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Counting Morse functions on the 2-sphere

Liviu I. Nicolaescu

Abstract

We count how many ‘different’ Morse functions exist on the 2-sphere. There are several
ways of declaring that two Morse functions f and g are ‘indistinguishable’ but we concen-
trate only on two natural equivalence relations: homological (when the regular sublevel
sets f and g have identical Betti numbers) and geometric (when f is obtained from g via
global, orientation-preserving changes of coordinates on S2 and R). The count of homo-
logical classes is reduced to a count of lattice paths confined to the first quadrant. The
count of geometric classes is reduced to a count of certain labeled trees, which is encoded
by certain elliptic integrals.

1. The main problem

Suppose that X is a smooth compact, oriented manifold without boundary. Following Thom, we
say that a smooth function f : X → R is an excellent Morse function if all of its critical points
are nondegenerate, and no two of them lie on the same level set. We denote by MX the space of
excellent Morse functions on X. In the remainder of this introduction a Morse function will by
default be excellent.

For f ∈ MX we denote by ν(f) the number of critical points of f . Given a Morse function
f ∈ MX with ν(f) = n we define a slicing of f to be an increasing sequence of real numbers

a0 < a1 < · · · < an−1 < an,

such that, for every i = 1, . . . , n the interval (ai−1, ai) contains precisely one critical value of f .
Two Morse functions f, g : X → R will be called geometrically1 equivalent if there exists an

orientation-preserving diffeomorphism R : X → X and an orientation-preserving diffeomorphism
L : R → R such that

g = L ◦ f ◦ R−1.

We denote this equivalence relation by ∼g.
Two Morse functions f, g : X → R will be called topologically equivalent if ν(f) = ν(g) = n, and

there exists a slicing a0 < a1 < · · · < an of f , a slicing b0 < b1 < · · · < bn of g, and orientation-
preserving diffeomorphisms

φi : {f ! ai} →{ g ! bi}, for all i = 1, . . . , n.

Two Morse functions f, g : X → R will be called homologically equivalent if ν(f) = ν(g) = n, and
there exists a slicing a0 < a1 < · · · < an of f , and a slicing b0 < b1 < · · · < bn of g such that, for
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every i = 1, . . . , n, the sublevel sets {f ! ai} and {g ! bi} have the same Betti numbers. We denote
these equivalence relations by ∼t and ∼h, respectively. Note that

f0 ∼g f1 =⇒ f0 ∼t f1 =⇒ f0 ∼h f1.

Set
Mn

X := {f ∈ MX ; ν(f) = n}, [Mn
X ]∗ := Mn

X/ ∼∗, ∗ ∈ {h, t, g}.
Observe that we have natural projections

[Mn
X ]g " [Mn

X ]t " [Mn
X ]h.

The geometric equivalence classes are open subsets of Mn
X . This shows that the quotient topology

on [Mn
X ]∗, ∗ ∈ {g, t, h}, is discrete.

We can then ask about the combinatoric structures of the sets [Mn
X ]∗, ∗ ∈ {g, t, h}, and it is

more realistic2 to start by addressing this question for special X. In this paper we address this
question in the case X = S2. We think it is instructive to spend the remainder of this introduction
discussing the even simpler case X = S1 since it bares some structural similarities with the case
X = S2 to which we will devote the bulk of the paper.

A Morse function on S1 has an even number of critical points. The noncritical sublevel sets of
a Morse function on S1 are disjoint unions of closed intervals, and we deduce that in this case the
topological and homological classifications coincide. Suppose that the Morse function f : S1 → R
has 2m + 2 critical points. Fix a slicing a0 < a1 < · · · < a2m+2 of f , and set

Li := {f ! ai}.

If we set
xi(f) := b0(Li) = the number of path components of Li,

then we see that a Morse function defines a sequence

x(f) : {1, 2, . . . , 2m + 1} → Z>0, i '−→ xi(f),

satisfying
x1 = x2m+1 = 1, xi > 0, |xi+1 − xi| = 1, for all i.

We regard such a sequence as a walk of length 2m on the lattice Z of the horizontal axis R with
steps of size one going East or West, which starts and ends at one, and it is confined to the positive
chamber Z>0. (This is a fundamental chamber for the Coxeter group Z/2.)

Conversely, to any such walk we can associate a Morse function with 2m+2 critical points, where
a step East corresponds to introducing 0-handle (b0 increases by one), and a step West corresponds
to attaching a 1-handle, b0 decreases by one. Hence, we have

f ∼t g ⇐⇒ x(f) = x(g).

The number of such confined walks can be easily determined using André’s reflection princi-
ple, [VW92, Example 14.8], and we obtain

[M2m+2
S1 ]h =

(
2m
m

)
−

(
2m

m + 2

)
=

1
m + 2

(
2m + 2
m + 1

)
= Cm+1,

where Ck = 1/(k + 1)
(2k

k

)
denotes the kth Catalan number. As we will see, the homology classes of

Morse functions on S2 is also encoded by lattice paths confined to a fundamental chamber of the
Coxeter group Z/2 × Z/2.

2We refer to [Arn07] for a nice discussion of the history and the evolution of this question.
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Morse functions on the 2-sphere

Figure 1. Cutting a Morse function down to a snake.

The number of geometric equivalence classes of Morse functions on S1 can be determined using
the calculus of snakes of Arnold [Arn91, Arn92]. We outline the main idea.

Suppose that f : S1 → R is Morse function with 2n + 2 critical points. Denote by p−1 ∈ S1

the point where f achieves its global maximum. Then, starting at p−1 label the critical points
p0, . . . , p2m, in counterclockwise order (see Figure 1). Now remove the arcs [p−1, p0), (p2m, p−1] (see
Figure 1). What is left is what Arnold calls an A2m-snake. Their numbers and several associated
generating series are determined in [Arn91, Arn92]. One of these generating functions depends on
two variables and satisfies a linear first-order partial differential equation (PDE) which can be solved
explicitly using the methods of characteristics.

More explicitly, if we denote by gn the number of geometric equivalence classes of Morse functions
on S1 with (2n + 2) critical points, and we set

g(t) =
∑

n!0

gn
t2n+1

(2n + 1)!
,

then g(t) = tan t. Equivalently, we can say that g is the inverse of the function

g '→ t(g) :=
∫ g

0
(1 + s2)−1 ds.

We will encounter a similar phenomenon when investigating geometric equivalence classes on S2,
where instead of a rational integral, we will have an elliptic one.

To conclude this introduction, let us give an interpretation from the point of view of singularity
theory for the number of geometric equivalence classes of excellent Morse functions on S2.

Denote by F the space of smooth functions on S2, and by Diff+(S2) (respectively Diff+(R)) the
group of orientation-preserving diffeomorphism of S2 (respectively R). There exists a left action of
the ‘gauge group’ G = Diff+(R) × Diff+(S2) on F given by

G × F + (u, v; f) '→ u ◦ f ◦ v−1.

Two functions are therefore geometrically equivalent if and only if they belong to the same G-orbit.
A function f ∈ F is an excellent Morse function if and only if its orbit G · f is an open subset of X,
so that MS2 is precisely the union of the stable orbits.

The complement S := F \ MS2 is a codimension-one subvariety. Its smooth locus decomposes
into two parts: the Maxwell stratum Sm, consisting of Morse functions f which have exactly one
pair of critical points on the same level set, and the A2-stratum Sa, consisting of smooth functions
f with have exactly one degenerate critical point p, and in a neighborhood of that point one can
find local coordinates (x, y) such that

x(p) = y(p) = 0, f(x, y) = f(p) + x3 ± y2.
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The Maxwell and A2 strata are transversally oriented, and they define a chamber structure on F.
On the A2-stratum we choose the transversal orientation corresponding to the birth process, that
is, when crossing the A2 stratum from the negative side to the positive side the number of critical
points increases by two. Denote by Sn

a the part of the A2 stratum consisting of functions with 2n+1
critical points. Then the number of geometric equivalence classes of excellent Morse functions with
2n critical points is the number of chambers between the strata Sn−1

a and Sn
a .

2. The main results

In § 3, using the basics of Morse theory, we analyze what kind of handle additions can occur as
we cross the critical levels of a Morse function on S2, and we describe a bijection between the set
of geometric equivalence classes of Morse functions on S2 and the set of Morse trees. These are
labelled trees with vertices of degree one or three such that any vertex of degree three has at least
one neighbor with a bigger label, and at least one neighbor with a smaller label. This correspondence
from Morse functions to labelled graphs first appeared on the mathematical scene in the work of
Reeb [Ree46].

In § 4 we describe a bijection between homology classes of Morse functions on S2 and certain
lattice paths in Z2

>0 and we deduce that the number of homology classes of Morse functions on S2

with (2n + 2) critical points is CnCn+1, where Cn denotes the nth Catalan number.
In § 5 we produce a two-parameter recurrence for the number of Morse trees (Theorem 5.1) which

is computationally very effective. In § 6 we associate to this two-parameter family of numbers an
exponential type generating function of two independent variables, and we prove that this function
satisfies a first-order quasilinear PDE. The classical method of characteristics [CH89], reduces this
equation to a Hamiltonian system in the plane, where the Hamiltonian function is a cubic polyno-
mial. This allows us to obtain a concrete description of the exponential generating function of the
number of geometric classes.

More precisely, if ξn denotes the number of geometric classes of Morse functions with 2n + 2
critical points and

ξ(t) =
∑

n!0

ξn
t2n+1

(2n + 1)!
,

then in Theorem 6.1 we show that ξ is the inverse of the function

ξ '→ θ(ξ) =
∫ ξ

0

dτ√
τ4/4 − τ2 + 2ξτ + 1

.

From this we can obtain a description of ξ in terms of the classical Weierstrass elliptic functions ℘.
The set of topological equivalence classes of Morse functions seems very mysterious at this time.

It has resisted all of our attempts to uncover a computationally friendly structure. In § 7 we present
a partial result. Using some results on counts of paths in the Young lattice of partitions we were able
to produce a lower bound for the number of topology classes of Morse functions. More precisely, we
show that there exist at least 1 · 3 · · · (2n + 1) topological equivalence classes of Morse functions on
S2 with 2n + 2 critical points.

3. The anatomy of a Morse function on the 2-sphere

Denote by [n] the set {1, 2, . . . , n}. Suppose that f is an excellent Morse function on the 2-sphere.
In this case the number of critical points ν(f) is a positive even integer, we set ν̄(f) := 1

2ν(f) − 1,
and we say that ν̄(f) is the order of f . From the Morse inequalities we deduce that the order of a
Morse function is equal to the number of its saddle points.
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Figure 2. Attaching a 0-, 2-handle. The shaded areas indicate holes.
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Figure 3. Admissible 1-handle attachments.

The level function associated to f is the bijection 'f from the set of critical points of f to [ν(f)]
which associates to each critical point p the number of critical points q such that f(q) ! f(p).

For every regular value c of f , min f < c < max f , the components of the sublevel set {f ! c} are
spheres with some disks removed. As we cross a critical value, the sublevel set {f ! c} is modified
by a handle attachment.

A 0-handle attachment H0 corresponds to crossing a local minimum of f . The sublevel set
acquires a new component diffeomorphic to a closed disk (see Figure 2). A 2-handle attachment
H2 corresponds to crossing a local maximum of f and consists of attaching a 2-disk to a boundary
component of {f ! c}.

Crossing a saddle point has the effect of attaching a 1-handle. There are three different ways of
attaching a 1-handle in an orientation-preserving fashion so that no Möbius band is created in the
process, that is, we do not produce embedded circles with nontrivial normal bundle:

(i) H+
1 : the handle is attached to the same boundary component of the sublevel set (see Figure 3);

(ii) H−
1 : the handle is attached to different components of the sublevel set (see Figure 3); and

(iii) H∗
1 : the handle is attached to different boundary components of the same connected component

of the sublevel set (see Figure 4).
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H*
1

Figure 4. Inadmissible 1-handle attachment.

Lemma 3.1. For any excellent Morse function f : S2 → R there are no H∗
1 handle attachments.

Proof. For any regular value of c we set Xc := {f ! c}, and we denote by ρc the dimension of the
cokernel of the natural morphism

H1(∂Xc, R) → H1(Xc, R).

Consider a slicing a0 < a1 < · · · < aν of f . The conclusion of the lemma follows from the following
two elementary observations:

• ρa1 = 0 = ρaν−1 ;
• ρai+1 # ρai , with equality if and only if the passage from Xai to Xai+1 is through a handle

attachment of type H0,H
±
1 ,H2 (an H∗

1 attachment produces a 1-cycle in the interior of the
new sublevel set which is not homologous to any cycle on the boundary of that new sublevel
set; see Figure 4).

To every regular value minf < c < max f we associate a vector

b = b(c) := (b0(Xc), b1(Xc) + 1), (3.1)

where
Xc = {f ! c}, bk(Xc) := dimRHk(Xc, R).

As the only admissible handle attachments are H0,H2,H
±
1 we conclude that, as we cross a critical

value, the vector b undergoes one of the changes below

b H0−−→ b + (1, 0), b H2−−→ b + (0,−1),

b
H+

1−−→ b + (0, 1), b
H−

1−−→ b + (−1, 0).

The combinatorics of an excellent Morse function on S2 can be conveniently encoded using Morse
trees. To describe these objects we need to introduce some combinatorial terminology.

In the sequel, a graph will mean a finite one-dimensional CW-complex, and a tree is a contractible
graph. The 0-cells are called vertices, and the 1-cells edges. A labeling of a graph is an injection
from the set of vertices to the set of real numbers. For every graph Γ with vertex set V, and every
labeling ϕ of Γ we define the level function associated to ϕ

'ϕ : V → Z, 'ϕ(v) := #{u ∈ V(Γ); ϕ(u) ! ϕ(v)}.

A vertex v is said to be higher than a vertex u (with respect to ϕ) if ϕ(v) > ϕ(u).

Definition 3.2. (a) A Morse tree order n is a pair (Γ,ϕ), where Γ is a tree with vertex set V(Γ)
of cardinality 2n + 2, and ϕ : V(Γ) → R is a labeling such that the following hold.

(a1) Every vertex of Γ has degree one or three. We will refer to the degree-three vertices as nodes.
(a2) Every node has at least one lower neighbor and at least one higher neighbor.
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Figure 5. Morse trees of order two.

A degree-one vertex is called a maximum/minimum if it is higher/lower than its unique neighbor.
We denote by N(Γ) ⊂ V(Γ) the set nodes, and by Vmax / min(Γ) the set of maxima/minima.

(b) Two Morse trees (Γi,ϕi), i = 0, 1 are said to be isomorphic, (Γ0,ϕ0) ∼= (Γ1,ϕ1), if there exists
a bijection

β : V(Γ0) → V(Γ1)
such that u, v ∈ V(Γ0) are neighbors in Γ0 if and only if β(u),β(v) are neighbors in Γ1 and

'ϕ1(β(u)) = 'ϕ0(u), for all u ∈ Γ0.

Note that the order of a Morse tree Γ is equal to the number of nodes. We can embed a Morse
tree (Γ,ϕ) in R3 so that the following hold.

• The z coordinates of the vertices are equal to the labels.
• The edges are smoothly embedded arcs, and the restriction of the function z to each arc has

no critical points.

We refer to a such a description of a Morse tree as an Euclidean embedding. In Figure 5 we
depict Euclidean embeddings of several Morse trees of order two.

To any excellent Morse function f : S2 → R we associate its Reeb graph Rf (see [BF04, Kud99,
Kul98, Ree46, Sha03]) constructed as follows.

Define an equivalence relation ∼f on S2 by declaring two points p and q to be equivalent if they
lie in the same path component of a level set of f . As a topological space, Rf is the quotient S2/ ∼f

equipped with the quotient topology. The space Rf is contractible, and it has a natural structure
of one-dimensional CW -complex, with one vertex for every critical point of f . In other words, Rf

is a tree.
The function f defines a labeling of Rf , and the pair (Rf , f) is a Morse tree called the Morse

tree associated to f . The order of the Morse tree is equal to the order of the function f . We have
the following result (see [Kul98, Theorem 2] and [Sha03, Theorem 6.2]).

Theorem 3.3. Two excellent Morse functions f, g : S2 → R are geometrically equivalent if and
only if the associated Morse trees (Rf , f) and (Rg, g) are isomorphic.

We can recover the geometric equivalence class of f from its associated Morse tree (Rf , f) as
follows. Consider an Euclidean embedding of the Morse tree. Then the boundary M of a thin tubular
neighborhood of the tree is diffeomorphic to S2 and the restriction of the height function z to M
is an excellent Morse function geometrically equivalent to f . The geometric equivalence class of
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Figure 6. The elementary cobordism corresponding determined by the critical values.

this function depends only on the isomorphism class of the Morse tree. We say that two Morse
tree are homologically (respectively topologically) equivalent if their associated Morse functions
are so. Observe that the two Morse trees in Figure 5 are topologically equivalent yet they are not
isomorphic.

Remark 3.4. If c is a critical value of an excellent Morse function f : S2 → R, then according
to [Mil65, ch. 3] for ε > 0 sufficiently small the region {|f − c| ! ε} ⊂ S2 is an elementary
cobordism, that is, it is diffeomorphic to a disjoint union of cylinders [c − ε, c + ε] × S1 and one
of the four surfaces with boundary depicted in Figure 6, where the upper boundary is contained in
the level set {f = c + ε} and the lower boundary is contained in the level set {f = c − ε}.

The vertices of a Morse tree are of the four types H0,H
±
1 ,H2 and correspond to the four types

of elementary cobordisms that can occur in a slicing of an excellent Morse function f : S2 → R (see
Figure 6).

The height function z on each of the four surfaces embedded in R3 depicted in Figure 6 is
an excellent Morse function which is constant on the upper and lower boundary. The heart of
Theorem 3.3 is the following elementary fact: any Morse function on one of these four surfaces
which has a unique critical point and it is constant on the upper and on the lower boundary
is obtained from the height function via an orientation-preserving diffeomorphism of the surface
which is identity on the boundary and an orientation-preserving diffeomorphism of R.

4. Counting homology equivalence classes

We denote by Hn the set of homology equivalence classes of Morse functions f : S2 → R of order n,
and we set h(n) := #Hn. Suppose that f : S2 → R is an excellent Morse function of order n, and
a0 < a1 < · · · < a2n+2 is a slicing of f .

To the function f we now associate using (3.1) the sequence of lattice points

Pi = (b0,i, b1,i + 1) ∈ Z2
>0, bk,i := dimHk({f ! ai}, R), i = 1, . . . , 2n + 1.

Set

E := (1, 0), W := −E, N := (0, 1), S := −N, D := {E,W,N, S}.
Observe that P1 = P2n+1 = (1, 1), and for every i we have Pi+1 − Pi ∈ D. We regard the sequence
Pf = {P1, P1, . . . , P2n+1} as a lattice path of length 2n in the interior of the first quadrant which
starts and ends at (1, 1), and such that every step Pi → Pi+1 has length one, and it is performed
in one of the four possible lattice directions at Pi, East (E), North (N), West (W ), South (S).
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We denote by Ln the set of such paths. Note that

f ∼h g ⇐⇒ Pf = Pg,

so that we have an injection
Hn → Ln, f '→ Pf .

Lemma 4.1. The above map Hn → Ln is a bijection, so that h(n) = #Ln.

Proof. Given a lattice path P ∈ Ln we need to produce a Morse function f of order n such that
Pf = P. To construct such a function we use the following dictionary:

E ←→ H0, W ←→ H−
1 , N ←→ H+

1 , S ←→ H2.

We find it convenient to refer to the four types of handle attachments using the symbols E,W,N, S.
To every lattice point P = (a, b) ∈ Z2

>0 we can associate (non-uniquely) a surface ΣP which is
a disjoint union of a disks with a total number of b − 1 holes in them. Note that we can perform
a surgery of type T ∈ D on ΣP if and only if the neighbor of P in the direction T also lies in the
interior of the first quadrant.

Thus, the path P describes a succession of handle attachments, starting with a disk and ending
with a disk. As explained in [Mil65, Theorems 3.12 and 3.13], for any sequence of handle attachments
there exists an excellent Morse function such that the successive topological changes in its sublevel
sets are described by the sequence of handle attachments.

Theorem 4.2. The number of homological equivalence classes of excellent Morse functions f : S2 →
R of order n is

h(n) = Cn · Cn+1.

Proof. We present a computation of #Ln based on a reflection trick of Gessel–Zeilberger, which
highlights the role of the Coxeter group Z/2 × Z/2. For a different, more elementary proof of the
equality #Ln = Cn · Cn+1 we refer to [Guy01].

Define a lattice path to be a finite sequence of points γ = {P0, . . . , PL} ⊂ Z2 such that
Pi+1 − Pi ∈ D. The integer L is called the length of the path and it is denoted by L(γ). The
path is called confined if all of the points Pi are in the interior of the first quadrant, Z>0 × Z>0.
A path is called bad if it is not confined.

For every integer n we denote by P(P,Q;n) the set of paths of length n starting at P and ending
at Q. We let Pc and Pb denote the subsets consisting of confined and bad paths, respectively. We set

N(P,Q;n) := #P(P,Q;n), Nc(P,Q;n) := #Pc(P,Q;n),
Nb(P,Q;n) = #Pb(P,Q;n).

The above discussion shows that

h(n) = Nc(P1, P1; 2n), P1 = (1, 1).

Consider two points P,Q in the first quadrant. Denote by r1, r2 : R2 → R2 the reflections

r1(t1, t2) = (−t1, t2), r2(t1, x2) = (t1,−t2).

These reflections generate the Klein group

K = { , r1, r2, r = r1r2} ∼= Z/2 × Z/2.

Then, arguing as in the proof of [GZ92, Theorem 1] we deduce that

Nb(P,Q;n) + Nb(P, r(Q);n) = Nb(P, r1(Q);n) + Nb(P, r2(Q);n).
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Since r(Q), r1(Q), r2(Q), are not in the first quadrant we deduce that

Nb(P, ρ(Q)) = N(P, ρ(Q)), for all ρ ∈ {r, r1, r2},

and thus

Nc(P,Q;n) = N(P,Q;n) + N(P, r(Q);n) − N(P, r1(Q);n) − N(P, r2(Q);n).

Observing that N(P,Q;n) = N(0, Q − P ;n) we deduce that

Nc(P1, P1;n) = N(0,0;n) + N(0,−2(e1 + e2);n) − N(0,−2e2;n) − N(0,−2e1;n). (4.1)

For t = (t1, t2), and x = (x1, x2) ∈ Z2, we set tx = tx1
1 tx2

2 . Consider the step polynomial

S(t) :=
∑

x∈D

tx = t1 + t2 + t−1
1 + t−1

2 ∈ Z[[t1, t2, t−1
1 , t−1

2 ]].

For every x ∈ Z2 define

Cx : C[[t1, t2, t−1
1 , t−1

2 ]] → C, A =
∑

y∈Z2

Ayty '−→ Cx(A) = Ax.

In other words, Cx associates to each Laurent polynomial the coefficient of tx in that polynomial.
Observe that for every x ∈ Z2 we then have

N(0,x;n) = Cx(S(t)n),

If we regard tj as a complex parameter, tj = |tj|eiθj , we have the integral formula

Cx(A) =
∮

A(t)t−x :=
1

4π2

∫

|t1|=|t2|=1
A(t)t−x dθ1 dθ2.

Using (4.1) we conclude that

Nc(P1, P1;n) =
∮

S(t)n(1 − t21 − t22 + t21t
2
2) =

∮
S(t)n(t21 − 1)(t22 − 1).

Hence,
∑

n!0

h(n)z2n =
∮

(t21 − 1)(t22 − 1)
1 − zS

=
∮

(t21 − 1)(t22 − 1)
1 − z(t1 + t−1

1 + t2 + t−1
2 )︸ ︷︷ ︸

=:K(z,t)

. (4.2)

Observe that

K(z, t) =
t1t2(t21 − 1)(t22 − 1)

t1t2 − z(t1t2 + 1)(t1 + t2)
and K(z, t1, t2) = K(z, t2, t1).

We write
u := t1 + t2, v := t1t2,

and we deduce that

K(z, t) =
v(v2 − u2 + 2v + 1)

v − zu(v + 1)
= (v2 − u2 + 2v + 1) · 1

1 − zu(1 + 1/v)

= (v2 − u2 + 2v + 1) ·
∑

n!0

znun(1 + v−1)n

=
∑

n!0

zn
n∑

k=0

(
n

k

)
(v2 − u2 + 2v + 1)unv−k

=
∑

n!0

zn
n∑

k=0

(
n

k

)
(unv2−k − un+2v−k + 2unv1−k + unv−k).

1090



Morse functions on the 2-sphere

Fortunately, very few terms in this sum contribute to (4.2) since
∮

unv−k = 0, for all n .= 2k.

Moreover ∮
u2mv−m =

(
2m
m

)
.

We deduce that
∮

K(z, t) dt =
∑

m!0

z2m
2m∑

k=0

(
2m
k

)∮
(u2mv2−k − u2m+2v−k + 2u2mv1−k + u2mv−k).

This shows that for every m # 0 we have

h(m) =
(

2m
m + 2

)(
2m
m

)

︸ ︷︷ ︸
a

−
(

2m + 2
m + 1

)(
2m

m + 1

)

︸ ︷︷ ︸
b

+2
(

2m
m

)(
2m

m + 1

)

︸ ︷︷ ︸
c

+
(

2m
m

)(
2m
m

)

︸ ︷︷ ︸
d

.

Now observe that

a + c =
(

2m
m + 2

)(
2m
m

)
+

(
2m
m

)(
2m

m + 1

)
=

(
2m
m

)(
2m + 1
m + 2

)
,

c + d =
(

2m
m

)(
2m

m + 1

)
+

(
2m
m

)(
2m
m

)
=

(
2m
m

)(
2m + 1
m + 1

)
.

The sum of the right-hand-sides of the above equalities is

a + 2c + d =
(

2m
m

)(
2m + 1
m + 2

)
+

(
2m
m

)(
2m + 1
m + 1

)
=

(
2m
m

)(
2m + 2
m + 2

)
.

Hence,

h(m) = a + 2c + d − b =
(

2m
m

)(
2m + 2
m + 2

)
−

(
2m + 2
m + 1

)(
2m

m + 1

)

=
1

(m + 2)(m + 1)

(
2m + 2
m + 1

)(
2m
m

)
= Cm+1Cm.

Remark 4.3. The sequence CnCn+1 is the A005568 sequence in Sloane’s on-line encyclopedia, and
has many other interesting combinatorial interpretations.

5. A recursive construction of geometric equivalence classes

In this section we produce a two-parameter recursion formula for the number of (isomorphism classes
of) Morse trees. One of the parameters will be the order of the tree and the other parameter will
be the level of the lowest node.

For every subset C ⊂ R we denote by FC the set of Morse trees (Γ,ϕ) such that ϕ(V(Γ)) = C.
We say that C is the discriminant set of ϕ. We define FC(m) ⊂ FC to be the subset consisting of
Morse trees such that the lowest m vertices are local minima. Let

F∗
C(m) := FC(m) \ FC(m + 1).

Observe that #FC(m) = #FC′(m) if #C = #C ′. We set

Fn(m) := F[2n+2](m), Fn(m) := #Fn(m), fn(m) = Fn(m) − Fn(m + 1).

Note that fn(m) is equal to the number of Morse trees of order n such that the lowest m vertices
are local minima, while the (m + 1) vertex is a node. Since level of the lowest node of a Morse tree
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of order n is at most n + 1, we deduce that

Fn(m) = 0, for all m > n + 1 =⇒ fn(n + 1) = Fn(n + 1).

Here Fn(1) is precisely the number of Morse trees of order n and

Fn(m) =
∑

k!m

fn(k), fn(m) = 0, for all m > n + 1.

Theorem 5.1. We have

fn(m) =
(

m

2

)
Fn−1(m − 1)

+
∑

m0+m1=m−1

∑

n0+n1=n−1

m

2

(
m − 1
m1

)(
2n − m + 1

2n0 − m0 + 1

)
Fn0(m0 + 1)Fn1(m1 + 1). (5.1)

Proof. If (Γ,ϕ) ∈ F∗
n(m), then ϕ = 'ϕ, and the level m + 1 vertex of Γ is a node. It can only be one

of two types:

• negative type, if m + 1 has two lower neighbors;
• positive type, if m + 1 has a unique lower neighbor and thus two higher neighbors.

Correspondingly, we obtain a partition F∗
n(m) = F+

n (m) / F−
n (m). We set F±

n (m) := #F±
n (m)

so that
fn(m) = #F∗

n(m) = F+
n (m) + F−

n (m). (5.2)
We discuss two cases.

Case C+. Suppose that (Γ,ϕ) ∈ F+
n (m).

Denote by v0, v1 the two higher neighbors of the (m + 1)th vertex, and by u its unique lower
neighbor. For ε = 0, 1 we set

kε := ϕ(vε), k := ϕ(u), k0, k1 > m + 1 > k.

Denote by Γu the graph obtained from Γ by removing the vertices u,m + 1, and the edges at these
points. Denote by Γu

ε the component of Γu containing the vertex vε, and define Γ̄ε by setting

V(Γ̄ε) := V(Γu
ε ) / {rε},

where the new vertex rε has only one neighbor in Γ̄ε, the vertex vε; see Figure 7.
Now define the labelings

ϕε : V(Γ̄ε) → R, ϕε(rε) = m + 1, ϕε(w) = ϕ(w), for all w ∈ V(Γu
ε ).

Denote by Mε the subset of [m] consisting of vertices which belong to the component Γu
ε , and set

mε := #Mε. We have

M0 ∪ M1 = Mk = [m] \ {ϕ(u)} = [m] \ {k} =⇒ m0 + m1 = m − 1.

Let us define a 2-coloring of a set S to be a surjection u : S → {0, 1}. A 2-coloring is uniquely
determined by the ordered pair (S0, S1) = (u−1(0), u−1(1). If we set

Aε := V(Γu
ε ) \ Mε,

we deduce that (A0, A1) is a 2-coloring of {m + 2, . . . , 2n + 2}.
We see that (Γ̄ε,ϕε) is a Morse tree such that its first mε + 1 vertices are local minima. The

discriminant set of ϕε is

Cε = V(Γu
ε ) ∪ {m + 1} = Aε / Mε / {m + 1},
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Figure 7. Cutting a Morse tree along the lowest H+
1 -handle.

so that
Γ̄ε ∈ FCε(mε + 1).

We conclude that the initial Morse tree (Γ,ϕ) is uniquely determined by the following data.

• The integer k = ϕ(u) ∈ {1, . . . ,m}.
• The 2-coloring of Mk = [m] \ {k}, Mk = M0 / M1, #Mε = mε.
• The 2-coloring (A0, A1) of {m + 2, . . . , 2n + 2}, aε = #Aε.
• The choices of Morse trees (Γ̄ε,ϕε) with discriminant sets Cε = Mε / Aε / {m + 1}, such that

(Γ̄ε,ϕε) ∈ FCε(mε + 1).

The tree Γ̄ε has aε + mε + 1 vertices, and its order is nε = 1
2(aε + mε − 1). We deduce that

aε + mε ≡ 1 mod 2, and
aε = 2nε − mε + 1, n0 + n1 = n − 1.

We have thus produced a surjection

Ψ :
m⊔

k=1

⊔

(Ck
0 ,Ck

1 )

FCk
0
(m0 + 1) × FCk

1
(m1 + 1)−→Fn(m), (5.3)

where the disjoint union is taken over all ordered pairs (Ck
0 , Ck

1 ) satisfying

Ck
ε = Mk

ε / Aε / {m + 1}, Mk
0 / Mk

1 = [m] \ {k}
A0 / A1 = {m + 2, . . . , 2n + 2}, #Aε ≡ #Mk

ε + 1 mod 2.

We have a fixed-point-free involution on the left-hand-side of (5.3) defined by the bijections induced
by the transposition of subscripts, 0 ←→ 1,

FCk
0
(m0 + 1) × FCk

1
(m1 + 1)−→FCk

1
(m1 + 1) × FCk

0
(m0 + 1).
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The fibers of Ψ are precisely the orbits of this involution. We deduce that

F+
n (m) =

1
2

∑

k

∑

(Ck
0 ,Ck

1 )

#FCk
0
(m0 + 1) × #FCk

1
(m1 + 1).

The integer 1 ! k ! m can be chosen in m different ways. The 2-coloring (M0,M1) of {1, . . . ,m}\k
can be chosen in

( m−1
m0,m1

)
=

(m−1
m0

)
ways. For every pair (n0, n1) of nonnegative integers such that

n−1 = n0+n1, we can choose the 2-coloring (A0, A1) of {m+2, . . . , 2n+2} in
(2n−m+1

a0,a1

)
=

(2n−m+1
a0

)

ways. Finally, the Morse tree Γ̄ε ∈ FCε(mε +1) can be chosen in Fnε(mε +1) ways. We deduce that

F+
n (m) =

m

2

m−1∑

m0=0

n−1∑

n0=0

(
m − 1
m0

)(
2n − m + 1

2n0 − m0 + 1

)
Fn0(m0 + 1)Fn1(m1 + 1). (5.4)

Case C−. Suppose that (Γ,ϕ) ∈ F−
n (m). In this case, the vertex m+1 has two lower neighbors

1 ! k1 < k2 ! m, and a higher neighbor K > m + 1. We can now produce a Morse tree (Γ′,ϕ′) of
order n− 1 by removing the vertices k2,m+1 and their incident edges, and then connecting k1 and
K by an edge (see Figure 8). Thus,

V(Γ′) = V(Γ) \ {k2,m + 1} ⊂ V(Γ).

The labeling ϕ′ is defined by ϕ′ := ϕ|V(Γ′). The discriminant set of ϕ′ is [2n + 2] \ {m + 1, k2}, and
the lowest m − 1 vertices are local minima. The Morse tree (Γ,ϕ) is uniquely determined by the
following data.

• The pair of integers k1 < k2 ∈ {1, 2, . . . ,m}.
• The Morse tree (Γ′,ϕ′) of order n−1, with discriminant set [2n+2]\{m+1, k2} whose lowest

m − 1 vertices are local minima.

We deduce

F−
n (m) =

(
m

2

)
Fn−1(m − 1). (5.5)

The equality (5.1) now follows from (5.2), (5.4) and (5.5).

Corollary 5.2. If n # 1, then

Fn(n + 1) = fn(n + 1) =
(

n + 1
2

)
Fn−1(n).

Proof. Indeed, the second term in (5.1) is nontrivial if and only if m0+1 ! n0+1 and m1+1 ! n1+1.
In particular, it vanishes when m0 + m1 > n0 + n1, which is the case.

Remark 5.3. The set of isomorphism classes of Morse trees is equipped with a natural involution

(Γ,ϕ) ←→ (Γ,−ϕ),

which we call Poincaré duality because it mimics the Poincaré duality. We say that a Morse tree is
selfdual if it is isomorphic to its Poincaré dual.

We find the problem of computing the number of isomorphism classes of selfdual Morse trees, or
even their asymptotics, very compelling. An understanding of the number of the fixed points of the
above involution would lead to an understanding of the number of stable orbits of the action of
the group Diff+(S2) × Diff(R) on the space F of smooth functions S2 → R.

Unfortunately, this problem has resisted all of our efforts. The number of such trees of very low
order is recorded in the next example.
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Figure 8. Cutting a Morse tree along the lowest H−
1 -handle.

Figure 9. Morse trees with 2 and 4 vertices.

Example 5.4. Let n = 0. In this case there are no nodes and we have

F0(1) = 1, F0(m) = 0, for all m > 1.

In Figure 9 we depict the only Morse tree of order zero.

Let n = 1. Then Theorem 5.1 predicts

f1(1) = 1, f1(2) = F0(1) = 1 =⇒ F1(1) = 2, F1(2) = 1.

The two Morse trees are depicted in Figure 9.

For n = 2, m = 1 we have

f2(1) =
1
2

1∑

j=0

(
4

2j + 1

)
Fj(1)F1−j(1) = 4F0(1)F1(1) = 8.

Thus we have eight Morse trees with six vertices such that the second vertex is a node. They are
depicted in Figure 10, where (S) := selfdual.
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Figure 10. Morse trees with six critical points, and the second is a node.

For n = 2, m = 2 we have

f2(2) = F1(1) +
1∑

j=0

(
3

j + 1

)
Fj(j + 1)f1−j(2 − j)

= F1(1) +
(

3
2

)
F1(2)F0(1) +

(
3
1

)
F0(1)F1(2) = 2 + 3 + 3 = 8.

These trees are depicted in Figure 11, where (S) := selfdual.
Finally, for n = 2 and m = 3 we have f2(3) =

(3
2

)
F1(2) = 3. These three Morse trees are depicted

in Figure 12. Hence,

F2(1) = f2(1) + f2(2) + f2(3) = 8 + 8 + 3 = 19, F2(2) = 11, F2(3) = 3.

We list below the numbers of homology equivalence classes and geometric equivalence classes of
Morse functions with 2n + 2 critical points, n ! 9. The number of geometric equivalence classes
were computed using a simple Maple procedure based on the above recurrence.

Remark 5.5. (a) The numbers of geometric equivalence classes of Morse functions with at most 10
critical points were also determined by Arnold in [Arn06] and agree with the findings listed in
Table 1.

(b) In [Nic06] we show that Theorem 5.1 leads to a positive answer to a question of Arnold. If g(n)
is the number of geometric equivalence classes of Morse functions on S2 with 2n + 2 critical points,
then

lim
n→∞

log g(n)
n log n

= 2.

The computations in the above example give an idea of the complexity of the above recurrence
and suggest that it can be better organized. We do this in the next section.

6. Generating functions

We introduce new functions

g(m,n) := fn(m + 1), G(m,n) := Fn(m + 1), 0 ! m ! n,

so that g(m,n) = G(m,n) − G(m + 1, n).
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Figure 11. Morse trees with six vertices, and the first two are minima.

Figure 12. Morse trees with six vertices, three minima.

Table 1.

n 2n + 2 Homology classes Geometric classes

0 2 1 1
1 4 2 2
2 6 10 19
3 8 70 428
4 10 588 17 746
5 12 5544 1 178 792
6 14 56 628 114 892114
7 16 613470 15 465 685088
8 18 6 952660 2 750970 320776
9 20 81 662152 625 218940 868432
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In the main recurrence formula (5.1) we make the change in variables, m → m + 1. We deduce
that for n # m # 1 we have the equality

G(m,n) − G(m + 1, n) =
(

m + 1
2

)
G(m − 1, n − 1)

+
m

2

∑

n1+n2=n−1

∑

m1+m2=m

(
m

m1

)(
2n − m

2n1 − m1 + 1

)
G(m1, n1)G(m2, n2).

Now we make the change in variables

(m,n) = (x, x + y) ⇐⇒ (x, y) = (m,n − m), H(x, y) := G(m,n). (6.1)

With this notation the number of geometric equivalence classes of Morse functions with 2n + 2
critical points is

Fn(1) = G(0, n) = H(0, n).
Then we have

G(m + 1, n) = H(x + 1, y − 1), G(m − 1, n − 1) = H(x − 1, y).

For k = 1, 2 we make the change in variables in the double sum

(mk, nk) = (xk, xk + yk) ⇐⇒ (xk, yk) = (mk, nk − mk).

Then
x2 = m − x1 = x − x1, y2 = n − 1 − y1 = x + y − 1 − y1,

so that the equality
(m1, n1) + (m2, n2) = (m,n − 1)

is equivalent to
(x1, x1 + y1) + (x2, x2 + y2) = (x, x + y − 1),

which implies that
x1 + x2 = x, y1 + y2 = y − 1.

Now observe that in the double sum we need to have

2n1 − m1 + 1 ! 2n − m =⇒ 2x1 + y1 + 1 ! 2x + y,

2n2 − m2 + 1 ! 2n − m ⇐⇒ 2(x − x1) + (y − 1 − y1) + 1 ! 2x + y ⇐⇒ 0 ! 2x1 + y1.

These inequalities are satisfied if and only if

(x1, y1) ∈ Rx,y−1 := {(u, v) ∈ Z2; 0 ! u ! x, 0 ! v ! y − 1}.

For a point (x1, y1) ∈ Rx,y−1 we denote by (x̄1, ȳ1) its reflection in the center of Rx,y−1, that is,

(x1, y1) + (x̄1, ȳ1) = (x, y − 1).

The recurrence can now be rewritten as

H(x, y) − H(x + 1, y − 1) =
(

x + 1
2

)
H(x − 1, y)

+
x + 1

2

∑

(x1,y1)∈Rx,y−1

(
x

x1

)(
x + 2y

x1 + 2y1 + 1

)
H(x1, y1)H(x̄1, ȳ1). (6.2)

We now introduce the new function

Ĥ(x, y) :=
1

x!(x + 2y + 1)!
H(x, y).

Observe that Ĥ(0, 0) = H(0, 0) = G(0, 0) = 1. We distinguish two cases.
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A: x > 0. If we divide both sides of (6.2) by x!(x + 2y)! we deduce that for x > 0 we have

(x + 2y + 1)Ĥ(x, y) − (x + 1)Ĥ(x + 1, y − 1)

=
x + 1

2
Ĥ(x − 1, y) +

x + 1
2

∑

(x1,y1)∈Rx,y−1

Ĥ(x1, y1)Ĥ(x̄1, ȳ1).

Observe that if in the above equality we let y = 0 we conclude

Ĥ(x, 0) = 1
2Ĥ(x − 1, 0) so that Ĥ(x, 0) = 2−xĤ(0, 0) = 2−x.

B: x = 0. If we divide both sides of (6.2) by (2y)! we obtain

(2y + 1)Ĥ(0, y) − Ĥ(1, y − 1) =
1
2

y−1∑

y1=0

Ĥ(0, y1)Ĥ(0, y − 1 − y1).

Consider the formal power series

H(s, t) :=
∑

x,y!0

Ĥ(x, y)sxty.

If we multiply both sides of cases A and B by sxty−1 and sum over x # 0, y # 1 we deduce
∑

x!0,y!1

(x + 2y + 1)Ĥ(x, y)sxty−1 −
∑

x!0,y!1

(x + 1)Ĥ(x + 1, y − 1)sxty−1

=
∑

x!1,y!1

x + 1
2

Ĥ(x − 1, y)sxty−1 +
∑

x!0,y!1

x + 1
2

( ∑

Rx,y−1

Ĥ(x1, y1)Ĥ(x̄1, ȳ1)
)

sxty−1.

Make the change in variables y = y + 1. Then
∑

x!0,y!0

(x + 2y + 3)Ĥ(x, y + 1)sxty −
∑

x!0,y!0

(x + 1)Ĥ(x + 1, y)sxty

=
∑

x!1,y!0

x + 1
2

Ĥ(x − 1, y + 1)sxty +
∑

x!0,y!0

x + 1
2

(∑

Rx,y

Ĥ(x1, y1)Ĥ(x̄1, ȳ1)
)

sxty.

Now make the change in variables x = x + 1 in the third sum:
∑

x!0,y!0

(x + 2y + 3)Ĥ(x, y + 1)sxty −
∑

x!0,y!0

(x + 1)Ĥ(x + 1, y)sxty

=
∑

x!0,y!0

x + 2
2

Ĥ(x, y + 1)sx+1ty +
∑

x!0,y!0

x + 1
2

(∑

Rx,y

Ĥ(x1, y1)Ĥ(x̄1, ȳ1)
)

sxty.

We obtain
1
t
∂s(sH − sHt=0) + 2∂tH − ∂sH =

1
2t
∂s(s2H − s2Ht=0) +

1
2
∂s(sH2). (6.3)

From the equality

Ht=0 = H(s, 0) =
∑

x!0

2−xsx =
2

2 − s

we obtain
1
t
∂s(sH) + 2∂tH − ∂sH =

1
2
∂s(sH2) +

1
2t
∂s(s2H) +

1
t
∂s

2s − s2

2 − s
.

Multiplying both sides by t we obtain

∂s(sH) + 2t∂tH − t∂sH =
t

2
∂s(sH2) +

1
2
∂s(s2H) + 1, H(s, 0) =

2
2 − s

. (6.4)
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The above equality is a first-order quasilinear PDE. However, the initial condition is character-
istic (see [CH89, § II.1]), and thus the method of characteristics is ineffective in this case. To remove
the singularities of this equation we blow it up via a monoidal change of coordinates

s := uv , t := v2, ξ(u, v) := vH(uv , v2).

Note that

ξ(u, v) =
∑

x,y!0

H(x, y)
uxvx+2y+1

x!(x + 2y + 1)!
=

∑

n+1!m!1

Fn(m)
um−1v(2n−m+2)

(m − 1)! · (2n − m + 2)!
,

and

ξ(0, v) =
∑

n!0

Fn(1)
v2n+1

(2n + 1)!
,

so that ξ(0, v) is an exponential generating function for the numbers of geometric equivalence classes
of excellent Morse functions on S2. We have

v = t1/2, u = st−1/2,

H = v−1ξ, sH = uξ, s2H = u2vξ, sH2 = uv−1ξ2,

∂s = (∂su)∂u + (∂sv)∂v = t−1/2∂u = v−1∂u,

∂t = (∂tu)∂u + (∂tv)∂v = −st−3/2

2
∂u +

t1/2

2
∂v =

1
2v2

(−u∂u + v∂v).

Equation (6.4) can now be rewritten as

v−1∂u(uξ) + (−u∂u + v∂v)(v−1ξ) − v∂u(v−1ξ) = 1
2∂u(uξ2) + 1

2∂u(u2ξ) + 1.

After some elementary manipulations we obtain the first-order quasilinear PDE

−(1 + uξ + 1
2u2)∂uξ + ∂vξ = 1

2ξ
2 + uξ + 1, ξ(u, 0) = 0. (6.5)

The characteristic vector field of this equation is (see [Arn88, § 7.E] or [CH89, II.1]) the vector field
V in the three-dimensional vector space with coordinates (u, v, ξ) defined by

V = −(1 + uξ + 1
2u2)∂u + ∂v + (1 + uξ + 1

2ξ
2)∂ξ.

Consider the curve σ → γ(σ) in the (u, v, ξ)-space described by the initial conditions

u = σ, v = 0, ξ = ξ(σ, 0) = 0.

The tangent vector field dγ/dσ coincides with the vector field ∂u. Along γ(σ) we have V(σ, 0, 0) =
−(1 + σ2/2)∂u + ∂v + ∂ξ which, together with the equality dγ/dσ = ∂u, shows that the initial curve
is non-characteristic.

The characteristic curves of (6.5) are the integral curves of V, that is, the solutions of the system
of ordinary differential equations






du

dτ
= −

(
1 + uξ +

u2

2

)
,

dv

dτ
= 1,

dξ

dτ
= 1 + uξ +

1
2
ξ2.

(6.6)

The graph of the function (u, v) '→ ξ(u, v) is filled in a neighborhood of (u, v) = (0, 0) by the
solutions of (6.6) with initial points on γ. More precisely, if

τ '−→ (uσ(τ), vσ(τ), ξσ(τ))
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is the solution of (6.6) satisfying the initial condition

uσ(0) = σ, vσ(0) = 0, ξσ(0) = 0, (6.7)

then the graph of ξ admits the parametric description

(σ, τ) '−→ (uσ(τ), vσ(τ), ξσ(τ)).

We deduce that vσ(τ) = τ , and that the plane curve τ '→ (uσ(τ), ξσ(τ)) is a solution of the
hamiltonian equation






duσ

dτ
= −∂ξh(uσ, ξσ),

dξσ
dτ

= ∂uh(uσ , ξσ),

where
h(u, ξ) := 1

2(u2ξ + uξ2) + u + ξ = (u + ξ)(1
2uξ + 1).

We deduce that h(u, ξ) = constant along the trajectories of (6.6). Thus, the solutions of the initial
value problem (6.6) + (6.7) satisfy

h(uσ(τ), ξσ(τ)) = h(uσ(0), ξσ(0)) for all τ ,

that is,
1
2(u2

σξσ + uσξ
2
σ) + uσ + ξσ = σ.

We interpret this equality as a quadratic equation in ξσ
uσ

2
ξ2σ +

(
1 +

u2
σ

2

)
ξσ + uσ − σ = 0, (6.8)

and we solve for ξσ

ξσ =
−(1 + u2

σ/2) +
√

(1 + u2
σ/2)2 − 2uσ(uσ − σ)

uσ
.

In the above, the choice of a plus sign in the quadratic formula is dictated by the fact that the
Taylor coefficients of ξ (as a function of u and v) are positive. Thus,

1 + uσξσ +
u2
σ

2
=

√(
1 +

u2
σ

2

)2

− 2uσ(uσ − σ) =

√
u4
σ

4
− u2

σ + 2σuσ + 1,

and using the first equation in (6.6) we deduce that

duσ

dτ
= −

√
u4
σ

4
− u2

σ + 2σuσ + 1. (6.9)

Set

Pσ(u) :=
u4

4
− u2 + 2σu + 1, θ = θσ(u) :=

∫ u

0

dx√
Ps(x)

.

For fixed σ we regard the time variable τ as a function3 of uσ. We deduce from (6.9) that

τ = Cσ − θσ(uσ),

where the constant Cσ is determined from the initial condition

τ = 0, uσ = σ.

3For fixed σ, the inverse function uσ "→ τ is an elliptic function.
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Hence,

Cσ = θσ(σ) =
∫ σ

0

dx√
Pσ(x)

.

The moment of time τ(σ) when the characteristic curve

τ '−→ (uσ(τ), vσ(τ), ξσ(τ))

(in the space R3 with coordinates (u, v, ξ)) intersects the hyperplane u = 0 is obtained from the
equality

τ(σ) = Cσ − θσ(uσ = 0) = Cσ = θσ(σ).
We deduce that the intersection of the hyperplane u = 0 with the graph of ξ admits the parametriza-
tion

σ '−→ (0, τ(σ), ξσ(τ(σ))).
From (6.8) we deduce that when uσ = 0 we have ξσ(τ(σ)) = σ, so that the intersection of the graph
of ξ with the hyperplane u = 0 admits the parametrization

σ '→ (0, τ(σ),σ).

On the other hand, if we think of ξ as a function of variables (u, v), the intersection of the graph of
ξ with the hyperplane u = 0 admits the parametrization

v '→ (0, v, ξ(0, v)).

The last two equalities show that

ξ(0, τ(σ)) = σ, where τ(σ) =
∫ σ

0

dx√
Pσ(x)

.

We have thus proved the following result.

Theorem 6.1. Denote by gn the number of geometric equivalence classes of Morse functions on S2

with n saddle points and set

ξ(t) =
∑

n!0

g(n)
t2n+1

(2n + 1)!
.

Then ξ(t) is the compositional inverse of the function

θ(s) =
∫ s

0

dτ√
τ4/4 − τ2 + 2sτ + 1

(τ=sx)
= s

∫ 1

0

dx√
1
4(sx)4 − (sx)2 + 2s2x + 1

,

that is, ξ(θ(s)) = s.

Remark 6.2. (a) We can produce an explicit parametrization of the graph of ξ. Since u is the solution
of the initial value problem

du

dτ
= −

√
Pσ(τ), u(0) = σ

we deduce that

−τ =
∫ u

σ

dx√
Pσ(x)

.

Using the Weierstrass formula [WW27, § 20.6, Example 2] we obtain the identity

u = σ +
Pσ(σ)1/2℘′σ(−τ) + 1

2P ′
σ(σ)(℘σ(−τ) − 1

24P (2)
σ (σ)) + 1

24Pσ(σ)P (3)
σ (σ)

2(℘σ(−τ) − 1
24P (2)

σ (σ)) − 1
48Pσ(σ)P (4)

σ (σ)
,
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where ℘σ(z) is the Weierstrass function with parameters

g2 = g2(σ) =
1
3
, g3 = g3(σ) = − 1

27
− σ

2

16
.

The discriminant is

∆(σ) = g3
2 − 27g2

3 = −σ
2

8

(
1 +

27
32
σ2

)
.

Using the equality v = τ , and the description of ξ as a function of u and σ we obtain a parametriza-
tion of the graph of ξ in a small neighborhood of the point (u, v, ξ) = (0, 0, 0).

Example 6.3. The Taylor coefficients of ξ(t) can, in principle, be computed from the formula in
Theorem 6.1 via the Lagrange inversion formula although this procedure is not as effective as the
recurrence in Theorem 5.1. However, we want to test the validity of Theorem 6.1 on special cases.

For every formal power series f in the variable x we denote by [xn]f the coefficient of xn in the
expansion of f . The Lagrange inversion formula [Sta99, Theorem 5.4.2] implies that

[t5]ξ =
1
5
[s4]

(
s

θ(s)

)5

. (6.10)

We write

Ps(t) = 1 + rs(t), rs(t) = 2st − t2 +
t4

4
.

Then we have a binomial expansion

Ps(t)−1/2 = 1 − 1
2
rs(t) +

1 · 3
22 · 2!rs(t)2 −

1 · 3 · 5
23 · 3! rs(t)3 +

1 · 3 · 5 · 7
24 · 4! rs(t)4 + · · · .

Integrating this equality with respect to t ∈ [0, s] we deduce that

θ(s) = s

∫ 1

0
Ps(sx)−1/2 dx = s

(
1 −

(
1
3
s2 − 7

40
s4 +

3
28

s6 + · · ·
)

︸ ︷︷ ︸
=:q(s)

)
.

Then
s

θ(s)
= (1 − q(s))−1,

and we deduce that

[s4]
(

s

θ(s)

)5

= 5[s4]q(s) + 15[s4]q(s)2 = −35
40

+
15
9

=
19
24

=⇒ 5![t5]ξ = 19.

This agrees with the value computed in Table 1. Similarly,

[s6]
(

s

θ(s)

)7

= 7[s6]q(s) +
7 · 8
2!

[s6]q(s)2 +
7 · 8 · 9

3!
[s6]q(s)3 =

107
180

which shows that 7![t7]ξ = 428. This too agrees with the value found in Table 1.

7. On the topological equivalence problem

We were not able to find a computationally satisfactory recurrence for the number of topological
equivalence classes of Morse functions but we could still describe some interesting combinatorial
structures on this set.

Assume that we are given a slicing a0 < a1 < · · · < a2n+2 of an excellent Morse function
f : S2 → R. For every i = 1, 2, . . . , 2n + 1 we set Xi := {f ! ai}. We find it convenient to encode
the topological transitions Xi → Xi+1 as a game of plates and olives.
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Figure 13. Black olives on white plates.

More precisely, every sublevel set Xi is homeomorphic to a collection 2-disks with a number
of holes in them. One can visualize a disk as a white plate, and a hole in a disk as a black olive
on that plate (see Figure 13). The four possible types of handle attachments are encoded by the
following four possible transformations of a distribution of identical plates and identical olives (on
those plates).

• H0. Add a new empty plate.
• H+

1 . Add a new olive on one of the existing plates.
• H−

1 . Remove an empty plate, or place all of the olives from one existing plate on another
existing plate, and then remove the emptied plate.

• H2. Remove one of the existing olives.

We refer to the above four transformations as (admissible) moves. A game of plates and olives
is a sequence of distributions of identical olives on identical plates, starting and ending with one
empty plate, and such that any two consecutive distributions are related by one of the above four
admissible moves. The length of a game is equal to the number of moves.

Arguing as in the proof of Lemma 4.1 we conclude that the number of topological equivalence
classes of Morse functions on S2 of order n is equal to the number of plates-and-olives games of
length 2n.

A distribution of plates and olives can be encoded by a partition π, that is, a nonincreasing
function

π : Z>0 → Z!0, π(i) # π(i + 1), for all i > 0,
such that π(i) = 0 for all i 2 0. The length of the partition π is by definition the cardinality of its
support. The weight of the partition is the integer

|π| =
∑

i>0

π(i).

If n = |π| we say that π is a partition of n. We denote by P the set of all partitions of nonnegative
weight and by Pn the set of partitions of weight n. The character 0 denotes the unique partition of
weight 0.

To a partition π of length ' there corresponds a collection of ' plates, π(1) − 1 olives on the
first plate, π(2) − 1 olives on the second plate etc. The weight of the partition is equal to the total
number of plates and olives. This correspondence between partitions and distributions of identical
plates and identical olives is obviously a bijection. For example, to the distribution of plates and
olives in Figure 13 it corresponds the partition 5, 3, 3, 1 of length 4 and weight 5 + 3 + 3 + 1 = 12.
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Note that the H0 move increases the length and the weight by one, the H+
1 move increases the

weight by one, but preserves the length, the H−
1 move decreases the weight and the length by one,

while the H2 move decreases the weight by one, but preserves the length.
We introduce a simplified set of moves, which we describe in the language of plates and olives.

• Type U (up) move. Add an empty plate, or an olive on an existing plate.
• Type D (down) move. Remove an olive, or an empty plate.
• Type X move. Place all of the olives from one existing, nonempty plate on another existing

plate, and then remove the emptied plate.

We can use these moves to produce a directed graph with vertex set P. The procedure is very
simple. For every move U,D,X

P + π → π′ ∈ P

draw an arrow directed from π to π′, labelled by the corresponding symbol, U,D,X. We denote by
P̂ this graph. Then the number of topological equivalence classes of Morse functions with 2n + 2
critical points is equal to the number of directed paths of length 2n from the partition 1 to itself.
Equivalently, it is the number of directed paths of length 2n + 2 from 0 to itself. We denote this
number by T2n+2.

Observe that if there exists an U -arrow π → π′, then there exists a D-arrow π′ → π in the
opposite direction. We say that a path in P is simple if it consists only of the U , D moves. Given
π,π′ ∈ P we write π ≺ π′ if there exists a path from π to π′ consisting only of U -moves. Clearly ≺
is a partial order on P.

On the set P we have another partial order !, known as the Young ordering (see [Sta99, ch. 7]),
where

π ! π′ ⇐⇒ |π| < |π′| and π(i) ! π′(i), for all i > 0.
It is easy to see that

π ≺ π′ ⇐⇒ π ! π′.
We can now relate the number of simple paths of length 2n + 2 from 0 and back, to walks in the
Young lattice starting and ending at 0. The number of such walks is (see [Sta88, (39)])

S2n+2 =
(2n + 2)!

2n+1(k + 1)!
= (2n + 1)!! = 1 · 3 · · · (2n + 1).

In particular, we deduce the following result.

Proposition 7.1. The number T2n+2 of topological equivalence classes of Morse functions with
2n + 2 critical points satisfies the lower bound

T2n+2 # (2n + 1)!!.

Remark 7.2. (a) Since the X-moves do not affect partitions which have only one part greater than
one we deduce that for n = 2 we have T6 = S6 = 15 so that there are exactly 15 topological
equivalence classes of Morse functions on S2 with six critical points.

(b) A simple diagram chasing coupled with the hook-length formula [Sta99, ch. 7] leads to the
equalities T8 = 107, T10 = 981. The diagram chasing however becomes increasingly unmanageable
for large n.
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