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1  S'-bundles over 3-manifolds: homological properties

Let (Y, g) denote a compact, oriented Riemann 3-manifold without boundary. Denote by
7m: X — Y a principal S'-bundle over Y, and by Z — Y the associated 2-disk bundle. Set

c:=c1(Z) € H*(Y,Z).

Denote by tz € H?(Z, X;7Z) the Thom class of Z — Y, by j the inclusion X < Z and by
¢ :Y — Z the natural inclusion. Using the Thom isomorphism

H*(Z) =% H*(Z,X:2), ¢ =("tz,
and the long exact cohomological sequence of the pair (Z, X) we obtain the Gysin sequence
T qHR2(y,z) S gR (Y, Z) T HYNX,Z) TS HE (Y, Z) 2

If ¢ is a torsion class we denote by ord(c) its order. Otherwise we set ord(c) = 0. The kernel
of the map Uc : HY(Y,Z) — H?(Y,Z) is ord(c) - Z so for k = 1 we obtain an isomorphism

HYX,Z) = 7*HY(Y,Z) ® ord(c)Z.
For k = 2 we obtain a short exact sequence
0 — H2(Y,Z)/(c) — HX(X,Z) — ker(Hl(Y, 7) % m3(y, Z)) 0.
The last group is free so the sequence is split. The image of the morphism
H\(Y,Z) =% H3(Y,Z)

is a subgroup of H3(Y,Z) = 7Z so it has the form nZ for some nonnegative integer n. We
set deg ¢ := n. Observe that

degc = 0 <= c is a torsion class <= ord(c) > 0.



For k = 3 we obtain a short exact sequence
0— Z/dege — H3(X,Z) = H*(Y,Z) — 0.
Homologically, the Thom isomorphism is described by
(' Hy(Z,X;7) — He_o(Y,Z), Ho(Z,X;Z)> 0+ 0N Y] € He_2(Z,7) = He_2(Y,Z).

We obtain the homological Gysin sequence

= Hy(X,Z) 25 Hy(2,2) 5 Hyo(Y.Z) ™ Hy (X, Z) — -

The morphism 7', also known as the tube map is described geometrically as follows. Rep-
resent 0 € Hp,(Y,Z) by an embedded oriented submanifold S. The total space of the
restriction of the S'-bundle X — Y to S is a (m + 1)-dimensional submanifold of X repre-
senting 7'o .

If we use the isomorphism 7, : He(Z,7Z) — He(Y,7Z) and we represent the Poincaré dual
of c € H2(Y,Z) by a link £ < Y then we can describe the Gysin sequence as

= Hy(X,Z) 5 Hy(V,Z) 25 Hy (V) = He 1(X,Z) — -

2 S'-bundles over 3-manifolds: geometric properties

Denote by d the exterior derivative on X. Denote by © € Q%(Y) the g-harmonic 2-form on
Y representing the first Chern class of the disk bundle Z — Y. We denote by d,, € Vect(X)
the infinitesimal generator of the S'-action on X

d .
(Opf)(x) := ﬁf(e‘t -x), Ve X.
We identify u(1)-the Lie algebra of U(1)-with iR. Now choose a wu(1)-valued connection
1-form iy € iQY(X) such that

* iA- Oy I
Op 1 =1, WG)—%d(lcp)@)ﬂ @——27rd50.

For every r > 0 we set ¢, := ry and define a metric g, on X by
A2 *
gr =¢r +7g.

With respect to this metric the fibers of 7 : X — Y have length 27r.
Choose an oriented orthonormal frame {ej, e2,e3} TY defined on an open subset U C Y
and we denote by {e!,e?,e3} the dual coframe. We denote by

0 —As A
Ty=| A3 0 -4 | € (U)®s0(3)
—Ay A0



the 1-form describing the Levi-Civita connection with respect to the frame {ej, e2, e3}. From
Cartan’s structural equations we deduce

et et
d| e | =TyA | e |. (2.1)
3 3

Set f0 = fOr) = o, f = 7¥e’, i = 1,2,3, so that {f°, f1, 2, f3} is a g,-orthonormal
co-frame. We denote by {fo = fo(r), fi1, fo, f3} the dual frame and by I', the connection
1-form describing the Levi-Civita connection V7" of the metric Jr- IA“T is also characterized
by Cartan’s structural equations

fe 1o
| . 1
d ;2 - Fr AN §2
f? f?
Using (2.1) and the equality dfo = CZQDT = —27mr® we deduce
fO —27r© I
Gl | AN AN f!
e | = asnfi—anp | TN p (22)
f? —Ag A f 4 AL A fP f?

We set
0= @2362 A€ + @3163 Ael + @1261 AN 62, @ij = —@ji,

and we write

=1 =1 =1
R B T i = - _ =6
" 0 =T cZ3 .51 0 B2 |0 AT T
— =3 =2 =3 0
r—=Q r—=1 7r—=2

=T

The bundle TX admits a g.-orthogonal decomposition TX = (fy) @ 7*T'Y and as such it
is equipped with a metric connection

V0= P29y, @1 VY.
The 1-form describing this connection with respect to the frame {f,} is I'o. Then
V=V, E

Using (2.2) we deduce

fo —2710® PEIAL BN+ BN = 210 = 00
=l 0 BN HENPEEANS = 0=
’ f? 0 PERASOH L EIA ST ERA S = 0= 02
2 0 PEEAFOH L EIAFL L ERA SR = 0=:v3
(2.3)



Set
_ — 1
PZ5 =5 7 W=D WIS, W, = —u
By
Arguing as in [1, §4.2.3] we deduce

1
= _ B vy
rEpy = 5( Gy T ¥ — ‘Paﬁ)
We deduce
vEhy = —mrOy, V1<i,j <3,

so that
P20 = Z O f = —nrf; 10.
J

Next, observe that for 1 <14, 7, k < 3 we have TE;,C = 0 so that
. . 1
T:;- = 7ajof = §\I/l]f = 7rO;; f

Hence
0 —f110 —f10 —f310

_ f110 0 O12f%  O13f° 0_

res f210 O f° 0 O3 f0 |’ ;=re.
f310 O30  O3f° 0

[1]

Consider the isometry
Lr : (TXagr) - (TX>.§1)7 a&p = racpa fl — fl'v i = 1>273'

Now set ~ A
V' :=LNV"L, relol]

This is a connection on T'X, compatible with the metric g;. Its torsion is nontrivial.
Lemma 2.1. With respect to the gi-orthonormal frame Oy, f1, f2, f3 we have decomposition
V' =V0+,E

that is, if V = 22:0 V®fa € Vect(X), fo =0, we have
3
V'V =V Y LBV
a,3=0

In particular, B K
lim V" = VY.
™\.0



Proof. For a > 0 and V € Vect(X) we have

LN L fo = LoV fo = LV fo + Ly Z

=LV fo+ Ly ( 0,) + Y BV
/=1
= VY fo =7 (V 1 fo @)5¢—>VVJ}Y as r N\, 0.
3
LT@Q/LT_IQO = Lr‘@;/f() = Lrﬁofo + 7r Z(VJ fid @)fz — @(‘)/&p as r \, 0.
=1

3

O
Recall (see [1, §4.1.5]) that the exterior derivative d : Q*(X) — Q*T1(X) can be de-
scribed as the composition

C=(A*T*X) Yo O™ (T*X © A*T*X) - C® (AT X), (2.4)

where € : T*X @ A*T*X — A*T'T* X denotes the exterior multiplication. Denote by d, the
operator obtained by replacing in (2.4) the connection V! with the connection V.

3 The ASD operator on S'-bundles over 3-manifolds

Denote % the Hodge #-operator on (X, §;) and by * the Hodge operator on Y. The ASD
operator on (X, g,) is the first order elliptic operator

ASD =V2d" & d* : Q' (X) — Q% (X) @ Q(X).

Set
E:=Ran*'T*Y 2 R(fO)n*T*Y,

We identify as above A'T*X and (A & A2)T*X with E as follows.
As in [2, Ex. 4.1.24] we have an §;-isometry

T"X —F = ]R(fo) ®TTYY, a— ao®an, ap:=fola, ag=a—agf’.
To produce an identification of (A? & A2)T*X with E we use the g;-isometry
V2fod AiT*X—>W*T*Y
If wis a 2-form on X, so that
w=f"An+0, 1,0=0

then
1
>T<w=f0/\>k9+>|<17, w+:§<fo/\(17—|—*9)+(0+*17)>



Vafotwt = ;i(nJr*@)

Via the above identifications we can regard the ASD operator with a differential operator
C*(E)—C™(E).

We will locally represent the sections of E as linear combinations

aof’ + a1 ft +asf? +asf?, 2=

=ay

3 3
do[ao, ap,az,as] = Z dag N JE Zajﬂ'*% A fF
B8=0 J=1

where 'S = — A3, T'$ = —Ay, T3 = —A; and F; = —Fg. Set for simplicity

3 3
dy =3 PV - Q0(X) - QFUX), doan = > (0pa;) f .

J=1 Jj=1

Observe that

dp(m*w) = m*dw, Yw € Q*(Y).

Then
do(aof® + a1 f* + aaf* + azf?) = fO A (=dgao + dap) + dran

\/§f0 | (\@cﬁ{) = (—CzHCLO + (%,G,H) + *CZH(J,H.

Next we look at the differential operator
do: QY(X) — QYX) = o A D, + dy.

Since 0, generates a l-parameter group of gi-isometries we deduce +4 0, = 0 so that
0y = —0, and
dS(aogD +apg) = —8¢ao + dyap.
If we define 3 ~
ASDy = dj & V2d] : C®(E)—C>®(E)
ap | | - —0pa0 + Jj‘anN
ag —dHa()—‘ra(paH—i-*dHaH

=10 ag 0 dy | [ ao
SR AP A AR

S [-10 0 —dy 1| [ ao

=8




Similarly, if W is metric vector bundle on Y and A is a metric connection on W then we

get a differential operator
da:Q* (W) — QL

We can pull back the bundle W and the connection A on X. Denote by V"4 the connection
on TX ® W obtained by twisting V° with 7* A and then similarly

3
dH,A = Zf] VAN @A’O.
j=1
We obtain twisted AS D-operators
ASDy, : Q1T W) — QW) @ Q2 (W).

and as above we deduce

ASD 4 = { 01 (1) ] 0y + _CZ;A *jgj ]
=84 ’
We set
Pa =0, 4+ 84.
Then

ker ASD 4o =ker Py =ker A3 A4, ind Ay =ind ASD 4.

The operators 0, and Sy commute so that
PP = 0%+ 8%
We deduce that if a = ag + ag € ker P4 then
dpa =10, Saa=0.
This shows that the pullback by 7 induces an isomorphism
7 i ker84 — ker P4.

A similar argument shows that if A; is a path of metric connections on W then the orien-
tation transport along the path P4, is equal to

(_1)SF(8At)
Now observe that the difference
Dj,:=ASDy, —ASDy

is a zeroth order operator which converges to zero in in any C*-norm. We denote by OTa,
the orientation transport along the path

l— ASDA,(l—t)r

7



which connects ASD 4, to ASD 4. Since
ind ASD 4, =ind ASD 4
we deduce that if ker§4 = 0 then ker ASD 4, = 0 for all 0 <r < 1. In particular
OTy, =0, VO<r <1

Suppose {A;; t € [0,1]} is a path of connections on W such that ker84, = 0 for j = 0, 1.
Then for every r > 0 we have

OT(ASDy, ) = OTy4, . (—1)FG400Ty .
For r sufficiently small we deduce
OT(ASDy,, ) = (—1)F®a)

Now it remains to see that the operator ASD 4, , is conjugate (via L, with the usual ASD-
operator defined using the metric g, of radius r and the twisting connection A;).
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