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ABSTRACT. I survey the concepts of Gaussian Hilbert spaces, their chaos decomposition and the ac-
companying Malliavin calculus. I then describe how these ingredients fit in the recent central limit
theorems of Nourdin and Peccati [26] in the Wiener chaos context.
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NOTATION

• We set
N :=

{
n ∈ Z; n > 0

}
, N0 :=

{
n ∈ Z; n ≥ 0

}
.

• If V is a real vector space, we denote by L(V ) the space of linear operators V → V .
• 1A denotes the characteristic function of a subset A of a set S,

1A : S → {0, 1}, 1A(a) =

{
1, a ∈ A,

0, a ∈ S \A.

• For k ∈ N0∪{∞} and n ∈ N we denote byCk
b (Rn) the space ofCk-functions with bounded

derivatives of order ≤ k .
• We will write N ∼ N(m, v) to indicate that N is a normal random variable with mean m

and variance v.
• If C is a symmetric, nonnegative definite m×m matrix, we write N ∼ N(0, C) to indicate

that N is an Rm-valued Gaussian random vector with mean 0 and covariance form C.
• If f : Rm → R is a twice differentiable function, then we denote by Hess(f) its Hessian.

INTRODUCTION

A few years ago I learned about central limit results of the type Breuer and Major [4] pioneered
in the early 80s and I had the distinct feeling that such results would be helpful in my search of a
CLT concerning the distribution of critical points of random functions. The work of Kratz and Léon
[15, 16] convinced me that my initial suspicion had merits. I started these notes with the goal of
learning Major’s techniques and the subsequent developments.

The common set-up of the Breuer-Major type theorems is that of a Gaussian Hilbert space so the
first part of these notes is devoted to this concept. I was greatly influenced by S. Janson’s elegant and
comprehensive book on this subject [12] and by Major’s notes [19]. For a novice in probability such
as myself, Major’s book was extremely helpful since it discusses the type of Gaussian Hilbert spaces
canonically associated to a random function on Rn, and it offers a lot of intuition about the Wiener
chaos decomposition of L2, nonlinear functionals on Gaussian Hilbert spaces.

Part 1 of these notes discusses several important facts about such spaces, and in particular, it
introduces the concept of multiple Ito integral and Wiener chaos decomposition. The diagram formula
plays an important role in this story. I found Janson’s approach in [12] the easiest to digest and it is
the one I have included in Part 1.

While I was learning this subject, and coping with many other academic duties, I did not pay close
attention to things that had developed or were developing in this area. I am talking here about the
new approach to central limit theorems being developed by I. Nourdin, G. Peccati and others1 based
on a very elegant and convenient marriage between Malliavin calculus and the Stein method. The
recent paper of Estrade and Léon [10] was a wake-up call. Luck would have it, Nourdin and Peccati
published their excellent monograph [26] which made my learning job easier, dramatically changed
my thinking and the way I thought about the organization of the paper.

Part 2 is devoted to Malliavin calculus. I follow [26] rather closely, though in some parts I followed
points of view in Bogachev [3] and Janson [12] that looked more appealing to me. I have to say
that Malliavin’s magnum opus [20] has had a great influence on me. I found his monograph very
difficult to penetrate due to its terseness and somewhat confusing notation. My struggle with [20]
had a nontrivial impact though. Malliavin’s elegance and concision are hard to match. Many of his
approaches and points of view are very versatile and I have subconsciously adopted them.

1I apologize in advance to anyone whom I have omitted.
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Part 3, is the reward for the theoretical foundations in the first two parts. Here I followed unashamedly
Nourdin and Peccati, [26]. In Section 11 I discuss the basics of Stein’s method method, while in Sec-
tion 12 I describe how to blend the Malliavin calculus in Part 2 with the Stein method to produce the
key central limit result, Theorem 12.15.

I make no claim of originality. These notes will certainly reflect the fact that my mathematical
background is not that of a probabilist, but I hope they will convey my recent found fascination
with the probabilistic thinking. These notes represent no substitute for the references from which
they draw their inspiration, but may perhaps ease the way of a beginner such as myself into a more
profound investigation. I worked on-off for two years on these notes. Typos and naiveté aside, I am
overall pleased on how these notes turned out and I am posting them with the hope that somebody
else will benefit from this effort. (I will update them, fix typos or clumsy explanations, enhance some
arguments that do not seem as clear in hindsight.)

As I mentioned earlier, the motivation for learning these techniques came from my investigations
of critical points of random functions. This learning process had an immediate payoff for me. In
the span of two months I was able to solve some problems that resisted my efforts for several years,
[23, 24]. That is a most enthusiastic endorsement of the power of the results in [26]!

PART 1. GAUSSIAN HILBERT SPACES AND CHAOS DECOMPOSITIONS

1. FINITE DIMENSIONAL GAUSSIAN MEASURES

1.1. Gaussian measures and random vectors. Denote by γ1 the standard Gaussian measure on R
given by

γ1(dx) =
1√
2π
e−

x2

2 dx.

For any v ≥ 0 and µ ∈ R we denote by γv,µ the probability measure on R given by

γv,µ(dx) =

 1√
2πv

e−
(x−µ)2

2v dx, v > 0

δµ, v = 0,

where δµ denotes the Dirac measure supported at µ. When µ = 0, we use the simpler notation
γv := γv,µ=0. The probability measure γv,µ is called the Gaussian measure on R with mean µ and
variance v. A real valued random variable X is called Gaussian if its probability distribution PX is a
Gaussian measure γv(X),µ(X), i.e., for any Borel set B ⊂ R

P[X ∈ B] = γv(X),µ(X)(B).

The quantities µ(X) and v(X) are respectively the mean and the variance ofX . The Gaussian random
variable is called centered if its mean is zero.

Remark 1.1. The above definition has one æsthetical flaw: it is “coordinate dependent”. One can de-
fine the concept of Gaussian random variable without explicitly describing its probability distribution.
More precisely an integrable random variable X is a mean zero Gaussian random variable if given
two independent random variables Y, Z with the same distribution as X , then, for any θ ∈ [0, 2π],
the random variable (cos θ)Y + (sin θ)Z has the same distribution as X . For a proof we refer to [35,
Sec. 2.2.1]. ⊓⊔

For t ≥ 0 we denote by Rt the rescaling map R → R given by Rt(x) = tx. Then

γv =
(
R√

v

)
#
γ1,
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where (Rt)# denotes the pushforward operation on measures induced by the map Rt. For µ ∈ R we
denote by Tµ the translation R → R given by Tµ(x) = µ+ x. Then

γv,µ =
(
Tµ

)
#
γv =

(
Tµ

)
#

(
R√

v

)
#
γ1.

Given a sequence (vk, µk) ∈ R≥0×R, the sequence of Gaussian measures (γvk,µk
) converges weakly

if and only if the sequence (vk, µk) converges to some (v, µ) as k → ∞. If this happens, then

γvk,µk
⇒ γv,µ as k → ∞.

where “⇒” denotes the weak convergence of probability measures.
The Fourier transform of the measure γv,µ is the function γ̂v,µ : R → C given by

γ̂v,µ(ξ) =

∫
R
eiξxγv,µ(dx) = eiµξ−

v
2
|ξ|2 , i :=

√
−1. (1.1)

Example 1.2. Suppose that X is a real valued, centered Gaussian random variable with variance v
defined on the probability space (Ω,F,P). Then,

E
[
etX

]
= e

vt2

2 . (1.2)

Indeed,

E
[
etX

]
=

1√
2πv

∫
R
etxe−x2/(2v)dt = e−

x2−2vtx+v2t2

2v · etv2/2dx

=
etv

2/2

√
2πv

∫
R
e−

(c−vt)2

2v dt = etv
2/2.

In particular, we deduce that

etX ∈ Lp(Ω,F,P), ∀p ∈ [1,∞), (1.3)

E
[
Xn

]
=

{
0, n ≡ 1 mod 2

vk1 · 3 · · · (2k − 1), n = 2k.
(1.4)

⊓⊔

Suppose that X is a finite dimensional real vector space. Denote by BX the σ-algebra of the Borel
subsets of X . A Gaussian measure on X is a Borel probability measure γ on X such that, for any
ξ ∈ X∨ := Hom(X,R), the pushforward ξ#γ is a Gaussian measure γv(ξ),µ(ξ) on R with mean
µ(ξ) and variance v(ξ). More precisely

µ(ξ) := E[ξ] =
∫
X
ξ(x)γ(dx), v(ξ) =

∫
X

(
ξ(x)− µ(ξ)

)2
γ(dx).

The linearity of the expectation of a random variable implies that the map

X∨ ∋ ξ 7→ µ(ξ)

is linear, and thus defines a point µ = µγ ∈ V called the mean or barycenter of γ.
Equivalently, after fixing a norm on X , we can define µγ as the Bochner integral

µγ :=

∫
X
xγ(dx).

The map
X∨ ∋ ξ 7→ v(ξ) ∈ R
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is a nonnegative definite quadratic form and thus defines a symmetric, nonnegative definite bilinear
form

C = Cγ : X∨ ×X∨ → R,
called the covariance form of γ. The Gaussian measure γ is called centered if µγ = 0.

The Fourier transform of γ is the function γ̂ : X∨ → C given by

γ̂(ξ) = E
[
eiξ
]
=

∫
X
ei⟨ξ,x⟩γ(dx) = ei⟨ξ,µγ⟩− 1

2
Cγ(ξ,ξ).

An X-valued random variable is called Gaussian if its probability distribution is a Gaussian measure
on X .

Observe that if (γn) is a sequence of Gaussian measures on X with barycenters µn, covariance
forms Cn, and converging weakly to a probability measure γ, then for any ξ ∈ X∨ the Gaussian
measures ξ#γn on R converge weakly to ξ#γ. Hence, ξ#γ is a Gaussian measure for any linear
functional ξ : X → R. Thus, the limiting measure γ is also Gaussian. Moreover

µγ = lim
n
µγn

, Cγ = lim
n
Cγn

.

If Y is another finite dimensional real vector space, A : X → Y is a linear map and γ is a Gaussian
measure on X , then the pushforward A#γ is a Gaussian measure on Y with mean

µA#γ = Aµγ ,

and covariance form CA#γ described by

CA#γ(η1, η2) = Cγ(A
∨η1, A

∨η2), ∀η1, η2 ∈ Y ∨,

where A∨ : Y ∨ → X∨ is the dual or transpose of A : X → Y .

Remark 1.3. If the vector space X is equipped with a Euclidean inner product (−,−), and γ is a
centered Gaussian measure on X with covariance form C, then we can identify X∨ with X and the
resulting symmetric bilinear form C with a nonnegative symmetric operator S : X → X ,

C(x1, x2) = (Sx1, x2), ∀x1, x2 ∈ X.

We will denote by ΓS this Gaussian measure.
If S happens to be invertible, then the measure ΓS admits the more explicit description

ΓS(dx) =
1√

det 2πS
e−

1
2
(S−1x,x)dx. ⊓⊔

In general, if γ is a centered Gaussian measure on the n-dimension real vector space and

C : X∨ ×X∨ → R
is its covariance form, then we can choose a basis ξ1, . . . , ξn of X∨ that diagonalizes C, i.e.,

E
[
ξiξj

]
=

{
0, i ̸= j

vi ∈ {0, 1}, i = j.
.

The basis {ξ1, . . . , ξn} of X∨ determines a dual basis {e1, . . . , en} of X , the forms ξk are then the
coordinates on X determined by the basis {e1, . . . , en} and γ can be identified with the product
measure on Rn

γ(dξ) =
n⊗

k=1

γvk
(dξk). (1.5)

⊓⊔
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Definition 1.4. A Gaussian random field parametrized by the set S is a family (Xs)s∈S of real
valued random variables defined on the same probability space (Ω,F,P) such that, for any finite
subset F ⊂ S the RF -valued random vector

Ω ∋ ω 7→
(
Xs(ω)

)
s∈F ∈ RF

is Gaussian. The random field is called finite, if the set S is finite, and centered, if all the random
variables Xs, s ∈ S, are centered. ⊓⊔

Remark 1.5. Suppose that (Xk)1≤k≤n is a centered Gaussian random field such that

E[XiXj ] = 0, ∀i ̸= j.

The discussion in Remark 1.3, especially (1.5), shows that the random variables (Xk)1≤k≤n are
independent. In other words, in the Gaussian world, uncorrelated random variables are independent.⊓⊔

1.2. Wick’s formula. Suppose we are given a centered, finite Gaussian random field, (Xk)1≤k≤n.
A Feynman diagram on these random variables is a graph Γ with n vertices labeled X1, . . . , Xn

such that any vertex is connected to at most one other vertex. In other words, a Feynman diagram
is a partial matching of the random variables Xk. The weight w(e) of an edge e = [Xi, Xj ] of a
Feynman diagram is the correlation w(e) := E[XiXj ].

If Γ is a Feynman diagram, we denote by E(Γ) the set of edges of Γ, and by I(Γ) the set of isolated
vertices. The number of edges of a Feynman diagram Γ is called the rank of the diagram and it is
denoted by r(Γ).

A Feynman diagram is called complete if it has no isolated vertices, i.e., each vertex is connected
with exactly one other vertex. The weight of a Feynman diagram Γ is the random variable

w(Γ) :=

 ∏
e∈E(Γ)

w(e)

 ∏
k∈I(Γ)

Xk.

When the diagram is complete, its weight is the real number

w(Γ) :=
∏

e∈E(Γ)

w(e),

where E(Γ) denotes the set of edges of Γ.

Lemma 1.6. Denote by dn(r) the number of Feynman diagram of rank r with n vertices.

dn(r) =

(
n

n− 2r

)
(2r − 1)!! =

n!

2r(n− 2r)!r!
(1.6)

Proof. Let us first observe that

dn(r) =

(
n

n− 2r

)
d2r(r).

Next observe that
d2r(r) = (2r − 1)d2r−2(r − 1).

Indeed, in a complete Feynman diagram with 2r vertices the vertex labelled 1 is connected with a
unique other vertex. Therefore there are (2r − 1) way of producing an edge that has vertex 1 as one
of his edges. After removing this edge we are left with a complete Feyman diagram with (2r − 2)
edges. ⊓⊔
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We have Wick’s formula

E
[
X1 · · ·Xn

]
=
∑
Γ

w(Γ) , (1.7)

where the summation is carried over all the complete Feynman diagrams on the variablesX1, . . . , Xn.
Note that if n is odd, then the sum in the right-hand-side of (1.7) is trivial.

To prove (1.7) we first observe that

E[X1 · · ·Xn] =
1

n!

∂n

∂t1 · · · ∂tn
∣∣
t1=···=tn=0

E
[
(t1X1 + · · ·+ tnXn)

n
]
.

Next, we observe that t1X1 + · · ·+ tnXn is a centered Gaussian variable with variance

v(t1, . . . , tn) =
n∑

i,j=1

E[XiXj ]titj =
n∑

j=1

E[X2
j ]t

2
j + 2

∑
i<j

E[XiXj ]titj .

If we let n = 2k, we deduce from (1.4) that

E
[
(t1X1 + · · ·+ t2kX2k)

2k
]
= (2k − 1)!!

(
2k∑

i,j=1

E[XiXj ]titj

)k

.

so that

E[X1 · · ·X2k] =
(2k − 1)!!

(2k)!

∂2k

∂t1 · · · ∂t2k
∣∣
t1=···=t2k=0

(
2k∑

i,j=1

E[XiXj ]titj

)k

= (2kk!)
(2k − 1)!!

(2k)!

∑
Γ

w(Γ) =
∑
Γ

w(Γ).

2. GAUSSIAN HILBERT SPACES AND THEIR FOCK SPACES

Definition 2.1. A Gaussian linear space is a vector space X of real random variables defined on the
same probability space (Ω,F,P) such that any random variable X ∈ X is centered Gaussian. If the
vector space X is closed in L2(Ω,F,P), then we say that X is a Gaussian Hilbert space. ⊓⊔

Example 2.2. If X is a finite dimensional real vector space equipped with a centered Gaussian
measure, then its dual X∨ is canonically a Gaussian Hilbert space. ⊓⊔

Example 2.3 (The Main Example). Suppose that (Xt)t∈T is a centered Gaussian random field pa-
rameterized by the set T . Thus, there exists a probability space (Ω,F,P) and a map

X : T × Ω → R, T × Ω ∋ (t, ω) 7→ Xt(ω) ∈ R

with the following properties.
(i) For any t ∈ T , the map Xt : Ω → R is measurable.

(ii) For any n ∈ N and any t1, . . . , tn ∈ T the random vector (Xtk)1≤k≤n ∈ Rm is centered
Gaussian.

The closed subspace X ⊂ L2(Ω,F,P) generated by the collection (Xt)t∈T is called the Gaussian
Hilbert space associated to the random field (Xt)t∈T . We can then view the random field as a map

T ∋ t 7→ Xt ∈ X .
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The space RT of functions T → R is equipped with a natural σ-algebra, namely the smallest σ-
algebra such that all the natural projection πt : RT → R are measurable. For every ω ∈ Ω we denote
by X(ω) the function T → R given by t 7→ Xt(ω). The resulting map

Ω ∋ ω 7→ X(ω) ∈ RT

a probability measure on the space of functions RT . Thus, we can view a random field parametrized
by T as a random function on T .

Conversely, any probability measure µ on RT such that all the projections πt are measurable, then
we can regard RT as a sample space and the projection πt as a random function on T . Additionally,
if for any finite subset S ⊂ T the pushforward on RS is a centered Gaussian measure, we get a
tautological Gaussian random field parametrized by T ,

X : T × RT → R, (t,RT ) ∋ (t, f) 7→ Xt(f) := f(t) ∈ R. ⊓⊔

Definition 2.4. An isonormal Gaussian process is a triplet (H,X ,W ) where X is a Gaussian
Hilbert space, H is a Hilbert space and W : H → X is an isomorphism of Hilbert spaces. The map
W is called the white noise map of the isonormal process. ⊓⊔

Example 2.5. Suppose that H is a separable, real Hilbert space with inner product (−,−)H . A
Gaussian measure on H is a Borel probability measure Γ such that, for any h ∈ H , the linear
functional Lh : H → R, Lh(x) = (h, x), is a centered Gaussian random variable. In particular, the
collection (Lh)h∈H is a Gaussian random field parameterized by H .

We denote by C(h1, h2) the covariance of Lh1 , Lh2 ,

C(h1, h2) = E
[
Lh1Lh2

]
.

This defines an inner product on H∗ = Hom(H,R). As explained in [8], there exists a symmetric,
nonnegative trace class operator Q such that

C(h1, h2) =
(
Qh1, h2

)
H
, ∀h1, h2 ∈ H.

Assume for simplicity that kerQ = 0.
To this Gaussian measure we can associate the Gaussian Hilbert spaceH∗

Γ defined as the closure in
L2(H,Γ) of the vector space spanned by (Lh)h∈H . Note that we have a continuous map with dense
image

L : H → H∗
Γ, h 7→ Lh. (2.1)

The Hilbert space H∗
Γ is canonically isomorphic with H as a Hilbert space. To construct this isomor-

phism consider the dense subspace Q1/2H .

W : Q1/2H → L2(H,Γ), Q1/2H ∋ z 7→Wz := LQ−1/2z.

Clearly the image of W is equal to the image of the map L in (2.1). Observe that

E
[
Wz1Wz2

]
= (z1, z2)H , ∀z1, z2 ∈ Q−1/2H.

This shows that the map W extends by continuity to an isometry W : H → H∗
Γ. This isomorphism

of Hilbert spaces is called the white noise map. Observe that the triplet (H,H∗
Γ,W ) is an isonormal

Gaussian process.
The subspace Q1/2H ⊂ H is called the Cameron-Martin space. If we identify H with its topo-

logical dual we observe that H∗ = H ⊂ H∗
Γ. One could think of the elements of H∗

Γ as measurable
linear functional H → R.

We fix an orthonormal (ek)k∈N (complete) basis of H consisting of eigenvectors of Q,

Qen = λnen, n ∈ N.
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The collection of linear functionals

Wen =
1√
λn
Len , n ∈ N

is an orthonormal basis of the associated Gaussian Hilbert space H∗
Γ. ⊓⊔

Suppose that X ⊂ L2(Ω,F,P) is a Gaussian Hilbert space. We denote by F̂ the σ-subalgebra of
F generated by the collection of random variables X ∈ X and we define

X̂ := L2(Ω, F̂,P) ⊂ L2(Ω,F,P).

For reasons that will become clear a bit later, we will refer to X̂ as the Fock space2 of X . To
understand what happens when we pass from a Gaussian Hilbert space X to its Fock space X̂ we
consider first the simplest possible case, dimX = 1.

2.1. Hermite polynomials. Consider the standard Gaussian measure P = γ1 on Ω = R,

γ1(x) =
1√
2π
e−

x2

2 dx.

As explained in Example 2.2, this tautologically defines a one-dimensional Gaussian Hilbert space
X1 spanned by the identity function 1R. In this case F is the σ-algebra BR of the Borel subsets of R
and F̂ = BR. Moreover, we have

L2(Ω, F̂,P) = X̂1 = L2(R, γ1).

We see in this example that the Fock space X̂1 is much larger than X1. A convenient orthogonal
basis of X̂1 = L2(R,γ1) is given by the Hermite polynomials (Hn)n≥0, [20, V.1.3].

To define these polynomials we introduce the creation operator δx : C∞(R) → C∞(R),

δxf(x) = −e
x2

2 ∂x
(
e−

x2

2 f(x)
)
= −∂xf(x) + xf(x). (2.2)

The creation operator is the formal adjoint with respect to the inner product in L2(R,γ1) of the usual
differential operator ∂x , i.e.,∫

R
f ′(x)g(x)γ1(dx) =

∫
R
f(x)δxg(x)γ1(dx), ∀f, g ∈ C∞

0 (R).

Then
Hn(x) = δnx1. (2.3)

Equivalently,

∂nx
(
e−

x2

2
)
= (−1)nHn(x)e

−x2

2 .

Let us observe that the operators ∂x, δx satisfy the Heisenberg identity

[∂x, δx] = 1 .

Using this iteratively we deduce

∂xHn(x) = nHn−1(x), ∀n ∈ N, (2.4a)

δx∂xHn(x) = nHn(x), ∀n ∈ N. (2.4b)
From the defining equation (2.3) we obtain the recurrence relation

Hn+1(x) = δxHn(x) = −H ′
n(x) + xHn(x), ∀n ≥ 0. (2.5)

2The “Fock-space” terminology does not seem to be very used in probabilistic circles, but it is what it is.
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For example,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15.

More generally

Hn(x) = n!

⌊n
2
⌋∑

m=0

(−1)m

2mm!(n− 2m)!
xn−2m (1.6)

=

⌊n
2
⌋∑

m=0

(−1)mdn(m)xn−2m. (2.6)

Observe that the leading coefficient of Hn(x) is 1. Note that for |x| ≥ 1 we have

|Hn(x)| ≤
n∑

m=0

(
n

m

)
|x|n−m

(
1

2

)m

=

(
1

2
+ |x|

)n

, ∀|x| ≤ 1, (2.7a)

|Hn(x)| ≤
(
3

2

)n

, ∀|x| ≤ 1. (2.7b)

From the equalities (2.3) and (2.4a) we deduce that the collection (Hn)n≥0 is orthogonal inL2(R,γ1),∫
R
Hm(x)Hn(x)γ1(dx) = δnmn!. (2.8)

Moreover, the collection (Hn)n≥0 spans a dense subspace in L2(R,γ1) so that any f ∈ L2(R,γ1)
admits a Hermite decomposition

f =
∑
n≥0

cn(f)Hn(x), cn(f) =
1

n!

∫
R
f(x)Hn(x)γ1(dx).

Let us point out that if g ∈ C∞(R) has the property that

g(k) ∈ L2(R,γ1), ∀k ≥ 0,

then we have the following expansion in L2(R,γ1)

g(x) =
∑
n≥0

1

n!
Eγ1

[
g(n)

]
Hn(x), (2.9)

where Eγ1 denotes the expectation with respect to the probability measure γ1. If in the above equality
we choose

g(x) = gλ(x) = eλx−
λ2

2 ,

Then

g
(n)
λ (x) = λneλx−

λ2

2 , Eγ1

[
g
(n)
λ

]
= λne−

λ2

2

∫
R
eλxγ1(dx)

(1.2)
= λn.

This proves that ∑
n≥0

Hn(x)
λn

n!
= eλx−

λ2

2 = gλ(x), (2.10)

where the above series converges in L2(R,γ1) for any λ ∈ C. The estimates (2.7a) and (2.7b) show
that the above series also converges uniformly on the compacts of R× C.
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2.2. Hermite decompositions. Suppose that X ⊂ L2(Ω,F,P) is a separable Gaussian Hilbert
space. Fix a complete orthonormal base (Xn)n≥1 of X . In particular, we have

E
[
XiXj

]
= δij = the Kronecker δ,

and thus the random variables (Xn)n≥1 are independent. Additionally, each of the random variables
Xn is Gaussian with mean zero and variance 1, and the σ-algebra σ(X1, X2, . . . ) generated by the
collection (Xn) coincides with the σ-algebra F̂.

Consider the space RN, equipped with the product measure3

γN
1 =

⊗
n∈N

γ1(dxn),

defined on the Borel σ-algebra BN of the space RN equipped with the product topology.
We have a natural map

X⃗ : Ω → RN, ω 7→
(
X1(ω), X2(ω), . . . ,

)
.

Then

F̂ = σ(X1, X2, . . . , ) = X⃗−1(BN)

and

X⃗#(P) = γN
1 .

This yields an isomorphism of Hilbert spaces

X̂ = L2(Ω, F̂,P) → L2(RN,γN
1 ).

Moreover, a function f : Ω → R is σ(X1, X2, . . . , )-measurable if and only if there exists a BN-
meansurable function F : RN → R, such that

f(ω) = F
(
X1(ω), X2(ω), . . .

)
, ∀ω ∈ Ω.

Additionally f ∈ X̂ iff F ∈ L2(RN,γN
1 ).

We can construct an orthonormal basis of L2(RN,γN
1 ) as follows. For any multi-index

α = (α1, α2, . . . ) ∈ NN
0

such the αk = 0 for k sufficiently large, we consider the multi-variable polynomial

Hα(x) =
∏
k∈N

Hαk
(xk), x = (x1, x2, . . . ) ∈ RN.

The collection Hα thus obtained is a complete orthogonal basis of L2(RN,γN
1 ) and (2.8) shows that

∥∥Hα

∥∥2
L2(RN ,γN

1 )
= α! :=

∞∏
k=1

αk!. (2.11)

3For a construction of countable products of probability measures we refer to [14, Sec.14.3].
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3. THE WIENER CHAOS DECOMPOSITION

Fix a probability space (Ω,F,P). Suppose that X ⊂ L2(Ω,F,P) is a separable Gaussian Hilbert
space. We want to describe a coordinate independent orthogonal decomposition of the Fock space X̂
that is closely related to the coordinate dependent Hermite decomposition described above.

Proposition 3.1. The vector space

spanR
{
ξ1 · · · ξn; n ∈ N, ξ1, . . . , ξn ∈ X

}
is dense in X̂ = L2(Ω, F̂,P).

Proof. Fix a complete orthonormal basis X1, X2, . . . , Xn, . . . of X . We will prove that

PC := spanC

{
Xα1

1 · · ·Xαn
n ; n ∈ N, α1, . . . , αn ∈ N0

}
is dense in X̂C = X̂ ⊕ iX̂ . We follow the approach in the proof of [12, Thm.2.6].

Denote by P̂C the closure of PC in X̂C. We will prove prove that

X̂C ⊂ P̂C.

Set
Vn = span

{
X1, X2, . . . , Xn,

}
, V =

⋃
n≥1

Vn.

The result follows from the following two facts.

A. eiX ∈ X̂C = X̂ + iX̂ for any X ∈ X .
Proof. Let X ∈ X . Then

eiX =
∞∑
k=0

ik

k!
Xk,

where the above series converges in L2(Ω,F,P). This proves that eiX ∈ X̂C.

B. If Z ∈ X̂C and E(ZeiX) = 0, ∀X ∈ V, then Z = 0.
Proof of B. We set

Fn = σ(X1, X2, . . . , Xn),

so we get a filtration of σ-algebras
F1 ⊂ F2 ⊂ · · ·

such that

F̂ =
∞⋃
n=1

Fn. (3.1)

Suppose that Z ∈ X̂C and E(ZeiX) = 0, ∀X ∈ V. We set

Zn := E
[
Z|Fn

]
.

The definition of conditional expectation implies that

E[Zne
iX ] = 0, ∀X ∈ Vn.

Now observe that since Zn ∈ L2(Ω,Fn,P) we have

Zn(ω) = φn(X1(ω), . . . , Xn(ω) )

for some φ ∈ L2(Rn,γn
1 ). We deduce that

E
[
φn(X1, . . . , Xn)e

it1X1+···+itnXn
]
= 0, ∀t1, . . . , tn ∈ R.
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In other words, the Fourier transform of the complex valued measure

φn(x1, . . . , xn)γ1(dx1) · · ·γn(dxn)

is trivial so that φn = 0. Hence Zn = 0, ∀n ∈ N, i.e.,

E[Z|Fn ] = 0, ∀n ∈ N.

Using (3.1), we deduce from Doob’s Martingale Convergence theorem4

Z = E
[
Z|F̂

]
= lim

n→∞
E[Z|Fn ] = 0.

⊓⊔

For n ∈ N0 we define Pn(X ) to be the closure in X̂ of the subspace{
p(ξ1, . . . , ξm); m > 0, ξ1, . . . , ξm ∈ X , p ∈ R[x1, . . . , xm], deg p ≤ n

}
.

Proposition 3.1 shows that the vector space

P(X) =
⋃
n≥0

Pn(X ),

is dense in X̂ . Clearly Pn−1(X ) ⊂ Pn(X ). We denote by X :n: the orthogonal complement of
Pn−1(X ) in Pn(X ). We deduce that

X̂ =
⊕̂
n≥0

X :n:, (3.2)

where the direct sum in the right-hand-side indicates a Hilbert-complete direct sum, i.e.,

ξ ∈
⊕̂
n≥0

X :n:⇐⇒ξ = (ξn)n≥0, ξn ∈ X :n:,
∑
n≥0

∥ξn∥2L2 <∞.

The decomposition (3.2) is called the Wiener chaos decomposition of X̂ . We will denote by Projn
the orthogonal projection X̂ → X :n:.

Example 3.2. Suppose that X is the 1-dimensional Gaussian Hilbert space generated by a standard
Gaussian random variable ξ with mean 0 and variance 1. In this case

Pn(X ) = spanR{Hk(ξ); k ≤ n}.
Since E[Hj(ξ)Hk(ξ)] = 0 for j ̸= k, we deduce that

X :n: = span{Hn(ξ) }.
Moreover, (2.9) implies that, ∀n ≥ 0 we have

ξn =

n∑
k=0

(
n

k

)
E[ξn−k]Hk(ξ) =

⌊n/2⌋∑
j=0

(
n

2j

)
E[ξ2j ]Hn−2j(ξ) (3.3)

(1.4)
=

⌊n/2⌋∑
j=0

(2j − 1)!!

(
n

2j

)
Hn−2j(ξ).

In particular,
Projn(ξ

n) = Hn(ξ). (3.4)

4This is a very special case of the martingale convergence theorem. However, even this special case is rather nontrivial
because it implies (a form of) Lebesgue’s differentiation theorem. We refer to [34, Cor. 5.2.4] for a proof.
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If X is a separable Gaussian Hilbert space andX = (Xn)n≥1 is a complete orthonormal basis of X ,
then the computations in Example 2.2 show that Pn(X ) is the closure of the subspace of L2(Ω,F,P)
spanned by the ”polynomials”

Hα(X ) = Hα(X1, X2, . . . ),

where α ∈ NN
0 is any multi-index such that |α| ≤ n, where we recall that

|α| := α1 + α2 + · · · . ⊓⊔

From the above example we obtain the following useful consequence.

Corollary 3.3. Suppose that X = (Xk)k≥1 is a complete orthonormal basis of X . Then the collec-
tion

Hα(X ), α ∈ NN
0 , |α| = n,

is an orthogonal basis of X :n:. ⊓⊔

4. WICK PRODUCTS AND THE DIAGRAM FORMULA

Fix a probability space (Ω,F,P), a separable real Gaussian Hilbert space X ⊂ L2(Ω,F,P).
Denote by X̂ the Fock space of X , and consider the Wiener chaos decomposition

X̂ =
⊕̂
n≥0

X :n:.

As usual, we denote by Projn the orthogonal projection X̂ → X :n:. We have bilinear maps

X :m: × X :n: → X :(m+n):, X :m: × X :n: ∋ (ξ, η) 7→ ξ • η := Projm+n(ξη).

Remark 4.1. If X = (Xk)k≥1 is a complete orthonormal basis of X , and α, β ∈ N0 are such that
|α| = m, |β| = n, then

Hα(X) •Hβ(X) = Hα+β(X). (4.1)

Indeed
Hα(X) •Hβ(X) =

∑
|γ|=m

cγHγ(X).

Now observe that for any multi-index γ such that |γ| = m + n, and γ ̸= α + β the coefficient of
Xα+β in Hγ(X) is 0, while the coefficient of Xα+β in Hα+β(X) is 1. ⊓⊔

Definition 4.2. Fix n random variables ξ1, . . . , ξn ∈ X and a polynomial P ∈ R[x1, . . . , xn] of
degree m. The random variable Projm P (ξ1 · · · ξn) is called the Wick polynomial associated to P
and it is denoted by : P (ξ1 · · · ξn) :. ⊓⊔

Theorem 4.3. Let ξ1, . . . , ξn ∈ X . Then

: ξ1 · · · ξn : =
∑
Γ

(−1)r(Γ)w(Γ) , (4.2)

where the summation is over all Feynman diagrams with vertices labelled by ξ1, . . . , ξn.
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Proof. Denote by L(ξ1, . . . , ξm) the left-hand-side of (4.2) and byR(ξ1, . . . , ξm) the right-hand side.
Observe that both L and R are symmetric multi-linear forms in the variables ξ1, . . . , σm and thus

L(ξ1, . . . , ξm) = R(ξ1, . . . , ξm), ∀ξ1, . . . , ξm)⇐⇒L
(
ξ, . . . , ξ︸ ︷︷ ︸

m

)
= L

(
ξ, . . . , ξ︸ ︷︷ ︸

m

)
, ∀ξ.

Letξ ∈ X such that Var
[
ξ
]
= 1. Then

L
(
ξ, . . . , ξ︸ ︷︷ ︸

m

)
=: ξm :

(3.4)
= Hm(ξ).

We set Im = {1, . . . ,m}. For any finite set S we denote D∗(S) the set of complete Feynmans
diagram with vertices in S. Then

R
(
ξ, . . . , ξ︸ ︷︷ ︸

m

)
=
∑
r≥0

(−1)r

 ∑
S⊂Im
#S=2r

∑
Γ∈D∗(S)

 ξm−2r

Now observe

dm(r) =

 ∑
S⊂Im
#S=2r

∑
Γ∈D∗(S)

 ,

where dm(r) denotes the number of diagrams of rank r on a set of m vertices. Hence

R
(
ξ, . . . , ξ︸ ︷︷ ︸

m

)
=
∑
r≥0

(−1)rdm(r)ξm−2r (2.6)
= Hm(ξ) = L

(
ξ, . . . , ξ︸ ︷︷ ︸

m

)
.

⊓⊔

The equality (4.2) has the following immediate consequence.5

Corollary 4.4. Consider n-random variables ξ1, . . . , ξn ∈ X . For any nonnegative integer m we
define

Pm(ξ1, . . . , xm) := span
{
ξα := ξα1

1 · · · ξαm
n ; α ∈ Zn

≥0, |α| ≤ m
}
⊂ Pm(X ).

and we denote by X :m:(ξ1, . . . , ξm) the orthogonal complement of Pm−1(ξ1, . . . , ξn) in the space
Pm(ξ1, . . . , ξn).

If P ∈ R[x1, . . . , xn] is a real polynomial of degree m, then : P (ξ1, . . . , ξn) : is equal to the
orthogonal projection of P (ξ1, . . . , ξn) on X :m:(ξ1, . . . , ξn). ⊓⊔

Corollary 4.4 and (3.3) imply the following result.

Corollary 4.5. Suppose that ξ1, . . . , ξn ∈ X is an orthonormal system, i.e.,

E[ξiξj ] = δij , ∀i, j.
Then for any α ∈ Nn

0 we have

: ξα1
1 · · · ξαn

n := Hα(ξ1, . . . , ξn).

5For a more direct proof of Corollary 4.4 we refer to [19, Prop. 2.2].
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Proof. Set m := |α|. Since the random variables ξ1, . . . , ξn are independent, we deduce that

E[Hβ(ξ1, . . . , ξn)Hγ(ξ1, . . . , ξn) ] =

n∏
j=1

E[Hβj
(ξj)Hγj (ξj) ], ∀β, γ ∈ Zn

≥0.

We deduce from the orthogonality of the Hermite polynomials that the collection(
Hβ(ξ1, . . . , ξn)

)
|β|≤m

is an orthogonal basis of Pm(ξ1, . . . , ξn). In particular, we have a unique linear decomposition

ξα =
∑

|β|≤m

cβHβ(ξ), (4.3a)

: ξα :=
∑

|β|=m

cβHβ(ξ) (4.3b)

For any multi-index β such that |β| = m, the coefficient of ξβ in the right-hand-side of (4.3a) is cβ .
We deduce that cβ = 0 for all β such that |β| = m and β ̸= α. The conclusion of Corollary 4.5 is
now obvious. ⊓⊔

Corollary 4.6. The space

span
{
(: ξ1ξ2 · · · ξn :) ; ξ1, . . . , ξn ∈ X

}
is dense in X :n:.

Proof. Follows from Example 3.2 and Corollary 4.5. ⊓⊔

Theorem 4.7 (Diagram Formula). Consider an array of random variables

(ξ) =
{
ξij ∈ X ; 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi

}
.

Denote by D′(ξ) the collection of Feynman diagrams compatible with the array

(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi.

This means that
• its vertices are labeled by the variables ξij , and
• no edge connects variables situated on the same row of the array ξ.

We let D′
c(ξ) to denote the sub collection of D′(ξ) consisting of complete diagrams. For i =

1, . . . , k we set

Yi := Projℓi

 ℓi∏
j=1

ξij

 , ℓ = ℓ1 + · · ·+ ℓk.

In other words, Yi is the Wick product of the variables situated on the i-th row. Then

E[Y1 · · ·Yk] =
∑

Γ∈D′
c(ξ)

w(Γ) , (4.4a)

Y1 · · ·Yk =
∑

Γ∈D′(ξ)

(: w(Γ) :) =
∑

Γ∈D′(ξ)

Projℓ−2r(Γ)w(Γ) . (4.4b)
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Proof. We follow the approach in [12, Thm. 3.12, 3.15]. Denote by Di the Feynman diagrams with
vertices on the i-th row of the array and by Dc(ξ) the collection of all complete Feynman diagrams
with vertices in the array. Theorem 4.3 implies

Yi =
∑

Γi∈Di

(−1)r(Γi)w(Γi),

Y1 · · ·Yk =
k∏

i=1

 ∑
Γi∈Di

(−1)r(Γi)w(Γi)


=

∑
(Γ1,...,Γk)∈D1×···×Dk

(−1)
∑k

i=1 r(Γi)
k∏

i=1

w(Γi),

so that

E[Y1 · · ·Yk] =
∑

(Γ1,...,Γk)∈D1×···×Dk

(−1)
∑k

i=1 r(Γi)E

[
k∏

i=1

w(Γi)

]
.

Given (Γ1, . . . ,Γk) ∈ D1 × · · · × Dk we denote by D(Γ1, . . . ,Γk) the subcollection of Dc(ξ) that
contains Γ1 ∪ · · · ∪ Γk as a sub diagram. We deduce from Wick’s formula (1.7) that

E

[
k∏

i=1

w(Γi)

]
=

∑
Γ′∈D(Γ1,...,Γk)

w(Γ′)

Hence

E[Y1 · · ·Yk] =
∑
Γ′

w(Γ′)

 ∑
(Γ1,...,Γk)∈D1×···×Dk

Γ1∪···∪Γk⊂Γ′

(−1)
∑k

i=1 r(Γi)


︸ ︷︷ ︸

=:S(Γ′)

Now observe that

S(Γ′) =

k∏
i=1

 ∑
Γi∈Di
Γi⊂Γ′

(−1)r(Γi)


︸ ︷︷ ︸

=:Si(Γ′)

Now observe that Si(Γ′) = 0 if Γ′ has edges connecting vertices on the i-th row, and it is = 1
otherwise. Thus

S(Γ′) =

{
1, Γ′ ∈ D′

c(ξ),

0, Γ′ ∈ D(ξ) \D′
c(ξ).

This proves (4.4a). Denote by L, respectively R the left-hand-side respectively the right-hadn-side of
the equality (4.4b). The (4.4a) which implies that for any random variables

η1, . . . , ηm ∈ span
{
ξij ∈ X , ; 1 ≤ i ≤ k, 1 ≤ j ≤ ℓi

}
we have

E[LZ] = E[RZ], Z := (: η1 · · · ηm :).

The equality (4.4b) now follows from Corollary 4.4. ⊓⊔



18 LIVIU I. NICOLAESCU

Example 4.8. Let us apply the diagram formula in the special case when the array (ξ) consists of two
rows and ξij = ξ, ∀(ij), E[ξ2] = 1. Assume that ℓ1 ≥ ℓ2. Then

Yi = Hℓi(ξ)

and we deduce

Hℓ1(ξ)Hℓ2(ξ) =
∑

Γ∈D′(ξ)

Hℓ1+ℓ2−2r(Γ)(ξ) =

ℓ2∑
r=0

r!

(
ℓ1
r

)(
ℓ2
r

)
Hℓ1+ℓ2−2r(ξ).

More generally, assume the array has two lines, but the variables on the first line are equal to ξ1, while
the variables on the second line are equal to ξ2, E[ξ21 ] = E[ξ2]2. Then, if we set c := E[ξ1ξ2], we
deduce

Hℓ1(ξ1)Hℓ2(ξ2) =
ℓ∑

r=0

r!

(
ℓ1
r

)(
ℓ2
r

)
cr Projℓ1+ℓ2−2r(ξ

ℓ1−r
1 ξℓ2−r

2 ). (4.5)

If ℓ1 = ℓ2 = ℓ, then (4.4a) Implies that

E
[
Hℓ1(ξ1)Hℓ2(ξ2)

]
= ℓ!

(
2ℓ

ℓ

)
cℓ. (4.6)

⊓⊔

The equality (4.4b) implies6 that for any positive integer n there exists a constant C(n) > 0 such
that for any X ∈ Pn(X ) we have

∥X∥L4 ≤ C(n)∥X∥L2 .

In particular, this shows that the bilinear map

X :m: × X :n: ∋ (X,Y ) 7→ X • Y := Projm+n(XY ) ∈ X :m+n:

is continuous. Corollary 3.3 now implies that the multiplication • satisfies the associativity property

(ξ • η) • ζ = ξ • (η • ζ), ∀ξ ∈ X :ℓ:, η ∈ X :m:, ζ ∈ X :n:, ∀ℓ,m, n ∈ N0. (4.7)

Indeed, (4.1) shows that the above equality is true for

ξ, η, ζ ∈
{
Hα(X); α ∈ ZN

≥0, |α| <∞
}
.

The general case follows from the multi-linearity and continuity of (4.7) in ξ, η, ζ. A similar argument
shows that

ξ • η = η • ξ, ∀ξ ∈ X :m:, η ∈ X :n:. (4.8)

We thus obtain a structure of commutative and associative R-algebra on X called the Wick algebra
of X . The product • is called the Wick product. In general, if

ξ =
∑
n≥0

ξn, η =
∑
n≥0

ηn, ξn, ηn ∈ X :n:,

then

ξ • η :=
∑
n≥0

 ∑
j+k=n

ξj • ηk

 .

6See [12, Lemma 3.44] for details.
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5. TENSOR PRODUCTS AND THE FOCK SPACE

5.1. Tensor products of separable Hilbert spaces. The tensor product of two Hilbert spacesH1, H2

is defined as follows. Construct the algebraic tensor product H1 ⊗H2. The universality property of
the tensor product implies that there exists a unique inner product (−,−)H1⊗H2 of H1 ⊗ H2 such
that, for any xi, yi ∈ Hi, i = 1, 2, we have(

x1 ⊗ x2 , y1 ⊗ y2
)
H1⊗H2

= (x1, y1)H1 · (x2, y2)H2 .

We denote by H1⊗̂H2 the completion of H1 ⊗ H2 with respect to the norm defined by the above
inner product. The Hilbert space H1⊗̂H2 is called the (analytic) tensor product of the Hilbert spaces
H1, H2.

For example if, (Mj ,Mj , µj), i = 1, 2, are two measured spaces such that Hj = L2(Mj ,Mjµj),
then there exists a unique isomorphism of Hilbert space

H1⊗̂H2 → L2(M1 ×M2, µ1 ⊗ µ2),

such that

f1 ⊗ f2 7→ (f1 ⊗ f2 :M1 ×M2 → R), f1 ⊗ f2(x1, x2) = f1(x1)f2(x2).

For details we refer to [31, Thm. II.10] or the original source [22].
The tensor product of two separable Hilbert spaces H1, H2 can also be realized as the space of

Hilbert-Schmidt bilinear functionals u : H1 ×H2 → R. This means that for any complete orthonor-
mal bases (em)m≥1 of H1 and (fn)n≥1 of H2 we have∑

m,n≥1

|u(em, fn)|2 <∞.

The tensor product of Hilbert spaces enjoys the usual commutativity and associativity properties

H1⊗̂H2
∼= H2⊗̂H1, (H1⊗̂H2)⊗̂H3

∼= H1⊗̂(H2⊗̂H3).

Given a Hilbert space H we denote by H⊙n its algebraic n-th symmetric product, i.e., the subspace
of H⊗n consisting of elements fixed by the obvious action of the symmetric group Sn. The closure
of H⊙n in H⊗̂n is denoted by H⊙̂n and it is called the analytic n-th symmetric power of H .

Note that we have a natural projector Sym : H⊗n → H⊙n defined by

Sym[x1 ⊗ · · · ⊗ xn] :=
1

n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n), ∀x1, . . . , xn ∈ H.

For x1, . . . , xn ∈ H we set

x1 ⊙ · · · ⊙ xn :=
√
n!Sym[x1 ⊗ · · · ⊗ xn] =

1√
n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n). (5.1)

Note that
x⊙n = x⊙ · · · ⊙ x︸ ︷︷ ︸ = √

n!x⊗n

and
∥x⊙n∥2 = n!∥x∥2n. (5.2)

This is a manifestation of a more general phenomenon.

Lemma 5.1. If e1, . . . , en is an orthonormal system and α = (α1, . . . , αn) ∈ Nn, then

∥e⊙α∥2 := ∥e⊙α1
1 ⊙ · · · ⊙ e⊙αn

n ∥2 = α! = (α1!) · · · (αn!) = ∥Hα∥2. (5.3)
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Proof. Consider the multiset

E :=
{
e1, . . . , e1︸ ︷︷ ︸

α1

, . . . , en, . . . , en︸ ︷︷ ︸
αn

}
,

Define a permutation π of the multiset E to be a map

π : {1, . . . , |α|} → {1, . . . , n}

such that #π−1(k) = αk, ∀k = 1, . . . , n. (The entries of E equal to ek are moved to occupy the
positions in the set π−1(k).) We denote by P(E) the set of permutations of the multiset E. Then

#P(E) =

(
|α|

α1, . . . , αn

)
:=

|α|!
α1! · · ·αn!

,

To each π ∈ P(E) we associate the element

eπ := eπ(1) ⊗ · · · ⊗ eπ(|α|) ∈ H⊗|α|.

Let us observe that
(eπ, eπ′) = δππ′ , ∀π, π′ ∈ P(E).

Then

e⊙α =

∏n
k=1 αk!√
|α|!

∑
π∈P(E)

eπ,

so that

∥e⊙α∥2 =

(∏n
k=1 αk!√
|α|!

)2(
|α|

α1, . . . , αn

)
= (α1!) · · · (αn!).

⊓⊔

The above lemma implies7 that we have continuous bilinear map

⊙ : H⊙m ×H⊙n → H⊙(m+n)

defined by

X ⊙ Y :=

√(
n+m

m

)
Sym

(
X ⊗ Y

)
, ∀X ∈ H⊙m, Y ∈ H⊙n .

We obtain in this fashion a graded associative and commutative algebra⊕
n≥0

H⊙̂n.

Its completion ⊕̂
n≥0

H⊙̂n

is called the Fock space of H and it is denoted by F (H).

7The details are straightforward and not particularly illuminating.
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5.2. The Fock space of a Gaussian Hilbert space. Suppose that X ⊂ L2(Ω,F,P) is a separable
Gaussian Hilbert space. We have a linear map

Θn : X ⊙n → X :n:, (5.4)

naturally determined by the correspondences

ξ1 ⊙ · · · ⊙ ξn 7→ ξ1 • · · · • ξn = : ξ1 · · · ξn :

Corollary 4.5, (2.11) and (5.3) imply that if ξ1, . . . , ξn is an orthonormal system in X , then
√
n!∥Sym[ξ1 ⊗ · · · ⊗ ξn] ∥ =

∥∥∥ξ1 ⊙ · · · ⊙ ξn∥ = ∥ : ξ1 · · · ξn : ∥. (5.5)

We obtain isometries Θn : X ⊙n → X :n: and thus an isomorphism of graded Hilbert spaces

Θ : F (X ) → X̂ .

The associativity (4.7) shows that Ψ is actually an isomorphism of algebras.
If X1,X2 ⊂ L2(Ω,F,P) are two Gaussian Hilbert spaces, then any bounded linear operator

A : X1 → X2 induces bounded linear operators

A⊙n : X ⊙n
1 → X ⊙n

2 , n ∈ N0

uniquely determined by the requirements

A⊙n( ξ1 ⊙ · · · ⊙ ξn ) = (Aξ1 )⊙ · · · ⊙ (Aξn ), ∀ξ1, . . . , ξn ∈ X1.

In particular A⊙0 = 1. Moreover
∥A⊙n∥ = ∥A∥n.

If ∥A∥ ≤ 1, the operators A⊙n combine to a bounded linear operator

F (A) : F (X1) → F (X2).

We deduce that if ∥A∥ ≤ 1, then A induces a bounded linear operator Â : X̂1 → X̂2 uniquely
defined by the equalities

Â( ξ1 • · · · • ξn ) = ( Âξ1 ) • · · · • ( Âξn ), ∀ξ1, . . . , ξn ∈ X1.

Note that
∥Â∥ = 1.

In particular, a unitary isomorphism T : X1 → X1 induces a canonical unitary isomorphism

T̂ : X̂1 → X̂1

which preserves the Wick algebra structure.

Example 5.2. Suppose that H = L2(M,M, µ). Observe that we have a Hilbert space isomorphism

H⊗m ∼= L2(Mm,M⊗m, µ⊗m), f1 ⊗ · · · ⊗ fm(x1, . . . , xm) = f1(x1) · · · fm(xm).

Denote by M⊚n ⊂ M⊗n the σ-algebra consisting of Sn-invariant M⊗n-measurable subsets.
Let us observe that a function f : Mn → R is M⊙n-measurable if and only if it is Sn-invariant.8

We set
µ⊚n :=

1

n!
µ⊗n.

For any f1, . . . , fn ∈ L2(M,M, µ) define

f1 ⊚ · · ·⊚ fn :Mn → R, (f1 ⊚ · · ·⊚ fn)(x1, . . . , xn) =
∑
φ∈Sn

n∏
k=1

fk(xφ(k)).

8For a proof of this fact we refer to [7, Thm. II.4.4].
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Clearly, f1 ⊚ · · · ⊚ fn is Sn-invariant. Arguing as in the proof of Lemma 5.1 we deduce that if
{f1, . . . , fn} ⊂ L2(M,µ) is an orthonormal system and α1, . . . , αn ∈ N, then

∥ f1 ⊚ · · ·⊚ f1︸ ︷︷ ︸
α1

⊚ · · ·⊚ fn ⊚ · · ·⊚ fn︸ ︷︷ ︸
αn

∥2
L2(M |α|,µ⊚|α|) =

n∏
k=1

αk!.

We thus obtain a Hilbert space isomorphism

Ψn : L2(M,M, µ)⊙n → L2(Mn,M⊚n, µ⊚n) (5.6)

uniquely determined by the the requirement

Ψn(f1 ⊙ · · · ⊙ fn) = f1 ⊚ · · ·⊚ fn, ∀f1, . . . , fn ∈ L2(M,M, µ). (5.7)

Observe that L2(M,M, µ)⊙n can be identified with the closed subspace

L2(Mn,M⊗n, µ⊗n)Sn ⊂ L2(Mn,M⊗n, µ⊗n)

consisting of symmetric L2-functions F :Mn → R.
The orthogonal projection onto L2(Mn,M⊗n, µ⊗n)Sn is the symmetrization operator

F 7→ Sym[F ], Sym[F ](x1, . . . , xn) =
1

n!

∑
σ∈Sn

F (xσ(1), . . . , xσ(n)).

Note that
1

n!

∫
Mn

Fdµ⊗n =
1

n!

∫
Mn

Sym(F )dµ⊗n =

∫
Mn

Sym(F )dµ⊚n.

⊓⊔

Remark 5.3. Let I denote the unit interval, B σ-algebra of the Borel subset of I and λ the Lebesgue
measure on B. For any positive integer n we denote by ∆n the simplex

∆n =
{
(x1, . . . , xn) ∈ In; x1 ≤ x2 ≤ · · · ≤ xn

}
.

Observe that the space L2
(
∆n,B

⊗n,λ⊗n
)

is isometric to the subspace

L2
(
In,B⊗n,λ⊚n

)
Sn

= L2
(
In,B⊗n,

1

n!
λ⊗n

)
Sn
. ⊓⊔

Example 5.4. Consider the one-dimensional Gaussian Hilbert space X spanned by a standard nor-
mal random variable ξ. In this case

X̂ = L2(R,γ1).

Any linear operator X → X has the form r1, and it is a contraction provided |r| ≤ 1.
Any f ∈ L2(R,γ1) has the form

f(ξ) =
∑
n≥0

fnHn(ξ), fn =
1

n!
E
[
f(ξ)Hn(ξ)

]
=

1

n!

∫
R
f(x)Hn(x)γ1(dx).

Since : ξn := Hn(ξ) we deduce that r̂1Hn(ξ) = rnHn(ξ) and

r̂1f = r̂1

∑
n≥0

fnHn(ξ)

 =
∑
n≥0

fnr
nHn(ξ).
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The operator r̂1 : L2(R,γ1) → L2(R,γ1), |r| ≤1 is called the Mehler transform. It is an integral
operator with kernel

Mr(x, y) =
∑
n≥0

Hn(x)Hn(y)
rn

n!
∈ L2(R2,γ⊗2

1 ).

The above series converges uniformly for (x, y, r) on the compacts of R2 × (−1, 1). We denote by
Mr the integral operator r̂1. Consider the function

gλ(x) =
∑
n≥0

Hn(x)
λn

n!
= eλx−

λ2

2 .

Observe that for |r| ≤ 1 we have Mrgλ = grλ. This equality determines Mr(x, y) uniquely. Consider
the function

Mr(x, y) =
1√

1− r2
exp

(
−(rx)2 − 2rxy + (ry)2

2(1− r2)

)
.

A direct but tedious computation shows that9∫
R
Mr(x, y)gλ(y)dγ1(dy) = grλ(x)

so that ∑
n≥0

Hn(x)Hn(y)
rn

n!
=

1√
1− r2

exp

(
−(rx)2 − 2rxy + (ry)2

2(1− r2)

)
, ∀|r| < 1.

The function Mr(x, y) =Mr(x, y) is called the Mehler kernel.
The family of operators Tt := ê−t1, t ≥ 0 is called the Ornstein-Uhlenbeck semigroup. ⊓⊔

6. GAUSSIAN NOISE AND THE WIENER-ITO INTEGRAL

Suppose that (Ω,F,P) is a probability space space.

Definition 6.1. A Gaussian Wiener-Ito integral is defined by a measured space (M,M, µ) and a
Hilbert space isometry

J : L2(M,M, µ) → L2(Ω,F,P),
whose image X ⊂ L2(Ω,F,P) is a (real) Gaussian Hilbert space.

A complex Gaussian Wiener-Ito integral is defined by a measured space (M,M, µ) and a complex
Hilbert space isometry

J : L2
C(M,M, µ) → L2

C(Ω,F,P),
whose image is a complex Gaussian Hilbert space. ⊓⊔

Remark 6.2. We see that a Wiener-Ito integral is a special isonormal Gaussian process (H,X , I)
(see Definition 2.4) where H = L2(M,M, µ). ⊓⊔

Example 6.3. Suppose that (Xt)t∈Rn is a centered stationary Gaussian random field defined on the
same probability space (Ω,F,P). The stationarity implies that there exists a function C : Rn → R
such that

E
(
XtXs) = C(t− s), ∀t, s ∈ R. (6.1)

9For a more conceptual approach we refer to [12, Example 4.18], [20, V.1.5] or Lemma 9.3.
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Assume that t 7→ C(t) is continuous. Then Bochner’s theorem [2, 11] implies that there exists a finite
positive Borel measure µ on R such that

C(t) =

∫
Rn

ei(t,ξ)µ(dξ). (6.2)

The measure σ is the so called spectral measure of the stationary field. The exponentials

et(ξ) = ei(t,ξ), t ∈ Rn, (6.3)

span a subspace dense in L2(Rn, µ(dξ)). The equalities (6.1,6.2,6.3) show that the map

J : spanC
{
et; t ∈ Rn

}
→ spanC

{
Xt; t ∈ Rn

}
, et 7→ Xt,

is an isometry. This induces an isometry

J : L2
C(Rn, µ(dξ) ) → XC,

where XC is the complex Gaussian Hilbert space generated by the random field (Xt)t∈Rn . This
proves that Gaussian stationary fields on Rn with continuous covariance kernel come equipped with
a canonical complex Wiener-Ito integral. ⊓⊔

Example 6.4 (Malliavin). Denote by λ the Lebesgue measure on I = [0, 1] by B the σ-algebra of
Borel subsets of I . Let us explain how to construct a probability space (Ω,F,P) and a Gaussian
λ-noise

W : B → L2(Ω,F,P).
For n = 0, 1, 2, . . . we denote by Bn ⊂ B the σ-algebra generated by the closed intervals

In,k =
[
(k − 1)/2n, k/2n

)
, k = 1, . . . , 2n.

Note that we have inclusions

qn : L2(I,Bn, λ) ↪→ L2(I,Bn+1,λ), n = 0, 1, 2, . . .

and orthogonal projections

E
[
−|Bn

]
: L2(I,Bn+1,λ) → L2(I,Bn,λ).

From Doob’s martingale convergence theorem we deduce that⋃
n≥0

L2(I,Bn,λ)

is dense in L2(I,B,λ).
Consider a probability space (Ω,F,P) containing a family of Gaussian random variables

W (In,k) ∈ L2(Ω,F,P), n = 0, 1, . . . , k = 1, . . . , 2n,

such that, for all n = 0, 1, 2, . . . , we have

E
[
W (In,k)W (In,j)

]
= λ(In,k ∩ In,j) =

(
1In,j ,1In,k

)
L2(λ)

, ∀1 ≤ k, j ≤ 2n, (6.4a)

W (In,k) =W (In+1,2k−1) +W (In+1,2k), ∀1 ≤ k ≤ 2n. (6.4b)

The collection
1In,k

, k = 1, . . . , 2n

is an orthogonal basis of L2(I,Bn,λ) and the equality (6.4a) shows that we have an isometry

Wn : L2(I,Bn,λ) ↪→ L2(Ω,F,P).
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We denote by Xn the image of this isometry. The equality (6.4b) shows that we have a commutative
diagram

L2(I,Bn,λ) L2(I,Bn+1,λ)

L2(Ω,F,P)

y w

qn












�Wn+1

u

Wn+1

For any function f ∈ L2(I,B) we set

fn = E[f |Bn] =
∑

1≤k≤2n

f(In,k)1In,k
∈ L2(I,Bn,λ), f(In,k) :=

∫
In,k

f(x)λ(dx),

For m < n we have, fn − fm ∈ L2(I,Bn,λ) and

∥Wn(fn)−Wm(fm)∥L2 = ∥Wn(fn)−Wn(fm)∥L2 = ∥fn − fm∥L2 .

Thus the sequence Wn(fn) converges in L2 to a Gaussian random variable W (f). The resulting map

W : L2(I,B,λ) → L2(Ω,F,P), f 7→W (f),

is a Gaussian Wiener integral. The stochastic process

B(t) =W (I [0,t]), t ∈ [0, 1]

is, up to a modification, the Brownian motion started at the origin. ⊓⊔

The notion of Wiener-Ito integral is intimately related to the notion of Gaussian noise, or Gaussian
stochastic measure.

Definition 6.5. Suppose that (M,M, µ) is a finite measured space. A (complex) Gaussian µ-noise
consists of a probability space (Ω,F,P) and map

W : M → L2(Ω,F,P),
with the following propertite.

• ∀A ∈ M, W (A) is a centered (complex) Gaussian random variable.
• ∀A,B ∈ M

E
(
W (A) ·W (B)

)
= µ(A ∩B).

• ∀A,B ∈ M, A ∩B = ∅,

W (A ∪B) =W (A) +W (B), a.s..

⊓⊔

Observe that if J : L2(M,M, µ) → X is a real Wiener-Ito integral, then the correspondence

M ∋ A 7→W (A) =WJ (A) := J(1A) ∈ X

is a Gaussian µ-noise. Similarly, if J : L2
C(M,M, µ) → XC is a complex Wiener-Ito integral, then

the correspondence
M ∋ A 7→WJ (A) := J(1A) ∈ X

is a complex Gaussian µ-noise.
Conversely, suppose that

(
W (A)

)
A∈M is a Gaussian µ-noise, W (A) ∈ L2(Ω,F,P). Then for

any A ∈ M we set
JW (1A) :=W (A).
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We define a simple function on M to be a measurable function f :M → R with finite range. Denote
by S(M,M) the vector space of simple functions. For f ∈ S(M,M) We define

JW : S(M,µ) → L2(Ω,F,P), JW (f) :=
∑
t∈R

tW
(
f−1(t)

)
.

From the properties of a Gaussian µ-noise we deduce that the map Jµ is linear and

∥JW (f)∥L2 = ∥f∥L2 .

Thus, JW extends to an isometry

JW : L2(M,M, µ) → L2(Ω,F,P)

whose image is a Gaussian Hilbert space. Traditionally one uses the notation

JW (f) :=

∫
M
f(x)Zµ(dx), ∀f ∈ L2(M,M, µ).

Example 6.6 (Brownian motion). Consider the Brownian motion (Bt)t≥0 on [0,∞). It is known that

cov(Bt, Bs) = min(t, s).

The “differential” W (dt) = dBt is a λ-white noise on [0,∞), where λ denotes the Lebesgue mea-
sure. The usual Ito integral [13, 17] associates to each function L2(R≥0,λ) a Gaussian random
variable ∫ ∞

0
f(s)dBs

with mean zero and variance ∥f∥2L2 . We denote by X the Gaussian Hilbert space generated by
(Bt)t≥0. The correspondence

L2(R≥0,λ) ∋ f 7→ J(f) :=

∫ ∞

0
f(s)dBs

is an isometry onto X , and

Bt = J(1[0,t]) =

∫ t

0
dBs. ⊓⊔

Remark 6.7. We see that there exists a bijective correspondence between Wiener-Ito integrals and
Gaussian white noise measures on (M,M, µ). If the measured space is sufficiently regular, say M is
a smooth manifold, M = the σ-algebra of Borel sets and µ the measure induced by a Riemann metric
on M , then on can describe Gaussian µ-noises as certain Gaussian measures on the space C−∞(M),
the space of generalized functions on M . For details we refer to the beautiful presentation in [11,
Sec. III.4]. ⊓⊔

Suppose that J : L2(M,M, µ) → X is a Gaussian Wiener-Ito integral with associated Gaussian
µ-noise W . The isometries (5.4) yield isometries

L2(M,M, µ)⊙̂n → X :n:, ∀n ∈ N0.

Using the isometries (5.6) in Example 5.2 we obtain isometries

Jn : L2(Mn,M⊙n, µ⊙n)
Ψ−1

n−→ L2(M,µ)⊙̂n Θn−→ X :n:.

For example if

F = Sym[f1(x1) · · · fn(xn)] =
1

n!
f1 ⊚ · · ·⊚ fn(x1, . . . , xn) ∈ L2(Mn,M⊙n, µ⊙n),
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then

Ψ−1
n (F ) =

1

n!
f1 ⊙ · · · ⊙ fn, Jn[F ] =

1

n!
J(f1) • · · · • J(fn.)

For F ∈ L2(Mn,M⊗n, µ⊗n) we define its multiple Wiener-Ito integral to be the random variable

In[F ] := n!Jn(Sym[F ]).

Often one uses the integral notation∫
Mn

FdWn =

∫
Mn

F (x1, . . . , xn)W (dx1) · · ·W (dxn) := In[F ], ∀F :Mn → R.

In particular, if F ∈ L2(Mn,M⊗n) is symmetric, then

In[F ] = n!Jn[F ]⇐⇒Jn(F ) =
1

n!

∫
Mn

FdWn.

Note that if F (x1, . . . , xn) = f1(x1) · · · fn(xn), f1, . . . , fn ∈ L2(M,M, µ), then we obtain the
important equality

In[f1(x1) · · · fn(xn)] = In

[
Sym[ f1(x1) · · · fn(xn)]

]
= : J(f1) · · ·J(fn) : . (6.5)

This equality uniquely determines the multiple Ito integral.
Note that since Jn is an isometry we deduce that for any F ∈ L2(Mn,Mn, µ⊗n) have

E
[
| In[F ] |2

]
= E

[ ∣∣ In

[
Sym[F ]

] ∣∣2 ] = E
[ ∣∣n!Jn

[
Sym[F ]

] ∣∣2 ]
= ∥n!Sym[F ]∥2L2(Mn,µ⊚n) = n!∥Sym[F ]∥2L2(Mn,µ⊗n) ≤ n!∥F∥2L2(Mn,µ⊗n).

We observe that any X ∈ X̂ has a unique orthogonal decomposition

X =
∑
n≥0

In[Fn] =
∑
n≥0

∫
Mn

FndW
n,

where Fn :Mn → R are symmetric L2-functions. Moreover

E[X2] =
∑
n≥0

n!∥Fn∥2L2(Mn,µ⊗n) =
∑
n≥0

(n!)2∥Fn∥2L2(Mn,µ⊚n).

Remark 6.8. There are many normalization conditions involving the multiple Ito integrals and there
is danger of confusion. In [28], the Hermite polynomials have a different normalization than the one
we use in these notes which is the more commonly used. If F : Mn → R symmetric function, then
In(F ), as defined in [28] coincides with the multiple integral In[F ] defined above.

The operator Jn that we have described in this section coincides with the operator IG in [19]. The
correspondence L2(M,µ) ∋ f 7→ I1(f) = J(f) ∈ X is the white-noise map which explains why,
in many books it is denoted denoted by f 7→W (f).

When the measure µ has no atoms, the multiple Ito integral can be given a constructive description
that justifies the terminology integral. Fo details refer to [21, §VI.2] or [28, §1.1.2]. ⊓⊔

Suppose that we are given a (real) Gaussian Wiener integral J : L2(M,M, µ) → X with associ-
ated µ-noise W . If F :M2 → R is an integrable function we define the contraction

CF :=

∫
M
F (x, x)µ(dx).
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More generally, if F :Mn → R and 1 ≤ i < j ≤ n we define the contraction CijF :Mn−2 → R to
be

CijF :=

∫
M
F (x1, . . . , xn)xi=xj=x µ(dx)

Given a Feynman diagram Γ with vertices labelled by {1, . . . , n} we define

CΓ :=
∏

e∈E(Γ)

Ce,

where for any edge e = (i, j) of Γ we set Ce = Cij .

Lemma 6.9. Suppose we are given functions Fi ∈ L2(Mni), i = 1, . . . , k. We define

F = F1 ⊗ · · · ⊗ Fk :Mn → R, n =
k∑

i=1

ni,

F1 ⊗ · · · ⊗ Fk(x11, . . . , x1n1 ; . . . ;xk1, . . . , xknk
) :=

k∏
j=1

Fj(xj1, . . . , xjnk
).

For any Feynman diagram Γ compatible with the array

(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ ni,

we have

∥CΓ(F1 ⊗ · · · ⊗ Fk)∥L2(Mn−2r(Γ)) ≤
k∏

j=1

∥Fj∥L2 .

Proof. We use induction on k. The case k = 1 is trivial since Γ has no wedge and thus CΓ(F ) = F .
For k = 2, we can assume, after relabeling the variables, that the r(Γ) edges of Γ connectd the

vertices (1, j) and (2, j), j = 1, . . . , r. Then for

x′ ∈Mn1−r, x′′ ∈Mn2−r, y ∈M r

we have
CΓF (x

′, x′′) =

∫
Mr

F1(y, x
′)F2(y, x

′′)µr(dy)

and thus, by Cauchy-Schwarz

|CΓF (x
′, x′′)|2 ≤

(∫
Mr

F1(y, x
′)2µr(dy)

)(∫
Mr

F2(y, x
′′)2
)
µr(dy)

Integrating the remaining variables (x′, x′′) we deduce

∥CΓ(F )∥2L2 ≤ ∥F1∥2L2 · ∥F2∥2L2 .

This disposes of the case k = 2.
For k > 2 we set

F ′
2 = f2 ⊗ · · · ⊗ Fk.

Denote by Γ1 the subdiagram of Γ consisting of the edges that have one vertex on the first row, (1, j),
1 ≤ j ≤ n1, and denote by Γ2 the subdiagram of Γ determined by the edges of Γ that connect points
on rows different from the first row.

We than have
CΓ(F ) = CΓ1

(
F1 ⊗ CΓ2(F

′
2)
)
.

Thus, using the inequality established for k = 2 and the induction assumption we reach the desired
conclusion. ⊓⊔
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Suppose we are given functions Fi ∈ L2(Mni), i = 1, . . . , k. We set

Yi = Ini [Fi] = Ini

[
Sym[Fi]

]
∈ X :ni:, 1 ≤ i ≤ k.

From the Diagram Formula (Theorem 4.7) we deduce rather easily (see [12, Thm. 7.33] for details)
the following important result.

Theorem 6.10. We set n := n1 + · · ·+ nk. Then

Y1 · · ·Yk =
∑
Γ∈D

In−2r(Γ)[CΓ(F1 ⊗ · · · ⊗ Fk) ], (6.6)

where D denotes the collection of Feynman diagrams compatible with the array

(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ ni.

In particular

E[Y1 · · ·Yk] =
∑
Γ∈Dc

CΓ(F1 ⊗ · · · ⊗ Fk), (6.7)

where Dc ⊂ D denotes the collection of complete Feynman diagrams compatible with the above
array.

Proof. Lemma 6.9 shows that all the contractions and stochastic integrals are well defined. From the
definition of the multiple Wiener-Ito integrals we deduce that the right-hand side of (6.6) defines a
continuous multilinear map

k∏
i=1

L2(Mni , µni) → X̂ .

Thus it suffice to verify the equality (6.6) in the special case when each fi is a monomial

fi(x1, . . . , xmi) = fi1(x1) · · · fimi(xmi).

This special case follows immediately from the Diagram Formula. ⊓⊔

Remark 6.11. Theorem 6.10 corresponds to [19, Thm. 5.3] where it is referred to as the Diagram
Formula. ⊓⊔

Corollary 6.12. Suppose that f ∈ L2
(
Mn, µ⊗n

)
, h ∈ L2(M,µ). Define

f ×k h
(
x1, . . . , xk−1, xk+1, . . . , xn

)
:=

∫
M
f(x1, . . . , xn)h(xk)µ(dxk).

Then

In[f ]I1[h] = In+1[f ⊗ h] +
n∑

k=1

In−1[f ×k h]. ⊓⊔

PART 2. MALLIAVIN CALCULUS

7. THE MALLIAVIN GRADIENT AND GAUSSIAN SOBOLEV SPACES

Suppose H is a real Hilbert space, and X ⊂ L2(Ω,F,P ) is a real Gaussian Hilbert space.

• We denote by L0
X (Ω) the space of F̂-measurable functions f : Ω → R.

• For p ∈ [1,∞] we denote by Lp
X (Ω) the subspace of L0

X (Ω) consisting of p-integrable
functions equipped with the usual Lp-norm. Note that X̂ = L2

X (Ω).
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• If H is a Hilbert space, then we denote by L0
X (Ω, H) the space of F̂-measurable maps

f : Ω → H , and by Lp
X (Ω, H) the subspace L0

X (Ω, H) consisting of maps f : Ω → H
such that ∥f∥ ∈ Lp

X (Ω). The norm in this space is

E
[
∥f∥pH

] 1
p .

The space L0
X (Ω, H) is equipped with a bilinear map

(−,−)H : L0
X (Ω, H)× L0

X (Ω, H) → L0
X (Ω),

(f, g)H(ω) :=
(
f(ω), g(ω)

)
H
, ∀f, g ∈ L0

X (Ω, H).

• A function f : Rn → R is called admissible if it is smooth and its derivatives, of any order,
have at most polynomial growth.

We will construct various Banach subspaces L0
X (Ω). These depend only on X .

Definition 7.1. (a) We denote by S(X ) ⊂ L0
X (Ω) the set of random variables of the form f(X1, . . . , Xm)

where f : Rm → R is an admissible function.
(b) We denote by P(X ) ⊂ S(X ) the set of random variables of the form P (X1, . . . , Xm), where
P : Rm → R is a polynomial in m variables with real coefficients. ⊓⊔

Given f(X1, . . . , Xn) ∈ S(X ), define Df(X1, . . . , Xm) ∈ L0
X (Ω,X )

Df(X1, . . . , Xm)(ω) =
∑
j

∂f

∂xj

(
X1(ω), . . . , Xm(ω)

)
Xj(−). (7.1)

Remark 7.2. (a) For X ∈ X we set

DXf(X1, . . . , Xm)(ω) :=
∑
j

∂f

∂xj

(
X1(ω), . . . , Xm(ω)

)
(Xj , X), (7.2)

where (−,−) denotes the inner product in X , (X,Y ) = E[XY ]. We have the almost sure equality

DXf := lim
ε→0

1

ε

(
f
(
X1(ω) + ε(X1, X), . . . , Xm(ω) + ε(Xm, X)

)
− f

(
X1(ω), . . . , Xm(ω)

) )
.

(b) From the definition (7.1) it is not clear whether the equality

f(X1, . . . , Xm) = g(Y1, . . . , Yn) ∈ S(X ),

where f and g are admissible, implies that

Df(X1, . . . , Xm) = Dg(Y1, . . . , Yn) ∈ L0
X (Ω,X ).

This is indeed the case, but the proof is more involved and requires an alternate definition of D based
on the Cameron-Martin shift. For a proof we refer to [12, Thm.14.1& Def.15.26]. The resulting
operator

f(X1, . . . , Xm) 7→ Df(X1, . . . , Xm)

is called the Malliavin gradient or derivative. ⊓⊔

Example 7.3. Let X ∈ X . Then DX is the constant map Ω → X , ω 7→ X . For this reason we will
rewrite (7.1) in the form

Df(X1, . . . , Xm)(ω) =
∑
j

∂f

∂xj

(
X1(ω), . . . , Xm(ω)

)
DXj . (7.3)
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This notation better conveys the nature of the two factors ∂f
∂xj

(
X1(ω), . . . , Xm(ω)

)
and DXj . The

first is a scalar, while the second is an element of X . Note also that

DXF = (DF,DX)X ∈ L0
X (Ω). ⊓⊔

For a positive integer p and f(X1, . . . , Xm) as above we define

Dpf(X1, . . . , Xm) ∈ L0
X

(
Ω,X ⊙̂p

)
by setting

Dpf(X1, . . . , Xm)(ω) =

m∑
i1,...,ip=1

∂pf

∂xi1 · · · ∂xip

(
X1(ω), . . . , Xm(ω)

)
DXi1 ⊗ · · · ⊗DXip .

Remark 7.4. Arguing as in Lemma 5.1 we deduce that
m∑

i1,...,ip=1

∂pf

∂xi1 · · · ∂xip

(
X1(ω), . . . , Xm(ω)

)
DXi1 ⊗ · · · ⊗DXip

=
√
p!

∑
α∈Nm

0 ;|α|=p

1

α!
∂αx f

(
X1(ω), . . . , Xm(ω)

)
(DX1)

⊙α1 ⊙ · · · ⊙ (DXm)⊙αm

=
∑

α∈Nm
0 ;|α|=p

1

α!
∂αx f

(
X1(ω), . . . , Xm(ω)

)
Sym

[
(DX1)

⊗α1 ⊗ · · · ⊗ (DXm)⊗αm
]
. ⊓⊔

Observe that the class S contains the algebra generated by the polynomials Hn(X), X ∈ X .
Arguing as in the proof of Proposition 3.1 we deduce that S is dense in Lq

X (Ω,P), ∀q ∈ (1,∞).

Proposition 7.5. Let p ∈ N and q ∈ (1,∞). Then the operator

Dp : S(X ) ⊂ Lq
X (Ω) → Lq

X ( Ω,X ⊙̂p
)

is closable.

Proof. We follow closely the proof of [26, Prop.2.3.4]. We consider only the case p = 1.
Let F,G ∈ S(X ) and X ∈ X such that ∥X∥L2 = 1. Note that FG ∈ S(X). We can assume that

FG = f(X1, . . . , Xn),

where {X1, . . . , Xn} ⊂ X is an orthonormal system, X1 = X , and f is admissible. Then

E
[
(D(FG), X)X

]
= (2π)−n/2

∫
Rn

∂f

∂x1
(x1, . . . , xn)e

−x21+···+x2n
2 dx

(integrate by parts along the x1-direction)

= (2π)−n/2

∫
Rn

x1f(x1, . . . , xn)e
−x21+···+x2n

2 dx = E
[
XFG

]
.

ClearlyD(FG) = G(DF )+F (DG). We deduce the following Gaussian integration by parts formula

E
[
G(DF,X)X

]
= −E

[
F (DG,X)X

]
+ E

[
XFG

]
. (7.4)

Using the notation (7.2) we can rewrite the above equality in the more suggestive form

E
[
GDXF

]
= E

[
F (−DX +X)G

]
. (7.5)

The above equation extends by linearity to all X ∈ X , not necessarily of L2-norm 1.
Now let (Fn) be a sequence in S(X ) such that the following hold.
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(i) Fn → 0 in Lq
X (Ω).

(ii) The sequence DFn converges in the norm of Lq
X (Ω,X ) to some η ∈ Lq

X (Ω,X ).

We have to show that η = 0 a.s.. Let X ∈ X , G ∈ S(X ). Since Fn → 0 in Lq and XG and
(DG,X)X belong to L

q
q−1 we deduce from (7.4) that

E
[
G(η,X)

]
= lim

n→∞
E
[
G(DFn, X)X

]
= − lim

n→∞
E
[
Fn(DG,X)X

]
+ lim

n→∞
E
[
XFnG

]
= 0.

Thus
E
[
G(η,X)X

]
= 0, ∀G ∈ S(X ), X ∈ X .

Since S(X ) is dense in any Lr, r ∈ [1,∞), we deduce that

∀X ∈ X , (η,X)X = 0 a.s..

Thus, if (ek)k∈N is an orthonormal basis of X , there exists a negligible set N ⊂ Ω such that

(η(ω), en)X = 0, ∀n ∈ N, ω ∈ Ω \N.

Thus η = 0 a.s. ⊓⊔

Definition 7.6. Let p ∈ N and q ∈ [1,∞). We define the Gaussian Sobolev space Dp,q(X ) to be the
closure of S(X ) with respect to the norm

∥F∥Dp,q :=

(
p∑

k=0

E
[
∥DkF∥q

X ⊙̂k

]) 1
q

. ⊓⊔

According to Proposition 7.5, the operator Dp can be consistently extended as a continuous oper-
ator

Dp : Dp,q(X ) → Lq
X (Ω,X ⊙̂p).

Remark 7.7. (a) For any ε ≥ 0, any m ∈ N0, any p ∈ N and any q ∈ (1,∞) we have

Dp,q+ε ⊂ Dp+m,q.

(b) The space Dp,2(X ) is a Hilbert space with inner product

(F,G)Dp,2 =

p∑
j=0

E
[
(DjF,DjG)X ⊙̂j

]
.

(c) The space S(X) is dense in Dp,q(X ), ∀p ≥ 0, q ∈ [1,∞). ⊓⊔

Example 7.8. Suppose that X is a finite dimensional Gaussian Hilbert space, dimX = n. Fix an
orthonormal basis X1, . . . , Xn. Then

L2
X (Ω) ∼= L2

(
Rn,Γ1(dx)

)
, Γ1(dx) = (2π)−n/2e−

|x|2
2 dx.

If f ∈ C∞(Rn) is a function such that is derivatives of any order have at most polynomial growth,
then the Malliavin gradient Df(X1, . . . , Xn) corresponds to the differential of f

df =

n∑
k=1

∂f

∂xk
dxk.
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Furthermore, the Gaussian Sobolev space corresponds to the weighted Sobolev space W p,q(Rn,Γ)
equipped with the norm

∥f∥Dp,q =

∑
|α|≤p

∫
Rn

|∂αx f(x)|q Γ1(dx)

 1
q

. ⊓⊔

Proposition 7.9. Let f ∈ X̂ , p ∈ N. Recall that Projn denotes the orthogonal projection onto the
n-th chaos X :n:. The following statements are equivalent.

(i) F ∈ Dp,2(X ).
(ii) ∑

n≥0

np∥Projn F∥2 <∞.

Outline of proof. Fix an orthonormal basis X = (Xk)k≥1 of X . We have

Projn =
∑

α∈N0, |α|=n

cα(f)Hα(X).

From the equality (2.4b) we deduce that∫
RN

∂jHα(x)∂jHβ(x)Γ(dx) = αj

(
Hα, Hβ

)
L2(Γ)

.

This implies that
∥DHα∥2L2 = |α|∥Hα∥L2 .

In particular, we deduce that

X :n: ⊂ D1,2(X ), ∥F∥2D1,2 = (1 + n)∥F∥2L2 , ∀F ∈ X :n:.

The proposition is now an immediate consequence of the above fact. ⊓⊔

Example 7.10. For any n ∈ N, and any p ∈ N0, the n-th chaos X :n: is contained in Dp,2(X ). ⊓⊔

Since S(X ) is dense in in D1,q(X ) we obtain the following useful result.

Proposition 7.11 (Chain Rule). Suppose thatφ : Rm → R is aC1-function with bounded derivatives.
Then for any F1, . . . , Fn ∈ D1,q we have φ(F1, . . . , Fn) ∈ D1,p and

Dφ(F1, . . . , Fm) =

m∑
j=1

∂φ

∂xj
(F1, . . . , Fm)DFm. (7.6)

⊓⊔

The Chain Rule holds in the more general case when φ is a Lipschitz function, [28, Prop. 1.2.4].

Proposition 7.12 (Extended Chain Rule). Suppose that φ : Rm → R is a Lipschitz function, then for
any F1, . . . , Fn ∈ D1,q such that the probability distribution of

F⃗ = (F1, . . . , Fm) : Ω → Rm,

is absolutely continuous10 with respect to the Lebesgue measure on Rm, then φ(F⃗ ) ∈ D1,q and (7.6)
continues to hold with ∂φ

∂xi
defined a.e. ⊓⊔

10This assumption is needed to give a precise meaning to ∂φ
∂xi

(F⃗ ) since ∂φ
∂xi

(x) is well definite only for x outside a
Lebesgue negligible subset N ⊂ Rm.
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Remark 7.13. The Gaussian Hilbert spaces Dk,p can be given an alternate definition; see [12, Def.
15.59]. The fact that our definition agrees with the definition in [12] requires some work and it follows
from [12, Thm. 15.104].

The definition in [12, Def. 15.59] has certain technical advantages. In particular, it leads naturally
to the following important result.

The probability distribution of any non-constant random variable F ∈ D1,p(X ),
p ∈ [1,∞), is absolutely continuous with respect to the Lebesgue measure on R.

For a proof we refer to [12, Thm. 15.50]. Yet other approaches to this absolute continuity theorem
can be found in [21, Thm. III.7.1] or [33]. ⊓⊔

8. THE DIVERGENCE OPERATOR

The divergence operator δ is the adjoint of the Malliavin gradient viewed as a closed unbounded
operator

D : D1,2(X ) ⊂ L2
X (Ω) → L2

X (Ω,X ).

Similarly, for p ∈ N, the operator δp is the adjoint of the closed unbounded operator

Dp : Dp,2(X ) ⊂ L2
X (Ω) → L2

X (Ω,X ).

The domain of δp is the space

Dom(δp) :=
{
u ∈ L2(Ω,X ⊗p);∃C > 0

∣∣E[(DpF, u)X ⊙̂p

]∣∣ ≤ C
√
E
[
F 2
]
, ∀F ∈ S(X )

}
.

If u ∈ Dom(δp), then δpu is the unique element in L2
X (Ω) = X̂ such that

E
[
Fδpu

]
= E

[
(DpF, u)X ⊗p

]
, ∀F ∈ S(X ). (8.1)

Example 8.1. (a) Suppose that dimX = n < ∞. Fix an orthonormal basis {X1, . . . , Xn} of X .
Let

u = (u1, . . . , un) ∈ L2
X (Ω,Rn).

Then each uj is a measurable function of (X1, . . . , Xn). For any admissible function f ∈ C∞(Rn)
we have

E
[
f(X1, . . . , Xn)δu

]
= E

 n∑
j=1

f ′xj
(X1, . . . , Xn)uj(X1, . . . , Xn)


= (2π)−n/2

∫
Rn

 n∑
j=1

f ′xj
(x)uj(x)e

−
x2j
2

 dx =

∫
Rn

f(x)

n∑
j=1

(
−∂xjuj(x) + xjuj

)
Γ1(dx).

Thus

δ(u1, . . . , un) =

n∑
j=1

(
−∂xjuj(X1, . . . , Xn) +Xjuj(X1, . . . , Xn)

)
.

Observe that in the case n = 1 the divergence operator coincides with the creation operator (2.2).
(b) Suppose that X ⊂ L2(Ω,F,P) is a separable Gaussian Hilbert space and X ∈ X . It is not hard
to verify that DX ∈ Dom(δ). We want to compute δDX .

For F ∈ L2
X (Ω) we have

E[FδDX] = E
[
(Df,DX)X

]
, ∀S(X ).
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We can assume that ∥X∥L2 = 1 and that F = f(X1, . . . , Xn), where {X1, . . . , Xn} is an orthonor-
mal system, X = X1 and f is an admissible function. We have

E
[
(Df,DX)X

]
=

∫
Rn

f ′x1
(x)Γ1(dx) =

∫
Rn

f(x)x1Γ(dx) = E[FX].

Hence
δ(DX) = X, ∀X ∈ X .

(c) Suppose that F ∈ S(X ) and X ∈ X . Then DXF = (DF,DX)X ∈ S(X). Indeed, we can
assume that F = f(X1, . . . , Xn), f admissible, {X1, . . . , Xn} orthonormal system, X1 = X . Then

(DF,DX)X = f ′x1
(X1, . . . , Xn) ∈ S(X).

Observe that

D(DXF ) = D(DF,DX)X =

n∑
j=1

f ′′x1xj
(X1, . . . , Xn)DXj =

1

2!
iX1D

2F,

where for any X ∈ X we denoted by iX the contraction

iX : X ⊗k → X ⊗(k−1), k ∈ N
which is the ⊗-derivation uniquely determined by the condition

iXY = (X,Y )X , ∀Y ∈ X . ⊓⊔

The next result follows immediately from the definition of δ. We refer to [26, Prop. 2.5.4] for
details.

Proposition 8.2. Let F ∈ D1,2(X ) and u ∈ Dom(δ) such that

E[F 2∥u∥2X ] + E[F 2δ(u)2] + E[(DF, u)2X ] <∞.

Then
δ(Fu) = Fδu− (DF, u)X . ⊓⊔

Example 8.3. Suppose that F ∈ S(X ), X ∈ X so that

u = FDX ∈ S(X ,X ).

Then u ∈ Dom(δ) and we deduce from Proposition 8.2 that

δu = FX − (DF,DX)X = FX −DXF.

This shows that δu ∈ D1,2 and for any Y ∈ X we have

DY (δu) = (DY F )X + FDYX −DYDXF = (DY F )X + F (X,Y )X −DYDXF.

On the other hand
DY u = DY F ⊗DX,

δ(DY Fu) = (DY F )X −DXDY F.

Hence

DY (δu)− δ(DY u) = (DY F )X + F (X,Y )X −DYDXF − (DY F )X +DXDY F

= F (X,Y ) + [DX , DY ]F = F (X,Y ) = (u, Y )X .

We have thus proved the Heisenberg identity

∀u ∈ Dom(δ), Y ∈ X [DY , δ]u = (u, Y )X . (8.2)

⊓⊔
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The operator δp is closely related to the multiple Ito integrals. We have the following result.

Proposition 8.4. Let X1, . . . , Xp ∈ X . Then (compare with (6.5))

δp(DX1 ⊗ · · · ⊗DXp) = δp
(
Sym[DX1 ⊗ · · · ⊗DXp]

)
= : X1 · · ·Xp : . (8.3)

Proof. Fix an orthonormal basis {Yn}n∈N of X . Clearly it sufficers to prove the result in the special
case when

DX1 ⊙ · · · ⊙DXp = (DY )⊙α, α ∈ NN
0 , |α| = p.

Suppose that f = f(y1, . . . , yn) is an admissible function. Then

E
[
f(Y1, . . . , Yn)δ(DY

⊙α)
]
= E

[
(Dpf(Y1, . . . , Yn), (DY )⊙α)X ⊙p

]
From Remark 7.4 we deduce

E
[
(Dpf(Y1, . . . , Yn), (DY )⊙α)X ⊙p

]
=
√
p!
∑
|β|=p

1

β!
E
[
∂βy f(Y1, . . . , Yn)(DY

⊙β, DY ⊙α)X ⊙p

]

=
√
p!E
[
∂αy f(Y1, . . . , Yn)

]
=
√
p!

∫
Rn

∂αy f(y1, . . . , yn)Γ(dy)

(δyk = −∂yk + yk·, δαk
yk

1 = Hαk
(yk))

=
√
p!

∫
Rn

f(y)Hα(y)Γ(dy).

Hence
δp((DY )⊙α) =

√
|α|!Hα(Y ),

i.e.,

δp
(
Sym[(DY )⊗α]

)
=

1√
|α|!

δp((DY )⊙α) = Hα(Y ) =: Y α1
1 · · ·Y αn

n : .

This proves the second equality of (8.3). The first one is proved in a similar fashion. ⊓⊔

Remark 8.5. Using the equalities (5.1) and (5.4) we deduce that

δp(u) =
√
p!Θp(u), ∀p ∈ N, ∀u ∈ X ⊙p.

If we are given a Hilbert space isomorphism

Z : L2(M,M, µ) → X ,

then the resulting map

L2(Mp, µ⊗p) → X ⊗p δp−→ X̂

coincides with the multiple Wiener-Ito integral In; see (6.5). For this reason we set

Ip[F ] := δpF = δp(Sym[F ]) =
√
p!Θp(Sym[F ]), ∀F ∈ X ⊗p . (8.4)

Using the isometry relation (5.5) we deduce that

E
[
Ip[F ]

2
]
= ∥ Ip[F ] ∥2 = p!∥F ∥2, ∀F ∈ X ⊙p . (8.5)

⊓⊔
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Remark 8.6. For any Hilbert space H and any k ∈ N we have a Malliavin derivative

Dk
H : S(X , H) → S(X , H ⊗ X ⊗k)

with adjoint δkH defined by the equality

E
[
F
(
h, δ(Gh′ ⊗ u)

)
H

]
= E

[ (
DkF ⊗ h,Gh′ ⊗ u

)
H⊗X ⊗k

]
,

∀F,G ∈ S(X ), h, h′ ∈ H , u ∈ X ⊗k. For any p ∈ N we have

Dp+1 = Dp
X ◦D, δp+1 = δpX ◦ δ.

Arguing as in the proof of Proposition 8.4 one can show

pδp−1(u) = Dδp(u), ∀u ∈ X ⊗ X ⊙(p−1). (8.6)

The above equality generalizes (2.4a). In fact, (8.6) follows from (2.4a). If as in the previous remark
we set

Ip−1[u] = δp−1(u), ∀u ∈ X ⊗ X ⊙(p−1).

We can rewrite (8.6) as

pIp−1[u] = DIp[u], ∀u ∈ X ⊗ X ⊙(p−1). (8.7)

⊓⊔

9. THE ORNSTEIN-UHLENBECK SEMIGROUP

Let X ⊂ L2(Ω,F,P) be a separable Gaussian Hilbert space.

Definition 9.1. The Ornstein-Uhlenbeck semigroup is the semigroup of contractions Pt : X̂ → X̂ ,
t ≥ 0, defined by

TtF =
∑
n≥0

e−nt Projn F, ∀F ∈ X̂ , ∀t ≥ 0,

where we recall that Projn : X̂ → X :n: denotes the orthogonal projection onto the n-th chaos. ⊓⊔

The above definition shows that Tt is indeed a semigroup of selfadjoint L2-contractions. We want
to present an equivalent, coordinate dependent description of this semigroup.

Fix an orthonormal basis of X ,

X = (X1, X2, . . . , Xn, . . . ).

Observe that the semigroup Tt is uniquely determined by its action on P(X ).

Proposition 9.2 (Mehler’s formula). Let P : Rm → R be a polynomial in m real variables. Set

X⃗ := (X1, . . . , Xm).

Then

Tt[P (X⃗)](ω) =

∫
Rm

P
(
e−tX⃗(ω) +

√
1− e−2ty

)
Γ1(dy), (9.1)

where Γ1 denotes the canonical Gaussian measure on the Euclidean space Rm.

Proof. It suffices to prove the result in the special case when P (X⃗) = Hα(X⃗), α ∈ Nm
0 . In this case,

the left-hand side of (9.1) is equal to

Tt[P (X⃗)](ω) = e−|α|tHα(X⃗(ω)) =

m∏
j=1

e−αjtHαj (Xj(t)).
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The Fubini theorem shows that the right-hand side of (9.1) is equal in this case to
m∏
j=1

∫
R
Hαj

(
e−tXj(ω) +

√
1− e−2t y

)
γ1(dy)

Thus, to prove (9.1) it suffices to prove that∫
R
Hn

(
e−tx++

√
1− e−2t y

)
γ(dy) = e−ntHn(x), ∀n ∈ N0, t ≥ 0, ∀x ∈ R. (9.2)

We follow closely the presentation in the proof of [20, Prop. V.1.5.4]. We have the following useful
identities.

Lemma 9.3. Define the linear operator

Tt : R[x] → R[x], TtP (x) =

∫
R
P
(
e−tx++

√
1− e−2t y

)
γ1(dy),

Then the following hold.
(i) The operator Tt is symmetric with respect to the L2(γ)-inner product on R[x].

(ii) ∂xTt = e−tTt∂x.
(iii) Ttδx = e−tδxTt.

Proof of Lemma 9.3. To prove (i) observe that

(TtP,Q) =

∫
R

∫
R
P
(
e−tx++

√
1− e−2t y

)
Q(x)γ1(dy)γ1(dx). (9.3)

Set a = e−t, b =
√
1− e−2t so that a2 + b2 = 1. We have

(TtP,Q) =

∫
R2

P (ax+ by)Q(x)Γ1(dxdy).

Now consider the orthogonal change in variables[
x
y

]
=

[
b a

−a b

]
·
[
u
v

]
.

Since Γ1 is invariant under orthogonal transformations we deduce∫
R2

P (ax+ by)Q(x)Γ1(dxdy) =

∫
R2

P (v)Q(av + bu)Γ1(dudv) = (P, TtQ).

This proves (i). The equality (ii) follows by differentiating the definition (9.3) of Tt[P ]. The equality
(iii) is obtained from (ii) by passing to adjoints, and using the symmetry of Tt proved in (i). ⊓⊔

Clearly, Tt1 = 1. From Lemma 9.3(iii) we deduce that

TtHn = Ttδ
n
x1 = e−ntδnxTt1 = e−ntHn.

⊓⊔

Definition 9.4. The Ornstein-Uhlenbeck operator, denoted by L, is the infinitesimal generator of the
Ornstein-Uhlenbeck semigroup. ⊓⊔

Recall that F ∈ Dom(L) ⊂ X̂ if and only if the limit

lim
t↘0

1

t

(
TtF − F

)
exists in L2(Ω, F̂,P). We denote by LF the above limit.
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Proposition 9.5.

Dom(L) =
{
F ∈ X ;

∑
n≥0

n2∥Projn ∥2L2 <∞
}
=W 2,2(X ).

∀n ∈ N, ∀F ∈ X :n: : LF = −nF = −δDF.

Proof. Let F ∈ X̂ . We set Fn = Projn F . Then

1

t

(
TtF − F

)
=
∑
n≥0

e−nt − 1

t
Fn.

Now observe that ∣∣∣e−nt − 1

t

∣∣∣ ≤ n, ∀t > 0, N ∈ N0.

so that ∥∥∥∥1t(TtF − F
)∥∥∥∥2

L2

≤
∑
n≥0

n2∥Fn∥2L2

This proves that if ∑
n≥0

n2∥Fn∥2L2 <∞,

then
lim
t↘0

1

t

(
TtF − F

)
exists in L2 and it is equal to ∑

n≥0

d

dt

∣∣
t=0

e−ntFn = −
∑
n≥0

nFn.

Conversely, if the above limit exists in L2, then

Projn

(
lim
t↘0

1

t

(
TtF − F

))
= lim

t↘0
Projn

(
1

t

(
TtF − F

))
= −nFn.

Thus
lim
t↘0

1

t

(
TtF − F

)
= −

∑
n≥0

nFn ∈ L2 ⇒
∑
n≥0

n2∥Fn∥2L2 <∞.

The equality LF = −nF , f ∈ X :n: follows from the above discussion. To prove the equality
δDF = n, F ∈ X :n: it suffices to consider only the special case when F = Hα(X1, . . . , Xk) where
(Xj) is an orthonormal system and α is a multi-index such that |α| = n. In this case the equality
follows from (2.4b). ⊓⊔

Remark 9.6. Using Proposition 7.9 we deduce that Dom(L) = D2,2(X ). Note also that L is non-
positive. ⊓⊔

Example 9.7. (a) Suppose that dimX = n. By fixing an orthonormal basis X1, . . . , Xn of X we
can identify X̂ with L2(Rn,Γ1). Then

Lf =

n∑
j=1

∂2xj
f −

n∑
j=1

xj∂xjf = (−∆− x∇)f,

for any functionf ∈ C2(Rn) with bounded 2nd order derivatives. Above, ∆ is the Euclidean geome-
ters’ Laplacian. ⊓⊔
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Definition 9.8. We define L−1 to be the bounded operator L−1 : X̂ → X̂ given by

L−1F = −
∑
n≥1

1

n
Projn F. ⊓⊔

Note that L−1 is a pseudo-inverse of L. More precisely, if F ∈ D2,2(X ) is such that E[F ] = 0,
i.e., Proj0 F = 0, then

L−1LF = LL−1F = F.

Proposition 9.9. Let F ∈ D1,2(X ). Then for any X ∈ X , ∥X∥L2 = 1, we have

DXL
−1F = −

∫ ∞

0
e−tTtDXFdt = (L− 1)−1DXF. (9.4)

Proof. It suffices to prove the result in the special case

F = Hα(X1, . . . , Xm),

where {X1, . . . , Xm} ⊂ X is an orthonormal system, X = X1, |α| = n > 0. Note that

DXF = α1Hβ(X1, . . . , Xm), β = (α1 − 1, α2, . . . , αm).

Using the identity
1

n
=

∫ ∞

0
e−ntdt

we deduce

L−1F = − 1

n
F = −

∫ ∞

0
TtFdt⇒ DXL

−1F = −
∫ ∞

0
DXTtFdt = −

∫ ∞

0
e−tTtDXFdt.

On the other hand

(L− 1)−1DXF = (L− 1)−1[α1Hβ] = − 1

|β|+ 1
α1Hβ = − 1

n
DXF = DXL

−1F.

⊓⊔

Proposition 9.10 (Key integration by parts formula). Suppose that F,G ∈ D1,2(X ) are non-constant
and g : R → R is a Lipschitz function. Then

E
[
Fg(G)

]
= E[F ] · E

[
g(G)

]
+ E

[
g′(G) · (DG,−DL−1F )X

]
. (9.5)

Proof. Suppose first that g ∈ C1(R). Let F⊥ = F − E[F ]. Then

E
[
Fg(G)

]
= E[F ] · E

[
g(G)

]
+ E

[
F⊥g(G)

]
.

Since F⊥ = LL−1F we deduce

E
[
F⊥g(G)

]
= E

[
LL−1Fg(G)

]
= −E

[
δDL−1Fg(G)

]
= −E

[
(DL−1F,Dg(G) )X

]
= −E

[
(DL−1F, g′(G)DG )X

]
= E

[
g′(G)(DG,−DL−1F )X

]
.

To prove the general case when g is only Lipschitz, we approximate g by C1 Lipschitz functions gε
using a nonnegative mollifying family (ρε)ε > 0,

gε = ρε ∗ g.
Then ∂xgε = ρε ∗ (∂xg) so that

∥∂xgε∥∞ ≤ Lip(g)
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where Lip(g) is the (best) Lipschitz constant of g. Since F,G are nonconstant, we deduce from
Remark 7.13 that the law of F is absolutely continuous with respect to the Lebesgue measure on R.
Thus, although g′ is only defined a.e., the composition g′(F ) is a.s. well defined. To obtain (9.5) in
the general case, use (9.5) for the functions gε and then let ε→ 0. ⊓⊔

10. THE HYPER-CONTRACTIVITY OF THE ORNSTEIN-UHLENBECK SEMIGROUP

We know that Tt defines a continuous semigroup of contractions L2(Ω, F̂,P) → L2(Ω, F̂,P). It is
not hard to see that Tt defines continuous semigroup of contractions Lp(Ω, F̂,P) → Lp(Ω, F̂,P) for
any p ∈ (1,∞). We limit ourself to proving that

∥TtP∥Lp ≤ ∥P∥Lp , ∀P ∈ P(X ).

To see this assume P = P (X⃗), where X⃗ = (X1, . . . , Xm) is an orthonormal system in X . Using
Mehler’s formula (9.1) we deduce

Tt[P (X⃗)](ω) =

∫
Rm

P
(
e−tX⃗(ω) +

√
1− e−2ty

)
Γ1(dy)

Since the function f(x) = xp, x > 0, is convex for p > 1 we deduce from Jensen’s inequality that∣∣Tt[P (X⃗)](ω)
∣∣p ≤ ∫

Rm

∣∣∣P(e−tX⃗(ω) +
√
1− e−2t y

) ∣∣∣pΓ1(dy)
Invoking Jensen’s inequality once again we conclude that

E
[
|TtP |p

]
≤
∫
Rm

E
[∣∣∣P(e−tX⃗(ω) +

√
1− e−2t y

) ∣∣∣p]Γ1(dy)
=

∫
Rm×Rm

∣∣∣P (e−tx+
√

1− e−2ty
)∣∣∣pΓ1(dx)Γ1(dy) = ∫

Rm

∣∣P (x ) ∣∣pΓ1(dx)
where at the last step we used the fact that if X , Y are independent standard normal random variables
and a2 + b2 = 1, then aX + bY is also a standard normal random variable.

The semigroup Tt satisfies a hypercontractivity property, namely, for any p0 ∈ (1,∞) there exists
an increasing, unbounded function p : [0,∞) → (0,∞) such that p0 = p(0) and, ∀t ≥ 0, the operator
Tt induces a bounded linear map Tt : Lp0 → Lp(t). We will spend the remainder of this subsection
proving this fact.

Theorem 10.1 (The log-Sobolev inequality). For any n ∈ N, and any f ∈W 1,2(Rn,Γ) we have∫
Rn

f2(x) log f2(x)Γ(dx) ≤ 2

∫
Rn

|∇f(x)|2 Γ(dx) +
∫
Rn

f2(x)Γ(dx) log

(∫
Rn

f2(x)Γ(dx)

)
,

(10.1)
where Γ = Γ1 is the canonical Gaussian measure on Rn and 0 · log 0 := 0.

Proof. We follow the presentation in [3, §1.6]Assume first that f ∈ C∞
b (Rn), i.e., f and all its

derivatives are bounded. We distinguish three cases.
A. ∃c > 0 such that f(x) > c, ∀x ∈ Rn. Set φ = f2 so that

∇f =
1

2
√
φ
∇φ

and (10.1) is equivalent to∫
Rn

φ logφdΓ−
∫
Rn

φdΓ log

(∫
Rn

φdΓ

)
≤ 1

2

∫
Rn

1

φ
|∇φ|2 dΓ. (10.2)
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Consider the Ornstein-Uhlenbeck semigroup

Tt : L
2(Rn,Γ) → L2(Rn,Γ).

Using the equality (9.1) we deduce that

Tt[φ](x) ≥ c, ∀x ∈ Rn, t ≥ 0.

Since

lim
t→∞

Tt[φ] log Tt[φ] =

∫
Rn

φdΓ log

(∫
Rn

φdΓ

)
we see that the left-hand side of (10.2) is equal to

−
∫ ∞

0

d

dt

∫
Rn

Tt[φ] log Tt[φ] dΓ.

Taking into account the fact that
d

dt
Tt[g] = LTt[g], ∀g ∈ C∞

b (Rn)

we deduce

−
∫ ∞

0

d

dt

∫
Rn

Tt[φ] log Tt[φ] dΓ

= −
∫ ∞

0

∫
Rn

LTt[φ] log Tt[φ] dΓ−
∫ ∞

0

∫
Rn

Tt[φ]
1

Tt[φ]

d

dt
Tt[φ] dΓ

= −
∫ ∞

0

∫
Rn

LTt[φ] log Tt[φ] dΓ−
∫ ∞

0

∫
Rn

LTt[φ] dΓ.

Since L is symmetric and L1 = 0 we deduce∫
Rn

LTt[φ] dΓ = 0.

Hence ∫
Rn

φ logφdΓ−
∫
Rn

φdΓ log

(∫
Rn

φdΓ

)
= −

∫ ∞

0

∫
Rn

LTt[φ] log Tt[φ] dΓ

=

∫ ∞

0

∫
Rn

δDTt[φ] log Tt[φ] dΓ =

∫ ∞

0

∫
Rn

(
∇Tt[φ],∇ log Tt[φ]

)
dΓ

=

∫ ∞

0

∫
Rn

1

Tt[φ]

∣∣∇Tt[φ] ∣∣2dΓ︸ ︷︷ ︸
F (t)

.

Using Lemma 9.3 (ii) we deduce

∂xiTt[φ] = e−tTt[∂xiφ], ∀i = 1, . . . , n,

so that

F (t) = e−2t

∫
Rn

1

Tt[φ]

n∑
i=1

(
Tt[∂xiφ]

)2
dΓ.

The equality (9.1) implies that for any g, h ∈ C∞
b (Rn) we have

Tt[g] ≤ Tt[ |g| ] ≤ ∥g∥L∞ ,
(
Tt[gh]

)2 ≤ Tt[g
2]Tt[h]

2.

Hence
1

Tt[φ]

(
Tt[∂xiφ]

)2
=

1

Tt[φ]

(
Tt

[
√
φ · ∂xiφ√

φ

])2

≤ Tt

[
(∂xiφ)

2

φ

]
≤ (∂xiφ)

2

φ
.
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Thus

F (t) ≤ e−2t

∫
Rn

|∇φ|2

φ
dΓ.

The inequality (10.2) follows by integrating the above inequality.
B. f ∈ W 1,2(Rn,Γ), f ≥ 0 a.s. . This case follows from case A by choosing a family of functions
fε ∈ C∞

b (Rn), fε ≥ ε, fε → f in W 1,2 and then letting ε↘ 0.
The general case, f ∈W 1,2(Rn,Γ), follows from case B applied to |f |. ⊓⊔

Remark 10.2. If (Ω,O, µ) is a probability space and f : Ω → [0,∞) is measurable function, then its
entropy with respect to µ is

Entµ(f) =


Eµ[f log f ]− Eµ[f ] logEµ[f ], Eµ[log(1 + f)] <∞,

+∞, Eµ[log(1 + f)] = ∞.

where 0 log 0 := 0. Observe that Entµ(f) is nonnegative and positively homogeneous of degree 1.
The log-Sobolev inequality (10.1) can be rewritten as

EntΓ[f
2] ≤ 2

∫
Rn

|∇f(x)|2Γ(dx).

As explained in [18, Sec.5.1], the log-Sobolev inequality leads to rather sharp concentration of mea-
sure inequalities. ⊓⊔

Theorem 10.3 (Hypercontractivity). Let p ∈ (1,∞). Define

q(t) := 1 + e2t(p− 1), ∀t ≥ 0.

Then
∥Ttf∥Lq(t) ≤ ∥f∥Lp , ∀f ∈ Lp(Rn,Γ), t ≥ 0. (10.3)

Proof. We follow closely the arguments in [3, Thm. 1.6.2]. It suffices to prove the inequality for
smooth functions f ∈ C∞

b (Rn) such that

c := inf
x∈Rn

f(x) > 0.

Under this assumption the function [0,∞) ∋ t 7→ G(t) = ∥f∥Lq(t) is differentiable. The inequality
(10.3) reads G(t) ≤ G(0) so it it suffices to prove that G′(t) ≤ 0, ∀t ≥ 0.

Applying the log-Sobolev inequality to the function f r/2, r > 0, we deduce∫
Rn

f r log fdΓ− 1

r

∫
Rn

f rdΓ

(
log

∫
Rn

f rdΓ

)
≤ r

2

∫
Rn

(
f r−2∇f,∇f)dΓ

=
r

2(r − 1)

∫
Rn

(
∇f r−1,∇f

)
dΓ = − r

2(r − 1)

∫
Rn

f r−1LfdΓ.

Hence∫
Rn

f r log fdΓ− 1

r

∫
Rn

f rdΓ

(
log

∫
Rn

f rdΓ

)
≤ − r

2(r − 1)

∫
Rn

f r−1LfdΓ, ∀r > 0. (10.4)

We set

F (t) :=

∫
Rn

Tt[f ] dΓ.
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Then G(t) = F (t)1/q(t) and we have

G′(t) = G(t)

(
− q′(t)

q(t)2
logF (t) +

F ′(t)

q(t)F (t)

)
.

Since q′(t) = 2q(t)− 2 > 0 it suffices to show that

− 1

q(t)
F (t) logF (t) +

F ′(t)

q(t)
≤ 0. (10.5)

Observing that

F ′(t) =

∫
Rn

(Tt[f ])
q(t)

(
q′(t) log Tt[f ] + q(t)

LTt[f ]

Tt[f ]

)
dΓ

we conclude that (10.4) is equivalent to

−F (t) logF (t)
q(t)

+

∫
Rn

(
Tt[f ]

)q(t)
log Tt[f ]dΓ+

q(t)

q′(t)

∫
Rn

(
Tt[f ]

)q(t)−1
LTt[f ]dΓ ≤ 0.

This is precisely the inequality (10.4) with r = q(t). ⊓⊔

We conclude by mentioning, without proof, the Kree-Meyer inequality.

Theorem 10.4 (Kree-Meyer). For any p ∈ (1,∞), and any k, ℓ ∈ N0, there exist positive constants
cp(k, ℓ) < Cp(kℓ such that

cp∥F∥Dk+ℓ,p ≤ ∥(1− L)
ℓ
2F∥Dk,p ≤ Cp∥F∥Dk+ℓ,p , ∀F ∈ S(X ). (10.6)

⊓⊔

For a proof we refer to [3, Sec. 5.6], [20, Chap 2] or [28, Sec. 1.5]

PART 3. LIMIT THEOREMS

11. THE STEIN METHOD

11.1. Metrics on spaces of probability measures. Let us recall several concepts of of pseudo-
distances on the spaces of Borel probability measures on Rd.

Definition 11.1. Let H be a set of Borel measurable functions Rd → R. We denote by P(Rd) the
space of Borel probability measures on Rd.

(i) We set
P(R,H) :=

{
µ ∈ P(Rd); H ⊂ L1(Rd, µ)

}
.

(ii) We say that H is called separating if for any µ, ν ∈ P(Rd)

µ = ν⇐⇒Eµ[h] = Eν [h], ∀h ∈ H ∩ L1(Rd, µ) ∩ L1(R, ν).

(iii) If F is separating and µ, ν ∈ P(Rd,H), we set

distH(µ, ν) := sup
h∈H

∣∣Eµ[h]− Eν [h]
∣∣.

(iv) If (Ω,O,P) is a probability space and F,G : Ω → Rd are random variables whose probabil-
ity distributions belong to P(Rd,H), then we set

distH(F,G) := sup
h∈H

∣∣E[h(F )]− E[h(G)]
∣∣.

⊓⊔
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It is easy to check that if H is separating, then distH is indeed a metric on P(Rd,H).

Example 11.2. (a) If H is the class of functions

1(−∞,c1]×···×(−∞,cd], c1, . . . , cd ∈ R,

then the resulting metric distH on P(Rd) is called the Kolmogorov distance and it is denoted by
distKol.
(b) If H is the class of functions Borel measurable functions h : Rd → [0, 1], then H is separating
then the resulting metric on P(Rd) is called the total variation metric and it is denoted by distTV .
(c) If H is the class of Lipschitz continuous functions Rd → R satisfying Lip(h) ≤ 1, where Lip(h)
is the (best) Lipschitz constant of h, then H is separating, the resulting metric is called the Wasserstein
metric and it is denoted by distW .
(d) If H denotes the class of Lipschitz continuous functions h : Rd → R such that

∥h∥L∞ + Lip(h) ≤ 1,

then H is separating, the resulting distance is called the Fortet-Mourier metric and it is denoted by
distFM .
(e) If H ⊂ C2

b (Rd) denotes the class of C2-functions f : Rd → R satisfying

∥f∥C2 ≤ 1,

then F is separating. We denote by distC2 the resulting metric. ⊓⊔

Remark 11.3. (a) Clearly

distKol ≤ distTV , distW ≥ distFM ≥ distC2 .

Thus
lim
n→∞

distTV (Fn, F ) = 0 ⇒ lim
n→∞

distKol(Fn, F ) = 0.

Moreover, if
lim
n→∞

distKol(Fn, F ) = 0,

then Fn → F in law.
(b) Also, one can prove (see [9, Thm.11.3.3] that Fn → F in distribution of and only if Fn → F in
the Fortet-Mornier metric. It is not hard to see that distC2 induces on P(Rd) the same topology as
distFM , the topology of convergence in law. Moreover, (see [6, Thm.3.3]), if N ∼ N(0, 1), then

distKol(F,N) ≤ 2
√
distW (F,N). ⊓⊔

The Stein method provides a way of estimating the distance between a random variable and a
normal random variable. We present the bare-bones minimum referring to [5, 6, 32] for more details
and many more applications. We follow the presentation in [26, Chap.3,4]. It all starts with the
following simple observation.

11.2. The one-dimensional Stein method. Suppose that N ∼ N(0, 1) and g ∈ D1,2(R), i.e.,
g(N), g′(N) ∈ L2. Then∫

R

(
− g′(x) + xg(x)

)
γ1(dx) =

∫
R
δxg(x) · 1 γ1(dx) =

∫
R
g(x) · (∂x1)γ1(dx) = 0,

so that
E[Ng(N) ] = E[ g′(N) ], ∀g ∈ D1,2(R). (11.1)

It turns out the the converse is also true.
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Lemma 11.4 (Stein’s Lemma). A random variable N is a standard normal random variable if and
only if for all g ∈ D1,2(R) we have g(N), g′(N) ∈ L1 and

E[Ng(N) ] = E[ g′(N) ]. (11.2)

Proof. We have to prove only the if part. Applying (11.2) with g(x) = xk, k = 0, 1, . . . , we deduce

E
[
Nk+1

]
= kE

[
Nk−1

]
, ∀k = 0, 1, 2, . . . .

This proves that

E
[
Nk
]
=

∫
R
xkγ1(dx), ∀k = 0, 1, 2 . . . ,

so that

E
[
eitN

]
=

∫
R
eitxγ1(dx), ∀t ∈ R ⇒ N ∼ N(0, 1).

⊓⊔

Stein’s lemma suggests that for a random variableX the quantity E[Xf(X)−f ′(X)
]

should give
an indication of how far away is the distribution of X from the normal distribution.

Definition 11.5. Let N ∼ N(0, 1) and h ∈ L1(R,γ1). The Stein’s equation associated to h is the
o.d.e.

g′(x)− xg(x)︸ ︷︷ ︸
=−δxg(x)

= h(x)−
∫
R
h(x)γ1(dx) = h(x)− E[h(N)]. (11.3)

We set h⊥(x) := h(x)− E[h(N)] so that

E[h⊥(N) ] = 0. ⊓⊔

Observe that Stein’s equation can be rewritten as

e
x2

2 ∂x
(
e−

x2

2 g(x)
)
= h⊥(x),

This implies immediately the following result.

Proposition 11.6. The general solution of (11.3) has the form

g(x) = gh,c(x) = ce
x2

2 + e
x2

2

∫ x

−∞
h⊥(y)e

− y2

2 dy, x ∈ R, (11.4)

where c ∈ R is an arbitrary real constant. Moreover the solution

gh(x) := gh,c=0 = e
x2

2

∫ x

−∞
h⊥(y)e

− y2

2 dy (11.5)

is the unique solution g(x) of (11.3) such that

lim
x→±∞

e−
x2

2 g(x) = 0. (11.6)

⊓⊔

If now F is a random variable, then taking the expectation of the equality

g′h(x)− xgh(x) = h(x)− E[h(N) ]

with respect to the probability distribution of F we deduce

E[h(F ) ]− E[h(N) ] = E
[
g′h(F )− Fgh(F )

]
. (11.7)
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Thus, if H is a separating collection of Borel measurable functions h : R → R we deduce

distH(F,N) = sup
h∈H

∣∣E[ g′h(F )− Fgh(F )
] ∣∣. (11.8)

We want to use the above equality to produce estimates on the Wasserstein distance between two
Borel probability measures on R.

Proposition 11.7. Let h : R → R be a Lipschitz continuous function. Set K := Lip(h). Then the
function gh given by (11.5) admits the representation

gh(x) = −
∫ ∞

0

e−t

√
1− e−2t

E
[
h
(
e−tx+

√
1− e−2tN

)
N
]
dt. (11.9)

Moreover, gh is a C1 function and

∥g′h∥∞ ≤
√

2

π
K. (11.10)

Almost a proof. We know that −δxgh = h and we conclude that

−∂xδxgh = ∂xh a.e. on R.
Using the Heisenberg identity [∂x, δx] = 1 we deduce −∂xδx = −1− δx∂x = (L− 1). Thus

(L− 1)gh = ∂xh.

From the condition (11.6) we deduce11 gh ∈ L2(R,γ1). Clearly ∂xh ∈ L2(R,γ1). Hence

gh = (L− 1)−1∂xh
(9.4)
= −

∫ ∞

0
e−tTt[∂xh]dt.

Using Mehler’s formula (9.1) we deduce

Tt[∂xh](x) =

∫
R
h′(e−tx+

√
1− e−2ty)γ(dy).

We set ux := e−tx+
√

1− e−2ty and we observe that for fixed x we have

d

dy
h(ux) = h′(ux)

dux
dy

=
√
1− e−2t h′(ux) ⇒ h′(ux) =

1√
1− e−2t

d

dy
h(ux).

Hence

Tt[∂xh](x) =
1√

1− e−2t

∫
R

d

dy
h(ux)γ(dy) =

1√
1− e−2t

∫
R
h(ux)y γ(dy)

=
1√

1− e−2t
E
[
h
(
e−tx+

√
1− e−2tN

)
N
]
.

This proves (11.9).
Clearly gh is a C1-function. To prove the estimate (11.10), we derivate (11.9) we respect to x and

we deduce

g′h(x) = −
∫ ∞

0

e−2t

√
1− e−2t

E
[
h′
(
e−tx+

√
1− e−2tN

)
N
]
dt.

Since |h′| ≤ K we deduce∣∣ g′h(x) ∣∣ ≤ KE[ |N | ]
∫ ∞

0

e−2t

√
1− e−2t

dt = K

√
2

π

∫ 1

0

dv

2
√
1− v

= K

√
2

π
.

⊓⊔
11This needs a proof, but we skip it since it is neither hard, nor particularly revealing.
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From the above proposition and the equality (11.8) we obtain immediately the following useful
result.

Corollary 11.8. Let N ∼ N(0, 1). Then for any square integrable random variable F we have

distFM (F,N) ≤ distW (F,N) ≤ sup
g∈FW

∣∣∣E[ g′(F )− Fg(F )
] ∣∣∣, (11.11)

where

FW :=
{
g ∈ C1(R); ∥g′∥∞ ≤

√
2

π

}
. (11.12)

⊓⊔

11.3. The multidimensional Stein method. The Stein method has a multidimensional counterpart.
To describe it we need to introduce some notation. Denote by L(Rn) the space of bounded linear
operators Rn → Rn. We define the Hilbert-Schmidt inner product on L(Rn) to be

(A,B)HS := trAB∗ =
∑
i,j

AijBij , ∀A,B ∈ L(Rn).

The next result generalizes the one-dimensional Stein lemma

Lemma 11.9 (Multidimensional Stein lemma). Let d ∈ N and C ∈ L(Rd) be a symmetric operator
such that C ≥ 0. Let N = (N1, . . . , Nd) be a random d-dimensional vector. Then the following
statements are equivalent.

(i) N ∼ N(0, C)
(ii) For any C2 function f : Rd → R with bounded first and second order derivatives we have

E
[ (

N ,∇f(N)
) ]

= E
[ (
C,Hess f(N)

)
HS

]
. (11.13)

Proof. (i) ⇒ (ii). If C > 0, then the implication follows from an immediate integration by parts and
the equality

ΓC(dx) =
1√

det(2πC)
e−

1
2
(Cx,x)dx.

The general case follows from the general case applied to the nondegenerate matrices Cε = C + ε1
and then (carefully) letting ε→ 0.
(ii) ⇒ (i). Fix G ∼ N(0, C) independent of N and a C2 function f : Rd → R as in (ii). We set

φ(t) := E
[
f
(√

tN +
√
1− tG

) ]
.

Then
φ(1) = E[ f(N) ], φ(0) = E[ f(G) ]

and thus

E[ f(N) ]− E[ f(G) ] =

∫ 1

0
φ′(t)dt

=

∫ 1

0
E
[ (

∇f(
√
tN +

√
1− tG ),N

) ] dt
2
√
t
−
∫ 1

0
E
[ (

∇f(
√
tN +

√
1− tG ),G

) ] dt

2
√
1− t

Using (11.13) we deduce by conditioning on G that, for any x ∈ Rd, we have

E
[ (

∇f(
√
tN +

√
1− tx ),N

) ]
=

√
tE
[ (
C,Hess f(

√
tN +

√
1− tx

)
HS

]︸ ︷︷ ︸
=:h1(x,t)

.
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Since G ∼ N(0, C) it satisfies (11.13) and, conditioning on N , we deduce that for any x ∈ Rd, we
have

E
[ (

∇f(
√
tx+

√
1− tG ),G

) ]
= E

[ (
C,Hess f(

√
tx+

√
1− tG)

)
HS

]︸ ︷︷ ︸
=:h2(x,t)

.

Integrating h1(x, t) and h2(x, t) respectively with respect to the law of G and the law of N , and then
integrating with respect to t we deduce that

E
[
f(N)

]
= E

[
f(G)

]
,

for any C2-function f : Rd → R with bounded first and second order derivatives. Since the class of
such functions is separating we deduce that N ∼ G ∼ N(0, C). ⊓⊔

Definition 11.10. Let N ∼ N(0,1d) and h : Rn → R a measurable function such that e[ |h(N)| ] <
∞. The Stein’s equation associated to h and N is the p.d.e.

Lf(x) = −∆f(x)− x · ∇f(x) = h(x)− E[h(N) ], ∆ = −
d∑

j=1

∂2xj
. (11.14)

Observe that if h : Rd → R is a Lipschitz continuous function, then the function

h⊥(x) := h(x)− E[h(N) ] ∈ L2(Rd,Γ) and
∫
Rd

h⊥(x)Γ(dx) = 0.

Thus, h⊥ lies in the range of the Ornstein-Uhlenbeck operator L : D2,2(Rd) → D0,2(Rd) so there
exists a unique function fh ∈ D2,2(Rd) such that

Lfh(x) = h⊥(x) and
∫
Rd

fh(x)Γ(dx) = 0.

More precisely, fh = L−1h = L−1h⊥. We can now state the multidimensional counterpart of
Proposition 11.7.

Proposition 11.11. Let h : Rd → R be a Lipschitz continuous function. Then the function

fh = L−1h = L−1h⊥

is well defined, C2 and admits the representation

fh(x) = −
∫ ∞

0
Tt[h⊥]dt =

∫ ∞

0
E
[
h(N)− h

(
e−tx+

√
1− e−2tN

) ]
dt. (11.15)

Moreover, if Lip(h) ≤ K then,

sup
x∈Rd

∥ Hess fh(x) ∥HS ≤ K
√
d. (11.16)

Proof. Let hn ∈ L2(Rd,Γ) be the n-th chaos component of h(x). Then, in L2, we have the following
equalities

h(x) =
∑
n≥0

hn(x), h⊥(x) =
∑
n≥1

hn(x),

L−1h⊥(x) = −
∑
n≥1

1

n
hn(x) = −

∑
n≥1

∫ ∞

0
e−nthn(x) = −

∫ ∞

0
Tt[h⊥]dt.

This proves the first part of (11.15). The second part of this equality follows from Mehler’s formula.
The C2-regularity of fh is a consequence of basic elliptic regularity results.
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To prove (11.16) we observe that

∂2xixj
fh(x) = −

∫ ∞

0

e−2t

√
1− e−2t

E
[
∂xjh

(
e−tx+

√
1− e−2tN

)
Ni

]
dt

Thus, if B ∈ L(Rd), we have

∣∣ (B,Hess fh(x) )HS

∣∣ =
∣∣∣∣∣∣
∑
i,j

∂2xixj
fh(x)

∣∣∣∣∣∣
=

∣∣∣∣ ∫ ∞

0

e−2t

√
1− e−2t

E
[ (

BN ,∇h
(
e−tx+

√
1− e−2tN

) ) ]
dt

∣∣∣∣ dt
≤ ∥∇h∥∞E

[ ∣∣BN
∣∣
Rd

] ∫ ∞

0

e−2t

√
1− e−2t

dt ≤ K
√
d

√
E
[ ∣∣BN

∣∣2
Rd

]
,

because ∥∇h∥∞ ≤ K
√
d and ∫ ∞

0

e−2t

√
1− e−2t

dt = 1.

A simple computation shows that

E
[ ∣∣BN

∣∣2
Rd

]
= ∥B∥2HS .

This completes the proof of (11.16). ⊓⊔

Proposition 11.11 admits the following immediate generalization.

Proposition 11.12. Fix a symmetric positive definite operator C ∈ L(Rd). Denote by λmin(C)
and respectively λmax(C) the smallest and the largest eigenvalue of C. Fix a random vector N ∼
N(0, C) and a Lipschitz continuous function h : Rd → R. Set K := Lip(h). Then the function

fh(x) =

∫ ∞

0
E
[
h(N)− h

(
e−tx+

√
1− e−2tN

) ]
dt (11.17)

is well defined, it is C2 and satisfies the Stein’s equation(
C,Hess f(x)

)
HS

−
(
x,∇f(x)

)
= h(x)− h(N). (11.18)

Moreover

sup
x∈Rd

∥∥Hess fh(x) ∥HS ≤ K

√
dλmax(C)

λmin(C)
. (11.19)

Main Idea. The above proposition can be obtained from Proposition 11.11 by choosing an orthonor-
mal basis f1, . . . ,fd of Rd that diagonalizes C,

Cfk = λkfk, k = 1, . . . , d, 0 < λ1 ≤ · · · ≤ λd.

⊓⊔

The last result implies the following multi-dimensional counterpart of Corollary 11.8.

Corollary 11.13. Fix a symmetric positive definite operator C ∈ L(Rd) and a random vector N ∼
N(0, C). If F is a square integrable Rd-valued random variable, then

distFM (F,N) ≤ distW (F,N) ≤ sup
f∈Fd

∣∣∣E[ (C,Hess f(F ) )HS
−
(
F,∇f(F )

) ] ∣∣∣, (11.20)

where Fd consists of the C2-functions f : Rd → R satisfying (11.19) with K = 1. ⊓⊔
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12. LIMIT THEOREMS

12.1. An abstract limit theorem. Fix a separable Gaussian Hilbert space X ⊂ L2(Ω,F,P). As
usual, we set X̂ = L2(Ω, F̂,P) and we denote by Projn the orthogonal projection onto the n-th
chaos X :n:. For any number N ∈ N0 we set

Proj≤N =
⊕

0≤n≤N

Projn, Proj>N = 1− Proj≤N .

For F ∈ X̂ and n ∈ N0 we denote by Varn(F ) the variance of Projn(F ).
We have

Var(F ) =
∑
n≥1

Varn(F ),

and we set

Var≤N :=
N∑

n=1

Varn(F ), Var>N (F ) =
∑
n>N

Varn(F ) = Var(F )−Var≤N (F ).

We begin by describing a simple sufficient condition guaranteeing the convergence in law to a normal
random variable of a sequence of random variables in X̂ .

Proposition 12.1. Consider a sequence of random variables (Fν)ν≥1 in X̂ such that

E[Fν ] = 0, ∀ν,

i.e., Proj0(Fν) = 0, ∀ν. Suppose that the following hold.
(C1) For any n ∈ N, the sequence of variances Varn(Fν) converges as ν → ∞ to a nonnegative

number vn.
(C2) The sequence

VN := sup
ν≥1

Var>N (Fν)

converges to 0 as N → ∞. In other words, as N → ∞, the “tails” Proj>N Fν converge to
0 in L2, uniformly with respect to ν.

(C3) For anyN > 0 the sequence of random variables Proj≤N (Fν) converges in law to a normal
random variable.

Then the following hold.
(i) The series

∑
n≥1 vν is convergent. We denote by v its sum.

(ii)
lim
ν→∞

Var(Fν) = v.

(iii) As ν → ∞, the random variable Fν converges in law to a random variable F∞ ∼ N(0, v).

Proof. (i) Fix ε > 0. We can find N(ε) > 0 such that for any N > N(ε) we have VN < ε. For all
n > m > N(ε) we have

n∑
k=m

Vark(Fν) ≤
∑
k>N

Vark(Fν) ≤ VN < ε

which shows that

∀n > M > N(ε) :

n∑
k=m

vk = lim
ν→∞

n∑
k=m

Vark(Fν) ≤ ε.
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To prove (ii) observe that for any N > 0 we have

|Var(Fν)− v| ≤
∑
n≤N

∣∣∣Varn(Fν)− vn

∣∣∣+ ∑
n>N

Varn(Fν) +
∑
n>N

vn

≤
∑
n≤N

∣∣∣Varn(Fν)− vn

∣∣∣+ VN +
∑
n>N

vn

This proves that

lim sup
ν→∞

|Var(Fν)− v| ≤ VN +
∑
n>N

vn, ∀N > 0.

The conclusion (ii) is obtained by letting N → ∞ in the above inequality.

(iii) Let X ∈ X , ∥X∥ = 1, so that X ∈ N(0, 1),
√
vX ∈ N(0, v). We will show that for any

bounded Lipschitz function h : R → R we have

lim
ν→∞

E
[
h(Fν)

]
= E

[
h(
√
v X)

]
. (12.1)

Observe that if v = 0, we deduce from (ii) that Fν → 0 in L2 so Fν converges in law to the degenerate
normal random variable with variance 0. Assume v > 0. Without loss of generality we can assume
v = 1.

Fix a bounded Lipschitz function h : R → R and set

K := ∥h∥∞ + Lip(h).

For N > 0 we set

Gν,N = Proj≤N (Fν), Hν,N = Fν −Gν,N = Proj>N (Fν)

vN =
∑
n≤N

vn, σN =
√
vN

so that, as ν → ∞ Gν,N converges in law to σNX and Hν,N converges in L2 to 0.∣∣∣E[h(Fν)
]
− E

[
h(
√
v X)

] ∣∣∣ ≤ ∣∣∣E[h(Fν)
]
− E

[
h(Gν,N )

] ∣∣∣
+
∣∣∣E[h(Gν,N )

]
− E

[
h(σNX)

] ∣∣∣+ ∣∣∣E[h(σNX)
]
− E

[
h(
√
v X)

]
.
∣∣∣

Now observe that∣∣∣E[ ∣∣h(Gν,N +Hν,N ) − h(Gν,N )
∣∣ ] ∣∣∣ ≤ KE

[ ∣∣Hν,N

∣∣ ] ≤ K
∥∥Hν,N∥L2 ,

lim
ν∞

∥∥Hν,N∥L2 = 0, lim
ν→∞

∣∣∣E[h(Gν,N )
]
− E

[
h(σNX)

] ∣∣∣ = 0,

so that
lim sup
ν→∞

∣∣∣E[h(Fν)
]
− E

[
h(X)

] ∣∣∣ ≤ ∣∣∣E[h(σNX)
]
− E

[
h(
√
v X)

] ∣∣∣.
Letting N → ∞ we deduce

lim
ν→∞

∣∣∣E[h(Fν)
]
− E

[
h(
√
v X)

] ∣∣∣ = 0,

for any bounded Lipschitz function h. This proves (iii).
⊓⊔
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In the remainder of this section we will explain how to combine the Stein method with the Malli-
avin calculus to prove central limit results of the type described in Proposition 12.1, with condition
C3 replaced by one that is easier to verify in concrete situations. These techniques were pioneered
by D. Nualart and G. Peccati in [29] and have since generated a lot of follow-up investigations12; see
e.g. [25, 27] and the references therein. We follow the presentation in the recent, award winning
monograph of I. Nourdin and G. Peccati, [26].

12.2. Central limit theorem: single chaos. The following proposition is the key result in the im-
plementation of the Stein method in the Wiener chaos context.

Proposition 12.2 (Key abstract estimate). Let F ∈ D1,2(X ) such that E[F ] = 0, E[F 2] = 1. If
g : R → R is a Lipschitz function and K = Lip(f), then∣∣E[ g′(F ) ]− E

[
Fg(F )

] ∣∣ ≤ K ·
∣∣∣E[ (1− (DF,−DL−1F

)
X

) ) ] ∣∣∣ . (12.2)

Proof. Note first that g′ is defined only a.e.. However, the law of F has a density, so the random
variable g′(F ) is a.s. well defined. Using the integration-by-parts formula (9.5) with F = G we
deduce ∣∣E[ g′(F ) ]− E

[
Fg(F )

] ∣∣ = ∣∣∣E[ g′(F )( 1− (DF,−DL−1F
)
X

) ] ∣∣∣
≤ K ·

∣∣∣E[ (1− (DF,−DL−1F
)
X

) ) ] ∣∣∣.
⊓⊔

Corollary 12.3. Let F ∈ D1,2(X ) with E[F ] = 0, E[F 2] = σ2 > 0. If N ∼ N(0, σ2), then

distW (F,N) ≤
√

2

πσ2
E
[ ∣∣σ2 − (DF,−DL−1F

)
X

∣∣ ]. (12.3)

If, in addition, F ∈ D1,4(X ), then

E
[ ∣∣σ2 − (DF,−DL−1F

)
X

∣∣∣ ] ≤√Var
[ (
DF,−DL−1F

)
X

]
. (12.4)

Proof. The case σ = 1 follows from Corollary 11.8 and the inequality (12.2). The general case of
(12.3) follows from the case σ = 1 applied to the new random variable σ−1F .

To prove (12.4) we observe that

E
[ ∣∣σ2 − (DF,−DL−1F

)
X

∣∣ ] ≤√E
[ (
σ2 −

(
DF,−DL−1F

)
X

)2 ]
.

From the integration by parts formula (9.5) we deduce that

E
[ (
DF,−DL−1F

)
X

]
= σ2,

so that,
E
[ (
σ2 −

(
DF,−DL−1F

)
X

)2 ]
= Var

[ (
DF,−DL−1F

)
X

]
.

To show that the above variance is finite observe that

E
[ (
DF,−DL−1F

)2
X

]
≤
√

E
[ ∥∥DF∥4X ]

·
√

E
[ ∥∥DL−1F∥4X

]
.

The Kree-Meyer inequalities (10.6) imply that the quantities in the right-hand-side above are finite.
⊓⊔

12Ivan Nourdin maintains a site dedicated to this novel way of approaching limit theorems
https://sites.google.com/site/malliavinstein/home.

https://sites.google.com/site/malliavinstein/home
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Remark 12.4. The method of proof of Proposition 12.2 and the statement of Corollary 12.3 rely on
the assumption σ > 0 which may not be easy to verify in some concrete situations. ⊓⊔

Proposition 12.5. Let F ∈ D1,2(X ) such that E[F ] = 0, E[F 2] = σ2. If h ∈ C2
b (R) and N ∼

N(0, σ2), then∣∣E[h(F ) ]− E
[
h(N)

] ∣∣ ≤ 1

2
∥h′′∥∞ · E

[ ∣∣∣ (DF,−DL−1F
)
X

)
− σ2

∣∣∣ ]. (12.5)

In particular, if F ∈ D1,4, then

distC2(F,N) ≤ 1

2
E
[ ∣∣∣ (DF,−DL−1F

)
X

)
− σ2

∣∣∣ ] ≤ 1

2

√
Var
[ (
DF,−DL−1F

)
X

]
. (12.6)

Proof. The results is obviously true if σ2 = 0 so we can assume that σ2 > 0. We set

φ(t) =
1√
2π

∫ ∞

−∞
E
[
h
(
e−tσx+

√
1− e−2tF

) ]
dx.

Note that
φ(∞) = E

[
h(F )

]
, φ(0) = E

[
h(N)

]
,

so that

E
[
h(F )

]
− E

[
h(N)

]
=

∫ ∞

0
φ′(t)dt.

We have

φ′(t) =
e−tσ√
2π

E
[ ∫ ∞

−∞
h′
(
e−tσx+

√
1− e−2tF

)
xe−

x2

2 dx

]
+

e−2t

√
1− e−2t

× 1√
2π

∫ ∞

−∞
FE
[
h′
(
e−tσx+

√
1− e−2tF

) ]
e−

x2

2 dx.

Performing an usual integration by parts in the first integral and using the Malliavin integration by
parts formula (9.5) in the second integrand we deduce

φ′(t) = −e
−2tσ2√
2π

E
[ ∫ ∞

−∞
h′′
(
e−tσx+

√
1− e−2tF

)
e−

x2

2 dx

]

+
e−2t

√
2π

∫ ∞

−∞
E
[
h′′
(
e−tσx+

√
1− e−2tF

)(
DF,−DL−1F

)
X

]
e−

x2

2 dx

=
e−2t

√
2π

∫ ∞

−∞
E
[
h′′
(
e−tσx+

√
1− e−2tF

)
·
( (
DF,−DL−1F

)
X

− σ2
) ]
e−

x2

2 dx.

We deduce
E
[
h(F )

]
− E

[
h(N)

]
=

∫ ∞

−∞

e−2tdt√
2π

∫ ∞

−∞
E
[
h′′
(
e−tσx+

√
1− e−2tF

)
·
( (
DF,−DL−1F

)
X

− σ2
) ]
e−

x2

2 dx.

We reach the desired conclusion by observing that

E
[ ∣∣∣h′′( e−tσx+

√
1− e−2tF

) ∣∣∣ ] ≤ ∥h′′∥∞, ∀x.

⊓⊔
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Observe that when F ∈ X :q:, q > 0, then F ∈ D1,4 and(
DF,−DL−1F

)
X

=
1

q
∥DF∥2X .

In this case we can provide more detailed information. This will require a bit of Ito calculus and a bit
more terminology.

Given p, q ∈ N and r ∈ N0 such that r ≤ min{p, q} we define the map

⊗r : X ⊗p × X ⊗q → X ⊗(p+q−2r)

to be the unique continuous bilinear map such that

(X1 ⊗ · · · ⊗Xp)⊗r (Y1 ⊗ · · · ⊗ Yq) =

 r∏
j=1

E[XjYj ]

Xr+1 ⊗ · · · ⊗Xp ⊗ Yt+1 ⊗ · · · ⊗ Yq.

We define
⊗̃r : X ⊙p × X ⊙q → X ⊙(p+q−2r)

to be
u⊗̃rv := Sym

[
u⊗r v

]
, ∀u ∈ X ⊙p, v ∈ X ⊙q.

Remark 12.6. If W : L2(M,M, µ) → X is a white noise isomorphism then we can isometrically
identify X ⊗p with the space L2(Mp,M⊗p, µ⊗p). Thus we can view f ∈ X ⊗p and g ∈ X ⊗q as
L2-functions

f :Mp → R, g :M q → R.

Then f ⊗r g can be identified with the function Mp−r ×M q−r → R given by

f ⊗r g(xr+1, . . . , xp, yr+1, . . . , yq)

=

∫
Mr

f(t1, . . . , tr, xr+1, . . . , xp)g(t1, . . . , tr, yr+1, . . . yq)µ
⊗r(dt1 · · · dtr).

Lemma 12.7. Let q ∈ N, q ≥ 2 and f ∈ X ⊙q, Set F = Ip[f ]. Then the following hold.

1

q
∥DF∥2X = E[F 2] + q

q−1∑
r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r[f⊗̃rf ], (12.7a)

Var

(
1

q
∥DF∥2X

)
=

1

q2

q−1∑
r=1

r2(r!)2
(
q

r

)2

(2q − 2r)!∥f⊗̃rf∥2X ⊙(2q−2r) , (12.7b)

E[F 4]− 3E[F 2]2 =
3

q

q−1∑
r=1

r2(r!)2
(
q

r

)2

(2q − 2r)! ∥ f ⊗̃rf ∥2X ⊗(2q−2r)

=

q−1∑
r=1

(q!)2
(
q

r

)2(
∥ f ⊗rf∥2X ⊗(2q−2r) +

(
2q − 2r

q − r

)
∥ f ⊗̃rf ∥2X ⊗(2q−2r)

)
,

(12.7c)

Var

(
1

q
∥DF∥2X

)
≤ q − 1

3q

(
E
[
F 4
]
− 3E

[
F 2
]2 ) ≤ (q − 1)Var

(
1

q
∥DF∥2X

)
. (12.7d)
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About the proof. Let us point out that (12.7b) follows immediately from (12.7a) via the isometry
(5.4). The inequality (12.7d) follows immediately from (12.7b, 12.7c). Thus it suffices to prove only
(12.7a) and (12.7c).

To prove (12.7a) it is convenient to consider a more general problem, that of finding the chaos
decomposition of (

DF,DG
)
X
, F,G ∈ X :q:

We write F = Ip[f ], G = Ip[g], f, g ∈ X ⊙q. Using the polarization trick we can reduce the
problem to the special case

f = X⊗q, g = Y ⊗q, X, Y ∈ X , E[X2] = E[Y 2] = 1.

Thus

F = Hq(X), DF = qHq−1(X)DX,

G = Hq(Y ), DG = qHq−1(Y )DY,(
DF,DG

)
X

= q2Hq−1(X)Hq−1(Y )E[XY ].

The equality (12.7a) now follows by invoking (4.5), (4.6) and the isometry equality (8.5).
The proof of (12.7c) requires a bit more work. The hardest part is the 2nd half of this equality. It

is based on the (non-obvious) elementary identity

(2q)!∥f⊗̃f∥2X ⊗(2q) = 2(q!)2∥f∥4X ⊗q + (q!)2
q−1∑
r=1

(
q

r

)2

∥f ⊗rf∥2X ⊗(2q−2r) , f ∈ X ⊙q . (12.8)

A convenient way to prove this is to use a white noise isomorphism as in Remark 12.6. We refer to
[26, Lemma 5.2.4] for details. ⊓⊔

Corollary 12.8 (The fourth moment theorem, [29]). Suppose that F ∈ X :q:, q ≥ 2 and E[F 2] =
σ2 > 0. Then for N ∈ N(0, σ) we have

distW (F,N) ≤ 1

σ

√
Var
( 2

qπ
∥DF∥2X

)
≤ 1

σ

√
(2q − 2)

(
E[F 4]− 3σ4

)
3πq

. (12.9)

Thus, given a sequence (Fn)n≥0 in X :q:, q ≥ 2 and N ∼ N(0, σ) the following statements are
equivalent.

(i) The sequence (Fn)n≥0 converges in probability to N .
(ii) As n→ ∞, E[F 2

n ] → E[N2] = σ2and E[F 4
n ] → E[N4] = 3σ4.

(iii) If Fn = Iq[fn], fn ∈ X ⊙q, then

lim
n→∞

∥fn⊗̃rfn∥X ⊙(2q−2r) = 0, ∀r = 1 . . . , q − 1.

(iv) Var
(
∥DFn∥2

)
→ 0 as n→ ∞.

Proof. In this case we have (
DF,−DL−1F

)
X

=
1

q

∥∥DF ∥∥2
X
.

The desired conclusions follow from Corollary 12.3, (12.7b) and (12.7d). ⊓⊔
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12.3. Central limit theorem: multiple chaoses. The results proved in the previous subsection have
a multidimensional counterpart. The next result, is the multi-dimensional counterpart of Proposition
12.2 and Corollary 12.3

Proposition 12.9. Fix d ≥ 2 and let F = (F1, . . . , Fd) be a random vector such that F1, . . . , Fd ∈
D1,4(X ) with E[Fi] = 0, i. Let C ∈ L(Rd) be a symmetric positive definite operator and let
N ∼ N(0, C). Then

distW (F ,N) ≤
√
dλmax(C)

λmin(C)

√√√√ d∑
i,j=1

E
[ (
Cij −

(
DFi,−DL−1Fj

)
X

)2 ] (12.10)

Proof. Let M be the random operator M : Ω → L(Rd) with the (i, j)-th entry given by

Mij :=
(
DFj ,−DL−1Fi

)
X
.

Arguing as in the proof of Corollary 12.3 we deduce that Mij ∈ L2 since Fi, Fj ∈ D1,4(X ). For
g ∈ C2(Rd) such that

sup
x∈Rd

∥∥Hess g(x)∥∥
HS

≤
√
dλmax(C)

λmin(C)

we have∣∣∣E[ (C,Hess g)HS(F )− (F ,∇g(F ))Rd

] ∣∣∣ =
∣∣∣∣∣∣

d∑
i,j=1

CijE
[
∂2xixj

g(F )
]
−

d∑
i=1

E
[
Fi∂xig(F )

] ∣∣∣∣∣∣
(use the integration by parts formula (9.5))

=

∣∣∣∣∣∣
d∑

i,j=1

CijE
[
∂2xixj

g(F )
]
−

d∑
i,j=1

E
[
∂2xixj

g(F )(DFj ,−DL−1Fi)X
] ∣∣∣∣∣∣

=

∣∣∣∣∣∣
d∑

i,j=1

CijE
[
∂2xixj

g(F )
(
Cij − (DFj ,−DL−1Fi)X

] ∣∣∣∣∣∣
=
∣∣∣E[ (Hess g(F ), C −M)HS

] ∣∣∣ ≤√E
[
∥Hess g(F )∥2HS ·

√
E
[
∥C −M∥2HS

≤
√
dλmax(C)

λmin(C)

√
E
[
∥C −M∥2HS .

We conclude by invoking Corollary 11.13. ⊓⊔

The next result, is the multidimensional counterpart of Proposition 12.5 and explains what to do
when the covariance matrix C is possible degenerate.

Proposition 12.10. Fix d ≥ 2 and let F = (F1, . . . , Fd) be a random vector such that F1, . . . , Fd ∈
D1,4(X ) with E[Fi] = 0, i. Let C ∈ L(Rd) be a symmetric, nonnegative definite operator and let
N ∼ N(0, C). Then for every h ∈ C2(Rd) such that ∥h′′∥∞ <∞ we have

∣∣ E[h(F )
]
− E

[
h(N)

] ∣∣ ≤ 1

2
∥h′′∥∞

√√√√ d∑
i,j=1

E
[ (
Cij −

(
DFj ,−DL−1Fi

)
X

)2 ] (12.11)
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Proof. Without any loss of generality we can assume N is independent of the Gaussian space X .
Let h as in the statement of the proposition. For t ∈ [0, 1] we set

Ψ(t) := E
[
h(
√
1− tF +

√
tN)

]
.

Then

E
[
h(N)

]
−E

[
h(F )

]
= Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt.

We have

Ψ′(t) =

d∑
i=1

E
[
∂xih(

√
1− tF +

√
tN)

(
1

2
√
t
Ni −

1

2
√
1− t

Fi

)]
.

At this point we want to use the following elementary but useful identity.

Lemma 12.11. If f = f(y1, . . . , yd) : Rd → R is C1 with bounded derivatives, N̂ ∼ N(0,1d) and
T, S ∈ L(Rd), then

E
[
f
(
SN̂ )

(
TN̂ )i

]
=

d∑
k=1

E
[
∂ykf

(
SN̂ )(TS∗)ik

]
, (12.12)

where
(
TN̂ )i denotes the i-th component of the random vector TN̂ and (TS∗)ik denote the (i, k)-

entry of the matrix TS∗

Proof of the lemma. We have

E
[
f
(
SN̂ )

(
TN̂ )i

]
=

d∑
j=1

E
[
f
(
SN̂ )TijNj

]
(δj = −∂Nj +Nj)

=

d∑
j=1

E
[
f
(
SN̂ )Tijδj(1)

]
(integrate by parts using the equalities ∂Nj =

∑
k ∂yk∂Njyk, yk =

∑
j SkjNj)

=
d∑

j=1

d∑
k=1

E
[
∂ykf

(
SN̂ )SkjTij

]
=

d∑
k=1

E
[
∂ykf

(
SN̂ )(TS∗)ik

]
.

⊓⊔

Now observe that if f : Rd → R is a C1-function with bounded derivatives, and N̂ ∼ N(0,1d) is
such that, N =

√
CN̂ , then (12.12) shows that

E
[
f(N)Ni

]
= E

[
f(

√
CN̂ )

(√
CN̂)i

]
=

d∑
k=1

E
[
∂ykf

(
SN̂ )Cik

]
. (12.13)

We have

E
[
∂xih(

√
1− tF +

√
tN)Ni

]
= Ex

[
E
[
∂xih(

√
1− tx+

√
tN)Ni

∣∣∣F = x
] ]

(12.13)
=

√
t

d∑
j=1

Ex

[
CijE

[
∂2xixj

h(
√
1− tx+

√
tN)

∣∣∣F = x
] ]
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=
√
t
∑
j

CijE
[
∂2xixj

h(
√
1− tF +

√
tN)

]
.

Using the integration by parts formula (9.5) we deduce

E
[
∂xih(

√
1− tF +

√
tN)Fi

]
= Ex

[
E
[
∂xih(

√
1− tF +

√
tx)Fi

∣∣∣N = x
] ]

=
√
1− t

d∑
j=1

Ex

[
E
[
∂2xixj

h(
√
1− tF +

√
tx)
(
DFj ,−DL−1Fi

)
X

∣∣∣N = x
] ]

=
√
1− t

d∑
j=1

E
[
∂2xixj

h(
√
1− tF +

√
tN)

(
DFj ,−DL−1Fi

)
X

]
Hence

E
[
h(N)

]
−E

[
h(F )

]
= Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt

=
1

2

d∑
i,j=1

∫ 1

0
E
[
∂2xixj

h
(√

1− tF +
√
tN

)(
Cij −

(
DFj ,−DL−1Fi

)
X

) ]
.

(12.14)

⊓⊔

We now have (almost) all the information we need to prove the following remarkable result.

Theorem 12.12. Let d ≥ 2 and q1, . . . , qd ∈ N. Consider the d-dimensional random vector

F = (F1, . . . , Fd), Fi ∈ X :qi:, i = 1, . . . , d.

Let fi ∈ X ⊙qi such that Iqi [fi] = Fi. Denote by C the covariance matrix of the random vector F ,
Cij = E[FiFj ], and let N ∼ N(0, C). Consider the continuous function

ψ : (R× R>0)
d → R > 0

given by

Ψ(x1, y1, . . . , xd, yd) =

d∑
i,j=1

δqiqj


√√√√qi−1∑

r=1

(
2r

r

) |xi|
1
2

+

d∑
i,j=1

(1− δqiqj )

( 2|yj | ) 1
2 |xi|

1
4 ++

min(qi,qj)−1∑
r=1

√
(2(qi + qj − 2r)!

(
qj
r

)
|xi|

1
2

 ,

and set

m(F ) = ψ
(
m4(F1)− 3m2(F1)

2,m2(F1), . . . ,m4(Fd)− 3m2(Fd)
2,m2(Fd)

)
,

where we recall that mk(X) denotes the k-th moment of a random variable X . Note that

ψ
(
x1, y1, . . . , xd, yd

)
x1=···=xd=0

= 0.

If h : Rd → R is a C2 function with bounded second derivatives, then∣∣E[F ]− E[N ]
∣∣ ≤ 1

2
∥h′′∥∞m(F ).
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The main ideas. We plan to use Proposition 12.10 so we need to estimate from above the quantities

E
[ (

Cij −
(
DFj ,−DL−1Fi

)
X

)2 ]
= E

[ (
E[FiFj ]−

1

qi

(
DFi, DFj

)
X

)2 ]
.

Note that Cij = 0 if qi ̸= qj . Thus, we need to produce suitable upper estimates for quantities of the
form

E
[
α− 1

p

(
DF,DG)X

]
, F ∈ X :p:, G ∈ X :q:, α ∈ R.

This is what the next lemma accomplishes.

Lemma 12.13. Let F = Ip[f ], f ∈ X ⊙p and G = Iq[g], g ∈ X ⊙q, p, q ≥ 1. Suppose that α is a
real constant.

(i) If p = q, then

E
[ (

α− 1

p

(
DF,DG)X

)2 ]
≤
(
α− E[FG]

)2
+
p2

2

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)4

(2p− 2r)!
(
∥f ⊗p−r f∥2X ⊗2r + ∥g ⊗p−r g∥2X ⊗2r

) (12.15)

(ii) If p < q, then

E
[ ( 1

q

(
DF,DG)X

)2 ]
≤ (p!)2

(
q − 1

p− 1

)2

(q − p)!∥f∥2X ⊗p∥ g ⊗q−p g∥X ⊗2p

+
p2

2

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)2(q − 1

r − 1

)2

(p+ q − 2r)!
(
∥f ⊗p−r f∥2X ⊗2r + ∥g ⊗q−r g∥2X ⊗2r

)
.

(12.16)

Main idea of the proof. The lemma follows from the identity

(
DF,DG

)
X

= pq

min(p,q)∑
r=1

(r − 1)!

(
p− 1

r − 1

)(
q − 1

r − 1

)
Ip+q−2r[f ⊗r g],

which can be reduced to the equality (4.5). ⊓⊔

Using (12.7c) we deduce that for any q ≥ 2 and any f ∈ X ⊙q we have

∥f ⊗r f∥2X ⊗(2q−2r) ≤
(
r!(q − r)!

)2
(q!)4

(
E
[
Iq[ f ]

4
]
− 3E

[
Iq[ f ]

2
]2 )

.

Theorem 12.12 now follows from the above lemma after some simple algebraic manipulations ⊓⊔

Theorem 12.12 implies the following remarkable result.

Theorem 12.14 (Peccati-Tudor, [30]). Let d ≥ 1 and q1, . . . , qd ∈ N. Consider the sequence of
d-dimensional random vectors

F n = (F1,n, . . . , Fd,n), Fj,n ∈ X :qj :, j = 1, . . . , d, n ∈ N.

Suppose that C ∈ L(Rd) is symmetric and nonnegative definite and

lim
n→∞

E
[
Fi,nFj,n

]
= Cij , ∀i, j = 1, . . . , d.

Then the following statements are equivalent.
(i) The random vector F n converges in probability to a Gaussian vector N ∼ N(0, C).
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(ii) For each j = 1, . . . , d the sequence of random variables
(
Fi,n

)
n∈N converges in probability

to a Gaussian r.v. Ni ∼ N(0, Cii).
⊓⊔

The above result leads to the following substantial strengthening of Proposition 12.1

Theorem 12.15. Consider a sequence of random variables (Fν)ν≥1 in X̂ such that E[Fν ] = 0, ∀ν,
i.e., Proj0(Fν) = 0, ∀ν. Suppose that the following hold.

(C1) For any k ∈ N, ∃vk ≥ 0 such that

lim
ν→∞

E
[ (

Projk Fν

)2 ]
= vk.

(C2) The sequence

VN := sup
ν≥1

∑
k>N

E
[ (

Projk Fν

)2 ]
converges to 0 as N → ∞.

(C ′
3) For any k ∈ N

lim
ν→∞

E
[ (

Projk Fν

)4 ]
= 3v2k.

Then the following hold.
(i) The series

∑
n≥1 vν is convergent. We denote by v its sum.

(ii)
lim
ν→∞

Var(Fν) = v.

(iii) As ν → ∞, the random variable Fν converges in law to a random variable F∞ ∼ N(0, v).

Remark 12.16. (a) The fourth moment theorem (Corollary 12.8) shows that the conditions C1 + C ′
3

are equivalent with the requirement that, ∀k ∈ N, as ν → ∞ the random variables Projk[Fν ] converge
in probability as ν → ∞ to a normal random variable Nk ∈ N(0, vk).
(b) If we write

Projk[Fν ] = Ik[fν,k], fν,k ∈ X :k:,

the Corollary 12.8 shows that the condition C ′′
3 is equivalent to

lim
ν→∞

∥fν,k⊗̃rfν,k∥X ⊙(2q−2r) = 0, ∀k ≥ 1, ∀r = 1 . . . , k − 1

⊓⊔
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