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Abstract

I am trying to understand the work MacPherson.
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Notations

• i :=
√
−1.

• N := Z≥0 =
{

n ∈ Z; n ≥ 0
}

.
• For any set S we denote by IS the identity map S → S. For any subset A ⊂ S we denote
by 1A the characteristic function of A.

∗Notes for myself and whoever else is reading this footnote.
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1 Whitney stratifications of analytic spaces

§1.1 Regularity conditions The Whitney stratified spaces are topological spaces to-
gether with a partition S = {Si; i ∈ I} into locally closed subsets called strata which
are (open) smooth manifolds and ”interact” in a special way. The exact meaning of this
interaction is specified by the Whitney regularity conditions

Definition 1.1. Suppose X, Y are disjoint smooth submanifolds in the Euclidean space and
x ∈ Ȳ ∩X. The triple (Y, X, x) is said to be Whitney regular (or that Y is W -regular over
X at x) if given a sequence (xn, yn) ∈ X ×Y such that (xn, yn) → (x, x) and the unit radial
vector ~vn = 1

|yn−xn|
(yn − xn) pointing from xn to yn converges to ~v and Tyn

Y converges to
T then

~v ∈ T.

In particular
lim ](xnyn, Tyn

Y ) = 0 mod π.

Let (Y, X, x) as in the above definition and denote by πX -the nearest point projection
onto X, and by h(y) the line yπX(y). We present an equivalent characterization of the
W -regularity.

Proposition 1.2. The manifold Y is W -regular over X at x if an only if the following two
conditions hold.

A. Given a sequence of points yn in Y such that yn → x and Tyn
Y → T then TxX ⊂ T .

B. If yn is a sequence in Y such that yn → x, Tyn
Y → T and the line h(yn) → h then

h ⊂ T .

For a proof of this proposition we refer to [6]. As explained in [6] we can avoid sequences
altogether in (A) and (B). To get a feeling of the meaning of these regularity conditions we
include below a few geometric consequences.

Proposition 1.3. Suppose X, Y are open submanifolds of the Euclidean space E and x ∈
X ∩ Ȳ . Let ρX denote the distance-from-X function.

(i) If (Y, X, x) satisfies the condition A in Proposition 1.2 then there exists a neighborhood
U of x ∈ E such that πX |Y ∩U is a submersion.

(ii) B =⇒ A, i.e. if (Y, X, x) is B-regular then it is also A-regular.

(iii) If (Y, X, x) satisfies the regularity condition W then x has a neighborhood U in E such
that the map

(πX × ρX) |U∩Y → X × (0,∞)

is a submersion.

Example 1.4. Let us give some examples of situations when the regularity conditions are
satisfied. Consider first the example depicted in Figure 1(a). Denote by G the open grey
rectangle, B1, · · · , B4 denote the open black edges, and R1, · · · , R4 the red vertices. Observe
that (G, Bi, p) is W -regular for any p ∈ Bi. Also (G, Ri, Ri) is W -regular.
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Figure 1: A manifold with corners, a cusp y2 = x3 and an Euclidean cone.

In Figure 1(b) we have depicted the real part of the cubic cusp, i.e the complex plane
curve described by the equation

C := {y2 = x3; (x, y) ∈ C2}.

Topologically C is a cone over a circle, more precisely the trefoil knot in S3 ⊂ C2. If
We denote by C0 the smooth part of this curve. The origin O is a singular point of the
curve. We want to show that C0, O, O) is B-regular which in this case means that if pn is
a sequence of points on C0 converging to O such that Tpn

C → T and Opn → ` then ` ⊂ T .
Set P (x, y) = x3 − y2 so that ∇P = (3x2, 2y) If we write pn = (t2n, t3n) = t2n(1, tn) then

∇P (pn) = (3t4n,−2t3n) = t3n(3tn,−2).

As tn → 0 the line Opn converges to the line Op0, p0 = (1, 0) which is the x-axis. Moreover
Tpn

C converges to the line given by the equation −2y = 0 which is the axis so that ` = T .
In Figure 1(c) we have an Euclidean cone over a circle. We denote by G the complement

of the vertex R. It is easy to see that (G, R, R) is W -regular. There is however a major
difference between the cone in (c) and the topological cone in (b). Although both spaces are
homeomorphic, they are not diffeomeorphic1. Note that in the case (b) the tangent spaces
Tpn

C converged to a unique position, the x-axis. For the Euclidean cone in (c) tangent
spaces could converge to several limiting positions. It is easy to see that in this case the set
of limiting positions can be identified with the circle the cone is based on.

Example 1.5. It is perhaps instructive to give examples when some of these regularity
conditions fail.

➀ In Figure 2 we have depicted the real part of the Whitney umbrella, that is the singular
complex hypersurface W in C3 defined by the equation

w(x, y, z) = x2 − zy2 = 0.

1whatever that means.
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Figure 2: Whitney umbrella x2 = zy2.

This surface contains the origin O (marked in red on Figure 2), and two lines, the y-axis
and the z-axis. W is singular along the z-axis (depicted in black). Let X denote the z-axis
and Y the complement of X in W . We claim that Y is not A-regular over X at O.

Along the y-axis we have line we have

∇w = (2x,−2zy,−y2) = (0, 0,−y2).

If we choose a sequence of points pn → 0 along the y-axis then we see Tpn
Y converges to

the plane
T = {z = 0} + TOX.

Figure 3: Whitney cusp y2 + x3 − z2x2 = 0.

➁ Consider the Whitney cusp, that is the hypersurface U of C3 described by the equation

f(x, y, z) = y2 + x3 − z2x2 = 0.
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It is easy to construct a normalization of this surface. It is given by the map2

u : C2 → U, (s, t) 7→ (s2 − t2, s2t − t3, s) ∈ U.

Using this normalization we can use the plot3d procedure in MAPLE to generate the
image of the real part of this surface depicted in Figure 3.

The vertical line visible in Figure 3 is the z-axis. Clearly the Whitney cusp is singular
along this line. The surface has a ”saddle” at the origin. Denote by X the z-axis, and by
Y its complement. We claim that (Y, X, O) is A-regular, but not B-regular. We have to
show that

|∂zf(p)|
|∇f(p)| → 0 if p = (x, y, z) → O along U. (1.1)

Observe that
∇f = (3x2 − 2xz2, 2y, 2zx2)

Obviously (1.1) holds for all sequences pn = (xn, yn, zn) ∈ U such that zn = 0, ∀n � 1. If
(x, y, z) → 0 along U ∩ {z 6= 0} then y2 = x2(z2 − x)

|∇f |2 = 4|x2z|2 + 4|y|2 + |3x2 − 2xz2|2 = 4|x2z|2 + 4|x|2|z2 − x|2 + |x|2|3x − 2z2|2

Then
|∇f |2
|∂zf |2

= 1 +
4|x|2|z2 − x|2

4|x2z|2 +
|x|2|3x − 2z2|2

4|x2z|2

= 1 +
1

4
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+
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(x,z)→0−→ ∞.

To show that condition B is violated at O we need to find a sequence

U 3 pn = (xn, yn, zn) → 0

such that
Tpn

U → T, lim
n→∞

h(pn) = h, and h 6⊂ T. (1.2)

The line is the line spanned by the vector (xn, yn, 0). Thus we need to find a sequence pn

such that 1
|∇f(pn)|∇f(pn) is convergent and

lim
n→∞

xn∂xf(pn) + yn∂y(pn)

|∇f(pn)| ·
√

|xn|2 + |yn|2
6= 0.

We will seek such sequences along paths in U which end up at O. Look at the parabola

C = {y = 0} ∩ U = {x = z2; y = 0, y 6= 0} = {(z2, 0, z); z 6= 0} ⊂ U.

Along C line h(z2, 0, 0) is the line generated by the vector ~e1 = (1, 0, 0) and we have

∇f = (z4, 0, z5) =⇒ |∇f | = |z|4(1 + O(|z|))

We conclude that along this parabola the tangent plane TpU converges to the plane per-
pendicular to ~e1 which shows that the B-conditions is violated by the sequence converging
to zero along C.

2We found this using the procedure normal of SINGULAR, [2].
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§1.2 Whitney stratifications: existence.

Definition 1.6 (J. Mather, [5]). A prestratification of a topological space X is a partition
P into subsets called strata satisfying the following three conditions.
(a) Each stratum U is a locally enclosed set, i.e. it is the intersection of an open set and a
closed set. (Equivalently, U is locally closed if each point u ∈ U has a neighborhood N such
that U ∩ N is closed in N .

(b) P is locally finite, i.e. every point x ∈ X has a neighborhood which intersects only
finitely many strata.
(c) (Frontier axiom) If U and V are strata and Ū ∩ V 6= ∅ then V ⊂ Ū . We denote by
V < U the relation defined by V  Ū

Definition 1.7 (J. Mather, [5]). A stratification of X is a rule which assigns to each
x ∈ X a germ Sx at x of a closed subset of X with the following property:

For each x ∈ X, there exists a neighborhood N of x and a prestratification P of N such
that for any y ∈ N , Sy is the germ of y of the stratum of P containing y.

A prestratification P defines a stratification by associating to each x ∈ X the germ at x

of the stratum of P containing x. Two prestratifications P, P′ are called equivalent if they
define the same stratification. We denote this equivalence relation by P ∼ P′.

Any prestratification P of X defines a function

depthP : X → N

where for each x ∈ X depthP(x) is the largest integer k ≥ 0 such that there exist strata
U0, U1, · · · , Uk with the property

x ∈ U0 < U1 < · · · < Uk.

Let us observe that
P ∼ P

′ =⇒ depthP = depthP′ .

Using this fact we can associate a depth function to every stratification S as follows. For
any x ∈ X we define

depthS(x) := depthP(x),

where P is a prestratification in a neighborhood N of x as in Definition 1.7.
Any stratification S is associated to a natural prestratification of X defined by

P = (Uk)k≥0, Uk = {x; depthS(x) = k}.

Given two stratified spaces (Xi, Si)i=0,1 we can form in a natural way a stratification S0×gS1

on the product X0 × X1 and we write

(X0 × X1, S0 × S1) = (X0, S1) × (X1, S1).

Given a stratified space (X, S), any continuous map f : Y → X induces a natural stratifi-
cation f∗S on Y defined by

(f∗
S)y = the germ at y of f−1(Sf(y)).
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Given two stratifications S0, S1 on X we denote by S0 ∩ S1 the pullback of S0 × S1 via the
diagonal map X → X × X.

For every topological space X we denote by IX the tautological stratification consisting
of single stratum, X.

Definition 1.8. Suppose X is a smooth manifold, and Y ⊂ X.

(a) A prestratification P of Y is called Whitney (or regular) if each stratum is a smooth
submanifold and for any two strata V < U the pair (U, V ) is W -regular i.e. (U, V, v) is
W -regular for every v ∈ V .
(b) A stratification S of Y is called Whitney if it is the stratification associated to a Whitney
pre-stratification.

To proceed further we need to introduce some special categories of subsets of analytic
varieties.

Definition 1.9. If X is a nonsingular complex analytic (or algebraic) variety. A subset
of X is called constructible if it can be written as the set theoretic difference of two closed
complex analytic (resp. algebraic) subsets. We denote by C(X) the collection of constructible
subsets.

Remark 1.10. The collection C(X) is the Boolean subalgebra C(X) ⊂ 2X generated by
the closed complex algebraic subsets of X.

Definition 1.11. Suppose U and V are two constructible subsets of the complex analytic
manifold. For ε ∈ {A, B, W} we set

Sε(U, V ) :=
{

v ∈ V ∩ Ū ; (U, V, v) is not ε-regular
}

.

We have the following fundamental result.

Theorem 1.12 (Whitney, [7]). Suppose U and V are two constructible smooth subsets of
the complex manifold X. Assume dim V < dim U and V ⊂ Ū . The for every ε ∈ {A, B, W}
the set Sε(U, V ) is

(i) constructible
(ii) of dimension < dim V .

Sketch of proof. We follow closely the approach in [6]. Set m = dim V , n = dim U ,
N = dim X. Denote by B∆X the blowup of X × X along the diagonal. We have a natural
projection π : B∆X → X × X, and by E∆ the exceptional divisor π−1(∆). We have a
diagram

E∆ B∆X

∆ X × X

U X X V

y wuπ u πy w ������ l

[[[[[]ry w u { .
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We set Tl := (l ◦ π)∗TX → B∆X. We denote by Gn(Tl) → B∆X the Grassmanian of
n-dimensional subspaces in Tl. For each x ∈ X we denote by Gn(Tl)x the total space of
the restriction of Gn(Tl) over π−1(x, x) ∼= P(TxX). Note that

Gn(Tl)x
∼= P(TxX) × Gn(TxX).

Consider the Gauss map

γ : U × V \ ∆ → Gn(Tl), (u, v) 7→ (u, v, TuU) ∈ Gn(Tl).

The triple (U, V, v) is W regular iff the intersection of the closure of Γ(U × V \ ∆) with
Gn(Tl)v lies inside the locus

Rv :=
{

(`, T ) ∈ P(TvX) × Gn(TvX), ` ⊂ T
}

.

The locus
R =

⋃

v∈V

Rv

is constructible since V is so. The closure of γ(U ×V \∆) is constructible and in particular

Z := R \ γ(U × V \ ∆)

is constructible. The projection Gn(Tl) |E∆
→ ∆ has projective fibers so that the projection

of Z onto V × V ∩ ∆ is constructible by a theorem of  Lojasewicz, [3]. The “bad” locus
SW (U, V ) coincides with this projection of Z. This proves (i).

The proof of (ii) is considerably more complicated and it is based on the following
generalization of the curve selection lemma. For a proof we refer to [6, 7].

Theorem 1.13 ( Wing Lemma, H. Whitney[7]). Suppose M is a complex submanifold
of the complex variety V in a complex vector space E such that dimC M < dimC V . Fix a
complex subvariety V ′ ⊂ V such that dimC V ′ < dimC V . Then every p ∈ M \ V ′ has an
open neighborhood U in M such that there exists a real analytic embedding

w : U × [0, 1) → E

such that
w |U×0= IU , w(U × (0, 1) ⊂ V − (M ∪ V ′)

Moreover w is holomorphic in the U -directions.

Remark 1.14. When M is a point the Wing Lemma specializes to the well known curve
selection lemma.

From Theorem 1.12 one can deduce easily the following important result.

Theorem 1.15 (Whitney, [7]). If X is a complex subvariety of a smooth variety M then
M admits a Whitney stratification such that X is a finite union of strata.
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§1.3 Whitney stratifications: local structure. It is time to answer one fundamen-
tal question. What is the main point of all the above constructions? Why did we have
to go through all this trouble to construct partitions of complex varieties into complex
manifolds satisfying Whitney regularity conditions when we could have achieved this by
paying a less costly technical price. What makes Whitney stratifications better than other
stratifications?

Loosely speaking, the Whitney stratification have a much nicer structure in the direc-
tions transversal to strata: the points in a connected component of a Whitney stratum
“all look the same”. To explain what we meant that two points look the same we consider
again the Whitney umbrella W in Example 1.5, Figure 2. This surface has one obvious
stratification.

• A 1-dimensional stratum Z consisting of the z-axis. To describe the local structure
of a Whitney stratification we need to describe with great care the concept of tubular
neighborhood.
• A (disconnected) 2-dimensional stratum W 0 defined as the complement of Z in W .

For every z ∈ Z, and 0 < ε � 1 we denote by NWε(z) the intersection of W with the
closed ball of radius ε centered at z. The topological type of Wε(z) depends on the position
of z on the z axis. As z varies for −∞ to ∞ this topological type changes as z crosses the
origin. That was precisely the point where the Whitney regularity conditions were violated.
A similar phenomenon takes place with the Whytney cusp.

In this subsection we will show that Whitney stratifications have the desired local ho-
mogeneity condition: two nearby points on the same stratum have the same local structure.

Definition 1.16 ([4, 5]). Suppose U is a complex submanifold of the complex manifold
X. A tubular neighborhood of U ↪→ X is a quadruple T = (π, E, ε, φ) where E → U is a
hermitian vector bundle, ε : U → (0,∞) is a smooth function, and if we set

Bε :=
{

(v, x) ∈ E; ‖v‖x < ε(x)
}

then φ is a diffeomorphism Bε → X onto an open subset of X such that the diagram below
is commutative.

Bε

U X

[[[]
φ

uyζ y w , ζ = zero section.

We set |T | := φ(Bε).

Given a tubular neighborhood T = (π, E, ε, φ) we get a natural projection

πT : |T | → U.

Moreover the function ρ(v, x) = ‖v‖2
x induces a smooth function ρT : |T | → U . We say that

ρT is projection and ρT is the tubular function associated to the tubular neighborhood T .
We get a submersion

(πT , ρT ) : |T | \ U → U × R.

The restriction of a tubular neighborhood of U to an open subset of U is defined in an
obvious fashion.

9



Definition 1.17. Suppose that T is a tubular neighborhood of U ↪→ X and f : X → Y is
a map. We say that f is compatible with T if the restriction of f to |T | is constant along
the fibers of πT i.e. the diagram below is commutative

|T |

U Y
uuπT

[[[]f wf

Theorem 1.18 (Tubular Neighborhood Theorem). Suppose f : X → Y is a smooth
map between smooth manifolds and U ↪→ X a smooth submanifold of X such that f |U is a
submersion. Suppose

W ↪→ V ↪→ U

are open subsets such that the closure of W in U lies inside V , and T0 is a smooth tubular
neighborhood of V ↪→ X which is compatible with f .

Then there exists a tubular neighborhood T of U ↪→ X which is

(i) compatible with f and
(ii) T |W⊂ T0 |W .

Suppose now that X is a smooth manifold and P is a Whitney prestratification of a
subset in X. Assume that for every stratum U ∈ P we are given a tubular neighborhood
TU of U ↪→ X. We denote by πU (resp. ρU ) the projection (resp. the tubular function)
associated to TU . For any stratum V < U we distinguish two commutativity relations.

πV ◦ πU (x) = πV (x), ∀x ∈ |TU | ∩ |TV | ∩ π−1
U (|TV | ∩ U). (Cπ)

ρV ◦ πU (x) = ρV (x), ∀x ∈ |TU | ∩ |TV | ∩ π−1
U (|TV | ∩ U). (Cρ)

U
U

U

V

V

V

T

T

π π

Figure 4: Non-compatible tubular neighborhoods

Example 1.19. In Figure 4 the thick black segment is |TV | ∩ U while the blue area is
|TU | ∩ |TV | ∩ π−1

U (|TV | ∩ U) and we see that (Cπ) is satisfied. The condition (Cρ) signifies
that for any point p in the blue area the distance to the point V is equal to the distance
from V to the projection of the point p to the half-line U . Clearly the condition (Cρ) is
violated. The tubular neighborhoods in Figure 5 are compatible, i.e. both commutativity
relations are satisfied.
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Figure 5: Compatible tubular neighborhoods

Definition 1.20 (Controlled stratifications). Suppose P is a Whitney prestratification
of subset X in an Euclidean space E. A collection of tubular neighborhoods (TU ), one
tubular neighborhood for each stratum, is called controlled if for any strata V < U the
corresponding projections and tubular functions satisfy the commutativity conditions (Cπ)
and (Cρ).

A controlled Whitney prestratification of X is a pair (P, T) consisting of a Whitney
prestratification of X and a controlled system of tubular neighborhoods.

Example 1.21. Consider the quadrant Q = {(x, y, 0) ∈ R3; x, y ≥ 0} depicted in Figure
6. It has a stratification consisting of 4 strata: the interior of the quadrant, the two half
axes

V1 = {(x, 0, 0); x > 0}, V2 = {(0, y, 0); y > 0}
and the origin W . This is a Whitney stratification and we have

W < V1 < U, W < V2 < U

We seek smooth functions ρW , ρV1
, ρV2

, ρU defined in an open neighborhood of the quadrant
in R3 such that

S̄ = {ρS = 0} ∩ Q, ∀S = {W, V1, V2, U} = P.

For each stratum S we set |TS | = {ρS < rS � 1}. If the level sets of these functions
intersect transversally in the overlaps of these tubular neighborhoods then it is easy to
construct controlled tubular neighborhoods.

The projection πW has only one possible definition, the constant map. The overlap
|TW | ∩ |TV1

| will be a tubular neighborhood of a portion of V1 and here we define

πV1
(p) := the intersection of V1 with the level set of ρW passing through p.

In the triple overlap |TU | ∩ |TV1
| ∩ |TW | we define

πU (p) = the intersection of U with the level sets of ρV1
and ρW passing throught p.

We choose ρW = x2 + y2 + z2. Next we define ρV1
so that its level sets are cones of axis V1.

More precisely

ρV1
=

y2 + z2

x2

Finally, we define

ρU =
z2

y2

11
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Figure 6: Constructing a controlled tubular system.

whose level sets are planar wedges containing the axis V1. These three functions satisfy the
transversality conditions and will provide the desired controlled systems of neighborhoods.

The existence of a controlled system of tubular neighborhoods follows from a more
general result. To state it we need to introduce Thom’s Af condition.

Definition 1.22 (The Af condition). Suppose f : X → Y is a smooth map between two
smooth manifolds. Assume U, V are submanifolds such that df has constant rank along U

and along V . Let v ∈ V ∩ Ū . We say that the triple (U, V, v) satisfies the Af condition if
for any sequence un ∈ U such that

• limn→∞ un = v.
• limn→∞ ker df |U= T

we have
ker df |V ⊂ T.

We say that the pair (U, V ) satisfies the condition Af if (U, V, v) satisfies the condition Af

for any v ∈ V ∩ Ū .

Definition 1.23 (Stratifications of maps). Suppose f : X → X ′ is a smooth map and let
A ⊂ X such that f(A) ⊂ A′. A stratification of f is a pair (P, P′) of Whitney stratifications
of A and A′ satisfying the following two conditions.

• f maps strata into strata (not necessarily onto).
• If (U, U ′) ∈ P × P′ are strata such that f(U) ⊂ U ′ then f |U is a submersion.

A stratification (P, P′) is called a Thom stratification if any two strata V < U in P

satisfy the condition Af .

We have the following important result. The proof is an iterated application of the
Tubular Neighborhood Theorem. For details we refer to [1, 4].
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Theorem 1.24 (Controlled Thom stratifications). Suppose f : X → X ′ is a smooth
map between two smooth manifolds and A ⊂ X, A′ ⊂ X are such that f(A) ⊂ A′. Suppose
(P, P′) is a Thom stratification for f : A → A′. Suppose we are given a collection of tubular
neighborhoods TU ′ of the strata in P′ satisfying the commutativity conditions (Cπ). Then
there exists a controlled system of tubular neighborhoods TU of the strata in P which is
compatible with f , i.e. the following holds.

If U ∈ P and U ′ is the stratum of P′ which contains f(U) then

f(|TU |) ⊂ |TU ′ |

and the diagram below is commutative.

|TU | U

|TU ′ | U ′

uf

wwπU u fwwπ
U′

. (Cf,π)

Definition 1.25. A controlled Thom stratification of the map f : A → A′ is a quadruple
(P, T; P′, T′) with the following properties.

• (P, T) is a controlled Whitney prestratification of A.
• (P′, T′) is a controlled Whitney prestratification of A′.
• (P, P′) is a Thom stratification of f : A → A′.
• (T, T′) satisfies the compatibility conditions (Cf,π).

By setting X ′ = {point} in the above theorem we deduce the following important
consequence.

Corollary 1.26. Every complex analytic space admits a controlled Whitney prestratifica-
tion.

To prove the local homogeneity of Whitney stratifications we need to have a way of
constructing plenty of strata preserving homeomorphisms. We require an additional feature
of these homeomorphisms, namely that their restrictions to any given stratum are smooth
maps. We will produce such homeomorphisms by integrating certain vector fields on the
variety.

If M is a smooth manifold and A is a subset of M then vector field on A is a (possibly
discontinuous) section V of the restriction to A of the tangent bundle TM . Such a vector
field is called locally integrable if the following conditions hold.

• For each a ∈ A there exists ε > 0 and a C1-curve

Γ = ΓV,a,ε : (−ε, ε) → A

such that

Γ(0) = a,
d

dt
γ = V (Γ(t)), ∀|t| < ε.

Such a curve is called an integral curve of V .

13



• Two integral curves with the same initial value coincide on their common domain.
For each a ∈ A there exists a neighborhood N of a in A and an ε > 0 such that the mapping

N × (−ε, ε) → A, (a, t) 7→ ΓV,a,ε(t)

is defined and continuous.

The vector field is called globally integrable if the conditions in the above definition are
satisfied for ε = ∞.

Example 1.27. (a) In the plane R2 with polar coordinates (r, θ) the vector field ∂
∂θ

extended
by 0 at the origin defines a globally integrable yet discontinuous vector field. The integral
curves of this vector field are the circles centered at the origin.
(b) In the Euclidean space R3 consider the vector field described in cylindrical coordinates
(r, θ, z) by

V =







∂
∂z

+ ∂
∂θ

if z 6= 0

∂
∂z

if z = 0

.

The integral curves of this vector field are helices around the z-axis.

Definition 1.28. Suppose (P, T) is a controlled Whitney (pre)stratification of a closed
subset of a smooth manifold X. A weakly controlled vector field on A is a vector field
Ξ on A such that for every stratum U ∈ P it satisfies the commutativity condition

|TU | TX

U TX

wΞuπU u DπUwΞ

(Cv,π)

A weakly controlled vector field Ξ is called controlled if it is tangent to the level sets of the
tubular functions ρU , i.e.

DρU (Ξ) = 0 (Cv,ρ)

Theorem 1.29. Suppose f : X → X ′ is a smooth map between two smooth manifolds, and
A ⊂ X, A′ ⊂ X ′ are two locally closed subsets such that f(A) ⊂ A′ Suppose (P, T; P′, T′)
is a controlled Thom stratification of f : A → A′. Then for every weakly controlled vector
field Ξ′ on A′ there exists a controlled vector field Ξ over A such that

Df(Ξ) = Ξ′.

Moreover, if Ξ′ is locally integrable, then we can choose Ξ to be locally integrable as well.
This vector field Ξ is globally integrable if the restriction of f to the closure of each stratum
is proper.

By taking X ′ = {point} we obtain the following important result.

Corollary 1.30. Every controlled Whitney stratification (P, T) of a closed subset A of a
smooth manifold X admits a controlled, locally integrable vector field. Moreover, if A is
compact, there exist globally integrable controlled vector fields.
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Corollary 1.31 (Thom’s First Isotopy Lemma). Suppose f : X → X ′ is a smooth
map and (P, T) a controlled Whitney stratification of a closed subset A ⊂ X. Suppose that
the following hold.

• The restriction of f to every stratum of P is submersive.
• The restriction of f to the closure of any stratum of P is proper.

Then the map f : A → X ′ is topologically a locally trivial fibration.

Corollary 1.32 (Local triviality of Whitney stratifications). Suppose P is a Whitney
stratification of a closed subset A of a smooth manifold X. Then P is locally trivial in the
following sense.

For every stratum U of A, there exists a sphere bundle φ : Σ → U , a closed Whitney
stratified subset (S, S) ⊂ Σ such that

• φ |S : S → U is a topological locally trivial fibration.
• There exists a neighborhood Z of U in N and a homeomorphism of the pair (Z, A ∩ Z)
onto the pair of mapping cylinders (Cylφ,Cylφ |S) which is the identity on X.
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2 The Euler characteristic
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3 The Euler obstruction
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4 The Chern-MacPherson classes
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