ)

)
n∈N is a martingale.
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As a concrete example, suppose that the random variables Xn are all binomial type

P
[
Xn = 1

]
= p, P

[
Xn = −1

]
= q = 1− p.

In this case µ(λ) = peλ + qe−λ. Note that if eλ = q
p , then µ(λ) = 1 and we deduce that

Mn =

(
q

p

)Sn

is a martingale. This is sometimes referred to as the De Moivre’s martingale. ⊓⊔

Example 3.1.8 (Galton-Watson/branching processes). Fix a probability measure µ on N0

such that

m :=
∑
k∈N0

kµ
[
k
]
<∞, µ

[
k
]
:= µ

[
{k}

]
,

and µ
[
k0
]
> 0 for some k0 > 0. Consider next a sequence (Xn,j)j,n∈N0 of i.i.d. N0-valued

random variables with common probability distribution µ. Fix ℓ ∈ N , set Z0 := ℓ, and for
any n ∈ N0 define

Zn+1 =

Zn∑
j=1

Xn,j , Fn = σ
(
Xk,j ; k ∈ N0, k < n

)
.

The random variable Zn can be interpreted as the population of the n-th generation of
a species that had ℓ individuals at n = 0 and such that the number of offsprings of a
given individuals is a random variable with distribution µ. The j-th individual of the n-th
generators has Xn,j offsprings. We will refer to µ as the reproduction law.

The sequence (Zn)n≥0 is known as the Galton-Watson process or the branching process
with reproduction law µ.

Figure 3.1. Three generations of a Galton-Watson (random) tree. Here Z1 = 3,
Z2 = 2 + 1 + 3 = 6, Z3 = 3 + 2 + 1 + 2 + 3 = 11.

When ℓ = 1 this process can be visualized as a random rooted tree. The root v0 has
Z1 = X0,1 successor vertices. v1,1, . . . , v1,Z1 . The vertex v1,i has X1,i successors etc.; see
Figure 3.1. For any n ∈ N0 we have

Zn+1 =

∞∑
k=1

( k∑
j=1

Xn,j

)
I{Zn=k}
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so

E
[
Zn+1∥Fn

]
=

∞∑
k=1

E

[( k∑
j=1

Xn,j

)
I{Zn=j}

∥∥∥Fn ]

=
∞∑
k=0

E

[(
k∑
j=1

Xn,j

)∥∥∥Fn ]I{Zn=k}

(Xn,j ⊥⊥ Fn, ∀n, j)

=
∞∑
k=1

(
k∑
j=1

E
[
Xn,j

]
︸ ︷︷ ︸

=km

)
I{Zn=k} = m

∞∑
k=0

kI{Zn=k} = mZn.

This proves that the sequence Yn = m−nZn, n ∈ N0 defines a martingale.

The intuition behind the above algebraic manipulation can be easily explained: if on
average an individual of this species has m successors, and the n-th generation consists of Zn
individuals, we expect that the population of the next generation to change by a factor of m,
E
[
Zn+1 ∥Zn

]
= mZn. ⊓⊔

Example 3.1.9 (Polya’s urn). An urn contains r > 0 red balls and g > 0 green balls. At
each moment of time we draw a ball uniformly likely from the balls existing at that moment,
we replace it by c+1 balls of the same color, c ≥ 0. Denote by Rn and Gn the number of red
and respectively green balls in the urn after the n-th draw. Note that Rn+Gn = r+ g+ cn.
We denote by Xn the ratio of red balls after n draws, i.e.,

Xn :=
Rn

Rn +Gn
=

Rn
r + g + cn

.

Note that when c = 1, the scheme can be alternatively described as randomly adding at each
moment of time a red/green ball with probability equal to the fraction of red/green balls that
exist at that moment in the urn.

We set

Fn = σ(R0, G0, · · · , Rn, Gn) = σ(X0, X1, . . . , Xn).

We will show that (X•) is an F•-martingale. To see this observe that

Xn =
∑
i,j>0

i

i+ j
I{Rn=i,Gn=j}

so

E
[
Xn+1∥Fn

]
=
∑
i,j>0

i

i+ j
E
[
I{Rn+1=j,Gn+1=j}

∥∥Fn ].
Now observe that

E
[
I{Rn+1=i,Gn+1=j}

∥∥∥Fn ]
=
∑
k,ℓ>0

P
[
Rn+1 = i, Gn+1 = j∥Rn = k,Gn = ℓ

]
I{Rn=k,Gn=ℓ}

=
i− c

i+ j − c
I{Rn=i−c,Gn=j−c} +

j − c

i+ j − c
I{Rn=i,Gn=j−c}
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We deduce

E
[
Xn+1∥Fn

]
=
∑
i,j

i

i+ j
· i− c

i+ j − c
I{Rn=i−c,Gn=j}

+
∑
i,j

i

i+ j
· j − c

i+ j − c
I{Rn=i,Gn=j−c}

=
∑
u,v

u+ c

u+ v + c
· u

u+ v
I{Rn=u,Gn=v} +

∑
u,v

u

u+ v + c
· v

u+ v
I{Rn=u,Gn=v}

=
∑
u,v

u(u+ v + c)

(u+ v)(u+ v + c)
I{Rn=u,Gn=v} =

∑
u,v

u

u+ v
I{Rn=u,Gn=v} = Xn. ⊓⊔

Example 3.1.10 (Random walks on graphs). Suppose that Γ is a connected simple graph
with vertex set V Γ and edges EΓ. Assume that there are no multiple edges between two
vertices u, v ∈ V Γ. Assume that Γ is locally finite i.e., for any vertex u ∈ V Γ, its set of
neighbors N(u) is finite. We set deg(u) := |N(u)|.

A function F : V Γ → R is called harmonic if

F (u) =
1

deg(u)

∑
v∈N(u)

F (v).

Consider the simple random walk on Γ that starts at a given vertex v0 and the probability
of transitioning from a vertex u to a neighbor v is equal to 1

deg(u) . Denote by Vn the location

after n steps of the walk. Suppose that F : V Γ → R is a harmonic function. Then the
sequence of random variables

Xn = F (Vn), n ∈ N0,

is a martingale with respect to the filtration Fn = σ(V0, V1, . . . , Vn). Moreover

E
[
Xn

]
= F (v0), ∀n ∈ N0. ⊓⊔

Example 3.1.11 (New (sub)martingales from old). Suppose that (Ω, S,P) is equipped with
a filtration F• = (Fn)n∈N0 and Xn ∈ L1(Ω,Fn,P) is a sequence of random variables adapted
to the above filtration.

(i) If (Xn)n∈N0 is a martingale and φ : R → R is a convex function such that φ(Xn) is
integrable ∀n ∈ N0, then the conditional Jensen inequality implies that the sequence
φ(Xn) is a submartingale. Indeed, Jensen’s inequality implies

E
[
φ(Xn+1) ∥Fn

]
≥ φ

(
E
[
Xn+1 ∥Fn

] )
= φ(Xn).

(ii) If (Xn)n∈N0 is a submartingale and φ : R → R is a nondecreasing convex function
such that φ(Xn) is integrable ∀n ∈ N0, then the sequence φ(Xn) is a submartingale.
Indeed, folllow the same argument as above where at the last step use the fact that
φ is nondecreasing. In particular if (Xn)n≥0 is a submartingale, then so is (X+

n )n≥0,
x+ = max(0, x).

(iii) If (Xn)n∈N0 is a supermartingale and φ : R → R is a nondecreasing concave function
such that φ(Xn) is integrable ∀n ∈ N0, then the sequence φ(Xn) is a supermartin-
gale. Indeed

E
[
φ(Xn+1) ∥Fn

]
≤ φ

(
E
[
Xn+1 ∥Fn

] )
≤ φ(Xn).
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In particular, if (Xn)n∈N0 is a supermartingale, then so is (min(Xn, c) )n≥0, ∀c ∈ R.

⊓⊔

3.1.2. Doob decomposition. Fix a probability space (Ω, S,P) and an N0-filtration F• of
S. If C• is an increasing F•-adapted process, then obviously C• is a submartingale. If we add
to this process a martingaleM•, then the resulting process X• =M•+C• is a submartingale.

It turns out that all submartingales can be obtained in this fashion. In fact, the increasing
process Cn can be chosen to be of a special type: the random variable Cn+1 can be chosen
to be Fn-measurable, i.e., the value of C• at time n+ 1 is predictable at time n, i.e., can be
determined from the information available to us at time n encoded in the σ-algebra Fn.

Definition 3.1.12. A sequence of random variable {Hn : Ω → R, n ∈ N0} is called F•-
previsible or predictable if H0 is F0-measurable, and Hn is Fn−1-measurable ∀n ∈ N. ⊓⊔

The next result formalizes the discussion at the beginning of this subsection.

Proposition 3.1.13 (Doob decomposition of discrete submartingales). Let X• = (Xn)n∈N0

be an (Fn)n∈N0-adapted process such that Xn ∈ L1, ∀n ∈ N0. Then the following statements
are equivalent.

(i) The process X• is a submartingale.

(ii) There exists an F•-martingale M• and an F•-predictable nondecreasing process C•
such that

M0 = 0 = Ccpt, Xn = X0 +Mn + Cn, ∀n ≥ 0.

Moreover, when X• is a submartingale, then the martingale M• and the nondecreasing
predictable process are uniquely determined by X• up to indistinguishability; see Definition
2.5.11(ii). In this case M• is called the martingale component of the submartingale X•
and C• is called the compensator of X•. We denote it by C(X•). The decomposition
Xn = X0 +Mn + Cn is called the Doob decomposition of the submartingale X•.

Proof. Existence. We describe Mn and Cn in terms of their increments. More precisely

Cn+1 − Cn = E
[
Xn+1 −Xn

∥∥Fn ]+ E
[
Mn+1 −Mn

∥∥Fn ]
= E

[
Xn+1

∥∥Fn ]−Xn = E
[
(Xn+1 −Xn)

∥∥Fn ], ∀n ∈ N0,
(3.1.1a)

Mn+1 −Mn =
(
Xn+1 −Xn

)
−
(
Cn+1 − Cn

)
, ∀n ∈ N0. (3.1.1b)

Note that Cn+1 − Cn is Fn measurable so (Cn) is predictable. By construction M• is an
F•-martingale. Clearly, if X• is a submartingale then, tautologically, Cn is increasing.

Uniqueness. Suppose that X• is a submartingale, M ′
• is a martingale, and C• is a nonde-

creasing predictable process such that

M0 = Ccpt = 0, Xn = X0 +M ′
n + C ′

n, ∀n ∈ N0.

We deduce

E
[
Xn+1

∥∥Fn ]−Xn = E
[
M ′
n+1

∥∥Fn ]−M ′
n︸ ︷︷ ︸

=0

+E
[
C ′
n+1

∥∥Fn ]− C ′
n︸ ︷︷ ︸

=C′
n+1−C′

n

.
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This shows that the increments of C ′
n are given by (3.1.1a) so C ′

n = Cn. In particular,
M ′
n =Mn, ∀n ∈ N. ⊓⊔

Example 3.1.14. Suppose that (Yn)n≥0 adaperd to the filtration (Fn)n≥0. It has a Doob
decomposition Yn =Mn + Cn. We deduce from (3.1.1a) that

Cn =
n−1∑
k=0

E
[
∆Yk ∥Fk

]
, ∆Yk = Yk+1 − Yk.

Suppose that (Xn)n≥0 is a sequence of nonnegative integrable random variables and X0 = 0.
Then

Sn = X1 + · · ·+Xn

is a submartingale with respect to the filtration Fn = σ(X0, X1, . . . , Xn), n ≥ 0. Indeed , for
n ≥ 1

E
[
Sn ∥Fn−1

]
= E

[
Xn ∥Fn−1

]
+ Sn−1 ≥ Sn−1.

Consider the Doob decomposition Sn =Mn + Cn. The compensator Cn satisfies

Cn =
n∑
k=1

E
[
Xk ∥Fk−1

]
and

Mn = Sn −
n∑
k=1

E
[
Xk ∥Fk−1

]
=

n∑
k=1

(
Xk − E

[
Xk ∥Fk−1

] )
.

If the variables Xn are independent, then

Mn =

n∑
k=1

(
Xk − E

[
Xk

] )
.

⊓⊔

Definition 3.1.15 (Quadratic variation). Suppose that (Xn)n≥0 is a martingale adapted to
the filtration (Fn)n≥0 such that E

[
X2
n

]
<∞, ∀n ≥ 0. The compensator of the submartingale

(X2
n)n≥0 is called the quadratic variation and it is denoted by ⟨X•⟩. ⊓⊔

Example 3.1.16. Suppose that (Xn)n≥1 are independent random variables with zero means
and finite variances. We set S0 = 0,

Sn = X1 + · · ·+Xn.

Then

E
[
S2
n

]
=

n∑
k=1

E
[
X2
k

]
<∞, ∀n ≥ 1.

Thus (S•) is an L
2-martingale. From the computations in Example 3.1.14 we deduce

⟨S•⟩n =

n∑
k=1

E
[
X2
k

]
=

n∑
k=1

E
[
(Sk − Sk−1)

2
]
.

This explains why we refer to ⟨S•⟩ as quadratic quadratic variation. ⊓⊔
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3.1.3. Discrete stochastic integrals. A very important method of producing a large sup-
ply of martingales discrete stochastic integration.

Theorem 3.1.17 (Discrete Stochastic Integral). Suppose that (Xn)n∈N0 be an F•-adapted
process and (Hn)n∈N is a bounded predictable process. Define the process (H ·X)• by setting

(H ·X)0 := 0, (H ·X)n = H1(X1 −X0) + · · ·+Hn(Xn −Xn−1), ∀n ∈ N. (3.1.2)

Then the following hold.

(i) If (Xn)n∈N0 is a martingale, then the process (H ·X)n, n ∈ N0 is also an F•-adapted
martingale.

(ii) If (Xn)n∈N0 is a submartingale and Hn ≥ 0, ∀n ∈ N, then the process (H·X)n, n ∈ N0

is also an F•-adapted submartingale.

Proof. (i) Clearly (H ·X)n ∈ L1
(
Ω,Fn

)
. We have

E
[
(H ·X)n+1∥Fn

]
= E

[
Hn+1(Xn+1 −Xn)∥Fn

]
+ (H ·X)n

(Hn+1 is Fn-measurable)

= Hn+1E
[
(Xn+1 −Xn)∥Fn

]
+ (H ·X)n = Hn+1

(
E
[
Xn+1∥Fn

]
−Xn

)
+ (H ·X)n

( (Xn) is a martingale)

= (H ·X)n.

The proof of (ii) is similar. ⊓⊔

Remark 3.1.18. (a) When X• is a martingale the process (H · X)• is called the discrete
stochastic integral of H with respect to X and it is alternatively denoted∫ n

HdX := (H ·X)n.

One should think of Xn as a random signed measure assigning mass Xn−Xn−1 to the point
n.

(b) The discrete stochastic integral has a stock-trading interpretation. Suppose that Xn

represents the price of a stock at the end of the n-th trading day. A day trader buys Hn

shares at the beginning of the n-th trading day, based on the information collected during
the previous (n − 1) trading days. This information is encoded by the sigma-algebra Fn−1

and the price of a share at the beginning of the n-th trading day is Xn−1. He sells these Hn

shares at the end of the n-the trading day. The resulting profit at the end of day n is then
Hn

(
Xn −Xn−1

)
. We deduce that (H •X)n is represents the profit of the day trader after

n trading days.

(c) The special case Theorem 3.1.17 when the variables Hn are Bernoulli random variables
was discovered by P. Halmos and is classically known as the impossibility of systems theorem.
In this case Hn represents the decision of a gambler to play or not the next game based on
the information gathered during the games he observed so far. ⊓⊔

The applicability of Theorem 3.1.17 depends on our ability of producing interesting pre-
dictable processes. We describe one very useful class of examples.
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Example 3.1.19. Observe first that a discrete time process (Yn)n∈N on (Ω, S,P) can be
viewed as a map

Y : N× Ω → R, (n, ω) 7→ Yn(ω).

We equip N×Ω with the product σ-algebra. A measurable set X ⊂ N×Ω defines a stochastic
process

IX : N× Ω → {0, 1},
(
IX

)
n
= IXn , Xn :=

{
ω ∈ Ω; (n, ω) ∈ X

}
.

The set X is called F•-predictable if the process IX is such. More precisely, this means that
X0 ∈ F0 and, for any n ∈ N, the set Xn is Fn−1-measurable. ⊓⊔

3.1.4. Stopping and sampling: discrete time. We want to describe one technique that
makes the martingales extremely useful in applications. Fix a probability space (Ω, S,P).

Definition 3.1.20. A random variable T : (Ω, S,P) → N0 ∪ {∞} is called a stopping time
adapted to the filtration F• = (Fn)n≥0, or an F•-stopping time if,

{T ≤ n} ∈ Fn, ∀n ∈ N0 ∪ {∞}.

If (Xn)n∈N is an F•-adapted process, and T is an F•-stopping time, then the T -sample of the
process is the random variable

XT :=
∑
n∈N0

XnI{T=n}. (3.1.3)

Observe that XT = 0 on the set {T = ∞}. ⊓⊔

Example 3.1.21. (a) For each n ∈ N0 the constant random variable equal to n is a stopping
time.

(b) Suppose that (Xn)n∈N0 is F•-adapted and C ⊂ R is a Borel set. We define the hitting
time of C to be the random variable

HC : Ω → N0 ∪ {∞}, HC(ω) := min
{
n ∈ N0; Xn(ω) ∈ C

}
.

This is a stopping time since the process (Xn) is F•-adapted and{
HC ≤ n

}
=
⋃
k≤n

{
Xk ∈ C

}
.

(c) If S, T are stopping times, then S ∧ T = min(S, T ) and S ∨ T = max(S, T ) are also
stopping times.

(d) If (Tk)k∈N is a sequence of stopping times, then inf Tk, supTk, lim inf Tk and lim supTk
are also stopping times. ⊓⊔

Definition 3.1.22. Let X• = (Xn)n∈N be a process adapted to the filtration (Fn)n≥0. For
any stopping time T we denote by XT

• the process stopped at T defined by

XT
n := XT∧n, where XT∧n = Xmin(T (ω),n)(ω) =

{
Xn(ω), n ≤ T (ω),

XT (ω), n > T (ω).
(3.1.4)

⊓⊔

Note that the process stopped at T is also adapted to the filtration (Fn)n≥0.
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Proposition 3.1.23. Suppose that S, T is are stopping times such that S ≤ T . Define

]]T,∞[[ :=
{
(n, ω) ∈ N0 × Ω; T (ω) < n

}
,

]]S, T ]] :=
{
(n, ω) ∈ N0 × Ω; S(ω) < n ≤ T (ω)

}
.

Then ]]T,∞[[, [[0, T ]] and ]]S, T ]] are predictable subsets of N0 × Ω.

Proof. We have ]]T,∞[[n= {T < n} = {T ≤ n− 1} ∈ Fn−1. Next observe that

I [[0,T ]] = 1− I ]]T,∞[[

so I [[0,T ]] is a predictable process as a linear combination of predictable processes. Finally
observe that since S ≤ T we have

I ]]S,T ]] = I [[0,T ]] − I [[0,S]],

so I ]]S,T ]] is predictable as a linear combination of predictable processes. Note that(
I ]]S,T ]]

)
n
= I{n≤T} − I{S<n}.

⊓⊔

Suppose now that (Xn)n∈N is a (sub)martingale and T is a stopping time. Then S0 = 0
is also a stopping time, S0 ≤ T . As we have seen above, the process I ]]S0,T ]] = I ]]0,T ]] ·X is
a submartingale.

For every n ∈ N we have

(I ]]0,T ]] ·X)n =
(
I ]]0,T ]]

)
n

(
Xn −Xn−1

)
+ · · ·+

(
I ]]0,T ]]

)
1

(
X1 −X0

)
=
(
I{T≥n}

)(
Xn−Xn−1

)
+· · ·+

(
I{T≥1}

)(
X1−X0

)
= XT∧n−X0 = XT

n−X0.

Thus

XT
• = X0 +

(
I ]]0,T ]] ·X

)
• . (3.1.5)

This proves the following result.

Theorem 3.1.24 (Optional Stopping Theorem). Suppose that (Xn)n≥0 is a (sub)martingale
adapted to the filtration F• and T is an F•-stopping time. Then XT

• , the process stopped at
T , is also a (sub)martingale adapted to F•. ⊓⊔

Remark 3.1.25. Suppose that (Xn)n∈N0 is a submartingale adapted to the filtration (Fn)n∈N0

and T is an a.s. finite stopping time. Then

lim
n→∞

XT
n = lim

n→∞
Xn∧T = XT a.s.

since n∧T (ω for n ≥ T (ω). If supn E
[
|Xn|

]
<∞, then Fatou’s lemma implies XT ∈ L1 and

E
[
XT

]
≤ lim

n→∞
E
[
Xn

]
.

If (Xn) is a martingale, then E
[
XT

]
≤ E

[
X0

]
. ⊓⊔
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Suppose that T : (Ω, S,P) → N0 ∪ {∞} is a stopping time adapted to the filtration F•.
We define

FT :=
{
E ∈ F : E ∩

{
T ≤ n

}
∈ Fn, ∀n ∈ N0 ∪ {∞}

}
=
{
E ∈ F : E ∩

{
T = n

}
∈ Fn, ∀n ∈ N0 ∪ {∞}

}
.

(3.1.6)

Tautologically, the random variable T is FT -measurable.

Example 3.1.26. Suppose that T is the hitting time of a Borel set C ⊂ R. Then the event E
belongs to FT if, at any moment of time n, we can decide using the information Fn available
to us at time n whether, up to that moment, we have visited C and the event E has occurred.

⊓⊔

A few remarks are in order.

• The collection FT is a σ-subalgebra of F. It is called the past-until-T σ-algebra.

• The random variable XT is FT -measurable. Indeed,

{XT ≤ c
}
∩ {T = n} = {Xn ≤ c} ∩ {T = n} ∈ Fn, ∀n.

• If S, T are stopping times such that S ≤ T , then FS ⊂ FT .

Definition 3.1.27. Suppose that (Xn)n∈N0 is an F•-(sub)martingale and T is an F•-stopping
time. We say that the stopping time T satisfies the Doob conditions1 if the following hold.

P
[
T <∞

]
= 1. (3.1.7a)

XT ∈ L1. (3.1.7b)

lim
n→∞

E
[
I{T>n}|Xn|

]
= 0. (3.1.7c)

⊓⊔

Roughly speaking, the condition (3.1.7c) states that the random process (Xn)n≥0 is not
sampled “too late” at time T . We want to emphasize that the Doob conditions are con-
straints of a pair (submartingale, stopping time) and not just of the stopping time alone. In
Proposition 3.2.29 we provide another characterization of the Doob conditions in terms of
the asymptotic behavior of the stopped process XT

• .

Example 3.1.28. Suppose that T is a bounded F•-stopping time. Then T satisfies the Doob
conditions.

To see this, choose N ∈ N such that T < N a.s.. The stopped process XT
• is a submartin-

gale so XT = XT∧N = XT
N ∈ L1. As for the second condition (3.1.7c), note that since T is

a.s. bounded, then I{T>n}|Xn| is a.s. 0 for n > N . ⊓⊔

Theorem 3.1.29 (Optional Sampling Theorem). Suppose that Xn : (Ω,F,P) → R, n ≥ 0,
is a (sub)martingale adapted to the filtration F•, and S ≤ T are stopping times adapted to
the same filtration. If T satisfies Doob’s conditions in Definition 3.1.27, then

E
[
XT ∥FS

]
≥ XS

1There is no consensus on terminology in the literature. We use the term Doob conditions since they were first

spelled out by J.L. Doob in his influential monograph [53]
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If X• is a martingale, then

E
[
XT ∥FS

]
= XS , E

[
XT

]
= E

[
XS

]
= E

[
X0

]
.

Proof. We follow the original approach in [53, VII.2]; see also [6, Thm. 6.7.4]. Suppose first
that (Xn)n≥0 is a martingale. We have to show that that for any A ∈ FS we have

E
[
XT IA

]
= E

[
XSIA

]
.

Let A ∈ FS and set Am := A ∩ {S = m}. Then

E
[
XS

]
=
∑
m≥0

E
[
XSIAm

]
so it suffices to show that

∀m ≥ 0 : E
[
XT IAm

]
=
[
XSIAm

]
.

We have
E
[
XSIAm

]
= E

[
XmI{T=m}IAm

]
+ E

[
XSIAmI{T>m}

]
= E

[
XT I{T=m}IAm

]
+ E

[
XmIAmI{T>m}

]
∗

(Am ∩ {T > m} ∈ Fm, X• martingale)

= E
[
XT IAmI{T=m}

]
+ E

[
Xm+1IAmI{T>m}

]
∗

= E
[
XT IAmI{T=m}

]
+ E

[
Xm+1IAmI{T=m+1}

]
+ E

[
Xm+1IAmI{T>m+1}

]
= E

[
XT IAmI{m≤T≤m+1}

]
+ E

[
Xm+1IAmI{T>m+1}

]
•

(Am ∩ {T > m+ 1} ∈ Fm+1, X• martingale)

= E
[
XT IAmI{m≤T≤m+1}

]
+ E

[
Xm+2IAmI{T>m+1}

]
•

= E
[
XT IAmI{m≤T≤m+2}

]
+ E

[
Xm+2IAmI{T>m+2}

]
.

Iterating this procedure we deduce that that, ∀n > 0, we have

E
[
XSIAm

]
= E

[
XT IAmI{m≤T≤m+n}

]
+ E

[
Xm+nI{T>m+n}

]
.

The condition (3.1.7c) shows that

lim
n→∞

E
[
Xm+nI{T>m+n}

]
= 0,

so
E
[
XSIAm

]
= E

[
XT IAmI{0≤T≤∞}

]
= E

[
XT IAm

]
.

The submartingale situation is dealt with similarly. ⊓⊔

Remark 3.1.30. Suppose that T is an a.s. finite F•-stopping time and X• is an F•- sub-
martingale such that XT ∈ L1. Then T satisfies Doob’s conditions if and only if

lim
n→∞

E
[
X+
n I{T>n}

]
= 0. (3.1.8)

Clearly (3.1.7c) implies (3.1.8). Let us show that (3.1.8) ⇒ (3.1.7c). Assume first that X• is a martingale.

Fix m,n ∈ N0, m < n. Observing that {T > m} ∈ Fm we deduce

E
[
XmIT>n

]
= E

[
Xm+1IT>m

]
= E

[
Xm+1IT=m+1

]
+ E

[
Xm+1IT>m+1

]
({T > m+ 1} ∈ Fm+1)

= E
[
Xm+1IT=m+1

]
+ E

[
Xm+2IT>m+1

]



278 3. Martingales

= E
[
Xm+1IT=m+1

]
+ E

[
Xm+2IT=m+2

]
+ E

[
Xm+2IT>m+2

]
= · · · = E

[
Xm+1IT=m+1

]
+ · · ·+ E

[
XNIT=n

]
+ E

[
XnIT>n

]
= E

[
XT Im<T≤n

]
.

We deduce

E
[
XmIT>m

]
− E

[
XnIT>n

]
= E

[
XT Im<T≤n

]
, ∀n > m.

Using the equality X• = X+
• −X−

• we deduce that, ∀n > m.

E
[
X−

n IT>n

]
− E

[
X−

mIT>m

]
= E

[
XT Im<T≤n

]
−

(
E
[
X+

mIT>m

]
− E

[
X+

n IT>n

])
.

If we let n→ ∞ in the above equality and recall that T <∞ a.s., XT ∈ L1 and X+
• satisfies (3.1.8) we deduce

lim
n→∞

E
[
X−

n IT>n

]
− E

[
X−

mIT>m

]
= E

[
XT IT>m

]
− E

[
X+

mIT>m

]
.

Using the Optional Sampling Theorem 3.1.24 for the stopping times S ≡ m and T we deduce

E
[
XT IT>m

]
− E

[
X+

mIT>m

]
= E

[
XmIT>m

]
− E

[
X+

mIT>m

]
= −E

[
X−

mIT>m

]
.

Hence

lim
n→∞

E
[
X−

n IT>n

]
− E

[
X−

mIT>m

]
= −E

[
X−

mIT>m

]
so that

lim
n→∞

E
[
|Xn|IT>n

]
= lim

n→∞
E
[
X+

n IT>n

]
+ lim

n→∞
E
[
X−

n IT>n

]
= 0.

Suppose now that (X•) is a submartingale. Consider its Doob decomposition Xn = X0 +Mn + Cn. If X• satisfies

(3.1.8), then

0 ≤ (X0 +Mn)
+ ≤ X+

n

and we deduce that the martingale Y• = X0 +M• satisfies (3.1.8) and thus (3.1.8). Next, observe that

X+
n = (Y +

n + C+
n )IYn≥0 + (Cn − Y −

n )I
0<Y −

n ≤Cn
.

This proves that 0 ≤ Cn ≤ X+
n + Y −

n , so

lim
n→∞

E
[
CnIT>n

]
= lim

n→∞
E
[
(X+

n + Y −
n )IT>n

]
= 0.

Hence

lim
n→∞

E
[
|Xn|IT>n

]
= lim

n→∞
E
[
|Yn|+ CnIT>n

]
= 0. ⊓⊔

3.1.5. Applications of the optional sampling theorem. It is time to give the reader
a first taste of the versatility of the optional sampling theorem. After we present more
properties of martingales we will be able to extend the range of applications of this theorem.

Example 3.1.31 (The Ballot Problem). Let us consider again the ballot problem first dis-
cussed in Example 1.2.37. Recall the setup.

Two candidatesA andB run for an election. CandidateA received a votes while candidate
B received b votes, where b < a. The votes were counted in random order, so any permutation
of the a+b votes cast is equally likely. We have shown in Example 1.2.37 that the probability
that A was ahead throughout the count is

p =
a− b

a+ b
.

We want to described an alternate proof using martingale methods. Our presentation is
inspired from [128, Sec. 12.2].

Set n := a+b and denote by Dk the denote the number votes by which A was ahead when
the k-th voted was tabulated. Note that Sn = a − b. Let Xk denote the random variable
indicating the k-th vote. Thus, Xk = 1, if the vote went for A, and Xk = −1 if the vote went
for B so that

D0 = 0, Dk = X1 + · · ·+Xk.
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For k = 0, 1, . . . , n we denote by Rk the ratio

Rk :=
Dn−k
n− k

.

In other words Rk is candidate’s A the lead in percentages after the (n− k)-th counted vote.
Let us first show that Rk is a martingale with respect to the filtration

Fk = σ
(
R0, . . . , Rk

)
= σ

(
Dn, Dn−1, . . . , Dn−k

)
.

Thus, conditioning on Fk corresponds to conditioning on the results of the last k + 1 votes.
Observe that, given Dn−k the result Dn−k−1 one vote earlier, is independent of the results at
the later votes Dn−k+1, . . . , Dn. In other words,

E
[
Dn−k−1 ∥Dn−k, . . . , Dn

]
= E

[
Dn−k−1 ∥Dn−k

]
.

One might be tempted to think of Dn−k as a random walk in reverse, but there is a silent
trap: there is a condition at the n-th step in reverse namely D0 = 0.

To compute the above conditional expectation denote by Am (resp. Bm) the number of
votes A (resp. B) has received after m votes. Thus

Dm = Am −Bm, m = Am +Bm.

Note that Am and Bm are determined by Dm via the equalities

Am =
Dm +m

2
, Bm =

m−Dm

2
.

Thus, if Dn−k is known, the (n − k)-th vote could have been either a vote for A, and the

probability of such a vote is
An−k

n−k , or it could have been a vote for B, and the probability of

such a vote is
Bn−k

n−k . Hence

E
[
Dn−k−1 ∥Dn−k

]
=
(
Dn−k − 1

)An−k
n− k

+
(
Dn−k + 1

)Bn−k
n− k

= Dn−k −
Dn−k
n− k

=
n− k − 1

n− k
Dn−k.

Dividing by (n− k − 1) we deduce that (Rk)0≤k≤n−1 is indeed a martingale.

Now define the stopping times

S :=
{
0 ≤ k ≤ n− 1; Rk = 0

}
,

where min ∅ := ∞ and T := min(S, n−1). The stopping time T is bounded and the Optional
Sampling Theorem 3.1.29 implies

E
[
RT
]
= E

[
R0

]
=
Dn

n
=
a− b

a+ b
.

Now observe that

E
[
RT
]
= E

[
RT IS=∞

]
+ E

[
RT IS<∞

]
.

Note RT = 0 on {S < ∞}. Observe that if S = ∞, then Dk > 0, for all 1 ≤ k ≤ n. Hence
T = (n− 1) on {S = ∞} so RT = D1 = 1 on {S = ∞}.

a− b

a+ b
= E

[
RT
]
= P

[
S = ∞

]
= the probability that candidate A lead throughout the vote count.

⊓⊔
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Example 3.1.32 (Expected time to observe a pattern). Suppose that we are given a finite
set (alphabet) A and a probability distribution π on it so that

π(a) := π({a}) > 0, ∀a ∈ A.

Define

f : A → (0,∞), f(a) =
1

π(a)
.

Fix a word (or pattern) of length ℓ > 0 in this alphabet, a = (a1, . . . , aℓ) ∈ Aℓ.

Suppose that (An)n≥1 is a sequence of independent A-valued random variables with com-
mon distribution π. We say that the pattern a is observed at time n if n ≥ ℓ and

(An−ℓ+1, An−ℓ+2, . . . , An) = (a1, a2, . . . , an).

We let T = Ta denote the first time the pattern a is observed

Ta := min
{
n ≥ ℓ; (An−ℓ+1, An−ℓ+2, . . . , An) = (a1, a2, . . . , aℓ)

}
.

To visualize this, think that we have an urn with balls labeled by the letters inA in proportions
given by π. We sample with replacement the urn and we record in succession the labels we
draw. We are interested in the moment we first observe the labels a1, . . . , aℓ in succession as
we sample the urn. As a special case, think that we flip a fair coin and we stop the first we
see T,H, T,H in succession. In this case A = {H,T}, π(H) = π(T ) = 1

2 , a = THTH.

An amusing quote by Bertrand Russel comes to mind. “There is a special department
of Hell for students of probability. In this department there are many typewriters and many
monkeys. Every time that a monkey walks on a typewriter, it types by chance one of Shake-
speare’s sonnets.”

We will compute E
[
Ta
]
by using a clever martingale method due to Li [114]. The precise

answer is contained in (3.1.11)

Let us first observe that E
[
Ta
]
<∞. This follows from a very useful trick, [182, E10.5],

generalizing the result in Example 1.4.13.

Lemma 3.1.33 ( ‘Sooner-rather-than-later’). Suppose that T is a stopping time adapted to
the filtration (Fn)n∈N0 with the property that there exist r0 > 0 and N0 ∈ N such that

∀n ∈ N0, P
[
T ≤ n+N0∥Fn

]
> r0. (3.1.9)

Then there exists c ∈ (0, 1) such that P
[
T > n

]
< cn, ∀n > N0. In particular,

E
[
T
]
=
∑
n≥0

P
[
T > n

]
<∞. ⊓⊔

In Exercise 3.6 we ask the reader to provide a proof of this result. It is a nice application
of various properties of the conditional expectation.

In the case at hand (3.1.9) is satisfied with N0 = ℓ and r =
(
mina∈A π(a)

)ℓ
.

Following [114] we consider the following betting game involving the House (casino) and
a random number of players. At each moment of time n = 1, 2, . . . the House samples the
alphabet A according to the probability distribution π. (The House runs a chance game
with set of outcomes A and probability distribution π.) The outcome of this sampling is the
sequence of i.i.d. random variables An.

The first player adopts the following a-based strategy.
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• At time 0 he bets his fortune F 1
0 = 1 that the outcome of the first game is A1 = a1.

If A1 = a1 his fortune will change to F 1
1 = f(a1) =

1
a1
. Otherwise, he will lose his

fortune F 1
0 to the house, so F 1

1 = 0 in this case.

• At time 1 he bets his fortune that A2 = a2. If he wins, i.e., A2 = a2, his fortune at
time 2 will grow to F 1

2 = f(a2)F
1
1 . If he loses, he will have to turn all its fortune

to the House.

• In general, if k ≤ ℓ and his fortune at time k− 1 is F 1
k−1 (the fortune could be 0 at

that moment), the player bets all its fortune, f(ak) on a dollar, that Ak = ak. If
this happens, his fortune will grow to F 1

k = f(ak)Fk−1. Otherwise, he will surrender
his fortune F 1

k−1 to the house, so F 1
k = 0 in this case.

• At time ℓ the first gambler stops playing, so F 1
n = F 1

ℓ , ∀n ≥ ℓ

• We denote by X1
n the profit of the first player at time n, X1

n = F 1
n − F 1

0 = F 1
n − 1.

Concisely, if we define

M1
k =

{
f(ak)I{Ak=ak}, 1 ≤ k ≤ ℓ,

1, k < 1 or k > ℓ,

then

F 1
n =

n∏
k=1

M1
k .

Since E
[
M1
k

]
= 1 we deduce that F 1

• and X1
• = F 1

• − 1 are martingales.

In general, for m = 1, 2, . . . , the m-th player also plays ℓ rounds using the same strategy
as the first player, but with a delay of m− 1 units of times.

Thus, the second player skips game 1 and only starts betting before the 2nd game using
the same betting strategy as if the game started when he began playing: at his j-th round
he bets f(aj) on a dollar that the outcome is Aj+1 = aj . The third player skips the first two
games etc.

In general, at his j-th round, the m-th player bets f(aj) on a dollar that the outcome is
Aj+m−1 = aj We denote by Fmn the fortune of the m-th player at time n. More precisely, if
we set

Mm
k :=

{
f(ak−m+1)I{Ak=ak−m+1}, m ≤ k ≤ m+ ℓ− 1,

1, k < m or k ≥ m+ ℓ,

then

Fmn :=
n∏
k=1

Mm
k , Xm

n = Fmn − 1 n = 1, 2, . . . .

Note that Fmn = 1 for n < m because the m-th player skips the games n = 1, 2, . . . ,m − 1.
Define

Sn :=
∑
m≥1

Xm
n =

n∑
m=1

Xm
n =

n∑
m=1

Fmn − n.

In other words, Sn is the sum of the profits of all the players after n games. The process S•
is obviously a martingale. Note that

ST =
∑
m≤T

FmT − T, T = Ta.



282 3. Martingales

Recall that T is the first moment of time such that

AT−ℓ+1 = a1, AT−ℓ+2 = a2, . . . , AT = aℓ. (3.1.10)

Thus the player (T − ℓ + 1) will be the first player to hit the jackpot, i.e., observes the
pattern a during the first ℓ games he plays. This proves FmT = 0 for m ≤ T − ℓ. Indeed, the
minimality of T implies (

Am, . . . , Am+ℓ−1

)
̸= (a1, . . . , aℓ)

and thus I{Am=a1} · · · I{Am+ℓ−1=aℓ} = 0.

The fortune of the player T − ℓ+ 1 at time T is

F T−ℓ+1
T = f(a1) · · · f(aℓ).

Using the equalities (3.1.10) we deduce that the fortune of the next player, T − ℓ+2, at time
T is nonzero if and only if

(a2, . . . , aℓ) = (a1, . . . , aℓ−1).

In this case the fortune is f(a1) · · · f(aℓ−1). Similarly,

F T−ℓ+3
T =

{
f(a1) · · · f(aℓ−2), (a1, · · · , aℓ−2) = (a3, . . . , aℓ),

0, (a1, · · · , aℓ−2) ̸= (a3, . . . , aℓ).

More generally, denote by δα,β the Kronecker symbol

δα,β :=

{
1, α = β,

0, α ̸= β.

We deduce
ST + T = F 1

T + · · ·+ F T−ℓT︸ ︷︷ ︸
=0

+F T−ℓ+1
T + F T−ℓ+2

T + · · ·+ F TT

= F T−ℓ+1
T + F T−ℓ+2

T + · · ·+ F TT

= f(a1) · · · f(aℓ)︸ ︷︷ ︸
FT
T

+
ℓ−1∏
j=1

f(aj)δaj+1,aj︸ ︷︷ ︸
FT−1
T

+
ℓ−2∏
j=1

f(aj)δaj+2,aj︸ ︷︷ ︸
FT−2
T

+ · · ·

=
ℓ−1∑
k=0

ℓ−k∏
j=1

f(aj)δaj+k,aj︸ ︷︷ ︸
=:τ(a)

.

Hence ST = τ(a)−T . If we could show that T satisfies Doob’s conditions (Definition 3.1.27),
then we could invoke the Optional Sampling Theorem 3.1.29 and conclude that

0 = E
[
S0
]
= E

[
ST
]
= τ(a)− E

[
T
]
.

Let us show that indeed the stopping time satisfies Doob’s conditions.

Since E
[
T
]
< ∞ and ST = τ(a) − T we deduce ST ∈ L1. Arguing as above we deduce

that if n < T , then
F 1
n + · · ·+ Fnn ≤ Fn−ℓ+1 + · · ·+ Fnn

≤ f(a1) · · · f(aℓ) +
ℓ−1∏
j=1

f(aj)δaj+1,aj +
ℓ−2∏
j=1

f(aj)δaj+2,aj + · · · = τ(a).
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Hence
|Sn|I{T>n} ≤

(
τ(a) + n

)
I{T>n} ≤

(
τ(a) + T

)
I{T>n}.

Since E
[
T
]
<∞ we deduce

lim
n→∞

E
[
|Sn|I{T>n}

]
= 0.

This shows that the stopping time Ta satisfies Doob’s conditions so that

E
[
Ta
]
= τ(a) =

ℓ−1∑
k=0

ℓ−k∏
j=1

δaj+k,aj

π(aj)
. (3.1.11)

Let us describe this equality using a more convenient notation. Denote by V (A) the vocab-
ulary of the alphabet A

V (A) =
⊔
ℓ≥0

Aℓ, A0 := {∅}.

We denote by ℓ(a) the length of a word a.

We define a weight w = wπ : V (A) → (0,∞) by setting

w(a1, . . . , aℓ) =
ℓ∏

k=1

f(ak), w(∅) = 1.

For a = (a1, . . . , aℓ) ∈ Aℓ, ℓ ≥ 1, and j = 1, . . . , ℓ we define the left/right tail maps

Lj , Rj : A
ℓ → Aj , Lj(a) = (a1, . . . , aj), Rj(a) = (aℓ−j+1, . . . , aℓ).

Thus, Rj retains only the last j letters of a word while Lj retains the first j letters.

Given two words a, b ∈ V (A) we set

⟨a, b⟩ :=

{
1, a = b,

0, a ̸= b.

Now define

Φ : V (A)× V (A) → [0,∞), Φ(a, b) =

ℓ(a)∧ℓ(b)∑
j=1

〈
Rja, Ljb

〉
w
(
Ljb

)
. (3.1.12)

We can rewrite (3.1.11) as
E
[
Ta
]
= Φ(a,a). (3.1.13)

In the special case when A = {1, 2, . . . , 6}, π is the uniform counting probability and

a = 6 · · · 6︸ ︷︷ ︸
k

∈ Ak,

then the waiting time τ(a) coincides with the waiting time T to observe the first occurrence
of a k-run of 6-s discussed in Example 1.4.13. In this case we have

E
[
T
]
=

k∑
j=1

6j =
6k+1 − 6

5
.

We refer to Example A.3.20 for an R-code that simulates sampling an alphabet until a given
pattern is observed.

Let us discuss in more detail the special case A = {H,T}, π(H) = π(T ) = 1
2 . Suppose

that a is the pattern a = (TTHH), b = HHH. Observe that ⟨Lja, Rja⟩ = 1 for j = 4 and
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0 otherwise. Hence E
[
Ta
]
= 16. A similar computation shows that E

[
Tb
]
= 14. Thus we

have to wait a longer time for the pattern a to occur.

On the other hand, a formula of Conway (see Exercise 3.13) shows that

P
[
Tb < Ta

]
P
[
Ta < Tb

] = Φ(a,a)− Φ(a, b)

Φ(b, b)− Φ(b,a)
.

We have ⟨Lia, Rjb⟩ = 0, ∀j and ⟨Rja, Ljb⟩ = 1 for j = 1, 2 so that

Φ(a, b) = 0, Φ(b,a) = 6,
P
[
Tb < Ta

]
P
[
Ta < Tb

] = 5

7
.

We have reached a somewhat surprising conclusion: although, on average, we have to wait a
shorter amount of time to observe the pattern b, it is less likely that we will observe b before
a. The odds that b will appear first versus that a will appear first are 5 : 7.

There are other strange phenomena. We should mention M. Gardner’s even stranger
nontransitivity paradox [72, Chap. 5]. More precisely, given any pattern a ∈ Ak there exists
a pattern b ∈ Ak such that b is more likely to occur before a, i.e., P

[
Tb < Ta

]
> 1

2 . As
shown in by Guibas and Odlyzko [82], if a = (a1, . . . , ak) we can choose b to be of the form
b = (b, a1, . . . , ak−1). ⊓⊔

3.1.6. Concentration inequalities: martingale techniques. Hoeffding’s inequality (2.3.13)
has a martingale counterpart usually referred to as Azuma’s inequality.

Theorem 3.1.34 (Azuma). Suppose that (Xn)n≥0 is a martingale adapted to a filtration
F• = (Fn)n≥0 of the probability space (Ω, S,P). Assume that for any n ∈ N there exist
constants an < bn such the differences Dn = Xn −Xn−1 satisfy

an ≤ Dn ≤ bn a.s..

Then

∀x > 0, P
[
|Xn −X0| > x

]
≤ 2e

− 2x2

(s21+···+s2n) , sk = bk − ak. (3.1.14)

Proof. The strategy is a variation on the Chernoff’s method. Set

Dn := Xn −Xn−1, σ2n := s21 + · · ·+ s2n, ∀n ∈ N.

We will prove inductively that

Xn −X0 ∈ G(σ2n/4), i.e., E
[
eλ(Xn−X0)

]
≤ e

λσ2
n

8 , ∀n ∈ N, λ ∈ R. (3.1.15)

Assuming this, the inequality (3.1.14) follows from (2.3.12b).

To prove (3.1.15) note that since (Xn) is a martingale we have

E
[
eλ(Xn−X0) ∥Fn−1

]
= eλ(Xn−1−X0)E

[
eλDn ∥Fn−1

]
.

We set

Zn(λ) := E
[
eλDn ∥Fn−1

]
, ∀n ∈ N, λ ∈ R.

We claim that

∀n ∈ N, ∀λ ∈ R, Zn(λ) ≤ e
λs2n
8 a.s.. (3.1.16)
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Obviously this implies that

E
[
eλ(Xn−X0)

]
≤ e

λs2n
8 E

[
eλ(Xn−1−X0)

]
,

from which we can conclude inductively that Xn −X0 ∈ G(σ2n/4).

To prove (3.1.16) observe that, by construction, Zn(λ) is Fn−1-measurable. We have to
show that for any S ∈ Fn−1 such that P

[
S
]
̸= 0

E
[
Zn(λ)IS

]
≤ P

[
S
]
e

λs2n
8 .

Denote by DS
n the random variable Dn

∣∣
S
defined on the probability space

(
S,Fn−1

∣∣
S
,PS

)
,

where

PS
[
A
]
= P

[
A
∣∣S ] = P

[
A
]

P
[
S
] , ∀A ∈ Fn−1

∣∣
S
.

We denote by ES the expectation on
(
S,Fn−1 ∩ S,PS

)
. Since E

[
Dn ∥Fn−1

]
= 0 we deduce

ES
[
DS
n

]
=

1

P
[
S
] ∫

Ω
ISDn dP = 0.

Clearly an ≤ DS
n ≤ bn. We deduce from Hoeffding’s Lemma (Proposition 2.3.10) that

1

P
[
S
]E[ ISeλDn

]
= ES

[
eλD

S
n
]
≤ e

λs2n
8 ,

and therefore, ∀S ∈ Fn−1 such that, P
[
S
]
̸= 0 we have

E
[
Zn(λ)IS

]
= E

[
eλDnIS

]
= P

[
S
]
ES
[
eλD

S
n
]
≤ P

[
S
]
e

λs2n
2 .

This concludes the proof of Azuma’s inequality. ⊓⊔

The strength of Azuma’s inequality is best appreciated in concrete examples.

Example 3.1.35 (Longest common subsequence). We want to have another look at the
problem of the longest common subsequence first discussed in Example 1.3.64. Let us briefly
recall the set-up.

We are given a finite set (alphabet) A, |A| = k, and a family of independent A-valued
random variables {

Xn, Yn; m,n ∈ N
}

all with the same distribution π. We denote by Ln the length of the longest common subse-
quence of two random words

(X1, . . . , Xn) and (Y1, . . . , Yn).

We set

Rn :=
1

n
Ln, R := sup

n
Rn.

In Example 1.3.64 we have shown
1

n
Ln → R a.s.,

and

lim
n→∞

E
[
Rn
]
= r(π) := E

[
R
]
.



286 3. Martingales

We will to show thatRn is highly concentrated around its mean rn. We follow the presentation
in [161, Sec. 1.3].

Set ℓn := E
[
Ln
]
, Zn = (Xn, Yn). Consider the finite filtration

F0 := σ(∅), Fj = σ
(
Z1, . . . , Zj

)
, j = 1, . . . , n.

Form the Doob (closed) martingale Uj := E
[
Ln ∥Fj

]
Note that U0 = ℓn. The random

variable Ln is a function of the Zj ’s

Ln = Ln(Z1, . . . , Zn),

and Uj is a function of Z1, . . . , Zj , Uj = Fj(Z1, . . . , Zj). More precisely, since the variables
Zn are independent, we have

Fj(z1, . . . , zj) = E
[
Ln(z1, . . . , zj , Zj+1, . . . , Zn)

]
=

∫
(A2)n−j

Ln(z1, . . . zj , zj+1, . . . , zn)π
⊗2(n−j)[ dzj+1 · · · dzn

]
.

Note that for any z1, . . . , zj−1, zj , z
′
j , zj+1, . . . zn ∈ A2 we have

−1 ≤ Ln(z1, . . . , zj−1, z
′
j , zj+1, . . . , zn)− Ln(z1, . . . , zj−1, zj , zi+1, . . . , zn) ≤ 1

Integrating with respect to z′j , zj+1, . . . , zn we deduce

−1 ≤ Fj−1(z1, . . . , zj−1)− Fj(z1, . . . , zn) ≤ 1

Hence
∣∣Uj − Uj−1

∣∣ ≤ 1. From Azuma’s inequality with sn = 2 we deduce

P
[
|Ln − ℓn| ≥ nx

]
≤ 2e−

nx2

2 ,

so that

P
[
|Rn − rn| ≥ x

]
≤ 2e−

nx2

2 .

This proves that Rn is highly concentrated around its mean. Obviously

∀ε > 0,
∑
n≥1

P
[
|Rn − rn| ≥ ε

]
<∞,

and Corollary 1.3.54 implies that Rn − rn → 0 a.s..

On the other hand, we know from Example 1.3.64 that

Rn → R a.s. and rn → r(π) = E
[
R
]
.

Hence 1
nLn converges almost surely to a constant r(π).

We write r(k) instead of r(π) when π is the uniform distribution on an alphabet of
cardinality k. In this case one has additional information about the rate of convergence of rn
to r(k). However, the exact value of r(k) remains illusive, even for small k.

⊓⊔

Example 3.1.36 (Bin packing). The bin packing problem has a short formulation: pack n
items of sizes x1, . . . , xn ∈ [0, 1] in as few bins of maximum capacity 1 each. We denote by
Bn(x1, . . . , xn) the lowest numbers of bins we can use to pack the items of sizes x1, . . . , xn.

As in the case of the longest common subsequence problem, the bin packing problem has
a probabilistic counterpart. Consider independent random variables Xn ∼ Unif([0, 1]), n ∈ N
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defined on a probability space (Ω, S,P). We will describe the behavior of bm := E
[
Bn(X1, . . . , Xn)

]
as n→ ∞.

Note that

X1 + · · ·+Xn ≤ Bn(X1, . . . , Xn) ≤ n.

By taking expectations we deduce

n

2
≤ bn ≤ n, ∀n ∈ N, (3.1.17)

showing that bn has linear growth as n→ ∞. On the other hand,

Bn+m(X1, . . . , Xn, Xn+1, · · ·Xn+m)

≤ Bn(X1, . . . , Xn) +Bm(Xn+1, · · ·Xn+m),
(3.1.18)

and thus

bn+m ≤ bn + bm, ∀n,m ∈ N.

Setting rn := bn
n , we deduce from Fekete’s Lemma 1.3.65 that

lim
n→∞

rn = r := inf
n
rn.

The inequalities (3.1.17) show that r ∈
[
1
2 , 1

]
.

We set Rn := Bn
n . We deduce from (3.1.18) and Fekete’s Lemma that

Rn → R := inf
n
Rn a.s. and r = E

[
R
]
.

We want to show that Rn is highly concentrated around its mean. We use the same approach
as in Example 3.1.35.

We set

Fj = σ(X1, . . . , Xj), F0 =
{
∅,Ω }

Fix n ∈ N. For j = 0, 1 . . . , n we set

Uj = Un,j := E
[
Bn ∥Fj

]
so the collection (Uj)0≤j≤n is a martingale adapted to the filtration (Fj)0≤j≤n.

There exist Borel measurable maps Fj : [0, 1]
j → N such that Uj = Fj(X1, . . . , Xj). More

precisely,

Fj(x1, . . . , xj) =

∫
[0,1]n−j

Bn
(
x1, . . . , xj , xj+1, . . . xn

)
dxj+1 · · · dxn.

For any x1, . . . , xj−1, xj , x
′
j , xj+1, . . . , xn ∈ [0, 1] we have

−1 ≤ Bn
(
x1, . . . , xj−1, x

′
j , xj+1, . . . , xn

)
−Bn

(
x1, . . . , xj−1, xj , xj+1, . . . , xn

)
≤ 1

Integrating with respect to x′j , xj+1, . . . , xn we deduce
∣∣Uj − Uj−1

∣∣ ≤ 1. Invoking Azuma’s
inequality we deduce as in Example 3.1.35 that

P
[
|Rn − rn| > x

]
≤ 2e−

nx2

2 .

This shows that Rn is highly concentrated around its mean and that Rn → r a.s..
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In this case it is known that r = 1
2 . More precisely, there is an algorithm called

MATCH which takes as input the sizes x1, . . . , xn of the n items and packs them into
Mn =Mn(x1, . . . xn) boxes where

n

2
≤ E

[
Bn
]
≤ E

[
Mn

]
≤ n

2
+O

(√
n
)
,

This is the best one can hope for since it is also known

E
[
Bn
]
≥ n

2
+
(√

3− 1
)√ n

24π
+ o
(√

n
)

For details we refer to [38, Sec. 5.1]. ⊓⊔

The tricks used in the above examples are generalized and refined in McDiarmid’s in-
equality.

Definition 3.1.37 (Bounded difference property). Suppose that S is a set. A function
f : Sn → R, n ∈ N, is said to satisfy the bounded difference property if there exist
L1. . . . , Ln > 0 such that,∣∣ f(s1, . . . , sk−1, s, sk+1, . . . , sn)− f(s1, . . . , sk−1, s

′, sk+1, . . . , sn)
∣∣ ≤ Lk, (3.1.19)

∀k = 1, . . . n, ∀s1, . . . , sk−1, s, s
′, sk+1, . . . , sn ∈ S. ⊓⊔

Let us observe that the above condition is satisfied if and only if f is Lipschitz with
respect to the Hamming distance on S

dH : Sn × Sn → [0,∞), dH
(
s, t
)
:=

n∑
k=1

IR\{0}(sk − tk). (3.1.20)

Theorem 3.1.38 (McDiarmid’s inequality). Suppose that X1, . . . , Xn :
(
Ω, S,P

)
→ R are

independent random variables and f : Rn → R satisfies the bounded difference property with
constants L1, . . . , Ln. If Z = f(X1, . . . , Xn) is integrable, then

P
[
Z − E

[
Z
]
> t

]
≤ e−2t2/L2

, L2 = L2
1 + · · ·+ L2

n. (3.1.21)

Proof. Denote by Pk the distribution on Xk. Let F0 = {∅,Ω}, Fk := σ(X1, . . . , Xk) and set

Zk := E
[
Z ∥Fk

]
, k = 0, . . . , , n

so that Zn = Z and Z0 = E
[
Z
]
. Since X1, . . . , Xn are independent we deduce that ∀ω ∈ Ω

Zk(ω) = gk
(
X1(ω), . . . , Xk(ω)

)
,

where

gk(x1, . . . , xk) =

∫
Rn−k

f(x1, . . . , xk, xk+1, . . . , xn)Pk+1

[
dxk+1

]
· · ·Pn

[
dxn

]
.

Note that

gk−1(x1, . . . , xk−1) = Ek
[
gk
]
:=

∫
R
gk(x1, . . . , xk−1, xk)Pk

[
dxk

]
.

Hence

Dk = gk − Ekgk, E
[
eλDk ∥Fk−1

]
= hk−1(X1, . . . , Xk−1),
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where hk−1(x1, . . . , xk−1) := Ek
[
eλ(gk−Ek[gk])

]
. Fix x1, . . . , xk−1 and set

ak = ak(x1, . . . , xk−1) := inf
xk
g(x1, . . . , xk−1, xk),

bk = bk(x1, . . . , xk−1) := sup
yk

g(x1, . . . , xk−1, yk)

We deduce that

0 ≤ bk − ak ≤ sup
xk,yk

∣∣ g(x1, . . . , xk−1, yk)− g(x1, . . . , xk−1, xk)
∣∣ ≤ Lk.

We deduce from Hoeffding’s inequality (2.3.15) that

Ek
[
eλ(gk−Ekgk)

]
≤ e

λL2
k

8 , ∀x1, . . . , xk−1.

Hence

E
[
eλDk ∥Fk−1

]
≤ e

λL2
k

8 a.s., i.e., E
[
eλ(Zn−Z0)

]
≤ e

λ(L2
1+···+L2

n)

8 .

⊓⊔

3.1.7. Uniform laws of large numbers revisited. Suppose that we are given a sequence
of i.i.d. random vectors

Xn : (Ω, S,P) → X := RN

and a collection F of uniformly bounded, measurable functions f : X → R, i.e., there exists
C > 0 such that ∥f∥L∞ ≤ C, ∀f ∈ F. In machine learning F is known as the hypothesis
space. For f ∈ F we set

f(x) := f(x)− E
[
f(Xj)

]
.

Note that the right hand side is indeed independent of j. The Strong Law of Large Numbers
implies that

∀f ∈ F, lim
n→∞

1

n
,
n∑
k=1

f(Xk) = 0 a.s..

We are interested if this happens almost surely uniformly in f ∈ F. More precisely, for n ∈ N,
we set

Dn(F) := sup
f∈F

1

n

∣∣∣∣∣
n∑
k=1

f(Xk)

∣∣∣∣∣,
Assume that Dn(F) is measurable for every n. We want to investigate if Dn(F) → 0 a.s.. In
Section 2.4 we have investigated a special case of this problem, namely when F had the form

F :=
{
IC ; C ∈ C

}
,

where C is a collection of subsets of RN . We showed that if the collection C has finite VC
dimension, then Dn(F) → 0 in this case.

In this subsection we have a more limited goal. We want to provide an upper bound for
Dn(F) in terms of a probabilistic invariant of F that turns out to be relatable to the concept
of VC-dimension. We follow the approach in [177, Sec. 4.2].

Fix a sequence of independent Rademacher random variables (Rn)n≥1 that are also inde-
pendent of (Xn)n≥1. Define

Rn(F) := sup
f∈F

1

n

∣∣∣ n∑
k=1

Rkf(Xk)
∣∣∣.
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Assume that Rn(F)is measurable for every n and we set

Rn(F) = E
[
Rn(F)

]
=

1

2n

∑
ϵ∈{−1,1}n

E
[
sup
f∈F

1

n

∣∣∣ n∑
k=1

ϵkf(Xk)
∣∣∣ ],

We will refer to the sequence of real numbers Rn(F) as the Rademacher complexity of F. A
priori, Rn(F) depends on the common distribution of the random variables Xn of which we
have no special information.

Lemma 3.1.39. For each n ∈ N the function the function Gn : Xn → R

Gn(x1, . . . , xn) = sup
f∈F

1

n

∣∣∣∣∣
n∑
k=1

f(xk)

∣∣∣∣∣
satisfies the bounded difference property (Definition 3.1.37) with Lk =

2C
n , ∀k = 1, . . . , n.

Proof. Indeed, let x, y ∈ Rn such that there exists a single j = 1, . . . , n such that xj ̸= yj .
Without loss of generality we can assume x1 ̸= y1, xj = yj , ∀j ≥ 1. for any f ∈ F we have

1

n

∣∣∣∣∣
n∑
k=1

f(xk)

∣∣∣∣∣−Gn(y1, . . . , yn) =
1

n

∣∣∣∣∣
n∑
k=1

f(xk)

∣∣∣∣∣− sup
h∈F

1

n

∣∣∣∣∣
n∑
k=1

h(yk)

∣∣∣∣∣
≤ 1

n

∣∣∣∣∣
n∑
k=1

f(xk)

∣∣∣∣∣− 1

n

∣∣∣∣∣
n∑
k=1

f(yk)

∣∣∣∣∣ ≤ 1

n

( ∣∣f(x1) ∣∣+ ∣∣f(y1) ∣∣ ) ≤ 2C

n
.

Passing to sup over f ∈ F we deduce

Gn(x)−Gn(y) ≤
2C

n
, ∀x, y ∈ RN .

⊓⊔

Note that Dn(F) = Gn(X1, . . . , Xn). We deduce from McDiarmid’s inequality that

P
[
Dn(F) < E

[
Dn(F)

]
+ r

]
≥ 1− e−

nr2

2C2 , ∀r > 0, ∀n ∈ N. (3.1.22)

We want to show that the mean E
[
Dn(F)

]
can be controlled by the Rademacher complexity.

More precisely, we have

E
[
Dn(F)

]
≤ 2Rn(F), ∀n. (3.1.23)

The proof of this inequality relies on a symmetrization trick similar to the one used in Section
2.4.

Let (Y1, . . . , Yn) be an independent copy of (X1, . . . , Xn). Then

E
[
Dn(F)

]
= EX

[
sup
f∈F

1

n

∣∣∣ n∑
k=1

(
f(Xk)− EYk

[
f(Yk)

] ) ∣∣∣ ]

= EX
[
sup
f∈F

1

n

∣∣∣EY [ n∑
k=1

(
f(Xk)− f(Yk)

) ] ∣∣∣ ]
≤ EX

[
sup
f∈F

1

n
EY
[ ∣∣∣ n∑

k=1

(
f(Xk)− f(Yk)

) ∣∣∣ ] ]
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≤ EX
[ 1
n
EY
[
sup
f∈F

∣∣∣ n∑
k=1

(
f(Xk)− f(Yk)

) ∣∣∣ ] ]

= EX,Y
[ 1
n
sup
f∈F

∣∣∣ n∑
k=1

(
f(Xk)− f(Yk)

) ∣∣∣ ].
Now observe that the random vectors

(
f(Xk) − f(Yk)

)
and Rk

(
f(Xk) − f(Yk)

)
have the

same distribution so

EX,Y
[ 1
n
sup
f∈F

∣∣∣ n∑
k=1

(
f(Xk)− f(Yk)

) ∣∣∣ ] = EX,Y,R
[ 1
n
sup
f∈F

∣∣∣ n∑
k=1

Rn
(
f(Xk)− f(Yk)

) ∣∣∣ ]

≤ 2EX,R
[ 1
n
sup
f∈F

∣∣∣ n∑
k=1

Rnf(Xk)
∣∣∣ ] = 2Rn(F).

We deduce that

P
[
Dn(F) < Rn(F) + r

]
≥ P

[
Dn(F) < E

[
Dn(F)

]
+ r

]
≥ 1− e−

nr2

2C2 .

Hence, ∀n ∈ N ∑
n

P
[
Dn(F) ≥ Rn(F) + r

]
≤
∑
n

e−
nr2

2C2 <∞

and invoking Borel-Cantelli we deduce that for any r > 0

P
[
Dn(F) ≥ Rn(F) + r i.o.

]
= 0.

In particular, we deduce that Dn(F) → 0 if Rn(F) → 0.

Remark 3.1.40. Note that 0 ≤ Dn(F) ≤ C, ∀n. Hence, ifDn(F) → 0 a.s., then E
[
Dn(F)

]
→ 0.

Conversely, if E
[
Dn(F)

]
→ 0, then the inequality (3.1.22) implies thatDn(F) → 0 a.s.. Hence

Dn(F) a.s.⇐⇒E
[
Dn(F)

]
→ 0.

We have shown that Rn(F) → 0 implies E
[
Dn(F)

]
→ 0 and thus Dn(F) → 0 a.s..

One can prove that (see [177, Prop. 4.11])

E
[
Dn(F)

]
≥ 1

2
Rn(F).

Thus, we have a uniform law of large numbers if and only if the Rademacher complexity goes
to 0 as n → ∞. This requires a better understanding of the Rademacher complexity. So,
what is the next step?

A lot is known nowadays. In turns out that the Rademacher complexity can be estimated
in terms of certain metric entropies of the hypothesis space F. To the family of functions F
we can associate a collection G of subsets of RN × R, the subgraphs of the functions in F,
namely the sets

Gf :=
{
(x, t) ∈ RN × R; t ≤ f(x)

}
, f ∈ F.

The family F is said to be a VC-family if the family G of subgraphs is a VC collection
of subsets. These metric entropies of F can be estimated in terms of the VC dimension
and one obtains uniform limits in this fashion. For the rather involved details I refer to
[57, 76, 129, 177]. ⊓⊔
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3.2. Limit theorems: discrete time

We have seen in the previous section how the Optional Stopping Theorem combined with
quite a bit of ingenuity can produce miraculous results. This section is devoted to another
miraculous property of martingales, namely, their rather nice asymptotic behavior. The
foundational results in this section are all due to J. L. Doob. To convince the reader of the
amazing versatility of martingales we have included a large eclectic collection of concrete
applications.

3.2.1. Almost sure convergence. Fix a probability space (Ω, S,P) and a N0-filtration F•
of F. We will investigate the behavior of an F•-submartingale X = (Xn)n∈N0 as n → ∞.
The key to this investigation is Doob’s upcrossing inequality.

Given real numbers a < b and a sequence of real numbers α = (αn)n≥0 we define induc-
tively the sequences(

Sk(α) = Sk(α; a, b)
)
k≥1

and
(
Tk(α) = Tk(α; a, b)

)
k≥1

in N0 ∪ {∞} as follows. We set

S1(α) := inf
n≥0

{
αn ≤ a

}
, T1(α) := inf

n≥S1

{
αn ≥ b

}
.

Thus, S1 is the first moment the sequence α drops below a, and T1 is the first moment after
S1 when the sequence α crosses the upper level b. We then define inductively

Sk+1(α) := inf
n≥Tk

{
αn ≤ a

}
, Tk+1(α) := inf

n≥Sk+1

{
αn ≥ b

}
,

where we set inf ∅ = ∞; see Figure 3.2.

a

n

X

SS TT

b

11 22

Figure 3.2. Up/downcrosssing of the interval [a, b].

The terms Sk are called downcrossing times while the terms Tk are called the upcrossing
times of the sequence (αn)n≥0. We define the upcrossing numbers

Un
(
[a, b], α

)
:= #

{
k ∈ N; Tk(α) ≤ n

}
, n ∈ N. (3.2.1)

The sequence of nonnegative integers Nn

(
[a, b], α) is nonincreasing and thus it has a, possibly

infinite, limit
U∞
(
[a, b], α

)
:= lim

n→∞
Un
(
[a, b], α

)
.

The importance of the upcrossing numbers in convergence problems is explained by the
following elementary but rather clever result. In Exercise 3.8 we ask the reader to provide a
proof.
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Lemma 3.2.1. Suppose that α = (αn)n≥0 is a sequence of real numbers. Then the following
statements are equivalent.

(i) The sequence α has a limit (possibly infinite).

(ii) For any rational numbers a < b the total number of upcrossings U∞
(
[a, b], α

)
is

finite. ⊓⊔

Suppose now that (Xn)n∈N0 is a process adapted to the filtration F•. Then, for any k ∈ N,
the down/up-crossing times Sk(X) and Tk(X) are stopping times.

Theorem 3.2.2 (Doob’s upcrossing inequality). Assume that X = (Xn)n∈N0 is a submartin-
gale. Then for any real numbers a < b we have

(b− a)E
[
Un
(
[a, b], X

) ]
≤ E

[
(Xn − a)+

]
− E

[
(X0 − a)+

]
, x+ := max(x, 0). (3.2.2)

Proof. Since
(
X − a

)+
is a submartingale and

Un
(
[a, b], X

)
= Un

(
[0, b− a], (X − a)+

)
,

we see that it suffices to prove the result in the special case X ≥ 0 and a = 0 < b. In other
words, it suffices to prove that if X ≥ 0, then

bE
[
Un
(
[0, b], X

) ]
≤ E

[
(Xn −X0)

]
. (3.2.3)

The key fact underlying this inequality is the existence of a submartingale Y that lies above
the random process Nn

(
([0, b], X

)
and, in the mean, below the process X.

Consider the predictable process

H =
∞∑
k=1

I ]]Sk(X),Tk(X)]],

i.e.,

Hn =
∞∑
k=1

I{Sk(X)<n≤Tk(X)}.

Since the intervals (
S1(X), T1(X)

]
,
(
S2(X), T2(X)

]
, . . . ,

are pairwise disjoint (when finite) we have Hn ∈ {0, 1}, ∀n. Set Yn := (H ·X)n.

In stock market terms, think of the following investing strategy. Start buying a stock
when its price cost hits zero, and sell it at the end the trading day. Continue buying (and
selling) the stock as long as its price at the start of the trading day is below b. Once the
price crosses b stop buying and wait until the price hits 0 again. The price of the stock at the
beginning of the n-th trading day is Xn−1 and changes to Xn at the end of the n-th trading
day. Then Yn is the profit following this strategy at the end of n days. Clearly the profit will
be at least as big as b× the number of upcrossings of the interval (0, b). This is the content
of the following fundamental inequality.

Yn ≥ bUn
(
[0, b], X

)
. (3.2.4)
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Here is a formal proof of this inequality. Let M := Un
(
[0, b], X

)
. Then

Yn =
n∑
j=1

Hj ·
(
Xj −Xj−1

)
=

M∑
k=1

Tk(X)∑
j=Sk(X)+1

(
Xj −Xj−1

)
+

n∑
j=SM+1+1

(
Xj −Xj−1

)

=
M∑
k=1

(
XTk −XSk

)
+ I{SM+1<n}

(
Xn −XSM+1

)
(use the fact that XSM+1

= 0 and Xn ≥ 0)

≥
M∑
k=1

(
XTk −XSk

)︸ ︷︷ ︸
≥b

≥ bM = bUn([0, b], X).

Hence

bE
[
Un([0, b], X)

]
≤ E

[
Yn
]
, ∀n ∈ N.

Note that the inequality (3.2.4) does not rely on the fact that X is a submartingale.

The process (Hn) is predictable and thus

E
[
Yk − Yk−1∥Fk−1

]
= E

[
Hk(Xk −Xk−1)∥Fk−1

]
= HkE

[
(Xk −Xk−1)∥Fk−1

]
.

Since X is a submartingale we deduce

E
[
(Xk −Xk−1)∥Fk−1

]
≥ 0.

On the other hand 0 ≤ Hk ≤ 1 so that

HkE
[
(Xk −Xk−1)∥Fk−1

]
≤ E

[
(Xk −Xk−1)∥Fk−1

]
.

Hence

E
[
Yk − Yk−1

]
≤ E

[
Xk −Xk−1

]
. (3.2.5)

We deduce

bE
[
Un( [0, b], X )

]
≤ E

[
Yn
]
=

n∑
k=1

E
[
Yk − Yk−1

]
≤ E

[
Xn −X0

]
.

⊓⊔

Remark 3.2.3. We should ponder why the inequality (3.2.5) is miraculous. We know
that Hk ∈ [0, 1] so, whenever Xk ≤ Xk−1, i.e., the price of stock goes down, we have
Xk −Xk−1 ≤ Hk(Xk −Xk−1) = Yk − Yk−1. The inequality (3.2.5) shows that this is not the
expected behavior. The fact that X• is a submartingale biases the price in favor of increase.
That is the reason why (3.2.5) holds. ⊓⊔

Theorem 3.2.4 (Submartingale Convergence Theorem). Suppose that (Xn)n∈N0 is a sub-
martingale satisfying

sup
n∈N0

E
[
X+
n

]
<∞. (3.2.6)

Then Xn converges almost surely to an integrable random variable X∞.
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Remark 3.2.5. Observe that since Xn is a submartingale we have

E
[
X0

]
≤ E

[
Xn

]
= E

[
X+
n

]
− E

[
X−
n

]
, x− = max(−x, 0),

so that

sup
n∈N0

E
[
X−
n

]
<∞

showing that (3.2.6) is equivalent to

sup
n∈N0

E
[
|Xn|

]
<∞. (3.2.7)

⊓⊔

Proof. Set

M := sup
n∈N0

E
[
|Xn|

]
.

Now let a, b ∈ Q, a < b. Doob’s upcrossing inequality shows that, for all n ≥ 1, we have

(b− a)E
[
Nn(a, b,X•)

]
≤ E

[
(Xn − a)+

]
≤ |a|+ E

[
|Xn|

]
≤ |a|+M.

Letting n → ∞ we deduce E
[
N∞

(
[a, b], X•

) ]
< ∞, and thus N∞([a, b], X•) < ∞ a.s.. By

removing a countable family of negligible sets (one for each pair of rational numbers a, b,
a < b) we deduce that there exists a negligible set N ⊂ Ω such that ∀ω ∈ Ω \N we have

N∞
(
[a, b], X•(ω)

)
<∞, ∀a, b ∈ Q, a < b.

Lemma 3.2.1 implies that the sequence X• converges a.s. to a random variable X∞. The
integrability of X∞ follows from Fatou’s lemma

E
[
|X∞|

]
≤ lim inf

n→∞
E
[
|Xn|

]
<∞.

⊓⊔

Corollary 3.2.6. Suppose that (Xn)n∈N0 is a nonnegative supermartingale. Then Xn con-
verges a.s. to an integrable random variable X∞. In particular, any nonnegative martingale
has an integrable a.s. limit.

Proof. Observe that Yn = −Xn is a submartingale and Y +
n = 0. The result now follows

from the Submartingale Convergence Theorem. ⊓⊔

Example 3.2.7 (Galton-Watson/branching processes). 2 Consider again the branching pro-
cess in Example 3.1.8 with reproduction law µ ∈ Prob(N0) and mean m,

0 < m :=
∑
n≥0

nµ
[
n
]
<∞.

As explained in Example 3.1.8, the sequence

Wn =
1

mn
Zn, n ∈ N0

is a nonnegative martingale so, according to Corollary 3.2.6, it converges a.s. to an integrable
random variable W∞.

2To the post pandemic reader. I wrote most of this book during the great covid pandemic. I even taught
this example to a group of masked students that were numbed by the news about the R-factor. The mean m is a close

relative of this R-factor. This example explains the desirability of R < 1.
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If m < 1, the original sequence Zn = mnWn converges a.s. and in mean to 0. Moreover

E
[
Zn
]
= mnE

[
Z0

]
= mnℓ.

Thus, the expected population decays exponentially to zero. Something more dramatic holds.

Since Zn ≥ 1 if Zn > 0 we deduce

P
[
Zn > 0

]
= P

[
Zn ≥ 1

]
≤ E

[
Zn
]
= ℓmn.

Hence ∑
n≥0

P
[
Zn > 0

]
<∞.

The Borell-Cantelli Lemma implies that P
[
Zn > 0 i.o.

]
= 0.

Thus, a population of bacteria that have on average less that one succesor will die out,
i.e., with probability 1 there exists n ∈ N such that Zn = 0. If we set

En :=
{
Zk = 0, ∀k ≥ n

}
=
{
Zn = 0

}
,

then the event

E =
⋃
n≥0

En

is called the extinction event. Note that

E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ · · · .

The probability of E is called extinction probability. We see that when m < 1, the extinction
probability is 1. ⊓⊔

Example 3.2.8. Suppose that (Xn)n∈N is a sequence of independent, mean zero random
variables defined on the probability space (Ω, S,P) such that the sums

Sn := X1 + · · ·+Xn

converge in probability to an a.s.-finite random variable S∞. Assume that

|Sn(ω)| <∞, ∀n ∈ N ∪ {∞}, ∀ω ∈ Ω.

We want to use the submartingale convergence theorem to prove that the convergence in
distribution of Sn implies convergence in probability. This is one part of Lévy’s equivalence
theorem. The other part states that the convergence in probability is equivalent to the a.s.
We follow the strategy in [84, Sec.1.3]

Lévy’s Continuity Theorem 2.2.30 implies that

ΦSn(t) = E
[
eitSn

]
converges for any t ∈ R to ΦS∞(t) = E

[
eitS∞

]
. For every t ∈ R we have a martingale (see

Example 3.1.6)

Yn(t) =
1

ΦSn(t)
eitSn

This is obviously bounded in L1 and thus, for any t ∈ R it converges a.s.. In other words, for
any t ∈ R there exists a negligible subset Nt ∈ S such that

∀ω ∈ Ω \Nt : eitSn(ω) → eitS∞(ω) as n→ ∞.

We want to prove that this implies that Sn → S∞ a.s..
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Since eiSn → eiS∞ on Ω \N1, we deduce that there exists a sequence of Z-valued random
variables

(
Rn
)
n∈N such that

Sn(ω) + 2πRn(ω) → S∞(ω), ∀ω ∈ Ω \N1.

For example, the random variables

Rn =

⌊
1

2π

(
S∞ − Sn

)⌋
have this property. We deduce that for any t ∈ R and any ω ∈ Ω \

(
N ∪Nt

)
we have

e2πitRn(ω) → 1

so that

ΦRn(2πt) → 1, ∀t ∈ R.
Lévy’s continuity theorem implies that the random variables Rn converge in distribution to 0
as n→ ∞. Since the variables Rn are Z-valued we deduce P

[
|Rn| > ε

] ]
→ 0 for any ε > 0,

i.e., Rn converges in probability to 0. Since Sn + 2πRn converges a.s. to S∞ we deduce from
Corollary 1.3.59 that

Sn = (Sn + 2πRn)− 2πRn

converges in probability to S∞. ⊓⊔

Remark 3.2.9. Lévy’s equivalence theorem shows that a random series with mean zero
independent terms converges a.s. if and only if it converges in distribution. The partial sums
Sn form a martingale. However, there exist martingales that converge in probability, but not
a.s..

Here is one such example, [59, Example 4.2.14]. Consider the following random walk
(Xn)n≥0 on Z where you should think of Xn as the location at time n. We set X0 = 0. If
Xn−1 is known, then

P
[
Xn = ±1 ∥Xn−1 = 0

]
=

1

2n
, P

[
Xn = 0 ∥Xn−1 = 0

]
= 1− 1

n
,

P
[
Xn = 0 ∥Xn−1 ̸= 0

]
= 1− 1

n
, P

[
Xn = nXn−1 ∥Xn−1 ̸= 0

]
=

1

n
.

The existence of such a process is guaranteed by Kolmogorov’s theorem.

Denote by Fn the sigma-algebra generated by the random variables X0, X1, . . . , Xn. From
the construction we deduce that E

[
Xn ∥Xn−1

]
= Xn−1 so (Xn) is a martingale with respect

to the filtration Fn. Let pn := P
[
Xn ̸= 0

]
. Note that

pn = P
[
Xn ̸= 0

∣∣Xn−1 = 0
]
P
[
Xn−1 = 0

]
+ P

[
Xn ̸= 0

∣∣Xn−1 ̸= 0
]
P
[
Xn−1 ̸= 0

]
=

1

n

(
1− pn−1

)
+

1

n
pn−1 =

1

n
.

Hence

lim
n→∞

P
[
Xn ̸= 0

]
= 0,

so that Xn converges in probability to 0. To show it does not converge a.s. it suffices to show
that it does not converge a.s. to 0.
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Denote by Fn the event {Xn ̸= 0}. The random variables Xn have integer values so
Fn = {|Xn| ≥ 1}. Note that Fn ∈ Fn and

E
[
IFn ∥Fn−1

]
=

1

n
I{Xn−1=0} +

1

n
I{Xn−1 ̸=0} =

1

n
.

Hence ∑
n≥1

E
[
IFn ∥Fn−1

]
=
∑
n≥1

1

n
= ∞.

The conditional Borel-Cantelli result in Exercise 3.12 implies that

P
[
|Xn| ≥ 1 i.o.

]
= P

[
Fn i.o.

]
= 1.

Thus (Xn) does not converge a.s. to 0.

Recently (2021) Iosif Pinelis gave another beautiful example of martingale converging in
probability but not a.s.. Here is briefly the construction.

Choose a sequence of independent geometric random variables

(Tn)n≥1, Tn ∼ Geom(pn).

We perform the following delayed and frequently stopped random walk on Z. We start at
X0 = 0 and we wait for T1 moments and we begin a standard random walk on Z until we
first return to the origin. At that moment take a brake lasting T2 moments and begin the
standard walk until we return back to the origin etc. Denote by Xn the location after n
moments. Then (Xn) is a martingale (with respect to an appropriate filtration). Moreover,
if ∑

n≥1

√
pn <∞,

then Xn converges in probability to 0 but not a.s.. For details we refer to [141]. ⊓⊔

Example 3.2.10. The assumptions in the (sub)martingale convergence theorem are not
strong enough to guarantee L1-convergence. The following example shows what can happen.

Consider the standard random walk on Z that starts at 1. Each second the traveler takes
a size 1 step forward or back with equal probability. More precisely, consider a sequence of
i.i.d. Rademacher random variables (Xn)n∈N, P

[
X1 = 1

]
= P

[
Xn = −1

]
= 1

2 . Then the
sequence

S0 = 1, Sn = 1 +X1 + · · ·+Xn, n ∈ N
is a martingale describing the evolution of the walk. Denote by N the first moment the walk
reaches the origin, i.e.,

N := inf
{
n ∈ N; Sn = 0

}
.

Observe that N <∞ a.s.; see Exercise ??. Consider the random walk stopped at N

Yn := SNn = Sn∧N .

From the Optional Stopping Theorem 3.1.24 we deduce that Yn is a martingale which, by
construction, is also nonnegative. Clearly Yn → 0 a.s. since N <∞ a.s.. This convergence is
not L1 since

E
[
Yn
]
= E

[
Y0
]
= 1, ∀n ∈ N. ⊓⊔
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3.2.2. Uniform integrability. We will describe in this subsection necessary and sufficient
conditions guaranteeing that a sequence that converges in probability also converges in the
mean. We begin with a basic fact.

Lemma 3.2.11. Let X ∈ L1
(
Ω, S,P

)
. Then

lim
n→∞

E
[
|X| I{|X|≥n}

]
= 0.

Proof. The sequence Zn := |X|I{|X|>n} converges a.s. to 0 and |Zn| ≤ |X|, ∀n. The desired
conclusion now follows from the Dominated Convergence theorem. ⊓⊔

Definition 3.2.12 (Uniform integrability). A collection X ⊂ L1
(
Ω, S,P

)
is called uniformly

integrable (or UI for brevity) if

lim
r→∞

E
[
|X| I{|X|≥r}

]
= 0 uniformly in X ∈ X. (UI1)

⊓⊔

Example 3.2.13. Let X ∈ L1(Ω, S,P) be a family of random variables such that there exists
Z0 ∈ L1(Ω, S,P) with the property

|X| ≤ |Z0| a.s., ∀X ∈ X.

Then X is UI.

Indeed, for any X ∈ X we have |X|I{|X|>r} ≤ |Z0|I{|Z0|>r}. The conclusion now follows
from Lemma 3.2.11. ⊓⊔

Remark 3.2.14. (a) Let X ⊂ L1
(
Ω, S,P

)
. Set

χ(r) = χ(r,X) := sup
X∈X

E
[
|X|I{|X| ≥r}

]
.

Then X is uniformly integrable iff limr→∞ χ(r) = 0.

(b) A uniformly integrable family X ⊂ L1
(
Ω, S,P

)
is bounded in the L1-norm, i.e.,

sup
X∈X

E
[ ∣∣X ∣∣ ] <∞.

Indeed, ∀X ∈ X and r is sufficiently large so that χ(r) < 1, we have

E
[
|X|

]
= E

[
|X|I{|X|<r}

]
+ E

[
|X|I{|X| ≥r}

]
≤ r + χ(r) <∞.

⊓⊔

Theorem 3.2.15. Let X ⊂ L1
(
Ω, S,P

)
. Then the following statements are equivalent.

(i) X is uniformly integrable.

(ii) The family X is L1-bounded and, for any ε > 0, there exists δ = δ(ε) > 0 such that,
for any X ∈ X and any S ∈ S, we have

P
[
S
]
≤ δ ⇒ E

[
|X|IS

]
=

∫
S
|X(ω)|P

[
dω
]
< ε. (UI2)
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Proof. (i) ⇒ (ii) Fix ε > 0. There exists rε > 0 such that χ(rε) < ε/2. Now fix δ > 0 such
that δrε <

ε
2 . Then, for any X ∈ X and any S ∈ S such that P[S] < δ, we have

E
[
|X|IS

]
= E

[
|X|IS∩{|X|<rε}

]
+ E

[
|X|IS∩{|X|≥rε}

]
≤ rεP[S] + E

[
|X|I{|X|≥rε}

]
≤ δrε + χ(rε) < ε.

(ii) ⇒ (i) Set

B := sup
X∈X

E
[
|X|

]
<∞.

Markov’s inequality implies that that for r > 0 we have

P
[
|X| > r

]
≤ B

r
, ∀X ∈ X.

Fix ε > 0 and rε > 0 such that B
rε
< δ(ε). Then P

[
|X| > rε

]
< δ(ε), ∀X ∈ X. Assumption

(ii) implies

χ(rε) = sup
X∈X

E
[
|X| I{|X|>rε}

]
< ε.

⊓⊔

Remark 3.2.16. (a) We should draw attention to the qualitatively different conditions (UI1)
and (UI2).

Condition (UI1) involves only the probability distributions of the random variablesX ∈ X
with no mention of the probability space on which they are defined. On the other hand,
condition (UI2) makes explicit reference to their domain of definition (Ω, S,P). Condition
(UI2) is usually referred to as uniform absolute continuity.

(b) An atom of the probability space (Ω, S,P) is a measurable set S ∈ S such that P
[
S
]
> 0

and for every measurable subset S′ ⊂ S, P
[
S′ ] = 0 or P

[
S′ ] = P

[
S
]
. The L1-boundedness

condition follows from (UI2) alone if the probability measure P has no atoms. For a proof of
this fact we refer to [17, Prop.4.5.3]. ⊓⊔

Recall (see Exercise 2.65) that a Young function is a continuous, nondecreasing convex
function f : [0,∞) → [0,∞) such that

f(0) = 0, lim
x→∞

f(x) = ∞.

The Young function f is called superlinear if

lim
x→∞

f(x)

x
= ∞.

Theorem 3.2.17. Let X ⊂ L1
(
Ω, S,P

)
. Then the following statements are equivalent.

(i) X is UI.

(ii)

lim
r→∞

sup
X∈X

∫ ∞

r
P
[
|X| > x

]
dx = 0.

(iii) There exists a superlinear Young function f : [0,∞) → [0,∞) such that f(0) = 0
such that

sup
X∈X

E
[
f(|X|)

]
<∞. (3.2.8)
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Proof. (i) ⇐⇒ (ii) Proposition 1.3.40 shows that∫ ∞

r
P
[
|X| > x

]
dx = E

[
|X|I{|X|>r}

]
, ∀X ∈ X.

(ii) ⇒ (iii) Set

h(r) := sup
X∈X

∫ ∞

r
P
[
|X| > x

]
dx.

Note that h(0) ≤ r + h(r) <∞. Since h(r) = o(1) as r → ∞ we can find

0 = r0 < r1 < r2 < · · ·

such that

h(rn) ≤
h(0)

2n
, ∀n ∈ N.

Now define

g(r) :=
∑
n≥0

I [rn,∞)(r), f(x) =

∫ x

0
g(r)dr.

Note that g(r) is nondecreasing and limr→∞ g(r) = ∞. This shows that f is increasing convex
and superlinear. Using the Fubini-Tonelli theorem as in the proof of Proposition 1.3.40 we
deduce that for any X ∈ X we have

E
[
f(|X|)

]
= E

[∫ |X|

0
g(r)dr

]
= E

∑
n≥0

∫ ∞

rn

I |X|>rn(x)dx


≤
∑
n≥0

h(rn) ≤ h(0)
∑
n≥0

1

2n
.

(iii) ⇒ (i) For every n ∈ N there exists rn > 0 such that

∀x : x > rn ⇒ x <
f(x)

n
.

We deduce that for any X ∈ X we have

E
[
|X|I |X|>rn

]
≤ 1

n
E
[
f(|X|)I |X|>rn

]
≤ 1

n
E
[
f(|X|)

]
.

The conclusion now follows from (3.2.8). ⊓⊔

The equivalence (i) ⇐⇒ (iii) is sometimes referred to as the de la Vallée-Poussin theorem.

If in the above theorem we choose f(r) = rp, p > 1, we obtain the following result.

Corollary 3.2.18. Let X ∈ L1(Ω, S,P) be a family of random variables such that there exist
p ∈ (1,∞) with the property

sup
X∈X

E
[
|X|p

]
<∞.

Then X is UI. ⊓⊔

Corollary 3.2.19. Let X ∈ L1(Ω,F,P) and suppose that (Fi)i∈I is a family of sigma subal-
gebras. Set Xi := E

[
X ∥Fi

]
, i ∈ I. Then the family (Xi)i∈I is UI.
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Proof. 1st. Method Lemma 3.2.11 shows that the family {X} consisting of the integrable
random variable X is uniformly integrable. Hence

|Xi| =
∣∣E[X ∥Fi

] ∣∣ ≤ E
[
|X| ∥Fi

]
.

Theorem 3.2.17 implies that there exists a superlinear Young function f : [0,∞) → [0,∞)
such that E

[
f(X)

]
<∞. Since f is increasing and convex we deduce the conditional Jensen

inequality in Theorem 1.4.12(ix) that

f
(
|Xi|

)
≤ f

(
E
[
|X| ∥Fi

] )
≤ E

[
f
(
|X|) ∥Fi

]
.

Taking the expectations of both sides of this inequality we deduce

E
[
f
(
|Xi|

) ]
≤ E

[
f
(
|X|)

]
, ∀i ∈ I.

Using Theorem 3.2.17 again we deduce that the family (Xi)i∈I is UI.

2nd Method. Fix ε > 0 and then choose δ = δ(ε) > 0 such that

∀F ∈ F, P
[
F
]
< δ ⇒ E

[
|X|IF

]
< ε. (3.2.9)

Choose C > 0 sufficiently large so C−1E
[
|X|

]
< δ.

For each i choose a version Xi of E
[
X ∥Fi

]
. Then∣∣Xi

∣∣ ≤ E
[
|X| ∥Fi

]
a.s. and E

[
|Xi|

]
≤ E

[
|X|

]
.

Hence
P
[
|Xi| > C

]
≤ C−1E

[
|Xi|

]
≤ C−1E

[
|X|

]
< δ.

Then

E
[
|Xi|I |Xi|>C

]
≤ E

[
E
[
|X| ∥Fi

]
I |Xi|>C

]
= E

[
|X|I |Xi|>C

] (3.2.9)

≤ ε.

⊓⊔

The next result clarifies the importance of the uniform integrability condition.

Theorem 3.2.20 (Lebesgue-Vitali). Consider a sequence (Xn) in L
1(Ω, S,P) that converges

in probability to X. Then the following statements are equivalent.

(i) The sequence (Xn) is UI.

(ii) The limit X is integrable and the sequence (Xn) converges to X in the L1-norm.

(iii) The limit X is integrable and

lim
n→∞

E
[
|Xn|

]
= E

[
|X|

]
.

Proof. We follow the approach in [59, Thm. 5.5.2].

(i) ⇒ (ii). For every M > 0 we define

ΦM : R → R, ΦM (x) =


M, x ≥M,

x, |x| < M,

−M, x ≤ −M.

We have

E
[
|Xn −X|

]
≤ E

[ ∣∣Xn − ΦM (Xn)
∣∣ ]+ E

[ ∣∣ΦM (Xn)− ΦM (X)
∣∣ ]

+E
[
|
∣∣ΦM (X)−X

∣∣ ]
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≤ 2E
[ ∣∣Xn

∣∣I{|Xn|>M}
]
+ E

[ ∣∣ΦM (Xn)− ΦM (X)
∣∣ ]+ 2E

[ ∣∣X ∣∣I{|X|>M}
]
.

The sequence (Xn) is uniformly integrable and Theorem 3.2.15 implies that supn E
[
|Xn|

]
<∞.

Fatou’s Lemma applied to an a.s. convergent subsequence of Xn implies that X ∈ L1. We
conclude that for any ε > 0 there exists M =M(ε) > 0 such that

2E
[
|Xn|I{|Xn|>M}

]
+ 2E

[
|X|I{|X|>M}

]
<
ε

2
, ∀n ∈ N. (3.2.10)

From Corollary 1.3.58 we deduce that ΦM(ε)(Xn) converges to ΦM(ε)(X) in probability. More-
over, ∣∣ΦM(ε)(Xn)

∣∣ < M(ε), ∀n ∈ N.
The Bounded Convergence Theorem 1.3.67 implies that there exists n = n(ε) > 0 such that
for any n ≥ n(ε) we have

E
[
|ΦM(ε)(Xn)− ΦM(ε)(X)|

]
<
ε

2
.

Form (3.2.10) we deduce that E
[
|Xn −X|

]
< ε for n > n(ε).

.

Clearly (ii) ⇒ (iii) since Xn → X in L1 implies ∥Xn∥L1 → ∥X∥L1 .

(iii) ⇒ (i) For any M > 0 consider the continuous function

ΨM : [0,∞) → R, ΨM (x) =


x, x ∈ [0,M − 1],

0, x ≥M,

linear, x ∈ (M − 1,M).

The Dominated Convergence Theorem implies that ΨM (|X|) converges to |X| in L1 as
M → ∞. Thus, there exists M =M(ε) such that

E
[
|X|

]
− E

[
ΨM (|X|)

]
<
ε

2
, ∀M ≥M(ε). (3.2.11)

Using the Bounded Convergence Theorem as in the proof of the implication (i) ⇒ (ii) we
deduce that

E
[
ΨM (|Xn|)

]
→ E

[
ΨM (|X|)

]
, ∀M > 0. (3.2.12)

Thus, for any n ∈ N we have

E
[
|Xn|I{|Xn|>M(ε)}

]
≤ E

[
|Xn|

]
− E

[
ΨM(ε)(|Xn|)

]
=
(
E
[
|Xn|

]
− E

[
|X|

] )
+
(
E
[
|X|

]
− E

[
ΨM(ε)(|X|)

] )
+
(
E
[
ΨM(ε)(|X|)

]
− E

[
ΨM(ε)(|Xn|)

] )
(3.2.11)
<

(
E
[
|Xn|

]
− E

[
|X|

] )
+
(
E
[
ΨM(ε)(|X|)

]
− E

[
ΨM(ε)(|Xn|)

] )
+
ε

2
.

We can choose N = N(ε,M(ε)) so that for n > N(ε) we have(
E
[
|Xn|

]
− E

[
|X|

] )
+
(
E
[
ΨM(ε)(|X|)

]
− E

[
ΨM(ε)(|Xn|)

] )
<
ε

2
.

Hence for any M ≥M(ε)

sup
n>N(ε)

E
[
|Xn|I{|Xn|>M}

]
≤ sup

n>n(ε)
E
[
|Xn|I{|Xn|>M(ε)}

]
< ε.
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Now choose M1 > M(ε) such that

E
[
|Xn|I{|Xn|>M1}

]
< ε, ∀n = 1, 2, . . . , N(ε).

Hence for M ≥M1 we have

sup
n∈N

E
[
|Xn|I{|Xn|>M}

]
< ε.

Thus (Xn) is uniformly integrable. ⊓⊔

Remark 3.2.21. (a) The UI condition is a compactness condition. More precisely, the
Dunford-Pettis theorem states that a collection X ⊂ L1

(
Ω, S,P

)
is UI if and only if its

closure in the weak topology of L1
(
Ω, S,P

)
is compact. For a proof we refer to [17, Thm.

4.7.18] or [58, Sec. IV.8.11].

(b) The implication (iii) ⇒ (ii) is sometimes referred to as Scheffé’s Lemma.

(c) We used the Bounded Convergence Theorem to prove the implication (i) ⇒ (ii). Ob
viously the Bounded Convergence Theorem is a special case of this implication. One can
prove the equivalence (i) ⇐⇒ (ii) without relying on the Bounded Convergence Theorem; see
[56, Thm. 10.3.6].

(d) The sequence in Example 2.2.10 converges in law, it is uniformly integrable yet it does
not converge in probability. This shows that in the above theorem we cannot relax the
convergence-in-probability condition to convergence in law. ⊓⊔

3.2.3. Uniformly integrable martingales. We can now formulate and prove a refinement
of Theorem 3.2.4.

Theorem 3.2.22. If (Xn)n∈N0 is a martingale adapted to the filtration (Fn)n≥0 of (Ω,F,P).
Set

F∞ :=
∨
n≥0

Fn = σ
(
Fn, n ≥ 0

)
.

The following are equivalent.

(i) The collection (Xn)n∈N0 is UI.

(ii) The sequence (Xn)n∈N0 converges a.s. and L1 to a random variable X∞.

(iii) The sequence (Xn)n∈N0 converges L1 to a random variable X∞.

(iv) There exists an integrable random variable X such that

Xn = E
[
X∥Fn

]
, ∀n ∈ N0

If the above conditions are satisfied, then the limiting random variable X∞ in (ii) and
(iii) is related to the random variable X in (iv) via the equality X∞ = E

[
X ∥F∞

]
, i.e.,

lim
n→∞

E
[
X ∥Fn

]
= E

[
X ∥F∞

]
a.s. and L1. In particular, E

[
X∞

]
= E

[
X0

]
.

Proof. Note that if a martingale (Xn) is UI, then it is bounded in L1 and, according to
Theorem 3.2.4, converges a.s. to an integrable random variable X∞. In view of the previous
discussion the statements (i)-(iii) are equivalent. The implication (iv) ⇒ (i) follows from
Corollary 3.2.19. The only thing left to prove is (iii) ⇒ (iv).
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More precisely, we will show that if Xn → X∞ in L1, then

Xn = E
[
X∞∥Fn

]
, a.s., ∀n ∈ N0

In other words, we have to show that, for all m ∈ N0, and all A ∈ Fm we have

E
[
XmIA

]
= E

[
X∞IA

]
.

Since (Xn) is a martingale we deduce that, for n > m, we have

E
[
XmIA

]
= E

[
E
[
Xn∥Fm

]
IA

]
= E

[
E
[
XnIA∥Fm

] ]
= E

[
XnIA

]
.

Now let n→ ∞.

Suppose now that for some integrable random variable X we have Xn = E
[
X ∥Fn

]
. We

want to show that
lim
n
Xn = X∞ := E

[
X ∥F∞

]
i.e., for any F ∈ F∞ we have

E
[
X∞IF

]
= E

[
XIF

]
.

Denote by Z ⊂ F∞ the collection of F ⊂ F∞ for which the above holds. Clearly Fn ⊂ Z.
Moreover, Z is a λ-system and contains the π-system⋃

n≥0

Fn.

Thus it contains F∞, the σ-algebra generated by this system. ⊓⊔

Theorem 3.2.22 implies that

lim
n→∞

E
[
X∥Fn

]
= E

[
X∥F∞

]
a.s. and L1, ∀X ∈ L1(Ω,F,P). (3.2.13)

In particular, we deduce

Corollary 3.2.23 (Lévy’s 0-1 law ). For any set A ∈ F∞, the random variables

P
[
A ∥Fn

]
= E

[
IA∥Fn

]
, n ∈ N,

converge a.s. and L1 to IA as n→ ∞. ⊓⊔

Corollary 3.2.24 (Kolmogorov’s 0-1 law). Suppose that G1,G2, . . . are independent σ-subalgebras
of F. We set

Tn := σ
(
Gn+1,Gn+2, . . .

)
and form the tail σ-algebra

T∞ =
⋂
n≥1

Tn.

Then T∞ is a 0-1 sigma-algebra,

H ∈ T∞ ⇒ P
[
H
]
∈
{
0, 1
}
.

Proof. Define Fn := σ
(
G1, . . . ,Gn

)
. Let H ∈ F∞. By Levy’s 0− 1 law we have

E
[
IH ∥Fn

]
→ IH a.s..

On the other hand, if H ∈ T, then since T ⊥⊥ Fn we deduce E
[
IH ∥Fn

]
= P

[
H
]
, so that

P
[
H
]
= IH a.s.. In other words is IH is. a.s. constant and this constant can only be 0 or 1.

⊓⊔
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Example 3.2.25. Consider again the Galton-Watson branching process in Example 3.1.8.
Suppose that the reproduction law µ satisfies

m :=
∑
n≥0

nµ
[
n
]
<∞.

Assume m ≥ 1. Consider the extinction event defined in Example 3.2.7

E :=
⋃
n≥0

En, En =
{
Zk = 0, ∀k ≥ n

}
.

Consider next the event

U :=
{
sup
n
Zn = ∞

}
.

We want to prove that if the probability that an individual has no successor is positive then,
with probability 1, either the population extinguishes in finite time, or explodes. In particular
it cannot stabilize to a finite nonzero limit. More precisely, we have the following dichotomy
result.

If p0 = µ
[
0
]
> 0, then, with probability 1, the population either becomes extinct or

explodes, i.e.,
E = U c, P

[
E ∪ U

]
= 1. (3.2.14)

In particular

E =
{
lim
n
Zn = 0

}
. (3.2.15)

Note that

∀ν ∈ N0, ∃δ(ν) ∈ (0, 1) : ∀n ∈ N,
P
[
E ∥Z1, . . . , Zn

]
≥ δ(ν) on {Zn ≤ ν}.

(3.2.16)

Indeed, if the population of the n-th generation has at most ν individuals then the probability
that there will be no (n+ 1)-th generation is at least pν0 . More formally,

P
[
E ∥Z1, . . . , Zn

]
≥ P

[
En+1 ∥Z1, . . . , Zn

]
= P

[
En+1∥Zn

]
.

We have

P
[
En+1 ∥Zn

]
I{Zn≤ν} =

ν∑
k=0

P
[
En+1 ∥Zn = k

]
I{Zn=k}

=

ν∑
k=0

pk0I{Zn=k} ≥ pν0I{Zn≤ν}.

This proves (3.2.16) with δ(ν) = pν0 .

Since Zn are integer valued we deduce that

Lemma 3.2.26. Suppose that (Zn)n≥1 is a sequence of nonnegative random variables. Set

E =
{
Zn = 0 for some n

}
, B :=

{
sup
n
Zn <∞

}
.

If (Zn) satisfies (3.2.16), then

E ⊃ B (3.2.17)
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Proof. Set Fn := σ(Z1, . . . , Zn}, Bν :=
{
supn Zn ≤ ν

}
, so that

B1 ⊂ B2 ⊂ · · · ,
⋃
ν

Bν = B.

We have E
[
E ∥Fn

]
≥ δ(ν) on Bν . Letting n → ∞ we deduce from Lévy’s 0-1 theorem

(Corollary 3.2.23) that

lim
n→∞

E
[
IE ∥Fn

]
= IE .

Hence Bν ⊂ E for any ν. Hence B ⊂ E. ⊓⊔

In our special case, B = U c. Note also that if the population dies at a time at a time n0,
then Zn = 0, ∀n ≥ n0. Hence E ⊂ B or, in view of (3.2.17), E = B = U c. This proves the
claimed dichotomy (3.2.14).

When m = 1, then Wn = Zn converges almost surely to an integrable random variable
and we see that {

lim
n
Zn <∞

}
⊂
{
supZn <∞

}
⊂ E

and we deduce that

1 ≥ P
[
E
]
≥ P

[
lim
n
Zn <∞

]
= 1.

Thus, when m = 1 and the probability having no successors is positive, i.e., µ
[
0
]
> 0, then

the extinction probability is also 1. One can show (see [8, Sec. I.9] or [96]) that if m = 1 and

σ2 := Var
[
Xn,j

]
=
∑
k

k(k − 1)µ
[
k
]
<∞,

then

lim
n→∞

nP
[
Zn > 0

]
=

2

σ2
.

Thus, the probability of the population surviving more than n generations given that indi-
viduals have on average 1 successor is O(1/n).

When m > 1 the extinction probability is still positive but < 1. Exercise 3.28 describes
this probability and gives additional information about the distribution of W . For more
details about branching processes we refer to [8, 87]. ⊓⊔

Suppose that (Xn)n∈N0 is a process adapted to a filtration F• such that Xn converges a.s.
to a random variable X∞ as n→ ∞. If T is a stopping time adapted to the same filtration,
finite or not, we set

X̂T :=
∑
n∈N0

XnI{T=n} +X∞I{T=∞} = XT +X∞I{T=∞}. (3.2.18)

Note that

P
[
T = ∞

]
= 0 ⇒ X̂T = XT a.s.,

X̂T = XT
∞ := lim

n→∞
XT∧n = lim

n→∞
XT
n . (3.2.19)

Theorem 3.2.27 (UI Optional sampling: martingales). Suppose that X• = (Xn)n∈N0 is a

UI martingale and T is a stopping time, not necessarily a.s. finite. Then X̂T ∈ L1 and

X̂T = E
[
X∞∥FT

]
. (3.2.20)
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Moreover, if S, T are stopping times such that S ≤ T , then

E
[
X∞∥FS

]
= E

[
X̂T ∥FS

]
= X̂S . (3.2.21)

In particular

E
[
X̂T

]
= E

[
X0

]
.

Proof. Let us first prove that X̂T ∈ L1. We have

E
[ ∣∣X̂T

∣∣ ] =∑
n≥0

E
[
I{T=n}

∣∣Xn

∣∣ ]+ E
[
I{T=∞}

∣∣X∞
∣∣ ]

=
∑
n≥0

E
[
I{T=n}

∣∣E[X∞ ∥Fn
] ∣∣ ]+ E

[
I{T=∞}

∣∣X∞
∣∣ ]

(
∣∣E[X ∥F

] ∣∣ ≤ E
[
|X| ∥F

]
)

≤
∑
n≥0

E
[
I{T=n}E

[
|X∞| ∥Fn

] ]
+ E

[
I{T=∞}

∣∣X∞
∣∣ ]

(use the definition of conditional expectation)

=
∑
n≥0

E
[
I{T=n}

∣∣X∞
∣∣ ]+ E

[
I{T=∞}

∣∣X∞
∣∣ ] = E

[
|X∞|

]
<∞.

Moreover, for A ∈ FT we have

E
[
IAX̂T

]
=
∑
n∈N0

E
[
IA∩{T=n}Xn

]
+ E

[
IA∩{T=∞}X∞

]
( IA∩{T=n}Xn = E

[
IA∩{T=n}X∞ ∥Fn

]
)

=
∑
n∈N0

E
[
IA∩{T=n}X∞

]
+ E

[
IA∩{T=∞}X∞

]
= E

[
IAX∞

]
,

and thus X̂T = E
[
X∞∥FT

]
. The since FS ⊂ FT , the equality (3.2.21) follows immediately

from (3.2.20) and the properties of conditional expectation. ⊓⊔

Corollary 3.2.28 (Optional Stopping). Suppose that (Xn)n∈N0 is a UI martingale and T is
any stopping time. Then the stopped martingale XT

n = XT∧n is also a uniformly integrable
martingale with respect to the filtration FT∧n.

Proof. From Theorem 3.2.27 we deduce that XT∧n = E
[
X∞∥FT∧n

]
and Corollary 3.2.19

implies it is UI. ⊓⊔

Doob’s conditions in Definition 3.1.27 are closely related to uniform integrability.

Proposition 3.2.29. Suppose that (Xn)n≥0 is a martingale adapted to the filtration (Fn)n≥0

and T is an a.s. finite stopping time adapted to the same filtration. Then the following
statements are equivalent.

(i) The stopping time satisfies Doob’s conditions (3.1.7b) and (3.1.7c).

(ii) The stopped martingale XT
n = XT∧n is UI.
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Proof. (i) ⇒ (ii) Consider the submartingale |Xn|. Since T satisfies Doob’s conditions we
deduce from Theorem 3.1.29 that

E
[
|XT |

]
≥ E

[
|XT∧n|

]
∀n ≥ 0.

Thus

lim sup
n→∞

E
[
|XT∧n|

]
] ≤ E

[
|XT |

]
Since limn→∞XT∧n = XT , a.s., we deduce from Fatou’s Lemma that

E
[
|XT |

]
≤ lim inf

n→∞
E
[
|XT∧n|

]
]

so that

lim sup
n→∞

E
[
|XT∧n|

]
] = E

[
|XT |

]
.

The desired conclusion now follows from Theorem 3.2.20.

(ii) ⇒ (i) Observe first that limn→∞XT∧n = XT and since XT
n is UI we deduce XT is

integrable. Now observe that

E
[
|Xn|IT>n

]
= E

[
|XT∧n|IT>n

]
.

Since P
[
T < ∞

]
= 1 we deduce limn→∞ P

[
T > n

]
= 0. Finally, using the fact that the

stopped martingale XT
n is UI we deduce from (UI1)

lim
n→∞

E
[
|XT∧n|IT>n

]
= 0.

⊓⊔

Let us observe that the above discussion yields an alternate proof of the Optional Sampling
Theorem 3.1.29.

Corollary 3.2.30 (Optional Sampling Theorem). Suppose that (Xn)n≥0 is a martingale
adapted to the filtration (Fn), S ≤ T are stopping times adapted to the same filtration and T
satisfies the Doob conditions (3.1.7a, 3.1.7b, 3.1.7c). Then

E
[
XT ∥FS

]
= XS .

In particular, E
[
XT

]
= E

[
XS

]
.

Proof. Note that XT is UI and, since XS = (XT )S , we deduce from Theorem 3.2.27 that

E
[
XT ∥FS

]
= E

[
XT

∞ ∥FS
]
= XT

S = XS .

⊓⊔

3.2.4. Applications of the optional sampling theorem. The Optional Sampling The-
orem is a very versatile tool for computing expectations. We restate below the special case
of this theorem frequently used in applications.

Corollary 3.2.31 (Optional Sampling Theorem). Suppose that (Xn)n≥0 is a martingale
adapted to the filtration (Fn)n≥0 and T is an a.s. stopping time such that the stopped mar-
tingale XT

n = Xn∧T is UI, i.e., T satisfies Doob’s conditions. Then E
[
XT

]
= E

[
X0

]
. ⊓⊔
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The applicability of the above result is greatly enhanced once we have simple criteria for
recognizing when a stopped martingale is UI. We have the following result of J. L. Doob, [53,
Thm. VII.2.2].

Proposition 3.2.32. Suppose that (Mn)n≥0 is a random process adapted to the filtration
(Fn)n≥0 such that

E
[
Mn

]
<∞, ∀n,

and T is a stopping time adapted to the same filtration. Suppose that

E
[
T
]
<∞, (3.2.22a)

∃C > 0 : ∀n ∈ N, E
[
|Mn −Mn−1| ∥Fn−1

]
≤ C. (3.2.22b)

Then the stopped process MT
n =MT∧n is UI.

Proof. We will show that there exists Y ∈ L1(Ω,F,P) such that

|MT∧n| ≤ Y, ∀n ∈ N.

Note that

MT∧n =

n−1∑
k=0

MkI{T=k} +MnI{T≥n}

=
n−1∑
k=0

Mk

(
I{T≥k} − I{T≥k+1}

)
+MnI{T≥n} =M0 +

n∑
k=1

(
Mk −Mk−1

)
I{T≥k}

so [
MT∧n

∣∣ ≤ ∣∣M0

∣∣+ n∑
k=1

∣∣Mk −Mk−1

∣∣I{T≥k}.

Set

Y :=
∣∣M0

∣∣+ ∞∑
k=1

∣∣Mk −Mk−1

∣∣I{T≥k}.

Clearly
∣∣MT∧n

∣∣ ≤ Y , ∀n ≥ 0. We will show that E
[
Y
]
<∞. We have

E
[ ∣∣Mk −Mk−1

∣∣I{T≥k}
]
= E

[
E
[ ∣∣Mk −Mk−1

∣∣I{T≥k} ∥Fk−1

] ]
,

({T ≥ k} ∈ Fk−1)

E
[
I{T≥k}E

[ ∣∣Mk −Mk−1

∣∣ ∥Fk−1

] ] (3.2.22b)

≤ CE
[
I{T≥k}

]
= CP

[
T ≥ k

]
.

Thus

E
[
Y
]
≤ E

[ ∣∣M0

∣∣ ]+ C
∞∑
k=1

P
[
T ≥ k

]
= E

[ ∣∣M0

∣∣ ]+ CE
[
T
] (3.2.22a)

< ∞.

⊓⊔

Theorem 3.2.33 (Wald’s formula). Suppose that (Yn)n≥0 is a sequence of i.i.d. integrable
random variables with finite mean µ. Set

Sn :=
n∑
k=0

Yk.
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Let T be a stopping time adapted to the filtration Fn = σ(Y0, . . . , Yn) and such that E
[
T
]
<∞.

The following hold.

(i) E
[
ST
]
= µE

[
T
]
.

(ii) Suppose additionally that

Yn ∈ L2, µ = 0, σ2 = Var
[
Yn
]
.

Then Var
[
ST
]
= σ2E

[
T
]
.

Proof. (i) Set Yn = Yn − µ,

Mn := Sn − nµ =

n∑
k=1

Y k.

Then
E
[
Mn ∥Fn−1

]
= E

[
Yn +Mn−1 ∥Fn−1

]
= E

[
Yn ∥Fn−1

]
+ E

[
Mn−1 ∥Fn−1

]
= E

[
Yn
]
+Mn−1 =Mn−1.

Observe that

E
[ ∣∣Mn −Mn−1

∣∣ ∥Fn−1

]
= E

[ ∣∣Yn ∣∣ ∥Fn−1

]
= E

[ ∣∣Yn ∣∣ ] = E
[ ∣∣Y 0

∣∣ ]
so that (3.2.22b) is satisfied. We deduce from Proposition 3.2.32 that the stopped martingale
MT
n is UI and the Optional Sampling Theorem implies

0 = E
[
M0

]
= E

[
MT

]
= E

[
ST
]
− µE

[
T
]
.

(ii) From (i) we deduce E
[
ST
]
= 0 so Var

[
ST
]
= E

[
S2
T

]
. Set

Qn :=
n∑
k=1

Y 2
k .

We have

E
[
S2
n

]
=

n∑
k=1

E
[
Y 2
k

]
+ 2

∑
1≤i<j≤n

E
[
YiYj

]
= E

[
Qn
]
.

As in (i) we observe that Zn = Qn − nσ2 is a martingale adapted to the filtration Fn, the
increments Qn −Qn−1 are independent of Fn and

E
[ ∣∣Zn − Zn−1

∣∣ ∥Fn−1

]
= E

[ ∣∣Zn − Zn−1

∣∣ ] ≤ E
[
Y 2
n

]
+ σ2 = 2σ2.

We deduce from Proposition 3.2.32 that the stopped martingale ZTn is UI and the Optional
Sampling Theorem implies

0 = E
[
Z0

]
= E

[
ZT
]
= E

[
QT
]
− σ2E

[
T
]

= E
[
S2
T

]
− σ2E

[
T
]
= Var

[
ST
]
− σ2E

[
T
]
.

⊓⊔

Remark 3.2.34. In Exercise 1.20 we described a version (1.6.1) of Wald’s formula that has
a different nature than the one presented in Theorem 3.2.33. The random time T in (1.6.1) is
independent of the variables Xn and the proof of (1.6.1) is a simple exercise in conditioning.

In Theorem 3.2.33 the random time T is quite dependent of these variables given that it
is adapted to the filtration Fn = σ(X1, . . . , Xn) and the proof of the corresponding version
of Wald’s formula required the machinery of martingale theory.
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We want to point out that without some assumptions on T we cannot expect the equality
E
[
ST
]
= µE

[
T
]
to hold. Here is an example.

Suppose that the random variables Xn are exponential with parameter λ. For fix t > 0
we set

N(t) := max
{
n ≥ 0; Sn ≤ t

}
.

The collection
(
N(t)

)
t>0

is the Poisson process introduced in Example 1.3.7. Thus, N(t) ∼ Poi(λt)
so that

E
[
N(t)

]
= λt.

In this case

µ = E
[
Exp(λ)

]
=

1

λ
.

For fixed t, the random variable N(t) is not adapted to the filtration Fn = σ(X1, . . . , Xn).
Indeed, knowing S1, . . . , Sn, we cannot conclude that Sn+1 > t, i.e., that n is the largest index
k such that Sk ≤ t. If Wald’s formula were true in this case it would predict E

[
SN(t)

]
= t.

However, we know from (1.3.55) that

E
[
SN(t)

]
= t− 1

λ
+
e−λt

λ
.

Let us observe that T = N(t) + 1 is adapted to the filtration Fn. Indeed

T = n⇐⇒N(t) = n− 1

⇐⇒X1 + · · ·+Xn−1 ≤ t and X1 + · · ·+Xn +Xn+1 > t,

so that {T = n} ∈ σ(X1, . . . , Xn). Wald’s formula implies

E
[
SN(t)+1

]
= E

[
N(t) + 1

]
· E
[
X1

]
=
λt+ 1

λ
= t+

1

λ
.

This agrees with our earlier conclusion (1.3.56). ⊓⊔

Example 3.2.35 (Gambler’s Ruin). Suppose that

Xn : (Ω,F,P) → {−1, 1}, n ∈ N,

is a sequence of i.i.d. random variables with common probability distribution P
[
]Xn = 1

]
= p,

P
[
Xn = −1

]
= q = 1− p, p ∈ (0, 1). Fix k ∈ N and set

S0 =: k, Sn := k +X1 + · · ·+Xn, ∀n ∈ N,

Intuitively, k is the initial fortune of a gambler that plays a sequence of independent games
where he wins $1 with probability p and loses $1 with probability q. Then Sn is the fortune
of the gambler after n games. The game stops when the gambler is out of money, or his
fortune reaches a prescribed threshold N > k.

The sequence (Sn)n∈N is a random process adapted to the filtration

Fn = σ(X1, . . . , Xn).

The random variable

T = Tk := min
{
n ∈ N; Sn ∈ {0, N}

}
. (3.2.23)

is a stopping time adapted to this filtration. It is the moment the gambler stops playing.
The ‘sooner-rather-than-later’ Lemma 3.1.33 implies that E

[
T
]
<∞ since T satisfies (3.1.9)

∀n ∈ N0, P
[
T ≤ n+N∥Fn

]
> r, r =

(
min(p, q)

)N
.
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In particular, P
[
T < ∞

]
= 1. We want to compute pk(N) := P

[
ST = N

]
. We distinguish

two cases.

A. p = 1/2 so that the game is fair. Then Sn is a martingale. Consider now the stopped
process ST . It is a UI martingale since its is uniformly bounded. We deduce from the
Optional Sampling Theorem that

k = E
[
S0
]
= E

[
ST
]
= pk(N)N ⇒ pk(N) =

k

N
.

Thus, the ruin probability is 1− pk(N) = N−k
N = 1− k

N .

B. p ̸= 1/2 so the game is biased. Consider the De Moivre’s martingale Mn defined Example
3.1.7, i.e.,

Mn =

(
q

p

)Sn

.

The stopped martingale MT is UI since it is bounded. Hence

E
[
MT

]
= E

[
M0

]
=

(
q

p

)k
.

If we set pk(N) := P
[
ST = N

]
, then we deduce(

q

p

)k
= P

[
ST = 0

](q
p

)0

+ P[ST = N ]

(
q

p

)N
=
(
1− pk(N)

)
+ pk(N)

(
q

p

)N
.

Hence

pk(N) =
( qp)

k − 1

( qp)
N − 1

. ⊓⊔

Example 3.2.36 (The coupon collector problem revisited). Let us recall the coupon collector
problem we discussed in Example 1.3.25.

Suppose that each box of cereal contains one of m different coupons. Once you obtain
one of every type of coupons, you can send in for a prize. Ann wants that prize and, for
that reason, she buys one box of cereals everyday. Assuming that the coupon in each box is
chosen independently and uniformly at random from the m possibilities and that Ann does
not collaborate with others to collect coupons, how many boxes of cereal is she expected to
buy before she obtain at least one of every type of coupon?

Let N denote the number of boxes bought until Ann has at least one of every coupon.
We have shown in Example 1.3.25 that

E
[
N
]
= mHm, Hm :=

(
1 +

1

2
+ · · ·+ 1

m− 1
+

1

m

)
.

Suppose now that Ann has a little brother, Bob, and, every time she collects a coupon she
already has, she gives it to Bob. At the moment when she completed her collection, Bob is
missing B coupons. What is the expectation of B?

To answer this question we follow the approach in [67, Sec. 12.5.1]. Assume that the
coupons are labelled 1, . . . ,m. We denote by Ck the label of the coupon Ann found in the
k-th box she bought. Thus (Ck)k≥1 are i.i.d., uniformly distributed in {1, . . . ,m}. Let F0

denote the trivial sigma-subalgebra and set

Fn := σ
(
C1, . . . , Cn

)
, n ∈ N.
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We introduce two new random variables.

• Xn is the number of coupons Ann is missing after she bought n cereal boxes, n ≥ 0.

• Yn the number of coupons that have appeared exactly one time in the first n boxes
Ann bought, n ≥ 0.

Note that X0 = m, Y0 = 0. From the equality

N = min
{
n ∈ N; Xn = 0

}
,

we deduce that N is a stopping time adapted to the filtration F•. Observe that YN = B, the
number of coupons Bob is missing the moment Ann completed her collection.

Fix a function f : N2
0 → N0 satisfying the difference equation

x
(
f(x− 1, y + 1)− f(x, y)

)
+ yf(x, y − 1) = 0, ∀ x, y ≥ 1 (3.2.24)

and form the processes

Wn := f(Xn, Yn), Zn =WN
n =WN∧n, n ≥ 0.

Lemma 3.2.37. The process (Zn)n≥0 is a martingale adapted to the filtration (Fn)m≥0.

Proof. We set ∆Zn := Zn+1 − Zn. Note that Zn is Fn-measurable so we have to show that

E
[
∆Zn ∥Fn

]
= 0. (3.2.25)

Observe first that

∆Zn = I{Xn>0}∆Wn.

Let us observe that, when Xn > 0 and Ann buys a new cereal box there are only three,
mutually exclusive possibilities,

∆Xn = −1, ∆Yn = −1, ∆Xn = ∆Yn = 0.

The first possibility corresponds to Ann obtaining a new coupon. In this case Yn+1 = Yn+1.
The second possibility corresponds to Bob obtaining a new coupon. In this case Xn+1 = Xn.
The third possibility occurs when the (n + 1)-th coupon is owned by both Ann and Bob.
Hence

∆Zn = I{∆Xn=−1}
(
f(Xn − 1, Yn + 1)− f(Xn, Yn)

)
I{Xn>0}

+I{∆Yn=−1}
(
f(Xn, Yn − 1)− (f(Xn, Yn)

)
I{Xn>0}.

Now observe that

E
[
I{∆Xn=−1} ∥Fn

]
=
Xn

m
and E

[
I{∆Yn=−1} ∥Fn

]
=
Yn
m
.

To understand the first equality observe that if Ann is missing Xn coupons at time n, then
the probability of getting a new one in the new box is Xn

m . The second equality is proved in
a similar fashion. Hence

E
[
∆Zn ∥Fn

]
=
Xn

m

(
f(Xn − 1, Yn + 1)− f(Xn, Yn)

)
I{Xn>0}

+
Yn
m

(
f(Xn, Yn − 1)− (f(Xn, Yn)

)
I{Xn>0}

(3.2.24)
= 0.

⊓⊔
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The martingale (Zn)n≥0 is bounded so it is uniformly integrable and we deduce from the
Optional Sampling Theorem that

E
[
f(0, YN )

]
= E

[
ZN

]
= E

[
Z0

]
= E

[
f(m, 0)

]
.

This holds for any function f satisfying (3.2.24). Now observe that the function

f : N0 → N0, f(x, y) = Hx +
y

1 + x
,

where

H0 = 0, Hx = 1 +
1

2
+ · · ·+ 1

x
, ∀x > 0,

satisfies (3.2.24), and we conclude

E
[
YN
]
= E

[
f(0, YN )

]
= E

[
f(m, 0)

]
= Hm ∼ logm as m→ ∞.

For example, ifm = 30, then Hm ≈ 3.99 so at the moment Ann has all the complete collection
of 30 coupons, we expect that her little brother is missing only about 4 of them. Nearly there.

⊓⊔

3.2.5. Uniformly integrable submartingales. The proof of Theorem 3.2.22 yields the
following submartingale counterpart.

Theorem 3.2.38. If (Xn)n∈N0 is a submartingale, then the following are equivalent.

(i) The collection (Xn)n∈N0 is uniformly integrable.

(ii) The sequence (Xn)n∈N0 converges a.s. and L1 to a random variable X∞.

(iii) The sequence (Xn)n∈N0 converges L1 to a random variable X∞. ⊓⊔

Corollary 3.2.39. Suppose that X• = (Xn)n∈N0 is a submartingale with Doob decomposition
Xn = X0 + Mn + Cn, where (Mn)n∈N0 is the martingale component and (Cn)n∈N0 is the
predictable compensator. Then the following are equivalent.

(i) The submartingale (Xn)n∈N0 is uniformly integrable.

(ii) The martingale (Mn)n∈N0 and the compensator (Cn)n∈N0 are uniformly integrable.

Proof. Clearly (ii) ⇒ (i). To prove the converse note that

E
[
|Cn|

]
= E

[
Cn
]
= E

[
Xn

]
− E

[
X0

]
and since (Xn) is uniformly integrable we deduce

sup
n

E
[
|Cn|

]
≤ sup

n
E
[
|Xn|

]
− E

[
X0

]
<∞.

The limit C∞ := limn→∞Cn exists because (Cn) is nondecreasing. The Monotone Conver-
gence theorem implies that C∞ is integrable. Since |Cn| = Cn ≤ C∞, ∀n, we deduce that the
family (Cn) is UI. ⊓⊔

We can use Doob’s decomposition to prove a submartingale version of Theorem 3.2.27.

Corollary 3.2.40. If X• = (Xn)n∈N0 is a uniformly integrable submartingale, then for any
stopping time T the stopped submartingale XT

n = XT∧n is a uniformly integrable submartin-
gale.
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Proof. Consider the Doob decomposition of X•, Xn = X0 + Mn + Cn. From Corollary
3.2.39 we deduce that M• and C• are UI. Moreover, the Doob decomposition of XT is
XT =MT+CT . Corollary 3.2.28 shows thatMT is UI and CT is UI since 0 ≤ CTn ≤ C∞ ∈ L1.

⊓⊔

Theorem 3.2.41 (UI Optional Sampling: submartingales). Suppose that

X• = (Xn)n∈N0

is a UI submartingale. Then for any stopping times S, T such that S ≤ T we have

X̂S ≤ E
[
X̂T ∥FT

]
. (3.2.26)

In particular, if we let T = ∞,

X̂S ≤ E
[
X∞ ∥FS

]
. (3.2.27)

Proof. If X• =M• + C• is the Doob decomposition of X, then

XS
• =MS

• + CS• , XT
• =MT

• + CT•

In this case XS = (XT )S we deduce that X̂S = X̂T
S . Then, since ĈS is FS-measurable,

X̂S = M̂S + ĈS
(3.2.20)
= E

[
MT

∞∥FS
]
+ E

[
ĈS∥FS

]
≤ E

[
MT

∞∥FS
]
+ E

[
ĈT ∥FS

]
= E

[
MT

∞∥FS
]
+ E

[
CT∞∥FS

]
= E

[
X̂T ∥FS

]
.

⊓⊔

Corollary 3.2.42 (Optional Sampling). Suppose that Y• = (Yn)n∈N0 is a uniformly integrable
submartingale and S, T are a.s. finite stopping times such that S ≤ T . Then YS ≤ E

[
YT ∥FS

]
.

Proof. Use (3.2.27) with the UI submartigaleX = Y T and observe thatX∞ = Y T
∞ = ŶT = YT .

⊓⊔

Example 3.2.43 (Optimal Gambling Strategies). Consider a game of chance where the
winning probability is p < 1

2 . For example, in the red-and-black roulette game one bets on

black with winning probability p = 18
38 ≈ 0.473. (The fair case p = 1

2 is discussed in Exercise
3.20.)

Before each game, the player bets a sum s, called stake, that cannot be larger than
his fortune at that moment. If he wins, his fortune increases by the amount that he bet.
Otherwise he loses his stake.

The player starts with a sum of money x and decides that he will play until the first
moment his fortune goes above a set sum, the goal, say 1. His strategy is based on a function
σ(x). If his fortune after n games is Xn, then the amount he wagers for the next game
depends on his current fortune Xn and is σ(Xn). The player stops playing when, either he is
broke, or he has reached ( or surpassed) his goal. The function σ is known as the strategy of
the gambler.

We denote by π(x, σ) the probability that the gambler will reach his goal using the
strategy σ, given that his initial fortune is x.

We want to show that the strategy that maximizes the winning probability π(x, σ) is the
“go-bold” strategy: if your fortune is less than half the goal, bet it all, and if your fortune
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is more than half the goal, bet as much as you need to reach your goal. Our presentation
follows [70, §24.8]. To find out about gambling strategies for more complex games we refer
to [55].

First let us introduce the appropriate formalism. The strategies will be chosen from a
space S, the collection of measurable functions σ : [0,∞) → [0,∞) such that

σ(x) ≤ x, ∀x ∈ [0, 1] and σ(x) = 0, ∀x > 1.

Note that the stopping rule is built in the definition of S.

The sequence of games encoded by the sequence of i.i.d. random variables (Yn)n∈N such
that

P
[
Yn = 1

]
= p, P

[
Yn = −1

]
= 1− p, 0 < p <

1

2
.

For each x ≥ 0 and each σ ∈ S define inductively a sequence of random variables Xn = Xx,σ
n ,

Xx
0 = x, Xn+1 = Xn + σ(Xn)Yn+1, n ≥ 0. (3.2.28)

We denote by (Ω, S,P) the probability space where the random variables Xn and Yn are
defined. Thus Xx,σ

n is the fortune of the player after n games starting with initial fortune x
and using the strategy σ. Note that σ(Xn) is the amount of money the player bets before
the (n + 1)-th game. It depends only on its fortune Xn at that time. If Yn = 1 the player
gains σ(Xn) and if Yn = −1, the player loses this amount. His strategy σ stays the same for
the duration of the game.

Let us observe first that

Xx,σ
∞ := lim

n→∞
Xx,σ
n

exists a.s. and L1. We will prove this by showing that Xx,σ
n is a bounded supermartingale.

Since σ(x) ≤ x we deduce x− σ(x) ≥ 0 and we deduce inductively that Xn ≥ 0, a.s.,∀n.
Next, we observe that if x ≤ 1 + x then x + σ(x) ≤ x + 1. We deduce inductively that
Xn ≤ x+ 1, a.s., ∀n.

We have E
[
Yn
]
= 2p− 1 < 0 and thus

E
[
Xn+1 ∥Fn

]
= Xn + σ(Xn)E

[
Yn+1

]
≤ Xn.

Thus (Xn) is a uniformly bounded supermartingale and thus UI. Set

h(x, σ) := E
[
min(Xx,σ

∞ , 1)
]
and π(x, σ) := P

[
Xx,σ

∞ ≥ 1
]
.

Observe that

x ≥ h(x, σ) ≥ π(x, σ), ∀x ∈ [0, 1], σ ∈ S. (3.2.29)

Since (Xn) is a supermartingale and the function x 7→ min(x, 1) is concave and nondecreasing,
the sequence min(Xn, 1) is also a supermartingale. Using the continuity of x 7→ min(x, 1) we
deduce from (i) that

min(Xx,σ
n , 1) → min(Xx,σ

∞ , 1) a.s..

Since 0 ≤ min(Xn, 1) ≤ 1 we deduce from the Dominated Convergence theorem that

x = E
[
min(X0, 1)

]
≥ E

[
min(Xx,σ

∞ , 1)
]
≥ E

[
IX∞≥1

]
≥ P

[
X∞ ≥ 1

]
≥ π(x, σ).

Let us observe that if a strategy σ depends continuously on x, then

h(x, σ) = π(x, σ).
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Set again Xn = Xx,σ
n . We will prove that P

[
0 < X∞ < 1

]
= 0. We argue by contradiction

and assume

P
[
0 < X∞ < 1

]
> 0.

Thus, assume there exists ω ∈ Ω such that X∞(ω) ∈ (0, 1) and

lim
n→∞

Xn(ω) = X∞(ω).

Thus

lim
n→∞

σ(Xn(ω)) = σ(X∞(ω)) > 0.

On the other hand,

σ(Xn) = |Xn+1(ω)−Xn(ω)| → 0 as n→ ∞.

Hence P
[
0 < X∞ < 1

]
= 0 so

E
[
min(X∞, 1)

]
= P

[
X∞ ≥ 1

]
.

We have the following optimality criterion.

Lemma 3.2.44. Let σ0 ∈ S and set h0(x) := h(x, σ0), π0(x) = π(x, σ0). If h0(x) is contin-
uous and satisfies,

h0(x) ≥ ph0(x+ s) + (1− p)h0(x− s), (3.2.30)

then, for any σ ∈ S, and any x ∈ [0, 1] we have π(x, σ0) = h0(x) ≥ π(x, σ).

Proof. Fix σ ∈ S and x ∈ [0, 1] and set Xn = Xx,σ
n . We set h0(x) = 1, for x ≥ 1. This

is a natural condition: if the initial fortune is greater than the goal then the probability of
achieving the goal is 1.

Observe that the random process Yn = h0(X) is a supermartingale. Indeed,

E
[
h0
(
Xn+1

)
∥Fn

]
= E

[
h0
(
Xn + σ(Xn)Yn+1

)
∥Fn

]
= E

[
h0
(
Xn + σ(Xn)

)
I{Yn+1=1} + h0

(
Xn − σ(Xn)

)
I{Yn+1=−1} ∥Fn

]
= ph0

(
Xn + σ(Xn)

)
+ (1− p)h0

(
Xn − σ(Xn)

) (3.2.30)

≤ h0(Xn)

Thus Yn is a bounded supermartingale and thus

h0(x) = E
[
h0(X

x,σ
0 )

]
E
[
Y0
]
≥ E

[
Yn
]
.

Now observe that E
[
Y0
]
= h0(x).

On the other hand, since h0(x) is continuous and bounded we deduce that h0(Xn) con-
verges a.s. and L1 to h0(X∞). Thus

E
[
Y∞
]
= E

[
h0(X

x,σ
∞ )

]
≥ P

[
Xx,σ

∞ ≥ 1
]
≥ π(x, σ).

⊓⊔

Define σ0 ∈ S

σ0(x) :=

{
min(x, 1− x), x ∈ [0, 1],

0, x ≥ 1,

and set h0(x) := h(x, σ0), π0(x) = π(x, σ0). We want to show that σ0 satisfies all the
conditions of Lemma 3.2.44.



3.2. Limit theorems: discrete time 319

Clearly σ0 is a continuous strategy. By construction, for any x ∈ [0, 1] we have 0 ≤ Xx,σ0
n ≤ 1

a.s. so

π0(x) = h0(x) = E
[
Xx,σ0

∞
]
, ∀x ∈ [0, 1].

The functions

[0, 1] ∋ x 7→ x+ σ0(x) ∈ [0, 1], [0, 1] ∋ x 7→ x− σ0(x) ∈ [0, 1]

are non-decreasing. We deduce inductively that if x ≤ y then

E
[
Xx,σ0
n

]
≤ E

[
Xy,σ0
n

]
and, by letting n→ ∞ we deduce that h0(x) ≤ h0(y) so that h0 is non-decreasing.

By conditioning on Y1 we deduce that

h0(x) =


ph0(2x), x ≤ 1/2,

p+ (1− p)h0(2x− 1), 1/2 ≤ x ≤ 1,

1, x > 1.

(3.2.31)

Set

D :=

{
k

2n
; n ∈ N0, 0 ≤ k ≤ 2n

}
.

We will prove by induction on n that (3.2.30) holds for x of the form x = k
2n . Start with

n = 1 so x = 1
2 . We have

h(1/2)− ph(1/2 + s)− (1− p)h(1/2− s)

(3.2.31)
= p− p

(
p+ (1− p)h(2s)

)
− (1− p)ph(1− 2s)

= p(1− p)
(
1−

(
h(2s) + h(1− 2s)

) )
≥ 0,

where at the last step we used the fact that h(x) ≤ x, ∀x ∈ [0, 1].

For the inductive step, assume that n > 1 and x = k
2n , k < 2n. Choose s ∈ [0, x]. We

consider several cases.

Case 1. x+ s ≤ 1
2 . Using (3.2.31) and the induction hypothesis we deduce

ph(x+ s) + (1− p)h(x− s) = p
(
ph(2x+ 2s) + (1− p)ph(2x− 2s)

)
≤ ph(2x) = h(x).

Case 2. x− s ≥ 1
2 . Similar to Case 1.

Case 3.. x ≤ 1
2 and x+ s ≥ 1

2 . Using (3.2.31) we have

A := h(x)− ph(x+ s)− (1− p)h(x− s)

= ph(x2x)− p
(
p+ (1− p)h(2x+ 2s− 1)

)
− (1− p)ph(2x− 2s)

= p
(
h(2x)− p− (1− p)h(2x+ 2s− 1)− (1− p)h(2x− 2s)

)
.

Observe that since 1
2 ≤ x+ s ≤ 2x. Using (3.2.31) we deduce

h(2x) = p+ (1− p)h(4x− 1)

so that

A = p
(
p+ (1− p)h(4x− 1)− p− (1− p)h(2x+ 2s− 1)− (1− p)h(2x− 2s)

)
= p(1− p)

(
h(4x− 1)− h(2x+ 2s− 1)− h(x− 2s)

)
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= (1− p)
(
h(2x− 1/2)− ph(x+ 2s− 1)− p(x− 2s)

)
(p ≤ 1− p)

≥ (1− p)
(
h(2x− 1/2)− ph(x+ 2s− 1)− (1− p)(x− 2s)

)
The induction hypothesis implies h(2x− 1/2)− ph(x+ 2s− 1)− (1− p)(x− 2s) ≥ 0.

Case 4. x ≥ 1
2 and x− s ≤ 1

2 . This is similar to the previous case.

We can now prove that h0 is continuous. Since h is nondecreasing we deduce that the
right/left limits h(x±) exist at each x ∈ [0, 1]. Since (3.2.30) holds for every x in a dense set
we deduce

h(x−) ≥ ph
(
(x+ s)−

)
+ (1− p)h

(
(x− s)−

)
∀0 ≤ s < x ≤ 1. Now let s↘ 0 to conclude

h(x−) ≥ ph(x+) + (1− p)h(x−) ⇒ ph(x−) ≥ ph(x+)

so that h(x−) = h(x+), i.e., h is continuous. Since D is dense in [0, 1] we deduce that h0
satisfies (3.2.30) on [0, 1]. We can now invoke Lemma 3.2.44 to deduce that

π(x, σ0) = h0(x) ≥ π(x, σ), ∀x ∈ [0, 1], σ ∈ S,

i.e., σ0 is an optimal gambling strategy.

Let us explain how to compute h0(x), x ∈ D. Every number x ∈ D has a binary expansion

x = 0.ϵ1ϵ2 · · · =
∑
n≥1

ϵn
2n

where ϵn ∈ {0, 1}, and ϵn = 0 for n≫ 0. Note that

x <
1

2
⇐⇒ ϵ1 = 0.

The first equation in (3.2.31) reads

h(0.0ϵ2 · · · ) = p · h(0.ϵ2 · · · ).
In particular

h
(
0. 0 · · · 0︸ ︷︷ ︸

k

1ϵk+2 · · · ) = pk(0.1ϵk+2 · · · ).

The second equation in (3.2.31) reads

h(0.1ϵ2 . . . ) = p+ (1− p)h(0.ϵ2 · · · ).
We define f0, f1 : [0, 1] → [0, 1] by

f0(x) = px, f1(x) = p+ (1− p)x.

The above discussion shows that

h(0.ϵ1 · · · ϵn) = fϵ1
(
h(0.ϵ2 · · · ϵn)

)
.

Since h(0) = h(1/2) = p we deduce by iteration that if,

x = 0.ϵ1ϵ2 · · · ϵn1,
then

h(x) = fϵ1 ◦ fϵ2 ◦ · · · ◦ fϵn(p).
Thus h is uniquely determined on D and, since D is dense on [0, 1], the function h is uniquely
determined on [0, 1]. Let us emphasize that h0(x) depends on the winning probability p.
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As an illustration let us compute h0(21/32). Note that 21
32 has the binary expansion

21

32
= 0.10101

so that

h(21/32) = f1 ◦ f0 ◦ f1 ◦ f0(p) = f1 ◦ f0 ◦ f1(p2)

= f1 ◦ f0
(
p+ p2 − p3) = f1(p

2 + p3 − p4) = p+ (1− p)(p2 + p3 − p4)

= p+ p2 + p3 − p4 − p3 − p4 + p5 = p+ p2 − 2p4 + p5.

For example if the winning probability is p = 0.4, then h0(21/32) = 0.519 > 0.5. Thus,
although the winning probability p < 0.5, using this strategy with an initial fortune 21/32,
the odds of increasing the fortune to 1 are better than 50 : 50.

If the initial fortune is x = 1
4 , then using its binary expansion 1

4 = 0.01 we deduce

h0(1/4) = ph0(1/2) =
p

2
.

In this case, if p = 0.4, the probability of reaching his goal is 0.2, substantially smaller. ⊓⊔

3.2.6. Maximal inequalities and Lp-convergence. The results in this subsection are
wide ranging generalizations of Kolmogorov’s one series theorem. They depend on Doob’s
maximal inequality which generalizes Kolmogorov’s inequality (2.1.3).

Theorem 3.2.45 (Doob’s maximal inequality). Suppose that (Xn)n∈N0 is a submartingale.
Set

X̃n := sup
k≤n

Xk.

Then, for any a > 0, we have

aP
[
X̃n ≥ a

]
≤ E

[
XnI{ X̃n ≥a}

]
≤ E

[
X+
n

]
. (3.2.32)

Proof. Let us introduce the stopping time

T := inf
{
n ≥ 0; Xn ≥ a

}
.

Then

A :=
{
X̃n ≥ a

}
=
{
sup
k≤n

Xk ≥ a
}
=
{
T ≤ n

}
.

Applying the Optional Sampling Theorem 3.1.29 to the bounded stopping times T ∧ n and
n we deduce E

[
XT∧n

]
≤ E

[
Xn

]
.

On the other hand,

XT∧n(ω) = XT (ω)IA(ω) +Xn(ω)IAc(ω) ≥ aIA(ω) +Xn(ω)IAc(ω),

so XT∧n ≥ aIA +XnIAc . We deduce

aP
[
A
]
+ E

[
XnIAc

]
≤ E

[
XT∧n

]
≤ E

[
Xn

]
= E

[
XnIA

]
+ E

[
XnIAc

]
.

This implies the first inequality in (3.2.32). The second inequality is trivial.

⊓⊔
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Corollary 3.2.46. Suppose that
(
Yn
)
is a martingale. We set

Y ∗
n = max

k≤n

∣∣Yn ∣∣.
Then for every c > 0 and any p ∈ [1,∞) we have

P
[
Y ∗
n > c

]
≤ 1

cp
E
[
|Yn|p

]
.

Proof. Doob’s maximal inequality applied to the submartingale Xn = |Yn|p yields

P
[
Y ∗
n > c

]
= P

[
max
0≤k≤n

|Yn|p > cp
]
≤ 1

cp
E
[
|Yn|p

]
⊓⊔

Theorem 3.2.47 (Doob’s Lp-inequality). Let p > 1 and suppose that (Xn)n∈N0 is a positive
submartingale such that Xn ∈ Lp, ∀n ≥ 0. Set

X̃n := sup
k≤n

Xk.

Then for any n ≥ 0 we have

E
[ (
X̃n

)p ] 1
p ≤ qE

[
Xp
n

] 1
p , (3.2.33)

where
1

p
+

1

q
= 1 or q =

p

p− 1
.

In particular, if (Yn)n∈N0 is a martingale and if

Y ∗
n := max

k≤n
|Yk|,

then for any n ≥ 0 we have3

∥Y ∗
n ∥Lp ≤ q∥Yn∥Lp . (3.2.34)

Proof. Clearly (3.2.33) ⇒ (3.2.34). Note that (Xp
n)n≥0 is also a submartingale and X̃n ∈ Lp.

From Doob’s maximal inequality we deduce

aP
[
X̃n ≥ a

]
≤ E

[
XnI{X̃n≥a}

]
so

1

p
E
[
X̃p
n

] (1.3.46)
=

∫ ∞

0
ap−1P

[
X̃n ≥ a

]
da

(3.2.32)

≤
∫ ∞

0
ap−2E

[
XnI{X̃n≥a}

]
da.

Switching the order of integration we deduce∫ ∞

0
ap−2E

[
XnI{X̃n≥a}

]
da = E

[
Xn

∫ X̃n

0
ap−2da

]
=

1

p− 1
E
[
XnX̃

p−1
n

]
(use Hölder’s inequality with 1

q = 1− 1
p)

≤ 1

p− 1
E
[
Xp
n

] 1
pE
[
X̃p
n

] p−1
p .

Hence
1

p
E
[
X̃p
n

]
≤ 1

p− 1
E
[
Xp
n

] 1
pE
[
X̃p
n

] p−1
p .

3Note that q = p
p−1

is the exponent conjugate to p, 1
p
+ 1

q
= 1.
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This proves (3.2.33). ⊓⊔

Definition 3.2.48. Let p ∈ [1,∞). A martingale (Xn)n∈N0 is called an Lp-martingale if

E
[
|Xn|p

]
<∞, ∀n ∈ N0.

A bounded Lp-martingale is a martingale (Xn)n∈N0 such that

sup
n∈N0

E
[
|Xn|p

]
<∞. ⊓⊔

Corollary 3.2.49 (Lp-martingale convergence theorem). Suppose that (Xn)n∈N0 is a bounded
Lp-martingale for some p > 1. Set

X∗
n := max

k≤n
|Xk|, X∗

∞ = sup
k≥0

|Xk| = lim
n→∞

X∗
n.

Then (Xn)n∈N0 is a UI martingale and Xn converges a.s. and Lp to a random variable

X∞ ∈ Lp(Ω,F∞,P).

Moreover

E
[
(X∗

∞)p
]
≤
(

p

p− 1

)p
E
[
|X∞|p

]
.

Proof. From the Monotone Convergence Theorem we deduce

E
[
(X∗

∞)p
]
= lim

n→∞
E
[
(X∗

n)
p
]
≤
(

p

p− 1

)p
sup
n≥0

E
[
|Xn|p

]
<∞.

so X∗
∞ ∈ Lp and |Xn| ≤ X∗

∞, ∀n ≥ 0. The desired conclusions now follow from the martingale
convergence theorem and the Dominated Convergence Theorem. ⊓⊔

Example 3.2.50 (Kolmogorov’s one series theorem). Suppose that (Xn)n≥0 is a sequence
of independent random variables such that

E[Xn] = 0, ∀n ≥ 0,
∑
n≥0

Var[Xn] <∞.

Then the random series X0 + X1 + · · · is a.s. and L2-convergent. Indeed, the sequence of
partial sums

Sn = X0 + · · ·+Xn

is a bounded L2-martingale and so it converges a.s. and L2. ⊓⊔

Example 3.2.51 (Likelihood ratio). This example has origin in statistics. Suppose that
we have a random quantity and we have reasons to believe that its probability distribution
is either of the form p(x)dx or q(x)dx where p, q : R → [0,∞) are mutually absolutely
continuous probability densities on R∫

R
p(x)dx =

∫
R
q(x)dx = 1.

We want to describe a statistical test that helps deciding which is the real distribution. Our
presentation follows [81, Sec.12.8].

We take a large number of samples of the random quantity, or equivalently, suppose that
we are given a sequence of i.i.d. random variables (Xn)n≥1 with common probability density
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f , where f is one of the two densities p or q. Assume for simplicity that q(x) = 0 ⇒ p(x) = 0
and agree to set 0

0 = 0. The products

Yn :=

n∏
k=1

p(Xk)

q(Xk)
.

are called likelihood ratios. Note that if f = q, then E
[
Yn
]
= 1, ∀n.

To decide whether f = q or f = p we fix a (large) positive number a and a large n ∈ N
and adopt the prediction strategy

fn :=

{
p, Yn ≥ a,

q, Yn < a.

We want to show that this strategy picks the correct density with high confidence, i.e.,
P
[
f = fn

]
is very close to 1 for large n and a.

If f = q, then Yn is a product of i.i.d. nonnegative random variables with mean 1 and, as
shown in Example 3.1.6, it is a martingale with respect to the filtration Fn = σ(X1, . . . , Xn).

The function log is strictly concave and we deduce from Jensen’s inequality

E
[
log

p(Xn)

q(Xn)

]
< logE

[ p(Xn)

q(xn)

]
= 0.

The Strong Law of Large Numbers shows that

1

n

n∑
k=1

log
p(Xk)

q(Xk)
→ E

[
log Y1

]
< 0, a.s..

Thus

log Yn =
n∑
k=1

log
p(Xk)

q(Xk)
→ −∞ a.s..

Thus, if f = q, then Yn → 0 a.s.. If f = p, then a similar argument shows that 1
Yn

→ 0 a.s..
We deduce that

Yn →

{
0, f = q,

∞, f = p.

In particular,

lim
n→∞

P
[
fn = q

∣∣ f = q
]
= lim

n→∞
P
[
Yn < a

]
= 1,

and

lim
n→∞

P
[
fn = p

∣∣ f = p
]
= lim

n→∞
P
[
Yn ≥ a

]
= 1.

Moreover, Doob’s maximal inequality (3.2.32) shows that if f = q, so Yn is a martingale, we
have

P
[

max
1≤k≤n

Yk ≥ a
]
≤ 1

a
, ∀n.

Thus, ∀n,

P
[
fn ̸= q

∣∣ f = q
]
= P

[
Yn ≥ a

∣∣ f = q
]
≤ 1

a
→ 0 as a→ ∞,

and this statistical test makes the right decision with high confidence if a≫ 1. ⊓⊔
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Example 3.2.52. Consider again the branching process in Example 3.1.8. Suppose that the
reproduction law µ satisfies

m =
∞∑
k=0

kµ(k) <∞,
∞∑
k=0

k2µ(k) <∞,

We set

σ2 := Var[µ] =
∞∑
k=0

k2µ(k)−m2.

Note that

Zn+1 =

∞∑
k=1

( k∑
j=1

Xn,j

)
I{Zn=k} =

∞∑
j=0

Xn,j

∑
k≥j

I{Zn=k} =

∞∑
j=0

Xn,jI{Zn≥j},

E
[
Z2
n+1∥Fn

]
= E

[ ∞∑
k,j=1

I{Zn≥j,Zn≥k}Xn,jXn,k∥Fn
]

(Xn,j , Xn,k ⊥⊥ Fn)

=
∞∑

k,j=1

I{Zn≥j,Zn≥k}E
[
Xn,jXnk

]
=

∞∑
k,j=1

I{Zn≥j,Zn≥k}
(
m2 + δjkσ

2
)

= m2
∞∑

j,k=j=1

I{Zn≥j}I{Zn≥k} + σ2
∞∑
k=1

I{Zn≥k}

(E[Zn] =
∑

k≥1 P(Zn ≥ 1))

= m2

( ∞∑
k=1

I{Zn≥k}

)2

+ σ2
∞∑
k=1

I{Zn≥k} = m2Z2
n + σ2Zn.

Hence

E[Z2
n+1] = m2E[Z2

n] +m2E[Zn] = σ2E[Z2
n] + σ2mnE[Z0] = m2E[Z2

n] + σ2mnℓ.

We set

qn+1 := m−2nE
[
Z2
n

]
and we get from the above that

qn+1 = qn +m−n−2σ2ℓ.

This shows that if m > 1, then the sequence (qn) converges so the martingale Wn := m−nZn
converges in L2 and a.s. The limit W∞ is nonzero if ℓ = E[Z0] > 0 because

E
[
W∞

]
= E

[
W0

]
= E

[
Z0

]
= ℓ.

We refer to Exercise 3.28 for more details about W∞. ⊓⊔
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3.2.7. Backwards martingales. Suppose that the parameter set T is

T = −N0 =
{
0,−1,−2, . . . ,

}
In this case a T-filtration Fn, n ∈ −N0 is called a backwards filtration. We set

F−∞ :=
⋂
n≤0

Fn.

A backwards martingale (submartingale, supermartingale) is a martingale (resp. submartin-
gale, supermartingale) adapted to a backwards filtration.

Theorem 3.2.53 (Convergence of backwards submartingales). Suppose that F• = (Fn)n∈−N0

is a backwards filtration of (Ω,F,P) and X• = (Xn)n∈−N0 is F•-submartingale, i.e.,

Xn ≤ E
[
Xm

∥∥Fn ], ∀n,m ∈ −N0, n ≤ m,

and
C := inf

n≤0
E
[
Xn

]
> −∞.

Then the following hold.

(i) The family (Xn)n∈−N0 is UI.

(ii) There exists X−∞ ∈ L1(Ω,F−∞,P) such that Xn → X−∞ a.s. and L1 as n→ −∞.

Moreover
X−∞ ≤ E

[
Xn

∥∥F−∞
]
, (3.2.35)

with equality if (Xn)n∈−N0 is a martingale.

Proof. Step 1. Boundedness in L1. Observe that (X+
n ) is a submartingale and thus

E
[
X+
n

]
≤ E

[
X+

0

]
, ∀n ≤ 0.

On the other hand, there exists C ∈ R such that

E
[
Xn

]
= E

[
X+
n

]
− E

[
X−
n

]
≥ C, ∀n ≥ 0.

Hence
E
[
X−
n

]
≤ C + E

[
X+
n

]
≤ C + E

[
X+

0

]
, ∀n ≤ 0,

and consequently,
Z := sup

n≤0
E
[
|Xn|

]
<∞. (3.2.36)

Step 2. Almost sure convergence. For K ∈ N consider the (increasing) filtration

GKn := F(−K+n)∧0, n ∈ N0,

and the GKn -submartingale Y K
n = X(−K+n)∧0. Thus

Y K
0 = X−K , Y

K
1 = X−K+1, . . . , Y

K
K = X0, Y

K
K+1 = X0, . . . .

Doob’s upcrossing inequality applied to the submartingale Y K
n shows that, for any rational

numbers a < b we have

(b− a)E
[
NK([a, b], Y K)

]
≤ E

[
(X0 − a)+

]
− E

[
(X−K − a)+

]
≤ E

[
(X0 − a)+

]
≤ |a|+ E

[
|X0|

]
.

This proves that, for any rational numbers a < b, the nondecreasing sequence

K 7→ NK

(
[a, b], Y K

)
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is also bounded, and thus it has a finite limit N∞([a, b], X) as K → ∞. An obvious version of
Lemma 3.2.1 shows that Xn has an a.s. limit a.s. n→ −∞. The limit is a F−∞-measurable
random variable X−∞. Fatou’s Lemma shows that

E
[
|X−∞|

]
<∞.

Step 3. Uniform integrability. This is obvious if (Xn)n≤ is a martingale since

Xn = E
[
X0 ∥Fn

]
and the conclusion follows from Corollary 3.2.19.

In general, if (Xn)n≤0 is a submartingale, we have

E
[
Xn

]
≤ E

[
Xm

]
, ∀n ≤ m ≤ 0.

Since the sequence E
[
Xn

]
is bounded below we deduce that it has a finite limit. Thus, for any ε > 0, there exists

K = K(ε) > 0 such that

E
[
X−n

]
≥ E

[
X−K

]
−
ε

2
, ∀n ≥ K.

For n > K and a > 0 we have

E
[
|X−n|I{|X−n|>a}

]
= E

[
(−X−n)I{X−n<−a}

]
+ E

[
X−nI{X−n>a}

]
= −E

[
X−n

]
+ E

[
X−nI{X−n≥−a}

]
+ E

[
X−nI{X−n>a}

]
≤ −E

[
X−K

]
+
ε

2
+ E

[
X−nI{X−n≥−a}

]
+ E

[
X−nI{X−n>a}

]
.

Now observe that, for any H ∈ Fn, we have

X−nIH ≤ E
[
X−K

∥∥F−n

]
IH = E

[
X−KIH

∥∥F−n

]
,

so

E
[
X−nIH

]
≤ E

[
X−KIH

]
.

Hence, if H = {X−n ≥ −a}, or H = {X−n > a}, then

E
[
X−nI{X−n≥−a}

]
+ E

[
X−nI{X−n>a}

]
≤ E

[
X−KI{X−n≥−a}

]
+ E

[
X−KI{X−n>a}

]
,

and

E
[
|X−n|I{|X−n|>a}

]
≤ −E

[
X−K

]
+ E

[
X−KI{X−n≥−a}

]
+ E

[
X−KI{X−n>a}

]
+
ε

2

= E
[
|X−K |I{|X−n|≥a}

]
+
ε

2
.

From Markov’s inequality and (3.2.36) we deduce

P
[
|X−m| > a

]
≤
Z

a
, ∀m ∈ N0.

Since the family consisting of the single random variable X−K is uniformly integrable, we deduce that there exists
δ = δ(ε) > 0 such that, for any A ∈ FK satisfying P

[
A
]
< δ we have

E
[
|X−K |IA

]
<
ε

2
.

We deduce that for any a > 0 such that Z
a
< δ(ε) we have

E
[
|X−n|I{|X−n|>a}

]
≤ E

[
|X−K |I{|X−n|≥a}

]
<
ε

2
.

This proves that the family (X−n)n∈N0
is UI.

Step 4. Conclusion. Finally, observe that for any A ∈ F−∞ and any n ≤ m ≤ 0 we have
E
[
XnIA

]
≤ E

[
XmIA

]
. If we let n→ −∞ we deduce

E
[
X−∞IA

]
≤ E

[
XmIA

]
, ∀m ≤ 0, A ∈ F−∞

This is precisely the inequality (3.2.35). When (Xn) is a martingale all the above inequalities
are equalities. ⊓⊔
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Corollary 3.2.54 (Backwards Martingale Convergence). Suppose that (Gn)n∈N0 is a decreas-
ing family of σ-subalgebras of F and

Z ∈ L1(Ω,F,P).

Then the sequence E
[
Z∥Gn

]
converges a.s. and L1 to E

[
Z∥G∞

]
, where

G∞ =
⋂
n≥0

Gn.

Proof. Apply the previous theorem to the backwards filtration Fn := G−n, n ≤ 0, and the
martingale Zn := E

[
Z∥Fn

]
, n ≤ 0. ⊓⊔

3.2.8. Exchangeable sequences of random variables. An n-dimensional random vector

X = (X1, . . . , Xn)

is called exchangeable if, for any permutation π of {1, . . . , n} the random vectors (X1, . . . , Xn)
and (Xπ(1), . . . , Xπ(n)) have identical distributions.

A sequence of random variables (Xk)k∈N is called exchangeable if for any n ∈ N the
random vector (X1, . . . , Xn) is exchangeable. One also refers to an exchangeable seqeunce as
an exchangeable process.

Equivalently, if we denote by Sn the subgroup of permutations φ of N such that φ(r) = r,
∀r > n, then the sequence (Xn)n≥1 is exchangeable if for any n ∈ N and any φ ∈ Sn the
sequences (Xn)n∈N and (Xφ(n))n∈N are identically distributed.

Example 3.2.55. (a) A sequence of i.i.d. random variables (Xn)n≥1 is exchangeable.

(b) Suppose that (µλ)λ∈Λ is a family of Borel probability measures on R parametrized by a
probability space (Λ, S,PΛ) such that, for any Borel subset B ⊂ R, the function

Λ ∋ λ 7→ µλ
[
B
]

is measurable. In other words, µ• is a random probability measure. In the language of kernels,
the function µ• : Λ → BR is a Markov kernel (Λ, S) → (R,BR).

For each λ ∈ Λ we have a product measure µ⊗nλ on Rn equipped with its natural σ-

algebra, Bn = B⊗n
R . The mixture of the family (µnλ) directed by PΛ is the measure µnΛ defined

by the averaging formula

µnΛ
[
S
]
:=

∫
Λ
µnλ
[
B
]
PΛ

[
dλ
]
, ∀B ∈ Bn.

The collection
(
µnΛ
)
n∈N forms a projective family. Kolmogorov’s existence theorem shows

that this family induces a unique probability measure µ∞Λ on RN. The random variables

Xn : R∞ → R, Xn(x1, x2, . . . ) = xn

form an exchangeable sequence. The measure µ∞Λ is called a mixture of i.i.d. directed by the
random measure µ.

For example, suppose that ν is a Borel probability measure on Λ = [0, 1]. For any p > 0
define

µp = Bin(p) = (1− p)δ0 + pδ1 ∈ Prob
(
{0, 1}

)
.
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Then we obtain the mixtures µnν ∈ Prob
(
{0, 1}n

)
defined by,

µnν
[
{ϵ1, . . . , ϵn}

]
=

(
n

k

)∫
[0,1]

(1− p)n−kpkν
[
dp
]
, k = ϵ1 + · · ·+ ϵn.

The collection µnν ∈ Prob
(
{0, 1}n

)
, n ∈ N is a projective family and thus it defines a measure

µ∞ν on {0, 1}N.
The random vector X = (X1, X2, . . . ) with distribution µ∞ defines an exchangeable

sequence of Bernoulli random variables. Observe that their common success probability is

p := P
[
Xn = 1

]
=

∫
[0,1]

pν
[
dp
]
, ∀n ∈ N.

⊓⊔

Denote by B the Borel σ-algebra of R. The groups Sn act on RN by permuting the first n
coordinates and we say that a function Φ : RN → R is n-symmetric if it is Sn-invariant. We
denote by Sn ⊂ BN the sigma-subalgebra generated by the n-symmetric measurable functions
Φ : RN → R. Equivalently,

S ⊂ Sn⇐⇒σ(S) = S, ∀σ ∈ Sn.

We set

S∞ :=
⋂
n≥1

Sn ⊂ BN.

We will refer to S∞ as the σ-algebra of permutable or exchangeable events associated to the
exchangeable sequence (Xn)n∈N. Note that S∞ ⊃ T∞, where T∞ denotes the tail σ-algebra
of the coordinate sequence Xn : RN → R,

Xn

(
x1, x2, . . .

)
= xn, n ∈ N.

It turns out that exchangeable sequences have a rather nice structure.

Theorem 3.2.56 (de Finetti). Suppose that X := (Xn)n∈N is an exchangeable sequence of
integrable random variables defined on the same probability space (Ω,F,P). Set

Sn := X−1Sn, ∀n ∈ N ∪ {∞}.

Then the following hold.

(i) The random variables (Xn)n≥1 are conditionally independent given S∞.

(ii) The random variables (Xn)n≥1 are identically distributed given S∞, i.e., there exists
a negligible subset N ∈ F such that, on Ω \N

P
[
Xi ≤ x ∥ S∞

]
= P

[
Xj ≤ x ∥ S∞

]
, ∀i, j ∈ N, ∀x ∈ R.

(iii) The empirical means

X1 + · · ·+Xn

n

converge a.s. and L1 to E
[
X1 ∥ S∞

]
.
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Proof. We follow the presentation in [98]. Without any loss of generality we can assume
that (Ω,F) = (RN,BN) and Xn(x1, x2, . . . , ) = xn. In this case Sn = Sn. Observe that the
exchangeability condition implies that the random variables Xn are identically distributed.
Suppose that f : R → R is a measurable function such that f(X1) ∈ L1. We claim that

∀k ∈ N,
1

n

(
f(X1) + · · ·+ f(Xn)

)
= E

[
f(Xk)∥Sn

]
(3.2.37)

Note that Sn = X−1(Bn), where Bn is the σ-subalgebra of BN consisting of Sn-invariant
subsets. In particular, a function g : Ω → R is Sn-measurable iff there exists an n-symmetric
function Φ such that g = Φ(X).

Let A ∈ Sn and choose an n-symmetric function Φ such that IA = Φ(X). Then, for
1 ≤ j ≤ n we have

E
[
f(Xj)Φ(X)

]
= E

[
f(Xj)Φ(Xj , X2, . . . , Xj−1, X1, Xj+1, . . . )

]
= E

[
f(X1)Φ(X)

]
,

so that

E
[
f(X1)IA

]
= E

[
f(X1) + · · ·+ f(Xn)

n
IA

]
= E

[
f(Xj)Φ(X)

]
.

The equality (3.2.37) follows by observing that f(X1) + · · ·+ f(Xn) is Sn-measurable.

The convergence theorem for backwards martingales (Corollary 3.2.54) shows that the
empirical mean

f(X1) + · · ·+ f(Xn)

n

converges a.s. and L1 to E
[
f(X1) ∥ S∞

]
. By choosing f(x) = x we obtain the statement (iii)

of Theorem 3.2.56.

By choosing f(x) = I(−∞,x] we deduce

lim
n→∞

#{j ≤ n; Xj ≤ x}
n

= F (x) := P
[
X1 ≤ x ∥ S∞

]
, (3.2.38)

a.s. and L1.

Let k ∈ N. For n ≥ k we set (n)k := n(n−1) · · · (n−k+1). Suppose that f1, . . . , fk : R → R
are bounded and measurable. The above argument generalizes to prove that for n ≥ k we
have

Ak,n :=
1

(n)k

∑
j1,...,jk

ji distinct

f1(Xj1) · · · fk(Xjk) = E
[
f1(X1) · · · fk(Xk) ∥ Sn

]
.

Using the backwards martingale convergence theorem we deduce

lim
n→∞

Ak,n = E
[
f1(X1) · · · fk(Xk) ∥ S∞

]
. (3.2.39)

Consider now

Bk,n :=
1

nk

n∑
j1,...,jk=1

f1(Xj1) · · · fk(Xjk) =

k∏
i=1

fi(X1) + · · ·+ fi(Xn)

n
.
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We deduce from (3.2.37) that

lim
n→∞

Bk,n =
k∏
i=1

E
[
fi(Xi) ∥ S∞ ∥ .

Now observe that

Ak,n −Bk,n = O
(
1/n

)
as n→ ∞,

since the contribution to Bk,n corresponding to k-tuples with ji non-distinct is O(nk−1) and

nk ∼ (n)k as n→ ∞. If we choose

fi = I(−∞,xi], 1 ≤ i ≤ k,

we deduce from (3.2.38) that

P
[
X1 ≤ x1, . . . , Xk ≤ xk ∥ S∞

]
=

k∏
i=1

P
[
Xi ≤ xi ∥ S∞

]
.

This proves (i) and (ii) of the theorem. ⊓⊔

Remark 3.2.57. Suppose that (Xn)n∈N is an exchangeable sequence of random variables
defined on the probability space (Ω,F,P). Denote by S∞ the sigma-algebra of exchangeable
events. Suppose that

Q : Ω×BR → [0, 1], (ω,B) 7→ Qω
[
B
]
.

is a regular version of of the conditional distribution PX1

[
dx ∥ S∞

]
, i.e.,

∀B ∈ BR, P
[
X1 ∈ B ∥ S∞

]
= Q□

[
B
]
, a.s..

De Finnetti’s theorem implies that

P
[
X1 ∈ B ∥ S∞

]
= lim

n→∞

1

n

n∑
k=1

IB(Xk) = P
[
Xm ∈ B ∥ S∞

]
, ∀m ∈ N.

Thus the random variables (Xn) are equidistributed, conditional on S∞.

Let us show that the distribution of the sequence (Xn)n∈N is a mixture directed by the
random measure ω 7→ Qω

[
−
]
as in Example 3.2.55(b).

Indeed, for any Borel subsets B1, . . . , Bn ⊂ R we have

P
[
X1 ∈ B1, . . . Xn ∈ Bn

]
= E

[
E
[
IB1(X1) · · · IBn(Xn) ∥ S∞

] ]
(use the conditional independence given S∞)

= E
[
E
[
IB1(X1) ∥ S∞

]
· · ·E

[
IBn(Xn) ∥ S∞

] ]
= E

[
Q
[
B1

]
· · ·Q

[
Bn
] ]

=

∫
Ω
Q⊗n
ω

[
B1 × · · ·Bn

]
P
[
dω
]
.

Thus the distribution of the sequence (Xn) is a mixture of i.i.d. driven by the random distri-
bution Q. ⊓⊔

The σ-algebra S∞ ⊂ BN of permutable events of an exchangeable sequence (Xn)n∈N
contains its tail σ-algebra T∞. It turns out that they are not so different. We have the
following general result.
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Theorem 3.2.58 (Hewitt-Savage). Suppose that (Xn)n∈N is an exchangeable sequence of
random variables. Then the P-completion of S∞ coincides with the completion of the tail T∞.

Proof. We follow the approach in [33, Sec.7.3,Thm. 4]. Denote by S∗∞ and T∗
∞ the comple-

tions of S∞ and respectively T∞. We have

lim
n→∞

1

n

n∑
k=1

1{Xk≤x} = P
[
X1 ≤ x ∥ S∞

]
.

Clearly the limit in the left-hand side is T∞-measurable since it is not affected by changing
finitely many of the random variables. Hence

P
[
X1 ≤ x ∥ S∞

]
= P

[
X1 ≤ x ∥T∞

]
= P

[
X1 ≤ x ∥T∗

∞
]
. (3.2.40)

Similarly, for any x1, . . . , xn ∈ R, the random variable
n∏
k=1

P
[
Xk ≤ xk ∥ S∞

]
is T∞-measurable. Hence, for any S ∈ S∞ we have

P
[
S ∩

n⋂
k=1

{Xk ≤ xk}
∥∥T∞

]
= E

[
IS ·

n∏
k=1

P
[
Xk ≤ xk ∥ S∞

] ∥∥T∞

]
= E

[ n∏
k=1

P
[
Xk ≤ xk ∥ S∞

]
∥T∞

]
P
[
S ∥T∞

]
(3.2.40)
=

n∏
k=1

P
[
Xk ≤ xk ∥T∞

]
P
[
S ∥T∞

]
.

Thus S∞ and X1, . . . , Xn are conditionally independent given T∞ so S∞ and (Xn)n∈N are
conditionally independent given T∞. Since S∞ ⊂ σ

(
Xn, n ∈ N

)
we deduce that for any

S ∈ S∞ is conditionally independent of itself given T∞, i.e.,

P
[
S ∥T∞

]2
= P

[
S ∥T∞

]
.

Hence P
[
S ∥T∞

]
∈ {0, 1}, ∀S ∈ S∞. Set FS := P

[
S ∥T∞

]
. This 0 − 1 valued random

variable is T∞-measurable so there exists T = T (S) ∈ T∞ such that FS = IT . We have

P
[
S ∩ T

]
= E

[
ISIT

]
= E

[
FSIT

]
= E

[
IT
]
= P

[
T
]
.

Pn the other hand,

P
[
S
]
= E

[
FS
]
= E

[
IT
]
= P

[
T
]
.

Hence T \ S = T \ (T ∩ S) is negligible. This concludes the proof. ⊓⊔

Remark 3.2.59. For different proofs of Theorem 3.2.58 we refer to [1, Cor.(3.10)] or [127,
Thm. VIII.T-3]. In [136], the completion of S∞ is shown to coincide with the sigma-algebra
of shift-invariant events; see Definition 5.1.3 and Remark 5.1.4(b). ⊓⊔

Observe that a sequence of i.i.d. random variables (Xn)n≥1 is exchangeable. The Kol-
mogorov 0-1 law and the above proposition imply the following result.

Theorem 3.2.60 (Hewitt-Savage 0-1 Law). If (Xn)n≥1 is a sequence of iid random variables
and A ∈ S∞, then P

[
A
]
∈ {0, 1}. ⊓⊔



3.2. Limit theorems: discrete time 333

For a brief and elementary proof of the above result we refer to [65, Sec. IV.6].

Corollary 3.2.61 (The Strong Law of Large Numbers). Suppose that (Xn)n∈N is a sequence
of i.i.d. integrable random variables. Then

X̄n :=
1

n

(
X1 + · · ·+Xn

)
converges a.s. and L1 to E

[
X1

]
.

Proof. From de Finetti’s Theorem 3.2.56 we deduce that X̄n converges a.s. and L1 to
E
[
X1 ∥ S∞

]
. Theorem 3.2.58 implies that E

[
X1 ∥ S∞

]
= E

[
X1 ∥T∞

]
and Kolmogorov’s 0-1

theorem shows that E
[
X1 ∥T∞

]
= E

[
X1

]
. ⊓⊔

Theorem 3.2.62 (de Finneti). Suppose that
(
Xn : (Ω,F,P) → {0, 1}

)
n∈N is an exchangeable

sequence of Bernoulli random variables. Set

S := lim
n→∞

1

n

(
X1 + · · ·+Xn

)
.

Then

S = P
[
X1 = 1 ∥ S∞

]
, (3.2.41a)

P
[
X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0 ∥S

]
= Sk(1− S)n−k, (3.2.41b)

P
[
X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0

]
= E

[
Sk(1− S)n−k

]
. (3.2.41c)

In particular, the moment generating function of S is

E
[
etS
]
=
∑
n≥0

P
[
X1 = · · · = Xn = 1

] tn
n!
.

Proof. Using de Finetti’s theorem 3.2.56 we deduce that S = E
[
X1 ∥ S∞

]
. Observe that

X1 = I{X1=1} so that S = E
[
X1 ∥ S∞

]
= E

[
I{X1=1} ∥ S∞

]
= P

[
X1 = 1 ∥ S∞

]
.

Note that 0 ≤ S ≤ 1 a.s and

1− S = E
[
1− I{X1=1} ∥ S∞

]
= P

[
Xn = 0 ∥ S∞

]
.

Then, since X1, . . . , Xn are conditionally i.i.d. given S∞, we have

P
[
X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0 ∥ S∞

]
= P

[
X1 = 1 ∥ S∞

]kP[X1 = 0 ∥ S∞
]n−k

= Sk(1− S)n−k.

Since S is S∞-measurable we have

P
[
X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0 ∥S

]
= E

[
P
[
X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0 ∥ S∞

] ∥∥S ]
= E

[
Sk(1− Sk) ∥S

]
= Sk(1− Sk).

Clearly,

P
[
X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0

]
= E

[
Sk(1− S)n−k

]
.

⊓⊔
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Remark 3.2.63. If we denote by PS the distribution of S we deduce

P
[
X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0

]
=

∫ 1

0
sk(1− s)n−kPS

[
ds
]
.

For a more elementary proof of this equality we refer to[65, Sec. VII.4]. ⊓⊔

Example 3.2.64 (Polya’s urn revisited). We want to conclude this introduction to exchange-
ability with an application to Polya’s urn problem introduced in Example 3.1.9. We recall
this process.

We start with an urn containing r > 0 red balls and g > 0 green balls. At each moment
of time we draw a ball uniformly likely from the balls existing at that moment, we replace
it by c + 1 balls of the same color, c ≥ 0. Denote by Rn and Gn the number of red and
respectively green balls in the urn after the nth draw. As we have seen in Example 3.1.9 the
ratio of red balls

Zn =
Rn

Rn +Gn
=

Rn
r + g + cn

is a bounded martingale and thus it has an a.s. and L1 limit Z∞. We will determine this
limit using de Finetti’s theorem. We discuss only the nontrivial case c > 0.

Introduce the {0, 1}-valued random variables (Xn)n≥1 where Xn = 1 if the n-drawn ball
is red and Xn = 0 if it is green. Then

Rn = r + cSn, Sn := X1 + · · ·+Xn,

and we deduce that

lim
n→∞

cSn
cn

= lim
n→∞

Rn
Rn +Gn

= Z∞.

Let us observe that the sequence (Xn)n≥1 is exchangeable. We prove by induction that
(X1, . . . , Xn) is exchangeable. For n = 1 the result is trivial.

Let n > 1 and ϵ1, . . . , ϵn ∈ {0, 1}. We denote by rk and gk the number of red balls and
respectively green balls after the k-th draw. We deduce

P
[
X1 = ϵ1, . . . , Xn = ϵn

]
=


∏n

k=1

(
ϵkrk−1+(1−ϵk)gk−1

)∏n
k=1(r+g+(k−1)c)

, c > 0,

zk0 (1− z0)
n−k, c = 0,

,

where z0 = Z0 = r
r+g . When c > 0 the denominator above is independent of {ϵ1, . . . , ϵn}.

We set Sn := ϵ1 + · · ·+ ϵn and we rewrite the numerator in the form

n∏
k=1

(
ϵkrk−1 + (1− ϵk)gk−1

)
=

Sn∏
i=1

(
r + c(i− 1)

) n−Sn∏
j=1

(
g + c(j − 1)

)
.

The last expression only depends on Sn which is obviously a symmetric function in the
variables ϵ1, . . . , ϵn. If c = 0, then this expression is equal to 0.

When c > 0, we set

ρ :=
r

c
, γ :=

g

c
,
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and we deduce

P
[
X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0

]
=

∏k−1
i=0 (ρ+ i)

∏n−k−1
j=0 (γ + j)∏n−1

k=0(r + γ + k)

=
Γ(ρ+ γ)

Γ(ρ)Γ(γ)
· Γ(ρ+ k)Γ(γ + n− k)

Γ(ρ+ γ + n)
=
B(ρ+ k, γ + n− k)

B(ρ, γ)
,

(3.2.42)

where B(x, y) denotes the Beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0
tx−1(1− t)y−1dt.

We now invoke Theorem 3.2.62. Note that

Z∞ = lim
n→∞

1

n

(
X1 + · · ·+Xn

)
= S = P

[
X1 = 1 ∥ S∞

]
is a [0, 1]-valued random variable and (3.2.41c) with k = n shows that, for any n ≥ 0, we
have ∫ 1

0
znPZ∞

[
dz
]
= E

[
Zn∞

]
= P

[
X1 = · · · = Xn = 1

]

(3.2.42)
=


B(ρ+n,γ)
B(ρ,γ) , c > 0,

zn0 , c = 0

=


∫ 1
0 z

n z
ρ−1(1−z)γ−1

B(ρ,γ) dz, c > 0,

∫ 1
0 s

nδz0
[
dz
]

c = 0,

where δz0 is the Dirac measure concentrated at z0. Hence

∫ 1

0
znPZ∞

[
dz
]
=


∫ 1
0 z

n z
ρ−1(1−z)γ−1

B(ρ,γ) dz, c > 0,

∫ 1
0 z

mδz0
[
dz
]
, c = 0, ∀n ≥ 0.

Since the probability measures on [0, 1] are uniquely determined by their momenta (see Corol-
lary 1.3.21) we deduce

PZ∞

[
dz
]
=


zρ−1(1−z)γ−1

B(ρ,γ) dz, c > 0

δz0
[
dz
]
, c = 0.

The distribution in the case c > 0 is the Beta distribution with parameters ρ, γ discussed in
Example 1.3.36. ⊓⊔

3.3. Continuous time martingales

The study of martingales parametrized by T = [0,∞) faces a few fundamental technical
difficulties stemming from the fact that the space of parameters is not countable. To deal
with these issues we need to introduce several new concepts.
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3.3.1. Generalities about filtered processes. Suppose that (Ω,F,P) is a probability
space and F• = (Ft)t≥0 bis a filtration of sigma-subalgebras of S. We denote by Proc(F•)
the collection of random processes (parametrized by T) that are adapted to the filtration F•.
If no confusion is possible, we will use the simpler notation Proc when referring to adapted
processes.

A function f : [0,∞) → R is called an R-function4 if it is right continuous with left limits.
It is called an L-function5 if it is left continuous with right limits.

Definition 3.3.1. Let X• =
{
Xt : (Ω,F,P) → R

}
t∈[0,∞)

be a random process, not neces-

sarily adapted to the filtration F•.

(i) We say that the random process X• is measurable if the map

X : [0,∞)× Ω → R, (t, ω) 7→ Xt(ω)

is measurable with respect to the σ-algebra B[0,∞) ⊗ F.

(ii) We say that the random process X• is progressively measurable or progressive (with
respect to the filtration F•) if for any t > 0, the map

[0, t]× Ω ∋ (s, ω) 7→ Xt(ω) ∈ R

is B[0,t]⊗Ft measurable, where B[0,t] denotes the σ-algebra of Borel subsets of [0, t].

(iii) A subset A ⊂ [0,∞)× Ω is called progressive if the associated process

IA : [0,∞)× Ω → R

is progressive.

(iv) We say that the adapted random process X• is an R-process (resp. L-process) if
there exists a negligible subset N ⊂ Ω such that, for any ω ∈ Ω \N , the function
T ∋ t 7→ Xt(ω) is and R-function (resp. L-function).

⊓⊔

Remark 3.3.2. The progressive subsets of [0,∞)×Ω form a σ-subalgebra of B(R)⊗F that
we denote by Fprog. Observe that a process is progressively measurable if and only if is is
Fprog-measurable. For this reason we will denote by Proc(Fprog) or Procprog the collection of
progressive processes.

An F•-progressive process is also adapted to the filtration F• so

Proc(Fprog) ⊂ Proc(F•). ⊓⊔

Proposition 3.3.3. Suppose that X• ∈ Proc(F•) is either an R-process or an L-process.
Then X• is a progressive process.

Proof. Assume X is an R-process. The case of L-processes is similar. Fix t ≥ 0, For each
n ∈ N, we subdivide the interval [0, t] into n intervals of the same size. For n ∈ N, define

Xn : [0, t]× Ω → R, Xn
s (ω) =

{
Xkt/n(ω), s ∈ [ (k − 1)t/n, kt/n), 1 ≤ k ≤ n,

Xt(ω), s = t.

4A.k.a. cadlag function, continue à droite limite à gauche.
5A.k.a. caglad function, continue à gauche limite à droite.
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Since X• is an R-process we deduce that there exists a negligible subset N ⊂ Ω such that

lim
n→∞

Xn
s (ω) = Xs(ω), ∀s ∈ [0, t], ω ∈ Ω \N.

Clearly the function Xn : [0, t] × Ω → R is B[0,t] ⊗ Ft-measurable. It follows that the a.s.
limit X : [0, t]× Ω → R is also B[0,t] ⊗ Ft-measurable, ∀t ≥ 0. ⊓⊔

We have the following nontrivial result, [34].

Theorem 3.3.4 (Chung-Doob). Suppose that

X• =
{
Xt : (Ω,F,P) → R

}
t∈[0,∞)

is a measurable process adapted to the filtration F•. Then X• admits a progressive modifica-
tion. ⊓⊔

Definition 3.3.5. Fix a filtration F• = (Ft)t≥0 of the probability space (Ω,F,P).

(i) An F•-stopping time is a random variable T : Ω → [0,∞] such that{
T ≤ t

}
∈ Ft, ∀t ≥ 0.

(ii) An F•-optional time is a random variable T : Ω → [0,∞] such that{
T < t

}
∈ Ft, ∀t > 0.

(iii) If T : Ω → [0,∞] is a stopping time, then the past before T is collection FT ⊂ F∞
consisting of the sets F ∈ F satisfying the property F ∩ {T ≤ t} ∈ Ft, ∀t ≥ 0.

⊓⊔

Lemma 3.3.6. For any stopping time T adapted to the filtration F• the collection FT is a
σ-algebra. ⊓⊔

The proof is left to the reader as an exercise.

Lemma 3.3.7. Any stopping time T is an optional time.

Proof. Indeed, {
T < t

}
=
⋃
n≥0

{
T ≤ t− 1/n

}
,

and
{
T ≤ t− 1/n

}
∈ Ft−1/n ⊂ Ft. ⊓⊔

Definition 3.3.8. Fix a probability space (Ω,F,P) and a filtration F• = (Ft)t≥0 of F. We
set

Ft+ :=
⋂
s>t

Fs, t ≥ 0.

(i) We say that the filtration F• = (Ft)t≥0 right-continuous if

Ft = Ft+, ∀t ≥ 0.

(ii) We say that the filtration Ft is P-complete if the probability space (Ω,F,P) is P-
complete6 and the collection N ⊂ F of P-negligible events is contained in Ft, ∀t ≥ 0

6Recall that this means that any set contained in a P-null subset is measurable.
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(iii) We say that the filtration Ft satisfies the usual conditions (or that it is usual) if it
is both right-continuous and P-complete.

⊓⊔

Remark 3.3.9. If (Ft)t≥0 is a filtration of the complete probability space (Ω,F,P), then the

usual augmentation of (Ft) is the minimal filtration (F̂t) containing (Ft) and satisfying the
usual conditions. More precisely if N ⊂ F is the collection of probability zero events, then

F̂t =
⋂

s∈(t,∞)

σ(N,Fs). ⊓⊔

Proposition 3.3.10. Consider a random variable T : Ω → [0,∞]. Then the following
statements are equivalent.

(i) T is an optional time for (Ft).

(ii) T is a stopping time for (Ft+).

In particular, if Ft is right-continuous, then T is a stopping time if and only if it is an
optional time.7 ⊓⊔

Example 3.3.11. Suppose that (Xt)t≥0 is a process adapted to F• and Γ ⊂ R. The (Γ-)
début time of (Xt) is the function

DΓ : Ω → [0,∞], DΓ(ω) = inf
{
t ≥ 0; Xt(ω) ∈ Ω

}
,

and the (Γ-)hitting time of (Xt) is the function

HΓ : Ω → [0,∞], HΓ(ω) = inf
{
t > 0; Xt(ω) ∈ Ω

}
.

The following facts are not hard to prove; see [92, Lemma 9.6], [110, Prop. 3.9].

(i) If Γ is open, and the paths of Xt are right continuous, then the début time DΓ is a
stopping time of (Xt), while the hitting time HΓ is an optional time.

(ii) If Γ is closed, and the paths of Xt are continuous, then the début time DΓ is a
stopping time of (Xt), while the hitting time HΓ is an optional time.

We deduce from the above that if the filtration Ft is right-continuous and the paths of
(Xt) are continuous, then both DΓ and HΓ are stopping times if Γ is either open or closed.

⊓⊔

If the filtration F• satisfies the usual conditions, then a much more general result is true.
More precisely, we have the following highly nontrivial result of Dellacherie and Meyer [44,
Thm. IV.50].

Theorem 3.3.12 (Début Theorem). Suppose that the filtration F• satisfies the usual condi-
tions and (Xt)t≥0 is an F•-progressive process. Then, for any Borel subset Γ ⊂ R, the début
time DΓ is a stopping time. ⊓⊔

We list below a few elementary properties of stopping times.

7This settles an inconsistency in the existence literature. Many authors refer to stopping times as optional times,
while our optional times are sometimes referred to as weakly optional times. When the filtration is right continuous all

these terms refer to the same concept, that of stopping time.
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Proposition 3.3.13. Fix a filtered probability space (Ω,F•,P).

(i) If T is a stopping time, then T is also FT -measurable.

(ii) If S is a stopping time and T is an FS-measurable random variable such that T ≥ S,
then T is also a stopping time and FS ⊂ FT .

(iii) Suppose that S, T are stopping times. Then S∧T and S∨T are also stopping times
and

FS∨T = FS ∩ FT .

(iv) An increasing limit of stopping times is a stopping time while a decreasing limit of
stopping times is an optional time.

(v) Suppose that T is a stopping time. A function{
T <∞

}
∋ ω 7→ Y (ω) ∈ R

is FT -measurable if and only if, ∀t ≥ 0, the restriction of Y to
{
T ≤ t

}
is Ft-

measurable.

Proof. We prove only (i). The rest are left to the reader as an exercise. To prove that the
sublevel set {T ≤ c} is measurable we have to show that for any t ≥ 0 the intersection

{T ≤ c} ∩ {T ≤ t} = {T ≤ t ∧ c}

is Ft-measurable. This is a consequence of the fact that T is compatible with the filtration
Ft. ⊓⊔

Definition 3.3.14. Fix a filtered probability space (Ω,F•,P). Given a random process
(Xt)t≥0 and an F•-stopping time T : Ω → [0,∞] we denote by XT the random variable

I{T (ω)<∞} = XT (ω) =

{
XT (ω)(ω), T (ω) <∞
0, T (ω) = ∞

.

⊓⊔

The proof of the following result is left to the reader as an exercise.

Proposition 3.3.15. If (Xt)t≥0 is a progressively measurable random process and T is a
stopping time, then the random variable XT is FT -measurable. ⊓⊔

3.3.2. The Brownian motion as a filtered process. Let us illustrate the concepts intro-
duced in the previous subsection on the stochastic process defined by the Brownian motion.
We begin by describing some elementary symmetries of the Brownian motion.

Proposition 3.3.16. Suppose that B is a Brownian motion. Then the following hold.

Symmetry. The stochastic process −B is also a Brownian motion.

Time rescaling. For any c > 0 the rescaled Brownian motion

Bc
t :=

1√
c
Bct

is another standard standard Brownian motion.
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Time inversion. The stochastic process

Xt :=

{
tB1/t, t > 0,

0, t = 0,

is another standard Brownian motion.

Proof. The statements (i) and (ii) are immediate. The last statement concerning time
inversion requires a bit more work. We follow the approach in the proof of [37, Thm.
VIII.1.6].

Observe that first Xt is a Gaussian process with mean zero and covariances

E
[
XsXt

]
= min(s, t), ∀s, t ≥ 0.

Thus it suffices to show that (Xt) is a.s. continuous, i.e.,

lim
t↘0

Xt = 0 a.s..

Equivalently, we will show that

lim
t→∞

1

t
Bt = 0 a.s..

Note that for n ∈ N and t ∈ (n, n+ 1] we have

1

t
|Xt| ≤

1

n

∣∣Xn + (Xt −Xn)
∣∣ ≤ 1

n

∣∣Xn

∣∣+ 1

n
sup
s∈[0,1]

∣∣Xn+s −Xn

∣∣
(the process (Xt) is a.s. continuous on (0,∞))

=
1

n

∣∣Xn

∣∣+ 1

n
sup

s∈[0,1]∩Q

∣∣Xn+s −Xn

∣∣.
The Strong Law of Large Numbers shows that

lim
n→∞

1

n
Xn = 0 a.s..

For each m = 1, 2, . . . ,, the process

Dn
k = Xn+k/m −Xn =

m∑
j=1

(Xn+ j
m
−Xn+ j−1

m
),

is a martingale since the above summands have mean zero and are independent. Applying
Doob’s maximal inequalities (3.2.32) to the discrete submartingales

Y m =
{ ∣∣Dm

n

∣∣2, 0 ≤ k ≤ m
}
, m = 1, 2, . . . ,

we deduce that, for any ε > 0,

P
[

sup
s∈[0,1]

∣∣Xn+s −Xn

∣∣ > nε
]
= P

[
sup

s∈[0,1]∩Q

∣∣Xn+s −Xn

∣∣2 > n2ε2
]

≤ 1

n2ε2
E
[
|Xn+1 −Xn|2

]
=

1

n2ε2
.

Since
∑

n≥1
1
n2 <∞ we deduce from the Borel-Cantelli Lemma that

lim
n→∞

1

n
sup
s∈[0,1]

∣∣Xn+s −Xn

∣∣ = 0, a.s.

⊓⊔
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Theorem 3.3.17. Suppose that B : [0,∞) × Ω → R is a Brownian motion and (Ω,F,P) is
a complete probability space. Let N denote the collection of P-negligible events. We set

Ft = σ
(
N, Bs, 0 ≤ s ≤ t

)
.

Then the filtration (Ft)t≥0 satisfies the usual conditions.

Proof. We follow the approach in the proof of [37, Thm. VII.3.20]. It suffices to prove that
(Ft) is right-continuous, i.e.,

Ft0 =
⋂
t>t0

Ft.

We set

G = Ft0 , Gn = σ
(
Bt0+2−n −Bt0+2−n−1

)
, n ∈ N.

Clearly the σ-algebras G,G1, . . . , are independent. Set

Tn := σ(G,Gn+1,Gn+2, . . . ), T∞ :=
⋂
n∈N

Tn.

From Corollary 3.2.24 we deduce that Ft0 = T∞. On the other hand, T∞ ⊃ Ft0+ so
Ft0+ = Ft0 . ⊓⊔

Corollary 3.3.18 (Blumenthal’s 0-1 law). If H ∈ F0+ then, P
[
H
]
∈ {0, 1}. ⊓⊔

Proposition 3.3.19. Suppose that (Bt)t≥0 is a standard Brownian motion and

Ft = σ
(
Bs, 0 ≤ s ≤ t

)
.

Then the following hold.

(i) For any ε > 0 we have

P
[

sup
s∈[0,ε]

Bs > 0
]
= P

[
inf

s∈[0,ε]
Bs < 0

]
= 1.

(ii) For any a ∈ R we set

Ta := inf
t≥0

Bt = a.

Then

P
[
Ta <∞

]
= 1, ∀a ∈ R.

In particular, a.s.,

lim sup
t→∞

Bt = ∞, lim inf
t→∞

Bt = −∞.

Proof. (i) For any c ̸= 0, the rescaled process

Bc(t) :=
1

c
Bc2t, t ≥ 0

is also a standard Brownian motion. Note that since the paths of Bt are continuous we have

sup
t∈[0,1]

Bt = sup
t∈Q∩[0,1]

Bt.

Thus the set {
ω; sup

t∈[0,1]
Bt(ω) > 0

}



342 3. Martingales

is a Brownian event. The discussion in Remark 2.5.7 shows that

P
[

sup
t∈[0,1]

Bt > 0
]
= P

[
sup
t∈[0,1]

Bc
t > 0

]
, ∀c ̸= 0. (3.3.1)

If we let c = −1 in the above equality we deduce,

P
[

sup
t∈[0,1]

Bt > 0
]
= P

[
inf
t∈[0,1]

Bt < 0
]
. (3.3.2)

If we let c =
√
n, n ∈ N we deduce

P
[

sup
t∈[0,1]

Bt > 0
]
= P

[
sup

t∈[0,1/n]
Bt > 0

]
, ∀n > 0. (3.3.3)

We denote by En the Brownian event supt∈[0,1/n]Bt > 0. Clearly

E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ · · ·

and En ∈ F1/n. We deduce from (3.3.3) that P
[
En
]
= P

[
E1

]
, ∀n. If we set

E∞ :=
⋂
n

En,

then we deduce that E∞ ∈ F0+ and P
[
E∞

]
= P

[
E1

]
. Blumenthal’s 0-1 theorem implies

that

P
[
En
]
= P

[
E∞

]
∈
{
0, 1

}
.

Now observe that

P
[
E1

]
⊂ P

[
B1/2 > 0

]
=

1

2
> 0.

Hence

P
[

sup
t∈[0,1/n]

Bt > 0
]
= P

[
inf

t∈[0,1/n]
Bt < 0

]
= 1, ∀n ∈ N. (3.3.4)

This shows that a path of the Brownian motion oscillates wildly.

(ii) We have

1 = P
[

sup
0≤s≤1

Bs > 0
]
= lim

δ↘0
P
[

sup
0≤s≤1

Bs > δ
]
,

where the second is an increasing limit. The rescaling invariance of the Brownian motion
implies

P
[

sup
0≤s≤1

Bs > δ
]
= P

[
sup

0≤s≤1/δ2
Bδ
s > 1

]
.

We deduce

P
[
sup
s≥0

Bs > 1
]
= lim

δ↘
P
[ ∑

0≤s≤1/δ2

Bδ
s > 1

]
= 1.

Another rescaling argument shows that

P
[
sup
s≥0

Bs > M
]
= 1, ∀M > 0.

Replacing B by −B we deduce

P
[
inf
s≥0

Bs < −M
]
= 1, ∀M > 0.

The conclusion (ii) is now obvious. ⊓⊔
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Remark 3.3.20. The above result shows that, with probability 1 the Brownian motion has a
zero on any arbitrarily small interval [0, ε]. As a matter of fact, the set of zeros of a Brownian
motion is a large set: its Hausdorff dimension is a.s. 1

2 , [130, Thm. 4.24]. ⊓⊔

Let us observe that if (Bt)t≥0 is a Brownian motion, then for any t0 ≥ 0, the process(
Bt+t0 −Bt0

)
t≥0

is also a Brownian motion, independent of σ
(
Bs, 0 ≤ s ≤ t0

)
. We will refer to this

elementary fact as the simple Markov property. We want to show that a stronger result holds
where t0 is allowed to be random.

Theorem 3.3.21 (The strong Markov property). Suppose that (Bt)t≥0 is a standard Brow-
nian motion and T is a stopping time with respect to the filtration Ft = σ(Bs, 0 ≤ s ≤ t)
such that P

[
T <∞

]
> 0. For every t ≥ 0 we set

B
(T )
t := I{T<∞}

(
BT+t −BT

)
.

Then, with respect to the probability measure P
[
−
∣∣T < ∞], the process B

(T )
t is a standard

Brownian motion, independent of FT .

Proof. We follow the approach in [110, Thm. 2.20].

Lemma 3.3.22. Fix A ∈ FT . Let F : Rp → R be a bounded continuous function. Then,
∀t1, . . . , tp ≥ 0, we have

E
[
IAIT<∞F

(
B

(T )
t1
, . . . , B

(T )
tp

) ]
= P

[
A ∩ {T <∞}

]
E
[
F
(
Bt1 , . . . , Btp

) ]
(3.3.5)

⊓⊔

Let us show first that conclusions of theorem follow from the above lemma. Set S∞ := {T <∞}
Assume first that P

[
S∞

]
= 1. Then (3.3.5) reads

E
[
IAF

(
B

(T )
t1
, . . . , B

(T )
tp

) ]
= P

[
A
]
E
[
F
(
Bt1 , . . . , Btp

) ]
(3.3.6)

Indeed, if we set A = Ω in (3.3.6) we deduce that B
(T )
t is a Brownian motion. In particular,

for every choice of t1, . . . , tp ≥ 0, the vectors(
B

(T )
t1
, . . . , B

(T )
tp

)
and

(
Bt1 , . . . , Btp

)
have the same distribution. Next, (3.3.6) implies that for every choice of t1, . . . , tp ≥ 0 the

vector (B
(T )
t1
, . . . , B

(T )
tp ) is independent of FT .

If P
[
S∞

]
< 1, t and we denote by ES∞ the expectation with respect to the probability

measure P
[
−
∣∣S∞ ], then (3.3.5) implies

ES∞

[
IAF

(
B

(T )
t1
, . . . , B

(T )
tp

) ]
= P

[
A
∣∣E∞

]
E
[
F
(
Bt1 , . . . , Btp

) ]
.

Arguing as before we reach the conclusions of Theorem 3.3.21 assuming the validity of Lemma
3.3.22. ⊓⊔
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Proof of Lemma 3.3.22. For the clarity of exposition we discuss only the case P
[
S∞

]
= 1.

The case P
[
S∞

]
< 1 requires no new ideas. The details can be safely left to the reader.

For every t ≥ 0 and any n ∈ N we denote by [t]n the smallest rational number of the form
k/2n and ≥ t. Note that the quantities [T ]n are stopping times: stopping the process at [T ]n
corresponds to stopping the process at the first time of the form k/2n after T . Then

lim
n→∞

[T ]n = T

and
F
(
B

(T )
t1

)
, . . . , B

(T )
tp

)
= lim

n→∞
F
(
B

([T ]n)
t1

, . . . , B
([T ]n)
tp

)
.

From the Dominated Convergence theorem we deduce that

E
[
IAF

(
B

(T )
t1
, . . . , B

(T )
tp

) ]
= lim

n→∞
E
[
IAF

(
B

([T ]n)
t1

, . . . , B
([T ]n)
tp

) ]
= lim

n→∞

∞∑
k=0

E
[
IAI(k−1)2−n<T≤k2−nF

(
B

([T ]n)
t1

, . . . , B
([T ]n)
tp

) ]
.

Observe now that if A ∈ FT , then the event

Ak,n := A ∩
{
(k − 1)2−n < T ≤ k2−n

}
= A ∩

{
T ≤ k2−n

}
} ∩

{
T > (k − 1)2−n

}
is Fk2−n-measurable.

From the simple Markov property of the Brownian motion we deduce

E
[
IAk,n

F
(
B

([T ]n)
t1

, . . . , B
([T ]n)
tp

) ]
= E

[
IAk,n

F
(
Bt1+k2−n −Bk2−n , . . . , Btp+k2−n −Bk2−n

) ]
= P

[
Ak,n

]
E
[
F
(
Bt1 , . . . , Btp

) ]
.

Observing that
n∑
k=0

P
[
Ak,n

]
= P[A]

we deduce
∞∑
k=0

E
[
IAI(k−1)2−n<T≤k2−nF

(
B

([T ]n)
t1

, . . . , B
([T ]n)
tp

) ]
=

∞∑
k=0

E
[
IAk,n

F
(
B

([T ]n)
t1

, . . . , B
([T ]n)
tp

) ]
=

n∑
k=0

P
[
Ak,n

]
E
[
F
(
Bt1 , . . . , Btp

) ]
= P

[
A
]
E
[
F
(
Bt1 , . . . , Btp

) ]
.

⊓⊔

Let us present some applications application of the strong Markov property. For a ∈ R
we define the hitting time

Ta := inf
{
t > 0; Bt = a

}
.

This is a stopping time for the standard Brownian motion Bt and Proposition 3.3.19(ii) shows
that

P
[
Ta <∞

]
= 1.
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Theorem 3.3.23 (Reflection Principle). Fix a ∈ R. If (Bt)t≥0 is a standard Brownian
motion, then the process

B̃t =

{
Bt, t < Ta

2a−Bt, t ≥ Ta
(3.3.7)

is also a standard Brownian motion.

Proof. We follow the approach in [149, I.13]. Consider the processes

Yt = BtI [[0,Ta]], Zs = Bs+Ta − a, s ≥ 0.

By the strong Markov property, Z is a standard Brownian motion, independent of Y . The
process −Z is also a Brownian motion independent of Y . Thus, the processes (Y,Z) and
(Y,−Z) have the same distribution. The map

(Y, Z) 7→ φ(Y, Z) := YtI [[0,Ta]] +
(
a+ Zt−Ta

)
I ]]Ta,∞[[

produces the a continuous process which will therefore have the same law as φ(Y,−Z). Now
observe that φ(Y,Z) = B and φ(Y,−Z) = B̃. ⊓⊔

Remark 3.3.24. The above result is called the reflection principle for a simple reason. In
the region t ≥ Ta the graph of the function t→ B̃t, viewed as a curve in the Cartesian plane
with coordinates (t, x), is the reflection of the graph of Bt in the horizontal line x = a. This
reflection principle is intimately related to André’s reflection trick. . ⊓⊔

Corollary 3.3.25. Define

St := sup
u≤t

Bu.

Then, for any a, y, t ≥ 0 we have

P
[
St ≥ a,Bt ≤ a− y

]
= P

[
Bt ≥ a+ y

]
. (3.3.8)

In particular, St has the same distribution as |Bt|.

Proof. Note that St ≥ a if and only if Ta ≤ t. We have

P
[
St ≥ a,Bt ≤ a− y

]
= P

[
Ta ≤ t, Bt ≤ a− y

] (3.3.7)
= P

[
B̃t ≥ a+ y

]
(use the Reflection Principle)

= P
[
Bt ≥ a+ y

]
.

Now observe that

P
[
St ≥ a

]
= P

[
St ≥ a,Bt ≥ a

]︸ ︷︷ ︸
=P
[
Bt≥a

] +P
[
St ≥ a,Bt ≤ a

]
(3.3.8)
= 2P

[
Bt ≥ a

]
= P

[
Bt ≥ a

]
+ P

[
Bt ≤ −a

]
= P

[
|Bt| ≥ a

]
.

⊓⊔

Corollary 3.3.26. For every a > 0 the stopping time Ta has the same distribution as a2

B2
1

and has density

fa(t) =
a√
2πt3

exp
(
− a2

2t

)
I{t>0}.
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Proof. Note that

P
[
Ta ≤ t

]
= P

[
St ≥ a

]
= P

[
|Bt| ≥ a

]
= P

[
B2
t ≥ a2

]
= P

[
tB2

1 ≥ a2
]
= P

[
a2

B2
1

≤ t

]
.

The statement about fa now follows from the fact that B1 is a standard normal random
variable. ⊓⊔

3.3.3. Definition and examples of continuous time martingales. Fix a filtered prob-
ability space

(
Ω,F, (Ft)t≥0,P

)
.

Definition 3.3.27. A random process (Xt)t≥0 adapted to the filtration (Ft)t≥0 such that
Xt ∈ L1, ∀t, is called a

• martingale if,

E
[
Xt∥Fs

]
= Xs, ∀0 ≤ s < t,

• submartingale if,

E
[
Xt∥Fs

]
≥ Xs, ∀0 ≤ s < t,

• supermartingale if,

E
[
Xt∥Fs

]
≤ Xs, ∀0 ≤ s < t.

⊓⊔

Example 3.3.28 (Uniformly integrable martingales). To any integrable random variable X
we can associate the martingale Xt := E

[
X∥Ft

]
. ⊓⊔

Example 3.3.29 (Processes with independent increments). Suppose that the random process
(Zt)t≥ has independent increments, i.e., for any n ∈ N and any

0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn,

the increments

Zt1 − Zs1 , Zt2 − Zs2 , . . . , Ztn − Zsn

are independent. The process (Zt) is adapted to the natural filtration

(Ft)t≥0, Ft = σ
(
Zs, s ≤ t

)
.

We deduce that, ∀0 ≤ s < t, the increment Zt − Zs is independent of Fs so

E
[
Xt∥Fs

]
−Xs = E

[
(Xt −Xs) ∥Fs

]
= E

[
Xt −Xs

]
.

Hence

E
[
Xt − E

[
Xt∥ Fs

] ]
= Xs − E

[
Xs

]
, ∀0 ≤ s < t. (3.3.9)

Then

(i) if Zt ∈ L1, ∀t ≥ 0, then Z̃t := Zt − E
[
Zt
]
is a martingale;

(ii) if Zt ∈ L2, ∀t ≥ 0, then Yt := Z̃2
t − E

[
Z̃2
t

]
is a martingale;
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(iii) if, for some θ ∈ R, we have E
[
eθZt

]
<∞, ∀t ≥ 0, then

Xt :=
eθZt

E
[
eθZt

]
is a martingale.

The case (i) follows from (3.3.9). The case (iii) is the continuous time analogue of Example
3.1.7 and the proof is similar. To prove (ii) note that

E
[
Z̃2
t ∥Fs

]
= E

[
(Z̃s + Z̃t − Z̃s)

2 ∥Fs
]

= Z̃2
s + 2Z̃s E

[
(Z̃t − Z̃s) ∥Fs

]︸ ︷︷ ︸
=0

+E
[
(Z̃t − Z̃s)

2∥Fs
]
= Z̃2

s + E
[
(Z̃t − Z̃s)

2
]

= Z̃2
s + E

[
Z̃2
t

]
−2E

[
Z̃sZ̃t

]
+ E

[
Z̃2
s

]
= Z̃2

s + E
[
Z̃2
t

]
−2E

[
E
[
Z̃sZ̃t∥Fs

] ]
+ E

[
Z̃2
s

]
= Z̃2

s + E
[
Z̃2
t

]
−E
[
Z̃2
s

]
.

Hence

E
[
Z̃2
t − E

[
Z̃2
t

] ∥∥Fs ] = Z̃2
s − E

[
Z̃2
s

]
.

Classical examples of processes with independent increments are the Brownian motion, the
Poisson process, or more generally the Lévy processes, [37, Chap. VII].

If Bt is a 1-dimensional Brownian motion started at 0, adapted to Ft, then Bt is a normal
random variable with mean 0 and variance t, for each t > 0. The moment generating function
of Bt is

MBt(θ) = E
[
eθBt

]
= e

θ2t
2 .

We deduce from the above that

Bt, B2
t − t, eθBt− θ2

2
t

are martingales, ∀θ ∈ R. The martingale(
eθBt− θ2

2
t
)
t≥0

,

is called the exponential martingale of the Brownian motion.

Note that if we set λ := θ
√
t, and X = Bt√

t
, then

eθBt− θ2

2
t = eλX−λ2/2 (1.6.5)

=
∑
n≥0

Hn(X)
λn

n!
,

where Hn(x) is the n-th Hermite polynomial (1.6.4). We can rewrite the above equality as

eθBt− θ2

2
t =

∑
n≥0

Mn(t)
θn

n!
, Mn(t) = tn/2Hn

(
Bt/

√
t
)
.

Each of the coefficients Mn(t) is a continuous time martingale. Note that

M1(t) = Bt. M2(t) = B2
t − t.

⊓⊔
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Example 3.3.30 (New submartingales from old.). If (Xt)t≥0 is a martingale and f : R → R
is a convex function such that f(Xt) ∈ L1, ∀t ≥ 0, then

(
f(Xt)

)
t≥0

is a submartingale. If

(Xt)t≥0 is only a submartingale and additionally, f is nondecreasing, then
(
f(Xt)

)
t≥0

is a

submartingale. ⊓⊔

3.3.4. Limit theorems. Fix a filtered probability space
(
Ω, (Ft)t≥0,F,P

)
.

Definition 3.3.31. An R-(sub/super)martingale is a (sub/super)martingale (Xt)t≥0 adapted
to the filtration (Ft)t≥0 such that the paths of Xt are a.s. R-functions. ⊓⊔

Remark 3.3.32. Suppose that (Xt)t≥0 is an R-submartingale. Fix a negligible set N ⊂ Ω
such that t 7→ Xt(ω) is an R-function for any ω ∈ Ω \N. Fix a dense countable subset D of
[0,∞).

Note that for every open interval I ⊂ [0,∞) we have

sup
t∈D∩I

Xt(ω) = sup
t∈I

Xt(ω), inf
t∈D∩I

Xt(ω) = inf
t∈I

Xt(ω), ;∀ω ∈ Ω \N (3.3.10)

This shows that (Xt)t≥ is a separable process in the sense of Doob, [53, II.2]. This means
that there exist

• a countable dense subset D ⊂ [0,∞), and

• a negligible subset N ⊂ Ω,

such that, for any closed interval I ⊂ R, and any open subset O of [0,∞), the sets{
ω; Xs(ω) ∈ I, ∀s ∈ D ∩ O

}
and

{
ω; Xt(ω) ∈ I, ∀t ∈ O

}
differ by a subset of N. A dense countable subset D with the above property is called a
separability set ⊓⊔

Before we proceed investigating the properties of R-submartingales we want to understand
how restrictive is the assumption that the paths are a.s. R-functions. The proof of Theorem
3.2.53 shows that if (Xt)t≥0 is an R-submartingale, then, for any bounded set S ⊂ [0,∞) the
family (Xs)s∈S is UI. This implies that the function t 7→ E

[
Xt

]
is an R-function. We have

a more precise result, [110, Sec. 3.3], [149, II.65-67].

Theorem 3.3.33 (Doob’s regularization theorem). If the filtration (Ft)t≥0 satisfies the usual
conditions, then a submartingale (Xt)t≥0 adapted to this filtration admits an R-submartingale
modification if and only if the function t 7→ E

[
Xt

]
is right continuous. ⊓⊔

Theorem 3.3.34 (Doob’s maximal inequality). Suppose that (Xt)t≥0 is an R-submartingale.
Then, for any a, t > 0 we have

aP
[

sup
s∈[0,t]

|Xs| > a
]
≤ E

[
|X+

t

]
≤ E

[
|Xt|

]
+ E

[
|X0|

]
. (3.3.11)

Proof. For any m ∈ N we set

Dm :=
{
0,

t

m
, . . . ,

(m− 1)t

m
, t
}
, D :=

⋃
m∈N

Dm.
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The discrete Doob maximal inequality (3.2.32) implies that

aP
[

sup
s∈Dm

|Xs| > a
]
≤ E

[
|X+

t

]
and aP

[
sup
s∈D

|Xs| > a
]
≤ E

[
|X+

t

]
.

As observed in Remark 3.3.32 (X•) is a separable process so (3.3.10)

P
[
sup
s∈D

|Xs| > a
]
= P

[
sup
s∈[0,t]

|Xs| > a
]
.

⊓⊔

Theorem 3.3.35 (Doob’s Lp-inequality). Suppose that (Xt)t≥0 is an R-martingale. Then,
for any t > 0 and p > 1 we have

E
[
sup
s∈[0,t]

|Xs|p
] 1

p ≤ q∥Xt∥Lp ,
1

q
= 1− 1

p
. (3.3.12)

Proof. Argue as in the proof of Theorem 3.3.34 by relying on the separability of (X•) and
the discrete Lp-inequality (3.2.34). ⊓⊔

Theorem 3.3.36. Suppose that (Xt)t≥0 is an R-submartingale and

sup
t>0

E
[
|Xt|

]
<∞. (3.3.13)

Then there exists an integrable random variable X∞ such that

lim
t→∞

Xt = X∞ a.s..

Proof. For any m ∈ N we set set

Dm :=
1

2m
N, m ∈ N, D =

⋃
m∈N

Dm.

For any function f : [0,∞) → R, any rational numbers a < b and any S ⊂ [0∞) we denote
by N(f, S, [a, b]) the supremum of the set of integers k such that there exist

s1 < t1 < · · · sk < tk

in S such that f(si) ≤ a, f(ti) ≥ b, ∀i = 1, . . . , k.

For m ∈ N we set Nm(f, [a, b]) := N(f,Dm, [a, b]). Equivalently, Nm(f, [a, b]) is the
number of upcrossings of the strip [a, b] by the function f

∣∣
Dm

. Note that

Nm

(
X, [a, b]

)
≤ Nm+1

(
X, [a, b]

)
, ∀m,

and

N(f,D, [a, b]) = lim
m→∞

Nm

(
X, [a, b]

)
.

Doob’s upcrossing inequality (3.2.2) implies

(b− a)E
[
Nm

(
X, [a, b]

) ]
≤ sup

t>0
E
[
(Xt − a)+

]
− E

[
(X0 − a)+

]
, ∀m ∈ N.

Letting m→ ∞ we deduce from the Monotone Convergence Theorem

(b− a)E
[
N
(
X,D, [a, b]

) ]
≤ sup

t>0
E
[
(Xt − a)+

]
− E

[
(X0 − a)+

]
<∞.
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Thus N
(
X,D, [a, b]

)
<∞ a.s. so the limit

X∞ := lim
t→∞
t∈D

Xt

exists a.s. We leave the reader convince her/himself that since the process X• is separable
(see Remark 3.3.32) the limit

X∞ = lim
t→∞

Xt

exists a.s.. The boundedness assumption (3.3.13) coupled with Fatou’s lemma implies that
X∞ is integrable. ⊓⊔

The above theorem implies immediately the following continuous time counterpart of
Theorem 3.2.22.

Theorem 3.3.37 (UI martingales). Suppose that (Xt)t≥0 is an UI R-martingale. Then

X∞ = lim
t→∞

Xt

exists a.s. and L1 and

Xt = E
[
X∞∥Ft

]
, ∀t > 0. ⊓⊔

3.3.5. Sampling and stopping. Suppose that (Xt)t≥0 is an R-submartingale such that

X∞ = lim
t→∞

Xt

exists a.s.. Let T : Ω → [0,∞] be a stopping time adapted to the filtration (Ft). The optional
sampling of X• at T is the random variable

XT (ω) = IT<∞XT (ω)(ω) + IT=∞X∞(ω).

Theorem 3.3.38 (Optional sampling). Suppose that (Xt)t≥0 is an UI R-martingale and
S, T are stopping times such that S ≤ T . Then the following hold.

(i) The random variables XS , XT are integrable.

(ii) XS = E
[
XT ∥FS

]
= E

[
X∞∥FS

]
.

(iii) E[XS ] = E
[
X∞

]
= E

[
X0

]
.

Proof. We set

Sn =

∞∑
k=0

k + 1

2n
I{k2−n<S≤(k+1)2−n} +∞IS=∞,

Tn =
∞∑
k=0

k + 1

2n
I{k2−n<T≤(k+1)2−n} +∞IT=∞

Observe that Sn ≥ S, Tn ≥ T and Sn ≤ Tn, ∀n.
Let us show that Sn is FS measurable and Tn is T -measurable. In other words, we have

to show that

{Sn ≤ c} ∩ {S ≤ s} ∈ Fs, ∀c, s ≥ 0.

Note that

{S ≤ s} ∩ {Sn ≤ c} = {S ≤ s} ∩
( ⋃

(k+1)2−n≤c

{
k2−n < S ≤ (k + 1)2−n

})
∈ Fc.
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=
⋃

(k+1)2−n≤c

{
k2−n < S ≤ min

(
s, (k + 1)2−n

)}
∈ Fs.

Proposition 3.3.13(ii) now implies that Sn is a stopping time. A similar argument shows that
Tn is a stopping time. Note that

Sn ↘ S and Tn ↘ T as n→ ∞.

For n ∈ N0 set Dn = 2−nN0. For each n ∈ N0 the stochastic process

Xn :=
(
Xt

)
t∈Dn

,

is a UI discrete martingales with respect to the filtration Fn• := (Ft)t∈Dn . The above argu-
ments show that Sn and Tn are stopping times with respect to these filtrations. We deduce
from the discrete Optional Sampling Theorems 3.2.27 that

XSn = Xn
Sn

= E
[
Xn
Tn∥F

n
Sn

]
= E

[
XTn∥FSn

]
,

and

XSn = E
[
X∞∥FSn

]
, XTn = E

[
X∞∥FTn .

Now observe that since (Xt) is a.s. right continuous we have

XS = lim
n→∞

XSn and XT = lim
n→∞

XTn a.s..

The families (XSn) and (XTn) are UI so the above convergences also hold in L1. Since
FS ⊂ FSn ⊂ FTn and the conditional expectation map

E
[
− ∥FS

]
: L1(Ω, ,F,P) → L1(Ω,FS ,P)

is a contraction we deduce

XS = E
[
XS∥FS

]
= lim

n→∞
E
[
XSn∥FS

]
= lim

n→∞
E
[
XTn∥FS

]
= E

[
XT ∥FS

]
,

where the above converges are in L1. ⊓⊔

Corollary 3.3.39. Suppose that (Xt)t≥0 is an R-martingale and S, T are bounded stoping
times such that S ≤ T a.s.. Then the following hold.

(i) The random variables XS , XT are integrable.

(ii) XS = E
[
XT ∥FS

]
= E

[
X∞∥FS

]
.

Proof. Fix t0 > 0 such S, T ≤ t0 a.s.. Then the stopped processXt∧t0 is an UI R-martingale.
The conclusions now follow from Theorem 3.3.38 applied to this stopped martingale.

⊓⊔

Corollary 3.3.40 (Optional stopping). Suppose that (Xt)t≥0 is an R-martingale compatible
with the filtration (Ft)t≥0. Then the following hold.

(i) The stopped process

XT
t := XT∧t

is an R-martingale compatible with the same filtration (Ft)t≥0.
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(ii) If additionally (Xt)t≥0 is UI, then so is the stopped process and we have

XT∧t = E
[
XT ∥Ft

]
, (3.3.14)

XT = lim
t→∞

Xt a.s. and L1. (3.3.15)

Proof. We begin by proving (ii). For s < t, the stopping times s∧ T and t∧ T are bounded
and s∧ T ≤ t∧ T . The random variables Xt∧T are Ft∧T -measurable and thus Ft-measurable
since Ft∧T ⊂ Ft. To prove (3.3.14) it suffices to check that for any A ∈ Ft we have

E
[
XT IA

]
= E

[
Xt∧T IA

]
.

Decompose IA = IA∩{T≤t} + IA∩{T>t}. We have

XT IA∩{T≤t} = Xt∧T IA∩{T≤t}

so that

E
[
XT IA∩{T≤t}

]
= E

[
Xt∧T IA∩{T≤t}

]
. (3.3.16)

On the other hand, we deduce from Theorem 3.3.38 that

Xt∧T = E
[
XT ∥Ft∧T

]
.

Now observe that

A ∩ {T > t} ∈ Ft and A ∩ {T > t} ∈ FT ,

so A ∩ {T > t} ∈ Ft ∩ FT = Ft∧T . Hence

Xt∧T IA∩{T>t} = E
[
XT IA∩{T>t}∥Ft∧T

]
,

E
[
Xt∧T IA∩{T>t}

]
= E

[
XT IA∩{T>t}

]
. (3.3.17)

The desired conclusion follows by adding (3.3.16) and (3.3.17). The assertion (3.3.15) follows
from the fact that the stopped martingale XT is UI. Part (i) now follows from (ii) applied to
the sequence of UI martingales

(Xn
t )t≥0 := (Xn∧t)t≥0, n ∈ N,

Indeed, the martingales Xn are compatible with Ft and for s < t we have

E
[
Xn
T∧t∥Fs

]
= E

[
E
[
Xn
T ∥Ft

]∥∥Fs ] = E
[
Xn
T ∥Fs

]
= Xn

T∧s.

Now let n→ ∞ and observe that for n > t we have Xn
T∧t = XT∧n. ⊓⊔

Example 3.3.41. Suppose that (Bt)t≥0 is a Brownian motion started at 0 and (Ft)t≥0 is its
canonical filtration. For any a ∈ R we set

Ta := inf
{
t ≥ 0 : Bt = a

}
.

According to Proposition 3.3.19(ii), P
[
Ta <∞

]
= 1.

(a) We want to show that if a < 0 < b, then

P
[
Ta < Tb

]
=

b

b− a
, P

[
Ta > Tb

]
=

−a
b− a

. (3.3.18)

Consider the stopping time T = Ta ∧ Tb and the stopped martingale Mt = BT∧t. This
martingale is UI since |Mt| ≤ |a| ∨ |b|. We deduce

0 = E
[
M0

]
= E

[
M∞

]
= E

[
BT
]
= aP

[
Ta < Tb

]
+ bP

[
Tb < Ta].
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The equalities (3.3.18) follow by observing that the probabilities P
[
Ta < Tb

]
and P

[
Ta > Tb

]
satisfy a second linear constraint

P
[
Ta < Tb

]
+ P

[
Ta > Tb

]
= 1.

(b) For a > 0 we set

Ua := inf
{
t ≥ 0 : |Bt| = a

}
= Ta ∧ T−a.

We want to show that

E
[
Ua
]
= a2. (3.3.19)

To see this consider the martingale of Example 3.3.9(ii), Mt = B2
t − t. The stopped process

Mt∧Ua is still a martingale so

E
[
Mt∧Ua

]
= E

[
M0

]
= 0 and E

[
B2
t∧Ua

]
= E

[
t ∧ Ua

]
.

The Monotone Convergence Theorem implies that

lim
t→∞

E
[
t ∧ Ua

]
= E

[
Ua
]
.

The martingale Bt∧Ua is bounded, |Bt∧Ua | ≤ a, ∀t ≥ 0 and we deduce from the Dominated
Convergence Theorem that

E
[
Ua
]
= lim

t→∞
E
[
t ∧ Ua

]
= lim

t→∞
E
[
B2
t∧Ua

]
= E

[
B2
Ua

]
= a2.

(c) Fix a > 0. We want to compute the moment generating function of Ta. To this aim, we
consider for any λ ∈ R the martingale of Example 3.3.9(iii)

Xλ
t := exp

(
λBt −

λ2t

2

)
. (3.3.20)

For λ > 0 the stopped martingale Y λ
y = Xλ

t∧Ta is bounded thus UI and we deduce

1 = E
[
Y λ
0

]
= E

[
Y λ
∞
]
= eλaE

[
e−

λ2Ta
2
]

Replacing λ with
√
2λ we deduce

E
[
e−λTa

]
= e−a

√
2λ.

This can be alternatively verified using the distribution of Ta computed in Corollary 3.3.26.

(d) We want to compute the Laplace transform of Ua (or moment generating function).
Consider the stopped martingale Zλt := Xλ

t∧Ua
, where Xλ

t is defined as in (3.3.20). We
deduce as above that

1 = E
[
eλBUae−λ

2Ua/2
]
.

The computations in (a) show that

P
[
BUa = a

]
= P

[
BUa = −a

]
=

1

2
.

Note that

P
[
Ua ≤ u

]
= P

[
BUa = a, Ua ≤ u

]
+ P

[
BUa = −a, Ua ≤ u

]
.

Using the symmetry Bt 7→ −Bt we deduce

P
[
BUa = a, Ua ≤ u

]
= P

[
BUa = −a, Ua ≤ u

]
=

1

2
P
[
Ua ≤ u

]
= P

[
BUa = a

]
P
[
Ua ≤ u

]
= P

[
BUa = −a

]
P
[
Ua ≤ u

]
,



354 3. Martingales

proving that BUa and Ua are independent. Hence

1 = E
[
eλBUa

]
E
[
e−λ

2Ua/2
]
= cosh(λa)E

[
e−λ

2Ua/2
]
. ⊓⊔
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Exercise 3.1. Suppose that (Xn)n≥0 is a sequence of integrable random variables and (qn)n≥1

is a sequence of nonzero real numbers such that, for any n ∈ N

E
[
Xn ∥Fn−1

]
= qnXn−1, Fn−1 := σ

(
X0, . . . , Xn−1

)
.

Define Q0 = 1, Qn = q1 · · · qn, ∀n ∈ N and set Yn := 1
Qn
Xn. Prove that (Yn)n≥0 is a

martingale with adapted to the filtration
(
Fn)n≥0. ⊓⊔

Exercise 3.2. Suppose that (Xn)n≥0 is a martingale with respect to a filtration (Fn)n≥0 such
that X0 = 0 and E

[
|Xn|2

]
< ∞, ∀n. Using the sequence of differences Dn = Xn − Xn−1,

n ≥ 1 we construct two new processes, the optional quadratic variation

Qn =
n∑
k=1

D2
k

and the predictable quadratic variation

Vn =
n∑
k=1

E
[
D2
k ∥Fk−1

]
.

Prove that the processes

An = X2
n −Qn Bn = X2

n − Vn

are martingales with respect to the (Fn)n≥0. ⊓⊔

Exercise 3.3 (S. Ulam). Let x1, . . . , xr ∈ R. Fix a family
{
In, Jn; n ∈ N

}
of independent

random variables such that In, Jn are uniformly distributed on {1, . . . , n−1}, ∀n ≥ 2. Define
inductively

Xn :=

{
xn, n ≤ r

XIn +XJn , n > r,

and set

Yn :=
1

n(n+ 1)

n∑
k=1

Xk.

Prove that the sequence (Yn)n≥r is a martingale with respect to the filtration

Fn = σ(X1, . . . , Xn), n ∈ N. ⊓⊔

Exercise 3.4. Prove all the claims in Example 3.1.21. ⊓⊔

Exercise 3.5 (Optional switching). Suppose that F• := (Fn)n≥0 is a filtration of the prob-
ability space (Ω, S,P) and (Xn)n≥0, (Yn)n≥0 are two F•-martingales. Let T : Ω → N0 ∪ {∞}
be a stopping time adapted to F•. Suppose that XT = YT . For n ∈ N0 define

Zn : Ω → R, Zn(ω) =

{
Xn(ω), n ≤ T (ω),

Yn(ω), n > T (ω).

Prove that (Zn)n≥0 is a martingale adapted to F•. ⊓⊔

Exercise 3.6. Prove Lemma 3.1.33. ⊓⊔
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Exercise 3.7 (Dubins’ inequality). Let X• = (Xn)n≥0 be a nonnegative supermartingale
adapted to the filtration F• of a probability space (Ω, S, B). For 0 ≤ a < b denote by
Nn([a, b], X) the number of upcrossings of [a, b] by X• up to time n; see (3.2.1). Prove that
for any k = 1, 2, . . . , n

P
[
Nn(a, b,X) ≥ k

]
≤
(a
b

)k
E
[
min(1, X0/a)

]
.

⊓⊔

Exercise 3.8. Prove Lemma 3.2.1 . ⊓⊔

Exercise 3.9. Suppose that Xn ∈ L1(Ω, S,P), n ∈ N, is a uniformly integrable sequence
of random variables that converges in law to the random variable X, Xn ⇒ X. Then
X ∈ L1(Ω, S,P) and

lim
n→∞

E
[
X±
n

]
= E

[
X± ], lim

n→∞
E
[
|Xn|

]
= E

[
|X|

]
,

lim
n→∞

E
[
Xn

]
= E

[
X
]
. ⊓⊔

Exercise 3.10 (Pratt’s Lemma). Let (Xn), (Yn), (Zn) be three sequences of integrable
random variables with the following properties.

(i) Xn ≤ Yn ≤ Zn, ∀n.
(ii) Xn

p→ X, Yn
p→ Y , Zn

p→ Z.

(iii) E
[
Xn

]
→ E

[
X
]
, E
[
Zn
]
→ E

[
Z
]
.

Prove that E
[
Yn
]
→ E

[
Y
]
. ⊓⊔

Exercise 3.11. Suppose that (Xn)n≥0 is a martingale defined on a probability space (Ω, S,P)
such that ∃M > 0,

∀n ∈ N |Xn −Xn−1| ≤M, a.s..

Define

A :=
{
ω ∈ Ω; lim

n→∞
Xn(ω) exists and is finite

}
,

B :=
{
ω ∈ Ω; lim inf

n→∞
Xn(ω) = −∞, lim sup

n→∞
Xn(ω) = ∞

}
.

Prove that P
[
A ∪ B

]
= 1. In other words, when a martingale (with bounded increments)

does not have a limit, it oscillates wildly.

Hint. For C > 0 look at T±
C = min

{
n; ±Xn > C

}
. ⊓⊔

Exercise 3.12 (P. Lévy). Suppose that (Ω, S,P) is a probability space and (Fn)n≥1 is a
filtration of sigma-subalgebras. Let (Fn) be a sequence of events such that Fn ∈ Fn, ∀n. We
set

Xn =
n∑
k=1

(
IFk

− E
[
IFk

∥Fk−1

] )
.

(i) Prove that Xn is a martingale and |Xn −Xn−1| ≤ 4, ∀n. Hint. Have a look at Example

3.1.14.
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(ii) Prove that

{
Fn i.o.

}
=

{ ∑
n≥1

E
[
IFn ∥Fn−1

]
= ∞

}
.

Hint. Use Exercise 3.11.

(iii) Deduce from (ii) the second Borel-Cantelli Lemma, Theorem 1.3.52(ii).

⊓⊔

Exercise 3.13. Consider the situation in Example 3.1.32. We have a finite set A called
alphabet, a probability distribution π on A such that π

[
a
]
̸= 0, ∀a ∈ A. Fix two words

a = (a1, . . . , ak) ∈ Ak, , b = (b1, . . . , bℓ) ∈ Aℓ

and assume that b is not a subword of a, i.e.,

(ai+1, . . . , ai+ℓ) ̸= (b1, · · · , bℓ), ∀i = 0, . . . , k − ℓ.

Let (An)n≥1 be i.i.d. A valued random variable with common distribution π. As in Example
3.1.32 we denote by Tb the time to observe the pattern b.

(i) Prove that

E
[
Tb ∥A1 = a1, . . . , Ak = ak

]
− k = Φ(b, b)− Φ(a, b)

where Φ is defined by (3.1.12).

(ii) Set pa := P
[
Ta < Tb

]
, pb := P

[
Tb < Ta

]
, T = min(Ta, Tb). Prove that

paΦ(a,a) + pbΦ(b,a) = E
[
T
]
= paΦ(a, b) + pbΦ(b, b).

(iii) Show that

pb
pa

=
Φ(a,a)− Φ(a, b)

Φ(b, b)− Φ(a,a)
.

Hint. Consider the same martingale (Xn) as in Example 3.1.32. Observe that Xk = Φ(a, b) − k given that Aj = aj ,

j = 1, . . . , k. (ii) Note that E
[
Tb

]
= E

[
Tb

]
+ E

[
Tb − T

]
and (i) gives a formula for E

[
Tb − T ∥T = Ta

]
. ⊓⊔

Exercise 3.14. Let (Ω, S,P) be a probability spaces and X ⊂ L1
(
Ω, S,P) a family of inte-

grable random variables. Prove that the following are equivalent.

(i) The family X is UI.

(ii) For any ε > 0 there exists wε ∈ L1
+

(
Ω, S,P

)
such that

sup
X∈X

E
[
|X|I{|X|>wε}

]
< ε.

⊓⊔

Exercise 3.15. Suppose that (Xn)n∈N is a uniformly integrable sequence of random variables
that converge in distribution to the random variable X. Prove that E

[
Xn

]
→ E

[
X
]
.

Hint. Use Exercise 2.49. ⊓⊔
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Exercise 3.16 (Kakutani). Let (Xn) be a sequence of independent positive random variables
such that E

[
Xn

]
= 1. Consider the product martingale

Yn =
n∏
k=1

Xk.

Doob’s convergence theorem shows that Yn converges a.s. to a random variable Y∞ satisfying

E
[
Y∞
]
≤ 1. Set an := E

[
X

1/2
n

]
. Prove that the following are equivalent.

(i) E
[
Y∞
]
= 1.

(ii) Yn → Y∞ in L1.

(iii) The martingale (Yn)n∈N is UI.

(iv)
∏
n an > 0.

(v)
∑

n(1− an) > 0.

Hint. The tricky implication is (iv) ⇒ (iii). Define Zn =
∏n

i=1

(
a−1
i X

1/2
i

)
and prove that it is an L2-bounded

martingale. ⊓⊔

Exercise 3.17. Consider the unbiased random walk in Example 3.1.5

S0 = a ∈ Z, Sn = X1 + · · ·+Xn, n ≥ 1,

where (Xn)n≥1 are i.i.d. random variables such that E
[
Xn

]
= 0, Var

[
Xn

]
= 1, ∀n. Set

Fn = σ(X1, . . . , Xn), n ∈ N.

(i) Show that the sequence
(
S2
n − n

)
n≥0

is a martingale with respect to the filtration

Fn.

(ii) Assume that M(t) = E
[
etX1

]
exists for all |t| < t0, t0 > 0. For |t| < t0 and n ∈ N

we set

Zn(t) :=
1

M(t)n
etSn .

is a martingale with respect to the filtration Fn.

(iii) Set D = d
dx . We define M(D) : R

[
x
]
→ R

[
x
]
by the equality

M(D)
[
P
]
(x) =

∑
k≥0

M (k)(0)

k!
DkP (x)

=
∑
k≥0

µk
[
X1

]
k!

P (k)(x), µk
[
X1

]
= E

[
Xk

1

]
.

Prove that M(D) is bijective and for any polynomial P the sequence

Yn =M(D)−nP (Sn), n ≥ 1,

is a martingale. Find Yn when P (x) = x and P (x) = x2. Hint. Set Pn := M(D)−n
[
P
]

and express E
[
Pn+1(Sn +Xn+1) ∥X1, . . . , Xn

]
using the operator M(D).

(iv) ComputeM(D) when (Xn) are independent Rademacher variables. Set B0(x) := 1,

Bn(x) :=

(
x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!
, n ∈ N.
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ExpressM(D)−1
[
Bn
]
in terms of the polynomials Bk, k = 0, 1, . . . , n. Hint. Consider

the finite difference operator ∆ that associates to any function f : R → R the new function ∆f defined by

(∆f)(x) := f(x+ 1)− f(x). Observe that ∆Bn = Bn−1, ∀n ∈ N.

⊓⊔

Exercise 3.18. Suppose that (Xn)n≥0 is a martingale with respect to the filtration F• = (Fn)≥0

such that E
[
X2
n

]
< ∞, ∀n. The sequence (X2

n)n≥0 is a submartingale and thus, according

to Proposition 3.1.13 it admits a Doob decomposition X2
n = X0 +Mn + Cn, where (Mn)n≥0

is a martingale and the compensator (Cn) is a predictable, nondecreasing process. Set

An = X0 + Cn, A∞ = lim
n→∞

An = sup
n∈N

An.

(i) Prove that E
[
supn≥0Xn

]
≤ 4E

[
A∞

]
. Hint. Use Doob’s L2-maximal inequality.

(ii) Prove that limn→∞Xn exists and is finite a.s. on the set
{
A∞ < ∞

}
. Hint. For

a > 0 we set Na = min{n; An+1 > a2} . Show that it is adapted to the filtration F•. Apply (i) to the

stopped martingale Xn∧Na .

(iii) Suppose that f : [0,∞) → [1,∞) is an increasing function such that∫ ∞

0

f(t)

t2
dt <∞.

Prove that Xn
f(An)

→ 0 a.s. on the set {A∞ = ∞}. Hint. Set Hn = 1
f(An)

, ∀n ∈ N. Let

Y• denote the martingale defined by the discrete stochastic integral (H · X)•; see (3.1.2). Use the Doob

decomposition of Yn to prove that Yn converges L2 a.s. Conclude using Kronecker’s lemma, Lemma 2.1.11.

⊓⊔

Exercise 3.19 (Dubins-Freedman). Suppose that (Ω, S,P) is a probability space and (Fn)n≥1

is a filtration of sigma-subalgebras. Let (Fn) be a sequence of events such that Fn ∈ Fn, ∀n.
We set

Xn =

n∑
k=1

(
IFn − fn

)
, fn := E

[
IFn ∥Fn−1

]
.

(i) Prove that (Xn)≥0 is a martingale and E
[
X2
n

]
<∞, ∀n ≥ 0.

(ii) Define S =
{∑

n fn = ∞}. Prove that∑n
k=0 IFk∑n
k=0 fk

→ 1, a.s. on S. (3.4.1)

(iii) Deduce from (3.4.1) the conclusion of Exercise 3.12(ii). Thus (3.4.1) is a general-
ization of the second Borel-Cantelli lemma, Theorem 1.3.52(ii).

⊓⊔

Exercise 3.20 (Conservation of fairness). A fair coin is flipped repeatedly and independently.
A gambler starts with an initial fortune f0 > 0. Before the n-th flip, his fortune is Fn−1.
Based only on the information available to him at that moment, the gambler bets a sum
Bn ∈ (0, b), 0 ≤ Bn ≤ Fn1 . If the n-th flip shows Heads he earns Bn dollars and if its
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shows Tails, he loses Bn dollars. The gambler stops gambling when he is broke or at the first
moment when he reaches his goal, i.e., Fn ≥ g where g > 0 set in advance of his gambling.

(i) Prove that the probability pg that he reaches his goal is ≤ f0
g .

(ii) Prove that if Bn ≤ min(Fn−1, g − Fn−1), ∀n ≥ 1, then pg =
f0
g .

(iii) Find pg if Bn = 1
2Fn−1.

⊓⊔

Remark 3.4.1. Note that if f0, g ∈ N and the gambling strategy is Bn = 1 whenever his
fortune is < g the above problem reduces to the classical Gambler’s ruin problem discussed in
Example 3.2.35. The name “conservation of fairness” seems appropriate: whatever gambling
strategy satisfying (ii) and based only on the information available at each moment, the

probability of reaching the goal is the same, f0g . ⊓⊔

Exercise 3.21. Fix a, g ∈ N0, a ≤ g. Consider the standard random walk (Sn)n≥0 on Z
started at a, i.e.,

S0 = a, Sn = X1 + · · ·+Xn,

where (Xn)n≥1 are i.i.d. with P
[
Xn = ±1

]
= 1

2 . Set

T := min
{
n ∈ N0; Sn = 0 or Sn = g

}
.

(i) Show P
[
ST = 0

]
= g−a

g and P
[
ST = g

]
= a

g . Hint. Use Theorem 3.2.33.

(ii) Show that E
[
T
]
= a(g − a).

(iii) Compute the pgf of T

fa(s) := E
[
sT
]
=

∞∑
n=0

P
[
T = n

]
sn.

Hint. Condition on X1. Alternatively, use the de Moivre martingale and the Optional Sampling Theorem

3.1.29.

⊓⊔

Exercise 3.22. Suppose that (Sn)n≥0 is the standard random walk on Z. Thus

S0 = 0, Sn = X1 + · · ·+Xn,

where (Xn)n∈N are independent Rademacher random variable P
[
Xn = ±1

]
= 1

2 , ∀n. Let
a ∈ Z>0 and denote by Ta the first moment the random walk reaches the location a,

Ta = min
{
n ∈ N; Sn = a

}
.

(i) Prove that

P
[
T0 > 2n

]
= P

[
S2n = 0

]
=

1

22n

(
2n

n

)
and deduce that P

[
T0 = ∞

]
= 0. Hint. Have a look at Example 1.2.37.

(ii) Prove that P
[
Ta = ∞] = 0.

(iii) Compute the moment generating function of Ta.

⊓⊔
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Exercise 3.23. Suppose that (Xn)n≥1 is a sequence of integrable random variables defined
on a probability space (Ω, S,P) such that for any S ∈ S the sequence E

[
XNIS

]
has a finite

limit.

(i) Prove that

sup
S∈S

sup
n∈N

∣∣E[XnIS
] ∣∣ <∞.

and deduce that supn∈N E
[ ∣∣Xn

∣∣ ] < ∞. Hint. Use the metric d in Exercise 2.13 and Baire’s

category theorem.

(ii) Prove that the sequence (Xn)n≥0 is UI.

⊓⊔

Exercise 3.24. Suppose that (Xn)n≥0 adapted to the filtration (Fn)n≥0 and T is a stopping
time adapted to the same filtration such that P

[
T <∞

]
= 1 and XT ∈ L1. Prove that

E
[
XT ∥Fn

]
= Xn on {T ≥ n}.

Hint. Have a look at the proof of Theorem 3.1.29.

Exercise 3.25. Suppose that (Xn)n≥1 is a sequence of i.i.d., nonnegative, integer valued
random variables with finite mean. Set

Sn := X1 + · · ·+Xn.

For k = 1 . . . , n, set F−k = σ
(
Sk, Sk+1, . . . , Sn

)
, Y−k = Sk/k.

(i) Prove that for j ≤ k we have

E
[
Xj ∥F−k

]
= Xk.

(ii) Prove that
(
Y−k

)
1≤k≤n is a martingale with respect to the filtration

(
F−k

)
1≤k≤n.

(Compare with Example 3.1.31.)

(iii) Show that

P
[
Sk < k, ∀1 ≤ k ≤ n ∥Sn

]
=
(
1− Sn/n

)+
.

Hint. (iii) Set T = inf
{
− n ≤ k ≤ −1; Yk ≥ 1

}
, where we define inf ∅ = −1. Use Exercise 3.24. ⊓⊔

Exercise 3.26. Suppose that f : [0, 1] → R is a Lebesgue integrable function. For any
n ∈ N0 we define the step function fn : [0, 1 → R by setting fn(0) = 0 and

fn(x) =
1

2n

∫ k/2n

(k−1)/2n
f(x)dx, if 0 ≤ (k − 1)

2n
< x ≤ k

2n
≤ 1.

Prove that fn converges a.s. and L1 to f as n→ ∞. ⊓⊔

Exercise 3.27. Suppose that (Xn)n≥0 is a supermartingale such that, there exist f0, g > 0
with the property

X0 = f0 a.s., 0 ≤ Xn ≤ g a.s., ∀n ∈ N.

Prove that for any stopping time T such that P
[
T <∞

]
= 1 we have P

[
XT = g

]
≤ f0

g . ⊓⊔
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Exercise 3.28. Consider the branching process (Zn)n≥0 with initial condition Z0 = 1 and
reproduction reproduction law µ ∈ Prob(N0) such that

m := E
[
µ
]
=
∑
n≥0

nµn <∞, µn := µ
[
n
]
.

Assume µ0 > 0. Denote by f(s) the probability generating function (pgf) of µ

f(s) =
∑
n≥0

µns
n = E

[
sZ1

]
..

We set

fn(s) := f ◦ · · · ◦ f︸ ︷︷ ︸
n

(s), n ∈ N.

(i) Show that if m > 1 the equation f(s) = s has a unique solution r = r(µ) in the
interval (0, 1). Compute r(µ) when

µn = qpn, n ∈ N0,

where p ∈ (1/2, 1), q = 1− p.

(ii) Prove that

E
[
sZn

]
= fn(s), ; ∀s ∈ [0, 1].

(iii) Denote by E the extinction event

E =
⋃
n≥0

{
Zn = 0}.

Prove that

P
[
E
]
= lim

n→∞
fn(0) =

{
1, m ≤ 1,

r(µ), m > 1.

(iv) Assume m > 1. Prove that the sequence
(
rZn

)
n≥0

is a martingale.

(v) Set

Wn :=
1

mn
Zn.

Assume

m > 1, E
[
Z2
1

]
=
∑
n≥

n2µn <∞,

and set

W := lim
n→∞

Wn.

Denote by PW the probability distribution of W and by φ(λ) its Laplace transform

φ(λ) = E
[
e−λW

]
=

∫
R
e−λwPW [dw], λ ∈ C, Reλ ≥ 0.

Prove that

φ′(0) = 1, φ(λ) = f
(
φ(λ/m)

)
=

∞∑
n=0

µnφ
(
λ/m

)
)n, ∀Reλ ≥ 0. (3.4.2)
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(vi) Prove that there exists at most one probability measure ν ∈ Prob
(
[0,∞)

)
such

that ∫ ∞

0
t2ν[dt] <∞

and its Laplace transform

φν(λ) :=

∫ ∞

0
e−λtν[dt], λ ∈ C, Reλ ≥ 0,

satisfies (3.4.2).
Hint. Consider two such measures νk, k = 0, 1, denote by Φk(t) their characteristic functions. Set

Φ(t) = Φ1(t)− Φ0(t), γ(t) = Φ(t)/t, t ̸= 0. Prove that |γ(mt)| ≤ |γ(t)| and conclude that Φ ≡ 0.

⊓⊔

Exercise 3.29. Let Sn denote the group of permutations of In := {1, . . . , n}. We equip it
with the uniform probability measures. A run of a permutation π is a pair (s, r) ∈ In, s < r
such that

πs−1 > πs < πs+1 < · · · < πr > πr+1,

where π0 := n+ 1 and πn+1 := 0. We denote by Rn(π) the number of runs of π ∈ Sn. Set

Xn := nRn −
1

2
n(n+ 1).

(i) For π ∈ Sn+1 we set kπ := π−1(n + 1) and denote by φπ the unique increasing
bijection

φπ : In → In+1 \
{
kπ
}
.

Set π := π ◦ φπ. Show that the random maps

Sn+1 ∋ π 7→ kπ ∈ In+1, Sn+1 ∋ π 7→ π ∈ Sn

are independent and uniformly distributed on their ranges.

(ii) Prove that (Xn) is a martingale.

(iii) Compute E
[
Rn
]
and E

[
R2
n

]
.

(iv) Show that

lim
n→∞

E
[ ( Rn

n
− 1

2

)2 ]
= 0.

⊓⊔

Exercise 3.30. Suppose that (Xn)n≥0 is an L2-martingale adapted to the filtration (Fn)n≥0

and ⟨X•⟩ is its quadratic variation; see Definition 3.1.15 . Fix a bounded predictable process
(Hn)n≥0 and form the discrete stochastic integral (H •X) (see Theorem 3.1.17.

(i) Show that

E
[
X2
n

]
− E

[
X2

0

]
= E

[
⟨X⟩n

]
.

(ii) Prove that the martingale (H •X) is an L2 martingale.

(iii) Prove that

⟨H •X⟩m =
(
H2 • ⟨X⟩

)
n
:=

n∑
k=1

H2
k

(
⟨X⟩k − ⟨X⟩k−1

)
, ∀n ≥ 1.
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(iv) Prove that

E
[
(H •X)2n

]
= E

[ n∑
k=1

H2
k(Xk −Xk−1)2

]
, ∀n ≥ 1.

Exercise 3.31. Suppose that (Xn)n∈N is an exchangeable sequence of random variables and
T is a stopping time adapted to the filtration Fn = σ(X1, . . . , Xn). Prove that if T < N a.s.,
then XT+1 has the same distribution as X1. ⊓⊔

Exercise 3.32. Suppose that (Xn)n∈N is a sequence of random variables such that for any
n ∈ N the distribution of the random vector (X1, . . . , Xn) is orthogonally invariant, i.e., for
any T ∈ O(n), T#PX1,...,Xn = PX1,...,Xn . Prove that (Xn)N are conditionally i.i.d. N(0, σ2)
given a random variable σ2 ≥ 0. ⊓⊔

Exercise 3.33. Prove Lemma 3.3.6. ⊓⊔

Exercise 3.34. Finish the proof of Proposition 3.3.13. ⊓⊔

Exercise 3.35. Prove Proposition 3.3.15. ⊓⊔

Exercise 3.36. Let N(t) be a Poisson process with intensity λ as described in Example
1.3.7. Denote by (Ft) the natural filtration, Ft = σ

(
N(s), s ≤ t

)
.

(i) Prove that N(t) is an R-process.

(ii) Prove that Ft+ = Ft, ∀t ≥ 0.

(iii) Prove that E
[
N(t) ∥Fs

]
= E

[
N(t) ∥N(s)

]
, ∀0 ≤ s < t.

⊓⊔

Exercise 3.37. Suppose that W : L2
(
[0,∞)

)
→ L2(Ω, S,P) is a Gaussian white noise; see

Example 2.5.9. Fix f ∈ L2
(
[0,∞)

)
and consider the Wiener integral (see Example 2.5.9 and

Exercise 2.75)

Xt =

∫ t

0
f(s)dB(s) :=W

(
I [0,t]f

)
, t ≥ 0.

(i) Prove that (Xt) is an L
2 martingale adapted to the filtration Ft := σ

(
Xs, s ≤ t

)
.

(ii) Use Kolmogorov’s Continuity Theorem 2.5.12 to show that (Xt)t≥0 admits a con-
tinuous modification.

⊓⊔

Exercise 3.38. Let B(t), t ≥ 0 be a one-dimensional Brownian motion started at 0. For
each n ∈ N and each t ≥ 0 we set

Xn
t :=

n∑
k=1

B
(
(k − 1)t/n

)(
B
(
kt/n

)
−B

(
(k − 1)t/n

) )
.

(i) Prove that for any n ∈ N the stochastic process
(
Xn
t

)
is an L2-martingale.

(ii) Prove that for each t ≥ 0 Xn
t converges to B(t)2 − t in L2 as n→ ∞.

⊓⊔
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Exercise 3.39. Suppose that (Wt)t≥0 is a pre-Brownian motion defined on a probability
space (Ω, S,P); see Definition 2.5.2. Let t0, δ ≥ 0. Set

R(t0, δ) = sup
t∈Q∩[t0,t0+δ]

∣∣B(t)−B(t0)
∣∣.

(i) Prove that

P
[
R(t0, δ) > ε

]
≤ 3δ2

ε4
, ∀ε, δ > 0.

Hint. Use Doob’s maximal inequalities.

(ii) Prove thatWt is a a.s. uniformly continuous on Q≥0 and conclude that (Wt) admits
a modification continuous on [0,∞)

⊓⊔

Exercise 3.40. Let (Bt)t≥0 be a standard Brownian motion and−a < 0 < b. Set T = min(T−a, Tb)
where for c ∈ R, we set Tc = inf

{
t ≥ 0; Bt = c

}
. Prove that

E
[
T
]
= E

[
B2
T

]
= ab. ⊓⊔

Exercise 3.41 (P. Lévy). Let (Bt)t≥0 be a standard Brownian motion and c > 0. For a ∈ R
we denote by ra the reflection ra : R → R, ra(x) = 2a− x.

(i) Prove that for any Borel subsets U− ⊂ (−∞,−c], U+ ⊂ [c,∞) we have

P
[
Tc < T−c, B1 ∈ U−

]
+ P

[
Tc > T−c, B1 ∈ rc(U−)

]
= P

[
B1 ∈ rc(U−)

]
P
[
Tc > T−c, B1 ∈ U+

]
+ P

[
Tc < T−c, B1 ∈ r−c(U+)

]
= P

[
B1 ∈ r−c(U+)

]
(ii) Denote by J the interval [−c, c]. Prove that

P
[
Tc ≤ T−c ∧ 1, Bt ∈ J

]
= P

[
B1 ∈ rc(J)

]
− P

[
Tc > T−c, B1 ∈ rc(J)

]
,

P
[
T−c ≤ Tc ∧ 1, Bt ∈ J

]
= P

[
B1 ∈ r−c(J)

]
− P

[
Tc < T−c, B1 ∈ r−c(J)

]
.

(iii) Prove that

P
[

sup
t∈[0,1]

|Bt| < c
]
= P

[
B1 ∈ J

]
−
(
P
[
Tc ≤ T−c ∧ 1, Bt ∈ J

]
+ P

[
T−c ≤ Tc ∧ 1, Bt ∈ J

] )
.

(iv) Prove that

P
[

sup
t∈[0,1]

|Bt | < c
]
= P

[
|B1| ≤ c

]
− P

[
c ≤ |B1| ≤ 3c

]
+ P

[
3c ≤ |B1| ≤ 5c

]
− · · ·

⊓⊔

Remark 3.4.2. Exercise 3.41 is a special case of a more general result called the support
theorem. For any continuous function f : [0, 1] → R such that f(0) = 0 and any ε > 0 we
have

P
[

sup
t∈[0,1]

∣∣Bt − f(t)
∣∣ ≤ ε

]
> 0. (3.4.3)

For a proof we refer to [69, Ch.1,Thm.(38)].
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Let us describe an amusing application of this fact. Suppose that (Bi
t)t≥0, i = 1, 2, are

two independent Brownian motions and f i : [0, 1] → R, i = 1, 2 are two continuous functions
such that f i(0) = 0. The equality (3.4.3) implies immediately that for any ε > 0 we have

P
[
max
i

sup
t∈[0,1]

∣∣Bi
t − f i(t)

∣∣ ≤ ε
]

= P
[

sup
t∈[0,1]

∣∣B1
t − f1(t)

∣∣ ≤ ε
]
P
[

sup
t∈[0,1]

∣∣B2
t − f2(t)

∣∣ ≤ ε
]
> 0.

(3.4.4)

The pair of functions (f1, f2) defines a path

F : [0, 1] → R2, F (t) =
(
f1(t), f2(t)

)
.

Think of F (t) as tracing the motion of the tip of an infinitesimally fine pen as you sign a
planar piece of paper, starting at the origin.

Any other path G = (g1, g2) : [0, 1] → R2 satisfying∣∣ gi(t)− f i(t)
∣∣ < ε, ∀t ∈ [0, 1], i = 1, 2,

will follow closely the original motion of the fine pen, producing a curve essentially indistin-
guishable with the naked eye from the original signature. In fact, if ε > 0 is sufficiently small,
one cannot distinguish the two curves, even using a magnifying glass.

The random path (B1
t , B

2
t ) is the so called planar Brownian motion started at the origin.

The equality (3.4.3) shows that the probability p0 that this random path follows closely the
motion of the tip of the fine pen is positive. For this reason the inequality (3.4.3) is sometimes
referred to as Lévy’s forgery theorem. ⊓⊔



Chapter 4

Markov chains

The Markov chains form a special but sufficiently general class of examples of stochastic
processes. Their investigation requires a diverse arsenal of techniques, probabilistic and not
only, and they reveal important patterns arising in many other instances.

The foundations of this theory were laid by the Russian mathematician A. A. Markov
at the beginning of the twentieth century. By most accounts, Markov was a rather uncon-
ventional individual. He discovered what we now know as Markov chains in his attempts to
contradict Pavel Nekrasov, a mathematician/theologian of that time who maintained on a
theological basis that the Law of Large Numbers was specific to independent events/random
variables and cannot be seen in other contexts. Markov succeeded in proving Nekrasov wrong
and in the process laid the foundations of the theory of Markov chains. For more on this
history of this concept we refer to the very readable article [89].

So what did Markov discovered? Think of a Markov chain as a random walk on a finite
set X. From a given location x the walker can go to a location x′ with probability qx,x′ .
Suppose that at some location x0 ∈ X we placed a pile of sand consisting of giddy grains of
sand: every second one of them starts this random walk and performs a billion steps (think
of a fixed but very large number of steps). After all the grains of sand performed this ritual,
the initial pile of sand is redistributed at various points of X. Denote by m1

x the mass of the
pile of sand relocated at x. Next, collect the piles from their locations and move them back
to the initial location x0.

Run the above experiment again we get a new distribution of piles of sand at the points
of X. Denote the mass at x by m2

x. Markov observed that

m1
x

m2
x

≈ 1, ∀x.

Run the experiment a third time to obtain a third distribution of mass (m3
x)x∈X and the

conclusion is the same

m1
x

m3
x

≈ 1, ∀x.

367
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To put it differently, if m is the mass of the pile of sand at x0, then, for any x ∈ X,

m1
x

m
≈ m2

x

m
≈ m3

x

m
≈ · · ·

This phenomenon is one manifestation of the Law of Large Numbers for Markov chains.

During this more than a century since its creation, the theory of Markov chains has
witnessed dramatic growth and generalizations, and has found applications in unexpected
problems. For example, Google’s PageRank algorithm is a special application of the Law of
Large numbers for Markov chains.

The present chapter is an introduction to the theory of Markov chains. We present the
classical results and spend some time on some more recent developments. As always, we try
to illustrate the power of the theory on many concrete example. Needless to say, we barely
scratch the surface of this subject.

4.1. Markov chains

In the sequel X will denote a finite or countable set equipped with the discrete topology.
We will refer to it as the state space. The Borel sigma-algebra of X coincides with the
sigma-algebra 2X of all subsets of X.

4.1.1. Definition and basic concepts.

Definition 4.1.1. A Markov chain with state space X is a sequence of random variables

Xn : (Ω, S,P) → (X,2X), n ∈ N0,

satisfying the Markov property

P
[
Xn+1 = xn+1

∣∣Xn = xn
]
= P

[
Xn+1 = xn+1

∣∣Xn = xn, . . . , X0 = x0
]
, (4.1.1)

∀n ∈ N, x0, x1, . . . , xn, xn+1 ∈ X.

The filtration associated to the Markov chain is the sequence of sigma-subalgebras

Fn := σ(X0, . . . , Xn), n ∈ N0.

The probability distribution of X0 is called the initial distribution of the system.

The Markov chain is called homogeneous if, for any x, x′ ∈ X, and any n ∈ N we have

P
[
Xn+1 = x′

∣∣Xn = x
]
= P

[
X1 = x′

∣∣X0 = x
]

In this case, the function

Q : X× X → [0, 1], Q(x0, x1) = Qx0,x1 = P
[
X1 = x1

∣∣X0 = x0
]

is called the transition matrix 1 of the homogeneous Markov chain. We denote by Markov(X, µ,Q)
the collection of HMC-s with state space X, initial distribution µ and transition matrix Q. ⊓⊔

1I made the decision to break with the tradition and use the letter Q to denote the transition matrix after teaching

this topic and realizing that there were too many P ’s on the blackboard and this sometimes confused the audience.
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Remark 4.1.2. (a) Let us observe that the Markov property can be written in the more
compact form

P
[
Xn+1 = x ∥Xn

]
= P

[
Xn+1 = x ∥Fn

]
, ∀n ∈ N, x ∈ X. (4.1.2)

In view of Proposition 1.4.18, the last property is equivalent to the conditional independence

Xn+1 ⊥⊥ Xn Fn−1, ∀n ∈ N. (4.1.3)

Exercise 1.62 shows that this is also equivalent to the condition

Xn+1 ⊥⊥ Xn Fn, ∀n ∈ N. (4.1.4)

One can show that this further equivalent to that

σ(Xn+1, Xn+2, . . . ) ⊥⊥ XnFn. (4.1.5)

This is colloquially expressed as saying that the future is conditionally independent of the
past given the present.

(b) It is convenient to think of a Markov chain with state space X as describing the random
walk of a grasshopper hopscotching on the elements of X. The decision where to jump next
is not influenced by the past, but only by the current location and the current time. For
a homogeneous Markov chain the decision where to jump next depends only on the current
location and not on the “time” n when the grasshopper reaches that state. Thus Qx0,x1 is
the probability that the grasshopper, currently located at x0, will jump to x1.

We can represent an HMC with state space X and transition matrix Q as a directed graph
(loops allowed) with vertex set X constructed as follows: there is a directed edge from x0 to
x1 if and only if Qx0,x1 > 0. ⊓⊔

If (Xn)n≥0 is a homogeneous Markov chain (or HMC for brevity), then its transition
matrix Q is stochastic , i.e.,

Qx0,x1 ≥ 0,
∑
x∈X

Qx0,x = 1, ∀x0, x1 ∈ X. (4.1.6)

In other words, the entries of the matrix Q are nonnegative and the sum of the entries in
each row is equal to 1.

If µn is the distribution of Xn, then, for any x ∈ X we have

P
[
Xn+1 = x

]
=
∑
x′∈X

P
[
Xn = x′

]
Qx′,x =

∑
x′∈X

µn
[
x′
]
Qx′,x.

Think of µn and µn+1 as matrices consisting of a single row. We can rewrite the above
equality as an equality of matrices µn+1 = µnQ. In particular,

µn = µ0Q
n, (4.1.7)

where Qn denotes the n-th power of the matrix Q, Qn =
(
Qnx,y

)
x,y∈X. From (4.1.7) we

deduce that

P
[
Xn = xn

∣∣X0 = x0
]
= Qnx0,xn . (4.1.8)

For this reason the matrix Qn is also known as the n-th step transition matrix.

Let us show that given any matrix Q : X× X → [0, 1] satisfying (1.2.21) and any proba-
bility measure µ on X, there exists a homogeneous Markov chain, with state space X, initial
distribution µ and transition matrix Q, i.e., Markov(X, µ,Q) ̸= ∅.
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Observe that we can view Q as a kernel or random probability measure

Q̂ : X× 2
X → [0, 1], (x,A) 7→ Q̂x

[
A
]
=
∑
a∈A

Qx,a.

Note that Q̂x
[
−
]
is a probability measure on X. It is described by row x of the matrix Q.

Consider the set XN0 equipped with the natural product sigma algebra E; see Definition
1.5.3. In this case it coincides with the sigma algebra generated by π-system consisting of
the cylinders

Cs0,s1,...,sk :=
{
x = (xn)n∈N0 ∈ XN0 ; xi = si, ∀i = 0, . . . , k

}
.

Let us observe that there exists a probability measure Pµ : E → [0, 1] uniquely determined
by the conditions

Pµ
[
Cs0,s1,...,sk

]
= µ

[
s0
] k∏
i=1

Qsi−1,si . (4.1.9)

To prove that such a measure does indeed exist for any µ and Q we will rely on Kolmogorov’s
existence theorem, Theorem 1.5.6.

The equalities (4.1.9) define probability measures Pk = Pµ,Qk on the product spaces

X{0,1,...,k} by setting

Pk
[
(s0, . . . , sk)

]
:= µ[s0]

k∏
i=1

Qsi−1,si . (4.1.10)

Note that for f : X{0,1,...,k} → R we have∫
X{0,1,...,k}

f(x0, . . . , xk)Pk
[
dx0 · · · dxk

]
=
∑
x0∈X

∑
x1∈X

· · ·
∑
xk∈X

µ
[
x0
]
Qx0,x1 · · ·Qxk−1,xkf(x0, . . . , xk)

(4.1.11)

The family of measures (Pk)k≥0 is projective since the transition matrix Q is stochastic.
Indeed,

Pk+1

[
(s0, . . . , sk)× X

]
=
∑
x∈X

Pk+1

[
(s0, . . . , sk, x)

]
=
(
µ[s0]

k∏
i=1

Qsi−1,si

)∑
x

Qsk,x︸ ︷︷ ︸
=1

= µ[s0]
k∏
i=1

Qsi−1,si = Pk
[
(s0, . . . , sk)

]
.

(4.1.12)

Kolmogorov’s existence theorem, then implies the existence of Pµ ∈ Prob
(
XN0

)
satisfying

(4.1.9). Moreover, the equality

µ =
∑
x∈X

µ
[
x
]
δx

implies that

Pµ =
∑
x∈X

µ
[
x
]
Px, Px := Pδx . (4.1.13)
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For n ∈ N0 we denote by En the sub-sigma-algebra of E generated by X0, X1, . . . , Xn. Note
that Pn can be identified with the restriction of Pµ to En.

For µ ∈ Prob(X) we denote by Eµ the expectation (integral) with respect to Pµ

Eµ : L1(XN0 ,E,Pµ) → R, Eµ
[
F
]
=

∫
XN0

F (x)Pµ
[
dx
]
. (4.1.14)

For x ∈ X we set
Ex := Eδx . (4.1.15)

We have a shift operator

Θ : XN0 → XN0 , Θ(x0, x1, x2, . . . ) = (x1, x2, . . . ).

Note that Xn = X0 ◦Θn, Θn = Θ ◦ · · · ◦Θ︸ ︷︷ ︸
n

.

Theorem 4.1.3. Consider the random variables

Xn : XN0 → X, Xn(x) = xn, n ∈ N0.

Then the stochastic process (Xn)n∈N0 is an HMC, defined on (XN0 ,E,Pµ) with transition state
space X matrix Q and initial distribution µ. The probability space (XN0 ,E,Pµ) is called the
path space of this HMC.

Moreover, if F ∈ L1(XN0 ,E,Pµ), then

Eµ
[
F ◦Θn ∥En

]
= Eµ

[
F ∥Xn

]
. (4.1.16)

Proof. For each x we have a probability measure Qx on X given by

Qx
[
{x′}

]
= Qx,x′ , ∀x′ ∈ X.

We will show that for any A ⊂ X we have the equality of random variables

P
[
Xn+1 ∈ A ∥En

]
= QXn

[
A
]
=
∑
a∈A

QXn,a. (4.1.17)

Let B ∈ En. It is a cylinder of the form

B = {X0 ∈ B0, . . . , Xn ∈ Bn}, B0, B1, . . . , Bn ⊂ X}.
Then

E
[
IA(Xn+1)IB

]
= Pµ

[
{Xn+1 ∈ A} ∩B

]
= Pµ

[
X0 ∈ B0, . . . , Xn ∈ BnXn+1 ∈ A

]
(4.1.11)
=

∫
B
QXn

[
A
]
dPµ.

This proves (4.1.17).

The randommeasureQXn is a regular version of the conditional probability P
[
Xn+1 ∈ −∥Xn

]
,

i.e.,
QXn

[
S
]
= P

[
Xn+1 ∈ S ∥Xn

]
, ∀S ⊂ X.

Using Proposition 1.4.24 we deduce that for every bounded function f : X → R we have

E
[
f(Xn+1) ∥En

]
=
∑
x∈X

QXn,xf(x). (4.1.18)

Let M ⊂ L1(XN0 ,E,Pµ) denote the collection of functions F satisfying (4.1.16). Clearly M

is a vector space and if Fn is a sequence in M such that Fn ↗ F , F ∈ L1, then F ∈ M. To
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show that M = L1 we use Monotone Class Theorem so it suffices to show that there exists a
π-system C ⊂ E that generates E such that IC ∈ M.

Denote by C the set of cylinders

CA0,A1,...,AN
:=
{
x ∈ XN0 ; xi ∈ Ai, i = 1, . . . , N

}
.

Note that

ICA0,...,AN
=

N∏
k=0

I{Xk∈Ak},

and

ICA0,...,AN
◦Θn =

N∏
k=0

I{Xn+k∈Ak}

By definition C generates E. Since M is a vector space it suffices to check that IC ∈ M for
C ∈ C of the form

C = CA0,...,AN
, Ak = {xk}, xk ∈ X, k = 0, 1, . . . , N.

To verify (4.1.16) for sets of this form and arbitrary n we argue by induction on N . For
N = 1 this follows from (4.1.17). For the inductive step note that

E
[
I{Xn=x0,Xn+1=x1,...,Xn+N=xN} ∥En

]
= E

[ N∏
k=0

I{Xnk
=xk} ∥En

]

= E
[
I{Xn=x0}E

[ N∏
k=1

I{Xn+k=xk}
∥∥En+1

] ∥∥En ]

= E
[
I{Xn=x0} E

[ N∏
k=1

I{Xn+k=xk}
∥∥Xn+1

]
︸ ︷︷ ︸

=:f(Xn+1)

∥∥En ]

(use the inductive assumption)

= E
[
I{Xn=x0}f(Xn+1) ∥Xn

]
= E

[
I{Xn=x0} E

[ N∏
k=1

I{Xn+k=xk}
∥∥En+1

]
︸ ︷︷ ︸

=f(Xn+1)

∥∥Xn

]

(σ(Xn) ⊂ En+1)

= E
[ N∏
k=0

I{Xn+k=xk}
∥∥Xn

]
.

⊓⊔

Remark 4.1.4. We have deduced (4.1.16) relying on the Markov property. The above proof
shows that the Markov property (4.1.17) is a special case of (4.1.16). For this reason we can
take (4.1.16) as definition of Markov’s property. ⊓⊔
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Given a homogeneous Markov chain Xn : (Ω, S,P) → X, n ≥ 0, with state space X, initial
distribution µ and transition matrix Q, we obtain a measurable map

X⃗ : (Ω, S) → (XN0 ,E), ω 7→ X⃗(ω) =
(
Xn(ω)

)
n≥0

.

The distribution of the Markov chain is the pushforward measure

P
X⃗

:= X⃗#P ∈ Prob
(
XN0 ,E

)
.

It is uniquely determined by the equalities

P
X⃗

[
Cs0,s1,...,sk

]
:= P

[
X0 = s0, . . . , Xk = sk

]
= µ0[s0]

k∏
i=1

Qsi−1,si . (4.1.19)

We deduce

P
X⃗

= Pµ.
For every, F ∈ L1

(
XN0 ,E,Pµ

)
, we have

EP
[
F (X0, X1, . . . )

]
= Eµ

[
F
]
=

∫
XN0

F (x)Pµ
[
dx
]
.

This is a special case of the change in variables formula (1.2.23).

This shows that the distribution of the Markov chain is uniquely determined by the initial
distribution µ ∈ Prob(X) and the transition matrix Q.

Remark 4.1.5. One can define any HMC on probability spaces other than XN0 . Here is a
such a construction corresponding to state space X transition matrix Q and initial probability
distribution µ. We set µx := µ

[
x
]
.

First, a little bit of terminology. We say that an interval is convenient if it either empty
or the form [a, b), a < b. If [a, b), [c, d) are nonempty convenient intervals, then we say that
[a, b) precedes [c, d) and we write [a, b) ≺ [c, d) if b ≤ c. The empty set is allowed to precede
or succeed any nonempty convenient interval. Assume that X is a subset of N. As such it is
equipped with a total order.

The probability space is the unit interval [0, 1) equipped with the Lebesgue measure. The
random variables Xn, depend on the choice of initial distribution, and are defined inductively
as follows.

• Partition [0, 1) into convenient intervals Ix = I0x, x ∈ X of Lebesgue measures
µx = λ

[
I0x
]
, such that

x < x′ ⇒ Ix ≺ Ix′ .

• Partition each interval I0x0 into convenient intervals I
1
x0,x1 of sizes µx0Qx0,x1 , x0, x1 ∈ X,

such that

x < x′ ⇒ I1x0,x ≺ I1x0,x′ .

• Inductively, partition each interval Inx0,x1,...,xn into convenient intervals In+1
x0,x1,...,xn,xn+1

of sizes

λ
[
Inx0,x1,...,xn

]
Qxn,xn+1 = µx0

n∏
j=0

Qxj ,xj+1 ,

such that

x < x′ ⇒ In+1
x0,...,xn,x ≺ In+1

x0,x1,...,xn,x′
.
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Now define Xn : [0, 1) → X by setting

Xn(t) = xn if t ∈
⋃

x0,x1,...,xn−1∈X
Inx0,x1,...,xn

Note that these random variables are defined on the same probability space

([0, 1],B[0,1],λ),

but they depend on the choice of the initial distribution.

This is different from the construction based on path spaces. In that case we are given
measurable maps defined on the same measurable space Ω, S), but we obtain different HMC’s
by choosing different probability measures on (Ω, S). ⊓⊔

4.1.2. Examples. The homogeneous Markov chains appear in many and diverse situations.
According to the discussion in the previous subsection, to describe an HMC it suffices to
describe the state space X and the transition matrix Q. We will remain vague about the
initial distribution µ.

Example 4.1.6 (Gambler’s ruin). Consider the gambler’s ruin problem discussed in Example
3.2.35. The state space is X = {0, 1, . . . , N}. Then Xn is the fortune of a gambler at time n.
The gambler flips a fair coin with two faces labeled ±1. If its fortune is strictly in between
0 and N , then its fortune changes by the amount shown on the face of the coin. The game
stops when its fortune reaches either 0 or N . Concretely

QN,k = 0, ∀k < N, QN,N = 1,

Q0,j = 0, ∀j > 0, Q0,0 = 1,

Qk,k+1 = Qk,k−1 =
1

2
, Qk,j = 0, if |k − j| > 1, 0 < k, j < N.

The directed graph describing this HMC is depicted in Figure 4.1 where, for clarity, we have

0

0 0.50.5
0.5

0.5 0.5 0.5

Figure 4.1. The gambler’s ruin chain

omitted the loops at 0 and N ⊓⊔

Example 4.1.7 (The Ehrenfest Urn). Consider the following situation. There are B balls
in two urns. Equivalently, think of an urn with two chambers. Pick one of these B balls
uniformly at random and move it in the other box/chamber. Denote by Xn the number of
balls in the left box at time n. Then (Xn)n≥0 is an HMC with transition probabilities

Qi,i+1 =
B − i

B
, i = 0, 1, . . . , B − 1, Qi,i−1 =

i

B
, i = 1, . . . , B,

Qi,j = 0, |i− j| > 1.

This HMC is known as the Ehrenfest urn. Note that during this process it is more likely that
a ball moves from the more crowded box to the less crowded one, similarly to what happens
in diffusion processes. ⊓⊔
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Example 4.1.8 (Random placement of balls). Consider a sequence of independent trials
each consisting in randomly placing a ball in one of r given urns. We say that the system is
in state k if exactly k urns are occupied.

We obtain an HMC with state space {0, 1, . . . r} with transition probabilities

Qj,j =
j

r
, Qj,j+1 =

r − j

r
, 0 ≤ j < r,

and of course Qj,k = 0 for any other pairs (j, k). If X0 = 0, so initially all boxes are empty,
then Xn = r −Nr,n, where Nr,n is the number of empty boxes investigated in Exercise 2.30.

⊓⊔

Example 4.1.9 (Random walk on Zd). Suppose that (Xn)n≥1 are i.i.d. Zd-valued random
variables. Denote by π their common distribution. Set

S0 = 0, Sn = X1 + · · ·+Xn.

Then the random process (Sn)n∈N0 is an HMC with transition matrix

Qm,n = P
[
X1 = n−m

]
= π

[
n−m

]
, m,n ∈ Zd

One can imagine this process as a person starting at the origin of Zd and walking with random
step sizes, with Xn the size of the n-th step.

A standard random walk is obtained as follows. Denote by e1, . . . , ed the canonical basis
Zd and choose π to be uniformly distributed on the set

{
± e1, . . . ,±ed

}
, i.e.,

π
[
± ek

]
=

1

2d
, k = 1, . . . , d.

For example, when d = 1, this corresponds to a random walk on Z where, at each moment,
going one step ahead or one step back is decided by flipping a fair coin. ⊓⊔

Example 4.1.10 (Simple random walk on a graph). Consider an undirected graphG = (V,E),
where V is the set of vertices, and E denotes the set of edges. We do not allow for multiple
edges connecting two vertices. For every vertex v we denotes by deg(v) is degree, i.e., the
number of edges of E at v. We assume that the graph is locally finite, i.e., deg(v) < ∞,
∀v ∈ V .

Suppose now that a grasshopper hopscotches on the set vertices V according to the
following rule: if situated at a vertex v0, the grasshopper will jump to one of the neighbors
of v0 in V chosen uniformly randomly. Denote by Xn the location of the grasshopper at time
n. then (Xn)n≥0 is an HMC with state space V with transition matrix

Qv0,v1 =


1

deg(v0)
, if v0 and v1 are neighbors,

0, otherwise.

⊓⊔

Example 4.1.11 (The branching process). Consider again the branching process with re-
production law µ described in Example 3.1.8. Recall that it deals with the evolution of
a population of individuals of a species with µ

[
j
]
denoting the probability that a given

individual will have j ∈ N0 offsprings.
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Denote by Zn the size of the n-th generation population. We assume that Z0 = 1. Then
(Zn)n≥0 is an HMC with state space N0.

To see this, choose a sequence of i.i.d. random variables (ξk)k∈N with common distribution
µ. Then

P
[
Zn+1 = j

∣∣Zn = i
]
= P

[
ξ1 + · · ·+ ξi = j

]
.

The distribution of the random variable ξ1+ · · ·+ξi is the convolution of µ∗i, the convolution
of i copies of µ. More precisely,

µ∗i
[
j
]
=

∑
k1+···+ki=j

µ
[
k1
]
· · ·µ

[
ki
]
.

The transition matrix is then Qi,j = µ∗i
[
j
]
. ⊓⊔

Example 4.1.12 (Queing). Customers arrive for service and take their place in a waiting
line. During each period of time one customer is served, if at least one customer is present.
During a service period new customers may arrive. We assume that the number of customers
that arrive during the n-th service period is a random variable ξn, and that the random
variables ξ1, ξ2, . . . are i.i.d. with common distribution µ ∈ Prob(N0). We set µi := µ

[
i
]
,

i ∈ N0. For notation convenience we set µn = 0 for n < 0.

We denote by Xn the number of customers in line at the end of the n-th period. Note
that

Xn+1 = (Xn − 1)+ + ξn.

The sequence (Xn)n≥0 is an HMC with state space N0 and transition matrix

Qi,j =

{
µj , i = 0,

µj−i+1, i > 0.

⊓⊔

Example 4.1.13 (Noisy dynamical systems). Suppose that T : X → X is a selfmap of an at
most countable set X. This defines a dynamical system (Tn)n∈N which can be viewed as a
trivial Homogeneous Markov Chain with transition matrix

Qx,x′ =

{
1, x′ = T (x),

0, x′ ̸= T (x).

We can obtain more general Markov chains if work with “noisy” selfmaps.

More precisely suppose that (S, S) is a measurable space and

T : X× S → X, (x, s) 7→ Ts(x)

is a measurable map. In other words, (Ts) is a measurable family of maps X → X.

Fix an S-valued “noise”, i.e., a sequence

Zn :
(
Ω,F,P) → (S, S), n ∈ N

of i.i.d. S-valued random variables and an X-valued random variable X0 independent of the
Z’s we obtain a noisy dynamical system

Xn+1 = TZn+1(Xn), ∀n ∈ N.
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Hence
Xn = TZn ◦ · · · ◦ TZ1(X0).

The sequence (Xn)n≥0 is an HMC. Indeed,

P
[
Xn+1 = xn+1

∣∣Xn = xn, . . . , X0 = x0
]

= P
[
TZn+1(xn) = xn+1

∣∣Xn = xn, . . . , X0 = x0
]

= P
[
TZn+1(xn) = xn+1

]
since the event {Xn = xn, . . . , X0 = x0} belongs to the sigma algebra generated byX0, Z1, . . . , Zn
and thus is independent of Zn+1. On the other hand, obviously

P
[
TZn+1(xn) = xn+1

]
= P

[
Xn+1 = xn+1

∣∣Xn = xn
]
.

This Markov chain is homogenous since the random variables Zn are identically distributed.

The standard random walk on Z is a Markov system generated in an obvious way by a
random dynamical system defined by the map

T : Z× Z → Z, (m, z) 7→ Tz(m) = m+ z

and the noise described by a sequence of i.i.d. Rademacher random variables (Zn)n∈N. Then
Xn+1 = Xn + Zn+1. One can show that any Markov chain can be produced in this fashion,
as iterates of random maps. ⊓⊔

4.2. The dynamics of homogeneous Markov
chains

In this section we will consistently adopt the dynamical point of view on Markov chains
described in Remark 4.1.2 (b) and extract some useful consequences.

4.2.1. Classification of states. Suppose that (Xn)n≥0 is an HMC with state space X and
transition matrix Q.

Definition 4.2.1. (a) A state x1 ∈ X is said to be accessible from a state x0 ∈ X, and we
denote this by x0 → x1, if Q

n
x0,x1 > 0 for some n ∈ N0.

(b) The states x0 and x1 communicate if x0 → x1 and x1 → x1. We indicate this using the
notation x0 ↔ x1. ⊓⊔

Recall that to an HMC with state space X we can associate a directed graph with vertex
set X; see Remark 4.1.2 (b). A walk from x to x′ in this graph is a sequence of vertices

x = x0, x1, . . . , xn = x′

such that, for any i = 1, . . . , n, there exists a directed edge from xi−1 to xi. If x ̸= x′, then
x′ is accessible from x if there is a walk from x to x′.

Proposition 4.2.2. The communication relation “↔” is an equivalence relation.

Proof. Reflexivity. x↔ x since Q0
x,x = 1

Symmetry. The relation is symmetric by definition.

Transitivity. Suppose that x0 ↔ x1 and x1 ↔ x2. Then, there exist m,n ∈ N0 such that

Qmx0,x1 > 0 and Qnx1,x2 > 0.
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Observe that

Qm+n
x0,x2 = Qmx0,x1Q

n
x1,x2 +

∑
x∈X\{x1}

Qmx0,xQ
n
x,x2︸ ︷︷ ︸

≥0

> 0.

Hence x0 → x2. The opposite relation x2 → x0 is proved in identical fashion. ⊓⊔

Definition 4.2.3. The equivalence classes of the relation ↔ are called the communication
classes of the given HMC. ⊓⊔

Example 4.2.4. (a) Consider the HMC associated to the gamblers’s ruin problem described
in Example 4.1.6. The state space is {0, 1, . . . , N} and there are three communication classes

Ccpt = {0}, C = {1, . . . , N − 1}, CN = {N}.
Note that no state in C is accessible from Ccpt or CN .

(b) The HMC associated to the Ehrenfest urn model in Example 4.1.7 has state space
{0, 1, . . . , N} and any two states communicate so that there is only a single communication
class.

(c) The HMC corresponding to the random placement of balls problem in Example 4.1.8 has
state space {0, 1, . . . , r} and communication classes

Ccpt = {0}, {1}, . . . , Cr = {r}.
Note that for j > i, the class Cj is accessible from the class Ci. ⊓⊔

Definition 4.2.5. Let (Xn)n∈N0 be an HMC with state space X and transition matrix Q.

(i) A subset C ⊂ X is closed with respect to this HMC if no state outside C is accessible
from a state in C.

(ii) A subset of X is called irreducible if its is closed and contains no proper closed
subset.

(iii) A state x ∈ X is called absorbing if the set {x} is irreducible.

(iv) The HMC is called irreducible if its state space is irreducible.

⊓⊔

Example 4.2.6. For the HMC corresponding to the random placement of balls problem in
Example 4.1.8 with state space {0, . . . , r}, all the subsets {k, k+1, . . . , r} are closed and the
state r is absorbing. This is not an irreducible Markov chain. ⊓⊔

Note that a subset C ⊂ X is closed if and only if for any x ∈ C we have∑
y∈C

Qx,y = 1.

Equivalently, this means that P
[
Xn ∈ C

∣∣X0 ∈ C
]
= 1.

Using the intuition of the randomly hopping grasshopper, this says that, once the grasshop-
per steps in a closed set it will be trapped there. In particular, this argument proves the
following result.
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Proposition 4.2.7. A closed subset of the state space of an HMC is a union of communi-
cation classes. ⊓⊔

1

2

3
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5

6

7

8

Figure 4.2. An HMC with a single irreducible subset.
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Figure 4.3. Another HMC with a single irreducible subset.

Example 4.2.8. Consider an HMC with associated digraph depicted in Figure 4.2. It con-
sists of three communication classes

C1 := {1, 2, 3, 4}, C2 := {5, 7, 8}, C3 := {6}.

The communication class C3 is closed while C1 and C2 are not. The only irreducible set is
C3. In particular the state 6 is absorbing.

Suppose now that we change the directions of the edges 4 → 5 and 4 → 6 as depicted in
Figure 4.3. This HMC has the same communication classes C1, C2, C3, but this time only C1

is closed. ⊓⊔

Lemma 4.2.9. Let C ⊂ X be a closed subset. Then the following are equivalent.

(i) C is irreducible.

(ii) C is a communication class.

In particular, an HMC is irreducible if and only if it consists of a single communication
class.

Proof. The implication (ii) ⇒ (i) follows from Proposition 4.2.7: a closed set is a union of
communication classes.
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(i) ⇒ (ii) Suppose that C is an irreducible subset of X. In particular, C is a union of
communication classes

C =

N⋃
j=1

Cj , N ∈ N ∪ {∞}.

Suppose that N ≥ 2. Set j0 := 1. Since Cj0 is not closed, there exists j1 ̸= j0, xj0 ∈ Cj0 and
xj1 ∈ Cj1 such that xj0 → xj1 . In fact, any class in Cj1 is accessible from any class in Cj0 .
We write this Cj0 → Cj1 .

Next, we can find j2 ̸∈ {j0, j1} such that Cj1 → Cj2 . Clearly no class in Cj0 ∪ Cj1 is
accessible from Cj2 . Iterating, we obtain a (possible finite) subsequence in N ∩ [1, N ]

j0, j1, . . . , jk, . . . ,

where the jk’s are pairwise distinct, such that

Cj0 → Cj1 → Cj2 → · · ·
and no state in Cj0 ∪ · · · ∪ Cjk is accessible from Cjk+1

Note that

C ′ =
⋃
k≥1

Cjk ⊂ C \ Cj0

is a proper closed subset of C, contradicting the fact that C is irreducible. ⊓⊔

Definition 4.2.10. Suppose that (Xn)n∈N0 is an HMC with state space X and transition
matrix Q.

(i) The set of periods of a state x ∈ X is

Px :=
{
n ∈ N; Qnx,x > 0

}
.

(ii) The period of a state x is d = d(x) := gcdPx, where “gcd” stands for greatest
common divisor. When Px = ∅ we set d(x) := ∞.

(iii) A state x is called aperiodic if d(x) = 1.

⊓⊔

Lemma 4.2.11. Let (Xn)n≥0 be an HMC with state space X and transition matrix Q. Sup-
pose that x ∈ X and d(x) <∞. Then the following hold.

(i) The set Px is a semigroup of the additive semigroup (N,+).

(ii) There exists N ∈ N such that nd(x) ∈ Px, ∀n ≥ N .

(iii) If x↔ y, then d(x) = d(y).

Proof. (i) Follows from the fact that Qm+n
x,x ≥ Qmx,xQ

n
x,x.

(ii) We claim that there exist k ≥ 2 and m1, . . . ,mk ∈ Px such that

d(x) = gcd(m1,m2, . . . ,mk).

Pick m1,m2 ∈ Px and set d1 := gcd(m1,m2). Then d ≤ d1. If d < d1 define

d2 := min
{
gcd(m1,m2,m); m ∈ Px

}
.

Then d ≤ d2 ≤ d1 and d2 = d1 iff d = d2 = d1. If d2 < d1 choose m3 ∈ Px such that

d2 = gcd(m1,m2,m3) ≥ d.
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If d < d2 define

d3 := min
{
gcd(m1,m2,m3,m); m ∈ Px

}
.

If d3 = d2 we stop because d3 = d. If d3 < d2, we iterate the above procedure. Clearly this
procedure will stop after finitely many iterations.

An old result of I. Schur [181, Thm.3.15.2] implies that the set{
m1n1 + · · ·+mknk; n1, . . . , nk ∈ N

}
contains all the sufficiently large multiples of d.

(iii) For x, y ∈ X we set

Px,y :=
{
n ∈ N; Qnx,y > 0

}
.

Thus Px = Px,x. Suppose x↔ y. Note that

Px,y + Py,x ⊂ Px.

Hence d(x)|
(
Px,y + Py,x

)
. From the inclusion

Px,y + Py + Py,x ⊂ Px

we deduce that d(x)|Py so d(x)|d(y). Reversing the roles of x, y in the above argument we
deduce d(y)|d(x) so d(x) = d(y). ⊓⊔

According to the above result, all the states of an irreducible HMC have the same period
so we can speak of the period of that HMC.

Definition 4.2.12. An irreducible HMC is called aperiodic if each of its states has period
1. ⊓⊔

Example 4.2.13. (i) Each state in the standard random walk on Z locally finite graph has
period 2.

More generally, given a vertex v in a locally finite, connected graph, its set of periods
with respect to the standard random walk coincides with the set of lengths of paths in the
graph that start and end at v. Since there is such a path of length 2 we deduce that the
vertex is aperiodic if and only if there exists a path of odd length starting and ending at x.

(ii) The Ehrenfest urn in Example 4.1.7 is irreducible with period 2. ⊓⊔

Proposition 4.2.14. Let (Xn)n≥0 be an irreducible HMC with state space X, transition
matrix Q, and period d < ∞. Fix x0 ∈ X. Consider the HMC (Yn)n≥0 with state space X,
initial state Y0 = x0 and transition matrix T = Qd. Denote by CT the set of communication
classes of T . For each x ∈ X we denote by [x]T the T -communication class of x. Then the
following hold.

(i) There exists a bijection r = rx0 : CT → Z/dZ such that r
(
[x]T

)
= k mod d iff there

exists n ∈ N0 such that Qnd+kx0,x > 0.

(ii) If Qx,y > 0, then r(y) ≡ r(x) + 1 mod d.

(iii) Each T -communication class is T -closed.
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Proof. As in the proof of Lemma 4.2.11 we set

Px,y :=
{
n ∈ N; Qnx,y > 0

}
.

Let us observe that

∀x, y ∈ X, ∀n,m ∈ Px,y : n ≡ m mod d. (4.2.1)

The claim is obviously true if n = m. Suppose that n > m. Then n−m ∈ Py,y so d = d(y)
divides n−m.

Thus, for any x, y ∈ X there exists r = r(x, y) ∈
{
0, 1, . . . , d− 1

}
such that

Px,y ⊂ r(x, y) + dN0.

For any x ∈ X we set r(x) := r(x0, x). We want to prove that

[x]T = [y]T ⇐⇒r(x) = r(y). (4.2.2)

Indeed, suppose that [x]T = [y]T . Then there exists n such that Tnx,y > 0, i.e., Qndx,y > 0. Fix

m ∈ N0 such that Qmx0,x > 0. Then Qm+nd
x0,y > 0. Clearly

r(y) ≡ m+ nd ≡ m ≡ r(x) mod d.

Conversely, suppose that r(x) = r(y). Fix nx, ny ∈ N0 such that Qnx
x0,x, Q

ny
x0,y > 0. Choose N

large enough such that Nd > nx and Nd ∈ Px0 . Then Nd − nx ∈ Px,x0 and ny ∈ Px0,x so
Nd− nx + ny ∈ Px,y. Hence

0 = r(y)− r(x) ≡ ny − nx mod d.

We deduce that there exists m ∈ N0 such that md = Nd−nx+ny. Hence T
m
x,y > 0. In other

words y is T -accessible from x. A symmetric argument shows that x is T -accessible from y
so that [x]T = [y]T . This proves (4.2.2) and (i).

The statements (ii) and (iii) follow immediately from the equality

r(x, z) ≡ r(x, y) + r(y, z) mod d,

so r(y) = r(x) + r(x, y). ⊓⊔

Remark 4.2.15. Suppose that (Xn)n≥0 is an HMC as in the above proposition and

Ccpt, C1, . . . Cd−1 ⊂ X

are the communication classes of Qd. If X0 ∈ Ci, then Xn ∈ Ci+n mod d, for any n. Thus a
grasshopper hopscotching following the prescriptions of this Markov chain will jump from a
region Ci to somewhere in the next region Ci+1 and so on, returning after d jumps to the
region where he started.

Observe also that the map r : CT → Z/dZ depends on the choice of x0. On the other
hand, the action of Z/dZ on CT is independent of x0 and it is free and transitive. Thus CT
is naturally a Z/dZ-torsor. ⊓⊔
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4.2.2. The strong Markov property. Suppose that Xn : (Ω, S,P) → X, n ≥ 0 is an HMC
with state space X and transition matrix Q. As usual, we denote by (Fn)n≥0 the filtration of
S determined by this random process, i.e., Fn = σ(X0, . . . , Xn), n ∈ N0.

Suppose now that T is a stopping time adapted to this filtration. In (3.1.6) we defined
the sigma-algebra FT associated to T by the requirements

S ∈ FT⇐⇒S ∩
{
T ≤ n

}
∈ Fn, ∀n ∈ N0.

Example 4.2.16 (Return times). Let (Xn)n∈N0 be an HMC with state space X. For A ⊂ X
we define

TA := min
{
n ≥ 1; Xn ∈ A

}
.

We will refer to TA as the return time to A. This is a stopping time with respect to the
canonical filtration Fn. For x ∈ X we set Tx := T{x}.

Note that the event S belongs to FTA if at any moment n we can decide using the
information collected up to that point in Fn whether S occurred and we have returned to A
up to that moment. ⊓⊔

Example 4.2.17 (Hitting times). Let (Xn)n∈N0 be an HMC with state space X. For A ⊂ X
we define

HA := min
{
n ≥ 0; Xn ∈ A

}
.

We will refer to HA as the hitting time of A. This is a stopping time with respect to the
canonical filtration Fn. For x ∈ X we set Hx := H{x}. ⊓⊔

Theorem 4.2.18. Let Xn : (Ω, S,P) → X, n ∈ N0, be an HMC with initial distribution µ
and transition matrix Q. Suppose that T is a stopping time adapted to the canonical filtration
(Fn)n∈N0. Conditional on XT = x ∈ X and T <∞ the stochastic process

Yn := XT+n, n ∈ N0,

is in Markov(X, δx, Q) and independent of FT . More explicitly, if Λ is the event

Λ =
{
T <∞, XT = x

}
,

and PΛ : S → [0, 1] is the probability measure PΛ

[
S
]
= P

[
S
∣∣Λ ], then the stochastic process

Yn : (Ω, S,PΛ) → X

is Markov(X, δx, Q) and independent of FT .

Proof. For n ∈ N denote by Tn the stopping time Tn := T + n. Denote by S the event

S :=
{
T <∞

}
∩
{
XT = x0 = x, XT+1 = x1, . . . , XT+n = xn

}
= Λ ∩

{
XT+1 = x1, . . . , XT+n = xn

}
.

Note that S ∈ FTn . We have to show that

PΛ

[
YT+n+1 = xn+1

∣∣S ] = Qxn,xn+1 ,

i.e.,

PΛ

[
{XT+n+1 = xn+1} ∩ S ∩ Λ

]
PΛ

[
S
] = Qxn,xn+1 .
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or

P
[
{XT+n+1 = xn+1} ∩ S ∩ Λ

]
P
[
S ∩ Λ

] =
P
[
{XT+n+1 = xn+1} ∩ S

]
P
[
S
] = Qxn,xn+1 .

We have

P
[
{XT+n+1 = xn+1} ∩ S

]
=

∞∑
k=0

P
[
{Xk+n+1 = xn+1} ∩ S ∩ {T = k}

]
(use the Markov property (4.1.2) and the definition of S)

=
∞∑
k=0

P
[
{T = k} ∩ S

]
Qxn,xn+1

= Qxn,xn+1

∞∑
k=0

P
[
{T = k} ∩ S

]
= Qxn,xn+1P

[
S
]
.

To prove the independence of FT given Λ = {XT = x, T < ∞} it suffices to show that each
of the events

Γ0 =
{
XT = x

}
, . . . ,Γn =

{
XT = x0 = x,XT+1 = x1, . . . , XT+n = xn

}
, . . .

are independent of FT given Λ = {XT = x, T <∞}. Let S ∈ FT . We have

P
[
S ∩ Γn ∩ Λ

]
=

∞∑
k=0

P
[
S ∩ Γn ∩ {T = k}

]
(use the Markov property repeatedly)

=
∞∑
k=0

P
[
{T = k} ∩ S ∩ Γ0

]
Qx0,x1 · · ·Qxn−1,xn

= P
[
S ∩ Γ0 ∩ {T <∞}

]
Qx0,x1 · · ·Qxn−1,xn = P

[
S ∩ Λ

]
Qx0,x1 · · ·Qxn−1,xn ,

i.e.,

P
[
S ∩ Γn ∩ Λ

]
= P

[
S ∩ Λ

]
Qx0,x1 · · ·Qxn−1,xn .

Then

P
[
S ∩ Γn

∣∣Λ ] = P
[
S ∩ Λ

]
P
[
Λ
] ·Qx0,x1 · · ·Qxn−1,xn , x0 = x.

Since the stochastic process Yn : (Ω, S,PΛ) → X is Markov(X, δx, Q) we deduce

Qx0,x1 · · ·Qxn−1,xn = P
[
Γn
∣∣Λ ].

Hence P
[
S ∩ Γn

∣∣Λ ] = P
[
S
∣∣Λ ] · P[Γn∣∣Λ ]. ⊓⊔

In the following subsections we will have plenty of opportunities to see the strong Markov
principle at work.
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4.2.3. Transience and recurrence. Suppose that (Xn)n∈N0 is an HMC with state space
X and transition matrix Q. For any x ∈ X we denote by Tx the return time to x, i.e.,

Tx := min{n ≥ 1; Xn = x
}
.

Moreover,

Px := P
[
−
∣∣X0 = x

]
, Ex := E

[
−
∣∣X0 = x

]
.

Definition 4.2.19. A state x ∈ X is called recurrent or persistent if Px
[
Tx < ∞

]
= 1.

Otherwise it is called transient. ⊓⊔

Example 4.2.20. If X is finite and irreducible, then any state of X is recurrent. Indeed the
‘sooner-rather-than-later’ Lemma 3.1.33 implies that Ex

[
Tx
]
<∞, ∀x ∈ X. ⊓⊔

We set T 1
x := Tx and we define inductively

T k+1
x := min

{
n > T kx ; Xn = x

}
,

Nx := #
{
k ∈ N; T kx <∞

}
= #

{
n ∈ N; Xn = x

}
∈ N ∪ {∞}.

Thus T kx is the time of the k-th return to x We will refer to Nx the number of returns to x.
We set

p = px := Px
[
Tx <∞

]
.

Lemma 4.2.21. For any n ∈ N0 we have Px
[
Nx ≥ n

]
= pn. In particular, if x is recurrent,

i.e., p = 1, then Nx = ∞ a.s. and, if X is transient, then

Ex
[
Nx

]
=

p

1− p
.

Proof. Set pn := Px
[
Nx ≥ n

]
. We will prove inductively that pn = pn.

Clearly P
[
Nx ≥ 1

]
= P

[
T 1
x < ∞

]
= p. Suppose that pn = pn. The post-Tnx process

Yn = XTn
x +n starts at x and the strong Markov property implies that it is a HMC with the

same transition matrix. In particular, the probability that it returns to x is p. On the other
hand, Yn returns to x if and only if Nx ≥ n+ 1. Since the post-Tnx process is independent of
FTn

x
we deduce

P
[
Nx ≥ n+ 1

]
= pP

[
Nx ≥ n

]
= pn+1.

⊓⊔

Corollary 4.2.22. Assume that X0 = x a.s.. Then the following hold

x is recurrent ⇐⇒ Nx = ∞ a.s.⇐⇒ Ex
[
Nx

]
= ∞.

x is transient ⇐⇒ Ex
[
Nx

]
<∞.

⊓⊔

Clearly the recurrence/transience of a state depends only on the transition matrix. The
next result characterizes these features in terms of the transition matrix

Theorem 4.2.23. Let x ∈ X. The following statements are equivalent.

(i) The state x is recurrent.
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(ii) ∑
n∈N

Qnx,x = ∞.

Proof. Observe that

Nx =
∑
n∈N

I{Xn=x}

and

Ex
[
Nx

]
=
∑
n∈N

Ex
[
I{Xn=x}

]
=
∑
n∈N

Qnx,x.

The result now follows from Corollary 4.2.22. ⊓⊔

Corollary 4.2.24. Let x, y ∈ X. If x→ y and x is recurrent, then

(i) x↔ y,

(ii) Py
[
Tx <∞

]
= 1,

(iii) the state y is recurrent.

Proof. The state x is recurrent so Nx = ∞ a.s.. Since x→ y we deduce that

Px
[
Ty <∞

]
= P

[
Ty <∞

∣∣X0 = x
]
> 0.

The post-Ty chain Yn = Xn+Ty , n ≥ 0, will almost surely reach x since Nx = ∞ a.s.. Using
the strong Markov property at Ty we deduce that Yn has the same transition matrix Q. Hence
y → x, i.e. x ↔ y. In particular, the original chain, started at y will almost surely reach x,
i.e., P

[
Tx <∞

∣∣X0 = y
]
= 1.

Since x↔ y there exist j, k ∈ N such that

c = min{Qjx,y, Qky,x} > 0.

We deduce

Qn+j+ky,y ≥ Qky,xQ
n
x,xQ

j
x,y ≥ c2Qnx,x, ∀n ∈ N.

Hence ∑
m≥1

Qmy,y ≥
∑

m>j+k

Qm,y,y ≥ c2
∑
n≥1

Qnx,y = ∞.

⊓⊔

The above result shows that if C is a communication class then, either all classes in C are
recurrent, or all classes in C are transient. In the first case C is called a recurrence class and
in the second case C is called a transience class. An irreducible HMC consists of a single
communication class. Accordingly an irreducible HMC can be either transient, or recurrent.

Proposition 4.2.25. Suppose that (Xn)n≥0 is an irreducible transient HMC with state space
X, transition matrix Q and initial distribution µ. Then,

Eµ
[
Nx

]
<∞, ∀x ∈ X.
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Proof. We first prove that given x0 ∈ X there exists C = Cx0 > 0 such that

Ey
[
Nx0

]
≤ C, ∀y ∈ X.

Indeed, using the strong Markov property as in the proof of Lemma 4.2.21 we deduce that
for any y ∈ X we have

Ey
[
Nx0

]
=
∑
n≥1

Py
[
Nx0 ≥ n

]
=
∑
n≥1

Px0
[
Nx0 ≥ n− 1

]
Py
[
Tx0 <∞

]
= Px0

[
Nx0 ≥ 0

]︸ ︷︷ ︸
=1

Py
[
Tx0 <∞

]
+ Py

[
Tx0 <∞

] ∑
m≥1

Px0
[
Nx0 ≥ m

]
︸ ︷︷ ︸

Ex0

[
Nx0

]
= Py

[
Tx0 <∞

](
1 + Ex0

[
Nx0

] )
≤ 1 + Ex0

[
Nx0

]︸ ︷︷ ︸
Cx0

.

Now observe that

Eµ
[
Nx0

]
=
∑
y∈X

µ
[
y
]
Ey
[
Nx0

]
≤ Cx0 .

⊓⊔

Theorem 4.2.26. Suppose that C is a recurrence class and X0 = x ∈ C a.s.. Then,

P
[
Ny = ∞

∣∣X0 = x
]
= 1, ∀y ∈ C.

In particular, with probability one, the chain visits every state of C infinitely often, i.e.,

P
[
∀y ∈ C, Ny = ∞,

∣∣X0 ∈ C
]
= 1.

Proof. Let x, y ∈ C. We have

P
[
Nx = ∞

∣∣X0 = x
]
= 1, P

[
Ty <∞

∣∣X0 = x
]
= 1.

The strong Markov property shows that the post-Ty chain has the same distribution as the
chain started at y. Since y is recurrent we have P

[
Ny = ∞

∣∣X0 = x
]
= 1 and we deduce that

P
[
Ny <∞

∣∣X0 = x
]
= 0, ∀x, y ∈ C,

P
[
Ny <∞

∣∣X0 ∈ C
]
= 0, ∀y ∈ C.

In particular,

P
[
∃y ∈ C, Ny <∞

∣∣X0 ∈ C
]
≤
∑
y∈C

P
[
Ny <∞

∣∣X0 ∈ C
]
= 0.

Hence

P
[
∀y ∈ C, Ny = ∞,

∣∣X0 ∈ C
]
= 1− P

[
∃y ∈ C, Ny <∞

∣∣X0 ∈ C
]
= 1.

⊓⊔

Proposition 4.2.27. A recurrence communication class C is closed.
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Proof. Suppose that C is not closed. Then there exist c ∈ C and x ∈ X\C such that c→ x.
Since C is a communication class x does not communicate with any y ∈ C. Fix n0 ∈ N such
that p := P

[
Xn0 = x

∣∣X0 = c
]
> 0. In particular, since x does not communicate with C we

deduce that P
[
Xn ∈ X \X, ∀n ≥ n0

∣∣X0 = c
]
≥ p. In particular P

[
Nc < n0

∣∣X0 = c
]
≥ p.

This contradicts the fact that P
[
Nc = ∞

∣∣X0 = c
]
= 1. ⊓⊔

The set of communication classes X := X/ ↔ is itself the state space of an HMC with
transition matrix

QC,C′ = P
[
X1 ∈ C ′∣∣X0 ∈ C

]
.

Each state of X is in itself a communication class of the new Markov chain. The state space
X is partitioned into two types: transient states and recurrent states. The recurrent states
are closed, i.e., they are absorbing as states in X. Given a recurrent state R ∈ X, no other
communication class is accessible from R.

Example 4.2.28. Consider for example the gambler’s ruin problem with total fortuneN ∈ N;
see Example 4.1.6. This can be viewed as a Markov chain with state space {0, 1, . . . , N} and
transition probabilities

qi,i±1 =
1

2
, ∀0 < i < N, q0,0 = qN,N = 1.

The communication classes of this Markov chain are

{0}, {N}, {1, 2, . . . , N − 1}.

The first two are recurrent while the third is transient. ⊓⊔

If X is finite, the argument in Example 4.2.20 shows that a communication class is closed
iff it is recurrent.

Example 4.2.29 (G.Polya). (a) Consider the standard random walk on Z. We denote by Q
the transition matrix. This is an irreducible Markov chain and each state has period 2. To
decide whether it is transient or recurrent it suffices to verify if the origin is such. Note that
Q2n−1

0,0 = 0, ∀n ∈ N. To compute Q2n
0,0 we observe that a path of length 2n starts and ends

at the origin if and only if it consists of exactly n steps to the right and n steps to the left.
Since each such step occurs with probability 1

2 we deduce

Q2n
0,0 =

1

22n

(
2n

n

)
=

(2n)!

22n(n!)2
.

Using Stirling’s formula (A.1.7) we deduce that, as n→ ∞, we have

(2n)!

22n(n!)2
∼

√
4πn

2πn
∼ 1√

πn
,

so ∑
n∈N

Qn0,0 = ∞.

Thus, the 1-dimensional standard random walk is recurrent.

(b) Consider the standard walk on Z2. It is irreducible. We want to decide if the origin is
recurrent or transient. To compute Q2n

0,0 we observe that a path of length 2n starts and ends
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at the origin if and only if the number of steps up is equal to the number of steps down and
the number of steps to the right is equal to the number of steps to the left. We deduce that

Q2n
0,0 =

n∑
k=0

(2n)!

42n(k!)2( (n− k)! )2
=

(2n)!

42n(n!)2

n∑
k=0

(
n

k

)2

Using Newton’s binomial formula in the equality

(x+ y)2n = (x+ y)n(x+ y)n

and identifying the coefficients of xnyn on either side of the above equality we deduce(
2n

n

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
=

n∑
k=0

(
n

k

)2

,

so that

Q2n
0,0 =

(
1

22n

(
2n

n

))2

∼ 1

πn
as n→ ∞.

Hence, again ∑
n∈N

Qn0,0 = ∞

so the standard 2-dimensional random walk is also recurrent.

(c) Consider the standard random walk on Z3. Arguing as in the 2-dimensional case we
deduce

Q2n
0,0 =

1

62n

∑
j+k+ℓ=n

(2n)!

(j!)2(k!)2(ℓ!)2
=

1

22n

(
2n

n

) ∑
j+k+ℓ=n

(
n!

j!k!ℓ!3n

)2

.

Now observe that ∑
j+k+ℓ=n

n!

j!k!ℓ!3n︸ ︷︷ ︸
=:pjkℓ

=

(
1

3
+

1

3
+

1

3

)n
= 1.

Hence ∑
j,k,ℓ

p2jkℓ ≤ max pj,k,ℓ
∑
j,k,ℓ

pj,k,ℓ = max pj,k,ℓ,

so

Q2n
0,0 ≤

1

22n

(
2n

n

)
max pj,k,ℓ.

Let us observe that the maximum value of pj,,k,ℓ is achieved when j, k, ℓ are as close to n/3
as possible. Indeed, if j ≤ k ≤ ℓ, j < ℓ, then

(j + 1)!(ℓ− 1)! =
j + 1

ℓ
j!ℓ! ≤ j!ℓ!

so
pj+1,k,ℓ−1 ≥ pj,k,ℓ.

Assume now that n = 3m. We deduce

Q2n
0,0 ≤

1

22n

(
2n

n

)
(3m)!

(m!)333m
.

Using again Stirling’s formula we deduce that, as m→ ∞ we have

(3m)!

(m!)333m
∼

√
6πm

(2πm)3/2
=

√
3

2πm
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On the other hand
1

22n

(
2n

n

)
∼ 1√

πn
=

1√
3πm

.

We deduce that

Q6m
0,0 = O

(
m−3/2

)
as m→ ∞.

Arguing in a similar fashion we deduce

Q6m+2
0,0 , Q6m+4

0,0 = O
(
m−3/2

)
as m→ ∞.

We conclude that ∑
n∈N

Qn0,0 =
∑
n∈N

Q2n
0,0 <∞,

so the standard 3-dimensional random walk is transient! ⊓⊔

4.2.4. Invariant measures. Suppose that (Xn)n∈N0 is an HMC with state space X and
transition matrix Q. We will identify a σ-finite measure λ on X with function

λ : X → [0,∞), x 7→ λx = λ
[
{x}

]
.

Definition 4.2.30. An invariant or stationary measure for the HMC (Xn)n∈N0 is a σ-finite
measure λ on X such that λ = λQ, i.e.,

λx =
∑
y∈X

λyQy,x, ∀x ∈ X. (4.2.3)

An invariant or stationary distribution is an invariant probability measure. ⊓⊔

Example 4.2.31 (Time reversal). Suppose that π is an invariant probability distribution for
(Xn)n≥0 such that πx > 0, ∀x ∈ X. Suppose additionally that

P
[
X0 = x

]
= πx, ∀x ∈ X.

Then

P
[
X1 = x

]
=
∑
y∈X

P
[
X1 = x

∣∣X0 = y
]
πy =

∑
y

πyQy,x = πx.

Iterating we deduce that the random variables (Xn)n∈N0 are identically distributed. For
x, y ∈ X we set

Ry,x := P
[
X0 = x

∣∣X1 = y
]
=

P
[
X1 = y

∣∣X0 = x
]
P
[
X0 = x

]
P
[
X1 = y

] =
πx
πy
Qx,y.

Note that for every x, y ∈ X we have∑
x

Ry,x =
1

πy

∑
x

πxQx,y = 1,

so (Ry,x)x,y∈X is a stochastic matrix describing the so called time reversed chain.

Suppose now that π is a probability distribution on X such that πx > 0, ∀x ∈ X and
satisfying

Qy,x = Ry,x =
πx
πy
Qx,y, ∀x, y ∈ X. (4.2.4)
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From the equality

1 =
∑
x

Qy,x =
∑
x

πx
πy
Qx,y

we deduce that π is a stationary distribution and the time reversed chain coincides with the
initial chain. This is the reason why the chains satisfying (4.2.4) are called reversible. ⊓⊔

Definition 4.2.32. An irreducible HMC with state space X and transition matrix is called
reversible if there exists a function λ : X → (0,∞) satisfying satisfying the detailed balance
equations

λyQy,x = λxQx,y, ∀x, y ∈ X. (4.2.5)

⊓⊔

Observe that if Q satisfies the detailed balance equation, then an argument as in Example
4.2.31 shows λ defines a Q-invariant measure

Example 4.2.33. (a) If Qx,y = Qy,x for any x, y ∈ X, then the corresponding chain is
reversible and any uniform measure on X is invariant. This happens for example if (Xn)n≥0

describes the standard random walk on Zd.

(b) In the case the standard random walk on a locally finite connected graph we have

Qx,y =
1

deg x
, deg x ·Qx,y = 1 = deg y ·Qy,x.

Hence Q is in detailed balance with invariant measure x 7→ deg x. If, additionally, X is finite,
then the probability measure

πx =
deg x∑
y deg y

is invariant. ⊓⊔

Example 4.2.34 (The Ehrenfest urn). Consider the Ehrenfest urn model detailed in Exam-
ple 4.1.7. We recall that the state space is X = {0, 1, . . . , B}, B ∈ N and the only nontrivial
transition probabilities are

Qk,k+1 =
B − k

B
, Qk,k−1 =

k

B
.

Note that
Qk,k+1

Qk+1,k
=
B − k

k + 1
=

(
B
k+1

)(
B
k

)
Then the measure k → λk =

(
B
k

)
is invariant and

πk =
1

2B

(
B

k

)
, k = 0, 1, . . . , B,

is an invariant probability distribution. ⊓⊔

Theorem 4.2.35. Suppose that (Xn)n∈N0 is an irreducible and recurrent HMC with state
space X and transition matrix Q. Fix x0 ∈ X, and denote by T0 the time of first return to
x0, i.e.,

T0 := Tx0 = min
{
n ≥ 1; Xn = x0

}
.
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For any x ∈ X, define

Nx =
∑
n∈N

I{Xn=x}I{n≤T0} =

T0∑
n=1

I{Xn=x}, (4.2.6a)

λx = λx,x0 =

{
Ex0
[
Nx

]
, x ̸= x0,

1, x = x0.
(4.2.6b)

In other words, λx is the expected number of visits to x before returning to x0 when starting
from x0. Then, the following hold.

(i) λx ∈ (0,∞), ∀x ∈ X and the associated measure λ on X, given by

λ
[
{x}

]
= λx, ∀x ∈ X

is invariant.

(ii) λ
[
X
]
= Ex0

[
Tx0

]
.

(iii) The measure λ is the unique invariant measure such that λx0 = 1.

Proof. (i) We follow the approach in [22, Thm. 3.2.1]. Clearly λx0 = 1. For x ∈ X \ {x0}
and n ∈ N we set

px(n) := P
[
Xn = x, n ≤ T0

]
.

Thus, px(n) is the probability of visiting state x at time n before returning to x0. The
equality (4.2.6a) implies that

λx =
∑
n∈N

px(n), ∀x ̸= x0. (4.2.7)

Let us prove that λ satisfies (4.2.3). Observe first that px(1) = Qx0,x. From the Markov
property we deduce

px(n) =
∑
y ̸=x0

py(n− 1)Qy,x. (4.2.8)

We deduce that

λx
(4.2.7)
=

∑
n∈N

px(n) = px(1) +
∑
y ̸=x0

( ∑
n∈N

py(n)
)

︸ ︷︷ ︸
=λy

Qy,x

(λx0 = 1, px(1) = Qx0,x)

= λ0Qx0,x +
∑
y ̸=x0

λyQy,x =
∑
y

λyQy,x.

This proves (4.2.3). Let us now show that the numbers λx defined by (4.2.6b) are positive.

Suppose that λx = 0 for some x ∈ X. Obviously x ̸= x0. Moreover, from the equality
λ = λQn, ∀n ∈ N we deduce

0 = λx = Qnx0,x +
∑
y ̸=x0

λyQ
n
y,x.

Thus Qnx0,x = 0, ∀n ∈ N, which contradicts the fact that x0 and x communicate.
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Finally, let us prove that λx <∞, ∀x. Observe that

1 = λx0 =
∑
x∈X

λxQ
n
x,x0 . (4.2.9)

Suppose that λx = ∞ for some x ̸= x0. Since the chain is irreducible, the state x0 commu-
nicates with x so there exists n = n(x) such that Qnx0,x ̸= 0. The equality (4.2.9) implies

λx ≤ 1
Qn

x,x0

.

(ii) We have∑
x∈X

∑
n≥1

I{Xn=x}I{n≤T0} =
∑
n≥1

∑
x∈X

I{Xn=x}I{n≤T0} =
∑
x∈X

I{n≤T0} = T0.

Hence

λ
[
X
]
=
∑
x∈X

λx =
∑
x∈X

∑
n≥1

Ex0
[
I{Xn=x}I{n≤T0}

]
= Ex0

[
T0
]
.

(iii) We follow the approach in [2, 135]. Consider the matrix K : X× X → [0, 1]

Kx,y =

{
Qx,y, y ̸= x0,

0, y = x0,

Consider the sequence (µn)n≥0 of measures on X defined by

µ0 = δx0 , µn
[
x
]
= px(n) = P

[
Xn = x, n < T0

]
, x ∈ X.

Note that µn
[
x0
]
= 0, ∀n. The equality (4.2.8) implies that

µn = µn−1K, ∀n ≥ 1

so µn = δx0K
n. Observe that

λ =
∑
n≥0

µn =
∑
n≥0

δx0K
n.

Fix an invariant measure ν such that νx0 = 1. The invariance condition reads ν = δx0 + νK.
We deduce

ν = δx0 +
(
δx0 + νK

)
K = δx0 + δx0K + νK2.

Arguing inductively we deduce

ν =
n∑

m=0

δx0K
m + νKn+1 ≥

n∑
m=0

δx0K
m, ∀n ∈ N.

Letting n→ ∞ we deduce ν ≥ µ. The difference σ = ν −µ is also an invariant measure such
that σ

[
x0
]
= 0. Set σx := σ

[
x
]
.

Fix x ∈ X \ {x0}. Since the Markov chain is irreducible there exists n ∈ N such that
Qnx,x0 > 0. From the equality σ = σQn we deduce

0 = σx0 = σxQ
n
x,x0 +

∑
y ̸=x

σxQ
n
y,x0 ≥ σx1Q

n
x,x0 .

Hence σx = 0, ∀x ∈ X so that ν = λ.

⊓⊔
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Remark 4.2.36. The example of the standard random walk on Z3 shows that even transient
chains can admit invariant measures. ⊓⊔

Suppose that (Xn)n≥0 is irreducible and recurrent. For each x ∈ X we denote by πx the
unique invariant measure on X such that πx

[
x
]
= 1. We know that for x, y ∈ X the measure

πy is a positive multiple of πx,

πy = cy,xπ
x.

From the equality πx
[
x
]
= 1 we deduce cy,x = πy

[
x
]
so that

πy = πy
[
x
]
πx. (4.2.10)

From Theorem 4.2.35(ii) we deduce that

πx
[
X
]
= Ex

[
Tx
]
. (4.2.11)

In particular this shows that the following statements are equivalent

(i) ∃x ∈ X such that Ex
[
Tx
]
<∞.

(ii) ∀x ∈ X, Ex
[
Tx
]
<∞.

Definition 4.2.37. Let (Xn)n≥0 be an irreducible recurrent HMC.

(i) The chain is called positively recurrent if Ex
[
Tx
]
<∞ for some x ∈ X.

(ii) The chain is called null recurrent if Ex
[
Tx
]
= ∞ for all x ∈ X.

⊓⊔

Corollary 4.2.38. An irreducible recurrent HMC is positively recurrent if for some (for all)
x ∈ X we have

πx
[
X
]
<∞. (4.2.12)

In particular, a positively recurrent irreducible HMC admits a unique invariant probability
measure π∞ described by

π∞ =
1

Ex
[
Tx
]πx, ∀x ∈ X .

In other words

π∞
[
x
]
=

1

Ex
[
Tx
] , ∀x ∈ X . (4.2.13)

⊓⊔

Proof. The equality (4.2.13) follows from the equality πx
[
x
]
= 1. ⊓⊔

Corollary 4.2.39. Any irreducible HMC with finite state space Xadmits a unique stationary
probability measure. ⊓⊔

Proof. As shown is Example 4.2.20 this chain is recurrent since the state space is finite. The
finiteness of X implies (4.2.12). ⊓⊔
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Example 4.2.40 (Random knight moves). Consider a regular 8×8 chess table and a knight
that starts in the lower left-hand corner and then moves randomly along, making each per-
missible move with equal probability.

This is an example of random walk on a graph with vertex set X consisting of the centers of
the 64 squares of the board, where two vertices are connected by as many edges as possibilities
for the knight to go from a square to the other in one move.

It is easily seen that this is a connected graph so the corresponding random walk is
irreducible and has a unique invariant probability distribution given by

π
[
x
]
=

deg x

Z
, Z =

∑
y∈X

deg y.

Now observe that Z is twice the number of edges of this graph.

To count them observe that each 2 × 3 sub-rectangle of the chess table determines four
edges in this graph, two for each diagonal. The same is true for the 3×2 rectangle. Moreover,
any knight move is corresponds to a unique diagonal of such a rectangle. If N2×3 and
respectively N3×2 denote the number of 2× 3 rectangles respectively 3× 2 rectangles, then

N2×3 = N3×2 =: N.

There are two diagonals per rectangle, and 2N rectangles so there are 4N edges. Hence
Z = 8N . Now observe that since a 3× 2 rectangle is uniquely determined by the location of
its lower-left corner we have N = N3×2 = 6× 7 = 42 so Z = 8 · 42.

If x corresponds to the left-hand corner square of the chess table, then deg x = 2 so

Ex
[
Tx
]
=

1

π
[
x
] = 8 · 42

2
= 4 · 42 = 168.

Thus, given that the knight starts at x, the expected time to return to x is 168. ⊓⊔

Theorem 4.2.41. Suppose that (Xn) is an irreducible HMC with state space X and transition
matrix Q. Then the following are equivalent.

(i) The chain is positively recurrent.

(ii) There exists an invariant probability measure.

Proof. We have already shown that (i) ⇒ (ii). To prove the implication (ii) ⇒ (i) fix an
invariant probability measure π. Thus π = Qnπ, ∀n ∈ N, so that

π
[
y
]
=
∑
x∈X

π
[
x
]
Qnx,y, ∀y ∈ X, n ∈ N (4.2.14)

Fix y0 ∈ X such that π
[
y0
]
̸= 0. We prove first that if the chain is recurrent then it has to

be positively recurrent. Denote by λy0 the unique invariant measure such that λy0
[
y0
]
= 1.

The measure λy0 is a constant multiple of π so it is finite. Hence

Ey0
[
Ty0
]
= λy0

[
X
]
<∞,

showing that the chain in fact positively recurrent.
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We now argue by contradiction that the chain is indeed recurrent. Assume that our
Markov chain is transient. Proposition 4.2.25 implies that for any x ∈ X we have

∞ > Eπ
[
Nx

]
=
∑
n

Eπ
[
INx=n

]
=
∑
n

∑
x′∈X

Qnx,x′π
[
x′
]
≥ π

[
y0
]∑

n

Qnx,y0 .

Hence ∑
n

Qnx,y0 <∞ and lim
n→∞

Qnx,y0 = 0, ∀x ∈ X. (4.2.15)

Set qn(x) = Qnx,y0 , ∀x ∈ X. The equality (4.2.14) implies that∫
X
qn(x)π[dx] = π

[
y0
]
> 0, ∀n ∈ N

On the other hand, the equality (4.2.15) coupled with the Dominated Convergence theorem
implies

lim
n→∞

∫
X
qn(x)π[dx] = 0.

This contradiction completes the proof. ⊓⊔

Example 4.2.42. We have shown in Example 4.2.29 that the standard random walks on Z
and Z2 are recurrent. Let us show that they are null recurrent.

Note that for k = 1, 2, the measure on Zk defined by λ
[
x
]
= 1, ∀x ∈ Zk is invariant. By

Theorem 4.2.35, λ is the unique invariant measure such that λ
[
0
]
= 1. Since λ

[
Zk
]
= ∞

we deduce that there is no invariant finite measure. ⊓⊔

Proposition 4.2.43. Suppose that (Xn)n≥0 is an irreducible, positively recurrent HMC with
state space Xand transition matrix Q. Then

Ey
[
Tx
]
<∞, ∀x, y ∈ X.

Proof. Fix x ∈ X. Let Y ⊂ X denote the set of y ∈ X such that Ey
[
Tx
]
< ∞. Note that

x ∈ Y.

For y ∈ Y we have

Ey
[
Tx
]
= Ey

[
Tx
∣∣X1 = y

]
Qy,y +

∑
z ̸=y

Ey
[
Tx
∣∣X1 = z

]
Qy,z.

Hence

y ̸= z, Qy,z > 0 ⇒ Ey
[
Tx
∣∣X1 = z

]
<∞

Now observe that for z ̸= y

Ey
[
Tx
∣∣X1 = z

]
=

{
1, z = x,

1 + Ez
[
Tx
]
, z ̸= x.

We deduce that y ∈ X and Qy,z > 0, then z ∈ Y. We conclude iteratively that

y ∈ Y, ∀y, x→ y.

Since the chain is irreducible we deduce Y = X. ⊓⊔
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Let (Xn)n≥0 be an HMC with state space and transition matrix Q. Recall that for any
set A ⊂ X we denoted by TA the time of first return to A

TA := inf
{
n ≥ 1; Xn ∈ A

}
.

Note that TA ≤ Ta, ∀a ∈ A, so

Ex
[
TA
]
≤ Ex

[
Ta
]
, ∀x ∈ X, ∀a ∈ A.

We deduce that if the chain is irreducible and positively recurrent then

Ex
[
TA
]
<∞, ∀x ∈ X, ∀A ⊂ X.

We have a sort of converse.

Proposition 4.2.44. Suppose that (Xn)n≥0 is an irreducible HMC with state space Xand
transition matrix Q. If there exists a finite subset A ⊂ X such that

Ea
[
TA
]
<∞, ∀a ∈ A,

then (Xn)n≥0 is positively recurrent.

Proof. We follow the approach in [22, Chap. 5, Sec. 1.1]. Set

MA := max
a∈A

Ea
[
TA
]
.

Consider the epochs of return to A,

T 1 := TA, T k+1 := min
{
n > T k; Xn ∈ A

}
.

Fix a0 ∈ A and suppose that (Xn)n≥0 starts at a0, X0 = a0 a.s.. We set

Y0 := X0, Yk := XTk , k ∈ N.

The strong Markov property shows that (Yk)k≥0 is an HMC with state space A. Since (Xn)
is irreducible we deduce that (Yk)k≥0 is such. Since A is finite, the chain (Yk) is positively

recurrent. Denote by T̂0 the time of first return to a0 of the chain (Yk)k≥0. Set

S0 = T 1, Sk = T k+1 − T k.

If Ta0 denotes the time of first return to a0 of the original chain, then

Ta0 =

∞∑
k=0

SkI{k<T̂0}, Ea0
[
Ta0

]
=

∞∑
k=0

Ea0
[
SkI{k<T̂0}

]
.

On the other hand,

Ea0
[
SkI{k<T̂0}

]
=
∑
a∈A

Ea0
[
SkI{k<T̂0}I{X

Tk=a}
]
.

Observe that the event {k < T̂0} belongs to FTk . We deduce

Ea0
[
SkI{k<T̂0}I{X

Tk=a}
]
= Ea0

[
Sk
∣∣ k < T̂0, XTk = a

]
Px0
[
k < T̂0, XTk = a

]
(use the strong Markov property for T k)

= Ea0
[
Sk
∣∣XTk = a

]
Px0
[
k < T̂0, XTk = a

]
= Ea

[
TA
]
Px0
[
k < T̂0, XTk = a

]
≤MAPa0

[
k < T̂0, XTk = a

]
.
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Hence

Ea0
[
Ta0

]
≤MA

∞∑
k=0

(∑
a∈A

Px0
[
T̂0 > k,XTk = a

])

=MA

∞∑
k=0

Pa0
[
T̂0 > k

]
=MAEa0

[
T̂0
]
<∞,

since the chain (Yk) is positively recurrent. ⊓⊔

4.2.5. Martingale techniques. Suppose that (Xn)n≥0 is an HMC with state space X,
transition matrix Q and initial distribution π0. We assume that all the random variables Xn

are defined on the same probability space (Ω, S,P). Set

πn := π0 ·Qn, ∀n ∈ N.

We denote by Fn the filtration

Fn = σ(X0, X1, . . . , Xn) ⊂ S, n ≥ 0.

We want to investigate the (sub/super)martingales with respect to this filtration and show
some of their applications to the dynamics of the underlying HMC.

Note that any function X → R is measurable with respect to the sigma-algebra 2X. For
this reason we will denote by L0(X) the space of functions X → R. We think of a function
f ∈ L0(X) as a column vector

(
f(x)

)
x∈X and we denote by Qh the function described by

the multiplication of the matrix Q with the column vector f . More precisely,

(Qf)(x) =
∑
y∈X

Qx,yf(y), ∀x ∈ X.

There is a small problem with this definition namely, if X is infinite, then the above series
may by divergent. Since the rows of Q define probability distributions on X we see that the
above sums are finite if f is bounded. We obtain in this fashion a linear map

Q : L∞(X) → L∞(X), f → Qf.

We say that the transition matrix is locally finite if each of its rows has only finitely many
nonzero entries. Equivalently, at each state x ∈ X the system can transition only to finitely
many states. In this case Q defines a linear map

Q : L0(X) → L0(X).

Note

QIX = IX, f ≥ 0 ⇒ Qf ≥ 0.

If we think of πn as a row vector, then for any g ∈ L1(X, πn) we have∫
X
gdπn = πn · g,

where the “·” denotes the multiplication of a one-row matrix πn with a one-column matrix
g. We deduce

πn · g = (π0 ·Qn) · g = π0 · (Qng).
Thus

g ∈ L1(X, πn), ∀n ≥ 0⇐⇒Qng ∈ L1(X, π0), ∀n ≥ 0.
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Definition 4.2.45. A function f ∈ L1(X, π0) is called a Lyapunov function of the HMC
(Xn)n≥0 if the stochastic process

(
f(Xn)

)
n≥0

is a supermartingale adapted to the filtration

Fn, i.e.,
f(Xn) ∈ L1(Ω, S,P), E

[
f(Xn+1) ∥Fn

]
≤ h(Xn), ∀n ≥ 0. ⊓⊔

Since the distribution of Xn is πn, we deduce that

f(Xn) ∈ L1(Ω, S,P)⇐⇒ f ∈ L1(X, πn).

The Markov condition implies E
[
f(Xn+1) ∥Fn

]
= E

[
f(Xn+1) ∥Xn

]
. Let us observe that

E
[
f(Xn+1) ∥Fn

]
= E

[
f(Xn+1) ∥Xn

]
= Qf(Xn), ∀n ≥ 0. (4.2.16)

Indeed,

E
[
f(Xn+1)

∣∣Xn = x
]
=
∑
y∈X

f(y)P
[
Xn+1 = y

∣∣Xn = x
]

=
∑
y∈X

Qx,yf(y) = (Qf)(x).

Proposition 4.2.46. Let f ∈ L∞(X). Then the sequence
(
f(Xn)

)
n≥0

is a martingale (resp.

supermartingale) iff Qf = f (resp. Qh ≤ h). ⊓⊔

Definition 4.2.47. The operator ∆ := 1−Q : L∞(X) → L∞(X) is called the Laplacian2 of
the HMC. ⊓⊔

Observe that for any f ∈ L∞(X) we have

(∆f)(x) =
∑
y∈X

Qx,y
(
f(x)− f(y)

)
.

Thus f(Xn) martingale iff ∆f = 0, i.e., h is harmonic with respect to this Laplacian. This se-
quence is a supermartingale iff ∆f ≥ 0, i.e., f is superharmonic with respect to the Laplacian
∆.

A function f : X → R is said to be harmonic on a subset U ⊂ X if

∆f(u) = 0, ∀u ∈ U ⇐⇒ f(u) =
∑
x∈X

Qu,xf(x), ∀u ∈ U.

Example 4.2.48. Fix a nonempty subset Y ⊂ X and x0 ∈ X \ Y . We denote by HY the
hitting time of Y , and by Hx0 the hitting time x0. For x ∈ X we set

f(x) = Px
[
Hx0 < HY

]
,

i.e., f(x) is the probability that the system started at x hits x0 before it hits E. Note that

0 = f(y) ≤ f(x) ≤ 1 = f(x0), ∀x ∈ X, ∀y ∈ Y.

Note that for any x ̸∈ {x0} ∪ Y we have

f(x) = Px
[
Hx0 < HY

]
=
∑
x′∈X

Px
[
Hx0 < HY

∣∣X1 = x′
]︸ ︷︷ ︸

=f(x′)

Qx,x′ = Qf(x).

Thus f is harmonic on X \
(
{x0} ∪ Y

)
. ⊓⊔

2Here we are using the geometers’ convention. As defined, the Laplacian is nonnegative definite.
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Proposition 4.2.49 (Lévy’s martingale). Suppose that f ∈ B(X). For each n ∈ N0 we set

Mf
n := f(Xn)− f(X0) +

n−1∑
k=0

∆f(Xk)

= f(Xn)− f(X0) +

n−1∑
k=0

(
Xk − E

[
f(Xk+1) ∥Xk

] )
.

Then the sequence
(
Mf
n

)
n≥0

is a martingale.

Proof. Note that

Mf
n+1 −Mf

n = f(Xn+1)− f(Xn) + ∆f(Xn)

and

E
[
Mf
n+1 −Mf

n ∥Fn
]
= E

[
f(Xn+1) ∥Fn

]
− f(Xn)−∆f(Xn)

(4.2.16)
= Qf(Xn)− f(Xn) + ∆f(Xn) = 0.

⊓⊔

Let I : X → R denote the indicator of X, I(x) = 1, ∀x ∈ X. Since Q is a stochastic
matrix we have QI = I, so that the constant functions are harmonic.

Theorem 4.2.50. Suppose that the HMC (Xn)n≥0 is irreducible and recurrent. Then any
bounded Lyapunov function is constant.

Proof. We argue by contradiction. Suppose that h is non-constant bounded Lyapunov func-
tion on X. There exist x0, x1 ∈ X such that h(x0) ̸= h(x1).

Suppose that π0 = δx0 . The sequence h(Xn) is a bounded supermartingale. The Sub-
martingale Convergence Theorem implies that the sequence h(Xn) converges a.s..

On the other hand, since (Xn) is recurrent we deduce

P
[
Xn = x0 i.o.

]
= P

[
Xn = x1 i.o.

]
= 1.

Thus, the sequence h(Xn) has a.s. two different limit points h(x0) and h(x1) and thus h(Xn)
is a.s. divergent! ⊓⊔

Corollary 4.2.51. If the irreducible HMC (Xn)n≥0 admits a nonconstant, bounded Lya-
punov function then it must be transient. ⊓⊔

Example 4.2.52. Suppose that (Xn)n≥0 describes the simple random walk on a locally finite
connected graph G = (V,E) with vertex set V and edge set E. A function f : V → R is then
superharmonic with respect to this Markov chain if its value at each vertex is at least the
average of the values at neighbors

f(v) ≥ 1

deg v

∑
u∼v

f(u), ∀v ∈ V,

where u ∼ v indicates that the vertices u and v are neighbors, i.e., connected by an edge.

Suppose that G is a rooted binary tree. This means that G is a tree, it has a unique
vertex v0 of degree 1, and every other vertex has degree 3. One can think that any vertex
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other than the root has a unique direct ancestor and two direct successors. The root has a
unique succesor

One can think of v0 as the generation zero vertex. It has a unique successor. This is
the generation 1 vertex. Its two succesors form the second generation of vertices. Their 4
successors determine the third generation etc. Equivalently, a vertex belongs to the n-th
generation, n > 1, if its predecessor is in the (n− 1)-th generation. We obtain in this fashion
a generation function

g : V → N0, g(v) := the generation of the vertex v.

Define

f : V → [0, 1], f(v) = 2−g(v).

Any vertex v ̸= v0 has two vertices of generation g(v)+1 and one vertex of generation g(v)−1.
Hence ∑

u∼v
f(u) = 2−g(v)+1 + 2 · 2−f(v)−1 = 3 · 2−g(v) = 3f(v),

so that

f(v) =
1

3

∑
u∼v

f(u), ∀v ∈ V \ {v0}.

Obviously f(v0) > f(v), ∀v ∈ V \ {v0}. This proves that f is superharmonic, nonconstant
and bounded so the random walk on G is transient. ⊓⊔

Definition 4.2.53. A function f ∈ L0(X) is called coercive if, for any C > 0, the set {f ≤ C}
is a finite subset of X. ⊓⊔

Proposition 4.2.54. Let (Xn)n≥0 be an irreducible HMC with state space X and transition
matrix Q. Suppose that there exists a nonnegative coercive function f : X → [0,∞) and a
finite set A ⊂ X such that ∑

y∈X
Qx,yf(y) ≤ f(x), ∀x ∈ X \A. (4.2.17)

Then (Xn)n≥0 is recurrent.

Proof. We follow [62, Sec. 2..2]. The condition (4.2.17) is equivalent to

Ex
[
f(Xn+1)− f(Xn)

∣∣Xn = x
]
≤ 0, ∀x ∈ X \A.

Denote by TA the time of first return to A. For x ∈ X \ A we denote by (Y x
n ) the process

started at x and stopped upon entry in A, Yn := Xn∧TA .

The sequence F xn = f(Y x
n ) is a bounded below supermartingale adapted to σ(X0, . . . , Xn).

From the submartingale convergence theorem we deduce that F xn converges a.s. to F x∞.
Moreover, Fatou’s Lemma implies

Ex
[
F x∞

]
≤ Ex

[
F0

]
= f(x).

In particular, Px
[
F x∞ = ∞

]
= 0, ∀x ∈ X \A. Hence

Px
[
lim f(Xn∧TA) = ∞

]
= Px

[
F x∞ = ∞

]
= 0.

We can now argue by contradiction. Suppose that the chain (Xn) is transient. Then, with
probability 1, the chain Xn will exit any finite set never to return; see Exercise 4.11. Hence,
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for x ∈ X \A, with probability 1, the chain Xn exits the finite set {f < N}, never to return
so that

Px
[

lim
n→∞

f(Xn) = ∞
]
= 1.

We deduce

Px
[
TA <∞

]
= 1, ∀x ∈ X \A.

Indeed, if it does not return to A in finite time, then

P
[
f(Xn) = f(Xn∧TA), ∀n

]
> 0

so that

Px
[
lim f(Xn∧TA) = ∞

]
> 0.

Since (Xn) is transient, with probability 1, it will exit A in finite time, never to return. This
is impossible because we have just shown that if outside A it will return to A in finite time.

⊓⊔

Remark 4.2.55. We want to mention that the condition (4.2.17) is also necessary for recur-
rence. For a proof we refer to [62, Sec. 2.2]. ⊓⊔

Theorem 4.2.56 (Foster). Let (Xn)n≥0 be an irreducible HMC with state space X and tran-
sition matrix Q. Suppose that there exists a function f : X → [0,∞), a finite set A ⊂ X and
ε > 0 such that ∑

y∈X
Qx,yf(y) ≤ f(x)− ε, ∀x ∈ X \A. (4.2.18a)

∑
y∈X

Qx,yf(y) <∞, ∀x ∈ A. (4.2.18b)

Then (Xn)n≥0 is positively recurrent.

Proof. We follow [62, Sec. 2.2]. Denote by TA the time of first return to A and set
Yn := Xn∧TA . Suppose X0 = x ∈ X \A. Then (4.2.18a) reads

Ex
[
f(Yn+1)− f(Yn) ∥Yn

]
= Ex

[
f(Yn+1) ∥Yn

]
− Yn =≤ −εI{TA>n}.

Thus f(Yn) is a nonnegative supermartingale and

Ex
[
f(Yn+1)

]
− Ex

[
f(Yn)

]
≤ −εPx

[
TA > n

]
.

Hence

Ex
[
f(Yn+1)

]
− f(x) = Ex

[
f(Yn+1)

]
− Ex

[
f(Y0)

]
≤ ε

n∑
k=0

Px
[
TA > k

]
so that

n∑
k=0

Px
[
TA > k

]
≤ 1

ε
f(x).

Letting n→ ∞ we deduce

Ex
[
TA
]
≤ 1

ε
f(x), ∀x ∈ X \A. (4.2.19)

Now let a ∈ A. Then

Ea
[
TA
]
=
∑
b∈A

Qa,b +
∑
x∈X\A

Qa,x
(
1 + Ex

[
TA
] )
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= 1 +
∑
x∈X\A

Qa,xEx
[
TA
] (4.2.19)

≤ 1 +
1

ε

∑
x∈X\A

Qa,xf(x)
(4.2.18b)
< ∞.

Thus Ea
[
TA
]
<∞, ∀a ∈ A and Proposition 4.2.44 implies that (Xn)n≥0 is positively recur-

rent ⊓⊔

Remark 4.2.57. (a) Note that condition (4.2.18a) reads

∆f(x) ≥ ε, ∀x ∈ X \A.

Moreover, condition (4.2.18b) is automatically satisfied Q is locally finite, i.e., on each row
there are only finitely many nonzero entries.

(b) If (Xn)n≥0 positively recurrent, x0 ∈ X, then the function f : X → [0,∞)

f(x) =

{
Ex
[
Tx0

]
, x ̸= x0,

0, x = x0

satisfies the conditions of Theorem 4.2.56 with A = {x0}, ε = 1. ⊓⊔

Example 4.2.58. Consider the biased random walk on N0 = {0, 1, . . . } with transition
probabilities

Q0,1 = 1, Qn,n+1 = pn, Qn,n−1 = qn := 1− pn, ∀n ∈ N.
Above pn, qn > 0, ∀n ∈ N, so that the corresponding Markov chain is irreducible. Consider
the coercive function

f : N0 → [0,∞), f(n) = n.

Then, ∀n ≥ 1 we have

∆f(n) = n−
(
pn(n+ 1) + qn(n− 1)

)
= qn − pn.

Thus, if qn ≥ pn, this random walk is recurrent. Moreover if

inf
n∈N

(qn − pn) > 0

then this random walk is positively recurrent. ⊓⊔

4.3. Asymptotic behavior

Suppose that (Xn)n∈N0 is an irreducible, positively recurrent HMC with state space X and
transition matrix Q. It thus has a unique stationary probability measure π∞ ∈ Prob(X). In
this section we will provide a dynamical description of π∞ and prove a Law of Large Numbers
that involves this measure.

4.3.1. The ergodic theorem. Fix an arbitrary state x0 ∈ X, let T0 := Tx0 denote the
time of first return to x0 and denote by π0 the unique invariant measure on X such that
π0
[
x0
]
= 1. The results in the previous section show that

π0
[
x
]
= Ex0

[ ∑
n≥1

I{Xn=x}I{n≤T0}

]
= Ex0

[ T0∑
n=1

I{Xn=x}

]
, ∀y ∈ X. (4.3.1)
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For n ∈ N we set

ν(n) = νx0(n) :=

n∑
k=1

I{Xk=x0}.

In other words, the random variable νx0(n) is the number of returns to x0 during the interval
[1, n].

Proposition 4.3.1. Suppose that f ∈ L1
(
X, π0

)
. Then

lim
n→∞

1

νx0(n)

n∑
k=1

f(Xk) =

∫
X
f(x)π0[dx] =

∑
x∈X

f(x)π0
[
x
]
, Px0 − a.s.. (4.3.2)

Proof. We follow the proof in [22, Prop. 3.4.1]. Using the decomposition f = f+ − f− we
see that it suffices to consider only the case when f is nonnegative. Let T0 = τ1 ≤ τ2 ≤ · · ·
denote the successive times of return to x0. We set

Up :=

τp∑
k=τp−1+1

f(Xk).

The strong Markov property shows that the random variables U1, U2, . . . are i.i.d.. We have

Ex0
[
U1

]
=

T0∑
k=1

Ex0
[
f(Xk)

]
= Ex0

[ T0∑
k=1

∑
x∈X

f(x)I{Xk=x}

]

=
∑
x∈X

f(x)Ex0
[ T0∑
k=1

I{Xk=x}

]
(4.3.1)
=

∑
x∈X

f(x)π0
[
x
]
.

The Strong Law of Large Numbers implies

lim
p→∞

1

p

p∑
k=1

Uk =
∑
x∈X

f(x)π0
[
x
]
, Px0 − a.s.

In other words

1

p

τp∑
k=1

f(Xk) →
∑
x∈X

f(x)π0
[
x
]
, Px0 − a.s..

Observing that τν(n) ≤ n < τν(n)+1, we deduce that for nonnegative of f we have

1

ν(n)

τν(n)∑
k=1

f(Xk) ≤
1

ν(n)

n∑
k=1

f(Xk) ≤
1

ν(n)

τν(n)+1∑
k=1

f(Xk)

=
ν(n) + 1

ν(n)

1

ν(n) + 1

τν(n)+1∑
k=1

f(Xk).

Since the chain is recurrent we have ν(n) → ∞ so

lim
n→∞

ν(n) + 1

ν(n)
= 1.

Hence the extremes in the last inequality converge to
∑

x∈X f(x)π
0
[
x
]
, Px0 − a.s.. ⊓⊔
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Corollary 4.3.2. We have

ν(n)

n
→ 1

Ex0
[
Tx0

] = π∞
[
x0
]
, Px0 − a.s. (4.3.3)

Proof. Let f = 1 in Proposition 4.3.1. This f is integrable so

n

ν(n)
→ π0

[
X
] (4.2.11)

= Ex0
[
Tx0

]
.

⊓⊔

Corollary 4.3.3 (Ergodic Theorem). Suppose that (Xn)n≥0 is a positively recurrent irre-
ducible HMC with state space X, transition matrix Q and stationary distribution π∞. Let
f ∈ L1(X, π∞). Then, for any µ ∈ Prob(X) we have

lim
n→∞

1

n

n∑
k=1

f(Xk) =

∫
X
f(x)π∞

[
dx
]
, Pµ − a.s.. (4.3.4)

Proof. Assume first that (Xn) are defined on the path space (XN0 ,E,Pµ).
Suppose µ = δx0 . If we divide both sides of (4.3.2) by Ex0

[
Tx0

]
we deduce

lim
n→∞

1

ν(n)Ex0
[
Tx0

] n∑
k=1

f(Xk) =

∫
X
f(x)π∞

[
dx
]
.

Now observe that
1

n

n∑
k=1

f(Xk) =
n

ν(n)Ex0
[
Tx0

] 1
n

n∑
k=1

f(Xk),

and (4.3.3) implies
n

ν(n)Ex0
[
Tx0

] → 1.

More generally, for any µ ∈ Prob(X),

Pµ =
∑
x∈X

µ
[
x
]
Px ∈ Prob

(
XN0 ,E

)
.

we denote by Cx the set

C :=

{
x = (x0, x1, . . . ) ∈ XN0 : lim

n→∞

1

n

(
f(x1) + · · ·+ f(xn)

)
=

∫
X
f(x)π∞

[
dx
]}

.

From the above we deduce that Px
[
C
]
= 1, ∀x ∈ X. Then

Pµ
[
C
] (4.1.13)

=
∑
x∈X

µ
[
x
]
Px
[
C
]
= 1.

Suppose that random maps (Xn) are defined on a probability space (Ω, S,P), not necessarily
the path space. Using the map X⃗ : Ω → XN0 we reduce this case to the situation we have
discussed above. ⊓⊔

The above Ergodic Theorem is a Law of Large Numbers for a sequence of dependent
random variables!
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4.3.2. Aperiodic chains. When (Xn)n≥0 is an irreducible, aperiodic, positively recurrent
HMC the Ergodic Theorem can be considerably strengthened. We need to introduce some
terminology.

Let X be a Polish space with Borel sigma-algebra B. The variation distance dv(µ, ν)
between two Borel probability measures µ0, µ1 ∈ Prob(X) is defined by

dv(µ, ν) = sup
B⊂B

∣∣∣µ0[B ]− µ1
[
A
] ∣∣∣ = sup

B⊂B

(
µ0
[
B
]
− µ1

[
A
] )

(4.3.5)

The second equality follows from the elementary observation∣∣∣µ0[A ]− µ1
[
A
] ∣∣∣ = max

{(
µ0
[
B
]
− µ1

[
B
] )
,
(
µ0
[
Bc
]
− µ1

[
Bc
] ) }

.

The variation distance defines a metric on the space Prob(X) of Borel probability measures
on X. We will refer to it as the variation metric.

IfX,Y are X-valued random variables, then the variation distance between them is defined
to be the variation distance between their distributions PX ,PY ,

dv(X,Y ) := dv(PX ,PY ).

Lemma 4.3.4. Let µ0, µ1 ∈ Prob(X). Suppose there exists a sigma-finite Borel measure ν
on X such that bot µ0 and µ1 are absolutely continuous with respect to µ. We denote by pi(x)
the density of µi with respct to ν, i.e.

µi
[
dx
]
= pi(x)ν

[
dx
]
, i = 0, 1.

Then

dv(µ0, µ1) :=
1

2

∫
X

∣∣ p0(x)− p1(x)
∣∣ ν[ dx ]. (4.3.6)

In particular, if X is finite or countable and ν is the standard counting measure, then

dv(µ0, µ1) = frac12sumx∈X
∣∣ p0(x)− p1(x)

∣∣. (4.3.7)

Proof. Define
D± :=

{
x ∈ X; ±

(
p0(x)− p1(x)

)
> 0

}
.

Note that

0 =

∫
X

(
p0(x)− p1(x)

)
ν
[
dx =

∫
D+

(
p0(x)− p1(x)

)
ν
[
dx
]
+

∫
D−

(
p0(x)− p1(x)

)
ν
[
dx
]
,∫

X

∣∣ p0(x)− p1(x)
∣∣ ν[ dx ] = ∫

D+

(
p0(x)− p1(x)

)
ν
[
dx
]
−
∫
D−

(
p0(x)− p1(x)

)
ν
[
dx
]
.

= 2

∫
D+

(
p0(x)− p1(x)

)
ν
[
dx
]
= 2
(
µ0
[
D+

]
− µ1

[
D+

] )
.

Observe that for any B ∈ B we have

µ0
[
B
]
− µ1

[
B
]
=

∫
B∩D+

(
p0(x)− p1(x)

)
ν
[
dx
]
+

∫
B∩D−

(
p0(x)− p1(x)

)
ν
[
dx
]

≤
∫
B∩D+

(
p0(x)− p1(x)

)
ν
[
dx
]
≤
∫
D+

(
p0(x)− p1(x)

)
ν
[
dx
]
.

In above inequality we have equality when B = D+. Hence

sup
B∈B

(
µ
[
B
]
− ν
[
B
] )

= µ0
[
D+

]
− µ1

[
D+

]
=

1

2

∫
X

∣∣ p0(x)− p1(x)
∣∣.
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⊓⊔

Definition 4.3.5. The coupling time of two X-valued stochastic processes (Xn)n∈N0 and
(Yn)n∈N0 is a stopping time T of the process (Xn, Yn) such that

Xn = Yn ∀n ≥ T.

The stochastic processes are said to couple if they admit an a.s. finite coupling time. ⊓⊔

Lemma 4.3.6. Suppose that the X-valued processes (Xn)n∈N0 and (Yn)n∈N0 couple with cou-
pling time T . Then

dv(Xn, Yn) ≤ P
[
T > n

]
.

In particular, if T is a.s. finite,

lim
n→∞

dv(Xn, Yn) = 0.

Proof. For all A ⊂ X we have

P
[
Xn ∈ A

]
− P

[
Yn ∈ A

]
= P

[
Xn ∈ A, T ≤ n

]
+ P

[
Xn ∈ A, T > n

]
− P

[
Yn ∈ A, T ≤ n

]
− P

[
Yn ∈ A, T > n

]
(Xn− = Yn, ∀n ≥ T )

= P
[
Xn ∈ A, T > n

]
− P

[
Yn ∈ A, T > n

]
≤ P

[
Xn ∈ A, T > n

]
≤ P

[
T > n

]
.

⊓⊔

Theorem 4.3.7. Suppose that Q is a probability transition matrix on the state space X such
that the associated HMC’s are irreducible, aperiodic and positively recurrent. Denote by π
the unique invariant probability measure on X. Then, for any µ ∈ Prob(X)

lim
n→∞

dv
(
µQn, π) = 0. (4.3.8)

In particular, if µ = δx0, we deduce that

π
[
x
]
= lim

n→∞
Qnx0,x. (4.3.9)

Proof. Consider two independent HMCs (Xn)n∈N and (Yn)n≥0 with state space X, transition
matrix Q such that initial distribution of (Xn) is µ and the initial distribution of Yn is π.
Since π is stationary, the probability distribution of Yn is π, ∀n.

We will construct a third HMC (Zn) with state space X and transition matrix Q such
that Yn and Zn couple and PXn = PZn , ∀n. Then dv(Xn, Yn) = dv(Zn, Yn) and Lemma 4.3.6
implies

lim
n→∞

dv(Zn, Yn) = 0.

Consider the stochastic process (Xn, Yn). This is an HMC with state space X × X and

transition matrix Q̂

Q̂(x0,y0),(x1,y1) = Qx0,x1 ·Qy0,y1 .
Since Q is irreducible and aperiodic we deduce that for any x0, x1, y0, y1 ∈ X, ∃N0 > 0 such
that Qnx1,x1 ·Q

n
y1,y1 > 0, ∀n ≥ N0. We deduce that there exists N ≥ N0 such that

Qnx0,x1 ·Q
n
y0,y1 > 0, ∀n ≥ N.
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This shows that Q̂ is irreducible and aperiodic.

The product measure π ⊗ π is an invariant probability measure of the chain (Xn, Yn).

Theorem 4.2.41 implies that Q̂ is positively recurrent. Proposition 4.2.43 shows that for any
xx0 ∈ X, the chain (Xn, Yn) will almost surely return to (x0, x0) in finite time. In other
words, for any x0 ∈ X the stopping time

Tx0 := min
{
n ∈ N; Xn = Yn = x0

}
is a.s. finite. Fix x0 ∈ X set T = Tx0 and define

Zn =

{
Xn, n < T,

Yn, n ≥ T.

Clearly T is an a.s. finite coupling time for the processes (Yn) and Zn. It remains to prove
that (Xn) and Zn) have the same distributions.

Indeed, the strong Markov property for the Markov chains with state space X × X and

transition matrix Q̂ shows that the process (XT+n, YT+n) is a Markov chain on X × X has

the same distribution as the Markov process (An, Bn) with the same transition matrix Q̂ and
initial condition A0 = B0 = x0 = XT = Yt. In particular this shows that the processes XT+n

and YT+n have the same distributions. ⊓⊔

Remark 4.3.8. Suppose thatQ is the transition matrix of an irreducible, positively recurrent
Markov chain with state space X and invariant probability measure π. We form a new
stochastic matrix

Q̃ =
1

2

(
1 +Q

)
.

The chain with this transition matrix is called the lazy version of the original chain. It is
irreducible and π is the invariant probability measure of the lazy version as well. However,
the lazy chain is also aperiodic, even if the original chain is not. This follows from the equality

Q̃nx,y =

n∑
k=0

1

2n

(
n

k

)
Qkx,y.

This shows that if Qkx,y ̸= 0, then Q̃nx,y > 0, ∀n ≥ k. Using the terminology of generalized

convergence in [86], we can say that the Euler means of the sequence
(
Qnx,y

)
n≥0

converge to

the invariant measure. ⊓⊔

4.3.3. The coupling technique. The technique behind the above proof of Theorem 4.3.7
was pioneered by W. Doeblin [52] in 1938. It took almost three decades for the mathematical
community to appreciate the novelty of his ideas, distill the key principles, and organize them
into what is now referred to as the coupling technique.

We want to describe a few coupling concepts that will put the results in of the previous
subsection in the proper context. For more details and applications we refer to [116, 169].

Definition 4.3.9. Let X be a Polish space space with Borel algebra B.

(i) A coupling of a family (µi)i∈I of Borel probability measures on X is a probability
measure µ̂ on (XI ,BI) such that

µ̂i = µi, ∀i ∈ I,
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where µ̂i is the i-th marginal of µ̂, i.e., µ̂i is the pushfoward of µ̂ under the natural
projection

πi : XI → X, (xi)i∈I 7→ xi.

We will use the notation µ̂ ∈ Couple
(
µi, i ∈ I

)
to indicate that µ̂ is a coupling of

the family (µi)i∈I

(ii) A coupling of a family X-valued random variables (Xi)i∈I , defined on possibly dif-

ferent probability spaces, is a family of X-valued random variables (X̂i)i∈I , defined
on the same probability space,

X̂i :
(
Ω, S,P) → (X,B), i ∈ I,

such that P
X̂i

= PXi , ∀i ∈ I.

⊓⊔

Let ∆ ⊂ X2 be the diagonal

∆ =
{
(x0, x1) ∈ X2; x0 = x1

}
.

The set ∆ is a closed subset of X2 and thus it is Borel measurable. Since X2 is a Polish space
we have (see Exercise 1.5)

BX2 = BX ⊗BX

so ∆ is also B⊗2
X -measurable. In particular X2

∗ = X2 \∆ is also B⊗2
X -measurable.

The next result explains the relevance of couplings in estimating the variation distance
between two measures.

Proposition 4.3.10. Let X be a Polish and µ, ν two Borel probability measures on X. Set

X2
∗ :=

{
(x0, x1) ∈ X2; x0 ̸= x1

}
.

Then,

dv(µ, ν) ≤ λ
[
X2
∗
]
, ∀λ ∈ Couple(µ, ν). (4.3.10)

Proof. For any B ∈ B we have

X2
∗ ⊃ B ×Bc = B × X \B ×B

so

λ
[
X2
∗
]
≥ λ

[
B × X

]
− λ

[
B ×B

]
≥ λ

[
B × X

]
− λ

[
X×B

]
= µ

[
B
]
− ν
[
B
]
.

Hence

λ
[
X2
∗
]
≥ sup

B∈B

(
µ
[
B
]
− ν
[
B
] )

= dv(µ, ν).

⊓⊔

Remark 4.3.11. The inequality (4.3.10) is optimal. When µ, ν are absolutely continuous
with respect to a Borel measure β on X we can explicitly describe a coupling λ so that we
have equality in (4.3.10). We call such a coupling optimal.

More precisely, if we set

µ
[
dx
]
= p(x)β

[
dx
]
, ν
[
dx
]
= q(x)β

[
dx
]
.
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we define

λµ,ν,β
[
dx0dx1

]
= ρ(x0, x1)β

⊗2
[
dx0dx1

]
where

ρ(x0, x1) =

p(x0) ∧ q(x0), x0 = x1,(
p(x0)−p(x0)∧q(x0)

)(
q(x1)−p(x1)∧q(x1)

)
dv(µ,ν)

, x0 ̸= x1.

Above, dv is defined by (4.3.6) and we use the convention 0
0 = 0. A simple computation

shows that indeed λµ,ν,β is an optimal coupling.

Let us observe any two Borel probability measures µ, ν on X are simultaneously absolutely
continuous with respect to the probability measure β = 1

2

(
µ+ ν

)
. Hence for any two Borel

probability measures on X there exists an optimal coupling. ⊓⊔

Remark 4.3.12. Suppose that Ŷ , Ẑ :
(
Ω, S,P

)
→ X define are a coupling of the X-valued

random maps Y,Z. A coupling event is an event whose occurrence guarantees that Ŷ = Ẑ.

Formally, a coupling event is a measurable set S ⊂ S such that Ŷ (ω) = Ẑ(ω), ∀ω ∈ S. If we
denote by Φ the measurable map

Φ : Ω → X2, Φ(ω) =
(
Ŷ (ω), Ẑ(ω)

)
,

then S is a coupling event iff S ⊂ Φ−1(∆). This shows that if S is a coupling event, then
Sc ⊃ Φ−1

(
X2
∗
)
, so that

P
[
Sc
]
≥ P

(Ŷ ,Ẑ)

[
X2
∗
]
≥ dv(Y,Z).

Suppose that the X-valued stochastic processes (Xn)n∈N0 and (Yn)n∈N0 couple. Denote by T
the coupling time T . Define a new process (Zn)n∈N0 by setting

Zn =

{
Yn, T > n,

Xn, T ≤ n.

Note that for any n the pair (Xn, Zn) is a coupling of (Xn, Yn). The event {T > n} is a
coupling event and we deduce

dv(Xn, Yn) ≤ P
[
T > n

]
.

This is precisely the conclusion of Lemma 4.3.6. ⊓⊔

4.4. Electric networks

4.4.1. Reversible Markov chains as electric networks. Suppose that (Xn)n≥1 is an
irreducible, reversible, locally finite HMC with state space X and transition matrix Q. We
recall that local finiteness means that

∀x ∈ X, #
{
y ∈ X; Qx,y ̸= 0

}
<∞.

The reversibility means that there exists a function c : X → (0,∞) such that

c(y)Qy,x = c(x)Qx,y ∀x, y ∈ X. (4.4.1)

Note that any positive multiple of c also satisfies (4.4.1). We set

c(x, y) := c(x)Qx,y, ∀x, y ∈ X.
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The detail balance condition (4.4.1) shows that c(x, y) = c(y, x) and c(x, y) ̸= 0 iff Qx,y > 0.
Note that

Qx,y =
c(x, y)

c(x)
, c(x) =

∑
y∼x

c(x, y). (4.4.2)

It is convenient to visualize this Markov chain as a random walk on an undirected graph
with vertex set X and weighted edges. Two vertices x, y are connected by an edge if and only
if Qx,y > 0. Since the Markov chain is irreducible, this graph is connected.

We use the notation x ∼ y to indicate that the vertices /nodes x, y are connected by an
edge. We say that two vertices x, y are neighbors if x ∼ y. For x ∈ X we denote by N(x)
the set of neighbors of x. If y ∈ N(x), then we weigh the connecting edge with the weight
c(x, y) = c(y, x).

We will assume c(x, x) = 0, ∀x ∈ X, i.e., the associated graph has no loops.

The Markov chain dynamics has the following equivalent description: if the system is at
the state/ vertex x it will transition to a neighbor y with a probability proportional to the
weight c(x, y). The weights

{
c(x)

}
x∈X define a Q-invariant measure µc on X

µc
[
S
]
=
∑
s∈S

c(s). (4.4.3)

Formally, an electric network is a triplet (X, E, c), where (X, E) is a locally finite, con-
nected, unoriented graph and c : X × X → [0,∞). The set of vertices X is assumed to
be at most countable. We regard the set of edges E as a symmetric subset of X × X, i.e.,
(x, y) ∈ E⇐⇒ (y, x) ∈ E. We assume there are no loops, i.e., ∀(x, y) ∈ E, x ̸= y. We will
frequently use the notation x ∼ y to indicate that (x, y) ∈ E.

The function c : X× X → [0,∞) satisfies

• c(x, y) > 0⇐⇒ (x, y) ∈ E.

• c(x, y) = c(y, x), ∀(x, y) ∈ E.

We have seen that a reversible Markov chain determines an electric network.

Conversely, an electric network (X, E, c) determines a reversible Markov chain with state
space X and transition matrix Q : X× X → [0, 1]

Qx,y =
c(x, y)

c(x)
, c(x) =

∑
y∈N(x)

c(x, y)

An electric network corresponds to a real electric network in which an edge between two
nodes x, y corresponds to a resistor between these two nodes with resistance

r(x, y) =
1

c(x, y)
.

The quantity c(x, y) is called conductance.

4.4.2. Sources, currents and chains. The connection between electric networks and the
dynamics associated Markov chain is through the classical physical laws of Kirchhoff and
Ohm. As shown in the pioneering work of Nash-Williams [131], this point of view can shed
remarkable insight into the behavior of the Markov chains. In the remainder of this section
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we will highlight some of this fruitful interplay between probability and physics. For more
about this we refer to [54, 80, 119, 159] which served our sources of inspiration.

First, a matter of notation. For every pair of elements s, s′ of a set S we denote by δs,s′

the Kronecker symbol

δs,s′ =

{
1, s = s′,

0, s ̸= s′.

As observed by R. Bott and by H. Weyl, see e.g. [18], the physical laws of electric networks
have simple geometric interpretations, best expressed in the language of Hodge theory.

The main objects in Hodge theory are the chain/cochain complexes. To define them we
need to make some some choices.

Consider a locally finite graph (X, E). An orientation of the graph is a subset E+ ⊂ E
such that for any edge (x, y) ∈ E either (x, y) ∈ E+ or (y, x) ∈ E+, but not both.

One can obtain such an E+ by assigning orientations (arrows) along the edges. Define
E+ as the collection of positively oriented edges. More precisely (x, y) ∈ E+, if and only if
the arrow of the oriented edge goes from x to y.

The vector space of 0-chains, denoted by Ccpt, consists of formal sums of the type

j :=
∑
x∈X

j(x)[x], j(x) ∈ R, ∀x ∈ X.

Equivalently, Ccpt = RX, In physics a 0-chain is known as a source (of current) and j(x) = 0
for all but finitely many x.

The vector space C1 of 1-chains consists of skew-symmetric functions

i : E → R, (x, y) 7→ i(x, y).

For any (x, y) ∈ E, define [x] 7 [y] : E → R by setting

[x] 7 [y](e) =


1, e = (x, y)

−1, e = (y, x),

0 otherwise.

If we fix an orientation E+, we will identify an oriented edge e = (x, y) ∈ E+ with the current
[x] 7 [y] and we write ie := [x] 7 [y].

Once we fix an orientation E+ we can describe each current as a formal sum of the type

i =
∑

(x,y)∈E+

i(x, y)[x] 7 [y] =
1

2

∑
(x,y)∈E

i(x, y)[x] 7 [y].

where E+ is an orientation of the edges. In physics, 1-chains are knowns as currents.

One should think of [x]7[y] as representing the edge (x, y) oriented from x to y. A current
can then visualized as an assignment of arrows and weights on edges with the understanding
that we get the same current if we reverse any of the arrows and change its weight to the
opposite.

A 0-chain j is called compactly supported if j(x) = 0 for all but finitely many x. Similarly,
a 1-chain i is compactly supported if i(x, y) = 0 for all but finitely many edges (x, y) ∈ E. For
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k = 0, 1 we denote by Ccpt
k the space of compactly supported k-chains. There are boundary

operators

∂ : C1 → Ccpt, ∂ : Ccpt
0 → R

defined as follows.

• If i ∈ C1, then

∂i :=
∑
x∈X

w(x)[x], w(x) =
∑

y∈N(x)

i(x, y) = −
∑

y∈N(x)

i(y, x), ∀x ∈ X.

In particular, for x0, x1 ∈ X,

∂[x0] 7 [x1] = [x1]− [x0].

• If j ∈ Ccpt
cpt , then

∂j =
∑
x∈X

j(x) ∈ R

Let us observe that for any compactly supported current i we have ∂2i = 0. Indeed

∂(∂i) =
∑
x∈X

∑
y∈N(x)

i(x, y) =
∑

(x,y)∈E

i(x, y) = 0

since i(x, y) + i(y, x) = 0 whenever x ∼ y.

Remark 4.4.1. If X is infinite, then there could exist 1-chains i such that ∂i ∈ Ccpt
cpt yet

∂2i ̸= 0. ⊓⊔

The (finite) paths in the graph are special examples of compactly supported 1-chains. By
a path of length n we understand a sequence of neighbors

x0, x1, . . . , xn, xk−1 ∼ xk, xk−1 ̸= xk, ∀k = 1, . . . , n.

The associated 1-chain i = ix0,x1,...,xn is

ix0,x1,...,xn =
n∑
k=1

[xk−1] 7 [xk].

Note that

∂ix0,x1,...,xn = [xn]− [x0].

The path is closed if x0 = xn or, equivalently, ∂ix0,x1,...,xn = 0.

4.4.3. Kirkhoff’s laws and Hodge theory. The actual sources and currents in real elec-
tric network are governed by Kirchhoff’s laws. We refer to [10, Chap.12] for a more detailed
description of the physical aspects. Fix an electrical network (X, E, c).

Kirchhoff’s first law states that the source of a (physical) current i ∈ C1 is the 0-chain
j = −∂i. More explicitly, this means that

j(x) +
∑

y∈N(x)

i(x, y) = 0, ∀x ∈ X. (4.4.4)

This is a purely topological condition in the sense that it is independent of the choice of
conductance function.
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The physics/geometry enters the scene through the conductance function. More precisely,
in physics each current i in an electric network has finite energy3 defined by

Er
[
i
]
:=

1

2

∑
(x,y)∈E

r(x, y)i(x, y)2. (4.4.5)

If we fix an orientation E+ of the edges we obtain the equivalent description

Er
[
i
]
=

∑
(x,y)∈E+

r(x, y)i(x, y)2 =
∑

(x,y)∈E+

i(x, y)2

c(x, y)
. (4.4.6)

We denote by C∞
1 the space of finite energy 1-chains. The space C∞

1 is endowed with a
(resistor) inner product

⟨i1, i2⟩r :=
∑

(x,y)∈E+

r(x, y)i1(x, y)i2(x, y). (4.4.7)

Thus, a physical current is an element of C∞
1 .

To formulate Kirkhoff’s second law we need to introduce the concept of cochain. The
cochains are objects dual to chains. The space of 0-cochains (resp. 1-cochains) is the dual
vector space of Ccpt (resp. C1)

C0 = C∗
cpt = Hom(Ccpt,R), C1 := C∗

1 = Hom(C1,R).

One we can think of a 0-cochain as a function u : X → R. Physicists call such functions
potentials. For each x ∈ X denote by δx ∈ C0 the elementary 0-cochain defined by

δx([y]) = δx,y, ∀y ∈ X.

A 0-cochain is then a formal sum

u =
∑
x∈X

u(x)δx.

For each (x, y) ∈ E denote by dx7 dy : E → R the elementary 1-cochain defined by

dx7 dy
(
x′, y′

)
=


1, (x′, y′) = (x, y),

−1, (x′, y′) = (y, x),

0, otherwise.

A 1-cochain should be viewed as a formal sum

v =
∑

(x,y)∈E+

v(x, y)dx7 dy =
1

2

∑
(x,y)∈E

v(x, y)dx7 dy, v(x, y) = −v(y, x).

More concretely, we identify a 1-cochain with a skew-symmetric function on v : E → R. In
physics such a function is called voltage and it is measured in Volts.

We define the “integral” of a 1-cochain v along a path

γ = x0, x1, . . . , xn,

to be the real number ∫
γ
v :=

n∑
k=1

v(xk−1, xk).

3The physical units of the expression in (4.4.6) are indeed the units for energy, Joules.
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There exists a coboundary operator d : C0 → C1 that associates to each function u : X → R
its “differential”

du =
∑

(x,y)∈E+

(
u(y)− u(x))dx7 dy (4.4.8)

A 1-cochain v is called exact if it is the differential of a 0-cochain.

The following fact is left to the reader as an exercise.

Lemma 4.4.2. A 1-cochain v is exact if and only if its integral along any closed path is 0.
Equivalently, this means that the integral along a path depends only on the endpoints of the
path. ⊓⊔

The energy of a 1-cochain

v =
∑

(x,y)∈E+

v(x, y)dx7 dy

is

Ec
[
v
]
:=

∑
(x,y)∈E+

c(x, y)v(x, y)2 =
1

2

∑
(x,y)∈E

c(x, y)v(x, y)2.

We denote by C1
∞ the space of finite energy 1-cochains. It is a Hilbert space with (conduc-

tance) inner product

⟨v1, v2⟩c :=
∑

(x,y)∈E+

c(x, y)v1(x, y)v2(x, y). (4.4.9)

Hence

Ec
[
v
]
= ⟨v, v⟩c.

We have a “resistor” duality map R : C∞
1 → C1, C1 ∋ i → Ri = i∗,

R

 ∑
(x,y)∈E+

i(x, y)[x] 7 [y]

 =
∑

(x,y)∈E+

r(x, y)i(x, y)dx7 dy.

Note that since r(x, y) = 1
c(x,y) we have

Ec
[
Ri
]
=

∑
(x,y)∈E+

c(x, y)r(x, y)2i(x, y)2 =
∑

(x,y)∈E+

r(x, y)i(x, y)2 = Er
[
i
]
,

so that R induces a (bijective) isometry of Hilbert space C∞
1 → C1

∞. In fact C1
∞ can be

identified with the topological dual of C∞
1 with the induced inner product and norm. For

this reason we will refer to Ri as the dual of i and, when no confusion is possible, we will
write i∗ := R(i).

Ohm’s law states that for any current i in an electric network there is a difference of
potential/voltage u(x, y) between any two neighbors x ∼ y related to i(x, y) via the equality

u(x, y) = r(x, y)i(x, y). (4.4.10)

In other words, the collection of voltages associated to the current i is the dual 1-cochain Ri
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Kirchhoff’s second law states that a finite energy currents i generated by a source −j = ∂i
has a special property: the dual 1-chain of voltages is exact. In other words, there exists a
function u : X → R such that du = −i∗ = −Ri, i.e.,

c(x, y)
(
u(y)− u(x)

)
=

1

r(x, y)

(
u(y)− u(x)

)
= i(x, y), ∀(x, y) ∈ E+.

Note that

Ec
[
du
]
:= ⟨du, du⟩c = ⟨i, i⟩r = Er

[
i
]
<∞. (4.4.11)

Definition 4.4.3. A Kirkhoff currrent is a finite energy current i such that its dual i∗ = Ri
is exact. A function u ∈ Ccpt such that i∗ = −du is called a potential of the Kirchhoff current.

⊓⊔

Suppose i is a Kirckhoff current and u is a potential of i. If the graph is connected, then
any other potential of i differs from u by an additive constant. The source j = −∂i of i can
be described explicitly in terms of a potential u of i. The equality ∂i = −j reads∑

y∈N(x)

c(x, y)
(
u(y)− u(x)

)
= −j(x), ∀x ∈ X.

Since c(x, y) = c(x)Qx,y we deduce∑
y∈N(x)

Qx,y
(
u(y)− u(x)

)
= − 1

c(x)
j(x), ∀x ∈ X.

Equivalently, this means that

∆u(x) =
1

c(x)
j(x), ∀x ∈ X, (4.4.12)

where ∆ = 1−Q is the Laplacian of the HMC with transition matrix Q; see Definition 4.2.47.

Denote by C0
∞ space of finite energy 0-chains, i.e., 0-chains u satisfying∑

x∈X
c(x)u(x)2.

This defines an inner product on C0
∞

⟨u1, u2⟩c =
∑
x∈X

c(x)u1(x)u2(x). (4.4.13)

As such, C0
∞ can be identified with the Hilbert space L2(X, µc) where µc is the Q-invariant

measure on X determined by the detailed balance equations; see (4.4.3).

We denote by C0
cpt the spaces of functions u : X → R vanishing outside a finite set. Let us

observe that if α1, α2 are k-cochains and at least one of them is compactly supported, then
we can define ⟨α1, α2⟩c using the same expressions (4.4.9), (4.4.13) as above.

Proposition 4.4.4 (Discrete integration by parts). For any u ∈ C0 and any v ∈ C0
cpt we

have

⟨∆u, v⟩c = ⟨du, dv⟩c = ⟨u,∆v⟩c. (4.4.14)
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Proof. We have

⟨∆u, v⟩c =
∑
x∈X

c(x)∆u(x)v(x)

=
∑
x∈X

∑
y∈Y

c(x)Qx,y
(
u(x)− u(y)

) v(x) =
∑
x,y∈X

c(x, y)
(
u(x)− u(y)

)
v(x)

=
∑

(x,y)∈E+

c(x, y)
(
u(x)− u(y)

)
v(x) +

∑
(y,x)∈E+

c(x, y)
(
u(x)− u(y)

)
v(x)

(change variables x↔ y in the second sum)

=
∑

(x,y)∈E+

c(x, y)
(
u(x)− u(y)

)
v(x) +

∑
(x,y)∈E+

c(x, y)
(
u(y)− u(x)

)
v(y)

=
∑

(x,y)∈E+

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
= ⟨du, dv⟩c.

The same argument, with the roles of u and v reversed show that

⟨du, dv⟩c = ⟨u,∆v⟩c.

The above expressions are well defined since both dv and ∆v are compactly supported because
the graph is locally finite. ⊓⊔

Here is a simple consequence. We say that a set S ⊂ X is cofinite if X \ S is finite.

Corollary 4.4.5. Suppose that S is a nonempty cofinite set and u ∈ X is a solution of the
boundary value problem

∆u(x) = 0, ∀x ∈ X \ S, u(s) = 0, ∀s ∈ S.

Then u(x) = 0, ∀x ∈ X.

Proof. We have 0 = ⟨∆u, u⟩c = ⟨du, du⟩c. Hence du = 0 and since X is connected, we deduce
that u is constant. Since S ̸= ∅, we deduce that u is identically zero. ⊓⊔

4.4.4. A probabilistic perspective on Kirchoff laws. Denote by (Xn)n≥0 the random
walk on the weighted graph defined by the electric network (X, E, c)

Let S ⊂ X be a nonempty subset. Recall that we denote by HS , respectively TS , the
hitting and respectively return time to S. Fix a bounded function φ : S → R and define

u = uφ : X → R, u(x) = Ex
[
φ(XHS

)
]
.

Conditioning on neighbors we deduce u is harmonic on X\S and u = φ on S. Corollary 4.4.5
shows that if S is cofinite, then u is the unique function on X that is harmonic on X \ S and
equal to φ on S.

Let us investigate a special case of this construction. Consider a cofinite set S− and
x+ ∈ X \ S−. Set S := {x+} ∪ S−. If φ = I{x+} : S → R, then the computation in Example
4.2.48 shows that uφ is

u(x) = ux+,S−(x) := Px
[
HS = Hx+

]
= Px

[
Hx+ < HS−

]
. (4.4.15)
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Thus u(x) is the probability that the random walk started at x reaches x+ before S−. Clearly
this function has finite energy since it has compact support. To this function we associate a
current i defined by Ri = −du. More precisely

i =
∑
(x,y)

c(x, y)
(
u(y)− u(x)

)
[x] 7 [y],

and its source is

j = jx+,S− : X → R, j(x)
(4.4.12)
= c(x)∆u(x).

The current i has compact support contained in the finite set of edges with one end in the
finite set X \ S−. Hence ∂2i = 0 so

0 =
∑
x∈X

j(x) =
∑
x∈X

c(x)∆u(x). (4.4.16)

The energy of u is

⟨du, du⟩c = ⟨u,∆u⟩c =
∑
x∈X

c(x)u(x)∆u(x)

= c(x+)u(x+)∆u(x+) = u(x+)j(x+).

(4.4.17)

Now observe that u(x+) = 1 so that

∆u(x+) = 1−
∑

x∈N(x+)

Qx+,xu(x)

= 1−
∑

x∈N(x+)

Qx+,xPx
[
HS− > Hx+

]
= Px+

[
Tx+ > HS−

]
.

Hence

Ec
[
du
] (4.4.17)

= c(x+)∆u(x+) = jx+,S+
(x+)

= c(x+)Px+
[
Tx+ > HS−

]
=: κ(x+, S−).

(4.4.18)

The quantity κ(x+, S−) is called the effective conductance from x+ to S−. Its inverse is called
effective resistance between x+ and S− and it is denoted by Reff(x+, S−). Thus

Reff(x+, S−) =
1

c(x+)Px+
[
Tx+ > HS−

] .
We set

u= ux+,S− :=
1

κ(x+, S−)
ux+,S− =

1

κ(x+, S−)
Px
[
Hx+ < HS−

]
.

This is the potential of the compactly supported Kirchhoff current ix+,S− such that

Rix+,S− = dux+,S− , (4.4.19)

with source

j = jx+,S− =
1

κ(x+, S−)
jx+,S+

=
c(x)

c(x+)Px+
[
Tx+ > HS−

]∆u(x), (4.4.20)

where u is defined in (4.4.15), u(x) = Px
[
Hx+ < HS−

]
. Note that

jx+,S−(x+) = 1.
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Its energy is

Ex+,S− :=
1

κ(x+, S−)2
Ec
[
dux+,S−

]
=

1

κ(x+, S−)
= ux+,S−(x+). (4.4.21)

Since

ux+,S−(x) = Px
[
HS− < Tx+

]
≤ 1 = ux+,S−(x+), ∀x ∈ X,

we deduce

0 ≤ ux+,S−(x) ≤ ux+,S−(x+) = Ex−,S− , ∀x ∈ X. (4.4.22)

Let us observe that if X is finite and S− = {x−}, then the equality (4.4.16) shows that

0 =
∑
x∈X

jx+,x−(x) = jx+(x+) +jx−(x−)

and thus

jx+,x−(x) =

{
±1, x = x±,

0, x ̸= x±.

Definition 4.4.6. A flow from x+ to S− on the electric network is a finite energy current i

such that ∂i = −jx+,S− . The source jx+,S− defined in (4.4.20) is called the unit dipole with
source x+ and sink S−. ⊓⊔

A flow from x+ to S− satisfies the second Kirchhoff law if and only if it has finite energy
and i∗ is the differential of a function u : X → R. We will refer to such flows as Kirchhoff
flows.

Lemma 4.4.7. Suppose that i is a compactly supported current such that ∂i = 0. Then for
any u : X → R we have ⟨i∗, du⟩c = 0.

Proof. We have ∑
y∈N(x)

i(x, y) = 0, ∀x ∈ X.

We recall that i(x, y) = −i(y, x), ∀(x, y) ∈ E. We have

⟨i∗, du⟩c =
∑

(x,y)∈E+

r(x, y)c(x, y)i(x, y)
(
u(y)− u(x)

)
=

∑
(x,y)∈E+

i(x, y)
(
u(y)− u(x)

)
= 2

∑
(x,y)∈E

i(x, y)
(
u(y)− u(x)

)

= −2
∑
x∈X

u(x)

 ∑
y∈N(x)

i(x, y)

+ 2
∑
y∈X

u(y)

 ∑
x∈N(y)

i(x, y)

 = 0.

All the above sums involve only finitely many terms since i is compactly supported. ⊓⊔

Theorem 4.4.8. Suppose S− is cofinite and x+ ∈ X \ S−. Then the following hold.

(i) The current i0 := ix+,S− defined by (4.4.19) is the unique compactly supported

Kirchhoff current with source the dipole j0 = jx+,S−. In particular it is a Kirchhoff
flow from x+ to S−
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(ii) The voltage function u = ux+,S− that determines i0 is the unique solution of the
boundary value problem

∆v(x) = 0, ∀x ∈ X \
(
S− ∪ {x+}

)
v(x) =

{
1

c(x+) , x = x+,

0, x ∈ S − .

(4.4.23)

(iii) The energy of i0 is

E
[
i0
]
= Ex+,S− = ux+,S−(x+) =

1

c(x+)Px+
[
Tx+ > HS−

] = Reff(x+, S−).

(iv) If i1 is another compactly supported flow from x+ to S−, then

E
[
i1
]
≥ E

[
ix+,S−

]
.

Proof. (i) Set u0 := ux+,S− . Recall that u0 has compact support. Suppose that i1 is another
compactly supported Kirchhoff flow from x+ to S−. Then there exists a function u1 : X → R
such that i∗1 = du1. We deduce from (4.4.12) that the functions uk, k = 0, 1 are solutions of
the same equation

∆uk(x) =
1

c(x)
j0(x), ∀x ∈ X.

If we write u = u1 − u0, then ∆u = 0 on X. The function u may not have compact support,
but du does. We have

⟨du, du⟩c =
1

2

∑
(x,y)∈E

c(x, y)
(
u(x)− u(y)

)(
u(x)− u(y)

)
=

1

2

∑
(x,y)∈E

c(x, y)
(
u(x)− u(y)

)
u(x)− 1

2

∑
(x,y)∈E

c(x, y)
(
u(x)− u(y)

)
u(y)

=
1

2

∑
x∈X

u(x)
∑

y∈N(x)

c(x, y)(u(x)− u(y)
)

︸ ︷︷ ︸
=c(x)∆u(x)=0

+
1

2

∑
y∈X

u(y)
∑

x∈N(y)

c(y, x)
(
u(y)− u(x)

)
︸ ︷︷ ︸

=c(y)∆u(y)=0

= 0.

Hence du = 0 so that i0 = i1.

(ii) If v1, v2 are two compactly supported solutions of (4.4.23), then the argument above
shows that ⟨dv, dv⟩c = 0 and, since v is compactly supported, we deduce that v = 0.

The equality (iii) follows from (4.4.21)

(iv) Set i = i1 − i0. Then

E
[
i1
]
= E

[
i+ i1

]
= ⟨i∗0, i20⟩c + 2⟨i∗0, i∗⟩c + ⟨i∗, i∗⟩c︸ ︷︷ ︸

≥0

(i∗0 = du)

≥ E
[
i0
]
+ 2⟨du, i∗⟩c.

Lemma 4.4.7 shows that ⟨du, i∗⟩c = 0 since i has compact support and ∂i = 0. ⊓⊔
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Remark 4.4.9. (a) Part (iv) of the theorem is known as the Thompson or Dirichlet Principle.
It classically states that the Kirchoff flow is the least energy compactly supported flow sourced
by the dipole jx+,S− . Observe that the energy of the Kirchhoff flow carries information about
the dynamics of the Markov chain associated to the electric network.

(b) The Kirchhoff flow from x+ to S− is the unique compactly supported current i such that

• ∂i(x+) = −1.

• There exists a function u : X → R, identically zero on S−, such that i∗ = du.

⊓⊔

4.4.5. Degenerations. To proceed further we perform a reduction to a finite network. We
set

S+ := X \ S−, ∂S+ :=
{
s− ∈ S−; N(s−) ∩ S+ ̸= ∅

}
.

For simplicity we assume that x+ does not have any neighbor in S−. We obtain a new finite
electric network X/S− described as follows.

• Its vertex set is S+ ∪ {x−}. Think that we have identified all the vertices in S−
with a single point x−.

• The conductances c∗(x, y) of X/S− are defined according to the rule

c∗(x, y) =


c(x, y), x, y ∈ S+,∑

s+∈∂S+
c(x, s+), y = x−∑

s+∈∂S+
c(s+, y), x = x−.

Note that c∗(x) = c(x), ∀x ∈ S+. We denote by ∆∗ the Laplacian determined by these
conductances. The function u = ux0,S− is identically zero on S− and thus descends to a
function u∗ on X/S− such that u∗(x−) = 0. The set S+ is also a subset of X/S−.

∆∗u = ∆u on S+.

Moreover

c∗(x±)∆∗u∗(x+) = ±1.

Thus u∗ is the potential of the Kirchoff flow on X/S− from x+ to x−. We denote by Ex+,x−

its energy.

Note that the induced Kirchoff flow on X/S− has the same energy as the original Kirchhoff
flow on X, i.e.,

Ex+,x− = Ex+,S− . (4.4.24)

On the finite graph X/S− the flows from x+ to x− can be thought of as paths from x+ and
x−. They all have finite energy. The Kirchhoff flow is the path with minimal energy from
x+ to x−.

In view of this reduction to finite graphs we concentrate on finite electric networks.
Suppose (X, E, c) is such a network and x+, x− ∈ X, x+ ̸= x−. For finite graphs the finite
energy condition is automatically satisfied and a flow from x+ to x− is simply a 1-chain i
such that

∂i = [x−]− [x+].

The source [x+]− [x−] is called a dipole with source x+ and sink x−.
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☞ The flow condition involves only the topology of graph and is independent of the physics/geometry
of the network encoded by the conductance function. However, the Kirchhoff flow depends on
the physics/geometry of the network.

Denote by i = ix+,x− the Kirchhoff flow with source x+ and sink x−. Its potential
grounded at x− is the function u : X → R uniquely determined by the equations

∆u = 0 ∈ X \ {x+, x−}, u(x−) = 0, c(x+)∆u(x+) = 1. (4.4.25)

Then ix+,x− = R−1dux+,x− . The energy of this flow is

Ex+,x− = ux+,x−(x+) =
1

c(x+)Px+
[
Tx+ > Tx−

] . (4.4.26)

This quantity is an invariant of the quadruplet (X, c, x+, x−).

Clearly if we vary the conductance function the energy changes, and a flow that is minimal
for a choice of conductance may fail to be so for another choice. In particular, a flow that
has minimal energy with respect to a conductance function may not have this property if we
change the conductance or, equivalently, the resistance function r(x, y) = 1

c(x,y) ∈ (0,∞]. We

will indicate the dependence of Ex+,x− on r using the notation Ex+,x′(r).

Suppose we change the conductance function to a new function c′ that is bigger or,
equivalently, such that r′(x, y) ≤ r(x, y). Then for any current i we have

Er
[
i
]
=

1

2

∑
(x,y)∈E

r(x, y)i(x, y)2 ≥ 1

2

∑
(x,y)∈E

r′(x, y)i(x, y)2 = Er′
[
i
]
.

This implies the following result known as the Raleigh Principle.

Theorem 4.4.10 (Raleigh). The energy of the Kirchoff flow with given source and sink
increases with the increase of the resistance function or, equivalently, if the conductance
function decreases.

Proof. Suppose that we decrease the resistance of an edge from r(x, y) to r′(x, y). Denote
by i(r) the Kirchoff flow with source x+, sink x− and choice of resistance r. Define i(r′) in
a similar fashion.

We have

Ex+,x−(r) = Er
[
i(r)

]
≥ Er′

[
i(r)

]
≥ Er′

[
i(r′)

]
= Ex+,x−(r

′)

⊓⊔

We can use this principle to produce estimates for Ex+,x−(r) in terms Ex+,x−(r
′) if r′ is

chosen wisely making Ex+,x−(r
′) easier to compute. One way to simplify the computation of

Ex+,x− is to modify the topology of the graph. We can achieve this by pushing r to extreme
values. Let describe two such degenerations.

Suppose y0, y1 ∈ X \ {x+, x−} are two nodes connected by an edge. Upon rescaling c we
can assume that c(y0, y1) = 1 = r(y0, y1). We have a family of deformed resistances

rt : E → (0,∞), t > 0, rt(x, x
′) =

{
t, (x, x′) = (y0, y1) or (y1, y0),

r(x, x′), otherwise.
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We denote by it the Kirchhoff flow with source x+, sink x− and resistances rt, by Et its
energy Et = Ex+,x−(rt) and by ut its potential grounded at x− defined by (4.4.25).

The Raleigh Principle shows that Et is an increasing function of t. We want to describe
what happens with Et and ut as t→ 0,∞.

Cutting. The behavior as t→ ∞ is described by the electric network (X∞, c∞, E∞) obtained
by cutting the edge (y0, y1). More precisely

X∞ = X, E∞ = E \ {(y0, y1), (y1, y0)},

c∞(x, x′) = lim
t→∞

ct(x, x′) =

{
0, (x, x′) = (y0, y1) or (y1, y0),

c(x, x′), otherwise.

Shorting. The behavior as t → 0 is described by the network (X0, E0, c0) obtained by
shorting the edge (y0, y1). Intuitively, the shorted network is obtained by collapsing the
vertices y0, y1 to single point ∗; see Figure 4.4. More precisely

• X0 =
(
X \ {y0, y1}

)
∪ {∗}.

• If x, x′ ∈ X \ {y0, y1}, then c0(x, x′) = c(x, x′) so that (x, x′) ∈ E⇐⇒(x, x′) ∈ E0.

• x ∈ X \ {y0, y1}, then c(x, ∗) = c(x, y0) + c(x, y1) so that (x, ∗) ∈ E0 if and only if
(x, y0) ∈ E or (x, y1) ∈ E.

Note that we have a natural projection p : X → X0

p(x) =

{
x, x ̸= y0, y1,

∗, x = y0, y1.
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Figure 4.4. Shorting an electric network along the edge (y0, y1).



424 4. Markov chains

For ϵ ∈ {0,∞} by u0 (resp. u∞) the potential grounded at x− of the Kirchhoff flow in
(Xϵ, Eϵ, cϵ) with source x+ and sink x−. Denote by U ϵ the energy of uϵ

Eϵ =
1

2

∑
(x,y)∈Eϵ

cϵ(x, y)
(
uϵ(x)− uϵ(u)

)2
.

Theorem 4.4.11 (Maxwell-Raleigh). Suppose that y0, y1 ∈ X \ {x+, x−} have the property
that the removal of the edge connecting them does not disconnect the graph (X, E). Then

lim
t→∞

ut(x) = u∞(x), ∀x ∈ X,

lim
t→0

ut(x) = u0
(
p(x)

)
, ∀x ∈ X,

and

lim
t→ϵ

Et = Eϵ, ϵ = 0,∞.

In particular, E0 ≤ Et ≤ E∞, ∀t > 0. Thus the energy of the Kirchhoff flow from x+ to x−
is increased by cutting and decreased by shorting.

Proof. We will carry the proof in several steps. We set r = r1.

1. Compactness. Fix a path γ in X from x+ to x− that avoids the edge (y0, y1),

γ = x−, x0, x1, . . . , xn = x−.

The rt-energy of this path is

Ert
[
γ
]
=

n∑
k=1

r(xk−1, xk) = Er
[
γ
]
.

It is independent of t since the path avoids the only edge whose resistance depends on t. We
deduce from Thompson’s principle that

Et ≤ Er
[
γ
]
, ∀t > 0.

The local estimate (4.4.22 ) implies that

0 ≤ ut(x) ≤ Et ≤ Er
[
γ
]
, ∀t > 0.

This shows that the family of functions ut : X → [0,∞) is relatively compact with respect to
the usual topology of the finite dimensional vector space RX.

2. t→ ∞. In this case observe that

lim
t→∞

ct(x, y) = c∞(x, y), ∀x, y ∈ X.

We will show that as t → ∞ the family ut has only one limit point. Suppose that for a
sequence tn → ∞ the functions utn converge to a function v. The function utn satisfies the
equation ∑

y∈X
ctn(x, y)

(
utn(x)− utn(y)

)
=

{
0, x ̸= x±,

±1, x = x±, utn(x−) = 0.

Letting n→ ∞ we deduce that v satisfies∑
y∈X

c∞(x, y)
(
v(x)− v(y)

)
=

{
0, x ̸= x±,

±1, x = x±, v(x−) = 0.



4.4. Electric networks 425

According to Theorem 4.4.8(ii) the above equation has a unique solution, the potential u∞

of the Kirchhoff flow from x+ to x−grounded at x− in (X∞, c∞) proving that

lim
t→∞

ut = u∞.

The equality

lim
t→∞

Et = E∞

is obvious.

3. t → 0. The above argument fails in this case because ct(y0, y1) = 1
t . Pick a sequence

tn ↗ 0 such that utn has a limit u0 as tn → 0. To simplify the presentation we will write ut

instead of utn . We will show that

u0(y0) = u0(y1) (4.4.27)

and the induced function ū0 on X0,

ū0(x) =

{
u0(x), x ̸= ∗,
u0(y0) = u0(y1), x = ∗,

satisfies

ū0(x−) = 0, (4.4.28a)∑
y∈N0(x)

c0(x, y)
(
ū0(x)− ū0(y)

)
=

{
0, x ∈ X0 \ {x+, x−}
1, x = x+,

. (4.4.28b)

We set

N∗(y0) := N(y0) \ {y1}, N∗(y1) := N(y1) \ {y0},

c∗(yi) :=
∑

y∈N∗(yi)

c(y0, y), i = 0, 1.

Denote by N0(∗) the set of neighbors of ∗ in the graph (X0, E0) . Note that

N0(∗) = N∗(y0) ∪N∗(y1), c0(∗) = c∗(y0) + c∗(y1).

Since ∆ctu
t(y0) = 0, i = 0, 1 we deduce

1

t

(
ut(y0)− ut(y1)

)
+

∑
y∈N∗(y0)

c(y0, y)
(
ut(y0)− ut(y)

)
so that (

1 + tc∗(y0)
)
ut(y0)− ut(y1) = t

∑
y∈N∗(y0)

c(y0, y)u
t(y).

A similar computation shows that

−ut(y0) +
(
1 + tc∗(y1)

)
ut(y1) = t

∑
y∈N∗(y1)

c(y1, y)u
t(y).

Thus
(
ut(y0), u

t(y1)
)
is the solution of the 2× 2 non-homogeneous linear system[

a0(t) −1
−1 a1(t)

]
︸ ︷︷ ︸

=:A(t)

·
[
ut(y0)
ut(y1)

]
= t ·

[
Ccpt(t)
c1t)

]
︸ ︷︷ ︸

α(t)

,
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where

ai(t) = 1 + tc∗(yi), ci(t) =
∑

y∈N∗(yi)

c(yi, y)u
t(y), i = 0, 1.

Note that

detA(t) = a0(t)a1(t)− 1 = t
(
c∗(y0) + c∗(y1)

)
+O(t2) = tc0(∗) +O(t2).

Set

A0(t) =

[
Ccpt(t) −1
c1(t) a1(t)

]
, A1(t) =

[
a0(t) Ccpt(t)
−1 c1(t)

]
.

Using Cramer’s rule we deduce

ut(y0) =
tdetA0(t)

detA(t)
=
a1(t)Ccpt(t) + c1(t)

c0(∗) +O(t)

ut(y1) =
a0(t)c1(t) + Ccpt(t)

c0(∗) +O(t)

Now observe that

lim
t→0

ai(t) = 1

and, since N0(∗) = N∗(y0) ∪N∗(y1)

lim
t→0

(
Ccpt(t) + c1(t)

)
=

∑
y∈N0(∗)

c0(∗, y)u0(y).

Hence

u0(y0) = u0(y1) = ū0(∗) :=
∑

y∈N0(∗) c
0(∗, y)u0(y)

c(∗)
.

This proves (4.4.27). The equality (4.4.28a) is obvious. Observe that

ū0(∗)
∑

y∈N0(∗)

c(∗, y) =
∑

y∈N0(∗)

c0(∗, y)ū0(y),

i.e. , ∑
y∈N0(∗)

c0(∗, y)
(
ū0(∗)− ū0(y)

)
= 0.

This proves (4.4.28b) for x = ∗.
If x ∈ X \ {∗, x−}, then∑

y∈N(x)

ct(x, y)
(
ut(x)− ut(y) =

{
1, x = x+,

0, x ̸= x+.

The equality (4.4.28b) for x ̸= ∗, x− follows by letting t→ 0 above and observing that

lim
t→0

u0(yi) = ū0(∗), i = 0, 1, lim
t→0

(
ct(x, y0) + ct(x, y1)

)
= c0(x, ∗)

and

N0(x, ∗) =
(
N(x) \ {y0, y1}

)
∪ {∗}.

This proves the equality (4.4.28b). This determines ū0 uniquely and shows that

lim
t→0

ut = ū0
(
p(x)

)
.
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It remains to verify only the claim

lim
t→0

Et = E0.

Note that

Et =
1

2

∑
(x,y)∈E

ct(x, y)
(
ut(x)− ut(y)

)2
.

There are two problematic terms in the above sum corresponding to (x, y) = (y0, y1) or
(y1, y0) and their contribution to the energy is

1

t

(
ut(y0)− ut(y1)

)2
.

Now observe that

ut(y0)− ut(y1) =
Ccpt(t)

(
a1(t)− 1

)
− c1(t)

(
a0(t)− 1)

c0(∗) +O(t)
= t

c∗(y1)Ccpt(t)− c∗(y0)c1(t)

c0(∗) +O(t)
.

Hence
1

t

(
ut(y0)− ut(y1)

)2
= O(t) as t→ 0,

so

lim
t→0

Et =
1

2
lim
→0

∑
(x,y)∈E\{y0,y1),(y1,y0)}

ct(x, y)
(
ut(x)− ut(y)

)2
=

1

2

∑
(x,y)∈E0

c0(x, y)
(
u0(x)− u0(y)

)2
= E0.

⊓⊔

Remark 4.4.12. (i) Let us explain what happens if the edge (y0, y1) disconnects the graph
but x+, x− lie in the same connected component of the resulting graph. Denote by (X0, E0)
the connected component containing x+, x− and by (X∗, E∗) in the other component. The
compactness part of the argument still works since the energy of ut is bounded by the energy
of a path in (X0, E0) connecting x+ to x+.

Denote by ut0 the restriction of u to X0 and by ut∗ its restriction of u to X∗. Then

E
[
dut

]
=

1

2

∑
(x,y)∈E0

c(x, y)
(
ut(x)− ut(y)

)2
︸ ︷︷ ︸

=:Et
0

+ t
(
ut(y0)− ut(y1)

)2

+
1

2

∑
(x,y)∈E∗

c(x, y)
(
ut(x)− ut(y)

)2
︸ ︷︷ ︸

=:Et
∗

.

Note that

lim
t→0

t
(
ut(y0)− ut(y1)

)2
Arguing exactly as in Step 2 of the proof of Theorem 4.4.11 one can show that ut0 converges
to u0x+,x− the potential grounded at 0 of the Kirchhoff flow in X0 from x+ to x−. If u∗ is any

limit point of ut∗ then u∗ satisfies ∆∗u∗ = 0 so

⟨du∗, du∗⟩∗ = ⟨∆∗u∗, u∗⟩∗ = 0
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so 0 is the only limit point of Et∗ as t→ 0.

Ec
[
du
]
c
≤ lim

t→0
Ect
[
dut

]
= Ec0

[
du0

]
so the energy of the Kirchhoff flow from x+, x− in X is not greater than the energy of the
similar flow in X0.

(ii) To understand why shorting is tricky recall that X is finite so the Markov chain defined
by the conductance ct has an invariant probability measure is given by

πt(x) = π(x) =
ct(x)

Zt
, Zt =

∑
x∈X

ct(x).

If we let t = ct(y0, y1) → ∞ and leave the other conductances unchanged, then

πt(x) → 0, ∀x ̸= y0, y1, πt(x) →
1

2
, x = y0, y1.

(iii) In view of the conservation of energy equality (4.4.24), the cutting and shorting pro-
cedures can be used in infinite graphs to estimate the energy Ex+,S− by reducing, them to
cutting/shorting procedure on the collapsed graph X/S−. Cutting has to be performed with
care so that while cutting edges we do not disconnect x+ from S−. ⊓⊔

4.4.6. Applications. We want to illustrate the usefulness of the above results on some
concrete example.

When the graph (X, E) is finite and all the edges have the same conductances, the Kirch-
hoff flow from x+ to x− can be described explicitly in terms certain counts of spanning
trees, [80, Thm. 1.16]. In particular, its energy K(x+, x−) is a topological invariant of the
quadruplet (X, E, x+, x−) described explicitly in terms of spanning trees.

If we now assign conductances c to the edges, the energy Ex+,x−(c) of the Kirchhoff flow
from x−, x+ satisfies

1

sup c(x, y)
K(x+, x−) ≤ Ex+,x−(c) ≤

1

inf c(x, y)
K(x+, x−).

The computation of K(x+, x−) is impractical for complicated graphs, but the above rather
rough estimate expresses in a simple fashion the fact that Ex+,x−(c) depends on both the
topology and the geometry of the electrical network.

Example 4.4.13. Suppose that (X, E, c) is a finite electric network such that the underlying
graph is a tree. Then for any pair of points x+, x− there exists a unique 1-chain i such that

∂i = [x−]− [x+].

It is described by a minimal path

x+ = x0, x1, . . . , xn = x−.

This is the Kirchhoff flow from x+ to x− and its energy is

Ex+,x− =
n∑
i=1

r(xi−1, xi) =
n∑
i=1

1

c(xi−1, xi)
.
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As a special case of this consider the Ehrenfest urn model. Recall that the state space is the
set X :=

{
0, 1, . . . , B

}
, B ∈ N and transition matrix Q given by

Qk,k−1 =
k

B
, ∀k ≥ 1, Qj,j+1 =

B − j

B
, ∀j < B.

As explained in Example 4.2.34, this can be described as an electric network whose underlining
graph is a path

0 → 1 → · · · → B,

and conductances

c(j, j + 1) =

(
B

j

)
B − j

B
=

(
B − 1

j

)
.

In particular,

c(j) =

(
B − 1

j

)
+

(
B − 1

j − 1

)
=

(
B

j

)
.

If B is even, B = 2N , then

E0,N = EN,0 =
N=−1∑
j=0

1(
2N−1
j

) .
Thus

PN
[
TN > T0

]
=

1

c(N)EN,0
, P0

[
T0 > TN

]
=

1

c(0)EN,0

Hence
P0

[
T0 > TN

]
PN
[
TN > T0

] = c(N)

c(0)
=

(
2N

N

)
∼ 4N√

πN
.

In particular, this shows that PN
[
TN > T0

]
is extremely small for large N . Thus if initially

in the two chambers there equal numbers of balls, the probability that during the random
transfers of balls between them, one of the chambers will continuously have less than half
the balls until it empties, is extremely small. In fact, the expected time of emptying the left
chamber while starting with equal numbers of balls in both is (see [94, Sec. VII.3, p.175]
with s = 2N)

EN
[
T0
]
∼ 4N

(
1 +A/N

)
as N → ∞, 1 ≤ A ≤ 2. (4.4.29)

This example is historically important because it was used to explain an apparent contradic-
tion between Boltzmann’s kinetic theory of gases and classical thermodynamics. We refer to
[15, 91] for more details. ⊓⊔

Remark 4.4.14. There is a discrepancy between the estimate (4.4.29) proved in [94] and
the estimate for EN

[
T0
]
proved in [11, Sec. III.5] which states that

EN
[
T0
]
=

4N

N

(
1 +O(/N)

)
as N → ∞. (4.4.30)

The estimate (4.4.30) also contradicts the estimates [95, Eq. (4.27)] and [138, Eq.(7)]. ⊓⊔

Example 4.4.15 (Random walks on infinite graphs). Let us investigate the standard random
walk on an infinite, locally finite graph (X, E, c). Thus we think of an electric network in
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which all edges have the same conductance 1. For x, y ∈ X define dist(x, y) the minimal
length of a path joining x and y. Fix x+ ∈ X and set

Bn :=
{
x ∈ X; dist(x+, x) ≤ n

}
,

Σn =
{
x ∈ X; dist(x+, x) = n

}
= Bn \Bn−1, S−

n = X \Bn.
Note that the balls Bn are finite. For n ∈ N we denote by C(n) the total number of edges
connecting a point in Σn−1 to a point in Σn.
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S SS

S SS1

1

1

2

2

2
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n

n

n
+
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-
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x

C(1) C(2) C(n)

Figure 4.5. Shorting an infinite electric network inside spheres.

Form the collapsed electric network (Xn, En, cn), Xn := X/S−
n . The set S−

n corresponds
to a unique vertex x−n in Xn; see the top of Figure 4.5. Denote by Ex+,x

−
n
the energy of the

Kirchhoff flow in Xn from x+ to xn−.

As we have seen
1

c(x+)Px+
[
Tx+ > HS−

n

] = Ex+,x
+
n
.

Observe that the collapsed network X/S−
n is obtained from the collapsed network X/S−

n+1 by

first shorting the edges in Σn ⊂ X/S−
n+1 and then shorting the edge (x−n , x

−
n+1). Hence

Ex+,x
−
n
≤ Ex+,x

−
n+1

.

We set

Ex+,∞ := lim
n→∞

Ex+,xn = lim
n→∞

1

c(x+)Px+
[
Tx+ > S−

n

]
Thus

lim
n→∞

Px+
[
Tx+ > S−

n

]
=

1

c(x+)Ex+,∞
.
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We deduce that the associated Markov chain is recurrent if and only if Ex+,∞ = ∞ and
transient otherwise.

To estimate Ex+,x
−
n
from below we short edges in X/S−

n . First we short the edges between

points in Σk, k = 1, . . . , n − 1. We obtain the electric network Xn∗ at the bottom of Figure
4.5. As explained in Example 4.4.13, energy of the Kirchhoff flow in Xn∗ from x+ to x−n is

En =
n∑
k=1

1

C(k)
≤ Ex+,x

−
n
.

Hence

Ex+,∞ ≥
∞∑
k=1

1

C(k)
.

We deduce that if
∞∑
k=1

1

C(k)
= ∞,

then the corresponding Markov chain is recurrent.

To estimate Ex+,∞ from above we use the cutting trick. We gradually remove edges such
that the component containing x+ has infinitely many vertices. Restricting to the component
containing x+ we obtain a electric network with bigger Ex+,∞ according to Theorem 4.4.11
and Remark 4.4.12(iii).

Thus if the graph (X, E) contains a connected subgraph (X0, E0) such that the random
walk on X0 is transient, then the random walk on (X, E) is also transient. ⊓⊔

Example 4.4.16 (Random walk on Z2). Suppose that (X, E, c) corresponds to the standard
random walk on Z2. Observe that the sphere Σn−1, n− 1 > 0, is the square

Σn−1 =
{
(x, y) ∈ Z2; |x|+ |y| = n− 1

}
.

Each of the four vertices if this square is connected to Σn through 3 edges. The interior of
each of the four edges contains (n − 2) lattice points and each of them is connected to Σn
through 2-edges. Thus

C(n) = 12 + 8(n− 2) = 8n− 4, ∀n ∈ N.
Since ∑

n≥1

1

8n− 4
= ∞

We deduce again that the random walk on Z2 is recurrent.

⊓⊔

Example 4.4.17 (Random walks on symmetric trees). Consider the unbiased random walk
on an infinite locally finite tree (X, E). Fix x+ ∈ X and think of x+ as the root of the tree.
As such every vertex has a unique predecessor and a number s(x) of successors so the degree
is

d(x) =

{
s(x) + 1, x ̸= x+,

s(x+), x = x+.
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Define Bn,Σn, S
−
n as in the previous example. We assume that the tree is radially symmetric

about the root i.e., for any n ∈ N the vertices on the sphere Σn have the same number sn of
successors. Set

σk := |Σk|.
Note that for any k ≥ 0 we have

σk+1 = s0s1 · · · sk.
One can think of σk as the “volume” of the sphere Σk.

We want to investigate the unbiased random walk on this tree. Equivalently, this means
assigning conductance 1 to every edge. We want to solve the equation

∆u(x) =

{
0, x ∈ Bn \ {x+},

1
d(x+) , x = x+,

subject to the boundary condition

u(x) = 0, ∀x ∈ S−
n := X \Bn.

We know that this equation has a unique solution. We can invoke the symmetry of the graph
and show that this solution must be constant along the spheres Σn but we do not really need
to do this. If we can find a solution with this property then it has to be it. So make use of
this Ansatz and seek a solution that is constant on the spheres.

Denote by uk the value of u on Σk. We set u0 := u(x+)

∆k = uk − uk+1, ∀k ≥ 0.

Note that ∆n = un. For k ∈ {1, n} we have

uk =
skuk+1 + uk−1

sk + 1

so that

(sk + 1)uk = skuk+1 + uk−1⇐⇒∆k−1 = sk∆k.

Iterating we deduce

∆k−1 = sk+1 · · · sn∆n =
s0s1 · · · sn
s0 · · · sk

∆n =
σn
σk

∆n =
σn
σk
un.

Hence

u0 = u0 − un+1 =
n∑
k=0

∆k = σn

(
n∑
k=0

1

σk

)
un.

The equation

∆u(x+) =
1

s0

is equivalent to ∆0 =
1
s0

so that

1

s0
=
σn
s0
un, un =

1

σn
, Ex+,S

−
n
= u0 =

n∑
k=0

1

σk
.

Hence,

Ex+,∞ =
∞∑
k=0

1

σk
.
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This shows that if the number of vertices on Σn growth fast the random walk is transient
and if it growth slow, the walk is recurrent. Intuitively, the more vertices far away, more
opportunities to get lost. As an example fix d ∈ N, d ≥ 2. We denote by Td the rooted
radially symmetric tree with successor sequence (sn) given by

sn =

{
d, n = 2k − 1, k ≥ 0,

1, otherwise.

Thus

σn = dk+1 2k ≤ n < 2k+1

and

∞∑
n=0

1

σn
=

1

d
+

3∑
n=2

1

d2
+

7∑
n=4

1

d3
+ · · · = 1

d

∞∑
k=0

(
2

d

)k
=


1
d−2 , d ≥ 3,

∞, d = 2.

Thus, the random walk on Td is transient if d ≥ 3 and recurrent if d = 2.

We can obtain a more striking example of recurrent random walk by choosing the successor
sequence to be

sn =

{
k, n = k!, k ≥ 2

1, otherwise

For more information about random walks on trees we refer to the very comprehensive mono-
graph [121]. ⊓⊔

4.5. Finite Markov chains

For HMC-s with finite state space the theory simplifies somewhat and new techniques are
available.

4.5.1. The Perron-Frobenius theory. Consider a homogenous Markov chain with finite
state space

X = Im := {1, 2, . . . ,m}.
In this case the transition matrix Q is an m × m stochastic matrix, i.e., a matrix with
nonnegative entries such that the sum of the entries on each row is 1. If we set

e :=

 1
...
1

 ∈ Rm

then we see that an m×m matrix Q with nonnegative entries is stochastic iff

Qe = e

We view measures on X as row vectors µ =
[
µ1, . . . , µm

]
.

For convenience we will denote by Rm the space of row vectors and by Cm the space of
column vectors. We will denote the row vectors using greek letters and we will think of them
as signed measures on X. The matrix Q acts on row vectors by right multiplication µ→ µ ·Q,
and on column vectors by left multiplication, v 7→ Q · v.
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A signed measure µ ∈ Rm is a probability measure if

µk ≥ 0, ∀k ∈ Im, µ · e = 1.

Let Probm ⊂ Rm denote the space of probability measures on Im. We equip Rm with the
variation norm

∥α∥v :=
m∑
k=1

|αk|.

Observe that if µ, ν ∈ Probm, then

dv(µ, ν) =
1

2
∥µ− ν∥v.

Note that a column vector

z =

 z1
...
zm

 ∈ Cm

is a (left) eigenvector of QT corresponding to an eigenvalue λ ∈ C if and only if the row
vector z⊤ is a (right) eigenvector of Q since

z⊤ ·Q = λz⊤.

The matrix Q and its transpose Q⊤ have the same eigenvalues4 The vector e is a (left)
eigenvector of Q corresponding to the eigenvalue 1 we deduce that there exists a row vector
α ∈ Rm such that

α ·Q = α

If α had nonnegative entries, then it would be an invariant measure for the HMC defined by
Q. The classical Perron-Frobenius theory explains when this is the case and much more.

Observe that the HMC defined by Q is irreducible if and only if

∀i, j ∈ X, ∃ n > 0 such that Qni,j > 0.

Additionally, it is aperiodic if and only if Q is primitive, i.e., there exists n0 ∈ N such that

∀ n > n0, ∀i, j ∈ X such that Qni,j > 0, ∀1 ≤ i, j ≤ m.

For a proof of the following result we refer to [71, Chap.XIII] or [154, Chap. 8].

Theorem 4.5.1 (Perron-Frobenius). Suppose that Q is a stochastic m × m matrix. Then
the following hold.

(i) All the eigenvalues of Q⊤ are contained in the unit disk.

(ii) If Q is irreducible, then there exists p ∈ N such that

λ ∈ Spec(Q) and |λ| = 1⇐⇒λp = 1.

Moreover, every eigenvalue the unit circle has algebraic multiplicity 1, i.e., it is a
simple root of the characteristic polynomial of Q

(iii) The eigenspace ker(1−Q⊤) is spanned by a positive vector.

4det(λ1−Q) = det(λ1−Q)⊤.



4.5. Finite Markov chains 435

(iv) The matrix Q is primitive if and only if p = 1. In this case

ρ := max
{
|λ|; λ ∈ Spec(Q), λ ̸= 1

}
< 1.

⊓⊔

Suppose that Q is primitive and denote by π the unique invariant probability distribution
of Q, i.e., the unique row vector

π = (π1, . . . , πm).

such that

πk > 0, ∀k, π1 + · · ·+ πm = 1.

Denote by ∆(λ) the characteristic polynomial ofQ, ∆(λ) = det(λ1−Q). SetB(λ) = 1
λ−1∆(λ).

Since 1 is a simple eigenvalue of Q the polynomials λ − 1 and B(λ) have no common
divisor and thus we have a decomposition of the space Rm (see [106, Thm. XI. 4.1]) as a
direct sum of (right) Q-invariant subspaces

Rm = kerr
(
1−Q

)
⊕ kerr B(Q),

where

kerr
(
1−Q

)
=
{
α ∈ Rm; α · (1−Q) = 0

}
= span(π),

kerr B(Q) :=
{
α ∈ Rm; α ·B(Q) = 0

}
.

Thus any α ∈ Rm admits a unique decomposition

α = α0 + α⊥, α0 ∈ kerr
(
1−Q

)
, α⊥ ∈ kerr B(Q).

More explicitly, choose polynomials u(λ), v(λ) such that

u(λ)(λ− 1) + v(λ)B(λ) = 1.

Then

α⊥ = α · u(Q)(Q− 1) ∈ kerB(Q) α0 = α · v(Q)B(Q).

Note that

α⊥ · e = α · α(Q)(Q− 1) · e = 0.

If µ ∈ Rm is a probability measure, then it has a canonical decomposition

µ = cπ + µ⊥, µ⊥ ∈ kerr B(Q).

Since µ · e = 1 and µ⊥ · e = 0 we deduce c = 1 so µ = π + µ⊥ and thus

µ ·Qn = π + µ⊥ ·Qn,

i.e.,

µ ·Qn − π = µ⊥ ·Qn.
Since kerr B(Q) isQ-invariant we deduce from Theorem 4.5.1 that there exist C > 0, r ∈ (0, 1)
such that

∥α ·Q∥v ≤ r∥α∥v ≤ Cr∥α∥v, ∀α ∈ kerr B(Q).

Hence

∥µ ·Qn − π∥1 = ∥µ⊥ ·Qn∥v ≤ Crn∥µ∥v = Crn, ∀µ ∈ Probm .
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In particular, if if we choose µ to be the Dirac measure concentrated at k ∈ Im, then δk ·Qn
is the k-th row of the matrix Qn and we deduce

m∑
ℓ=1

∣∣Qnk,ℓ − πℓ
∣∣ ≤ Crn, ∀k ∈ N.

Theorem 4.5.1 allows us sharpen the above estimate. If

∆(λ) = det(λ−Q) = λm +

m−1∑
j=0

ajλ
j

denotes the characteristic polynomial of Q, then Cayley-Hamilton theorem implies that the
sequence of matrices (Qn)n∈N0 satisfies the linear recurrence relation

Qn+m +
m−1∑
j=0

ajQ
n+j = 0, ∀n ∈ N0.

Let 1, λ2, . . . , λs be the eigenvalues of Q,

1 > ρ = |λ2| ≥ · · · ≥ |λs|,

The eigenvalue λ2 is usually referred to as the second largest eigenvalue (or SLE) of the
transition matrix.

Denote by mi is the size of the largest Jordan cell corresponding to the eigenvalue i. We
assume thatm2 is the largest Jordan cell size the eigenvalues of norm ρ. The above recurrence
relation shows that, for any 1 ≤ i, j ≤ m, the sequence (Qni,j)n≥0 admits a description of the
form

Qni,j = cij +
r∑

k=2

Cki,j(n)λ
n
k

where Cki,j(z) is a complex polynomial of degree ≤ mk − 1. We deduce that∣∣Qnij − cij
∣∣ = O

(
nm2−1ρn

)
.

We conclude that ci,j = πj and thus∣∣Qnij − πj
∣∣ = O

(
nm2−1ρn

)
. (4.5.1)

If the Markov chain is reversible, i.e.,

πiQij = πjQji, ∀i, j ∈ Im,

then the operator Q : Cm → Cm is symmetric with respect to the L2(π)-inner product ⟨−,−⟩π
on Cm = RX

⟨x, y⟩π =

n∑
i=1

xiyiπi, ∀x, y ∈ Cm.

Indeed

⟨Qx, y⟩π =
∑
i

∑
j

Qijxjyiπi =
∑
j

∑
i

πjQjixjyi

=
∑
j

(∑
i

Qjiyi

)
πjxj = ⟨x,Qy⟩π.
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In this case all the eigenvalues are real and the operator Q is diagonalizable and (4.5.1)
improves to ∣∣Qnij − πj

∣∣ = O
(
ρn
)
. (4.5.2)

In general finding or estimating the SLE can be a daunting task. If some symmetry is
present this is sometimes manageable.

Example 4.5.2 (Random walks on groups). Suppose that G is a finite group and H ⊂ G is
a set of generators. The set H determines a random walk on G. From g one can transition
to h · g, h ∈ H. with probability 1

|H| .

A frequently encountered case is when H is symmetric, i.e.,

x ∈ H⇐⇒x−1 ∈ H.

The directed graph corresponding to this random walk is symmetric, i.e., there is a directed
edge from g to g′ if and only if there is a directed edge from g′ to g. The resulting undirected
graph is called the Cayley graph determined by the symmetric set of generators. The random
walk on the groups is then the standard walk on the Cayley graph. The group structure
behind the Cayley graph adds a lot of symmetry that we can use to our advantage. For
a detailed presentation of this technique and many interesting applications we refer to the
beautiful monograph [46].

We want illustrate this principle on a simpler situation. Suppose that G is the discrete
torus

G :=
(
Z/nZ

)d
We will denote by x = (x1, . . . , xd) the elements of G, xk ∈ Z/nZ. As generators e choose

±ek mod nZ, k = 1, . . . , d,

where

e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1).

For d = 2 this random walk can be visualised as a random walk on the vertices of the square
grid Sn = [0, n]2 ∩ Z2 where the opposite edges are identified. Thus from (0, y) we can
transition (0, y ± 1 mod n) or (±1 mod n, y) with equal probabilities. Note that when n is
odd, the random walk is irreducible and aperiodic.

When n = 2 this this becomes a random walk on the the set of vertices of the hypercube
[0, 1]d or, equivalently, on the set of subsets of {1, . . . , d}.

The invariant probability measure π is, up to a multiplicative constant, the uniform
counting measure. We write

L2
(
G
)
= L2

(
G, π

)
, ∥f∥ = ∥f∥L2 =

1

|G|1/2

∑
x∈Td

n

|f(x)|2
1/2

.

Here we work with complex valued functions so the inner product is

⟨f, g⟩ = 1

|G|
∑
x∈G

f(x)g(x).
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If Q denotes the transition matrix of this Markov chain, then for any f ∈ L2(G) we have

Qf(x) =
∑
x′∈G

Qx,x′f(x
′) =

1

d

d∑
k=1

f(x+ ek) + f(x− ek)

2
, (4.5.3a)

∆f(x) = f(x)−Qf(x) = −1

d

d∑
k=1

f(x+ ek)− 2f(x) + f(x− ek)

2
. (4.5.3b)

One can verify that the induced operator Q : L2(G) → L2(G) is symmetric since Q is
reversible but we will not rely on this fact in this example.

To compute the eigenvalues of Q : L2(G) → L2(G) we use Fourier analysis. This requires
a little bit of representation theory and we will refer to [168] for the proofs of all the claims
below.

A character of G is a group morphism

χ : G→ S1 :=
{
z ∈ C; |z| = 1

}
.

The set Ĝ of characters is a group itself with respect to the pointwise multiplication of
characters. It is called the dual group.

Denote by Rn the group of n-th roots of unity

Rn :=
{
z ∈ C∗; zn = 1

}
.

Observe that for any character χ, the complex numbers χ(ek) are n-th roots of 1. In fact,
the map

ρ : Ĝ→ Rdn, Ĝ ∋ χ 7→ (ρ1, . . . , ρd) =
(
χ(e1), . . . , χ(ed) ∈ Rdn

is a group isomorphism. The collection of functions

χ : G→ C, χ ∈ Ĝ

is an orthonormal basis of L2(G) and thus, for any f ∈ L2 we have an orthogonal decompo-
sition

f =
∑
χ∈Ĝ

⟨f, χ⟩χ. (4.5.4)

The function
Ĝ ∋ χ 7→ f̂(χ) := ⟨f, χ⟩ ∈ C

is called the Fourier transform of f . More explicitly,

f̂(χ) =
1

|G|
∑
x∈G

f(x)χ(x).

The equality (4.5.4) can be rewritten

f(x) =
∑
χ∈Ĝ

f̂(χ)χ(x), ∀x ∈ G, (4.5.5)

and, as such, it is known as the Fourier inversion formula

If we identify χ ∈ Ĝ with ρ(χ) = (ρ1, . . . , ρd) ∈ Rdn, then we can view the Fourier

transform f̂ as a function on Rdn

f̂(ρ1, . . . , ρd) =
1

|G|
∑
x∈G

f(x)ρ−x11 · · · ρ−xdd ,
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and Fourier inversion formula reads

f(x) =
∑
ρnk=1,
k=1,...,d

f̂(ρ1, . . . , ρd)ρ
x1
1 · · · ρxdd .

Using (4.5.3a) and (4.5.5) we deduce

Qf(x) =
∑
χ

f̂(χ) · 1

2d

(
d∑

k=1

(
χ(ek) + χ(−ek)

))
︸ ︷︷ ︸

=:m(χ)

·χ(x).

Thus

Qf = Q

(∑
χ

f̂(χ)χ

)
=
∑
χ

m(χ)f̂(χ)χ.

In other words, the orthonormal basis
{
χ; χ ∈ Ĝ,

}
diagonalizes Q and

SpecQ =
{
m(χ), χ ∈ Ĝ

}
.

If we write

χ(ek) = ρk = cos θk + i sin θk ∈ Rn,

then χ(ek) + χ(−ek) = ρk + ρ̄k = 2 cos θk and

m(χ) =
1

d

d∑
k=1

cos θk, θk ∈

{
0,

2π

n
, . . . ,

2π(n− 1)

n

}
.

Thus SpecQ ⊂ [−1, 1] and 1 ∈ SpecQ. The SLE is

λ2 = λ2(d, n) =
d− 1 + cos 2π/n

d
= 1− 2 sin2 π/n

d
.

Note that

λ2(d, n) ∼ 1− 2π2

dn2
as n→ ∞. (4.5.6)

If n = 2 all the characters/eigenfunctions are real valued. More precisely, for every

ϵ⃗ = (ϵ1, . . . , ϵd) ∈ {−1, 1}d

we have an eigenfunction χϵ⃗ given by

χϵ⃗(x) =

d∏
k=1

ϵxkk , ∀x = (x1, . . . , xd) ∈ {0, 1}d. (4.5.7)

The corresponding eigenvalue is

λϵ⃗ =
1

d

(
ϵ1 + · · ·+ ϵd

)
, ϵk = ±1.

Hence

Spec(Q) =

{
− 1 +

2k

d
, k = 0, 1, . . . , d

}
.

In this case the SLE is

λ2(d, 2) = 1− 2

d
. (4.5.8)
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A probability measure µ on G can be identified with a continuous linear functional on
L2(G, π) and, as such, can be identified with a function µ∗ ∈ L2(G, π)

µ∗ =
∑
χ

µ
[
χ
]
χ, µ

[
χ
]
=
∑
x∈Td

n

µ
[
x
]
χ(x) =

∫
Td
n

χdµ.

Then

µ ·QN =
∑
χ

m(χ)nχ.

⊓⊔

Example 4.5.3 (The Ehrenfest urn revisited). The random walk (Xn)n≥0 on

Vd := {0, 1}d,

the set of vertices of the hypercube [0, 1]d is intimately related to Ehrenfest urn; see Example
4.1.7.

To see this, consider the states

sk :=
{
x = (x1, . . . , xd) ∈ Vd; |x| := x1 + · · ·+ xd = k

}
, k = 0, 1, . . . , d.

If we think of the vertices x ∈ Vd as vectors of bits 0/1, then the random walk has a simple
description: if located at x ∈ Vd, pick a random component of x and flip it to the opposite
bit. Note that

P
[
Xn+1 ∈ sk+1

∣∣Xn ∈ sk
]
=
d− k

d
, P

[
Xn+1 ∈ sk−1

∣∣Xn ∈ sk
]
=
k

d
.

We recognize here the transition rules for the Ehrenfest urn model with d particles/balls.
Thus, if on our walk along the vertices of the hypercube, we only keep track of the state we
are in, we obtain the Markov chain defined by Ehrenfest’s urn model.

For concrete computations it is convenient to have an alternate description of this phe-
nomenon. Denote by Sd the group of permutations of {1, . . . , d}. There is an obvious left
action of Sd on Vd,

φ · (x1, . . . , xd) =
(
xφ(1), . . . , xφ(d)

)
, ∀φ ∈ Sd, (x1, . . . , xd) ∈ {0, 1}d.

On the other hand, Vd is equipped with a metric, the so called Hamming distance,

δ(x, y) =

d∑
i=1

|xi − yi|, x, y ∈ Vd.

Two vertices x, y ∈ Vd are neighbors (connected by an edge of the cube) iff δ(x, y) = 1. Since
the above action of Sd preserves the Hamming distance we deduce that Sd is a group of
graph isomorphisms, i.e.,

∀x, y ∈ Vd, φ ∈ Sd : x ∼ y⇐⇒φ · x ∼ φ · y.

Observe also that the states sk, k = 0, 1, . . . , d, are the orbits of the above action of Sd.
Thus, the state space of the Ehrenfest urn model can be identified with Vd := Sd\Vd, the
space of orbits of the above left action. Denote by π the invariant probability measure of the
random walk on Vd and π the invariant measure of the Ehrenfest urn model

π
[
k
]
=

1

2d

(
d

k

)
.
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If Proj : Vd → Sd\Vd is the natural projection, then

Proj# π = π.

The left action of Sd on Vd induces a right action on the space L2(Vd, π)

(f · φ)(x) = f
(
φ · x

)
, ∀f : Vd → R, x ∈ Vd, φ ∈ Sd.

We denote by L2(Vd, π)
Sd the subspace consisting of invariant functions, i.e., functions con-

stant along the orbits of Sd. The pullback

Proj∗ : L2
(
Sd\Vd,π) → L2

(
Vd, π

)
, f 7→ f ◦ Proj

is an isometry onto L2(Vd, π)
Sd .

Let us observe that the induced linear operator

Q : L2
(
Vd, π

)
→ L2

(
Vd, π

)
is Sd-equivariant, i.e., for any f ∈ L2

(
Vd, π

)
, φ ∈ Sd,

Q
(
f · σ

)
= (Qf) · σ (4.5.9)

In particular, this shows that

Q
(
L2(Vd, π)

Sd
)
⊂ L2(Vd, π)

Sd .

IfQ denotes the transition matrix of the Ehrenfest model, then

L2(Vd, π)
Sd L2(Vd, π)

Sd

L2
(
Vd,π) L2

(
Vd,π)

u

Proj∗

w

Q

u

Proj∗

w

Q
If λ ∈ SpecQ and χ ∈ ker

(
λ − Q

)
is an eigenfunction of Q, then (4.5.9) implies that

χ · φ ∈ ker
(
λ−Q

)
, ∀φ ∈ Sd.

For every ϵ ∈ {−1, 1}d we set

w(⃗ϵ) = #
{
j; ϵj = −1

}
.

Note that ∑
j

ϵj = d− 2w(⃗ϵ), λ(⃗ϵ) = 1− 2w(⃗ϵ)

d
.

If λj = 1− 2j
d , then

ker
(
λj −Q

)
= span

{
χϵ⃗; w(⃗ϵ) = j

}
.

The orthogonal projection Π onto L2(Vd, π)
Sd is the symmetrization operator

L2(Vd) ∋ f 7→ Πf =
1

d!

∑
φ∈Sd

f · φ ∈ L2(Vd, π)
Sd .

The above description shows that

Πker
(
λ−Q

)
⊂ ker

(
λ−Q

)
, ∀λ ∈ SpecQ,

so that

SpecQ⊂ SpecQ.
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Since

χφ·⃗ϵ(x) = χϵ⃗
(
φ−1 · x

)
, ∀φ ∈ Sd, x ∈ {0, 1}d,

we deduce

Πχϵ⃗ = Πχφ·⃗ϵ, ∀φ ∈ Sd.

Thus Πχϵ⃗ depends only on w(⃗ϵ). We set

Ψj := ΨΠχϵ⃗, w(⃗ϵ) = j.

Note that

Ψj =
1(
d
j

) ∑
w(⃗ϵ=j

χϵ⃗. (4.5.10)

Since the eigenfunctions χϵ⃗ with fixed weight w(⃗ϵ) = j span the eigenspace of Q corresponding
to the eigenvalue λj we deduce that

ker
(
λj −Q) = span

(
Ψj

)
so dimker

(
λ−Q

)
≤ 1, ∀λ ∈ SpecQ⊂ SpecQ. Hence

#SpecQ= dimVd = d+ 1 = #SpecQ

and thus

SpecQ = SpecQ and dimker
(
λ−Q

)
= 1, ∀λ ∈ SpecQ.

Define K : Vd × C → C,

K(x, z) :=
d∏
i=1

(
1 + (−1)xiz

)
=
(
1− z

)|x|(
1 + z

)d−|x|
, (4.5.11)

|x| =
∑
i

xi = #
{
i; xi = 1

}
.

Observe that

K(x, z) =
d∑
j=0

( ∑
w(⃗ϵ)=j

χϵ⃗(x)
)
zj

(4.5.10)
=

d∑
j=0

(
d

j

)
Ψj(x)z

j .

Thus

(1− z)|x|(1 + z)d−|x| =
∑
j

(
d

j

)
Ψj(x)z

j . (4.5.12)

Integrating the equality K(x, z)2 = (1− z)2|x|(1 + z)2(d−|x|) over Vd with the uniform proba-
bility measure π we deduce∫

Vd

K(x, z)2π
[
dx
]
=

1

2n

d∑
k=1

(
d

k

)
(1− z)2k(1 + x)2(d−k)

=
1

2d
(
(1− z)2 + (1 + z)2

)d
= (1 + z2)d.

This shows that

∥Ψj∥2L2(π) =
1(
d
j

) .
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Identify L2
(
Vd,π

)
with the space Rd+1

L2
(
Vd,π

)
∋ f 7→

 f(0)
...

f(d)

 ∈ R1+d

with the inner product

⟨u, v⟩π :=
1

2d
(
Bu, v

)
,

where (−,−) denotes the canonical inner product on Rd+1,

(
u, v

)
=

d∑
i=0

uivi,

and B is the diagonal matrix

B = Diag

((
d

0

)
, . . . ,

(
d

d

))
.

We denote by ckj the coefficient of zj in (1 − z)k(1 + z)d−k. If we think of the invariant

eigenfunction Ψj as a function on Vd, Ψj(k) := Ψj(x), |x| = k, then we have(
d

j

)
Ψj(k)

(4.5.12)
= ckj ,

(
d

j

)
Ψj =

 c0j
...
cdj


︸ ︷︷ ︸

=:Cj

.

Denote by C the (d+ 1)× (d+ 1) matrix with columns Cj and by Λ the diagonal matrix

Λ = Diag
(
λ0, λ1, . . . , λd

)
.

If we regard the columns Cj as functions in L2
(
Vd,π), then each is a multiple of an eigen-

function Ψj ofQ so that

QCj = λjCj , ∀j = 0, 1, . . . , d.

HenceQC = CΛ so that C diagonalizesQ,

C−1QC = Λ, i.e., Q = CΛC−1.

Remarkably, the inverse of C can be described explicitly.

From the equalities (
d

j

)
Ψj = Cj , ∥Ψj∥2L2(π) =

1(
d
j

)
we deduce

⟨Ci, Cj⟩π =

(
d

i

)
δij , ∀i = 0, 1, . . . , d.

In other words ,
1

2d
(
BCx,Cy

)
=
(
Bx, y

)
, ∀x, y ∈ Rd+1.

Hence

C⊤BC = 2dB. (4.5.13)
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The matrix C has another miraculous symmetry. To prove it we need to get back to the
definition of the entries ckj , (

1− z
)k(

1 + z
)d−k

=
∑
j

ckjz
j .

Consider the function

F (u, z) =
∑
k

(
d

k

)
uk
(
1− z

)k(
1 + z

)d−k
=
(
(1 + u) + (1− u)z

)n
.

On one hand, we have

F (u, z) =
∑
k

(
d

k

)
uk
(
1− z

)k(
1 + z

)d−k
=
∑
k

(
d

k

)
uk
∑
j

ckjz
juk =

∑
k,j

(
d

k

)
ckjz

juk.

On the other hand, the binomial formula yields

F (u, z) =
(
(1 + u) + (1− u)z

)n
=
∑
j

(
d

j

)
zj
(
1− u

)j
ud−j

=
∑
j

(
d

j

)
zj
∑
k

cjku
k =

∑
k,j

(
d

j

)
cjkz

juk.

Hence (
d

k

)
ckj =

(
d

j

)
cjk, ∀j, k.

This can be written in more compact form as

(BC)kj = (BC)jk⇐⇒BC = (BC)⊤ = C⊤B.

Using this in (4.5.13) we deduce BC2 = 2dB so that

C−1 =
1

2d
C.

Hence

Qn = CΛnC−1 =
1

2d
CΛnC, ∀n ≥ 0. (4.5.14)

The above formula was first obtained by M. Kac [91]. Since then, many different proofs were
offered [94, 95, 165]. For more about the rich history and the ubiquity of the Ehrenfest urn

we refer to [15, 165]. As a curiosity, we want to mention that the spectrum ofQ was known
to J. J. Sylvester in the 19th century.

One can use (4.5.14) to obtain important information about the dynamics of the Ehrenfest
urn such that the return or first passage times Ti, i = 0, 1, . . . , d. We refer to [15, 91, 94, 95]
for more details.

The above “miraculous” properties of the matrix C are manifestations of the remarkable
symmetries of the Krawtchouk polynomials. We refer to [48, 49] for more about these
polynomials and their applications in probability. ⊓⊔
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4.5.2. Variational methods. Consider a reversible, irreducible Markov chain with finite
state space X and transition matrix Q. Set N := |X|. Denote by π the invariant probability
distribution. We have seen that Q is symmetric as a linear operator

L2(X, π) → L2(X, π).

We denote by ⟨−,−⟩π the inner product in L2(X, π) and by ∥ − ∥π the associated norm. We
identify L2(X, π) with RN equipped with the inner product

⟨u, v⟩π =

N∑
i=1

uiviπi.

The eigenvalues have variational characterizations. We order the eigenvalues of Q decreas-
ingly

1 = λ1 > λ2 ≥ λ2 ≥ · · · ≥ λN ≥ −1.

Above, each eigenvalue of Q appears as often as as its multiplicity. The eigenspace corre-
sponding to the eigenvalue 1 is spanned by the constant function e = 1 or, equivalently the
column vector e ∈ RN with all the coordinates equal to 1.

As we have seen, the second largest eigenvalue (or SLE) λ2 controls the rate of convergence
of the Markov chain. It has the variational description

λ2 = sup
u∈RN\{0},
⟨u,e⟩π=0

⟨Qu, u⟩
∥u∥2π

.

We will use this variational characterization to provide upper estimates for λ2.

It is more convenient to work with the Laplacian ∆ := 1−Q. Note that ker∆ = span{e}.
Its eigenvalues are µk = 1− λk,

0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ λN ≤ 2.

Note that lower estimates for µ2 are equivalent with upper estimates for λ2.

The first positive eigenvalue µ2 has a variational characterization in terms of the Dirichlet
form

E(−,−) : L2(X, π)× L2(X, π) → R, E(u, v) = ⟨∆u, v⟩π.

Lemma 4.5.4.

E(u, v) =
1

2

∑
x,y∈X

πxQx,y
(
u(x)− u(y)

)(
v(x)− v(y)

)
.

Proof. ∑
x,y∈X

πxQx,y
(
u(x)− u(y)

)(
v(x)− v(y)

)
=
∑
x,y∈X

Qx,y
(
u(x)− u(y)

)
v(x)πx︸ ︷︷ ︸

=:A

−
∑
x,y∈X

πxQx,y
(
u(x)− u(y)

)
v(y)

︸ ︷︷ ︸
=:B

.

Note that

A =
∑
x∈X

∑
y∈Y

Qx,y
(
u(x)− u(y)

)
v(x)πx
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=
∑
x∈X

(
u(x)− (Qu)(x)

)
v(x)πx = ⟨∆u, v⟩π.

Using the detailed balance equations πxQx,y = πyQy,x we deduce

B =
∑
y∈X

(∑
x∈X

Qy,x
(
u(x)− u(y)

))
v(y)πy

=
∑
y∈X

(
(Qu)(y)− u(y)

)
v(y)πy = −⟨∆u, v⟩π.

⊓⊔

Let us observe that the reversible Markov chain is defined by an electric network with
conductances c(x, y), where

c(x, y) := πxQx,y.

Then ∀u, v ∈ L2(X, π)

E
(
u, v

)
=

1

2

∑
x,y∈X

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
= ⟨du, dv⟩c,

where ⟨−,−⟩c is the inner product (4.4.9) on 1-cochains and d is the coboundary operator
(4.4.8).

The classical Ritz-Raleigh description of eigenvalues of a symmetric operator shows that

µ2 := inf
{
E(u, u); ∥u∥π = 1, ⟨u, e⟩π = 0,

}
.

Note that for any λ in R we have

E
(
u+ λ, u+ λ) = E(u, u).

If we think of u ∈ L2(X, π) as a random variable defined on the probability space (X, π), then
the above characterization of µ2 can be rewritten as

µ2 := inf
Eπ [u]=0
u̸=0

E(u, u)

Var
[
u
] .

Lower bounds of µ2 are classically known as Poincaré inequalities. Thus, a lower bund
µ2 > m > 0 is equivalent to a statement of the form

1

2

∑
x,y

πxQx,y
(
u(x)− u(y))2 ≥ m

∑
x∈X

πxu(x)
2 if

∑
x

u(x)πx = 0

⇐⇒1

2

∑
x,y

c(x, y)
(
u(x)− u(y))2 ≥ m

∑
x∈X

c(x)u(x)2 if
∑
x

u(x)c(x) = 0.

To state our first Poincaré type inequality we need a few geometric preliminaries.

To our reversible Markov chain we associate a graph G with vertex set X. Two vertices
x, y are connected by an edge iff Q(x, y) ̸= 0. We write x ∼ y if x and y are connected by an
edge in G. This graph could have loops. It is connected since the Markov chain is irreducible.
We set

Ê :=
{
(x, y) ∈ X× X; x ∼ y

}
. (4.5.15)
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We think of the elements of Ê as edges of G equipped with an orientation. For any u : X → R
and e = (x′, x′′) ∈ Ê we set

δeu := u(x′′)− u(x′).

We can speak of the conductance c(e) of any oriented edge e = (x, y),

c(e) := c(x, y) = πxQx,y.

Note that

E(u, u) =
1

2

∑
e∈Ê

c(e)(δeu)
2. (4.5.16)

A path in G between two vertices x, y is a succession of vertices

γ : x = x0 ∼ x1 ∼ · · · xℓ−1 ∼ xℓ = y,

where we do not allow repeated edges. The number ℓ is called the length of γ and it is
denoted by ℓ(γ). The path γ determines a collection of oriented edges

ei = (xi−1, xi), i = 1, . . . , ℓ.

We will use the notation e ∈ γ to indicate that e is one of the oriented edges determined by
γ.

We denote by Γ the collection of paths inG. It comes with an obvious equivalence relation:
two paths are equivalent if they have the same initial and final points. Fix a collection C of
representatives of this equivalence relation. Thus, C contains exactly one path for γx,y every
pair (x, y) of vertices and this path connects x to y. Following [51] we set

K(C) := sup
e∈E

K(C, e), K(C, e) :=
1

c(e)

∑
C∋γx,y∋e

ℓ(γx,y)πxπy. (4.5.17)

If an oriented edge e is not contained in any path γ ∈ C we set K(e) = 0.

Theorem 4.5.5 (Diaconis-Stroock). For any u ∈ L2(X, π) we have

Var
[
u
]
≤ K(C)E(u, u). (4.5.18)

Thus µ2 ≥ 1
K(C) so that

λ2(Q) ≤ 1− 1

K(C)
.

Proof. We follow the approach in the proof of [51, Proposition 1]. Set K = K(C). Let
u ∈ L2(X, π). For any x, y ∈ X we have the telescoping equality

u(y)− u(x) =
∑
e∈γx,y

δeu.

Using the Cauchy Schwartz inequality we deduce

(
u(y)− u(x)

)2
=

( ∑
e∈γx,y

δeu

)2

≤ ℓ(γx,y)
∑
e∈γx,y

(δeu)
2.

Now observe that

Var
[
u
]
=

1

2

∑
x,y

(
u(y)− u(x)

)2
πxπy ≤

1

2

∑
x,y

ℓ(γx,y)
∑
e∈γx,y

(δeu)
2
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=
1

2

∑
e∈Ê

(δeu)
2
∑
γx,y∋e

γx,y =
1

2

∑
e∈E

c(e)(δeu)
2 1

c(e)

∑
γx,y∋e

γx,y︸ ︷︷ ︸
≤K

≤ K

2

∑
e∈E

c(e)(δeu)
2 (4.5.18)

= KE
(
u, u

)
.

⊓⊔

Example 4.5.6. Suppose that our Markov chain corresponds to the random walk on the
Cayley graph of the cyclic group Z/nZ, n odd; see Example 4.5.2. Equivalently, it is the
random walk on the set

X = {xi}i∈Z/nZ
of vertices of a regular n-gon, where at each vertex we are equally likely to move to one of
its two neighbors. In this case we have

πx =
1

n
, Qxi,xi+1 = Qxi,xi−1 =

1

2
, ∀i ∈ Z/nZ,

c(xi, xj) =
1

2n
×

{
1, i = j ± 1,

0, otherwise.

As collection C, we choose geodesics (shortest paths) connecting the pair of vertices. Since
n is odd, for every x, y ∈ X there exists a unique such geodesic γx,y and it has length < n

2 .
Due to the symmetry of the graph the quantity

K(e) :=
1

c(e)

∑
γx,y∋e

ℓ(γx,y)πxπy =
2

n

∑
γx,y∋e

ℓ(γx,y)

is independent of e so

K(C) = K(e), ∀e ∈ E.

Averaging over the n edges of the graph we deduce

K(C) =
1

n

∑
e

K(e) =
2

n2

∑
e

∑
γx,y∋e

ℓ(γx,y)

=
2

n2

∑
x,y

∑
e∈γx,y

ℓ(γx,y) =
2

n2

∑
x,y

ℓ(γx,y)
2

(n = 2m+ 1)

=
2

n

n∑
i=1

ℓ(γx1,xi)
2 =

4

n

m∑
i=1

i2 =
n2

6
+O(n), as n→ ∞.

Hence

λ2 ≤ 1− 6

n2
+O

(
n−3

)
, as n→ ∞.

Thus, for large n this lower estimate is of the same order, as the precise estimate (4.5.6) with
d = 1. ⊓⊔
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We want to describe another geometric estimate for µ2 of the type first described in
Riemannian geometry by J. Cheeger [31].

The volume of a set S ⊂ X is computed using the stationary measure π,

V (S,Q) := π
[
S
]
=
∑
s∈S

πs.

The “boundary” of the set S is the collection of oriented edges

∂S :=
{
(s, s′) ∈ Ê; s ∈ S, s′ ∈ Sc

}
.

The “area” of the boundary of S ⊂ X is

A(∂S,Q) :=
∑
e∈∂S

c(e) =
∑

(s,s′)∈S×Sc

πsQs,s′ , Sc = X \ S.

Note that A(∂S,Q) = A(∂Sc, Q). The ratio

h(S,Q) =
A(∂S,Q)

V (S,Q)

is the conditional probability that the Markov chain will transition from a state in S to a
state in Sc given that initial distribution is the equilibrium distribution.

Remark 4.5.7. If Q is associated to an electric network with arbitrary conductances c̃(x, y),
then there exists Z > 0 such that

c̃(x) =
∑
y

c̃(x, y) = Zπx, ∀x ∈ X.

Note that if we define

Ṽ (S,Q) :=
∑
s∈S

c̃(s), Ã(∂S,Q) :=
∑
e∈∂S

c̃(e),

then
Ã(∂S,Q)

Ṽ (S,Q)
=
A(∂S,Q)

V (S,Q)
. ⊓⊔

Now define the Cheeger isoperimetric constant or the conductance of (X, Q) to be

h(Q) := inf
{
h(S,Q); 0 < µ

[
S
]
<

1

2

}
= inf

{
max

(
h(S,Q), h(Sc, Q); ∅ ≠ S ⊊ X

}
.

(4.5.19)

To get a feeling of the meaning of h(Q) suppose that Q corresponds to the unbiased random
walk on a connected graph G with vertex set X. For any S ⊂ X, the area A(∂S) is, up to a
multiplicative constant, the number of edges connecting a vertex in S with a vertex outside
S. The volume V (S) is, up to a multiplicative constant the sum of degrees of vertices in S,
or equivalently, V (S)−A(∂S) is twice the number of edges with both endpoints in S. Thus,
a “large” h(Q) signifies that, for any subset of X, a large fraction of the edges with at least
one endpoint in S have the other endpoint outside S.

As an example of graph with small h think of a “bottleneck”, i.e., a graph obtained by
connecting with a single edge two disjoint copies of a complete graph.

Various versions of Cheeger’s isoperimetric constant of a (connected) graph play a key
role in the definition of expander families of graphs, [102, 118]. It was in that context that
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the connection with randow walks on graphs was discovered. For general reversible Markov
chains we have the following result due to Jerrum and Sinclair [90].

Theorem 4.5.8. Let Q denote the transition matrix of a reversible Markov chain with finite
state space X. Then

µ2 ≥
h(Q)2

2
.

In particular,

λ2 ≤ 1− h(Q)2

2
.

Proof. We follow the presentation in [51]. Let u ∈ L2(X, π). Set u+ := max(u, 0). We set

Su :=
{
u > 0 } ⊂ X, h(u) = inf

S⊂Su

A(∂S,Q)

V (S)
.

Lemma 4.5.9. If u ∈ L2(X, π) and u+ ̸= 0, then

E
(
u+, u+

)
≥ h(u)2

2
∥u+∥2π, (4.5.20)

Proof. We can assume without any loss of generality that u = u+. Then

2
∑

u(x)<u(y)

(
u(y)2 − u(x)2

)
c(x, y) =

∑
x,y

∣∣u(x)2 − u(y)2
∣∣c(x, y) ≤

≤


∑
x,y

(
u(x)− u(y)

)2
c(x, y)︸ ︷︷ ︸

=2E(u,u)



1
2 ∑

x,y

(
u(x) + u(y)

)2︸ ︷︷ ︸
≤2(u(x)2+u(y)2)

c(x, y)


1
2

≤ 2E(u, u)1/2


∑
x,y

(
u(x)2 + u(y)2

)
c(x, y)︸ ︷︷ ︸

=2∥u∥2π



1
2

= 23/2E(u, u)1/2∥u∥π.

We deduce

23/2E(u, u)1/2∥u∥π ≥ 2
∑

u(x)<u(y)

(
u(x)2 − u(y)2

)
c(x, y)

= 4
∑
x,y

(∫ u(y)

u(x)
tdt

)
c(x, y) = 4

∫ ∞

0
t

 ∑
u(x)≤t<u(y)

c(x, y)

 dt.

If we write St := {u > t} ⊂ Su and observe that∑
u(x)≤t<u(y)

c(x, y) = A(∂St, Q) ≥ h(u)π
[
St
]
.



4.5. Finite Markov chains 451

We deduce∫ ∞

0
t

 ∑
u(x)≤t<u(y)

c(x, y)

 dt ≥ h(u)

∫ ∞

0
tπ
[
u > t

]
dt

(1.3.46)
=

h(u)

2
∥u∥2π.

⊓⊔

Observe now that for any x, y ∈ X we have(
u+(x)− u+(y)

)(
u(x)− u(y)

)
≥
(
u+(x)− u+(y)

)2
.

To see this, note first that above we have equality if both u(x) and u(y) are nonnegative
or both nonpositive. We have strict inequality if one is positive and the other negative, say
u(x) > 0 > u(y). Indeed,(

u+(x)− u+(y)
)(
u(x)− u(y)

)
= u(x)

(
u(x)− u(y)

)
> u(x)2 =

(
u+(x)− u+(y)

)2
.

In particular, we deduce that

E
(
u+, u

)
≥ E

(
u+, u+

)
,

and thus,

µ > 0, ∆u ≤ µu on {u > 0} ⇒ µ∥u+∥2π ≥ E
(
u+, u+

)
. (4.5.21)

Indeed,

µ∥u+∥2π ≥ λ⟨u+,∆u⟩π = E
(
u+, u⟩ ≥ E(u+, u+).

Combining (4.5.20) and (4.5.21) we deduce that µ ≥ h(u)2

2 if ∆u ≤ µu on {u > 0} ≠ ∅.
Suppose now that u is a nontrivial eigenfunction corresponding to the eigenvalue µ2 of

∆. Since ∑
x

u(x)πx = 0

we deduce that {u > 0} ≠ ∅ and we conclude that

µ2 ≥
h(u)2

2
≥ h(Q)2

2

as claimed. ⊓⊔

The quantity h(Q) is rather difficult to compute but lower estimates are easier to obtain.
Consider a collection C of paths in G as in the definition (4.5.17). We set

κ(C) = sup
e∈E

κ(C, e), κ(C, e) =
1

c(e)

∑
C∋γx,y∋e

πxπy.

If an oriented edge e is not contained in any path γ ∈ C we set κ(e) = 0. We have the
following result, [51, 158].

Proposition 4.5.10. We have

h(Q) ≥ 1

2κ(C)
,

so that

λ2 ≤ 1− 1

8κ(C)2
, ∀C.
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Proof. Let S ⊂ X be a set of vertices with V (S) = π
[
S
]
≤ 1

2 . We set

W (S) =
∑
γx,y∈C

x∈S, y∈Sc

πxπy.

Clearly

W (S) = π
[
S
]
π
[
Sc
]
≥ 1

2
π
[
S
]
=

1

2
V (S).

On the other hand

W (S) ≤
∑
e∈∂S

∑
γx,y∋e

πxπy =
∑
e∈∂S

c(e)κ(e) ≤ κ
∑
e∈∂S

c(e) = κA(∂S),

and we deduce

κA(∂S) ≥ 1

2
V (S).

⊓⊔

4.5.3. Markov Chain Monte Carlo. Since this is only an invitation to this subject we do
not attempt to formulate the most general situation or technique. Suppose that we want to
sample a very large but finite set X according to a probability measure on it. The information
we have about the set and the given distribution is not complete but ”obtainable”.

The probability measure π is known only up to a multiplicative constant. More precisely,
we know only a weight w : X → (0,∞) that is proportional to π, i.e.,

π
[
x
]
=
w(x)

Z
, Z =

∑
x∈X

w(x).

For all intents and purposes, the normalizing constant Z is not effectively available to us.
Still, we would like to produce an X-valued random variable with distribution π.

The theory of Markov chains will allow us to produce, for any given ε > 0 an X-valued
random variable with distribution ν within ε > 0 (in total variation distance) from the desired
but unknowable distribution π.

The Metropolis algorithm will allow us to achieve this. The input of the algorithm is a
pair (G,w), where G is a graph with vertex set X w is a weight on its set of vertices, i.e., a
function w : X → (0,∞) such that ∑

xX

w(x) <∞.

The graph G is called the candidate graph. Often the candidate graph is suggested by the
problem at hand.

A good example to have in mind is the set X of Internet nodes and we want to sample
the set of nodes uniformly. In this case the weight w is a constant function. To simplify the
presentation we assume that the graph is connected and the standard random walk on it is
primitive.

The output of the algorithm is the transition matrix Q of a reversible, irreducible and
aperiodic Markov chain with state space X and whose equilibrium probability π is propor-
tional to w. We will refer to this Markov chain as the Metropolis chain with candidate graph
G and equilibrium distribution π. If we run this Markov chain starting from an initial
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vertex x0 ∈ X, then for n sufficiently large, the state Xn reached after n steps will have a
distribution close to π.

The transitions of this Markov chain are described by an acceptance-rejection strategy
based on the standard random walk on the graph G. More precisely, the transitions from a
vertex x to one of its neighbors follows these rules.

(i) Pick one of the neighbors y of x equally likely among its d(x) neighbors. (This is
what we would do if we were to perform a standard random walk on G.) This the
acceptance part.

(ii) The transition to y is decided by a comparison between the weight w(y) at y and
the weight w(x) at x. More precisely, we accept the move to y with probability

min
(
1, w(y)/d(y)w(x)/d(x)

)
. Otherwise we reject the move and stay put at x. This is the

rejection part.

In other words, the transition matrix Q of this Markov chain is given by

Qx,y =



0, y ̸∈ N(x),

1
d(x) min

(
1, w(y)/d(y)w(x)/d(x)

)
, y ∈ N(x),

1− 1
d(x)

∑
x′∈N(x)min

(
1, w(x

′)/d(x′)
w(x)/d(x)

)
, y = x.

Above, N(x) denotes the set of neighbors of x in the candidate graph. Let us show that

w(x)Qx,y = w(y)Qy,x, ∀x, y ∈ X,

so that Q is reversible and its equilibrium distribution is proportional to w.

Indeed, for x ̸= y, we have

w(x)Qx,y =
w(x)

d(x)
min

(
1,
w(y)/d(y)

w(x)/d(x)

)

=


w(y)/d(y), w(y)/d(y) < w(x)/d(x),

w(x)d(x), w(y)/d(y) ≥ w(x)/d(x)

=
w(y)

d(y)
min

(
1,
w(x)/d(x)

w(y)/d(y)

)
= w(y)Qy,x.

If the random walk on the candidate graph G is primitive, then so is the Metropolis chain.
If not, we replace the Metropolis chain with its lazy version; see Remark 4.3.8.

We refer to [83, 158] for applications of this algorithm to combinatorics. In general, it is
difficult to estimate the SLE or the rate of converges of the Metropolis chain, but in practice
it works well. We refer to [83, 158] for applications of this algorithm to combinatorics.

Example 4.5.11. A few years ago (2016-17) I asked Mike McCaffrey, at that time a student
writing his senior thesis under my supervision, to read Diaconis’ excellent survey [47] and
then to try to implement numerically the decryption strategy described in that paper, based
on the Metropolis algorithm. I want to report some of McCaffrey’s nice findings. For more
details I refer to his senior thesis [126].
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Let me first outline the encryption problem and the decryption strategy proposed in [47].
The encryption method is a simple substitution cipher. Scramble the 26 letters of the English
alphabet E. The encryption is captured by a permutation φ of the set E, or equivalently, an
element of φ the symmetric group S26.

The decryption problem asks to determine the decoding permutation φ−1 given a text
encoded by the (unknown) permutation φ. Thus, we need to find one element in a set of 26!
elements. To appreciate how large 26! is, it helps to have in mind that a pile of 26! grains
of sand will cover the continental United States with a layer of sand 0.6 miles (approx. 1
kilometer ) thick. We are supposed to find a single grain of sand in this huge pile. Needle in
a haystack sounds optimistic!

The strategy outlined in [47] goes as follows. There are 262 pairs of letters in the English
alphabet E, and they appear as adjacent letters in English texts with a certain frequency.
E.g., one would encounter quite frequently the pair“th”, less so pairs such as “tt’ ’ or “tw”.
We denote by f(s1, s2) the frequency of the pair of letters (s1, s2). More precisely f(s1, s2)
is the conditional probability that in an English text the letter s1 is followed by s2. To any
text of length n, viewed as string of n letters, x = x1 . . . , xn we associate the weight

w
(
x
)
:=

n∏
i=2

f(xi−1, xi).

We can use a given encrypted text x to define a weight on S26

w(φ) := w
(
φ(x1) . . . φ(xn)

)
.

If x is obtained from a genuine English text a1, . . . , an via a permutation φ0, xi = φ−1
0 (ai),

then φ0 is the decoder xi 7→ φ0(xi) = ai.

w(φ0) := w
(
a1 . . . an

)
.

The hope is that permutations with higher weight are closer to the decoding permutation
since they mimic closely the frequencies of adjacent pairs of letters in written English. In
other words

φ = argmaxσ∈S26
w(σ).

The weight function w defines a probability measure on S26 highly concentrated around the
decoding permutation. If we sample this probability measure there is a high probability that
we will land near the decoding permutation.

To sample this probability measure we rely on the Metropolis algorithm. The symmetric
group is generated by its

(
26
2

)
transpositions and as candidate graph we take the associ-

ated Cayley graph defined by this set of generators. As initial state we take the identity
permutation.

The question is how well does this work in practice. First, one needs to find the relative
frequencies of adjacent pairs in English texts. One can do this by analyzing a large text. In
[47] Diaconis suggested using “War and Peace”. Mike McCaffrey used “Moby Dick” for this
purpose. The table in Figure 4.6 (borrowed from [126]) depicts these relative frequencies.5

He then proceeded to test6 this method using first a shorter text

5He actually used an alphabet consisting of 27 symbol, the 26 letters of the alphabet and a 27-th representing any
symbol that is not a letter.

6An R-code implementing this algorithm was and is publicly available.
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Figure 4.6. Moby Dick Transition Matrix

THE PROBABILITY THATWEMAY FAIL IN THE STRUGGLE OUGHT
NOT TO DETER US FROM THE SUPPORT OF A CAUSE WE BE-
LIEVE TO BE JUST

The scrambled version looked like

OVB CTEAJADKDOM OVJO SB RJM HJDK DN OVB WOTYXXKB
EYXVO NEO OE ZBOBT YW HTER OVB WYCCETO EH J QJYWB
SB ABKDBLB OE AB UYWO

We expect the weight of the decoded text wtrue to be a lot higher than the weight of the
encoded text. In the above example, the weight of the original text is 2.6× 10115 higher than
that of the cyphered text!!!

After 3, 000 steps in the random walk governed by the above Metropolis algorithm, the
output was close to the original text:

THE PROLALINITY THAT WE MAY FAIN ID THE STRUGGNE
OUGHT DOT TO KETER US FROM THE SUPPORT OF A JAUSE
WE LENIEVE TO LE BUST

Mike then tested this algorithm on a bigger text. He chose the easily recognizable Get-
tysburg address by Abraham Lincoln.

The most vivid confirmation of the power of this method came when he presented his
results to a mixed group of students in the College of Science of the University of Notre
Dame. He began his presentation by projecting the ciphered Gettysburg address, but the
audience was left in the dark about the nature of original text. While Mike was describing the
problem and the decoding strategy, his laptop was running the algorithm in the background
and every few seconds the text on the screen would scramble revealing a new text resembling
more and more an English text. Ten minutes or so into his presentation the audience was
able to recognize without difficulty the Gettysburg address. It took about 120 steps in the
Metropolis random walk to reach an easily recognizable albeit misspelled text! ⊓⊔
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4.6. Exercises

Exercise 4.1. Consider the construction in Remark 4.1.5 of an HMC with initial distribution
µ and transition matrix Q as a sequence of random variables defined on [0, 1) equipped with
the Lebesgue measure λ. For every t ∈ [0, 1) there exists

x = x(t) ∈ XN0

uniquely determined by

t ∈
⋂
n≥0

Inx0,...,xn

(i) Prove that the resulting map Ψ : [0, 1) → XN0 given by t 7→ x(t) is measurable and
Ψ#λ = Pµ. Hint. Use the π-λ theorem.

(ii) Prove that the map Ψ is injective and its image is shift-invariant and has Pµ-
negligible complement.

(iii) Describe the map t 7→ x(t) when X = {0, 1}, µ
[
0
]
= µ

[
1
]
= 1

2 and

Q =

 1
2

1
2

1
2

1
2

 .
Describe explicitly the random variables

Xn : [0, 1) → R, Xn(t) = xn(t), where x(t) =
(
x0(t), x1(t), . . .

)
∈ {0, 1}N0 .

⊓⊔

Exercise 4.2. Two people A,B play the following game. Two dice are tossed. If the sum of
the numbers showing is less than 7, A collects a dollar from B. If the total is greater than
7, then B collects a dollar from A. If a 7 appears, then the person with the fewest dollars
collects a dollar from the other. If the persons have the same amount, then no dollars are
exchanged. The game continues until one person runs out of dollars. Let A’s number of
dollars represent the states. We know that each person starts with 3 dollars.

(i) Show that the evolution of A is governed by a Markov chain. Describe its transition
matrix.

(ii) If A reaches 0 or 6, then he stays there with probability 1. What is the probability
that B loses in 3 tosses of the dice?

(iii) What is the probability that A loses in 5 or fewer tosses?

⊓⊔

Exercise 4.3. Prove that (4.1.4) is equivalent to (4.1.5). ⊓⊔

Exercise 4.4. Let X be a finite or countable subset. Construct a Markov chain with state
space X such that any subset of X is a closed set of this Markov chain. ⊓⊔
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Exercise 4.5. Suppose that (Yn)n≥0 is a sequence of i.i.d., N0 -valued random variables with
common probability generating function

G(s) =
∑
k≥0

pks
n, pk := P

[
Yn = k

]
,∀k, n ∈ N0.

Let Xn the amount of water in a reservoir at noon on day n. During the 24 hour period
beginning at this hour a quantity Yn flows into reservoir, and just before noon a quantity of
one unit of water is removed, if this amount can be found. The maximum capacity of the
reservoir is K, excessive inflows are spilled and lost. Show that (Xn)n≥0 is an HMC, and
describe the transition matrix and its stationary distribution in terms of G. ⊓⊔

Exercise 4.6. Denote by Xn the capital of of gambler at the end of the n-th game. He relies
on the following gambling strategy. If his fortune is ≥ $4 he gambles $2 expecting to win $4,
$3, $2 with respective probabilities 0.25, 0.30, 0.45. If his capital is 1, 2 or 3 dollars he bets
$1 expecting him to earn $2 and $0 with probabilities 0.45 and respectively 0.45 and 0.55.
When his fortune is 0 he stops gambling.

(i) Show that (Xn)n≥0 is a homogeneous Markov chain, compute its transition proba-
bilities and classify its states.

(ii) Set

T := inf
{
n ∈ N; Xn = 0

}
.

Show that P
[
T <∞

]
= 1.

(iii) Compute E
[
T
]
.

⊓⊔

Exercise 4.7. Suppose that (Xn)n≥1 is a sequence of nonnegative i.i.d., continuously dis-
tributed random variables. Consider the sequence of records (Rn)n∈N defined inductively by
the rule

R1 = 1, Rn = inf
{
n > 1; Xn > max

(
X1, . . . , Xn−1

) }
.

Show that the sequence (Rn) is an Markov chain with state space N and then compute its
transition probabilities. Is this a homogeneous chain? ⊓⊔

Exercise 4.8. At an office served by a single clerk arrives a Poisson stream of clients. More
precisely, the n-th client arrives client arrives at time Tn = S1 + · · ·+ Sn where (Sn)n∈N is a
sequence of i.i.d. random variables, Sn ∼ Exp(λ). The time to process the n-th client is Zn,
where (Zn)n≥1 is a sequence of i.i.d. nonnegative random variables with common distribution
PZ . We assume that the random variables Zn are independent of the arrival times Tm. For
n ≥ 0 we denote by Xn the number of customers waiting in line immediately after the n-th
arrived customer was served.

(i) Show that (Xn)n≥0 is a homogeneous Markov chain with transition probabilities

P
[
Xn+1 = k ∥Xn = j

]
=

{
qk−j , k ≥ j,

0, k < j,

where

qj =

∫ ∞

0
e−λz

(λz)j

j!
PZ
[
dz
]
.
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Hint. Use Exercise 1.57.

(ii) Set µ = E
[
Z
]
, r := λµ. Prove that the above chain is positively recurrent if and

only if r < 1.

(iii) Assume that r < 1 and c2 := E
[
Z2
]
<∞. Prove that

lim
n→∞

E
[
Xn

]
= r +

λ2c2

2(1− r)
.

⊓⊔

Exercise 4.9. Suppose that (Xn)n∈N0 is an irreducible HMC with state space X and tran-
sition matrix Q. Prove that the following statements are equivalent.

(i) The chain is recurrent.

(ii) There exist x, y ∈ X such that∑
n∈N

Qnx,y = ∞.

(iii) For any x, y ∈ X we have ∑
n∈N

Qnx,y = ∞.

⊓⊔

Exercise 4.10. Suppose that (Xn)n≥0 is an irreducible Markov chain with state space X
transition probability matrix Q and x0 ∈ X.

(i) For n ∈ N set

τx(n) = Px
[
Tx0 > n

]
, τx = lim

n→∞
τx(n)

Prove that
τx =

∑
y ̸=x0

Qx,yτy, ∀x ∈ X \ {x0}. (4.6.1)

(ii) Show that if x0 is transient, then there exists x ∈ X \ {x0} such that τx ̸= 0

(iii) Suppose there exists a function α : X\{x0} → [−1, 1], not identically zero, satisfying
(4.6.1). Prove that x0 is transient.

Exercise 4.11. Suppose that (Xn)n≥0 is a transient irreducible Markov chain with state
space X. Prove that, with probability 1 the chain will exit any finite subset F ⊂ X, never to
return, i.e.,

P
[

lim
n→∞

IF (Xn) = 0
]
= 1.

⊓⊔

Exercise 4.12. Bobby’s business fluctuates in successive years between three sates between
three states: 0 = bankruptcy, 1 = verge of bankruptcy, 2 = solvency. The transition matrix
giving the probability of evolving from state to state is

Q =

 1 0 0
0.5 0.25 0.25
0.5 0.25 0.25
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(i) What is the expected number of years until Bobby’s business goes bankrupt, as-
suming it starts in solvency.

(ii) Bobby’s rich father, deciding that it is bad for the family name if his son goes
bankrupt. Thus, when state 0 is entered, his father infuses Bobby’s business with
cash returning him to solvency with probability 1. Thus the transition matrix for
this Markov chain is

P =

 0 0 1
0.5 0.25 0.25
0.5 0.25 0.25


Show that this Markov chain irreducible aperiodic and find the expected number
of years between cash infusions from his father.

⊓⊔

Exercise 4.13. Let Q be a stochastic n× n matrix and denote by C the n× n matrix such
that Ci,j =

1
n , ∀i, j.

(i) Prove that for any r ∈ (0, 1) the Markov chain defined by the stochastic matrix
Q(r) = (1 − r)Q + rC is irreducible and aperiodic. Denote by πr the unique
stationary probability measure.

(ii) Prove that πr converges as r → 0 to a stationary probability measure π0 of the
HMC defined by Q.

(iii) Describe π0 in the special case when the HMC determined by Q consists of exactly
two communication classes C1 and C2 and there exist xi ∈ Ci, i = 1, 2 such that
Qx1,x2 > 0.

qed

Exercise 4.14. The random walk of a chess piece on a chess table is govern by the rule: the
feasible moves are equally likely. Suppose that a rook and a bishop start at the same corner
of a 4 × 4 chess table and perform these random walks. Denote by T the time they meet
again at the same corner. Find E

[
T
]
. ⊓⊔

Exercise 4.15. Consider the HMC with state space X = {0, 1, 2, . . . , } and transition matrix
Q defined by

Qn,n+k =
1

2n+1

(
n

k

)
, ∀0 ≤ k ≤ n, n ≥ 1,

Q0,1 = 1, Qn,0 =
1

2
, ∀n ≥ 1.

Prove that the chain is irreducible, positively recurrent and aperiodic and find E0

[
T0
]
. ⊓⊔

Exercise 4.16. LetKn+1 denote the complete graph with n+1 vertices v0, v1, . . . , vn. Denote
by (Xn)n≥0 the random walk on Kn+1 transition rules

Qvi,vj =
1

n
, ∀i > 0, j ≥ 0, Qv0,vi = 0, Qv0,v0 = 1.

Thus the vertex v0 is absorbent. For i > 0 we denote that the time to reach the vertex v0
starting at vi,

Hi := min
{
j ≥ 0 : X0 = i, Xj = 0

}
.
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Prove that E
[
Hi

]
= n, ∀i > 0. ⊓⊔

Exercise 4.17. A particle performs a random walk on the nonnegative integers with transi-
tion probabilities

p0,0 = q, pi,i+1 = p, pj,j−1 = q, i ≥ 0, j > 0,

where p ∈ (0, 1) and q = 1− p.

Prove that the random walk is transient if p > q, null recurrent if p = q, and positively
recurrent if p < q. In the last case determine the unique invariant probability distribution. ⊓⊔

Exercise 4.18. We generate a sequence Bn of bits, i.e., 0’s and 1’s, as follows. The first two
bits are choses randomly and independently with equal probabilities. (Flip a fair 0/1 coin
twice and record the results). If B1, . . . , Bn are generated, then we generate Bn+1 according
to the rules

P
[
Bn+1 = 0 ∥Bn = Bn−1 = 0

]
=

1

2
= P

[
Bn+1 = 0 ∥Bn = 0, Bn−1 = 1

]
P
[
Bn+1 = 0 ∥Bn = 1, Bn−1 = 0

]
=

1

4
= P

[
Bn+1 = 0 ∥Bn = Bn−1 = 1

]
What is the proportion of 0’s in the long run? ⊓⊔

Exercise 4.19. Consider the Markov chain with state space X = N0 and transition proba-
bilities

Qn,n−1 = 1, ∀n ∈ N,

Q0,n = pn, ∀n ∈ N0,
∑
n≥0

pn = 1.

Find a necessary and sufficient condition on the distribution (pn)n≥0 guaranteeing that the
above HMC is positively recurrent. ⊓⊔

Exercise 4.20. Suppose that a gambles plays a fair game with winning probability p = 1
2 .

He starts with an initial fortune X0 = 1 dollar. His goal is to reach a fortune of g dollars,
g ∈ N. He stops if he reaches this fortune or he is broke and he is employing a bold strategy:
at every game he stakes the largest of money that will get him closest to but not above g. He
cannot bet a sum greater that his fortune at that moment. Denote by Xn his fortune after
the n-th game.

(i) Prove that (Xn)n≥0 is an HMC. Describe its state space and it transition matrix.

(ii) Prove that the player reaches his goal with probability 1
g and goes broke with

probability g−1
g .

⊓⊔

Exercise 4.21. Consider the standard random random walk in Z2 started at the origine. For
each m ∈∈ Z we denote by Tm the first moment the random walk reaches the line x+ y = m
and we denote by (Um, Vm) the point where this walk intersects the above line. Find the
probability distributions of Tm, Um and Vm. ⊓⊔
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Exercise 4.22. Suppose that X is an at most countable set equipped with the discrete
topology µ ∈ Prob(X) and Q : X× X → [0, 1] is a stochastic matrix. Let Xn : (Ω, S,P) → X
be a sequence of measurable maps.

(i) Prove that (Xn)n≥0 ∈ Markov(µ,Q) if and only if

E
[
f(Xn+1) ∥Xn, . . . , X0

]
= Q∗f(Xn)

for any bounded function f : X → R.
(ii) (Lévy) Prove that (Xn)n≥0 ∈ Markov(µ,Q) if and only if, for any f ∈ L∞(X, µ)

the sequence

Y0 = X0, Yn = f(Xn)−
n−1∑
k=0

(
Qf(Xk)− f(Xk)

)
is a martingale with respect to the filtration Fn = σ(X0, X1, . . . , Xn).

⊓⊔

Exercise 4.23. Consider an irreducible HMC with finite state space X and transition matrix
Q. We denote by π the invariant probability distribution. For every x ∈ X we denote by Hx

the hitting time of x,

Hx := min
{
n ≥ 0; Xn = x

}
(i) Show that

τ(x) :=
∑
y∈X

Ex
[
Hy

]
π
[
y
]

is independent of x.

(ii) Prove that

τ(x) =
∑
x

Eπ
[
Hy

]
π
[
y
]
.

⊓⊔

Exercise 4.24. Suppose that (Xn)n∈N0 is an HMC with state space X and transition matrix
Q. Suppose that B ⊂ X and HB is the hitting time of B

HB := min
{
n ≥ 0, Xn ∈ B

}
.

We define

hB : X → [0, 1], hB(x) = Px
[
HB <∞

]
= P

[
HB <∞∥X0 = x

]
,

kB : X → [0,∞], kB(x) = Ex
[
HB

]
.

(i) Show that hB satisfies the linear system

hB(x) = 1, ∀x ∈ B,

hB(x) =
∑
y∈X

Qx,yhB(y), x ∈ X \B. (4.6.2)

(ii) Show that if h : X → [0,∞) is a solution of (4.6.2), then

hB(x) ≤ h(x), ∀x ∈ X.
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(iii) Show that kB satisfies the linear system

kB(x) = 0, ∀x ∈ B,

kB(x) = 1 +
∑
y∈X

Qx,ykB(y), x ∈ X \B. (4.6.3)

(iv) Show that if k : X → [0,∞] satisfies (4.6.3), then kB(x) ≤ k(x), ∀x ∈ X

⊓⊔

Exercise 4.25. Suppose that (Xn)n∈N0 is an HMC with state space X and transition matrix
Q. For x ∈ X we denote by Tx the return time to x

Tx := min
{
n ≥ 1; Xn = x

}
.

We set

fx,y(n) := Px
[
Ty = n

]
,

Fx,y(s) :=
∑
n≥0

fx,y(n)s
n, Px,y(s) :=

∑
n≥0

Qnx,ys
n,

fx,y := Fx,y(1) =
∑
n≥0

fx,y(n) = Px
[
Ty <∞

]
.

(i) Prove that

Px,y(s) = δx,y + Fx,y(s)Py,y(s), ∀x, y ∈ X,

where

δx,y =

{
1, x = y,

0, x ̸= y.

(ii) Deduce from (i) that∑
n≥0

Qnx,x <∞⇐⇒Px
[
Tx <∞

]
< 1.

(iii) Set T
(1)
x := Tx and define inductively T

(k)
x := min

{
, n > T

(k−1)
x ; Xn = x

}
, k > 1.

Prove that

P
[
T (k−1)
x <∞

]
= fx,yf

(k−1)
yy .

⊓⊔

Exercise 4.26. Suppose that {Xn : (Ω, S,P) → X}n≥0 is an irreducible, recurrent HMC with
state space X and transition matrix Q defined on a probability space (Ω, S,P). Fix x ∈ X,
assume P

[
X0 = x

]
= 1 and denote by Tk the time of k-th return to x. More precisely

T0 = 0, T1 := min
{
n > 0; Xn = x

}
, Tk+1 = min

{
n > Tk; Xn = x

}
.

We set

Yk =
(
Xtk , XTk+1, . . . XTk+1−1

)
.

(i) Realize the quantities Yk as random maps Yk → Y where Y is a countable set
equipped with the sigma-algebra 2Y.

(ii) Show that the resulting random maps are i.i.d..

⊓⊔
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Exercise 4.27. Consider a positively recurrent HMC (Xn)n≥0 with state space X, transition
matrix Q and stationary distribution π. Suppose that T is a stopping time adapted to
(Xn)n≥0 and let x ∈ X be such that Ex

[
T
]
< ∞. We denote GT (x, y) denote the expected

number of visits to y before T , when started at x, i.e.,

GT (x, y) = Ex
[
NT
x,y

]
, NT

x,y = #
{
n ≥ 0; X0 = x, Xn = y, n ≤ T

}
.

Prove that GT (x, y) = π
[
y
]
Ex
[
T
]
. ⊓⊔

Exercise 4.28. Consider a positively recurrent HMC (Xn)n≥0 with state space X and tran-
sition matrix Q. Denote by π the stationary distribution. For x ∈ X we denote by Tx the
first return time to x and for y ∈ X we set

Nx,y :=
{
n ∈ N; n ≤ Tx, Xn = y

}
, G(x, y) := Ex

[
Nx,y

]
.

In other words, G(x, y) is the expected number of visits to y before returning to x.

(i) Prove that G(x, y) = π
[
y
]
Ex
[
Ty
]
.

(ii) Prove that

Px
[
Ty < Tx

]
=

1

π
[
y
](

Ex
[
Ty
]
+ Ey

[
Tx
] ) .

⊓⊔

Exercise 4.29. Prove the claims in Remark 4.3.11. ⊓⊔

Exercise 4.30 (LeCam). Suppose that (Xr)1≤r≤n is a family of independent Bernoulli ran-
dom variables with succes probabilities pr and (Yr)1≤r≤n a family of Independent Poisson
random variables Yr ∼ Poi(pr). Set

Sn :=

n∑
r=1

Xr, λ := p1 + · · ·+ pn.

Fix independent optimal couplings (X̂r, Ŷr); see Remark 4.3.11.

(i) Show that the distribution of (X̂r, Ŷr) is the measure λr on N0 × N0 given by

λr
[
(m,n)

]
=


1− pr, m = n = 0,

e−pr − 1 + pr, m = 1, n = 0,
pnr
n! e

−pr , m = 1, n ≥ 1,

0, elsewhere.

(ii) Prove that dv
(
Bin(pr),Poi(pr)

)
≤ p2r , ∀r = 1, . . . , n.

(iii) Prove that

dv
(
Sn,Poi(λ)

)
≤
∑
r

P
[
X̂r ̸= Ŷr

]
≤

n∑
r=1

p2r .

⊓⊔

Exercise 4.31. Let X,Y be two random variables defined on the same probability space(
Ω, S,P

)
. We say that Y pointwisely dominates X if Y ≥ X a.s.. We say that Y stochastically
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dominates X and we denote this Y
d
≥ X, if FY (t) ≤ FX(t), ∀t ∈ R, where FX and FY are

the cumulative distribution functions of X and respectively Y .

(i) Prove that

X ≤ Y ⇒ X
d
≤ Y.

(ii) Let
(
X̂, Ŷ

)
be any coupling of X and Y . Prove that

X
d
≤ Y ⇐⇒ X̂

d
≤ Ŷ .

(iii) Let 0 < p0 < p1 < 1. Prove that Bin(n, p0)
d
≤ Bin(n, p1), ∀n ∈ N. Hint. Let (Un)n∈N

be an i.i.d. sequence of Unif([0, 1]) random variables. For p ∈ (0, 1) and n ∈ N set Yn,p :=
∑n

j=1 I[0,p]

(
Uj

)
.

(iv) We denote by QX and QY the quantiles of X and respectively Y ; see Example
1.2.22. Prove that

X
d
≤ Y ⇐⇒QX(U) ≤ QY (U),

where U ∼ Unif
(
[0, 1]

)
. The pair

(
QX(U), QY (U)

)
is called the quantile coupling

of X and Y .

(v) Let X0 ∼ Ber(p0), X1 ∼ Ber(p1) be two independent Bernoulli random variables
with 0 < p0 < p1 < 1. Set p2 := p1−p0

1−p0 and let X2 ∼ Ber(p2) be independent of

X0, X1. Set Y1 := max(X0, X2). Show that (X0, Y1) is a coupling of (X0, X1) such
that X0 ≤ Y1, a.s.. ⊓⊔

Exercise 4.32 (Card shuffles). Think of a permutation φ of Im = {1, 2 . . . ,m} as an ar-
rangement of a deck of m cards, with φ(1) the top-of-the-deck card. A top-to-random shuffle
consists of moving the top card, with equal probability, below one of the the m-cards of the
deck. Leaving the top card in place is one of the m equiprobable options. Algebraically, if
k ∈ Im and σk ∈ Sm represents the permutation

2, 3, . . . , k, 1, k + 1, . . . ,m,

then we can describe a top-to-random shuffle as a transformation φ → φ ◦ σK , where K
is a random variable uniformly distributed on Im. Fix a sequence (Kn)n∈N of independent
random variables uniformly distributed on Im. Consider the random walk on Sm started at
Φ0 = 1 ∈ Sm and transition rule Φn = Φn−1 ◦ σKn . Set

Tm := 1 + Sm, Sm = min
{
n ∈ N; Φn(1) = Φ0(m) = m

}
.

In other words, Tm is the first moment when the card that initially was at the bottom appears
on top.

(i) Prove that Tm has the same distribution as the coupon collector random variable,
i.e., the minimum number of samplings with replacements of m objects until each
one of them was sampled.

(ii) Prove that ΦTm is uniformly distributed on Sm and it is independent of Tm. Hint.

Prove by induction on k that given that a moment t there are k cards under the bottom card, then all of

the k! possible arrangements of these cards are equally.

(iii) Prove that

P
[
Tm ≤ n,Xn = φ

]
=

1

m!
P
[
Tm ≤ n

]
.
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(iv) Prove that form any A ⊂ Sm we have∣∣P[Φn ∈ A
]
− πm

[
A
] ∣∣ ≤ 2P

[
Tm > n

]
≤ 2m logm

n
.

⊓⊔

Exercise 4.33. Let (Xn)n≥0 be an irreducible Markov chain with with finite state space X,
transition matrix Q and invariant probability measure µ ∈ Prob(X). Assume that the initial
distribution is also µ, i.e., PX0 = µ. For n ∈ N0 we set (see Exercise 2.61 for notation)

Hn =
1

n+ 1
Ent2

[
X0, X1, . . . Xn

]
, Ln = Ent2

[
Xn

∣∣Xn−1, . . . , X0

]
.

(i) Prove that the sequence (Ln)n≥0 is non-increasing and nonnegative. Denote by L
its limit.

(ii) Prove that

Hn =
1

n+ 1

n∑
k=0

Lk

(iii) Prove that the sequence (Hn) is convergent and its limit is L.

(iv) Prove that

L = −
∑
x∈X

µ
[
x
]
Ent2

[
Qx,−

]
= −

∑
x,y∈X

µ
[
x
]
Qx,y log2 Qx,y.

The number L is called entropy rate of the irreducible Markov chain. We denote
it by Ent2

[
X,Q

]
.

⊓⊔

Exercise 4.34. Let Q denote the n× n transition matrix describing the random walk on a
complete graph with n vertices. Find the spectrum of Q. ⊓⊔

Exercise 4.35 (Doeblin). Suppose that (Xn)≥0 is an HMC with state space X, initial dis-
tribution µ and transition matrix Q satisfying the Doeblin condition

∃ε > 0, ∃x0 ∈ X : Qx,x0 > ε, ∀x ∈ X.

Denote M the space of finite signed measures ρ on X. For ρ ∈ M we set

∥ρ∥1 :=
∑
x∈X

∣∣ ρx ∣∣ <∞, ρx := ρ
[
{x}

]
..

(i) Prove that for any ρ ∈ M we have ρQ ∈ M and∑
x∈X

ρx = sup
y∈X

(ρQ)y.

If ρ ∈ M and ∑
x∈X

ρx = 0,

then

∥ρQ∥1 ≤ (1− ε)ρ∥ρ∥1
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(ii) Set µn := µ ·Qn. Prove that

∥µn − µm∥1 ≤ 2(1− ε)m, ∀n ≥ m ≥ 1.

(iii) Prove that the HMC is irreducible, positively recurrent and the unique invariant
probability measure π satisfies

∥µn − π∥1 ≤ 2(1− ε)n, ∀n ∈ N.

⊓⊔

Exercise 4.36. Suppose that (Xn)≥0 is an HMC with state space X, initial distribution µ
and transition matrix Q. For each n ∈ N we set

An :=
1

n+ 1

k∑
k=0

Qk

Suppose that there exist N ∈ N, x0 ∈ X and ε > 0 such that

(AN )x,x0 > ε, ∀x ∈ X.

Prove that the HMC is irreducible, positively recurrent and the unique invariant probability
measure π satisfies

∥µAn − π∥1 ≤
N

(n+ 1)ε
, ∀n ∈ N.

⊓⊔

Exercise 4.37. Prove Lemma 4.4.2. ⊓⊔

Exercise 4.38. Suppose that (X, E, c) is a finite connected electric network and x+, x− are
distinct vertices. The commute time between x+, x− is the quantity

Kx+,x− = Ex+
[
Tx−

]
+ Ex−

[
Tx+

]
.

Set

C(X) :=
∑
e∈E

c(e).

(i) Prove that

Kx+,x− = 2CEx+,x−

where Ex+,x− denotes the energy of the Kirchhoff flow with source x+ and sink x−;
see (4.4.26). Hint. Use Exercise 4.28.

(ii) Consider the Ehrenfest urn with B balls defined in Example 4.1.7. Use (i) to
compute E0

[
TB
]
. In other words, given that initially all the B balls were in the

right chamber, find the expected time until all of them move in the left chamber.⊓⊔

Exercise 4.39. Consider a HMC (Xn)n≥0, with state space X, transition function Q. Fix
N ∈ N and denote by TN the set of all stopping times T adapted to the process (Xn)n≥0

such that 0 ≤ T ≤ N a.s.. Fix a reward function

R :
{
0, 1, . . . , N

}
× X → [0,∞).
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We define inductively

R∗
N (x) = R(N, x), R∗

m−1(x) = max
(
R(m− 1, x),

∑
y∈X

Qx,yR
∗
m(y)

)
. 1 ≤ m ≤ N.

T∗ = inf
{
k, R∗

k(Xk) = R(k,Xk)
}
.

(i) Prove that Uk := R∗
k(Xk) is a super-martingale.

(ii) Prove that Vk = Uk∧T∗ is a a martingale.

(iii) Show that

Ex
[
R(T,XT )

]
≤ R∗

0(x) = Ex
[
R(T ∗, XT∗)

]
, ∀T ∈ TN .

⊓⊔





Chapter 5

Elements of Ergodic
Theory

Ergodic theory is a rather eclectic subject with applications in many areas of mathematics,
including probability. The ergodicity feature first appeared in the works of L. Boltzmann on
statistical mechanics, [25]. The modern formulation of this hypothesis, due to Y. Sinai, came
much later, in 1963, and it took a few more decades to be adjudicated mathematically.

Our rather modest goal in this chapter is to describe enough of the fundamentals of this
theory so we can shed new light on some of the fundamental limit theorems we have proved
in the previous chapters. For more details we refer to [5, 13, 40, 105, 144, 175] that served
as our main sources of inspiration.

5.1. The ergodic theorem

5.1.1. Measure preserving maps and invariant sets. Suppose that (Ω, S,P) is a prob-
ability space. A measurable map T : (Ω, S) → (Ω, S) is said the be measure preserving if
T#P = P, i.e.,

P
[
T−1(S)

]
= P

[
S
]
, ∀S ∈ S. (5.1.1)

The measure preserving map T is called an automorphism of the probability space if it is
bijective, and its inverse is also measure preserving.

Proposition 1.2.4 shows that (5.1.1) is satisfied if and only if there exists a π-system C

that generates S such that

P
[
T−1(C)

]
= P

[
C
]
, ∀C ∈ C. (5.1.2)

Example 5.1.1. (a) Let PS1 denote the Euclidean probability measure on S1, the unit circle
in R2, i.e. (see Example 1.2.65)

PS1

[
dθ
]
=

1

2π
dθ.

We denote by Rφ the counterclockwise rotation by an angle φ about the center of this circle.
Then Rφ is measure preserving. If we think of S1 as the set of complex numbers of norm 1,

S1 :=
{
z ∈ C; |z| = 1

}
,

469
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then Rφ(z) = eiφz.

(b) Consider the n-dimensional torus Tn := Rn/Zn. Set I = [0, 1] and observe that the
natural projection π : In → Tn is Borel measurable. We denote by PTn the push-forward
by π of the Lebesgue measure on In. Let observe that the resulting probability space is
isomorphic to the product of n copies of(S1,BS1 ,PS1). Suppose that A ∈ SLn(Z) , i.e., A is
an n× n matrix with integer coefficients and determinant 1. Then A(Zn) = Zn and thus we
have a well defined induced map

TA : Rn/Zn → Rn/Zn.
This map is clearly bijective and Borel measurable. It is also measure preserving since
detC = 1.

Figure 5.1. Arnold’s cat map.

In [5] Arnold and Avez memorably depicted the action of the map TA for

A =

[
1 1
1 2

]
∈ SL2(Z)

as in Figure 5.1. This map is popularly known as Arnold’s cat map.

(c) In the previous examples, the maps where automorphisms of the corresponding probability
spaces. Here is an example of a measure preserving map that is not bijective. More precisely
define

Q : S1 → S1, Q(z) = z2.

Then the Lebesgue measure 1
2πdθ is Q-invariant. If we identify S1 with R mod Z, then we

can describe Q as the map Q : [0, 1) → [0, 1) given by

Q(x) = 2x mod 1.

If x ∈ [0, 1) has binary expansion

x =

∞∑
n=1

ϵn
2n
, ϵn ∈ {0, 1},



5.1. The ergodic theorem 471

then

Q(x) =
∞∑
n=1

ϵn+1

2n
.

(d) Consider the tent map T : [0, 1] → [0, 1], T (x) = min(2x, 2 − 2x). Equivalently, this is
the unique continuous map such that T (0) = T (1) = 0, T (1/2) = 1 and it is linear on each
of the intervals [0, 1/2] and [1/2, 1]. Its graph looks like a tent with vertices (0, 0), (1/2, 1)
and (1, 0).

This map preserves the Lebesgue measure. Indeed, if I ⊂ [0, 1] is a compact interval then
T−1(I) consists of two intervals I±, symmetrically located with respect to the midpoint 1/2
of [0, 1], and each having half the size of I.

(e) Suppose that X is a compact metric space and T : X → X is a continuous map. Denote
by Prob(X) the set of Borel probability measures on X. Then map T induces a push-forward
map T# : Prob(X) → Prob(X). The T -invariant measures are precisely the fixed points
of T#. One can show (see Exercise 5.2) that the set ProbT (X) of T -invariant measures is
nonempty, convex and closed with respect to the weak convergence. ⊓⊔

Example 5.1.2 (Stationary sequences). Let (X,F) be a measurable space and suppose that
Xn : Ω → X , n ∈ N, is a sequence of random maps defined on the same probability space
(Ω, S,P). The sequence is said to be stationary if for any m, k ∈ N the random vectors(

X1, . . . , Xm

)
: Ω → Xm and

(
Xk+1, . . . , Xk+m

)
: Ω → Xm

have the same distribution.

(i) For example, a sequence of i.i.d. random variables is stationary. More generally, an
exchangeable sequence of random variables is stationary.

(ii) Suppose that (Xn)n≥0 is an HMC with state space X and transition matrix Q and
initial distribution µ. The sequence (Xn)n≥0 is stationary if and only if µ is an
invariant distribution, i.e., µ = µ ·Q.

To any stationary sequence Xn : Ω → X. we can canonically associate a measure pre-
serving map as follows. Consider the path space U = UX := XN. It consists of sequences of
points in X, u =

(
u1, u2, . . .

)
. We have natural coordinate maps Un : U → X, Un

(
u
)
= un.

For n ∈ N denote by Un the sigma-algebra generated by U1, . . . , Un and we set

U =

∞∨
n=1

Un.

Note that we have a U-measurable map shift map

Θ : U → U, Θ
(
u1, u2, . . .

)
=
(
u2, u3, . . .

)
.

A sequence of random variables Xn : (Ω, S,P) → (X,F), n ∈ N, defines a measurable map

X⃗ : (Ω, S) → (U,U), ω 7→
(
X1(ω), X2(ω), . . .

)
The distribution of this sequence is the push-forward probability measure PX⃗ := X⃗#P. Note
that

Xn = Un ◦ X⃗ and Uk+1 = U1 ◦Θk, ∀n, k ∈ N.
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Since the measure PX⃗ is uniquely determined by its restrictions to the sigma-subalgebras Un
we deduce that the sequence (Xn)n∈N is stationary iff the shift Θ preserves the distribution
PX⃗ on the path space.

When X is finite or countable, and the sequence (Xn)n∈N is i.i.d., the resulting shift is
known as Bernoulli shift.

Conversely, if T is a measurable map T : (Ω, S,P) → (Ω, S,P), then it is measure preserv-
ing if and only if, for any measurable function f : Ω → R the sequence

f, f ◦ T, f ◦ T 2, . . .

is stationary. ⊓⊔

Definition 5.1.3. Suppose that (Ω, S) is a measurable space and T : (Ω, S) → (Ω, S) is a
measurable map.

(i) A measurable function f : Ω → R is called T -invariant if f ◦ T = f .

(ii) A measurable set S ∈ S is called T -invariant if its indicator IS is an invariant
function.

(iii) We denote by I = IT the collection of invariant sets. ⊓⊔

Remark 5.1.4. (a) Note the definition of IT involves no measure on S.

(b) Note that if S ∈ S, then IS ◦ T = IT−1(S) so the set S is T -invariant iff S = T−1(S).
Observe that

S ⊂ T−1(S)⇐⇒T (S) ⊂ S, (5.1.3a)

T−1(S) ⊂ S⇐⇒∀ω ∈ Ω, T (ω) ∈ S ⇒ ω ∈ S. (5.1.3b)

We can give a dynamic description of invariance. For ω ∈ Ω we denote by OT (ω) the orbit
of ω with respect to the action of T

OT (ω) :=
{
ω, T (ω), T 2(ω), . . .

}
.

A set S is invariant if and only if

ω ∈ S ⇒ OT (ω) ⊂ S and ω ∈ Ω \ S ⇒ OT (ω) ⊂ Ω \ S.

In the universal case (UX,U), a subset S ∈ UX is Θ-invariant if

s = (s1, s2, . . . ) ∈ S ⇒ (s2, s3, . . . ) ∈ S,

(s2, s3, . . . , ) ∈ S ⇒ ∀s1 ∈ X : (s1, s2, s3, . . . ) ∈ S.

Note that if T is an automorphism, then a set S is invariant iff T (S) = S. ⊓⊔

Proposition 5.1.5. Suppose that (Ω, S) is a measurable space and T : (Ω, S) → (Ω, S) is a
measurable map. Then the following hold.

(i) The collection I = IT of T -invariant measurable sets is a sigma-subalgebra of S.

(ii) An S-measurable function f : Ω → R is T -invariant if and only if it is IT -
measurable.



5.1. The ergodic theorem 473

Proof. (i) Thus follows from the fact that S ∈ IT if and only if S = T−1(S).

(ii) Suppose that f is T -invariant. Then for any x ∈ R the set S = {f ≤ x} is T -invariant
since IS ◦ T = I{f◦T≤x} = IS .

Conversely, if f is IT -measurable, then f−1({y}) ∈ IT , ∀y ∈ R and

(f ◦ T )−1({y}) = T−1
(
f−1({y})

)
= f−1({y}).

If f(x) = y, then x ∈ f−1({y}) = (f ◦ T )−1({y}) so that f ◦ T (x) = y = f(x). ⊓⊔

Remark 5.1.6. Consider the path space UX = XN. We have the tail sigma-subalgebra

T∞ =
⋂
m≥1

Tm, Tm = σ
(
Um, Um+1, . . .

)
.

Suppose that S is Θ-invariant. Then x = (x1, x1 . . . ) ∈ S if and only if for any x0 ∈ X the
concatenation

x0 ∗ x = (x0, x1, . . . , )

is also in X. Thus

S = X ∗ S =
{
x0 ∗ x; x0 ∈ X, x ∈ S

}
⊂ T2.

Iterating we deduce that

S = Xm ∗ S = X ∗ (Xm−1 ∗ S) ∈ Tm+1, ∀m ≥ 0.

Hence S ∈ T∞. Hence, in the universal case I = IΘ ⊂ T∞. Fix we fix an element x∗ ∈ X
then the set

Sx∗ =
{
x ∈ XN; ∃N ∀n > N xn = x∗

}
Thus x ∈ Sx∗ iff x eventually coincides with the constant sequence (x∗, x∗, . . . ). This is a tail
event.

Observe that the sigma-algebras IΘ and T∞ do not depend on any choice of invariant
probability measure on UX. ⊓⊔

Definition 5.1.7. Suppose that T : (Ω, S,P) → (Ω, S,P) is a measure preserving map. A
measurable function f : (Ω, S) → R is said to be quasi-invariant if

f = f ◦ T P− a.s..

A subset S ∈ S is said to be quasi-invariant if IS is quasi-invariant, i.e.,

P
[
S∆T−1S

]
= 0,

where A∆B := (A\B)∪(B \A) is the symmetric difference of two sets. We denote by J = JT
the collection of T -quasi-invariant sets. ⊓⊔

Proposition 5.1.8. Suppose that T : (Ω, S,P) → (Ω, S,P) is a measure preserving map.
Then the following hold.

(i) The collection JT of quasi-invariant sets is a sigma-algebra.

(ii) The P-completions of I and J coincide, i.e., for any S ∈ J there exists S′ ∈ I such
that P

[
S∆S′ ] = 0.

(iii) A measurable function is T -quasi-invariant if and only if it is JT -measurable
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Proof. (i) The fact that JT is a sigma-algebra follows immediately from the definition of a
quasi-invariant.

(ii) Denote by Ī the P-completion of I. Let S̄ ∈ Ī. There exists S ∈ I such that P
[
S̄∆S

]
= 0.

Since T is measure preserving we deduce

0 = P
[
T−1(S̄∆S)

]
= P

[
T−1(S̄)∆S

]
and thus

P
[
T−1(S̄)∆S̄

]
= E

[
|IT−1(S̄) − I S̄ |

]
≤ E

[
|IT−1(S̄) − IS |

]
+E

[
|IS − I S̄ |

]
= 0.

Conversely, if S ∈ J define

S̄ :=
⋂
n∈N

Sn, Sn :=
⋃
k≥n

T−k(S).

Note that S̄ = T−1
(
S
)
so that S is invariant. Since S1 ⊃ S2 ⊃ · · · , we have

I S̄ = lim
n→∈∞

ISn .

On the other hand

ISn = sup
k≥n

IT−k(S) = sup
k≥n

IS ◦ Tn = IS a.s.

since S is quasi-invariant and thus IS ◦ Tn = IS a.s.. Hence I S̄ = IS a.s., so that S ∈ Ī.

(iii) Clearly, if f is quasi-invariant, then so are the sublevel sets {f ≤ x}, ∀x ∈ R and thus f
is JT -measurable.

Conversely if f is JT -measurable, then so are f± and it suffices to show that if f ≥ 0
is J-measurable, then f is quasi-invariant. Clearly any J-measurable elementary function
is quasi-invariant. Since f is an increasing limit of J-measurable elementary functions, it
is therefore an increasing limit of quasi-invariant elementary functions and thus it is quasi-
invariant. ⊓⊔

Definition 5.1.9. Let (Ω, S,P) be probability space. A measure preserving map T : Ω → Ω
is said to be ergodic if any T -invariant set has measure 0 or 1, i.e., the sigma-algebra of
invariant sets is a zero-one algebra. ⊓⊔

From Proposition 5.1.8 we deduce the following equivalent characterization of ergodicity.

Proposition 5.1.10. The map T is ergodic if and only if any P-quasi-invariant set is a
zero-one event, i.e., has measure 0 or 1. ⊓⊔

Remark 5.1.11. Suppose that T is an ergodic automorphism of the probability space
(Ω, S,P). If S ∈ S, then the set

Ŝ =
⋃
n≥0

Tn(S)

is quasi-invariant. Indeed T
(
Ŝ
)
⊂ Ŝ and P

[
T
(
Ŝ
) ]

= P
[
Ŝ
]
. invariant. If P

[
S
]
> 0, then

P
[
Ŝ
]
> 0 and the ergodicity of T implies that

P
[
Ω \ Ŝ

]
= 0.



5.1. The ergodic theorem 475

The set Ŝ is a union or orbits OT (ω) = {Tn(ω)}n≥0 of the dynamical system on Ω determined
by the iterates of T . The ergodicity shows that the orbits originating in a set S of positive
measure reach almost any point in Ω; the unreachable ones form a negligible set. This shows
that the dynamics of an ergodic automorphism is quite chaotic: orbits want to fill the space.⊓⊔

Definition 5.1.12. Suppose that Xn : (Ω, S,P) → (X,F), n ∈ N is a sequence of measurable
maps. We say that (Xn)n∈K is a a Kolmogorov sequence if its tail algebra

T∞ :=
⋂
m∈N

Tm, Tm := σ
(
Xn, n ≥ m

)
is a zero-one algebra. ⊓⊔

As shown in Remark 5.1.6 the sigma-algebra I of Θ-invariant sets is contained in the tail
algebra. Hence, if (Xn)n∈N is a stationary Kolmogorov sequence, then the shift map Θ on the
associated path space XN is ergodic. In particular, if (Xn)n∈N is a sequence of i.i.d. random
variables, then Kolmogorov’s 0-1 theorem shows that the the shift map on the path space is
ergodic.

Example 5.1.13. Consider the map Q : [0, 1) → [0, 1) discussed in Example 5.1.1(iii). The
interval [0, 1) embeds in {0, 1}N

[0, 1) ∋ x =

∞∑
n=1

ϵn
2n

7→ (ϵ1, ϵ2, . . . ) ∈ {0, 1}N.

The image of the map is a shift-invariant subset of {0, 1}N. Its complement is negligible with
respect to the product measure on {0, 1}N and the restriction of the product measure on the
image of this embedding coincides with the Lebesgue measure; see Exercise 1.6 (vii). The
space {0, 1}N equipped with the product measure is the path space corresponding to an i.i.d.
sequenece of Bernoulli random variables with succes probability 1

2 . Hence the shift map is is
ergodic, proving that the map Q is also ergodic. ⊓⊔

We have the following characterization of Kolmogorov sequences due to Blackwell and
Freedman [16].

Theorem 5.1.14. Suppose that Xn : (Ω, S,P) → (X,F), n ∈ N is a sequence of measurable
maps. The following are equivalent.

(i) The sequence is a Kolmogorov sequence.

(ii) For any A ∈ S

lim
m→∞

sup
B∈Tm

∣∣P[A ∩B
]
− P

[
A
]
P
[
B
] ∣∣ = 0, (5.1.4)

where we recall that Tm = σ
(
Xn, n ≥ m

)
.

Proof. (i) ⇒ (ii) Then for any B ∈ T∞, A ∈ F we have∣∣P[A ∩B
]
− P

[
A
]
P
[
B
] ∣∣ = ∣∣∣E[ IAIB ]− E

[
IA
]
E
[
IB
] ∣∣∣

=

∣∣∣∣∣
∫
B

(
E
[
IA ∥Tm

]
− P

[
A
] ) ∣∣∣∣∣ ≤

∫
Ω

∣∣E[ IA ∥Tm
]
− P

[
A
] ∣∣.
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Hence

sup
B∈Tm

∣∣P[A ∩B
]
− P

[
A
]
P
[
B
] ∣∣ ≤ ∫

Ω

∣∣E[ IA ∥Tm
]
− P

[
A
] ∣∣. (5.1.5)

The Backwards Martingale Convergence Theorem implies that

E
[
IA ∥Tm

]
→ E

[
A ∥T∞

]
a.s. and L1.

Since T∞ is a zero-one algebra, we deduce that

lim
m→∞

E
[
A ∥T∞

]
= E

[
IA
]
= P

[
A
]
.

Using this in (5.1.5) we obtain (5.1.4).

(ii) ⇒ (i) Let A ∈ T∞. Then, ∀m, A ∈ Tm and thus

0 ≤ P
[
A
]
− P

[
A
]2

=
∣∣P[A ∩A

]
− P

[
A
]
P
[
A
] ∣∣

≤ sup
B∈Tm

∣∣P[A ∩B
]
− P

[
A
]
P
[
B
] ∣∣→ 0.

Hence P
[
A
]
= P

[
A
]2

so that P
[
A
]
∈ {0, 1} so that T∞ is a zero-one algebra. ⊓⊔

5.1.2. Ergodic theorems. Let (Ω, S,P) be probability space and suppose that T : Ω → Ω

is measure preserving map. For any measurable function f : (Ω, S,P) → R we denote by T̂ f
its pullback by T

T̂f := f ◦ T.
This is a measurable function and, since T is measure preserving, we deduce from the change-
in-variables formula (Theorem 1.2.53) that∫

Ω
T̂ fdP =

∫
Ω
fdT#P =

∫
Ω
fdP, ∀f ∈ L1(Ω, S,P).

Note also that

(T̂ f)p = T̂ fp ∀f ∈ L0
+(Ω, S), p ≥ 1.

We will denote by ∥ − ∥p the norm of Lp
(
Ω, S,P

)
. We deduce that T̂ defines isometries

T̂ : Lp
(
Ω, S,P

)
→ Lp

(
Ω, S,P

)
, ∀p ≥ 1.

The operator T̂ is referred to as the Koopman operator.

We denote by J = JT the σ-subalgebra of quasi-invariant measurable subsets. Thus S ∈ J

if and only if T̂IS = IS , P-a.s..
More generally, if f ∈ L1(Ω, S,P) and S ∈ J, then

T̂IS ∈ L1(Ω, S,P) and T̂ (fIS) = (T̂ f) · (T̂IS) = (T̂ f) · IS ,

so that ∫
Ω
fISdP =

∫
Ω
T̂ (fIS)dP =

∫
Ω
(T̂ f) · ISdP, ∀S ∈ J, f ∈ L1(Ω, S,P). (5.1.6)

For each p ≥ 1 we set

QT,p :=
{
f ∈ Lp(Ω, S,P); T̂ f = f

}
(5.1.7)

In other words, QT,p consists of quasi-invariant Lp-functions, i.e.,

QT,p = Lp(Ω, J,P) = Lp(Ω, I,P).
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We set

QT := QT,2 = L2(Ω, J,P) (5.1.8)

and we denote by PT the orthogonal projection onto QT . In the proof of Theorem 1.4.8 we
have shown that

PT f = E
[
f ∥ J

]
.

The space QT contains the constant functions so dimQT ≥ 1.

Proposition 5.1.15. Suppose that T : (Ω, J,P) → (Ω, J,P) is a measure preserving map.
Then the following statements are equivalent.

(i) The map T is ergodic.

(ii) For any p ≥ 1 dimQT,p = 1

(iii) There exists p ≥ 1 such that dimQ
p
T = 1.

Proof. (i) ⇒ (ii) Assume that T is ergodic so J is a zero-one sigma-subalgebra. Hence, any
J-measurable elementary function is constant. Hence any Lp function must be a.s.-constant
as a limit of elementary functions.

Clearly (ii) ⇒ (iii). To prove the implication (iii) ⇒ (i) note any J-measurable function
belongs to any Lp and thus must be a.s. constant. ⊓⊔

To summarize

T is ergodic ⇐⇒ dimQT = 1. (5.1.9)

For each n we denote by An the n-th temporal average/mean operator

f 7→ Anf =
1

n

(
1 + T̂ + T̂ 2 + · · · T̂n−1

)
f.

Note that An defines linear operators

An : Lp
(
Ω, S,P

)
→ Lp

(
Ω, S,P

)
, p ≥ 1

satisfying

∥Anf∥p ≤ ∥f∥p, ∀f ∈ Lp. (5.1.10)

Remark 5.1.16. Let me briefly explain the intuition of the temporal averages An(f). Think
of Ω as the space of states of a physical system that evolves in discrete time. Thus, if the
system was initially in the state ω, it will be in the state Tn(ω) after n units of time.

A function f : Ω → R can be viewed as a macroscopic quantity that associates to each
state ω a measurable numerical quantity f(ω). Note that for each n ∈ N and each ω ∈ Ω we
have

(An+1f)(ω) =
f(ω) + f(Tω) + · · ·+ f

(
Tnω

)
n+ 1

is the average value of the macroscopic quantity f as the system evolves for n units of time.⊓⊔

We have the following mean ergodic theorem due to John von Neumann,
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Theorem 5.1.17 (L2-Mean ergodic theorem). Suppose that (Ω, S,P) is a probability space
and T : Ω → Ω is a measure preserving map. Then, ∀f ∈ L2(Ω, S,P), the temporal averages
Anf converge in L2 to the orthogonal projection of f onto the space QT of quasi-invariant
functions, i.e.,

1

n

(
1 + T̂ + T̂ 2 + · · ·+ T̂n−1

)
f → PT f = E

[
f ∥ J

]
.

In particular, if T is ergodic we have

1

n

(
1 + T̂ + T̂ 2 + · · ·+ T̂n−1

)
f → E

[
f
]
IΩ in L2.

Proof. Denote by X2 the collection of functions f ∈ L2(Ω, S,P) such that Anf converges
in L2 to some function A∞f . Clearly X2 is a vector space. We will gradually show that
X2 = L2(Ω, S,P) and A∞ = PT .

1. QT ⊂ X2 and A∞f = f , ∀f ∈ QT .

Indeed Anf = f , ∀f ∈ QT .

2. ∀f ∈ X2, we have T̂ f ∈ X2 and A∞f ∈ QT .

Let f ∈ X2. Note first that T̂ commutes with An. Since T̂ is continuous we deduce

lim
n→∞

AnT̂ f = lim
n→∞

T̂Anf = T̂A∞f,

i.e., T̂ f ∈ X2 and A∞T̂ f = T̂A∞f .

On the other hand,

nAnT̂ f = (n+ 1)An+1f − f =⇒ AnT̂ f =
n+ 1

n
An+1f − 1

n
f,

so that

T̂A∞f = A∞T̂ f = lim
n→∞

n+ 1

n
An+1f = A∞f.

Hence A∞f ∈ QT .

3. T̂ f − f ∈ X2, ∀f ∈ L2(Ω, S,P).

Indeed

An
(
T̂ f − f

)
=

1

n

(
T̂nf − f

)
and, since T̂ is unitary, we deduce that∥∥An( T̂ f − f

) ∥∥
2
≤ 1

n

(
∥T̂ f∥2 + ∥f∥2

)
=

2

n
∥f∥2 → 0.

4. ∀f ∈ L2(Ω, S,P), ∀k ∈ N we have T̂ kf − f ∈ Q⊥
T .

We first prove the claim for k = 1. Indeed, for any g ∈ QT we have T̂ g = g and

(T̂ f − f, g) = (T̂ f, g)− (f, g) = (T̂ f, T̂ g)− (f, g) = 0,

where at the last step we used the fact that T̂ is unitary. In general

T̂ kf − f =

k∑
j=1

(
T̂ jf − T̂ j−1f

)
=

k∑
j=1

(
T̂ fj − fj

)
, fj := (T̂ j−1f),
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and T̂ fj − fj ∈ Q⊥
T , ∀j.

5. A∞f = PT f , ∀f ∈ X2.

We have

f −Anf =
1

n

n−1∑
k=1

(f − T̂ kf) ∈ Q⊥
T .

Letting n → ∞ and using the fact that Q⊥
T is a closed subspace of L2 we deduce from 4

f −A∞f ∈ Q⊥
T so that A∞f = PT f .

6. X2 is closed.

Let (fk)k∈N be a sequence in X2 that converges in L2 to f . To show that f ∈ X2 we will show
that the sequence Anf is Cauchy. Fix ε > 0. We have

∥Anf −Amf∥2 ≤ ∥Anf −Anfk∥2 + ∥Anfk −Amfk∥2 + ∥Amfk −Amf∥2

(use (5.1.10), i.e., ∥An∥ ≤ 1 as operator L2 → L2)

≤ ∥f − fk∥2 + ∥Anfk −Amfk∥2 + ∥f − fk∥2.

Hence

∥Anf −Amf∥2 ≤ 2∥f − fk∥2 + ∥Anfk −Amfk∥2, ∀k,m, n.
Fix k such that

∥f − fk∥2 <
ε

3
.

The sequence (Anfk)n∈N is convergent since fk ∈ X2. It is thus Cauchy, so there exists
N = N(ε, k) such that ∀m,n > N

∥Anfk −Amfk∥2 <
ε

3
.

Hence

∥Anf −Amf∥2 ≤ ε, ∀m,n > N(ε, k).

7. X2 = L2(Ω, S,P).

We know that QT ⊂ X2 and

Range
(
T̂ − 1

)
⊂ Q⊥

T ∩ X2.

At this point we invoke a classical result of functional analysis: if S : H → H is a bounded
linear operator on a Hilbert space, then the closure of the range of S is (kerS∗)⊥; see e.g.
[24, Cor. 2.18].

The operator T̂ is unitary, so that T̂ ∗ = T̂−1. Hence if we let S = T̂ − 1, then

S∗ = T̂ ∗ − 1 = T̂−1 − 1,

since T̂ is unitary. We deduce

closure
(
Range

(
T̂ − 1

) )
=
(
ker(T̂−1 − 1)

)⊥
= Q⊥

T .

Since X2 is closed we deduce Q⊥
T ⊂ X2. This completes the proof of Theorem 5.1.17. ⊓⊔
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Corollary 5.1.18. Suppose that (Ω, S,P) is a probability space and T : Ω → Ω is a mea-
sure preserving map. Then, ∀f ∈ L1(Ω, S,P) the temporal averages Anf converge in L1 to
E
[
f ∥ J

]
, i.e.,

1

n

(
1 + T̂ + T̂ 2 + · · · T̂n−1

)
f → E

[
f ∥ J

]
in L1 as n→ ∞.

Proof. Denote by X1 the collection of functions f ∈ L1(Ω, S,P) such that Anf converges in
L1 to some function A∞f . Since ∥ − ∥1 ≤ ∥ − ∥2 we deduce that X2 ⊂ X1. The argument
in Step 6. in the proof of Theorem 5.1.17 extends without change to the L1 since, according
to (5.1.10), the operators An are contractions An : L1 → L1. This proves that X1 is a closed
subspace of L1 that contains L2 and thus X1 = L1.

From (5.1.6) we deduce that for any f ∈ L1(Ω, S,P), and any S ∈ J we have∫
Ω
fISdP =

∫
Ω
(Anf)ISdP.

Letting n→ ∞ we deduce ∫
Ω
fISdP =

∫
Ω
(A∞f)ISdP, ∀S ∈ J.

Hence (see Definition 1.4.3) A∞f = E
[
f ∥ J

]
, ⊓⊔

We can now formulate and prove Birkhoff’s ergodic theorem

Theorem 5.1.19 (Birkhoff’s ergodic theorem). Let (Ω, S,P) be probability space. Suppose
that T : Ω → Ω a measure preserving map. If f ∈ L1(Ω, S,P), then the temporal averages

An(f) =
1

n+ 1

(
f + f ◦ T + · · · f ◦ Tn

)
=

1

n+ 1

(
f + T̂ f + · · ·+ T̂nf

]
converge a.s. to E

[
f ∥ I

]
.

Proof. Denote by X0 the set of functions f ∈ L1(Ω, S,P) such that Anf converges a.s. to a
function A∞f ∈ L1. Corollary 5.1.18 shows that in this case A∞f = E

[
f ∥ J

]
. Clearly X0 is

a vector subspace of L1(Ω, S,P).
We will show that X0 = L1(Ω, S,P) in two steps.

(i) The set X0 is a closed subspace of L1(Ω, S,P).
(ii) T̂ f − f ∈ X0, ∀f ∈ L1(Ω, S,P).

The claim (i) is the difficult one. Temporarily assuming its validity we will show how it
implies (ii) and the conclusion of the theorem.

Proof of (ii) assuming (i). Observe that for any f ∈ L1 we have

An
(
T̂ f − f

)
=

1

n

(
T̂nf − f

)
In particular, if f ∈ L∞ we deduce

∥An(T̂ f − f)∥∞ ≤ 2

n
∥f∥∞

so An
(
T̂ f − f

)
→ 0 a.s. so (T̂ f − f) ∈ X0 if f ∈ L∞.
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Suppose now that f ∈ L1 then f = f+ − f− and (T̂ f)± = T̂ f±. Thus it suffices to show

that T̂ f − f ∈ X0 if f ∈ L1 and f ≥ 0 a.s..

In this case we can find a sequence of elementary functions fn such that fn ↗ f . Hence

T̂ fn − fn → T̂ f − f in L1.

Since the functions fn are bounded, so are the functions T̂ fn−fn we deduce that T̂ fn−fn ∈ X0.
We know from (i) that X0 is L1-closed. This proves (ii).

From (ii) we deduce that T̂ f − f ∈ X0, ∀f ∈ L2 ⊂ L1. Since X0 is closed in L1 we deduce
from the proof of Theorem 5.1.17 that

closureL2

(
range(T̂ − 1)

)
⊂ closureL1

(
range(T̂ − 1)

)
⊂ X0.

On the other hand, QT,2 ⊂ X0, so that

L2 = X2 = QT,2 +Q⊥
T,2 = QT,2 + closureL2

(
range(T̂ − 1)

)
∈ X0.

Since L2 is dense in L1, and X0 is closed in L1 we conclude that X0 = L1.

Proof of (i) The proof of this result is based on a technical inequality similar in spirit to
Doob’s maximal inequality (3.2.32). For f ∈ L1(Ω, S,P) we define M

[
f
]
∈ L0(Ω, S),

M
[
f
]
(ω) := sup

n≥1
Anf(ω) = sup

n≥1

1

n

(
f(ω) + f

(
Tω
)
+ · · ·+ f

(
Tn−1ω

) )
.

Lemma 5.1.20 (Maximal Ergodic Lemma). ∀λ > 0, ∀f ∈ L1
(
Ω, S,P

)
∀λ > 0, f ∈ L1

(
Ω, S,P

)
: λP

[
{M
[
|f |
]
> λ}

]
≤ ∥f∥1. (5.1.11)

⊓⊔

Let us first explain why the Maximal Ergodic Lemma implies the claim (i).

Suppose that the sequence (fk) in X0 converges in L1 to a function f . We want to show
that the sequence An(f) is a.s. Cauchy, i.e., for every ε > 0, the set⋃

N

⋂
m,n>N

{∣∣An(f)−Am(f)
∣∣ < ε

}
︸ ︷︷ ︸

=:XN (f,ε)

has measure 1. Since XN (f, ε) ⊂ XN ′(f, ε) for N < N ′ this is equivalent to

lim
N→∞

P
[
XN (f, ε)

]
= 1. (5.1.12)

Fix ε > 0. Note that∣∣An(f)−Am(f)
∣∣ ≤ ∣∣An(f)−An(fk)

∣∣+ ∣∣An(fk)−Am(fk)
∣∣+ ∣∣Am(fk)−Am(f)

∣∣
≤
∣∣An(|f − fk|)

∣∣+ ∣∣An(fk)−Am(fk)
∣∣+ ∣∣Am(|f − fk|)

∣∣
≤ 2M

[
|fk − f |

]
+
∣∣An(fk)−Am(fk)

∣∣.
We deduce

XN (f, ε) ⊃
{
2M
[
|fk − f |

]
< ε/2

}
∩ XN (fk, ε/2), ∀N, k.

Letting N → ∞ we deduce

lim
N→∞

P
[
XN (f, ε)

]
≥ lim

N→∞
P
[ {

2M
[
|fk − f |

]
< ε/2

}
∩ XN (fk, ε/2)

]
.
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From the inclusion-exclusion principle we deduce that

P
[ {

2M
[
|fk − f |

]
< ε/2

}
∩ XN (fk, ε/2)

]
= P

[ {
2M
[
|fk − f |

]
< ε/2

} ]
+P
[
XN (fk, ε/2)

]
− P

[ {
2M
[
|fk − f |

]
< ε/2

}
∪ XN (fk, ε/2)

]
.

Since fk ∈ X0, the sequence
(
An(fk)

)
n≥1

is a.s. Cauchy so, for any k, so

lim
N→∞

P
[ {

2M
[
|fk − f |

]
< ε/2

}
∪XN (fk, ε/2)

]
= lim

N→∞
P
[
XN (fk, ε/2)

]
= 1.

Hence, ∀k,

lim
N→∞

P
[ {

2M
[
|fk − f |

]
< ε/2

}
∩XN (fk, ε/2)

]
= P

[ {
2M
[
|fk − f |

]
< ε/2

} ]
.

We deduce that

lim
N→∞

P
[
XN (f, ε)

]
≥ P

[
2M
[
|fk − f |

]
> ε/2

] (5.1.11)

≥ 1− 4

ε
∥f − fk∥1, ∀k

Letting k → ∞ we obtain (5.1.12).

Proof of the Maximal Lemma Let us observe that the inequality (5.1.11) follows from∫
{M[g]>0}

gdP ≥ 0 ∀g ∈ L1(Ω, S,P). (5.1.13)

Indeed, if in (5.1.13) we let g = f − λ, λ > 0, then

∥f∥1 ≥
∫
{M[f ]>λ}

fdP
(5.1.13)

≥ λP
[
{M[f ] > λ}

]
.

We will present two proofs of (5.1.13). The first proof, due to F. Riesz, is a bit longer but a
bit more intuitive. The second proof, due to A. Garsia [73] is a lot shorter but less intuitive.

Set

X :=
{
M
[
g
]
> 0

}
⊂ Ω.

Define

Sn(g) :=

n−1∑
j=0

g ◦ T j , Mn

[
g
]
:= max

1≤k≤n
Sk(g), Xk :=

{
Mk

[
g
]
> 0

}
. (5.1.14)

First proof of (5.1.13). Note that Xk ⊂ Xk+1 and∫
X
gdP = lim

n→∞

∫
Xn

gdP = lim
n→∞

1

n

n∑
k=1

∫
Xk

gdP.

At the last step we used the fact that the Cèsaro means of a convergent sequence have the
same limit as the sequence; see Exercise 2.6 with pn,k =

1
n . Thus, it suffices to show that

n∑
k=1

∫
Xk

gdP ≥ 0, ∀n ≥ 0. (5.1.15)

Fix n. We have
n∑
k=1

∫
Xk

gdP =

n−1∑
j=0

∫
Xn−j

gdP =

n−1∑
j=0

∫
T−j(Xn−j)

g ◦ T jdP,
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where at the last step we used the change-in-variables formula (1.2.23) and the fact that T
is measure preserving. We set Yj := T−j(Xn−j). Hence

n∑
k=1

∫
Xk

gdP =

∫
Ω

( n−1∑
j=0

g(T jω)IYj (ω)
)
P
[
dω
]
.

We will prove the stronger fact

h(ω) :=
n−1∑
j=0

g
(
T jω

)
IYj (ω) ≥ 0, ∀ω ≥ 0. (5.1.16)

Let ω ∈ Ω. Set xj = xj(ω) := g(T jω). Note that ω ∈ Yj if and only if T j(ω) ∈ Xn−j , i.e., at
least one of the numbers

xj , xj + xj+1, . . . , xj + xj+1 + · · ·+ xn−1

is positive. The inequality (5.1.16) is a special case of the following cute combinatorial lemma
of F. Riesz [147].

Lemma 5.1.21. Suppose are given a finite sequence of real numbers

x := x0, . . . , xn−1

We say that xj is a leading term of x if there exists ℓ ≥ j such that xj + · · ·+ xℓ > 0. Then
the sum of the leading terms is ≥ 0.

Proof. The lemma is easily proved by induction on n. For n = 1 this is obviously true.
Assume that it is true for any m < n and any sequence of m real numbers. Denote by L the
set of indices j = 0, 1, . . . , n − 1 such that xj is a leading terms. If L = ∅ the conclusion is
trivially true.

Suppose L ̸= ∅, set j0 := minL and denote by ℓ0 the smallest ℓ ≥ j0 such that

xj0 + · · ·+ xℓ > 0.

If ℓ0 = j0, then xj0 > 0. Suppose that ℓ0 > j0. The minimality of ℓ0 implies that for any j,
such that j0 ≤ j < ℓ0 we have xj0 + · · ·+ xj < 0 so that, for j0 < k ≤ ℓ0 we have

xk + · · ·xℓ0 ≥ 0.

This proves that each of the terms xj0 , xj0+1 . . . , xℓ0 is a leading term. Their sum is obviously
nonnegative.

Consider now the (shorter) sequence

y : y0 = xℓ0+1, . . . , ym−1 := xn, m := n− 1− ℓ0 < n− 1.

The induction assumption implies that the sum of the leading terms of y is ≥ 0. The
minimality of j0 implies that the leading terms of x are xj0 , . . . , xℓ0 together with the leading
terms of y. This proves Lemma 5.1.21 and completes the proof of Theorem 5.1.19. ⊓⊔

Second proof of (5.1.13). We continue using the notations (5.1.14). Set Gn := Mn

[
g
]
.

Since Xn ↗ X, it suffices to show that∫
Xn

gdP ≥ 0, ∀n.
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The operator f 7→ T̂ f is monotone, i.e., f0 ≤ f1 ⇒ T̂ f0 ≤ T̂ f1, and we deduce that for
1 ≤ k ≤ m we have

Sk−1(g) ≤ max
1≤j≤m−1

Sj(g) = Gm−1 ≤ G+
m−1

and

Sk(g) = g + T̂ Sk−1(g) ≤ g + T̂Gm−1 ≤ g + T̂G+
m−1

so that

Gm−1 ≤ Gm ≤ g + T̂G+
m−1, ∀m ∈ N,

or equivalently

g ≥ Gn − T̂G+
n , ∀n.

We deduce ∫
Xn

g ≥
∫
Xn

Gn −
∫
Xn

T̂G+
n

(T̂G+
n ≥ 0 on Ω, Gn = G+

n on Xn, G
+
n = 0 on Ω \Xn)

≥
∫
Xn

G+
n −

∫
Ω
T̂G+

n =

∫
Ω
G+
n −

∫
Ω
G+
n = 0

where, at the last step, the equality of the boxed terms is due to the fact that T is measure
preserving. ⊓⊔

Remark 5.1.22. In Remark 5.1.11 we suggested that the ergodicity condition points to a
chaotic behavior of the dynamics of the iterates of T . The ergodic theorem makes this much
more precise.

Suppose that T is a measure preserving self-map of the probability space (Ω, S,P). If T
is ergodic, then for any subset S ∈ S there exists a negligible subset N ∈ S such that

∀ω ∈ Ω \N, lim
n→∞

1

n
#
{
k; T kω ∈ S, 0 ≤ k < n

}
= P

[
S
]
. (5.1.17)

Indeed, the left-hand-side of (5.1.17) is the temporal average An
[
IS
]
(ω) so (5.1.17) follows

from the Ergodic Theorem 5.1.19. Observe that (5.1.17) states that for most ω, the orbit
OT (ω) spends equal amounts of time in sets of equal measures. In other words, most orbits
are equidistributed. The equidistribution phenomenon characterizes ergodicity.

Let us observe that, conversely, if a measure preserving map T satisfies the above equidis-
tribution property, then it has to be ergodic. Indeed, suppose that S is a T -invariant set.
Let N be a negligible set as in (5.1.17). Then for any ω ∈ (Ω \ S) \ N the orbit OT (ω) does
not intersect S since S is invariant. In this case the left-hand-side of (5.1.17) is equal to zero
so P

[
S
]
= 0. Thus if S is invariant and its complement Ω \ S is not negligible, then S must

be so. Hence T is ergodic.

If we partition Ω into a finite number of measurable sets S1, . . . , SN , pk = P
[
Sk
]
> 0,

∀k, then there exists a negligible set N ⊂ Ω so that for any ω ∈ Ω \N the orbit OT (ω) will
be located at each moment of time in one of the chambers Sk of this partition. Moreover, it
spends a fraction pk of the time in the chamber Sk. From this point of view, we can regard
the dynamics as hopscotching randomly from one chamber to another, and each chamber
is frequented as often as its size. We want to warn that this hopscotching need not have a
Markovian nature. ⊓⊔
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5.2. Applications

Ergodicity is the unifying principle behind some of the limit theorems we have discussed in
the previous chapters and it is the source of many interesting non-probabilistic results.

5.2.1. Limit theorems. The Strong Law of Large Numbers is a consequence of the Ergodic
Theorem.

Example 5.2.1 (I.i.d. random variables). Suppose that (Xn)n∈N is a sequence of i.i.d.
integrable random variables defined on the same probability space (Ω, S,P). Kolmogorov’s
0-1 theorem shows that this is a Kolmogorov family, thus ergodic. Consider the coordinate
maps on the path space

Un : RN → R, Um
(
u1, u2, . . .

)
= un

The Ergodic Theorem implies

1

n

(
U1 + · · ·+ Un

)
→ E

[
U1

]
µ− a.s..

Observing that Xn = Un ◦ X⃗ we deduce the Strong Law of Large Numbers. ⊓⊔

Remark 5.2.2. The Birkhoff’s ergodic theorem implies that if (Xn)n≥1 is a stationary se-
quence of integrable random variables, not necessarily independent, then the averages

1

n

(
X + 1 + · · ·+Xn

)
converge a.s. and L1, but the limit need not be constant. ⊓⊔

Example 5.2.3 (Markov chains). Consider a HMC (Xn)n≥0 with state space X, transition
matrix Q and initial distribution µ. The path space of this Markov chain (see Theorem 4.1.3)
is the probability space

U = Uµ =
(
XN0 ,E,Pµ

)
,

where

Un
(
u0, u1, u2, . . .

)
= un.

Recall that for any x ∈ X we set Px = Pδx where δx is the Dirac measure on X concentrated
at x then

Pµ =
∑
x∈X

µxPx, µx = µ
[
{x}

]
. (5.2.1)

Denote by I ⊂ E the sigma-algebra of sets that are Θ-invariant sets, where Θ denotes the
shift on U. Fix x ∈ X and let A ∈ I.

The Markov property (4.1.16) implies that

Ex
[
IA ◦Θn ∥En

]
= EXn

[
IA
]
= PXn

[
A
]
, En = σ(X0, . . . Xn).

Since A is invariant we deduce IA = IA ◦Θn a.s. so

Ex
[
IA ∥En

]
= EXn

[
IA
]
.

Since the sigma-algebra of invariant sets is contained in the tail algebra we deduce from
Lévy’s 0-1 theorem that

Ex
[
IA ∥En

]
→ IA a.s..
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Hence

PXn

[
A
]
= EXn

[
IA
]
→ IA a.s..

Note that

PXn

[
A
]
= Px

[
A
∣∣Xn = x

]
Px
[
Xn = x

]
+

∑
x′∈X\{x}

Px
[
A
∣∣Xn = x′

]
Px
[
Xn = x′

]
.

On the other hand, Px
[
Xn = x i.o.

]
= 1, since the chain is recurrent. Thus

P
[
PXn

[
A
]
= Px

[
A
]
i.o.
]
= 1.

Hence IA = Px
[
A
]
a.s. so Px

[
A
]
∈ {0, 1}. Using (5.2.1) we deduce that Pµ

[
A
]
∈ {0, 1} for

any initial distribution µ. For a description of the sigma-subalgebra of shift-invariant subsets
of a positively recurrrent HMC we refr to [16].

If the chain is positively recurrent and π∞ is the invariant distribution, then Θ is measure
preserving and we deduce that J is a zero-one algebra so Θ is ergodic. We see that the Ergodic
Theorem for Markov chains (Corollary 4.3.3) is a special case of Birkhoff’s Ergodic Theorem

because any f ∈ L1
(
X, π

)
induces a function f = f ◦ U0 ∈ L1

(
XN0E,Pπ∞

)
.

The fact that the shift map is ergodic allows us to state results stronger than Corollary
4.3.3. For any finite set B ⊂ X× X we obtain a function FB ∈ L1

(
XN0E,Pπ∞

)
FB(u0, u1, u2, . . . ) = IB(u0, u1)

and a corresponding Law of Large Numbers

n∑n−1

k=0

IB(Xk, Xk+1) = Eπ∞
[
FB
]
→

∑
(x0,x1)∈B

π∞
[
x0
]
Qx0,x1 , (5.2.2)

One should think of B as a collection of directed edges, a ”bridge”. In the left had side we
have the fraction of time a path of the Markov chain “crosses the bridge B”.

Here is an amusing simple illustration of this result. Consider the graph G obtained from
by connecting two disjoint connected graphs G0, G1 with a single edge from a vertex u0 in
G0 to a vertex u1 in G1. For a vertex vi of Gi we denote by degi(vi) its degree in Gi. We
denote by Ei the number of edges of Gi.

Let B be the set consisting of the single oriented edge (u0, u1). In this case

Qu0,u1 =
1

deg0(u0) + 1
, π∞

[
u0
]
=

deg0(u0) + 1

2E0 + 2E1 + 2
.

Formula (5.2.2) shows that the standard random walk on G crosses the bridge from u0 to u1
roughly a fraction 1

2E0+2E1+2 of the time. ⊓⊔

Example 5.2.4 (Weyl’s equidistribution theorem). Fix φ ∈ (0, 2π) and denote by Rφ the
planar counterclockwise of angle φ about the origine. This induces a transformation of the
unit circle

S1 :=
{
z ∈ C; |z| = 1

}
.

This preserves the canonical probability measure µ on S1

µ
[
dθ
]
=

1

2π
dθ.
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As in the previous section this induces a unitary operator

R̂φ : L2(S1, µ) → L2(S1, µ), R̂φf(θ) = f(θ + φ).

Above the functions in L2(S1, µ) are complex valued. For n ∈ Z we set

en(θ) = einθ ∈ L2(S1, µ).

Note that R̂φen = einφen. Since the collection (en)n∈Z is a complete orthonormal sistem we

deduce that the eigenspace corresponding to the eigenvalue 1 of R̂φ

ker
(
1− R̂φ

)
= span

{
en;

nφ

2π
∈ Z

}
.

We deduce that ker
(
1− R̂φ

)
is 1-dimensional iff φ

2π is irrational. In this case R̂φ is ergodic

and we deduce from (5.1.17) that if A ⊂ S1 then for almost any θ ∈ S1 we have the asymptotic
equidistribution equality

1

n

n−1∑
k=0

Ik
(
θ + kφ

)
=
θ1 − θ0
2π

, a.s. (5.2.3)

With a little bit more work one can show that (5.2.3) holds for any θ. This is Weyl’s
equidistribution theorem, [179]. The reader interested in more details on the equidistribution
problem can consult [103]. ⊓⊔

5.2.2. Mixing. Suppose that T is a measure preserving transformation of a probability
space (Ω, S,P). Note that if T is ergodic, then the L2 ergodic theorem implies that

1

n

n−1∑
k=0

f ◦ T k L2

−→ E
[
f
]
IΩ, ∀f ∈ L2(Ω, S,P).

If we take the inner product with g ∈ L2 of both sides in the above equality we deduce

1

n

n−1∑
k=0

∫
Ω
(f ◦ T k)g dP → E

[
f
]
E
[
g
]
, ∀f, g ∈ L2(Ω, S,P) (5.2.4)

In particular, if we let f = IA, g = IB, A,B ∈ S, we deduce

lim
n→∞

1

n

n−1∑
k=0

P
[
T−k(A) ∩B

]
= P

[
A
]
P
[
B
]
. (5.2.5)

Let us observe that the above condition is equivalent with ergodicity. Indeed if we let A
quasi-invariant and B = X \A, then P

[
T−k(A) ∩B

]
= 0, ∀k and we deduce

P
[
A
](

1− P
[
A
] )

= 0

so any quasi-invariant set has measure 0 or 1.

Since convergent sequences are also Cèsaro convergent we deduce that condition (5.2.5)
follows from the stronger requirement

lim
n→∞

P
[
T−n(A) ∩B

]
= P

[
A
]
P
[
B
]
, ∀A,B ∈ S. (5.2.6)

A measure preserving map T satisfying this condition is said to be mixing.
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When T is an automorphism one can give a more visual interpretation of the mixing
condition. In this case mixing is also equivalent to the condition

lim
n→∞

P
[
A ∩ Tn(B)

]
= P

[
A
]
P
[
B
]
, ∀A,B ∈ S. (5.2.7)

Assume that the region B is occupied molecules of black ink in a glass of crystalline water.
These molecules occupy a fraction P

[
B
]
of the entire space. Flow the black region B using

T . Thus, Tn(B) represents the location of the black region after n units of time.

The mixing condition shows that after a while, the fraction P
[
A ∩ Tn(B)

]
/P
[
A
]
of a

region A occupied by these moving molecules of black ink is equal to P
[
B
]
. Thus in the

long run, all the regions will have the same fraction of black ink. To use a very apt analogy
in Arnold and Avez [5], this is what happens when we mix well a cocktail.

The mixing condition (5.2.6) can be rewritten as

lim
n→∞

(
T̂nIA, IB

)
= lim

n→∞
E
[
(IA ◦ Tn) · IB

]
= E

[
IA
]
· E
[
IB
]
, ∀A,B ∈ S. (5.2.8)

This implies that for any elementary functions f, g ∈ Elem(Ω, S) we have

lim
n→∞

∫
Ω

(
f ◦ Tn

)
g dP =

(∫
Ω
f dP

)(∫
Ω
g dP

)
.

Since Elem(Ω, S) is dense in L2(Ω, S,P) we deduce that if T is mixing, then

∀f, g ∈ L2(Ω, S,P) : lim
n→∞

∫
Ω

(
f ◦ Tn

)
g dP =

(∫
Ω
f dP

)(∫
Ω
g dP

)
. (5.2.9)

Clearly, if a measure preserving map satisfies (5.2.9), then it is mixing. The above argument
has the following immediate generalization.

Proposition 5.2.5. Suppose that T : (Ω, S,P) → (Ω, S,P) is a measure preserving map and
C ⊂ L2

(
Ω, S,P

)
is a collection of functions such that span(C) is dense in L2

(
Ω, S,P). Then

the following are equivalent.

(i) The map T is mixing.

(ii) For every f, g ∈ C,

lim
n→∞

(
T̂nf, g

)
L2(Ω)

=

(∫
Ω
f dP

)(∫
Ω
g dP

)
. (5.2.10)

⊓⊔

Remark 5.2.6. Note that Condition (5.2.10) can be rephrased as

lim
n→∞

E
[
T̂nf · g

]
= E

[
f
]
E
[
g
]
.

Observing that

E
[
f
]
= E

[
T̂nf

]
, ∀n

we can rewrite (5.2.10) as

lim
n→∞

(
E
[
T̂nf · g

]
− E

[
T̂nf

]
E
[
g
] )
,

or equivalently

lim
n→∞

Cov
[
T̂nf, g

]
= 0, ∀f, g ∈ C. (5.2.11)

Thus, the mixing condition is a weak form of asymptotic independence. ⊓⊔



5.2. Applications 489

Let us give a few examples of mixing maps.

Proposition 5.2.7. Suppose that Xn : (Ω, S,P) → (X,F), n ∈ N, is a Kolmogorov stationary
sequence of measurable maps. Then the shift map on the path space is mixing.

Proof. We will show that the shift map Θ satisfies (5.2.6). Denote by Un the coordinate
maps on the path space Un : XN → X, and set

Tn := σ
(
Un, Un+1, . . .

)
.

For B ∈ F and m ∈ N we set

εm
(
B
)
:= sup

S∈Tm

∣∣P[S ∩B
]
− P

[
S
]
P
[
B
] ∣∣.

Since (Xn)n∈BN is a Kolmogorov sequence we deduce from Theorem 5.1.14 εm(B) → 0 as
m→ ∞.

Observe that if A ∈ F, then T−m(A) ∈ Tn so that∣∣ P[T−m(S) ∩B
]
− P

[
T−m(A)

]
P
[
B
] ∣∣ ≤ εm(B) → 0.

This implies (5.2.6) since T is measure preserving so P
[
T−m(A)

]
= P

[
A
]
. ⊓⊔

Proposition 5.2.8. Suppose that (Xn)n≥0 is an irreducible, positively recurrent HMC with
state space X, transition matrix Q and stationary distribution π. Then the following are
equivalent.

(i) The HMC is aperiodic.

(ii) The shift map on the path space
(
XN0 ,E,Pπ

)
is mixing.

Proof. We follow the approach in [23, Sec. 16.1.2].

(i) ⇒ (ii) Suppose that our HMC is aperiodic. Consider the path space U = XN0 . Denote by
C the collection of cylindrical subsets of U of the form

Cxi1 ,...,xik :=
{
u ∈ U; uij = xij ∈ X, ∀1 ≤ j ≤ k

}
, 0 ≤ i1 < · · · < ik, k ∈ N.

In view of Proposition 5.2.5 it suffices to show that (5.2.6) is satisfied for any A,B ∈ C.
Suppose that

A = Cxi1 ,...,xik , B = Cxj1 ,...,xjm .

For n > jm we have

Θ−n(A) ∩B = Cxj1 ,...,xjm ,xi1+n,...,xik+n , xij = xij+n,

and

Pπ
[
Θ−n(A) ∩B

]
= π

[
xj1
]
Qj2−j1xj1 ,xj2

· · ·Qjm−jm−1
xjm−1

,xjm
Qn+i1−jmxjm ,xi1

×

×Qi2−i1xi1 ,xi2
· · ·Qik−ik−1

xik−1
,xik

.
(5.2.12)

Since the HMC is aperiodic we deduce from (4.3.9) we deduce that

lim
n→∞

Qn+i1−jmxjm ,xi1
= π

[
xi1
]
.
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Using this in (5.2.12) we deduce that

lim
n→∞

Pπ
[
Θ−n(A) ∩B

]
= π

[
xj1
]
Qj2−j1xj1 ,xj2

· · ·Qjm−jm−1
xjm−1

,xjm︸ ︷︷ ︸
Pπ

[
B
] ×

×π
[
xi1
]
Qi2−i1xi1 ,xi2

· · ·Qik−ik−1
xik−1

,xik︸ ︷︷ ︸
Pπ

[
A
] .

(ii) ⇒ (i) Suppose that the shift map is mixing. To prove that it is aperiodic we argue by
contraction and assume the period d is bigger than 1. As in Proposition 4.2.14 consider the
communication classes of Qd,

C1, C2, . . . , Cd ⊂ X.

Hence

P
[
Xn+1 ∈ Ci+1 mod d ∥Xn ∈ Ci mod d

]
= 1, ∀n ≥ 0, i = 1, . . . , d.

Consider the sets

Ai =
{
u ∈ XN0 ; u0 ∈ Ci

}
, i = 1, 2, . . . .

Then Θ−n(Ai ) = Ai+n mod d, Ai ∩Aj = ∅ if i ̸≡ j mod d. We deduce that for any n ∈ N we
have

Pπ
[
Θ−nd(A0) ∩A1

]
= 0, Pπ

[
Θ−nd−1(A0) ∩A1

]
= Pπ

[
A1

]
= π

[
A1

]
̸= 0.

This contradicts the fact that Θ is mixing. ⊓⊔

Remark 5.2.9. Suppose that (Xn)n ≥ 0 is an HMC as in the above proposition. We know
that if the sequence (Xn)n≥0 is Kolmogorov, then it is mixing. A theorem of Blackwell and
Freedman [16] shows that the converse is also true so (Xn)n≥0 is mixing if and on only if it
is Kolmogorov. In fact, the following properties are equivalent.

(i) The HMC (Xn)n≥0 is aperiodic

(ii) For any probability measures µ, ν ∈ Prob
(
X
)

lim
n→∞

dv
(
µQn − νQn

)
= 0, .

(iii) The HMC (Xn)n≥0 is mixing.

(iv) The HMC (Xn)n≥0 is Kolmogorov.

For a proof we refer to [92, Thm. 26.10]. ⊓⊔

Example 5.2.10 (The tent map). Consider the tent map T : [0, 1] → [0, 1] introduced in Ex-
ample 5.1.1(d). Recall that T is the continuous map [0, 1] → [0, 1] such that T (0) = 0 = T (1),
T (1/2) = 1 and T is linear on each of the intervals [0, 1/2] and [1/2, 1]. We want to show
that T is mixing.

Consider the Haar basis of L2
(
[0, 1]

)
. Recall its definition. It consists of the Haar

functions

H−1 = 1, H1 = H0,0 = I [0,1/2] − I [1/2,1]

Hn,k(x) = 2n/2H0,0

(
2nx− k

)
= 2n/2I[ k

2n
, k
2n

+ 1
2n+1

) − 2n/2I[ k
2n

+ 1
2n+1 ,

k+1
2n

), 0 ≤ k < 2n.
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Define

H−1 = span I [0,1], Hn := span
{
Hn,k; 0 ≤ k < 2n

}
, n ≥ 0,

H = {H0 } ∪
{
Hn,k; n ≥ 0, 0 ≤ k < 2n

}
.

The subspaces Hn are mutually orthogonal and the collection H spans a dense subspace of
L2
(
[0, 1]

)
; see [26, Sec. 9.2]. Moreover

T̂Hn ⊂ Hn+1, ∀n ≥ 0.

Thus if m,n ≥ 0, 0 ≤ j ≤ 2m, 0 ≤ k ≤ 2n we have(
T̂ ℓHm,j , Hn,k

)
L2 = 0 =

(∫ 1

0
Hm,j(x)dx

)(∫ 1

0
Hn,k(x)dx

)
, ∀ℓ > n−m.

Clearly T̂H0 = H0. Proposition 5.2.5 applied to the collection H implies that T is mixing,
hence ergodic. ⊓⊔

Example 5.2.11 (Arnold’s cat). We consider a slightly more general situation. Let d > 1
and denote by Td the d-dimensional torus

Tm = S1 × · · · × S1︸ ︷︷ ︸
m

equipped with the invariant probability measure

µ
[
dθ
]
=

1

(2π)d
dθ1 · · · dθd,

where θi are the standard angular coordinates on the torus. Suppose that A ∈ SLd(Z), i.e.,
A is a d× d matrix with integral entries and determinant 1. Since AZd = Zd we deduce that
A defines a measure preserving map of Td

θ =

 θ1
...
θm

 7→ TAθ := A · θ mod (2πZ)d.

Denote by ⟨−,−⟩ the canonical inner product in Rd and by A∗ the transpose of A. Clearly

A∗ ∈ SLd(Z) and A∗(Zd) = Zd.

For each m⃗ ∈ Zd we denote by Om⃗ the orbit of the action of A∗ on Zd, i.e., the set

Om⃗ =
{
(A∗)nm⃗; n ≥ 0

}
.

For any m⃗ ∈ Zd we set define the character1 χm⃗ ∈ L2
(
Td, µ

)
χm⃗(θ) = ei⟨m⃗,θ⟩ = ei(m1θ1+···+mdθd), i :=

√
−1.

The set of characters

Cd :=
{
χm⃗; m⃗ ∈ Zd

}
⊂ L2

(
Td, µ

)
) (5.2.13)

is an orthonormal family that spans a vector subspace dense in L2
(
Td, µ

)
.

The unitary operator T̂A : L2
(
Td, µ

)
→ L2

(
Td, µ

)
has the explicit description

T̂Af(θ) = f(Aθ).

1Any continuous group morphism χ : Td → S1 has the form χm⃗ for some m⃗ ∈ Zd.
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In particular,

T̂Aχm⃗(θ) = ei⟨m⃗,Aθ⟩ = ei⟨A
∗m⃗,θ⟩ = χA∗m⃗(θ).

We have the following result.

Theorem 5.2.12. Let A ∈ SLd(Z), d > 1. The following are equivalent.

(i) The map A : Td → Td is ergodic.

(ii) For any m⃗ ∈ Zd \ {0} the orbit Om⃗ is infinite.

(iii) The map A : Td → Td is mixing.

Proof. We follow the approach in [40, Sec. 4.3]. We only need to prove (i) ⇒ (ii) ⇒ (iii).

(i) ⇒ (ii) We argue by contradiction. Suppose there exists m⃗ ∈ Zd \ {0} such that Om⃗ is
finite. Denote by n the smallest n ∈ N such that (A∗)nm⃗ = m⃗. Then the function

f = χm⃗ + · · ·+ χ(A∗)n−1m⃗

is T̂A-invariant and nonconstant since the functions 1, χm⃗ · · · χ(A∗)n−1m⃗ are linearly indepen-
dent. Hence A is not ergodic.

(ii) ⇒ (ii) We apply Proposition 5.2.5 to the set of characters Cd in (5.2.13). Note that if∫
Td

χm⃗dµ =

{
1, m⃗ = 0,

0, m⃗ ̸= 0.

Clearly if f = g = 1, then (5.2.10) holds trivially. Suppose f ̸=1. Then(∫
Ω
f dP

)(∫
Ω
g dP

)
= 0.

Assumption (ii) implies that T̂nAf is a character different from g for all n sufficiently large
and thus (

T̂nAf, g
)
L1 = 0, ∀n≫ 0.

We deduce that A is mixing. ⊓⊔

The condition (ii) above holds if and only if none of the eigenvalues of A are roots of 1.
Observe that if one eigenvalue of A ∈ SL2(Z) is a root of 1 then all eigenvalues are roots of
1. We deduce that the only matrices in SL2(Z) are

±
[
1 0
0 1

]
and ±

[
0 −1
1 0

]
.

In particular, this shows that Arnold’s cat map is mixing. ⊓⊔

Remark 5.2.13. There is another condition that intermediates between mixing and ergod-
icity. More precisely, a measure preserving self-map of a probability space (Ω, S,P) is called
weakly mixing if,

lim
n→∞

1

n

n−1∑
k=0

∣∣P[T−k(A) ∩B
]
− P

[
A
]
P
[
B
] ∣∣ = 0 (5.2.14)

for any A,B ∈ S. Clearly (5.2.14) implies (5.2.5) so weakly mixing are ergodic.

Since convergent sequences are Cèsaro convergent we deduce that (5.2.6) implies (5.2.14)
so mixing maps are weakly mixing.
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It turn out that most weakly mixing automorphisms of a probability space (Ω, S,P) are
not mixing. More precisely the mixing operators form a meagre (first Baire category) subset
in the set of weakly mixing automorphisms. [85, p.77].
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5.3. Exercises

Exercise 5.1. Suppose that (Ω, S) is a measurable space and T : (Ω, S) → (Ω, S) a measurable
map. Denote by ProbT (Ω, S) the set of T -invariant probability measures P : S → [0, 1].

(i) Prove that ProbT (Ω, S) is a convex subset of the space of finite measures on S.

(ii) Prove that T us ergodic with respect to a probability measure P if and only if P is
an extremal point of ProbT (Ω, S) i.e., P cannot be written as a convex combination
P = (1− t)P0 + tP1, t ∈ (0, 1), P ̸= P0,P1.

⊓⊔

Exercise 5.2. Suppose that (X, d) is a compact metric spaces and T : X → X is a continuous
map. Let P be a Borel probability measure on X. For n ∈ N we set

Pn :=
1

n

n∑
k=01

T k#P.

(i) Prove that the sequence (Pn)n∈N contains a subsequence (Pnk
)that converges weakly

to a Borel probability measure P∗ on X, i.e.,

lim
k→∞

∫
X
f(x)Pnk

[
dx
]
=

∫
P∗

f(x)P∗
[
dx
]
, ∀f ∈ C(X).

Hint. Use Banach-Alaoglu compactness theorem.

(ii) Prove that P∗ is T -invariant.

(iii) Prove that the set ProbT (X) of T -invariant Borel probability measures on X is
convex and closed with respect to the weak convergence.

⊓⊔

Exercise 5.3. Let (Ω, S,P) be a probability space and T : Ω → Ω a measure preserving map.
We say that T is quasi-mixing if there exist c1, c2 > 0 such that ∀A,B ∈ S

c1P
[
A
]
P
[
B
]
≤ P

[
T−1(A) ∩B

]
≤ c2P

[
A
]
P
[
B
]
. (5.3.1)

(i) Suppose that A ⊂ S is a collection of measurable subsets that generates S, σ(A) = S.
Show that T is quasi-mixing if (5.3.1) holds for all A,B ∈ A.

(ii) Prove that if T is quasi-mixing, then it is ergodic.

⊓⊔

Exercise 5.4. Let (Ω, S,P) be a probability space and T : Ω → Ω a measure preserving map.
Suppose that (Fn)n≥1 is a filtration of sigma -subalgebras with the following properties.

(i) ∨
n≥1

Fn = S.

(ii) T−1(Fn) ⊂ Fn, ∀n ∈ N.
(iii) For any k ∈ N the intersection⋂

n≥
(T k)−1(Fn)



5.3. Exercises 495

is a 0-1-sigma subalgebra.

Prove that T is mixing. ⊓⊔

Exercise 5.5. Let (Ω, S,P) be a probability space, T : Ω → Ω a measure preserving map
and g ∈ L1(Ω, S,P. Prove that the following are equivalent.

(i) The function g is T -invariant, i.e., g ◦ T = g a.s..

(ii) For any f ∈ L∞(Ω,F,P), E
[
gf
]
= E

[
g(f ◦ T )

]
. ⊓⊔

Exercise 5.6 (Poincaré). Suppose that (Ω, S,P) is a probability space and T : Ω → Ω is a
measure preserving measurable map. Prove that for any S ∈ S such that P

[
S
]
> 0 we have

P
[
{ω ∈ Ω; Tnω ∈ S i.o.}

]
= 1.

⊓⊔

Exercise 5.7 (Kac). Suppose that (Ω, S,P) is a probability space and T : Ω → Ω is a measure
preserving measurable map. For S ∈ S such that P

[
S
]
> 0 we define the first return map

TS : Ω → N ∪ {∞}, TS(ω) = min
{
n ∈ N : Tnω ∈ S

}
Set

ΩS :=
{
ω ∈ Ω \ S; Tnω ̸∈ S, ∀n ≥ 1

}
.

(i) Prove that ∫
S
TS(ω) P

[
dω
]
= 1− P

[
ΩS
]
.

(ii) Prove that if T is ergodic then P
[
ΩS
]
= 0. ⊓⊔

Exercise 5.8. Consider an irreducible HMC (Xn)n≥0 with finite state space X, transition
matrix Q and whose initial distribution is the stationary distribution µ. The path space of
this Markov chain is ( see Theorem 4.1.3)

Uµ =
(
XN0 ,E,Pµ).

For n ∈ N0 we denote by Un the n-th coordinate map Un(u0, u1, . . . ) = un. Let

f : Uµ → R, f
(
(u0, u1, . . . ) = − log2Qu0,u1

(i) Prove that ∫
Uµ

f(u)Pµ
[
du
]
= Ent2

[
X, Q

]
,

where Ent2
[
X, Q

]
denotes the entropy rate of the Markov chain described in Ex-

ercise 4.33.

(ii) Prove that

− lim
n→∞

1

n
log2

(
QU0,U1 · · ·QUn−1,Un

)
= Ent2

[
X, Q

]
a.s..

⊓⊔

Exercise 5.9 (Kac). Consider the map Q : [0, 1) → [0, 1), x 7→ Qx := 2x mod 1. Show that
Q it is mixing with respect to the Lebesgue measure. Hint. See Example 5.1.13. ⊓⊔
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Exercise 5.10. Consider the tent map T : [0, 1] → [0, 1], T (x) = min(2x, 2 − 2x) and the
logistic map L : [0, 1] → [0, 1], L(x) = 4x(1− x).

(i) Prove that the map Φ : [0, 1] → [0, 1], Φ(x) = 1
2

(
1−cos(πx)

)
) is a homeomorphism

and L ◦ Φ = Φ ◦ T .
(ii) Describe the measure µ := Φ#λ, where λ is the Lebesgue measure on [0, 1].

(iii) Prove that the logistic map preserves µ and it is mixing with respect to this measure.
⊓⊔

Exercise 5.11. Fix m ∈ N, m ≥ 2. For any ϵ⃗ ∈ {0, 1}m define

Fϵ⃗ : [0, 1] → [0, 1], Fϵ⃗(x) =


(−1)ϵkm

(
x− k−1

m

)
+ ϵk,

k−1
m ≤ x < k

m ,

0, x = 1.

Prove that Fϵ⃗ is mixing for any ϵ⃗ ∈ {0, 1}m. ⊓⊔

Exercise 5.12. Consider the Haar functions Hn,k used in Example 5.2.10. We define the
Rademacher functions,

Rn : [0, 1] → R, Rn = 2−n/2
∑

0≤k<2n

Hn,k, n ≥ 0

(i) Prove that
∞∑
n=0

1

2n+1
Rn(x) = 1− 2x, ∀x ∈ [0, 1].

(ii) Prove that the functions (Rn)n≥0, viewed as random variables defined on the prob-
ability space ([0, 1],λ), are i.i.d.. ⊓⊔

Exercise 5.13. Suppose that X is a finite set and π is a probability measure on X given by
the weights πx := π

[
{x}

]
> 0, ∀x ∈ X. Consider the Cartesian product Uπ := XZ equipped

with the product sigma-algebra and product measure π∞ := π⊗Z. The elements of X are
functions u : Z → X. Consider the shift Θ : Uπ → Uπ, Θu(n) = u(n+ 1).

(i) Prove that Θ is mixing with respect to the measure π∞.

(ii) Denote for S ⊂ X by NS
π the subset of Uπ consisting of functions u : Z → X such

that limn→∞ u(n) exists. Prove that π∞
[
NS
π

]
= 0 and that the complement USπ is

Θ-invariant. ⊓⊔

Exercise 5.14. Consider the baker’s transform B : [0, 1]2 → [0, 1]2,

B(x, y) =

{(
q(2x), q(y/2)

)
, x ≤ 1/2,(

q(2x), q
(
(y + 1)/2

)
, x > 1/2,

where q(t) denotes the fractional part of the real number t, q(t) = t − ⌊t⌋. Prove that B is
mixing with respect to the Lebesgue measure. Consider the map Φ : {0, 1}Z → [0, 1]2 given
by Φ

(
x(u), y(u)

)
,

x(u) =

∞∑
n=0

u(−n)
2n+1

, y(u) =

∞∑
n=1

u(n)

2n
.
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Denote by π the uniform measure on {0, 1} and by π∞ the induced product measure on
{0, 1}Z.

(i) Prove that Φ#π∞ = λ, where λ is the Lebesgue measure on the square [0, 1]2.

(ii) Show that B ◦ Φ = Φ ◦Θ, where Θ is the shift defined in Exercise 5.13.

(iii) Prove that the baker’s transform is mixing with respect to the Lebesgue measure.
⊓⊔

Exercise 5.15 (Gauss). Consider the map G : [0, 1] → [0, 1] given by

G(x) =

{
0, x = 0,
1
x −

⌊
1
x

⌋
, x ∈ (0, 1].

For k ∈ N we set Ik := (1/(k+1), 1/k). Any x ∈ (0, 1] has a continuous fraction decomposition

x = [0 : a1 : a2 : · · · ] := 0 +
1

a1 +
1

a2 +
1

. . .

, an = an(x) ∈ N0, ∀n ∈ N.

(The number x is rational if and only if an = 0 for all n sufficiently large.) Set [0, 1]∗ := [0, 1]\Q.

(i) Let x = [0 : a1 : a2 : · · · ] ∈ [0, 1]∗. Prove that G(x) = [0 : a2 : a3 : · · · ] and, for any
n ∈ N, we have

x = [0 : a1 : · · · : an−1 : an +Gn(x)] =
1

a1 +
1

a2 +
1

. . . + an−1 +
1

an +Gn(x)

(ii) Let x ∈ [0, 1]∗. Prove that an(x) = k iff Gn(x) ∈ Ik, ∀k, n ∈ N.
(iii) For each a ∈ R we set

Ta =

[
a 1
1 0

]
Prove that

[0 : a1 : · · · : an] =
pn
qn
,

[
pn
qn

]
= T0 · Ta1 · · ·Tan

[
1
0

]
. (5.3.2)

(iv) Let x := [0 : a1 : a2 : · · · ] ∈ [0, 1]∗. Prove that for any n ∈ N we have

x =
pn(x) + pn−1(x)G

n(x)

qn(x) + qn−1(x)Gn(x)

where pn(x), qn(x) are defined in terms of the an(x)’s by (5.3.2).

(v) Prove that qn(x) ≥ 2
n−2
2 , ∀x ∈ [0, 1]∗, n ∈ N.

(vi) Prove that the the restriction of G to Ik is a diffeomorphism onto (0, 1).
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(vii) Fix c > 0 and set ρ : [0, 1] → [0,∞)

ρ(x) =
c

x+ 1
.

Prove that for any x ∈ [0, 1]∗ we have

ρ(x) =
∑

G(y)=x

ρ(y)

|G′(y)|

(viii) Prove that the probability measure µ on defined by

µ
[
dx
]
=

1

log 2(x+ 1)
λ
[
dy
]

is G-invariant.

(ix) Prove that for any n ∈ N the map An : [0, 1]∗ → N, x 7→ an(x) is measurable and
the sigma-algebra generated by these random variables coincides with the Borel
sigma algebra. Hint. Show that the set Ia1,...,am := {Ak = ak, 1 ≤ k ≤ m} is an interval with

endpoints expressible in terms of the fractions pk
qk

defined as in (5.3.2).

(x) Show that G is quasi-mixing (see Exercise 5.3) hence ergodic. ⊓⊔

Exercise 5.16. Suppose that T is an automorphism of a probability space (Ω, S,P). Define

T×2 : Ω → Ω → Ω× Ω, T×2(ω1, ω2) =
(
Tω1, Tω2).

Prove that T×2 is ergodic (with respect to P⊗2) if and only if T is weakly mixing, i.e., satisfies
(5.2.14). ⊓⊔



Appendix A

A few useful facts

A.1. The Gamma function

Definition A.1.1 (Gamma and Beta functions). The Gamma function is the function

Γ : (0,∞) → R, Γ(x) =

∫ ∞

0
tx−1e−tdt. (A.1.1)

The Beta function is the function of two positive variables

B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0. (A.1.2)

⊓⊔

We gather here a few basic facts about the Gamma and Beta functions used in the text.
For proofs we refer to [107, Chap. 1] or [180, Chap. 12].

Proposition A.1.2. The following hold.

(i) Γ(1) = 1.

(ii) Γ(x+ 1) = xΓ(x), ∀x > 0.

(iii) For any n = 1, 2, . . . we have

Γ(n) = (n− 1)!. (A.1.3)

(iv) Γ(1/2) =
√
π.

(v) For any x, y > 0 we have Euler’s formula

B(x, y) =

∫ 1

0
sx−1(1− s)y−1ds =

∫ ∞

0

ux−1

(1 + u)x+y
du. (A.1.4)

(vi) For any x ∈ (0, 1) we have

B(x, 1− x) = Γ(x)Γ(1− x) =
π

sinπx
(A.1.5)

⊓⊔

499
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The equality (iv) above reads

√
π = Γ(1/2) =

∫ ∞

0
e−tt−1/2dt

(t = x2, t−1/2 = x−1 dt = 2xdx)

= 2

∫ ∞

0
e−x

2
dx =

∫ 0

−∞
e−x

2
dx+

∫ ∞

0
e−x

2
dx =

∫ ∞

−∞
e−x

2
dx.

If we make the change in variables x = s√
2
so that x2 = s2

2 and dx = 1√
2
ds, then we deduce

√
π =

1√
2

∫ ∞

−∞
e−

x2

2 dx.

From this we obtain the fundamental equality

1√
2π

∫ ∞

−∞
e−

x2

2 dx = 1. (A.1.6)

The function Γ(x) grows very fast as x → ∞. Its asymptotics is governed by the Stirling’s
formula

Γ(x+ 1) = xΓ(x) ∼
√
2πx

(x
e

)x
as x→ ∞. (A.1.7)

Note that for n ∈ N the above estimate reads

n! ∼
√
2πn

(n
e

)n
as n→ ∞. (A.1.8)

There are very sharp estimates for the ratio

qn =
n!√

2πn
(
n
e

)n .
More precisely we have (see [64, II.9])

1

12n+ 1
< log qn <

1

12n
. (A.1.9)

In other words

log n! = n log n− n+
1

2
log n+

1

2
log(2π) +O

(
n−1

)
, as n→ ∞.

We denote by ωn the volume of the n-dimensional Euclidean unit ball

Bn :=
{
x ∈ Rn; ∥x∥ ≤ 1

}
, ∥x∥ =

√
x21 + · · ·+ x2n,

and by σn−1 the “area” of the unit sphere in Rn

Sn−1 =
{
x ∈ Rn; ∥x∥ = 1

}
.

Then

σn−1 =
2Γ(1/2)n

Γ(n/2)
, ωn =

1

n
σn−1 =

Γ(1/2)n

Γ
(
(n+ 1)/2

) . (A.1.10)
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A.2. Basic invariants of frequently used
probability distributions

X ∼ Bin(n, p)⇐⇒P[X = k] =

(
n

k

)
pkqn−k, k = 0, 1, . . . , n, q = 1− p.

Ber(p) ∼ Bin(1, p).

X ∼ NegBin(k, p)⇐⇒P
[
X = n

]
=

(
n− 1

k − 1

)
pkqn−k, n = k, k + 1, . . .

Geom(p) ∼ NegBin(1, p).

X ∼ HGeom(w, b, n), P
[
X = k

]
=

(
w
k

)(
b

n−k
)(

w+b
n

) , k = 0, 1, . . . , w.

X ∼ Poi(λ), λ > 0⇐⇒P
[
X = n

]
= e−λ

λn

n!
, n = 0, 1, . . .

X ∼ Unif(a, b)⇐⇒PX =
1

b− a
I [a,b]dx.

X ∼ Exp(λ), λ > 0⇐⇒PX = λe−λxI [0,∞)dx

X ∼ N(µ, σ2), µ ∈ R, σ > 0⇐⇒PX =
1

σ
√
2π
e−

(x−µ)2

2σ2 dx, x ∈ R.

X ∼ Gamma(ν, λ)⇐⇒pX(x) =
λν

Γ(ν)
xν−1e−λxI [0,∞)dx

X ∼ Beta(a, b)⇐⇒pX =
1

B(a, b)
xa−1(1− x)b−1I(0,1)dx.

X ∼ Studp⇐⇒pX =
1

√
pπ

Γ(p+1
2 )

Γ(p2)

1(
1 + x2/p

)(p+1)/2
dx, x ∈ R.

Above, α(k) denotes the ascending Pocchammer symbol

Name Mean Variance pgf mgf

Ber(p) p pq (q + ps) pet

Bin(n, p) np npq (q + ps)n pnent

Geom(p) 1
p

q
p2

ps
1−qs

pet

1−qet

NegBin(k, p) k
p

kq
p2

(
ps

1−qs

)k (
pet

1−qet

)k
Poi(λ) λ λ eλ(s−1) eλ(e

t−1)

HGeom(w, b, n) w
w+b · n * ∗ *

Unif(a, b) a+b
2

(b−a)2
12 NA etb−eta

tb−ta
Exp(λ) λ−1 λ−2 NA λ

λ−t
N(µ, σ2) µ σ2 NA exp

(
σ2

2 t
2 + µt

)
Gamma(ν, λ) ν

λ
ν
λ2

NA
(

λ
λ−t

)ν
Beta(a, b) a

a+b
ab

(a+b)2(a+b+1)
NA 1 +

∑∞
k=1

a(k)

(a+b)(k)
tk

k!

Studp 0, p > 1 p
p−2 , p > 2 NA NA

a(k) = a(a+ 1) · · · a(a+ k − 1).
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The descending Pocchammer symbol is

a(k) = a(a− 1) · · · a(a− k + 1).

A.3. A glimpse at R

This section is merely an invitation to programming in R. It is not meant as a serious guide
to learning R. It mainly lists a few basic tricks that will get the curios reader started and
cover many with simple probability simulations I used in my classes.

First, here is how you install R on your computers.

For Mac users

https://cran.r-project.org/bin/macosx/

For Windows users

https://cran.r-project.org/bin/windows/base/

Next, install R Studio (the Desktop version). This is a very convenient interface for using R.

https://www.rstudio.com/products/RStudio/

(Install first R and then R Studio.) You can also access RStudio and R in the cloud

https://www.rollapp.com/app/rstudio

The site

http://www.people.carleton.edu/~rdobrow/Probability/

has a repository of many simple R programs (or R scripts) that you can use as models.

The reader familiar with the basics of programming will have no problems learning the
basics of R. This section is addressed to such a reader. We list some of the commands and
objects most frequently used in probability and we have included several examples to help
the reader get started. R-Studio comes with links to various freely available web sources for
R-programming. A commercial source that I find very useful is “The Book of R”, [43]. Often
I ask GOOGLE how to do this or that in R and I receive many satisfactory solutions.

Example A.3.1 (Operations with vectors). The workhorse of R is the object called vector.
An n-dimensional vector is essentially an element in Rn. An n-dimensional vector in R can
be more general in the sense that its entries need not be just numbers.

To generate in R the vector (1, 2, 4.5) and then naming it x use the command

x<-c(1,2,4.5)

To see what the vector x is type

x

To see what the k-th entry of x is us the command

x[k]

The command

x[j:k]

will generate all the entries of x from the j-the to the k-th. If you want to add an entry to
x, say you want to generate the longer vector (1, 2, 4, 5, 7), use the command

https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/products/RStudio/
https://www.rstudio.com/products/RStudio/
https://www.rollapp.com/app/rstudio
http://www.people.carleton.edu/~rdobrow/Probability/
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c(x,7)

For long vectors this approach can be time consuming. The process of describing vectors
can be accelerated if the entries of the vector x are subject to patterns. For example, the
vector of length 22 with all entries equal to the same number, say 1.5, can be generated using
the command

rep(1.5, 22)

To generate the vector listing in increasing order all the integers between −2 and 10
(included) use the command

(-2):10

To generate the vector named x consisting of 25 equidistant numbers staring at 1 and
ending at 7 use the command

x<-seq(from=1, to=7, length.out=25)

To add all the entries of a vector x = (x1, . . . , xn) use the command

sum(x)

To add all the natural numbers from 50 to 200 use the command

sum(50:200)

The result is 18, 875.

You can sort the entries of a vector, if they are numerical. For example

> z<-c(1,4,3)

> sort(z)

[1] 1 3 4

A very convenient feature of working with vectors in R is that the basic algebraic opera-
tions involving numbers extend to vectors , component wise. For example, if z is the above
vector, and y = (1, 8, 9), then the command y/z returns (1/1, 8/4, 9/3) = (1, 2, 3), while z^2
returns (1, 16, 9) ⊓⊔

Example A.3.2 (Logical operators). These are operators whose output is a TRUE or FALSE
or a vector whose entries are TRUE/FALSE.

For example, the command 2 < 5 returns TRUE. On the other hand if x is the vector
(2, 3, 7, 8), then the command x < 5 return

TRUE,TRUE, FALSE, FALSE.

In R the logicals TRUE/FALSE also have arithmetic meaning,

TRUE = 1, FALSE = 0.

The output of x < 5 is a vector whose entries are TRUE/FALSE. To see how many of the
entries of x are < 5 use the command

sum(x<5)

Above x < 5 is interpreted as a vector with 0/1-entries. When we add them we count
how many are equal to 1 or, equivalently, how many of the entries of x are < 5.
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The R language also has two very convenient logical operators any and all. When we
apply any to a vector with TRUE/FALSE entries it returns TRUE if at least one of the
entries of v are TRUE and returns FALSE otherwise. When we apply all to a vector v with
TRUE/FALSE entries it returns TRUE if all of the entries of v are TRUE and returns FALSE
otherwise. ⊓⊔

Example A.3.3 (Functions in R). One can define and work with functions in R. For example,
to define the function

f(q) = 1 + 6q + 10q2(1− q)4

use the command

f<-function(q) (1+4*q+10*q^2)*(1-q)^4

To find de value of f at q = 0.73 use the command

f(0.73)

To display the values of f at all the points

0, 0.01, 0.02, 0.03, . . . , 0.15, 0.16

use the command

x<-seq(from=0, to=0.16, by=0.01)

f(x)

To plot the values of f over 100 equidistant points in the interval [2, 7] use the command

x<-seq(from=2, to=7, length.out=100)

y<-f(x)

plot(x,y, type="l")

Equivalently, there is the simple command curve(-) that allows drawing multiple graphs in
the same coordinate system.

function1<-function(x){x^2}

function2<-function(x){1-cos(x)}

curve(function1, col=1)

curve(function2, col=2, add=TRUE)

Above col stands for “color”. When this option is used different graphs are depicted in
different colors.

Here is how we define in R the indicator function of the unit disc in the plane

ID(x, y) =

{
1, x2 + y2 ≤ 1,

0, x2 + y2 > 1.

indicator<-function(x,y) if(1 >= x^2+y^2) 1 else 0

Another possible code that generates this indicator function is

indicator<-function(x,y) as.integer(x^2+y^2<= 1)

Above, the command as.integer converts TRUE/FALSE to 1/0. ⊓⊔
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Example A.3.4 (Samples with replacement). For example, to sample with replacement 7
balls from a bin containing balls labeled 1 through 23 use the R command

sample(1:23,7, replace=TRUE)

The result is a 7-dimensional vector whose entries consists of 7 numbers sampled with re-
placement from the set {1, . . . , 23}. Similarly, to simulate rolling a fair die 137 times use the
command

sample(1:6,137, replace=TRUE)

Example A.3.5 (Rolling a die). Let us show how to simulate rolling a die a number n of
times and then count how many times we get 6. Suppose n = 20. We indicate this using the
command

n<-20

We now roll the die n times and store the results in a vector x

x<-sample(1:6, n, replace=TRUE)

Next we test which of the entries of x are equal to 6 and store the results of these 20 tests in
a vector y

y<-x==6

The entries of y are T rue or False, depending on whether the corresponding entry of x was
equal to 6 or not. To find how many entries of y are T use the command

sum(y)

The result is equal to the number of 6s we got during the string of 20 rolls of a fair die.

We can visualize data. Suppose we roll a die a large number N = 1200 of times. For each
1 ≤ k ≤ N we denote by z(k) the fraction of the first k rolls when we rolled a 6. For k → ∞
the Law of Large Numbers states that this frequency should approach 1

6 . The vector z can
be generated in R using the commands

N<-12000

x<-sample(1:6, N, replace=TRUE)

z<-cumsum(x==6)/(1:N)

Above, cumsum stands for “cumulative sum”. The input of this operator is a numerical
vector x = (x1, . . . , , xn). The output is a numerical vector s of the same dimension, with
sk = s1 = · · · + sk.We can visualize the fluctuations of z(k) around the expected value 1

6
using the R code

plot(1:N, z, type="l", xlab="# of rolls",

ylab="average number 6-s")

abline(h=1/6,col="red")

Figure A.1 depicts the output.

⊓⊔

Example A.3.6 (Samples without replacement). To sample without replacement 7 balls
from an urn containing balls labeled 1 through 23 use the R command
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Figure A.1. Rolling a die

sample(1:23, 7)

The number of possible samples above is (27)7 and to compute it use the R command

prod(21:27)

⊓⊔

Example A.3.7 (Permutations). To sample a random permutation of 7 objects use the R
command

sample(1:7,7)

To sample 10 random permutations of 7 objects use the R command

for (i in 1:10 ) print(sample(1:7,7))

To compute 7! in R use the command

factorial(7)

⊓⊔

Example A.3.8 (Combinations). Sampling random m-element subsets out of an n-element
set possible is possible in R. For example, to sample 4 random subsets with 2 elements out
of a 7-element set possible the following command

replicate(4, sort( sample(1:7, 2) ))

The sampled sets will appear as columns. To compute
(
52
5

)
in R use the command

choose(52,5)

⊓⊔

Example A.3.9 (Custom discrete distribution). We can produce custom discrete random
variables in R.
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Suppose that we want to simulate a discrete random variable X whose values, sorted in
increasing order, are

x1 = 0.1, x2 = 0.2, x3 = 0.3, x4 = 0.7.

The corresponding probabilities are

p1 = 1/3, p2 = 1/6, p3 = 1/4, p4 = 1/4.

The R-commands below describe how to compute the mean and the variance of X and how
to sample X.

X<-c(0.1,0.2,0.3,0.7) # stores the values of X in

increasing order.

prob<-c(1/3,1/6,1/4,1/4) # stores the probabilities.

sum(prob) # This is a test. If this is 1 prob is a pmf.

# Otherwise check prob.

m<-sum(X*prob) # computes the mean of X and stores in m.

v<-sum((X^2)*prob) -m^2# computes the variance of X

# and stores it in v.

m # produces the value of the mean.

v # produces the variance of X.

sample(X,15, replace=TRUE, prob) # produces 15 random

#samples of X.

cumsum(prob) # computes the values of the cdf of X at

# x_1,x_2,...

In R the symbol # indicates a comment. It is only for the programer/user benefit.
Anything following a # is not treated by R as a command. ⊓⊔

Example A.3.10 (Useful discrete distributions). The standard discrete distributions are
implemented in R.

The distribution The R command

The binomial distribution Bin(n, p) binom(n,p)
The geometric distribution Geom(p) geom(p)

The negative binomial distribution NegBin(k, p) nbinom(k,p)
The Poisson distribution Poi(λ) pois(lambda)

The R library however uses rather different conventions

(i) The geometric distribution in R is slightly different from the one described in
this book. In R, the range of Geom(p) variable T is {0, 1, . . . } and its pmf is
P
[
T = n

]
= p(1 − p)n. In this book, a geometric random variable has range

{1, 2 . . . } and its pmf is P
[
T = n

]
= p(1− p)n−1; see Example A.3.12.
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(ii) In R the equality nbinom(k, p) = n represents the number of failures until we
register the k-th success; see Example A.3.13.

The above commands by themselves mean nothing if they are not accompanied by one
of the prefixes

• d produces the density or pmf .

• p produces the cdf .

• r produces random samples .

• q produces quantiles .

⊓⊔

You can learn more details using R’s help function. The examples below describe some
concrete situations.

Example A.3.11 (Binomial). For example, suppose that X ∼ Bin(10, 0.2), i.e., X is the
number of successes in a sequence of 10 independent Bernoulli trials with success probability
0.2.

To find the probability P(X = 3) use the R command

dbinom(3,10,0.2)

If FX(x) = P(X ≤ x) is the cdf of X, then you can compute FX(4) using the R command

pbinom(4,10,0.2)

To generate 253 random samples of X use the command

rbinom(253,10,0.2)

To find the 0.8-quantile of X use the R command

qbinom(0.8,10,0.2)

⊓⊔

Example A.3.12 (Geometric). Suppose now that T ∼ Geom(0.2) is the waiting time until
the first success in a sequence of independent Bernoulli trials with success probability p = 0.2.

To find the probability P(T = 3) use the command

dgeom(3-1,0.2)

To find the probability P(T ≤ 4) use the command

pgeom(4-1,0.2)

To generate 253 random samples of T use the command

1+rgeom(253,0.2)

To find the 0.8-quantile of T use the R command

qgeom(0.8,0.2)+1
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Example A.3.13 (Negative Binomial). Suppose that T ∼ NegBin(8, 0.2) is the waiting time
for the first 8 successes in a string of Bernoulli trials with success probability.

To find the probability P(T = 12) use the R command

dnbinom(12-8,8,0.2)

You can compute P(T ≤ 14) using the R command

pnbinom(14-8,8,0.2)

To generate 253 random samples of T use the command

8+rnbinom(253,8,0.2)

To find the 0.8-quantile of T use the R command

8+qnbinom(0.8,8,0.2)

⊓⊔

Example A.3.14 (Poisson). Suppose that X ∼ Poi(0.2) is a Poisson random variable with
parameter λ = 0.2.

To find the probability P(X = 3) use the command

dpois(3,0.2)

To find the probability P(X ≤ 4) use the command

ppois(4,0.2)

To generate 253 random samples of X use the command

rpois(253,0.2)

To find the 0.8-quantile of X use the R command

qpois(0.8,0.2)

⊓⊔

Example A.3.15 (Continuous distributions in R). The continuous distributions Unif(a, b),
expλ and N(µ, σ2) can be simulated in R by invoking

unif(min=a, max=b)

exp(rate=lambda)

norm(mean=mu, sd=sigma)

where sd:=standard deviation.

To invoke the standard normal random variable you could use the shorter command

norm

⊓⊔

As in the case of discrete distributions, we utilize these commands with the prefixes d−,
p−, q− and r− that have the same meaning as in R-Session A.3.10. Thus d− will generate
the pdf, p− the cdf, r− generates a random sample, and q− produces quantiles.
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Example A.3.16. Here are some concrete examples. To find the probability density of exp3
at x = 1.7 use the command

dexp(1.7, 3)

To find the probability density of N(µ = 5, σ2 = 7) at x = 2.6 use the command

dnorm(2.6,5, sqrt(7))

To produce 1000 samples from Unif(3, 13) use the command

runif(1000,3,13)

⊓⊔

Example A.3.17 (Gambler’s ruin). Consider two players the first with fortune $a, and the
second with fortune $b. Set N := a + b. They flip a fair coin. Heads, player 1 gets a dollar
from player 2, Tails, player 1 gives a dollar to player 2. The game ends when one of them is
ruined. One can simulate this in R using the code

r<-function(a,N){

t<-0

x<-a

v<-c(0,N)

while(all(v!=x)){

f<-sample(0:1,1, replace=TRUE)

x<-x+(2*f-1)

t<-t+1

}

y<-c(x,t)

y

}

The output is a two-dimensional vector. Its first entry is the fortune of the first player at
the end of the game, while the second entry is duration of the game, i.e., the number of coin
flips until one of them is ruined.

To compute the winning probability of the first player and the expected duration of a
game we can use the Law of Large Numbers and run a large number G of games

empiric_r<-function(G,a,N){

P<-c()

T<-c()

for(i in 1:G){

P<-c(P,r(a,N)[1])

T<-c(T,r(a,N)[2])

}

c(sum(P==N)/G,sum(T)/G)

}

For example if we want to run a number G = 1200 of games with the first player’s initial
fortune a = 8 and the combined fortune of the two players is N = 15 use the command

empiric_r(1200,8,15)
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The output is a two-dimensional vector. Its first entry describes the fraction of the G
games won by the first player, and the second entry is the average duration of these G games.

Figure A.2. The ruin problem

One can also visualize a game. The code below produces a vector whose entries describe
the evolution of the fortune of the first player.

rgr<-function(a,N){

x<-a

z<-c(a)

v<-c(0,N)

while(all(v!=x)){

f<-sample(0:1,1,replace=TRUE)

x<-x+(2*f-1)

z<-c(z,x)

}

z

}

For given values of N and a say, N = 25, a = 12 , one can visualize the evolution of the
fortune of the first player using the code below. Its output is a graph similar to the one in
Figure A.2.

N<-25

a<-12

u<-rgr(a,N)

l<-length(u)-1

plot(0:l, u,type="l", xlab="# of flips",

ylab="the fortune of the first player",ylim=c(0,N))

abline(h=c(0,N),col=c("red","red") )

⊓⊔

Example A.3.18 (Buffon’s needle problem). The R program below uses the Buffon needle
problem (see Exercise 1.29) to find an approximation of π.

L<-0.7 # L is the length of the needle. It is <1.

N<-1000000 # N is the number of times we throw the needle.
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f<-0

#the next loop simulates the tossing of

#N random needles and computes

# the number f of times they intersect a line

for (i in 1:N){

y<-runif(1, min=-1/2,max=1/2) #this locates

# the center of the needle

t<-runif(1, min=-pi/2,max=pi/2)#this determines

#the inclination of the needle

if ( abs(y)< 0.5*L*cos(t) ) f<-f+1 }

#f/N is the empirical frequency

"the aproximate value of pi is"; (N/f)*2*L

⊓⊔

Example A.3.19 (Monte Carlo). The R-command lines below implement the Monte Carlo
strategy for computing a double integral over the unit square

# Monte Carlo integration of the function f(x,y)

#over the rectangle [a,b] x[c,d]

# First we describe the function

f<- function(x,y) sin(x*y)

# Next, we describe the region of integration [a,b]x[c,d]

a=0

b=1

c=0

d=1

# Finally, we decide the number N of sample points in

# the region of integration

N=100000

#S will store the integral

S=0

for (i in 1:N){

x<- runif(1,a,b) #we sample a point uniformly in [a,b]

y<- runif(1,c,d) #we sample a point uniformly in [c,d]

S<-S+f(x[1],y[1])

}

’the integral is’; (b-a)*(d-c)*S/N

The next code describes a Monte-Carlo computation of the area of the unit circle.

nsim<-1000000#nsim is the number of simulations

x<-runif(nsim,-1,1)#we choose nsim uniform samples

#in the interval (-1,1) on the x axis

y<-runif(nsim,-1,1)#we choose nsim uniform samples

#in the interval (-1,1) on the y axis
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area<-4*sum(x^2+y^2<1)/nsim

"the area of the unit circle is very likely"; area

⊓⊔

Example A.3.20. Suppose that we have a probability distribution prob on the alphabet
{1, 2, . . . , L}. One experiment consists of sampling the alphabet according to the distribu-
tion prob until we first observe the given word (or pattern) patt. The following R-routine
performs m such experiments and returns an m-dimensional vector f whose components are
the cumulative means of the waiting times

fk =
1

k

k∑
j=1

Tj , k = 1, . . . ,m,

where Tj is the time to observe the pattern in the j-th experiment.

Tpattern<-function(patt, prob, m, L){

k<-length(patt)

T<-c()

for (i in 1:m){

x<-sample(1:L,k,replace=TRUE, prob)

n<-k

while ( all(x[(n-k+1):n]==patt)==0 ){

x<-c(x, sample(1:L,1,replace=TRUE, prob) )

n<-n+1

}

T<-c(T,n)

}

f<-cumsum(T)/(1:m)

f

}

If prob is the uniform distribution use the faster routine

Tpatt_unif<-function(patt, m, L){

k<-length(patt)

T<-c()

for (i in 1:m){

x<-sample(1:L,k,replace=TRUE)

n<-k

while ( all(x[(n-k+1):n]==patt)==0 ){

x<-c(x, sample(1:L,1,replace=TRUE) )

n<-n+1

}

T<-c(T,n)

}

f<-cumsum(T)/(1:m)

f
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}

In the uniform case, the expected waiting time to observe the pattern patt can be deter-
mined using routine below that relies on the identity (3.1.11) in Example 3.1.32.

tau<-function(patt,L){

n<-length(patt)

m<-n-1

t<-2^n

for (i in 1:m){

j<-n-i

k<-i+1

t<-t+ any(patt[1:j]==patt[k:n])*L^(n-i)

}

t

}
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[113] P. Lévy: Processus Stochastiques et Mouvement Brownien, Gauthier Villars, 1965.

[114] S.-Y. R. Li: A martingale approach to the study of occurrence of sequence patterns in repeated
experiments, Ann. Prob. 8(1980), 1171-1176.
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Fourier inversion, 438

Stirling, 249, 388, 389

Stirling’s, 500

Viète, 250



526 Index

Wald, 130, 310, 311

Fourier transform, 177, 438

function

Beta, 499

convex, 46

elementary, 9

Gamma, 499

nonnegative definite, 254

positive definite, 254

strictly convex, 46

Young, 258, 300

Galton-Watson process, 268, 295, 306

gambler’s ruin, 312, 374, 388, 510

Gamma function, 64, 499

Gaussian

random variables, 63

Hilbert space, 226

measure, 63, 221, 258

covariance form, 221

process, 223

centered, 223

random function, 225

regression, 260

vector, 221, 258, 260

white noise, 226, 364

gaussian

measure

centered, 222

graph, 270

locally finite, 270

random walk on, 270

Haar

basis, 490

functions, 490, 496

Hamming distance, 288, 440

harmonic function, 270, 399, 417

Hermite polynomials, 133, 134, 254, 347

hitting time, 274, 338, 383, 399, 417

HMC, 369

Laplacian of, 399

reversible, 391

time reversed, 390

hypothesis class, 215

PAC learnable, 217

independence

conditional, 105

independency, 22

independent

events, 22

families, 22

random variables, 22

indicator function, vi

inequality

Hölder, 195

Azuma, 284, 286, 287

Bonferroni, 58

motivic, 58

Cauchy-Schwartz, 86

Chebyshev, 48

Doob’s Lp, 322, 349

Doob’s maximal, 321, 348

Doob’s upcrossing, 293, 295, 349

Gibbs, 159, 197

Hölder, 37

Hoeffding, 199, 211, 284, 289

Jensen, 46, 159

Kolmogorov’s maximal, 146

Markov, 33

McDiarmid, 213, 288, 290

Mills ratio, 64, 134, 233

Minkowski, 38

infinitely divisible

distribution, 251

random variable, 251

integrable, 32

integral, 32

Daniell-Stone, 34, 39

Lebesgue, 32

invariance principle, 234

invariant

measure, 390

distribution, 390, 394

function, 472

set, 472

irreducible

HMC, 378

set, 378

joint probability distribution, 73

kernel, 106

disintegration, 113

Markovian, 106

probability, 106

pullback, 107

push-forward by, 107

Kirchhoff current, 416

potential of, 416

Kirchhoff’s laws, 413, 416

Kolmogorov sequence, 475

Koopman operator, 476

Kullback-Leibler divergence, 197, 256

L-process, 336

Lévy’s

equivalence, 151, 296

inequality, 238

martingale, 400

Lévy-Prokhorov metric, 173

Laplace transform, 137, 245

Laplacian, 399, 445

law

of rare events, 61

of total probability, 26, 115

Law of Large Numbers, 151, 289

lazy chain, 408, 453

Lebesgue

measurable, 70

measure, 70

Lebesgue integral, 32

Lebesgue measure, 20
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lemma

‘sooner-rather-than-later’, 280, 312

Borel-Cantelli, 80, 81, 153, 233, 296, 340

first, 81, 149

second, 81, 149, 357, 359

Fatou, 35, 173, 295, 303, 309, 327, 350, 401

Fekete, 86, 287

Hoeffding, 200, 285

Kronecker, 359

Kronecker’s, 153

maximal, 481

Sauer, 214

Scheffé’s, 304

likelihood, 30

likelihood ratio, 323, 324

Lindeberg condition, 190

log-normal distribution, 136

logistic map, 496

longest common subsequence problem, 85

Lusin space, see also space

Lyapunov function, 399

coercive, 401

Lyapunov’s condition, 193

map

measurable, 5

marginal, 74

Markov

chain, 368

aperiodic, 381, 408

irreducible, 378

null recurrent, 394

positively recurrent, 394, 402, 403

recurrent, 386, 401, 431

reversible, 391, 410, 436

transient, 386, 400, 431

path space, 371

Markov property, 368, 372, 384, 392

strong, 383, 385–387, 397, 404

martingale, 266, 267, 269, 271, 273, 275, 277, 279, 281,
284, 287, 295, 311, 313, 314, 323, 324, 346, 399,

400

Lp-bounded, 323

Lp, 323

backwards, 326

bounded Lp, 323

closed, 267, 286

component, 271

De Moivre, 268, 313

discrete time, 266

Doob, 267, 286

exponential, 347

quadratic variation, 272

matrix

primitive, 434

stochastic, 433

mean, 42

measurable

map, 5

set, 2

space, 2

isomorphism, 5

measure, 13

Borel, 16

σ-finite, 13

atom of, 300

Dirac, 14

finite, 13

inner regular, 123

Lebesgue, 20

Lebesgue-Stieltjes, 72

outer regular, 123

probability, 13

pushforward of a, 15

Radon, 123, 171

regular, 123

subprobability, 164

uniform, 15, 16

measure preserving, 469

measured space, 14

median, 22, 238

memoryless property, 72

metric

Lévy-Prokhorov, 173

space, 164

variation, 406

Metropolis

algorithm, 452

chain, 452

mgf, 49

Mills ratio, 64, 134, 233

mixture, 75, 108, 114, 328

mixtures, 142

moment generating function, 49

monotone class, 10

Monte-Carlo method, 157

motion

Brownian, 231

Brownian standard, 227

pre-Brownian, 220

Nedoma’s pathology, 4

negligible, 16

noisy dynamical system, 376

nonnegative definite function, 254

null recurrent, 394

Ohm’s law, 415

optimal gambling strategy, 316

optimal stopping, 98

orbit, 472, 484

order statistics, 139, 140, 249

Orlicz space, 258

Ornstein-Uhlenbeck operator, 134

paradox

waiting time, 77

partition, 3

chamber of, 3

path space, 471

perceptron, 215

period, 380

persistent state, 385

pgf, 44, 51, 136, 362
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pmf, 41

Pocchammer symbol, 501

Poincaré phenomenon, 202, 257

Poisson approximation, 61

Poisson process, 77

poissonization, 61

Polya’s urn, 130, 269, 334

positive definite function, 254

positively recurrent, 394

posterior, 30

predictable, 271

predictor, 93

premeasure, 17

σ-finite, 18

principle

Dirichlet, 421

inclusion-exclusion, 57

Raleigh, 422, 423

reflection, 345

Thompson, 421

prior, 30

probability

density, 62

generating function, 44, 51, 136

measure, 13

Euclidean, 40

space, 14

probability distribution

continuous, 62

joint, 73

problem

ballot, 27, 278

Banach’s matchbox, 130

bin packing, 286

birthday, 132, 248

Buffon, 133, 511

coupon collector, 54, 129, 248, 313

derangements, 61

gambler’s ruin, 312

longest common subsequence, 85, 285

occupancy, 248

Polya’s urn, 130, 269, 334

secretary, 101

process

independent increments, 346

branching, 268, 306, 325

empirical, 208

exchangeable, 328

Galton-Watson, see also Galton-Watson process

L-, 336

measurable, 336

Poisson, 77, 141, 142, 251, 312, 347, 364, 457

predictable, 271, 273, 359

progressive, 336

R-, 336

renewal, 80

separable, 348, 350

stochastic, 118

distribution, 221

path, 226

stopped, 274

product formula, 26

projective family, 120, 122

pushforward, 15, 16

quadratic variation, 235, 272, 363

optional, 355

predictable, 355

quantile, 20, 205, 464

coupling, 464

quasi-invariant

function, 473

set, 473

quasi-mixing, 494

R-process, 336

Rademacher

complexity, 213, 290

function, 496

random variable, 28, 150, 210, 218, 358

symmetrization, 210

random

measure, 106, 328

variable, 14

walk, 27, 267, 270, 298, 358, 360, 369, 375, 381, 388,

391

on groups, 437

standard, 27

random variable, 14

exponential, 65

Gamma, 65

Bernoulli, 52

binomial, 52

cdf of, 41

discrete, 41

probability mass function, 41

distribution of, 16, 41

expectation, 42

exponential, 71

finite, 14

Gaussian, 63

geometric, 53

hypergeometric, 55

law of, 41

mean, 42

negative binomial, 54

normal, 63

Poisson, 56

probability distribution of, 41

quantile, 22

Raleigh, 248

standard normal, 64

subgaussian, 199

uniform, 62

random vector, 73

probability distribution of, 73

recurrence class, 386

recurrent state, 385

Reflection Principle, 345

regression curve, 91

regular version, 109, 110

return time, 383, 417

reversible, 391, 410, 445
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sample range, 116

sample space, 14

secretary problem, 101

separating collection, 165

shift, 471

Bernoulli, 472

shorting, see electric network423

sieve, 60, 61

sigma-algebra, 2

Skorokhod

inequality, 238

representation, 165

SLE, 436, 437, 439, 445

SLLN, 145, 151, 157, 204, 207, 208, 324, 333, 340, 404

space

Lusin, 110, 111, 122

measurable, 2

measured, 13

metric, 110, 164

Polish, 110

stable sequence, 243

standard deviation, 47

state

accessible, 377

aperiodic, 380

period of, 380

persistent, 385

recurrent, 385

transient, 385

stationary

distribution, 390

measure, 390

stationary sequence, 471

Stieltjes

measure, 20

Stirling’s formula, 388, 389, 500

stochastic integral

discrete, 273, 359

stochastic matrix, 369

stochastic process, 118, 266

indistinguishable, 228, 271

stochastically equivalent, 228

version of, 228

stopped process, 274

stopping time, 98, 274, 383

optimal, 99

strictly convex function, 46

strong Markov property, 343

subadditivity, 86

subgaussian, see also random variable

submartingale, 266, 271, 273, 275, 277, 293, 346

backwards, 326

discrete time, 266

superadditivity, 85

superharmonic function, 399

supermartingale, 266, 317, 346, 356, 399

backwards, 326

discrete time, 266

survival function, 72

tail

algebra, 25, 329, 473

events, 25

tail-algebra, 475

temporal average, 477

tent map, 471, 490, 496

theorem

Monotone Convergence, 45

Lp-martingale convergence, 323

Alexandrov, 18, 124

asymptotic equipartition property, 160

Backwards Martingale Convergence, 328, 476

Birkhoff’s ergodic, 156, 480

Blumenthal’s 0-1 law, 341

Bochner, 182

Bounded Convergence, 87, 167, 303

Carathéodory Extension, 19, 123

Cayley-Hamilton, 436

central limit, 185

début, 338

Daniell-Stone, 34

de Finetti, 329, 333

de la Vallée-Poussin, 301

Dominated Convergence, 35, 39, 83, 86, 88, 90, 165,
169, 177, 178, 181, 183, 184, 299, 303, 317, 323,

344, 353

Donsker, 234

Doob’s regularization, 348

Dunford-Pettis, 304

Dynkin, 11, 90

Dynkin’s π − λ, 5, 6, 24, 68

ergodic, 405, 484

Fubini-Tonelli, 67, 92, 301

Glivenko-Cantelli, 206

Helly selection, 174, 176, 251

Hewitt-Savage 0-1 law, 332

Ionescu-Tulcea, 125

Kolmogorov continuity, 228

Kolmogorov existence, 52, 122, 370

Kolmogorov one series, 146, 149, 151, 225, 323

Kolmogorov’s 0-1, 25, 81, 146, 305, 485

Kolmogorov-Smirnov, 208

Kuratowski, 111

Lévy’s 0-1, 305, 485

Lévy’s continuity, 182, 296

Lévy’s equivalence, 151, 296

Lévy’s forgery, 366

Lebesgue-Vitali, 302

Lindeberg, 190

Lindenstrauss-Johnson, 203

mapping, 167, 173

mean ergodic, 477

Monotone Class, 10, 67, 90, 107, 109, 372

Monotone Convergence, 32, 35, 36, 69, 80, 93, 107,

323, 349, 353

Optional Sampling, 276, 279, 282, 309, 311, 313,
315, 321

Optional Stopping, 275, 298, 308

Perron-Frobenius, 434

portmanteau, 167, 169, 171

Radon-Nikodym, 36, 94

Raleigh, 422

Riesz Representation, 39, 112

Skorohod representation, 165
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Slutsky, 170, 220, 255

Strong Law of Large Numbers, 152, 324, 333, 485

submartingale convergence, 294, 296, 298, 400, 401
Tikhonov’s compactness, 124

UI Optional Sampling, 307, 316

Wald’s formula, 310
weak law of large numbers, 155

Weyl’s equidistribution, 487
tight, 175, 176, 251

time

hitting, 274
optional, 337

stopping, 274, 337

top-to-random, 464
transience class, 386

transient state, 385

transition matrix, 368
n-th step, 369

locally finite, 398

tree, 431
radially symmetric, 432

UI, 299, 302, 304, 307, 308, 310, 311, 313, 315, 323

uniform absolute continuity, 300

uniform integrability, 299
unimodality, 59

union bound, 59

upcrossing, 292
number, 292

usual conditions, 338, 341, 348

vague convergence, 164

Vapnik-Chervonenkis, see also VC

variance, 47
variation distance, 406

VC
family, 214

dimension, 214

waiting time, 78

walk, 377

weak convergence, 164
weakly mixing, 492
weight function, 15

Wiener
integral, 227, 262, 364

measure, 234

process, 227
WLLN, 155

Young function, 258, 300

zero-one
algebra, 26, 474, 475, 486

event, 26, 474
zig-zag, 28
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