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Abstract

We study the behavior of the Gauss-Bonnet integrand on the level sets of a holomor-
phic function in a neighborhood of an isolated critical point. This is a survey of some
older results of Griffiths, Langevin, Lê and Teissier. It is a blend of classical integral
geometry and complex Morse theory (a.k.a Picard-Lefschetz theory).

Motivation

Consider the family of plane complex curves

Ct =
{
(x, y)) ∈ C

2; xy = t, |x|2 + |y|2 ≤ 1
}
, |t| � 1.

Ct is non-singular for t 6= 0 , while for t = 0 the complex curve C0 consists of the two
plane disks

Dx =
{
(x, 0); |x| = 1

}
, Dy =

{
(0, y); |y| ≤ 1

}
.

Denote by gt the metric on Ct induces by the Euclidean metric on C
2. The boundary

of Ct is
∂Ct := Ct ∩ S1(0),

where Sr(p) denotes the sphere of radius r centered at p ∈ C
2. Observe that ∂Ct consists

of two boundary components corresponding to the two solutions of the equation (see
Figure 1)

√

ρ2 +
|t|2
ρ2

= 1 ⇐⇒ ρ4 + |t|2 = ρ2, ρ > 0.

For t 6= 0 the Riemann surface Ct is homotopy equivalent with the vanishing circle (see
Figure 1)

δt =
{
(x, y) ∈ Ct; |x| = |y| =

√

|t|
}
.

Thus
χ(Ct) = χ(δt) = 0.

Clearly χ(C0) = χ(pt) = 1 so that

lim
t→0

χ(Ct) 6= χ(C0).

Denote by Kt the sectional curvature of the Riemann surface (Ct, gt) and by κt the
geodesic curvature of ∂Ct ↪→ Ct (see [9, vol 3, Chap. 4] or [10, §4.1] for a definition of
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Figure 1: A family of degenerating plane curves

the geodesic curvature). Note that K0 ≡ 0 and κ0 ≡ 1. The Gauss-Bonnet theorem
states that

1

2π

∫

Ct

KtdVt +
1

2π

∫

∂Ct

κtds = χ(Vt), ∀t 6= 0

For every r > 0 set

Ct(r) := {(x, y) ∈ Ct); |x|2 + |y|2 ≤ r}.

For fixed ε > 0 we have

lim
t→0

∫

Ct\Ct(ε)

KtdVgt
=

∫

C0\C0(ε)

K0dV0 = 0.

On the other hand

lim
t→0

∫

∂Ct

κtds =

∫

∂C0

κ0ds = length (∂Ct) = 4π.

We have

0 = 2πχ(Ct) =

∫

Ct(ε)

KtdVt +

∫

Ct\Ct(ε)

KtdVt +

∫

∂Ct

κtds.

If we let t → 0 we deduce that

1

2π
lim
t→0

∫

Ct(ε)

KtdVt = −2, ∀ε > 0. (∗)

The above observations show that the curvature of Ct concentrates in the region Ct(ε)
whose area is of the order 2πε2. Thus the average of the curvature over this region is
≈ − 1

πε2 .
To put the equality (∗) in some perspective let us rewrite it as

lim
t→0

∫

Ct

KtdVt −
∫

C0\0

K0dV0 = lim
ε→0

lim
t→0

∫

Ct(ε)

KtdVt = −2. (∗∗)
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This shows two things. First, the integral of the curvature on Ct does not converge to
the integral of the curvature on C0 as one would expect to be the case if C0 were smooth.
Second, the difference between the limit and the actual integral over the singular level
set is an integer.

We see that the limit has a topological meaning! To explain it consider the restriction
of the polynomial f(x, y) = xy to a generic line y = mx. It is f (1)(x) = mx2. Observe
that

χ := χ(f = t) = 0, χ(1) := χ(f (1) = s) = 2,

and we can rephrase (∗∗) as

lim
t→0

∫

{f=t}

KtdVt −
∫

{f=0}

K0dV0 = lim
ε→0

lim
t→0

∫

{f=t}∩Bε(0)

KtdVt = χ − χ(1). (†)

We want to show that a similar result holds for any polynomial f in any number of
variables with an isolated singularity at the origin, where Kt is replaced by the Gauss-
Bonnet integrand and f (1) is replaced by the restriction of f to a generic hyperplane.
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1 A Crofton type formula

For 0 ≤ k ≤ n denote by Gk := Gk(Pn) the grassmanian of k-dimensional projective
subspaces of P

n. We have
Gk(Pn) ∼= Gk+1(C

n+1).

The U(n + 1) acts on Gk is a symmetric space with isometry group isomorphic to
U(n + 1). Denote by dS the unique U(n + 1)-invariant measure on Gk with total
volume 1.

Denote by ΩH the Fubini-Study form on P
n normalized as in [4, p.30-31]. Observe

that for every k-dimensional projective subspace S ⊂ P
n we have

∫

S

Ωk
H = 1.

Theorem 1.1 (Crofton formula). Suppose V is a bounded open subset of C
n−k and

F : V → P
n is a holomorphic map. Then

∫

V

F ∗Ωn−k
H =

∫

Gk(Pn)

#(F (V ) ∩ S)dS. (1.1)

Remark 1.2. The above identity can be loosely rephrased as saying that Ωn−k
H com-

putes the average of intersection of k-planes per unit of (n− k)-dimensional volume. If
we choose local holomorphic coordinates (z1, · · · , zn) and we choose V to be the very
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small piece of surface zn = · · · = zn−k+1 = 0 of size dzi, 1 ≤ i ≤ n − k, then we deduce
that the quantity

Ωn−k
H (∂z1

, ∂z̄1
, · · · , ∂zn−k

, ∂z̄n−k
)dz1 ∧ dz̄1 ∧ · · · ∧ dzn−k ∧ dz̄n−k

is the average number of intersections of the projective k-planes with the (n − k)-
dimensional patch

[z1, z1 + dz1] × · · · [zn−k, zn−k + dzn−k] × {zn=k+1 = · · · = zn = 0}

Proof of Crofton’s formula We will follow the approach in [3, p. 475-478].
Fix a k-plane S0 ↪→ P

n. Then the cohomology class dual to S0 is Ωn−k
H that is

∫

S0

α =

∫

Pn

α ∧ Ωn−k
H , ∀α ∈ Ωk(Pn), dα = 0.

Denote by G0 the stabilizer of S0 with respect to the U(n + 1) action on P
n. Note that

G0
∼= U(k + 1) × U(n − k) ↪→ U(n + 1).

The region P
n \S0 is G0-invariant and so is the form Ωn−k

H . Denote by Nr(S0) the tube
of radius r around S, i.e.

Nr(LS0) = {p ∈ P
n; dist (p, S0) < r},

where the distance is measured with respect to the Fubini-Study metric. For r � 1 this
tube is G0-invariant. Choose a closed 2(n−k)-form δr

0 supported in Nr(L0) representing
the Poincaré dual of L0. For the existence of such forms we refer to [8, Lemma 7.3.10].
Averaging over G0 we can assume that δr

0 is also G0-invariant. We can thus find a
smooth (2n − 3)-form ηr

0 such that

dηr
0 = Ωn−k

H − δr
0.

Averaging the above equality over G0 we can assume that ηr
0 is G0-invariant as well.

Observe that if S is another k-plane in P
n and g, h ∈ U(n + 1) are such that

gS = hS = S0 then gh−1 ∈ G0 so that

g∗δr
0 = h∗δr

0, g∗ηr
0 = h∗ηr

0,

so that these differential forms depend only on the plane S. We denote them by δr
S and

ηr
S . The resulting correspondences S 7→ δr

S , ηr
S a U(n + 1)-equivariant, i.e.

δg−1S := g∗δS , ηg−1S := g∗ηS , ∀g ∈ U(n + 1).

If we denote by GS the stabilizer of the k-lane S we deduce that for every S and every
r � 1 the form ηr

S is GS-invariant, it is supported inside Nr(S) and satisfies the equality

dηr
S = Ωn−k

H − δr
S . (1.2)

Consider now manifold
Z := V × P

n × Gk(Pn)

and the submanifolds

ΓF := {(v, F (v), S) ∈ Z; v ∈ V }, I := {(v, p, S) ∈ Z; p ∈ S}.
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Then ΓF t I and we denote their intersection by Y. We set π0 := π |Y where π : Z →
Gk(Pn) is the natural projection. Then for S ∈ Gk(Pn)

π−1
0 (S) := {(v, p, S) ∈ Z; p = F (v), p ∈ S} ∼= F−1(S)

We deduce that #π−1
0 (S) = #F (V ) ∩ S. From Sard’s theorem we deduce that the

critical set of π0 has zero measure, that is

F (V ) intersects almost all k-planes transversally.

Observe next that both sides of (1.1) are additive with respect to partitions of V so that
upon subdividing we may assume it is a complex submanifold with boundary. Suppose
S is a k-plane which intersects F (V ) transversally. Fix r sufficiently small such that

V ∩ F−1(Nr(S)) ⊂ int (V ).

Since δr
S represents the Poincaré dual of S and is supported in a very thin neighborhood

of S we deduce from [8, Lemma 7.3.12] that
∫

V

F ∗δr
S = #(F (V ) ∩ S).

Integrating (1.2) over V we deduce
∫

V

F ∗Ωn−k
H =

∫

∂V

F ∗ηr
S + #(V ∩ S).

The above equality is valid for almost all k-planes S. Hence
∫

Gk(Pn)

(∫

V

F ∗Ωn−k
H

)

dS =

∫

Gk(Pn)

#(F (V ) ∩ S)dS +

∫

Gk(Pn)

(∫

∂V

F ∗ηr
S

)

dS

so that
∫

V

F ∗Ωn−k
H =

∫

Gk(Pn)

#(F (V ) ∩ S)dS +

∫

Gk(Pn)

(∫

∂V

F ∗ηr
S

)

dS. (1.3)

Now observe that up to a multiplicative constant C we have
∫

Gk(Pn)

(∫

∂V

F ∗ηr
S

)

dS =

∫

∂V

F ∗
(∫

Gk(Pn)

ηr
SdS

)

= C

∫

∂V

F ∗

∫

U(n+1)

(∫

∂V

g∗ηr
0

)

dg = C

∫

∂V

F ∗
(∫

U(n+1)

g∗ηr
0dg

)

︸ ︷︷ ︸

:=〈ηr〉

.

〈ηr〉 is a smooth, odd-degree, U(n + 1)-invariant form on the symmetric space P
n =

U(n + 1)/(U(1)×U(n). The space of invariant forms on a compact symmetric space is
isomorphic to the deRham cohomology of the space (see [8, §7.4]). On our symmetric
space the deRham cohomology vanishes in odd degrees so that

〈ηr〉 ≡ 0.

Using this information in (1.3) we obtain Crofton formula.

Let us say a few words about integration on analytic subvarieties. Suppose V is an
n-dimensional complex subvariety defined in an open subset U ⊂ C

N . Denote by V ∗

the smooth part of V and by Vsing its singular part. We denote by Ωk
c (U) the vector

space of compactly supported, complex valued k-forms on U . We have the following
result. For a proof we refer to [4, p. 31-33].
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Theorem 1.3 (Lelong). V defines a closed (n, n)-current, i.e the following hold.

(i) For any 2n-form α ∈ Ω2n
c (U) the integral

∫

V ∗
α is absolutely convergent.

(ii) For any α ∈ Ω2n−1
c (U) we have

∫

V ∗

dα = 0.

(iii) If α ∈ Ωp.2n−p
c (U), p 6= n then

∫

V ∗

α = 0.

We will denote by [V ] the current of integration defined in the above theorem.

2 Chern forms of smooth submanifolds in C
N

Suppose Mn ↪→ C
N is a smooth complex submanifold in C

N . As such it is equipped
with a natural Kähler metric. Let FM ∈ Ω1,1(T 1,0M) denote the curvature of the
associated Chern connection on the holomorphic tangent bundle T 1,0M . The Chern
forms ck(M) are then defined by the equality

ct(M) :=

n∑

k=0

ck(M)tk = det(1 +
ti

2π
FM ), i :=

√
−1.

In particular cn(M) coincides with the Euler form of M with the induced Riemann
metric.

On the other hand we have a Gauss map

GM : M → Gn(CN ) = the grassmanian of n-dimensional subspaces in C
N .

We denote by En → Gn(CN ) the tautological vector bundle. It is equipped with a
natural hermitian metric, and we denote by Fn its curvature. Define the Chern forms
as before

n∑

k=1

ck(Gn)tk = det(1 +
ti

2π
Fn).

We have the following result,[3, §3].

Theorem 2.1 (Theorema Egregium - The complex case).

G∗
Mct(Gn) = ct(M). (2.1)

The above theorem has one interesting consequence.

Proposition 2.2. Suppose V n ↪→ C
N is a pure n-dimensional complex subvariety of

C
N . Denote by Vreg the regular part of V and by cn(Vreg) the n-th Chern class (with

respect to the induced Kähler metric. Then for any open set U ⊂ Vreg which is bounded
in C

N we have ∫

U

cn(Vreg) < ∞.

Remark 2.3. Observe that the conclusion of the above proposition does not follow from
Lelong’s theorem since cn(Vreg) is defined only on Vreg. To apply Lelong’s theorem we
need to know that cn(Vreg) is the restriction to Vreg of an (n, n)-form defined in some
open neighborhood of V in C

N . It is not at all obvious that this is indeed the case.
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Proof Consider the Gauss map

G : Vreg → Gn(CN ).

Its graph is an n-dimensional subvariety Γ ⊂ C
N × Gn(CN )

Γ =
{
(p,E) ∈ C

N × Gn(CN ); p ∈ Vreg, TpVreg = E
}
.

Denote by ı the obvious inclusion ı : Vreg ↪→ Γ and by π the obvious projection

π : C
N × Gn(CN ) � Gn(CN ).

Observe that G = π ◦ ı so that G∗ = ı∗ ◦ π∗. The form π∗cn(Gn) ∈ Ωn,n(CN ×Gn(CN ))
is locally integrable along Γ by Lelong’s theorem.

Let U ⊂ Vreg be a bounded open subset and set Û = ı(U) ⊂ Γ. Then

∫

U

cn(Vreg)
(2.1)
=

∫

U

G∗cn(Gn) =

∫

U

ı∗(π∗cn(Gn))

=

∫

Û

π∗cn(Gn) < ∞.

We conclude this section with a discussion of a rather confusing issue. Consider a
complex n + 1-dimensional vector space V and denote by Gk(V ) the grassmanian of
k-dimensional subspaces of V . We have a natural biholomorphic map

Gk(V ) → Gn+1−k(V ∗), V ⊃ E 7→ E0 := {v∗ ∈ V ∗; v∗(e) = 0, ∀e ∈ E} ⊂ V ∗.

In particular we have a natural biholomorphic map

δ : P(V ∗) ∼= G1(V
∗) → Gn(V ).

We denote by En = En(V ) the tautological vector bundle over Gn(V ). En is a sub-
bundle of the trivial bundle V ∼= C

n+1 and we set Qn = Qn(V ) := V /En. Denote by
E1 = E1(V

∗) the tautological line bundle over P(V ∗).

Lemma 2.4.
δ∗Qn

∼= E∗
1 .

Proof The map δ has the form ` 7→ `0 for any line in V ∗. We need to produce a map
∆ : E∗

1 → Qn such that the diagram below is commutative

E∗
1 Qn

P(V ∗) Gn(V )

w∆u uwδ

and which is linear along the fibers.
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More precisely, for any line ` ⊂ V ∗ the restriction on ∆ to the fiber of E∗
1 over `

coincides with the tautological isomorphism

∆` : `∗ → V/`0

defined by the natural pairing
` × V/`0 → C.

From the short exact sequence of vector bundles over Gn(V )

0 → En → V → Qn → 0

we deduce
1 = c(V ) = c(En)c(Qn).

Denote by H the image of the hyperplane class in H2(P(V ∗)) via (δ−1)∗. Lemma 2.4
now implies

1 = c(En)(1 + H∗) =⇒ c(En) =
∑

k≥0

(−1)kHk.

In particular
cn(En) = (−1)nHn (2.2)

3 The Langevin formula

To formulate and prove our promised generalization of (†) we need to review some facts
concerning the isolated singularities of complex hypersurfaces.

Suppose f = f(z0, z1, · · · , zn) is a holomorphic function of n+1-variables defined in
a neighborhood of the origin such that the origin 0 ∈ C

n+1 is an isolated critical point.
Denote by O0 = OCn+1,0 the ring of germs at 0 ∈ C

n+1 of holomorphic functions and
by m its maximal ideal.

The origin is an isolated point of the analytic set

∆ := { ∂f

∂z0
=

∂f

∂z1
= · · · =

∂f

∂zn

= 0}.

If we denote by Jf the ideal in O0 generated by { ∂f
∂zi

; 0 ≤ i ≤ n} we deduce from the
analytic Nullstelensatz, that

√

Jf = m

so that m
ν ⊂ Jf for some integer ν and thus

dimC O0/Jf < ∞.

This integer is called the Milnor number of f at 0 or the Milnor number of the hyper-
surface X0 at 0. It is denoted by µ(f, 0) or µ(X0, 0).

For t ∈ C , |t| � 1, and any open set U we set

Xt = {~z ∈ C
n+1; f(~z) = t}, XU

t := Xt ∩ U.

We have the following fundamental result.
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Theorem 3.1 (Milnor). For every neighborhood U of 0 ∈ C
n+1 there exists τ =

τ(U) > 0 such that for all 0 < |t| < τ the hypersurface XU
t is homotopic to a wedge of

µ spheres of dimension n,
XU

t ' Sn ∨ · · · ∨ Sn

︸ ︷︷ ︸

µ

.

We have
XU

t
∼=C∞ XV

t , ∀0 < |t|min(τ(U), τ(V )).

The manifold XU
t is called the Milnor fiber of f .

For a proof we refer to the beautiful monograph [7].

Example 3.2. Consider polynomial f = fp,q(x, y) = xp − yq, p > q, gcd(p, q) = 1.
Then Jf = (xp−1, yp−1) and we see that any germ at 0 of holomorphic function is
congruent modulo Jf to a unique polynomial of the form

∑

0≤i<p−1, 0≤j<q−1

aijx
iyj .

this shows
µ(f, 0) = (−1)(q − 1).

Denote by G the grassmanian Gn(Cn+1) of hyperplanes of C
n+1 containing the

origin. For every neighborhood U of the origin we now construct a parameterized
Gauss map

G = GU : U∗ := U \ 0 → G, p 7→ TpXf(p),

and denote by Γ = ΓU its graph

Γ =
{

(p,H) ∈ U × G; p 6= 0, H = TpXf(p)

}

.

The function f induces a natural map

πf : U × G → C, (p,H) 7→ f(p)

Denote by Γ̂ the closure of Γ in Y. It is an analytic subspace (see [12, §16]). Set
Γt := Γ ∩ π−1

f (t), Γ̂t := π−1
f (t) ∩ Γ̂. More precisely Γt is the graph of the Gauss map

Xt \ 0 → G.

Denote by Γ̄0 the closure of Γ0 in U × G. Γ̄0 is called the Nash blowup of X0. The set

L := Γ̄0 \ Γ0 ⊂ {0} × P
n

is called the space of limits of tangents planes.

Remark 3.3. More accurately, we denote by πf : BlJf
(Cn+1) → C

n+1 the blowup of
C

n+1 along the scheme defined by the Jacobian ideal Jf (see [2, Prop. IV.22, p.169]).

Then Γ̂0 which is the total transform of X0, and Γ̄0 is the strict transform. The excep-
tional divisor of this blowup is the Cartier divisor defined as the preimage of the zero
dimensional scheme described by the Jacobian ideal. It is called the Plücker defect.
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Example 3.4. Consider the polynomial f(x, y) = xp − yq, p > q of Example 3.2.
Observe that the tangent spaces to the level sets of f are the kernels of df so the Gauss
map can be given the description

G : U \ 0 → P
1, (x, y) 7→ [pxp−1, qyq−1].

With graph

Γ =
{

(x, y; [pxp−1, qyq−1]); (x, y) 6= (0, 0)
}

.

Since xp−1, yp−1 is a regular sequence in C[x, y] we deduce from [2, Prop. IV.25] that
closure in C

2 × P
1 is the subvariety described by the equation

Γ̄ =
{

(x, y; [a, b]); qyq−1a = pxp−1b
}

.

C
2 × P

1 is covered by two coordinate charts Ua := {a 6= 0}, Ub := {b 6= 0}, a = 1/b on
Ua ∩ Ub. On Ua we have coordinates (x, y, b) and Γ̄ is described by

Γ̄a = Γ̄ ∩ Ua = {qyq−1 = pxp−1b}

On Ub we have the coordinates (x, y, a) and

Γ̄b = Γ̄ ∩ Ub = {qyq−1a = pxp−1}.

The Nash blowup of f = 0 is the subvariety of Γ̄ described by

Γ̄0 =
{

(x, y, [a, b]); qyq−1a − pxp−1b = xp − yq = 0}.

Let us point out that the blowup of the Jacobian ideal need not be normal. Consider
for example the case p = 5, q = 3. In this case Γ̄ is described on Ua by the equation

x4b = y2.

The ring R = C[x, y, b]/I, I = (x4b − y2) is an integral domain. The element t = y/x2

satisfies the equation t2 − b = 0 so that it is integral over R. On the other hand, it does
not belong to R. The real part of this surface is depicted1 in Figure 2.

Figure 2: Blowing up the plane at the Jacobian ideal (x4, y2).

1We generated Figure 2 using MAPLE and the normalization map C
2
→ Γ̄a described by x = s, y = ts2,

b = t2.
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Theorem 3.5 (Teissier, [11]). Fix a small neighborhood U of the origin 0 ∈ C
n+1

and set XU
t := Xt ∩ U . Then the following hold.

(a) H ∈ P
n \ L (i.e. H is not a limit of tangent planes) if and only if

• XU
0 ∩ H has an isolated singularity at the origin 0 ∈ H. Denote by µ(X0 ∩ H) the

Milnor number of the hypersurface X0 ∩ H ⊂ H.
• For any H ∈ Ω the Milnor number µ(X0∩H) is minimum amongst the Milnor numbers
of hyperplane sections X0 ∩ H ′, H ′ ∈ G, with isolated singularities at the origin.

Definition 3.6. Define f ′ to be the restriction of f to a generic hyperplane H ⊂ C
n+1,

H ∈ Ω, and µ′(f, 0) as the Milnor number of f ′. Iterating we define

f (k+1) := (f (k))′, µ(k+1)(f, 0) := µ′(f (k), 0).

The integers µ(k)(f, 0), 0 ≤ k ≤ n are called the Milnor-Teissier numbers of the hyper-
surface germ (f = 0).

We will denote by χ(k)(f, 0) the Euler characteristic of the Milnor fiber of f (k).
Using Milnor’s theorem 3.1 we deduce that

χ(k) = 1 + (−1)(n−k)µ(k)(f, 0)

so that
χ(f, 0) − χ′(f, 0) = (−1)n

(
µ(f, 0) + µ′(f, 0)

)
. (3.1)

Example 3.7. Consider polynomial f = fp,q(x, y) = xp − yq, p > q, gcd(p, q) = 1. We
know that µ(f, 0) = (p − 1)(q − 1). Then

f (1)(t) = f |x=t,y=mt= tp − mqtq,

so that
µ′(f, 0) = q − 1.

For every linear functional u : C
n+1 → C and any open neighborhood V of the origin

define
Fu : V → C

2, ~z 7→ (f(~z), u(~z).

Observe that the fiber of Fu over (t0, u0) is the hyperplane section

XV
t0,u0

= XV
t0
∩ {u = u0}.

Observe that ~z is a critical point of F0 iff df and du are linearly independent, i.e. if the
tangent space at ~z to the hypersurface Xf(~z) is parallel to the hyperplane u = 0. We
denote by Cu the critical locus of Fu, which is the scheme defined by the vanishing of
the 2-form df ∧ du.

For u in the generic set Ω of Theorem 3.5 the map Fu is flat, which in this case is
equivalent to the fact that the fibers are complete intersections. We deduce from [6,
Thm. 2.8 (iii)] that dimCu = 1. We have the following nontrivial genericity result.

Theorem 3.8 (Hamm-Lê, [5]). There exists a Zariski open subset Ω′ ∈ Ω with the
following property.

For any linear functional u : C
n+1 → C which describes a hyperplane H ∈ Ω′ there exists

an open neighborhood U = UH of the origin and τ > 0 such that for every 0 ≤ |t| < τ
the restriction of u to XU

t \ 0 has only nondegenerate critical points.

11



Pick u as above. From the theory of discriminants we deduce that in a punctured
neighborhood of the origin the critical locus Cu is reduced and smooth away from the
origin. (see [6, §4.5]).

Example 3.9. Consider again the polynomial fp,q(x, y) = xp − yq. We assume p > q,
gcd(p, q) = 1. We denote by Xp,q the germ at zero of the plane curve xp − yq = 0.

For each m ∈ C consider a line Hm in C
2 of slope m, y = mx and consider the

associated linear functional um : C
2 → C, um(x, y) = mx − y. We make the change in

coordinates

v = y, u = mx − y ⇐⇒ y = v, x =
u + v

m
.

In these coordinates Hm is given by u = 0. Define

Fm : C
2 → C

2, (u, v) 7→ (t, s) =
( (u + v)p

mp
− vq, u

)

.

Finally we introduce new coordinates w = u + v, v = v so that u = w − v and

Fm : C
2 → C

2, (v, w) 7→ (t, s) =
( wp

mp
− vq, w − v

)

.

The polar curve (critical locus) corresponding to this slope is given by

Cm = {F ∗
m(dt ∧ ds) = 0} =

{ p

mp
wp−1 − qvq−1 = 0

}

.

One can prove that the function qvq−1 − p
mp wp−1 defines an irreducible germ in OC2,0.

Its zero locus is smooth in a punctured neighborhood of the origin. Away from 0 it
admits the parametrization

v = τp−1, w = (cτ)q−1, where c(p−1)(q−1) =
qmp

p
.

Observe that along this curve we have

f(x, y) = f(v, w) = f(τp−1, (cτ)q−1) =
(cτ)p(q−1)

mp
− τ q(p−1).

Thus the order of f at zero along this curve is

p(q − 1) = (p − 1)(q − 1) + (q − 1) = µ(fp,q, 0) + µ′(fp,q, 0).

Equivalently, the multiplicity of the intersection Xp,q ∩ Cm at zero is

(Xp,q, Cm)0 = µ(fp,q, 0) + µ′(fp,q, 0).

This implies that for generic t0 there are exactly µ(fp,q, 0) + µ′(fp,q, 0) points on the
Milnor fiber f = t0 in a small neighborhood of the origin where the tangent line has
slope m.

Theorem 3.10 (Langevin, [4]). Suppose f ∈ OCn+1,0 has an isolated singularity at
the origin. Then for every sufficiently small neighborhood V of 0 ∈ C

n+1 we have

lim
t→0

∫

XV
t

cn(Xt) −
∫

XV
0

cn(X0) = lim
W

lim
t→0

∫

XU
t

cn(Xt) = χ(f, 0) − χ′(f, 0), (3.2)

where W is the filter of neighborhoods of 0 ∈ C
n+1.
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Proof Fix a small neighborhood V of the origin. Denote by G the grassmanian of
hyperplanes in C

n+1 through the origin, by E → G the tautological rank n bundle over
G and by cn(E) the n-th Chern form of E equipped with the natural hermitian metric.
Using the identification G ∼= P((Cn+1)∗) we deduce that

cn(E) = (−1)nΩn,

where Ω is the Fubini-Study form normalized so that its integral over each projective
line is 1. In particular Ωn defines a volume form on G which we denote by dH. For
every |t| � 1 we gave a Gauss map

Gt : XV
t \ 0 → G.

Using Theorema Egregium we deduce
∫

XV
t

cn(Xt) =

∫

XV
t

G∗
t cn(E) = (−1)n

∫

XV
t

G∗
t Ω

n.

For any open set O we set

cH(t,O) = #(G−1
t (H) ∩ O \ 0).

Crofton’s formula now implies that
∫

XV
t

cn(Xt) = (−1)n

∫

G

cH(t, V )dH. (3.3)

We want to prove that for any H ∈ Ω′ there exists a small neighborhood W of 0 ∈ C
n+1

such that
lim
t→0

cH(t,W ) = µ(f, 0) + µ′(f, 0). (3.4)

This is equivalent to the condition that for every H ∈ Ω′ we have

lim
W

lim
t→0

cH(t,W ) = µ(f, 0) + µ′(f, 0). (3.5)

Fix a hyperplane H ∈ Ω′ and a linear function u : V → C defining it. For every t0, u0

and any open set O we define

Xt0,u0
= (Xt0 ∩ {u = u0}), XO

t0,u0
= Xt0,u0

∩ O, c(t,O) = cH(t,O).

Then c(t,O) is the number of points in Xt ∩O where the tangent plane is parallel to H.
Equivalently, it is the number of critical points of the restriction of the linear function
u to Xt ∩ O. In terms of the critical curve Cu we have

c(t,O) = #(Cu ∩ XO
t ).

Due to our choice of H all these critical points inside a small neighborhood O of the
origin are nondegenerate.

Remark 3.11. The definition of the intersection numbers in analytic geometry implies
that there exists a small neighborhood W of the origin such that

lim
t→0

#(Cu ∩ XW
t ) = (Cu · X0)0 = the mutiplicity at 0 of the intersection Cu ∩ X0.

Thus we can rephrase (3.5) as saying that

(Cu · X0)0 = µ(f, 0) + µ′(f, 0).

When n = 1 so that X0 is a plane curve this is an old result going back to the Plücker in
the 19th century (see the beautiful discussion in [1, III.9.1]). The general case is more
recent and is due to Teissier, [11] who proved it by algebraic means. Below we present
a topological proof.
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We will need the following technical result.

Lemma 3.12. There exists a small neighborhood W of the origin such that u(Xt∩W ) ⊂
C is a disk centered at the origin for all 0 < |t| � 1 .

Proof Consider the holomorphic map

Fu : C
n+1 → C

2, ~z 7→ (f(~z), u(~z)).

Due to our generic choice of u the map Fu is flat in a neighborhood U ′ of the origin
and thus it is open on U ′. Choose a polydisk

D = {|f | < r1} × {|u| < r2} ⊂ Fu(U ′) ⊂ C
2.

Now set
W = U ′ ∩ F−1

u (D).

Then for every |t| < r1 we have u(Xt ∩ W ) = {|z0| < r2}.
Proof of (3.5). For 0 < |t| � 1 the hypersurface XW

t is diffeomorphic to the Milnor
fiber so that

χ(XW
t ) = χ(f, 0) = 1 + (−1)nµ(f, 0).

Set Ut = u(XW
t ). We know that Ut is a disk in C. The choice of u shows that for t

sufficiently small the plane section XW
t,0 is smooth and is diffeomorphic to the Milnor

fiber of the hyperplane section f |H so that

χ(XW
t,0) = χ′(f, 0).

Denote by Ct ⊂ Ut the set of critical values of u : XW
t → Ut. Ct is a finite set. Then

χ(f, 0) = χ(XW
t,0) · χ(Ut \ Ct) +

∑

v∈Ct

χ(Xε
t,v)

Since the critical points are nondegenerate we deduce that each of them corresponds to
a vanishing (n − 1)-sphere in XW

t,0. Hence

∑

v∈Ct

χ(XW
t,v) =

∑

v∈Ct

χ(XW
t,0) − (−1)n−1c(Xt, 0, ε) = |Ct|χ′(f, 0) + (−1)nc(Xt, 0, ε).

Lemma 3.12 implies that χ(Ut) = 1 so that χ(Ut \ Ct) = 1 − |Ct| and thus

χ(f, 0) = χ′(f, 0) + (−1)nc(Xt, 0, ε), ∀0 < |t| � 1.

This proves (3.5).

Langevin’s formula now follows by passing to the limit2 in (3.3) and using (3.4).

2We need to invoke the dominated convergence theorem to conclude

lim
W

lim
t→0

∫

G

cH(t, W )dH =

∫

G

lim
W

lim
t→0

cH(t, W ).
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