Solutions to Homework # 1

Hatcher, Chap. 0, Problem 4. Denote by ¢4 the inclusion map A — X. Consider a
homotopy F': X x I — X such that

Fo:=1x, Fi(X)CA, F(A) CA.
We claim that g := F} is a homotopy inverse of i4, i.e.
goia~1ly, isog~lx.
To prove the first part consider the homotopy ¢ = Fi—¢|4. Observe that
go=goia, g1 =1Fpoia=1a.

To prove the second part we consider the homotopy H;y = Fi—¢ : X — X. Observe that
Fy =i4 0 F) since F1(X) C A. On the other hand, Fy = 1x.
d

Hatcher, Chap. 0, Problem 5. Suppose F': X x I — X is a deformation retraction of X
onto a point xg. This means

Fy(xo) = wo, Vt, Fo=1x, F1(X)={xo}.

We want to prove a slightly stronger statement, namely, that for any neighborhood U of xg
there exists a smaller neighborhood V' C U of xg such that Fy(V) C U, Vt € I.

F'](U)

0 t 1

Figure 1: Constructing contractible neighborhoods of x.
Consider the pre-image of U via F,
FYU) = {(a:,t) € X xI;, Fz)e U}.

Note that C := {xg} x I C F~1(U) (see Figure 1).
For every t € I we can find a neighborhood U; of ¢y € X, and a neighborhood J; of t € I
such that (see Figure 1)
Uy x Jy C F7YU).



The set C is covered by the family of open sets {Ut X J and since C' is compact, we

can find t4,...,t, € I such that

Vrer
CC UUtk X th.
k

In particular, the set

V= U,
k

is an open neighborhood of xg, and V x I C F~1(U). This means F,(V) C U, Vt, i.e. we can
regard F; as a map from V to U, for any t.
If we denote by ¢y the inclusion V < U we deduce that the composition F} o iy defines
a homotopy
F:VxI—-U

between Fy = iy and F} = the constant map. In other words ¢y is null-homotopic. ]

Hatcher, Chap. 0, Problem 9. Suppose X is contractible and A <— X is a retract of X.
Choose a retraction r : X — A, and a contraction of X to a point which we can assume lies

in A
F:XxI—X, Fy=1x, Fi(z)=ag, Vz.
Consider the composition

G AxIT X x 1 Ex" A

This is a homotopy between the identity map 14 and the constant map A — {ap}.
(|

Hatcher, Chap. 0, Problem 14. We denote by ¢; the number of i-cells. In Figure 2 we
have depicted three cell decompositions of the 2-sphere. The first one has

60:1262, 61:0.

The second one has
co=n+1, cc=n, cg=1, n>0.

The last one has
co=n—+1, cs=n+k, c=k+1, k£>0.

Any combination of nonnegative integers cg, ¢1, co such that
co—c1+ca=2, cg,ca >0

belongs to one of the three cases depicted in Figure 2. O



Figure 2: Cell decompositions of the 2-sphere.



Solutions to Homework # 2
Hatcher, Chap. 0, Problem 16." Let
R = PR = {7= (hzr: IN: 2, =0, ¥n> N},
n>1

We define a topology on R* by declaring a set S C R* closed if and only if, Vn > 0, the
intersection S of with the finite dimensional subspace

R"™ = {(xk)k21; T = 0, vk > n},
is closed in the Euclidean topology of R™. For each & € R* set

e 1/2
k=0
S°° is homeomorphic to the “unit sphere” in R, §°° = {a_f eR>®; |Z| = 1}.
Observe that S is a deformation retract of R> \ {0} so it suffices to show that R*\ {0}
is contractible. Define F': R* x [0,1] — R* by

(Z,1) o Fy(T) = ((1 ~ #)zo, tro + (1 — O)ay, try + (1 — B, . )

Observe that Fi(R>*\ {0}) € R>\ {0}, Vt € [0,1].
Indeed, this is obviously the case for Fyy and Fj. Suppose t € (0,1), and F(Z) = 0. This
means

t
1170:0, xk_i_l:mxk, Vk:O,1,2,...7

so that ¥ = 0.
We have thus constructed a homotopy F': R\ {0} x I — R*>\ {0} between F = 1 and

Fy, = S, the shift map, (zg, 1,22, ") N (0, xg, x1,x2,...). It is convenient to write this
map as T — (0, Z).
Consider now the homotopy G : (0 & R>\ {0}) x I — R>\ {0} given by

If we first deform R>°\ {0} to 0 ® R* \ {0} following F}, and then to (1,0) € R* following
G, we obtain the desired contraction of R> \ {0} to a point. 0

FIGURE 1. This CW-complex deformation retracts to both the cylinder (yel-
low) and the Mdébius band (grey).

Hatcher, Chap. 0, Problem 17. (b) Such a CW complex is depicted in Figure 1. For
part (a) consider a continuous map f : S — S!. Fix a point a in S'. A cell decomposition

1See Example 1.B.3 in Hatcher’s book.



2

is depicted in Figure 2. It consists of two vertices a, f(a), three 1-cells eq, e1,t, and a single
2-cell C. The attaching map of C maps the right vertical side of C' onto S = e1/de; via f.

a t fa eo i
e
% c 1 f
.
a fla) ! t i

FIGURE 2. A cell decomposition of a map f : S* — S

O

Hatcher, Chap. 0, Problem 22. We investigate each connected component of the graph
separately so we may as well assume that the graph is connected. We distinguish two cases.

Case 1.The graph has vertices on the boundary of the half plane. We can deform the graph
inside the half-plane so that all its vertices lie on the boundary of the half-plane (see Figure 3).
More precisely, we achieve this by collapsing the edges which connect two different vertices,
and one of them is in the interior of the half-plane.

Rotating this collapsed graph we obtain a closed subset X of R? which is a finite union of
sets of the type R or S as illustrated in Figure 3. More precisely, when an edge connecting
different vertices is rotated, we obtain a region of type S which is a 2-sphere. When a loop
is rotated, we obtain a region of type R, which is a 2-sphere with a pair of points identified.

Two regions obtained by rotating two different edges will intersect in as many points as
the two edges. Thus, two regions of X can intersect in 0,1 or 2 points. Using the arguments
in Example 0.8 and 0.9 in Hatcher we deduce that X is a wedge of S'’s and S?’s.

FIGURE 3. Rotating a planar graph.
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Case 2. There are no vertices on the boundary. In this case the graph can be deformed inside
the half plane to a wedge of circles. By rotating this wedge we obtain a space homotopic to
collection of tori piled one on top another (see Figure 3). O

Hatcher, Chap. 0, Problem 23. Suppose A, B are contractible subcomplexes of X such

that X = AUB, and AN B is also contractible. Since B is contractible we deduce X/B ~ X.

The inclusion A <— X maps AN B into B, and thus defines an injective continuous map
j:AJANB — X/B~ X.

Since X = AU B, the above map is a bijection. Note also that j maps closed sets to closed
sets. From the properties of quotient topology we deduce that j is a homeomorphism.
Now observe that since A N B is contractible we deduce

A~A/ANB
so that A/A N B is contractible.



Sec. 1.1, Problem 5.  (a) = (b) Suppose we are given a map f : S' — X. We want
to prove that it extends to a map f : D? — X, given that f is homotopic to a constant.
Consider a homotopy

F:S'"xT— X, F(0)=xy€ X, F(1)= f(¥), Vo€ |0,27].
Identify D? with the set of complex numbers of norm < 1 and set
f(rew) = F(eig,r).

(b)= (c)Suppose f : (S',1) — (X, z0) is a loop at 2o € X we want to show that [f] =1 €
71 (X, xg). From (b) we deduce that there exists f : (D? 1) — (X, xq) such that the diagram
below is commutative.

(S',1) —— (D2,1)

We obtain the following commutative diagram of group morphisms.

T

m(S' 1) —— m(D? 1)

Since m1(D?,1) = {1} we deduce that i, is the trivial morphism so that f, = f, o4, must be
the trivial morphism as well.

The identity map 1g1 : (S*,1) — (S*,1) defines a loop on S' whose homotopy class is a
generator of 7 (S', 1), and we have f,([1s1]) is trivial in 71(X, z). This homotopy class is
precisely the homotopy class represented by the loop f.

(c) = (a). Obvious.
Sec. 1.1, Problem 9.  Assume the sets A; are open, bounded and connected.

Set
A= Al U AQ U Ag, ‘/z = vol (Az)

For every unit vector 77 € S? and every ¢ we denote by H, the half space determined by
the plane through ¢77, of normal vector 7, and situated on the same side of this plane as 7.
More precisely, if (e, ®) denotes the Euclidean inner product in R?, then

HY, = {f eR3 (Z,7) > t}.

1



Set
V5 (7, t) == vol (A3 N H,).

Observe that ¢ — V3" (7, t) is a continuous, non-increasing function such that

lim V5" (77, t) = 0, tlilin Vit (i, t) = Vs.

t—o00

The intermediate value theorem implies that the level set
1
Sa={te R V(1) = 5V}

is closed and bounded so it must be compact. ¢ — V¥ (7i, t) is non-increasing we deduce that
Sr must be a closed, bounded interval of the real line. Set

1

) = 5 (i (77) + Tonaa (7).

tmin(7) = min Sz, Tee (1) == max Sz, s(7
The numbers (17), and T'(77) have very intuitive meanings. Think of the family of hyper-
planes
H, = {7 c R (Z,i) =t}
as a hyperplane depending on time ¢, which moves while staying perpendicular to n. For
t < 0 the entire region A will be on the side of H; determined by 7, while for very large
t the region A3 will be on the other side of H;, determined by —7i. Thus there must exist
moments of time when H; divides A into regions of equal volume. t,,;,(7) is the first such
moment, and T},,,(77) is the last such moment. Observe that

Tmam(_ﬁ> = _tmzn(ﬁ)a tmzn(_ﬁ) = _Tmam(ﬁ)a S(_ﬁ) = _S(ﬁ)
Set
H+ — H+
i - 7i,s(7)"
Observe that Hi and H. are complementary half-spaces.
Lemma 1. S; consists of a single point so that t,,n (1) = T (1) = s(77).

Lemma 2. The map S* > @ — s(ii) € R is continuous

We will present the proofs of these lemmata after we have completed the proof of the
claim in problem 9.
Set
V) =vol (4;NHY), i=1,2,3.

We need to prove that there exists 7 € S? such that

1
Vi) = oV i=1,2,3.



Note that V3" (1) = V5 so we only need to find 7 such that

1

Define
frSt =R F() = (Vi) + Vo), V() ).

HY and H', = R? are complementary half spaces so that
VE(R) + VH(=7) = vol (4;), i=1,2,3. (1)

Lemma 2 implies that f is continuous, and using the Borsuk-Ulam theorem we deduce that
there exists 7y such that

The equality (1) now implies that

. R 1
ViF (o) + Vi (o) = 5 (vol (A1) + vol (4)),
and 1

‘/1+<ﬁ0> = §V01 (A1>

These equalities imply that V' (7ig) = $vol (As).
O
Proof of Lemma 1. Observe that since the set Az is compact we can find a sufficiently
large R > 0 such that
Az C BR(O)

Set for brevity
Ga(t) = Vit (7, ).

Observe that for each 7 we have
Gn(t) =0, Vt > R, Gz(t)=1V3, Vt<—R.
We claim that for every ¢t € Sy there exists ¢, > 0 such that Vh € (0,¢;) we have
Gi(t —h) > Ga(t) > Gz(t + h),
which shows that if S; were an interval then Gy could not have a constant value (V3/2) along

it.
Now observe that

Gi(t — h) — Ga(t) = vol (A3 N{T; t—h < (Z,7) < t})

3



Now observe that the region A3 N {#; t —h < (Z,7) < t} is open. Since Ajs is connected
we deduce that for every h sufficiently small it must be nonempty and thus it has positive
volume. The inequality G7(t) > G7(t + h) is proved in a similar fashion.

O]
Proof of Lemma 2. We continue to use the same notations as above.
Suppose 7y, — g as k — 00. Set Gy, := Gj,, G := Gy,. Note that
lim Gi(t) = Go(t), Vt € [-R, R] (2)

k—o0

On the other hand

G(t + h) — Gi(t)| = vol <A3 N{F t < (F7) <t+ h})

3
< vol (BR(O) N{Z; ¢ < (&) <t+ h}) < nR’h 9

so that the family of functions (Gy,) is equicontinuous. Using (2) we deduce from the Arzela-

Ascoli theorem that the sequence of function Gy, converges uniformly to Gy on [—R, R].
Observe that the sequence t,;,(7ix) lies [—R, R| so it has a convergent subsequence.

Choose such a subsequence 7; := tmm(ﬁkj) — to € [—R, R]. Since the sequence G, converges

uniformly to Gy and
G (13) = V3/2

we deduce!

Go(to) = V3/2,
so that ¢ty € S,;. Since Sy consists of a single point we deduce that for every convergent
subsequence of t,,;, (7)) we have

Jj—00

This proves the continuity of 7 +— $(77) = ¢, (7).

O]
Sec. 1.1, Problem 16. We argue by contradiction in each of the situations (a)-(f).
Suppose there exists a retraction r : X — A.

(a) In this case r, would induce a surjection from the trivial group 7 (R3, p) to the integers
7T1(517p)'

(b) In this case 7, would induce a surjection from the infinite cyclic group m1(S* x D?) to
the direct product of infinite cyclic groups m;(S* x S1). This is not possible since

rank m (S x S1) =2 > 1 = rank 7 (S' x D?).

IThis also follows directly form (3) without invoking the Arzela-Ascoli theorem.



¢) The inclusion 7 : A — X induces the trivial morphism i, : m(A) — 7 (X) . Hence
1., (a) = 7 014, is trivial. This is a contradiction since m;(A) is not trivial.

1
(d) Observe first that S! is a retract of S* v S! so that there exist surjections
(St v ST = m(SY).

In particular 7 (S* Vv S!) is nontrivial so that there cannot exist surjections m;(D? V D?) —»
7'('1(51 V Sl)

(e) Let p,q be two distinct points on dD?, and X = D?/{p,q}. Denote by z, the point in
X obtained by identifying p and ¢. The chord C' connecting p and ¢ defines a circle C' on
X. C is a deformation retract of X so that

12
1%

1 (X) 1 (C) 7.
To prove that A is not a retract of X it suffices to show that 7 (S! Vv S') is not a quotient
of Z. We argue? by contradiction.

Suppose 7 (S! vV S1) is a quotient of Z. Since there are surjections m(S* A S1) — Z
we deduce that 7 (S* vV S') must be isomorphic to Z. In particular there exists ezactly two

surjections

7T1(Sl A Sl) —» 7.

We now show that in fact there are infinitely many thus yielding a contraction. We denote
the two circles entering into S' Vv S' by C; and C,. Since C; is a deformation retract of
Cy N Cy we deduce that [C;] is an element of infinite order in 71 (Cy V Cs).

Denote by e,, : S — S' the map 6 — €. Fix homeomorphisms g; : C; — S' and define
fn : C1 — C5 by the composition

C’lL,SI

\\
\\\ en fn1=e€n0gi.
fn \\
Sl
Define r,, : C; V Cy — S7 by
Tn ‘Clz fn7 Tn ’02: g2 (4>

Observe that
re([C1]) = [en] € mi(SY), mu([Co]) = [ea] € mi(ST)

Using the isomorphism Z — m(S!), n +— [e,] we deduce that 7, # . if n # m.

2We can achieve this much faster invoking Seifert-vanKampen theorem.



(f) Observe first that m;(X) = Z, where the generator is the core circle C' of the Mébus
band. A is a circle so that m(A) = Z. In terms of these isomorphisms the morphism
ix : m(A) — m(X) induced by i : A < X has the description

ix(n[A]) = 2n[C].
Clearly there cannot exist any surjection f : m(X) — m(A) such that
[A] = [ oin([A]) = 2k[A], K[A] := £ ([C]).

O
Sec. 1.1, Problem 17.  We have already constructed these retraction in (4). Using the
notations there we define
Rn . 01 V 02 — 02

by R, := g5 ' or,. Since
R,, # Ry, Ym #m

we deduce that these retractions are pairwise non-homotopic.

Sec. 1.1, Problem 20. Fix a homotopy
F:XxI—X, fJe)=F(e,s)
such that fo = f; = 1x. Denote by g : I — X the loop
9(t) = fulwo).
Consider another loop at xg, h: (I,0I) — (X, zo) and form the map (see Figure 1).
H:I; x1I;— X, H(s,t)=F(h(s),1).

Set ug = g+ h, uy = h-g. A homotopy (u;) rel zy connecting ug to u; is depicted at the
bottom of Figure 1.



h
%
g
% h

Figure 1: g-h~h-g.



Sec. 1.2, Problem 8.

c T R2 C/N

Figure 1: A cell decomposition

The space in question has the cell decomposition depicted in Figure 1. It consists of one
0-cell o, three 1-cells a,b,c and two 2-cells, R; and R,. We deduce that the fundamental
group has the presentation

generators: a,b,c

relations Ry = aba™'b™' =1, Ry = aca™ ¢! = 1.



Sec. 1.2, Problem 10. We will first compute the fundamental group of the complement of
aUDb in the cylinder D? x I (see Figure 2), and then show that the loop defined by ¢ defines

a nontrivial element in this group.
/
b,
|
\
\

ANB

Theright hand rule

Figure 2: If you cannot untie it, cut it.

Cut the solid torus along the “slice” D? x {1/2} into two parts A and B as in Figure 2.
We will use the Seifert-vanKampen theorem for this decomposition of D? x I. We compute
the fundamental groups (A, pt), (B, pt), m (AN B, pt), where pt is a point situated on
the boundary ¢ of the slice.

e AN B is a homotopically equivalent to the wedge of four circles (see Figure 2), and thus
(AN B,pt) is a free group with four generators x,y, z,t depicted! in Figure 2.

"Warning: The order in which the elements z,y, z,t are depicted is rather subtle. You should keep in
mind that since the two arcs a and b link then the segment which connects the entrance and exit points of b

(z and z) must intersect the segment which connects the entrance and exit points of a (y and t); see Figure
2.



The intersection of a U b with A consists of three oriented arcs a4, by. Suppose g is one of

these arcs. We will denote by ¢, the loop oriented by the right hand rule going once around
the arc g. (The loop ¢, is depicted in Figure 2.)

Figure 3: Pancaking a sphere with three solid tori deleted

As shown in Figure 3 the complement of these arcs in A is homotopically equivalent to a
disk with three holes bounding the loops ¢,, and ¢,,. This three-hole disk is homotopically
equivalent to a wedge of three circles and we deduce that 7 (A, pt) is the free group with
generators (. , lp,. We deduce similarly that (B, pt) is the free group with generators ¢
and £, .

Denote by « the natural inclusion AN B — A and by 3 the natural inclusion ANB — B
(see Figure 2). We want to compute the induced morphisms «, and .. Upon inspecting



Figure 2 we deduce? the following equalities.

(

() = by, ( Bu(x) =Ly

a(y) = ;! Buy) = Loy
) (T)
a.(z) = 4! Be(2) = 4}

[ u(t) = Lo, L B.(t) = Lo,

Thus the fundamental group of the complement of a Ub in D? x [ is the group G defined by

generators: Lo, Loy, Uy s Loy,

relations: by, = b,_, 0,1 = (], Eb_ol = Eb_j, lo, = Lg,.

It follows that G is the free group with two generators ¢, (= €y, = ) and £, (=, =
o). Inspecting Figure 2 we deduce that the loop ¢ defines the element

o (zyzt) ™t = (Ebofgfﬁl;)léw)fl

= (601010 = [0, 0,17 # 1

2Be very cautions with the right hand rule.



Sec. 1.2, Problem 11. Consider the wedge of two circles
(X, 20) = (C1,21) V (Co,x9), z; € Cy,
and a continuous map f : (X, z9) — (X, zg). Consider the mapping torus of f
Ty o= X x 1/{(,0) ~ (f(x), )},

and the loop v : (1,0I) — (T}, (x0,0)), ~(s) = (zo,s). We denote by C' its image in T7.
Observe that C' is homeomorphic to a circle and the closed set A = X x {0} UC C T} is
homeomorphic to X V C' = X V S'. The complement 7} \ A is homeomorphic to

X\ {o} % (0,1) = (C1 \ ) % (0,1)U(Cy \ ) x (0,1).

.

h Vv
R1 RQ
.C
7
c/N R N f(G)
C

Figure 4: Attaching maps

In other words, the complement is the union of two open 2-cells Ry, R, and thus T}
is obtained from A by attaching two 2-cells. The attaching maps are depicted in Figure 4.
Thus the fundamental group of T has the presentation
generators: Cy, Cy, C'
relations R; = Cf,(C;))C1C; =1,i=1,2.



Sec. 1.2, Problem 14. We define a counterclockwise on each face using the outer normal
convention as in Milnor’s little book. For each face R of the cube we denote by R, the
opposite face, and by R the counterclockwise rotation by 90° of the face R. We denote by
F. T, S the front, top, and respectively side face of the cube as in Figure 5.

b
» < green
C |ed \T
gr d. ! red a
71
F ! S
|
a
\|/ d\/
|
bV | C\/
C
-
b
Q/ > a

O
The 1-skeleton
Figure 5: A 3-dimensional CW -complex

We make the identifications
Fe—sFO Te—nsTP 8« S°

In Figure 5 we labelled the objects to be identified by identical symbols or colors. We get a
CW complex with two 0-Ocellls (the green and red points), four 1-cells, a, b, ¢, d, three 2-cells,
F. T S, and one 3-cell, the cube itself. For fundamental group computations the 3-cell is
irrelevant.

The 1-skeleton is depicted in Figure 5 and by collapsing the contractible subcomplex d
to a point we deduce that it is homotopically equivalent to a wedge of three circles. In other
words the fundamental group of the 1-skeleton (with base point the red 0-cell) is the free
group with three generators

a=a-d, f=b"1-d y=c-d.
Attaching the three 2-cells has the effect of adding three relations

F=ac'd'b=ay'p =1, T=abcd=aB 'y=1, S=adb 'c'=apy =1 (1)

6



Thus the fundamental group is isomorphic to the group G with generators «, (3, and rela-
tions (1).
We deduce from the first relation

B=ay"'= alay )y

Using the third relation we deduce
y=af =o' =7"=afy.
Using the second and third relation we deduce that
a=q"18=9" =" =p5"

Hence
o’ = =9 =afy 2)
Observe that
0425 = 525 = ﬁ52 = ﬁoz2, and similarly 0427 = 7042

so that the o lies in the center of G. o? is an element of order 2, and the cyclic subgroup
(a?) it generates is a normal subgroup. Consider the quotient H := G/{a?). We deduce
that H has the presentation

H:<a,ﬁ,fy

042:62:72:cvﬂ7:1>,

which shows that H = Z /27 & 7Z/27Z. 1t follows that ord G = 8.
Denote by () the subgroup of nonzero quaternions generated by %,7,k. We have a
surjective morphism G' — @) given by

a1, feg, vk

Since ord (G) = ord (Q) we deduce that this must be an isomorphism.



Sec. 1.3, Problem 9. Suppose f : X — S!is a continuous map, and x5 € X. Then
f«m1(X, x0) is a finite subgroup of 71 (S, f(zo) = Z and thus it must be the trivial subgroup.
It follows that f has a lift f to the universal cover

s/
P exp

/
cf

4)31

Since R is contractible we deduce that f is nullhomotopic. Thus f = expo f' must be

nullhomotopic as well.
m

Sec. 1.3, Problem 18. Every normal cover of X has the form
. p
Y =X/G—- X

where G < 71 (X). In this case Aut (Y/X) = m(X)/G. We deduce that the cover X/G — X
is Abelian iff G contains all the commutators in m (X), i.e.

Go = [m(X),m(X)] < G.

Consider the cover.
Xop = X/Go 23 X.

Note that Aut (X,/X) = Ab (m(X)) acts freely and transitively on X,,. We deduce that
for any Abelian cover of the form X /G we have an isomorphism of covers

X/G = Xap/(G/Gy)

so that X, is a normal covering of X/G.
For example, when X = S' Vv S we have 7,(S*V S1) X Z*Z, Ab(Z*7Z) 2 Z x Z. The
universal Abelian cover of SV S! is homomorphic to the closed set in R?

Xap = {(:v,y) eER> z€Z or yGZ}.
The group Z? acts on this set by
(xay) : (man) = (I+may+n)

This action is even and the quotient is X. The case S'V StV S! can be analyzed in a similar

fashion.
O



Sec. 1.3, Problem 24. Suppose we are given a based G-covering
pO
(Xo, o) = (X1, 11) := (Xo,20)/G.

0
We want to classify the coverings (X, x) U (X1, z1) which interpolate between Xy and X7, i.e.

there exists a covering map (X, xo) 5 (X, z) such that the diagram below is commutative.

(X07 xl) 4(1» <X> 33)

(X, 21)

We will denote such coverings by (X, z; ¢, p) A morphism between two such covers (X', 2’; ¢/, p’)
and (X, z; ¢, p) is a pair of continuous maps f : (X, z) — (X, '), such that the diagram below
is commutative

(Xﬂ’xl) 4(1» (Xv CL’)

)

(X', 2") —L (X1, 71)

Suppose (X, x;q,p) is such an intermediate cover. Set F; := m(X;, x;), F = m (X, x).

0
. p . : .
Since Xy — X; is a G-covering we obtain a short exact sequence

0
1RSS5 ao1

Note that we also have a commutative diagram

pY
DPx

q
Fy ——

which can be completed to a commutative diagram

0
1 - Fy - - Fy a G 1
1FOI ;D*J MOP*I (F’q*7p*>
1 Ey < = F H = Fy/q.FF — 1




Consider another such commutative diagram,

(0]
1« Fo < i F1 a G 1
1x, 4 “°p'*] (F';q,.p,)
1 < F(]‘ qx F/ HIZIFo/q*F/4»1

We define a morphism (F; q.,p.) — (F';q.,p.) to be a group morphism ¢ : F' — F’ such
that the diagrams below are commutative
2 PR @

N
Fy

F

Fl

N
Fy

We denote by J the collection of intermediate coverings (Xo, xo) 5 (X, x) 5 (X1, 1), and
by D the collection of the diagrams of the type (F’; g., p«)-

We have constructed a map = : I — D which associates to a covering (X, x; ¢q, p) the di-
agram Z(X, x;q,p) :=(F; ¢, p«)€ D. Moreover if (X', 2;¢,p") € I, with associated diagram
(F';q.,p.), and f: (X, z;,q,p) — (X', 2;¢,p") is morphism of intermediate coverings, then
the group morphism f, : F' — F” induces a morphism of diagrams

E(f) 1 E(X,23q,p) = E(X', 25 ¢, D).
Note that for every coverings C,C’,C” € J, and every morphisms C' % C’ L, 0" we have

E(1c) = 150y, E(fog) = E(f) 2 E(g)-

Thus two coverings C, C" € I are isomorphic iff the corresponding diagrams are isomorphic,
=(0) =2 =Z(C).

This shows that we have an injective correspondence =] between the collection [J] of
isomorphisms classes of intermediate coverings and the collection [D] of isomorphism classes
of diagrams.

Conversely, given a diagram D € D

0
1 - Fo < - Fl a G 1
1FOI ,6[ MoﬁJ (F;a, )
1< B, —= F H:= Fy/aF — 1

we can form (Y, y;a,b) € J where
(Y7 y) = <X07 'TO)/M © B(H)a

3



a: (Xo,xo0) — (Y,y) is the natural projection, and b: (Y,y) € (X1, 1) is the map
Y,y)32-Hw— 2-G € (Xy1,11),

where for z € X, we have denoted by z - H (resp. z-G) the H-orbit (resp the G-orbit) of
z. Observe that the diagram Z(Y, y; a, b) associated to (Y, y;a,b) is isomorphic to the initial
diagram (F;«, 3). We thus have a bijection!

To complete the solution of the problem it suffices to notice that the isomorphism class of
the diagram (F; o, ) is uniquely determined by the subgroup po G(F) < G. Conversely, to
every subgroup H — (G we can associate the diagram

1 Fy —— F, ——> @ 1
1g (u1(H); p, inclusion)
0
1 - Fo —— p"NH) —> 1 1

'In more modern language, we have constructed two categories J and D, and an equivalence of categories
=2:J—-D.



Solutions to Homework # 3
Sec. 2.1, Problem 1. It is The Mobius band; see Figure 1.

FiGUuRE 1. The Mobius band

O

Sec. 2.1, Problem 2. For the problem with the Klein bottle the proof is contained in Figure
2, where we view the tetrahedron as the upper half-ball in R? by rotating the face [VyV; V5]
about [V V3] so that the angle between the two faces with common edge [V V5] increases until
it becomes 180°. We now see the Klein bottle sitting at the bottom of this upper half-ball.
All the other situations (the torus and RP?) are dealt with similarly.

Y%

FIGURE 2. A 3-dimensional A-complex which deformation retracts to the
Klein bottle.
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Sec. 2.1, Problem 4.

\Y

F1GURE 3. The homology of a parachute.

In this case we have
Cp(K)=0ifn >3 orn <0, and

CQ(K) = Z<J>7 CI(K) = Z<a7 b7 C>7 CO(K) = Z<V>
and the boundary operator is determined by the equalities
do=a+b—c, 0a=0b=030c=0V =0.

Then Zy(Cy(K)) = 0, Z1(Cu(K)) = Ci(K) = Z{a,b,c), Zy(Ci(K)) = Co(K). Hence
H2(|K|) = (0). Moreover

B1(Cy(K)) = spang(a + b — ¢) C Z{a, b, c)
so that
HP (| K[) = Z(a, b, ¢) /spang(a + b — c).
The images of a and b in H{*(|K|) define a basis of H{(|K|). Tt is clear that HE (| K|) = Z.
O

Sec. 2.1, Problem 5.

b
v > Y
U
c
a/\ J a
L

>
v

v b

FIGURE 4. The homology of the Klein bottle.

We have
Cy=27Z(U,L), Cy=Z{a,b,c), Cy=Z(v).
and
OU=a+b—c, OL=c+a—>b, da=0b=030c=09v=0.
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If follows that Zy = 0 = H{(|K|) = 0, and Hf* = Z. The first homology group has the
presentation

Z({U, L) - Z{a,b,c) - HE =0
where P is the 3 x 2 matrix

1 1
P= 1 -1
-1 1
Using the Maple procedure ismith we can diagonalize P over the integers
10
Dy:=|10 2| =APB,
00
where
1 0 0
1 -1
A=1]1 -1 0|, B:[ ]
0 1
0o 1 1

This means that by choosing the Z-basis u1 := A~ 'a, po := A™'b, u3 = A~'c in Z{a,b, c),
and the Z-basis e := BU, f := BL in Z{(U, L) we can represent the linear operator P as the
diagonal matrix Dy. We deduce that H IA has an equivalent presentation with three generators
W1, to, b3 and two relations
M1 = 0, 2”2 = 0.

Thus

H = Zo(ug) & Z{us).
Using the MAPLE procedure inverse we find that

1 0 0
A= 1 =10
-1 1 1

so that fs is given by the 2nd column of A~! and ps is given by the third column of A~!
pe=c—0b, uz=c.



Solutions to Homework # 4
Problem 6, §2.1 We begin by describing the equivalence classes of k-faces, k = 0,1,2. Let
Aj[vguivs)].

e The 0-faces. We have

[whor] ~ [v1v5] ~ [ugus]

so that

vy ~ v ~ ).

Denote by v” the equivalence class containing these vertices. Note that

[vgva] ~ [wgui] = vp ~ o°, vy ~ 0"

[vgvi] ~ [vivz] = v] ~ ",
Iterating this procedure we deduce that there exists a single equivalence class of vertices.
e The 1-faces. Denote by ey the equivalence class containing the edges of Ag. Then all the

edges [vivi] belong to this equivalence class. We also have another n-equivalence classes e¢;
containing the pair [vfjv}], [vjvs]. Observe that

[vévé] ~ei_1, i=1,--,n.

o The 2-faces. We have n + 1 equivalence classes of 2-faces, Ag, A1, -, A,.

e 0:(Cy — (1. We have
Cy =Z(Ao,- -, A1), C1=1Z{eg,e1, -+ ,en)
0Ny =€, OA; = [vhvl] + [vivd] — [vivh] = 2e; — ;1.
e 0:C1 — Cy. We have
Co = Z{v°)
and
de; =0, Vi=0,1,---,n.
e 79 and Hy. We have By = 0 and

Ty — {Zn:xiAi; Zn::cié)Ai — o}
1=0 1=0

Thus
T = 0
n —xp +22,_1 = 0
D il € Zp : Do
1=0 —Z9 + 221 = 0
-1+ Xo = 0

We deduce Z5 = 0 so that Hy = 0.
e 71 and Hi. We have Z1 = C7 and H; has the presentation

<60,€17"' en| 0=12e, — €1 ='“261—60=€0>.

Hence
€n—1=2€n, €h2=2¢, 1,-"-,e0=2e1 =0
1
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so that Hj is the cyclic group of order 2" generated by e,. By general arguments we have
Hy =17.
O

Sec. 2.1, Problem 7. Consider a regular tetrahedron As = [PyP)P»Ps], and fix two
opposite edges a = [PyP1], b = [P,P3]. Now glue the faces of this tetrahedron according to
the prescriptions
e Type (a) gluing: [PyPy P3| ~ [PyP Ps).
° Type (b) gluing: [P()PQP?)] ~ [P1P2P3].

To see that the space obtained by these identifications is homeomorphic to S® we cut the
tetrahedron with the plane passing through the midpoints of the edges of Ag different from
a and b (see Figure 2).

The solid B

- \1 Type (b) gluing

The solid A

|
) Type (b) gluing

/
Type (a) gluing |

N « Vv

FI1GURE 1. Gluing the faces of a tetrahedron to get a 3-sphere.

We get a solid A containing the edge a and a solid B containing the edge B. By performing
first the type (b) gluing and then the type (a) gluing on the solid B we obtain a solid torus.
Then performing first the type (a) gluing and next the type (b) gluing on the solid A we
obtain another solid torus. We obtain in this fashion the standard decomposition of S3 as
an union of two solid tori

53 = 9D = 9(D? x D?) = (0D?* x D*) U (D?* x 0D?).



Problem 8, §2.1 Hatcher. Denote by [ViV{ViV{] the i-th 3-simplex.

\§i+1

Y-y
\{i \/Zi\éi~\6i+1\éi+\éi+1

Ficure 2. Cyclic identifications of simplices

To describe the associated chain complex we need to understand the equivalence classes of
k-faces, k =0,1,2, 3.

e 0-faces. We deduce Voi ~ VoiJrl Vi mod n and we denote by Uy the equivalence class
containing Voi-

Similarly V{ ~ Vf“ and we denote by U; the corresponding equivalence class. Since
Vi~ VOH'1 we deduce Uy = Uj.

Now observe that Vg ~ 2”1 and we denote by Uy the corresponding equivalence class.
Similarly the vertices V3 determine a homology class Us and we deduce from Vy ~ V3i+1
that Uy = Us. Thus we have only two equivalence classes of vertices, Uy and Us. The vertices
Vi, Vi belong to Uy while the vertices Va, Vi belong to Us.

e 1-faces. The simplex T" has six 1-faces (edges) (see Figure 2).
A vertical edge v; = [VQZV?}] .
A horizontal edge h; = [VjV}]. o o
Two bottom edges: bottom-right br; = [V{'V3] and bottom-left bl; = [VjV5].
Two top edges: top-right tr; = [V}'V5] and top-left tl; = [VjV3].
Inspecting Figure 2 we deduce the following equivalence relations.
bT‘Z' ~ bli—Ha tTi ~ tl’i-‘rla Vi ~ Vi1, (01)

hz‘ ~ hz‘_;,_l, bli ~ tli—i—l, b?“z‘ ~ tri_H. (02)

We denote by v the equivalence class containing the vertical edges and by h the equivalence
class containing the horizontal edges.
Observe next that

bll ~ tli+1 ~ t’l“i, Vi
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so that bl; ~ tr; for all i. Denote by e; the equivalence class containing bl;. Observe that
bly ~tri ~e;, tl; ~eji—1, bri~ei1.
We thus have (n + 2) equivalence classes of edges v, h and e;, i =1,--- ,n.

e 2-faces. Each simplex 7" has four 2-faces

A bottom face B; = [ngvaf]
A top face 1; = [VOZVYV;]

A left face L; = [VEV3VA].

A right face R; = [V{VIV4].

We have the identifications

R; ~ Liy1, B; ~Tiy1.

We denote by B; the equivalence class of B;, by L; the equivalence class of L; and by R; the
equivalence class of R;. Observe that

R;=L;y1, Vi modn.
There are exactly 2n equivalence classes of 2-faces.
e 3-faces. There are exactly n three dimensional simplices T, ... T,
e The associated chain complez.
Co = Z{Uy,Us), C1 =Z(v,h,e;; 1<i<mn)
Cy =7Z(Bi,Rj; 1<i,j,k<n), C3=2(T" 1<i<n).
The boundary operators are defined as follows.
e 0:C3— ()

OT'=R; — Li+7— B =R — Ri_1 + Bi_1 — Bi.
e 0:Cy — (C;
OB; =h+br; —bly =h+ei11—e;, ORj=v—tr;+br; =v+e11 — e,
e 0:(C1 — (Cy
Oe; = Uy — Uy, Oh =0, 0v=0.
For every sequence of elements x = (z;);cz we define its "derivative” to be the sequence
Ajx = (241 — x;), 1 €L

Using this notation we can rewrite

o7 = A,_1R—A;_1B, 0B; =h+ Aje, OR; = v+ Ase.

e The groups of cycles.

Zy = Cy,
le{ah—l—bv—i—ZkieieCl; a,bk; € Z, Zki:o}

= spanz{v,h,Aie; 1<i< n}l.

Here we use the elementary fact that the subgroup of Z™ described by the condition 1 + -+ + x, = 0 is
a free Abelian group with basis ez — e1,e3 — €2, -+ ,en — en—1, where (e;) is the canonical basis of Z™



Suppose

c= ZI‘ZBZ + Zijj € Zy.
i J
0=0C = (Z :ri>h +(X yj)v + (@i + yi) Ave
7 7

)

Then

(use Abel’s trick?)

(S (Sn)e- Tate v

i J
We deduce
i J

The last condition implies that (z; +y;) is a constant « independent of i. Using the first two

conditions we deduce
0= Z(azz + i) = no
i
so that x; = —y;, for all ¢. This shows

Zy = {ZxZ(BZ — Ri); x; € 7, ZQ?Z = 0}.
i i
To find Z3 we proceed similarly. Suppose
c= Z x,-Ti € Zs.

1

Then
0=0c= inAi—l(R — B) = — Z(RZ — Bl)Azx = — Z(Aﬂ})Rz + Z(Azx)Bz

(2 3 K3

We deduce A;z = 0 for all ¢, i.e. x; is independent of i. We conclude that
Zy = {a:T; cel; T= ZT}
i
In particular we conclude Hs = Z.

o The groups of boundaries and the homology. We have
By = spang(Us — Ug) C Z{Uy, Ua).

We deduce
HO = Zo/BO = C()/B() = Z<U0, Ug)/spanZ(Ug — U()) =7.
By = spang(0B;,0R;; 1<1i,j <n)C Zh,v,e;; 1<1i<n).
Thus H; admits the presentation

H1:Zl/B1:<h,v,Aie; h=v=-7e,Y Aie=01<i<n)

2Abel’s trick is a discrete version of the integration-by-parts formula. More precisely if R is a commutative
ring, M is an R-module, (x;)icz is a sequence in R, (y;):cz is a sequence in M then we have
X X
(Aix) - yi = Tpy1yn — T1yo — 25 - (Aj-1y).

i=1 j=1
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Using the equality

i Aie =0
=1

we deduce nh = nv = 0. This shows H; = Z/nZ.
Using the fact that for every sequence x; € Z i € Z/nZ such that ), x; = 0 there exists a
sequence y; € Z, i € Z/nZ such that

Ty = Aiy, Vi.
Any element ¢ € Z5 has the form

C = sz(Rl — Bi),
i
where ), x; = 0. Choose y; as above such that z; = —A;y, Vi mod n. Then
c= 82 y; T
i

so that Zs = B, i.e. Hy = 0.

Problem 11, §2.1, Hatcher. Denote by i the canonical map A — X. Suppose r: A — X
is a retraction, i.e. r ot = 1 4. Then the morphisms induced in homology satisfy

7% Oly = lHn(A)'
This shows that i, is one-to-one since i, (u) = i4(v) implies

U =1y 00 (u) = 1(ix(u)) = r(ix(v)) = e 00k (v) = 0.



Solutions to Homework # 5

Problem 17, §2.1, Hatcher. Denote by A, a set consisting of n distinct points in X. The
long exact sequence of the triple (X, A,, Ap—1) is

o — Hp(Ap, Ap—1) — Hp(X, Ap—1) — Hp(X, Ap) — Hip1(Ap, A1) — -+
We deduce that for k& > 2 we have isomorphisms
Hi (X, Ap—1) — Hi(X, Ap).
Thus for every k > 2 and every n > 1 we have an isomorphism
Hiy(X) = Hy(X) = Hy(X,A)) — Hy(X, Ay). (5.1)

For k = 1 we have an exact sequence

0 — Hi(X, A1) — Hi(X, An) — Ho(An, An1) 2% Ho(X, Ayi)
Since Hy(A,, An—1) is a free Abelian group ker j,, is free Abelian and we have

Hi(X,A,) 2 Hi(X,A,_1) @ ker j,.

Assume X is a path connected CW-complex. Then X/A,_; is path connected so that
Hy(X,A,-1) = 0. Hence

Hi(X,An) =2 Hi(X,Ap—1) ® Ho(Ap, Ap—1)

=~ [1(X, Ap—1) ® Ho(An/An—1) = Hi(X, Ape1) © Z.
1

Hence
H(X,A) 2 H (X, A)ez" =2 H(X)pz L. (5.2)
Finally assuming the path connectivity of X as above we deduce
Ho(X, Ap) = Ho(X/A,) = 0. (5.3)

Now apply (5.1)-(5.3) using the information
Ho(S?) = Ho(S' x 81 = 7Z, Hy(S?) =0,
Hi(S' x 8Y) 2 Z x Z, Hy(S?) = Ho(S' x ST > 7.

A

b

FI1GURE 1. The cycle A is separating while B is non-separating

(b) Denote by 521 a collar around A and by B a collar around B. Then A deformation retracts
onto A while B deformation retracts onto B. Then

. excision

H*(X,A)%'H*(X,A) = H*(X*Avfi*A)'

ICan you visualize the isomorphisms in (5.2)?
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The space X — A has two connected components Y7, Y2 both homeomorphic to a torus with
a disk removed. Then A — A consists of two collars around the boundaries of Y so that

H,(X — A, A— A) = H,(Y1,0Y1) ® H.(Y,0Y3).

We now use the following simple observation. Suppose X is a surface, S is a finite set of
points in X, and DS is a set of disjoint disks centered at the points in S. By homotopy
invariance we have
H.(%,S) = H.(%, Dg).

Denote by ¥ g the manifold with boundary obtained by removing the disks Dg. Using excision
again we deduce

H*(Ea DS) = H*(257 aZS)
so that

H,.(¥g,0%¥g) = H(%,S) (5.4)

Note that the groups on the right hand side were computed in part (a).
We deduce that
H.(X,A) = H,(torus, pt) ® H.(torus, pt).
Observe that X — B is a torus with two disks removed so that

H*(X7 B) = H*(tOI'LlS,{ ptla th})

Problem 20, §2.1 (a) Consider the cone over X

CX =1xX/{0} x X.
We will regard X as a subspace of C'X via the inclusion

X2{1} x X - CX.
Then C'X is contractible and we deduce

H.(CX)=0.

(CX,X) is a good pair, and SX = CX/Xso that

H,(SX)~ H,(CX,X).
From the long exact sequence of the pair (CX, X) we deduce

-+ — Hp1(CX) = Hp1(CX, X) — Hi(X) — H(CX) — - -+ (5.5)
Thus for £ > 1 we have
Hy(CX) = Hp+1(CX) =0
so that
Hy1(SX) = Hp (CX, X) = H(X).
Using k£ = 0 in (5.5) we deduce
0— Hi(CX,X)— Ho(X) — Hy(CX)
The inclusion induced morphism Hy(X) — Hy(CX) is onto so that
Hi(SX) = H ) (CX, X) = ker(Ho(X) — Ho(CX)) = Ho(X).

(b) Denote by S, X the space obtained by attaching n-cones over X along their bases using
the tautological maps (see Figure 2).



FIGURE 2. Stacking-up several cones

We see a copy of X inside S, X. It has an open neighborhood U which deformation retracts
onto this copy of X and such that its complement is homeomorphic to a disjoint union of n
cones on X. The Mayer-Vietoris sequence of the decomposition

SpX = Sp1 X Ux CX
is
- = Hk(X) — Hk(Snle) D Hk(CX) — Hk(SnX) — Hk_l(X) —
For £k > 0 we have Hi(CX) = 0. Moreover, the inclusion induced morphism H(X) —

H},(S,_1X) is trivial since any cycle in X bounds inside? S,,_1X. Hence we get a short exact
sequence
0— Hk(Sn_lX) — Hk(SnX) - kal(X) — kal(sn_lX).
For k£ > 1 we have
Hy1(X) = ker(Hk,l(X) s Hj1(Sp_1 X) )

while for £ = 1 we have
Hy 1 (X) = ker(Hk_l(X) s Hy_1(Sp_1X) )
Thus, for every k > 1 we have the short exact sequence
0 — Hip(Sp 1X) — Hp(SpX) — Hp_1(X) — 0. (5.6)
Now observe that there exists a natural retraction
r:S,X — S, 1X.
To describe it consider first the obvious retraction from the disjoint union of n cones to the

disjoint union of (n — 1) cones

7:{177n}XCX_){177n_1}XCX7 f(]?Z)):{ E{’Z; g ;iz
Now observe that
f({lvun}XX):{lvan_l}XX

2The cone on z bounds z.
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and
SpX ={1,--- ,n}xCX/{1,--- ,n}xX, S X={1,--- ,n—1} xCX/{1,--- ,n—1} x X
so that 7 descends to a retraction
r: 95X —S5,1X.
This shows that the sequence (5.6) splits so that

inductively
Y LY >~

Hip(5,X) 2 Hyp(Sp1X) ® Hy_1(X) = o @;;}ﬁk,l()().

Problem 27, §2.1 (a) We have the following commutative diagram

Hpy1(A) Hpi1(X) —— Hny1(X, A) Hn(A) Hp(X)
e e Fx Fx T+
Hp+1(B) Hp1(Y) —— Hpa (Y, B) Hy(B) Hn(Y)

The rows are exact. The morphisms induced on absolute homology are isomorphisms so the
five lemma implies that the middle vertical morphism between relative homology groups is
an isomorphism as well.

(b) We argue by contradiction. Suppose there exists a map g : (D", D"\ 0) — (D",0D")
such that go f is homotopic as maps of pairs with 1(pn gpn). If z € D"\ 0 then, g(tx) € 0D,
vt € (0,1]. We deduce that

g(0) = %%g(tx) € oD".

Hence g(D™) C 9D™ so we can regard g as a map D" — 9dD™. Note that g |sprn=~ lgpn.
Equivalently, if we denote by ¢ the natural inclusion D™ < D" then we have
g 01~ ]laD”a
so that for every k > 0 we get a commutative diagram
7

gx=0
La, (oDm)

H,(dD™)

In particular for k = n — 1 we have H,_;(0D") = Z and we reached a contradiction.

Problem 28, §2.1 The cone on the 1-skeleton of Aj is depicted in Figure 3.

Before we proceed with the proof let us introduce a bit of terminology. The cone X is
linearly embedded in R? so that it is equipped with a metric induced by the Euclidean metric.
For every point zg € X we set

B.(zg) :={z € X; |z —xo| <r}.



FIGURE 3. A cone over the 1-skeleton of a tetrahedron.

By excising X — B,(x¢), 0 < r < 1 we deduce
H (X, X —x0) = H.(By(0), Br(z0) — o).
Now observe that B,(z() deformation retracts onto L,(xg), the link of zy in X,
Ly(z0) ={z € X; |z —xo| =

Hence
Ho (X, X —x0) = Hu(B, (l‘o) Ly (x9)) =
We now discuss separately various cases (see Figure 4).

w (CN

@

FIGURE 4. The links of various points on X.

H.(B;(0)/L(z0)).

(i) xq is in the interior of a 2-face. In this case B,(xq)/Ly(x¢) = S? for all r < 1 so that
H,.(X,X —x0) = H.(S?).

(ii)xo is inside one of the edges [V;V;]. In this case By(x¢) is the upper half-disk, and the link
is the upper half-circle.

H (X, X — ) 20.
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(iii) zo is inside one of the edges [OV;]. In this case B, consists of three half-disks glued along
their diameters. The link consists of three arcs with identical initial points and final points.
Then B, (x0)/L, (1) ~ S% v 52 so that

H.(X,X —x) = H,(S?V S?) = H,(S?) @& H,(5?).

(iv) o is one of the vertices V;. In this case B, consists of three circular sectors with a com-
mon edge. The link is the wedge of three arcs. In this case B, /L, is contractible so that

H. (X, X —20) 20

(v) 2o = O. In this case B, = X and the link coincides with the 1-skeleton of As. We denote
this 1-skeleton by Y. Using the long exact sequence of the pair (X,Y") and the contractibility
of X we obtain isomorphisms
~ T ~ 0 if n#2
H,(X,)Y)=2H,1(Y) = { 73 i o
We deduce that the boundary points are the points in (ii) and (iv). These are precisely the

points situated on Y.
To understand the invariant sets of a homeomorphism f of X note first that

Ho (X, X —2) 2 H,(X, X — f(z)).

In particular any homeomorphism of X induces by restriction a homeomorphism of Y. By
analyzing in a similar fashion the various local homology groups H,(Y,Y —y) we deduce that
any homeomorphism of Y maps vertices to vertices so it must permute them.

Any homeomorphism f of X maps the vertex O to itself. Also, it maps any point on one of
the edges [OV;] to a point on an edge [OVj]. Thus any homeomorphism permutes the edges
[OV;]. We deduce that the nonempty subsets of X left invariant by all the homeomorphisms
of X are obtained from the following sets

{0}7 {%5V17‘/27‘/3}5 Y7 [O%]UU[O%], X

via the basic set theoretic operations U, N, \.



Homework

1. We denote by Zlt] the ring of polynomials with integer coefficients in one variable ¢. If
A, B € Z[t], we say that A dominates B, and we write this A = B, if there exists a polynomial
Q € Zt], with nonnegative coefficients such that

A(t) = B(t) + (1 +t)Q(1).
(a) Show that if Ay = By, A1 = By and C = 0 then
Ay + Ay = By + By and CAy = CBy.

(b) Suppose A(t) = ag + ait + - - - ayt™ € Z[t], B = by + b1t + - - - + by, t™. Show that A = B
if and only if, for every k > 0 we have

> (—Dia; > Y (—1)'by, (M>)

i+j=k i+j=k
D (Daj =3 (=1, (M=)
Jj=0 k>0

(c) We define a graded Abelian group to be a sequence of Abelian groups C, := (Cp,)n>0. We
say that C, is of finite type if
Z rank C,, < oo.
n>0
The Poincaré polynomial of a graded group C, of finite type is defined as
Po(t) = Z(rank Cp)t".
n>0
The FEuler characteristic of C4 is the integer
X(Co) = Po(—1) = > (—1)"rank C,,.
n>0
A short exact sequence of graded groups (A.), (B.), (Cs) is a sequence of short exact se-
quences
0—A,—B,—C,—0, n>0.
Prove that if 0 — Ay — Be — C¢ — 0 is a short exact sequence of graded Abelian groups of
finite type, then
Pa(t) = Pa(t) + Po(t). 2)
(d)(Morse inequalities. Part 1) Suppose

1o} 0 0 0
O, —>Chg = —=C;1 =>Cy—0

is a chain complex such that the grade group C, is of finite type. We denote by H,, the n-th
homology group of this complex and we form the corresponding graded group He = (Hp,)n>0-
Show that H, is of finite type and

Po(t) = Pg(t) and x(Ce) = x(He).

(e) (Morse inequalities. Part 2) Suppose we are given three finite type graded groups A, Be
and Cy which are part of a long exact sequence

*)Akinﬁ)Ck%Ak_lﬂHA()—)B()HCO—)O

Show that
Pa(t) + Po(t) = Pp(t),
1



and

X(Be) = x(A4s) + x(Cs).
Proof. (a) We have

Ag(t) = Bo(t) + (1 +)Qo(t), A1(t) = Bi(t) + (1 +)Q1(?)
so that
Ao(t) + A1 (t) = Bo(t) + Bi(t) + (1 +1)(Qo(t) + Q1(t) ).

Note that if Qg and Q1 have nonnegative integral coeflicients, so does Qo + Q1. Next observe
that

CAy=CBy+ (1+1)CQ.
If C' and @ have nonnegative integral coefficients, so does C'Q.

(b) Use the identity
(L4871 =) (~1)Ft

k>0
Then
A-B=(1+t)Q <= Q)= (1+t)'(A®t) - B(@))
= qn = Z (—1)*(aj — b;), where Q = ant".
i+j=n n
Hence
>0, Vn= > (~Diag; > Y (-1);.
i+j=n i+j=n
This proves (M>). The equality (M=) is another way of writing the equality
A(-1) = B(-1).

(c) Set a, = rank A,,, b, = rank By, ¢,, = rank C,,. If
0—-A4,—B,—C,—0, n>0.
is a short exact sequence then
b, = ap + ¢, = Z bt = Zant” + cht”.,
n>0 n>0 n>0
which is exactly (2).
(d) Observe that we have short exact sequences

0— Zp(C) = Cn 2 B,_1(C) — 0, (3)
0 — B,(C) — Z,(C) — H,(C) — 0. (4)
We set
zp = rank Z,(C), b, =rank B,(C), h, =rank H,(C), ¢, =rankC,.
From (3) we deduce
Cn = 2Zp +bn_1, Yn >0,
where we have B_1(C) = 0. Hence
Po(t) = Pz(t) + tPp(1).
On the other hand, the sequence (4) implies
Py, = Pg + Py.



Hence
PC:PH+(1+75)PB — Po = Py.
The equality x(C) = x(H) follows from (M-).

(e) Set
ap := rank Ay, by :=rank By, c¢; = rankC},
ap = rankkerig, [, = rankker ji, ~r = rankker 0.
Then
ap = ag+ B
b = Bet+m = ap—bptop=apt+ag
Ck = Ykt Qg1
== Z(ak — b + Ck)tk = Ztk(ak + ap_1)
k k

—> Pa,(t) = Pp.(t) + Po,(t) = (1+1)Q(t), Q) =) apt*.
k

Hatcher, §2.1, Problem 14. We will use the identification
7, = {i/n cQ/Zi e Z}.
(a) Consider the injection
J 1Ty Ty ® Lo, 1/4 (1/4,1/2).

Then (1/8,0) is an element of order 4 in (Zg & Z3)/j(Z4) so that we have a short exact
sequence
0— Zy — Zg DLy — Ly — O.

(b) Suppose we have a short exact sequence
0= Zym 5 AD Ly — 0. (5)

Then A is an Abelian group of order p™*™ so that it has a direct sum decomposition

k
A%@Zpui, VI > Ug > >, Zyi:m—i—n. (6)
i=1 i
On the other hand A must have an element of order p”, and an element of order > p™ so
that 11 > max(m,n).
Fix an element a; € A which projects onto a generator of Zy,», and denote by ag € A the
image of a generator in Z,=. Then A is generated by ag and a; so the number %k of summands
in (6) is at most 2. Hence

A= Aypi=Lpe @ Lys, a>max(m,n,), a+B=m+n. (7)

We claim that any group A, g as in (7) fits in an exact sequence of the type (5). To prove
this we need to find an inclusion j : Zy» — A, g such that the group A, 3/j(Zym) has an
element of order p".

Observe first that § < min(m,n) because

B =(m+n)—a=min(m,n) + (max(m,n) — a) < min(m,n).

<0
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Consider the inclusion
me - Aaﬂ = Zp‘* ® Zpﬁu 1/pm = (1/pm’ 1/p5)
Then the element g = (1/p®,0) has order p" in the quotient A, g/j(Zym ).

To prove this observe first that the order of g is a power p” of p, v < n. Since p¥g € j(Zym),
there exists x € Z, 0 < x < p', such that

p’g=1/p*",0)=z-(1/p™, 1/pﬁ) mod Z.

Hence
P, p* (" — ap®).
We can now write = z1p?, so that
P (@ p™ P — p ).

Since a + 3 = m + n we deduce p" T [p" " so that n < v.

(c)* Consider a short exact sequence

0—>Z1>A£>Zn—>0.

We will construct a group morphism y : Z,, — Q/Z as follows.!
For every = € Z,, there exists & € A such that g(2) = x. Then g(n - &) = nx = 0 so that

n-i € kerg = f(Z).
Hence there exists k € Z such that
fk)y=n-z.
Set?
k
x(x) :==— mod Z.
n

The definition of x(x) is independent of the choice &. Indeed if #’ € A is a different element
of A such that g(#') = x then & — &’ € ker g so there exists s € Z such that

& —a' = f(s).
Then

so that % = % mod Z.
Now define a map

-1
hid—Qez, am (L0 o).
n
Observe that h is injective. Its image consists of pairs (¢, z) € Q @ Z,, such that
q=x(x) mod Z.

We deduce that A is isomorphic to Z @ Im (x). The image of x is a cyclic group whose order
is a divisor of n.
Conversely,given a group morphism A : Z,, — Q/Z, we denote by C C Q/Z its image, and
we form the group
Ay ={(q,¢) €EQx Zp; q=X\c) modZ}.

Observe that A 2 Z @ C, and C), is a finite cyclic group whose order is a divisor of n.

1A group morphism G — Q/Z is called a character of the group.
2Less rigorously x(z) = M mod Z.



We have a natural injection
fiZ Q@0 A,
a natural surjection
Ay = Q X Zp — L,
and the sequence
0—>7Z— Ay —Zy,—0
is exact.
Given any divisor m of n, we consider
Am  ZLp — Q/Z, k modZHﬁ mod Z.
n m
Its image is a cyclic group of order m. We have thus shown that there exists a short exact
sequences
0—-%Z—A—%Z,—0
if and only if A =2 Z @ Zy,, m|n.



Homework # 7

Definition 7.1. A space X is said to be of finite type if it satisfies the following conditions.
(a) 3N > 0 such that H,(X) =0, Vn > N.
(b) rank Hi(X) < oo, Vk > 0. 0

1. (a) Suppose A, B are open subsets of the space X such that X = AU B. Assume A, B
and AN B are of finite type. Prove that X is of finite type and
X(X) =x(A4) + x(B) — x(AN B).
(b) Suppose X is a space of finite type. Prove that
x(ST x X) =0.

(c) Suppose we are given a structure of finite A-complex on a space X. We denote by ¢, the
number of equivalence classes of k-faces. Prove that

X(X)ZCO—Cl—l-Cz—....

(d) Let us define a graph to be a connected, 1-dimensional, finite A-complex. (A graph is
allowed to have loops, i.e., edges originating and ending at the same vertex, see Figure 1.)

FIGURE 1. A graph with loops.

Suppose G is a graph with vertex set V. For simplicity, we assume that it is embedded
in the Euclidean space R3. We denote by co(G) the number of vertices, and by c1(G) the
number of edges, and by x(G) the Euler characteristic of G. We set

l(v) :=rank Hi(G,G \ {v}), d(v) =1+ £(v).
Prove that

a(@) =3 Y dw), x(G) =5 3 (1-4w)).

veV veV

Proof. (a) From the Mayer-Vietoris sequence

. — Ho(ANB) — Hy(A) ® Hy(B) — Hy(X) 2 Hy 1(ANB) — ---
1
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that X is of finite type. Using part (e) of Problem 1 in Homework # 6 for the above long
exact sequence we deduce

X(A) + x(B) = x(AN B) + x(X).
(b) View S! as the round circle in the plane
St={(z,y) eR} 2*+y*=1}.
Denote by py the North pole py = (0,1), and by p_ the South pole, p— = (0,—1). We set

Ap = (S"\ {ps}) x X.
Then A4 are open subsets of S' x X and S' x A, U A_. Each of them is homeomorphic to
(0,1) x X, and thus homotopic with X and therefore
X(A+) = x(X).
The overlap
Ag=ArNA- = (S"\{p4,p-}) x X,

has two connected components, each homeomorphic to (0,1) x X, and thus homotopic with
X so that

X(Ao) = 2x(X).
From part (a) we deduce that
X(X) = x(A4) +x(4-) = x(4o) = 0.
(¢) The homology of X can be computed using the A-complex structure. Thus, the homology
groups Hy(X) are the homology groups of a chain complex

s A S A (X)) S

where rank A, (X) = ¢,. The desired conclusion now follows from part (d) of Problem 1 in
Homework # 6.

(d) For every v € V we denote by B,(v) the closed ball of radius r centered at z, and we
set

Gr(v) == By (v)NG.
For r sufficiently small G, (x) is contractible. We assume r is such. Using excision, we deduce
Ho(G, G\ {v}) = Ho(Gr(v), Gr(2) \ {v}).

We set Gl.(z) := Gy(v) \ {z}. Using the long exact sequence of the pair (G,(v),G.(v)) we
obtain the exact sequence

0= Hy(G,(2)) = Hi(Gr(v),Gp(x)) — Ho( Gy (v)) > Ho(Gy(v))

1%

Z.

Hence
{(x) = rank ker iy = rank Hy(G..(v) ) — 1 = d(v) = rank Hy(G..(x) ).
In other words, d(v) is the number of components of G..(v), when r is very small. Equivalently,
d(v) is the number of edges originating /and/or ending at v, where each loop is to be counted
twice. This is called the degree of the vertex x. For example, the degree of the top vertex
of the graph depicted in Figure 1 is 8, because there are 3 loops and 2 regular edges at that
vertex. The equality
> d(v) =2c1(G),

veV



3

is now clear, because in the above sum each edge is counted twice. From part (c) we deduce

X(G) = co(G) — (@)

so that
NEOEDIEED SOED SEEED WIEIO)
veV veV veV veV
:%Z(l—kﬁ(v)).
veV

O

2. Consider a connected planar graph G situated in a half plane H, such that the boundary
of the half plane intersects G in a nonempty set of vertices. Denote by v the number of such
vertices, and by xg the Euler characteristic of G. Let S be the space obtained by rotating
G about the y axis.

(a) Compute the Betti numbers of S.

(b) Determine these Betti numbers in the special case when G is the graph depicted in Figure
2, where the red dotted line is the boundary of the half plane.

=

3
~

~
—-_——— - - ———— - — - - -

(=)

FIGURE 2. Rotating a planar graph.

Proof. For every graph I', we denote by ¢o(I") (respectively (ci(I')) the number of vertices
(respectively edges) of T.

As in Homework # 2, we can deform the graph G inside the halfplane, by collapsing one
by one the edges which have at least one vertex not situated on the y-axis. We obtain a new
planar graph Gy, that is homotopic to G, and has exactly v vertices, all situated on the axis
of rotation. From the equality

xe = x(Go),
we deduce
xa = co(Go) — c1(Go) = v — c1(Go) = c1(Go) = v — xa-
Denote by Sy the space obtained by rotating Gy about the y-axis. Then Sy is homotopic
with S, and the result you proved in Homework 2 shows that Sy is a wedge of a number n;
circles, and a number ng of spheres. Using Corollary 2.25 of your textbook we deduce



v

TV
ni n2

so that
bo(So) =1, b1(S0) = n1, b2(So) = n2, b(So) =0, Vk > 2,
and its Euler characteristic satisfies
X(S) = x(S0) =1 —mn1 +no.
The 2-spheres which appear in the above wedge decomposition of Sy are in a bijective corre-
spondence with the edges of G so that
bQ(So) = N9 = Cl(Go) =V —XG-

For every vertex v of Gy we denote by Sj the intersection of Sy with a tiny open ball centered
at v. Note that S§ is contractible. Define

A= ]S, B=5\V.
veV
Then A, B are open subsets of Sy and

So =AU B.
From part (a) of Problem 1 we deduce

X(S0) = x(A) + x(B) = x(AN B),
provided that the spaces A, B and AN B are of finite type. A is the disjoint union of v
contractible sets so that A is of finite type and x(A) = v. B is the disjoint union of ¢;(Gy)
cylinders, one cylinder for each edge of Gy. In particular, B is of finite type and x(B) = 0.
The overlap is the disjoint union of punctured disks, and each of them has finite type and
trivial Euler characteristic. Hence
X(So) = v.
We deduce

I/:1—n1+n2=1—n1+V—XG:>b1(So)=n1=1—XG:b1(G>.

(b) Observe that the graph in Figure 1 has (m + 2)(n + 1) vertices because there are n + 1
horizontal lines and m + 2 vertices on each of them.

To count the edges, observe that there are (m + 1)(n + 1) horizontal edges and n(m + 1)
vertical ones. Hence

xc=m+2)(n+1)—(m+1)(n+1)—nm+1)=n+1—n(m+1)=1—mn.

Since bo(G) = 1, we deduce b;(G) = mn. By rotating G about the vertical axis we obtain a
space which is a wedge of mn copies of S' and n 4+ mn copies of S2. g



Solutions to Homework # 8

Problem 3, §2.2. Since deg f = 0 # (—1)"*! we deduce that f must have a fixed point,
i.e. there exists x € S™ such that f(z) = =.
Let g = (—1) o f. Then degg = deg(—1) - deg f = 0 so that g must have a fixed point y.
Thus f(y) = —y.
g

Problem 4, §2.2. Consider a continuous function f : [0, 1] — R such that

f0)=f(1)=0, f(1/2) =2m.
The map
I:=1[0,1] — S', t— exp(if(t))
induces a continuous surjective map g : /01 = S' — S'. The map f is a lift at 0 € R of g in

the universal cover R 25 S, Since f starts and ends at the same point we deduce that g is
homotopically trivial so that degg = 0. We have thus constructed a surjection g : S* — S*
of degree zero. Suppose inductively that f : S™ — S™ is a degree 0 surjection. Then the
suspension of f is a degree 0 surjection

Sf 9t — gt

Problem 7, §2.2. Assume F is an n-dimensional real Euclidean space with inner product
(e,8). Suppose T': E — E is a linear automorphism, and set

S =TT".
S is selfadjoint, and thus we can find an orthonormal basis (e1, - - - , e,,) of F which diagonalizes
it,
S =diag (A1, -+, An), Ai>0.
Let

D(t) = diag (A%, A7),
so that D(0) = 1 and D(1)? = S~1. Now define
T, =D)T, S =TI} = DiSD;.
Observe that sign det T; = sign det T, Vt, and
So =S, S1=1,

so that 77 is homotopic through automorphisms with an orthogonal operator. Thus, we can
assume from the very beginning that 7" is orthogonal.

For each 6 € [0, 2] denote by Ry : C — C the counterclockwise rotation by . Using the
Jordan normal form of an orthogonal matrix we can find an orthogonal decomposition

ExUasVeCmh
such that 7" has the form
T=1po(-1y)® @Rgi.
i=1

1
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There exists a homotopy
m
T, =1y & (-1v) & P R,
i=1

such that
To=1yp® (—1y)® lcm, Th =T, detTy = detT;.

Thus T is homotopic to a product of reflections and the claim in the problem is true for such
automorphisms.
O

Problem 8, §2.2. It is convenient to identify S? with CP!. As such, its covered by two
coordinate charts,

Us = S?\ {South Pole} 2 C, U, = S*\ {North Pole} = C.

We denote by = : Us — C the complex coordinate on Ug and by y : U, — C the complex
coordinate on U,,. On the overlap Us; N U,, we have the equality x = %
We think of a polynomial as a function f: Us; — C,

d
Fp) =) a?, of =az(p).
=0

Here we think of Uy as a coordinate chart in a copy of of CP! which we denote by CL,,, ce-

We think of the target space C of f as the coordinate chart Vi of another copy of CP!
which we denote by C]P’gmget. We denote the local coordinates on CP%arget by u on Vi, and v
on V,,. Thus we regard f : Us; — V; as a function

u = Zaj:cj. (0.1)
J

We identify the South Pole on CP! with the point at co on U, * — oo. Using the

source
equality y = % we see that the point at oo has coordinate y = 0. Similarly, the point at
infinity on CIP’%Mget (u — o00) has coordinate v = 0.
Using (0.1) we deduce that lim, ., u(z) = oco. Now chage the coordinates in both the

source and target space, = 1/y, v = 1/u. Hence

1 1 1 y?

v(y) = u(x) = u(1/y) Z;'L:O ajy—j - Z?:O ajyd—j.

1

This shows that the polynomial f extends as a smooth map CPy,,,,... — (CIP’thget.

Suppose 71, - - - , Ty, are the roots of f with multiplicities p1,- -+, ptm, Y5 itk = d.
Fix a small disk A = {|u| < €} centered at the point u =0 € V; C (CIP’tlwget. We can find
small pairwise disjoint disks Dy, --- , D, centered at r1,--- ,r, € U, C CPL, _ such that

f(Dp) C A, V1<k<m.

More explicitly Dy := {|x — r| < dx}, where 0y, is a very small positive number. On Dj, the
polynomial f has the description

u(z) = (z —rp)"* Qr(x), Qr(x) #0, Vo € Dy.



Since Q; < 0 on Dj, we can find a holomorphic function Ly : Dy, — C such that

Qr = exp(Ly). (ExpliCitely, Li(z) = log(Qr(r%)) + /z(ko/Qk))

Tk

For ¢ € [0, 1] we set

Q% =exp(tLy), fi = (z—rp)"*QL.
Observe that

|Qkl = |Qxl*

Set

My, = sup{|Qr(z)|; |z —ri| < di}.
If we choose §j, sufficiently small then

((z — 1) QL (z)| < M|z — r|" < MESI* <&, Y|z —ry| < .
Equivalently, this means that if §; is sufficiently small then
Fe(Dry D\ {ri}) € (A, A\ {0}).
This implies that f = f!: (Dy, Dy \ 7%) — (A, A\ 0) is homotopic to
O+ (Di, D \ i) — (A, AN 0), () = (& — i)™,

as maps of pairs. The degree of induced map

F {2l = 0k} — {lul = 6"} C AN O
is py so that deg(f,rr) = pgr. We conclude that

degfzzdeg(f,rk) ZZM =d.
s e



Solutions to Homework # 9

Problem 10, §2.2 (a) X has a cell structure with a single vertex v, a single 1-cell e, and
two 2-cells Dy (the upper and lower hemispheres of S2.) The cellular complex has the form

0 — Z(D1, D3) LN Z{e) o, (v) — 0.
Denote by ay, : S™ — S” the antipodal map. Then
Dy = (14+degay)e =2e, d1e=0.
We conclude that
Hy(X) = Z{(Dy — D_)) = Z, Hi(X)=Zy, Ho(X)=Z.

(b) For the space Y obtained by identifying the antipodal points of the equator we obtain a
cell complex

0 — Z{Dy, D_) 2 Zes) 2 Zler) 2 Z{v) — 0,

cellular chain Zomplex of RP?
0Dy = (1+ degag)es = 0.
Hence
H3(Y)=2Z®Z, Hy(Y)= Hy(RP?) =0, H|(Y)=Z/2Z, Hy(Y)=Z.
g

Problem 14, §2.2. Denote by «,, : S — S the antipodal map. Then the map f is even if
and only if

foan=F.
Hence
deg f = deg(f) deg o, = deg f = (deg f) - dega,, = (—1)" "L deg f.
Hence if n is even then deg f = 0. Assume next that n is odd.

Since RP" = S™/(x ~ —x) there exists a continuous map ¢ : RP" — S™ such that the

diagram below is commutative
f

S’n 5 Sn

i ////g (T)

RP"
Consider the collapse maps
q:RP" — RP"/RP" ! = "

Arguing as in the proof of the Cellular Boundary Formula (page 140 of the textbook) we
deduce that the degree of the map

qom:S" = JRP"/RP" ! = "
is 1+ (1)t =2.
From the long exact sequence of the pair (RP", RIP’”_I) we deduce that the natural map
H,(RP") 2% H,(RP",RP") = H,(RP"/RP"!)

is an isomorphism.



By consulting the commutative diagram

Ho(S") =7

7r J W}XQ

Hy(RP") =2 —-— H,(RP"/RP" 1) =7

we deduce that the induced 7, : H,(S") =2 Z — H,(RP") = Z is described by multiplication
by +2. Using this information in the diagram (f) we deduce that deg f = +£degg, so that
deg f must be even.

To show that there exist even maps S?"~! — 527~ of arbitrary even degrees we use the
identification

Sl = (2., 2,) €T Z lzk]? = n}.
k
We write zp = ry exp(i6y). For every vector U = (v1,va,...,v,) € (Z*)" define
Fy . 821 g2n—t Fg(rlewl, .. .,Tnew”) = (rle”lwl, .. ,rne””w”).
Observe that
Fy(=Z) = Fy(e*™ - 2).
Hence, if all the integers v; are odd, the map Fj is odd, i.e., Fz(—2) = —Fp(2).
Now observe that pg := (1,1,...,1) € §?*~! and
Fl(po) ={C:=(C1,- - Ga)s G =1}
Near 5 the map Fj; is homotopic to its linearization D¢Fj; since for Z' close to 5
Fp(Z) = F3(Q) + DeFy - (7= ¢) + O(1Z = ([?).
Near 5and po we can use the same coordinates (r1,...,7,—1;01,...,6,) and the linearization
is given by the matrix
DgFly = lpn-1 P diag (Vl, e I/n).
We have

deg(Fy,¢) = det D¢Fy = sign (vy - - vp).
We conclude that
deg Fjy = Z deg(Fy,C) = v -1y
{eF;  (po)
When 7 = (m,1,...,1) we write I, instead of Fi,, ;). Note that Fy, is odd if and only if
m is odd.

Denote by G : 82"~ — §27~1 the continuous map defined as the composition
SZn—l N RP2n—1/RP2n—1 o~ SZn—l

The map G is even and has degree 2.
Suppose N is an even number. We can write N = 2¥m, m, odd number. Define

Gy =Go---0GokF,,.
k
Then G is an even map of degree N. a
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Problem 29, §2.2 The standard embedding of a genus 2 Riemann surface in R? is depicted
in Figure 1. Denote by j : ¥, — R the natural embedding. It induces a morphism
j* : Hl(Zg) — Hl(R)

whose kernel consists of cycles on ¥, which bound on R.

More precisely, ker j is a free Abelian group of rank g with a basis consisting of the cycles
ai,...,aqy (see Figure 1). We can complete ai,...,ay to a Z-basis ai,...,a4;b1,...,by of
H,(X,) (see Figure 1). R is homotopic to the wedge of the circles by, ..., by.

e

;

FIGURE 1. X9 is the “crust” of a double bagel R.

Consider now two copies R?, R! of the handlebody R. Correspondingly we get two inclu-
sions
¥ 2 RF kE=0,1.
Then X = R®Us R'. Denote by i* the inclusion R*¥ < X. The Mayer-Vietoris sequence has
the form

c o Hy(RY) & Hy(RY) = Hy(X) -5 Hyoy(S) 25 Hy g (R®) @ Hy_y (RY) — -
where A(c) = (j%(c), —jl(c)), and s(u,v) = i(u) + i(v). Since R is homotopic to a wedge
of circles we deduce Hi(R) =0 for k > 1.

Using the portion k£ = 3 in the above sequence we obtain an isomorphism
0: H3(X) — Hy(X) = Z.
For k = 2 we obtain an isomorphism
0: Hy(X) — ker Ay =2 Z(bi,...,by).
Since ker Ay = 0 we obtain an isomorphism

79 & 79 ~ g
{¥o -2, £}

We use the long exact sequence of the pair (R, X)

1

H;(X) = coker (A1)

- Hy(R) — Hi(R,2) -L Hy 1(2) &5 Hy_1((R) — - -

For k = 3 we obtain an isomorphism 0 : H3(R,¥) — Hy(X). For k = 2 we obtain an
isomorphism
0: Hy(R,X) — ker j, = Zai,...,aq)
(The disks depicted in Figure 1 represent the generators of Ha(R,X) defined by the above
isomorphism.)
For k£ = 1 we have an exact sequence

Hi(2) 25 Hy(R) — Hi(R,S) -5 ker j, = 0.
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Since H;(X) LN Hi(R) is onto we deduce H;(R, %) = 0. Finally, Hyo(R,>) = 0. O

Problem 30, §2.2
(a) Observe that Hy(Ty) = 0 for k > 3. Since r is a reflection we deduce f, =deg f-1= -1
on H(S?%) and = 1 on Hy(S?%). We have the short exact sequence
0 — Hs(Ty) — Hx(S?) = Ha(S?) — Ha(Ty) — 0.
Hence H3(Ty) = 0 and Hy(Ty) = Zy. We also have a short exact sequence

0 — Hy(Ty) — Ho(S?) > Ho(S5?)

so that Hy(Ty) = Z.
(b) In this case 1 — f. = —1 on H>(5?), and we deduce as above H3(Ty) = Hy(Tf) = 0. We
conclude similarly that Hy(Ty) = Z.

The maps f : S' — S! are described by matrices A : Z2 — Z2. More precisely such a map
defines a continuous map R? — R? which descends to quotients

A:R?*/7? — R?/Z°.

Here are the matrices in the remaining three cases.

(c)
A::[_Ol H

(d)

()

-1 0 0 1 0 -1
A‘—[ 0 1}[1 0]_[1 0 ]
Suppose f: St x ST — S x S is given by a 2 x 2 matrix A with integral entries. We need
to compute the induced maps f : Hy(T?) — Hy(T?). For k = 0 we always have f, = 1.

For k = 1 we have Hy(T?) = Hy(S') @ H1(S') = Z? and the induced map f, : Z? — Z>
coincides with the map induced by the matrix A. For k = 2 the induced map f, : Z — Z can
be identified with an integer, the degree of f. This can be computed using the computation
in Problem 7, §2.2, and local degrees as in Proposition 2.30, page 136. We deduce that

deg f = det A.

The Wang long exact sequence then has the form

0 — H3(Ta) — Ho(T?) "% Hy(T2) — H2(TY) —

— Hi(T?) =2 H\(T?) — Hi(Ta) — Ho(T?) > Ho(T?) — Ho(T).
In our cases det A = £1 When det A = 1 (case (d) and (e) ) we have
H3(Ty) = Hy(T?) = Z.
In the case (c¢) we have 1 — det A = 2 and we have
H3(Ty) 0.
In the cases (d) and (e) we have short exact sequences

0 — Hy(T?) — Hy(T4) — ker(1 — A) — 0.



In both cases ker(1 — A) = 0 so that

Ho(Ty) = 7.
Finally we deduce a short exact sequence

0 — coker (1 — A) — H{(T4) — Ho(T?) — 0
so that
H(Ty) 2 7Z @ coker(1 — A).
In the case (d) we have 1 — A =2 - 152 so that coker = Zy @ Zs.
In the case (e) we have
1 1
A=)

coker(1 — A) is a group of order |det(1 — A)| = 2 so it can only be Zs.
In the case (c) we have 1 — det A = 2 and we get an exact sequence

0— Zy — HQ(TA) — ker(l — A) — 0= HQ(TA) = 7o D ker(l — A)

00
1_‘4_[0 2]

Note that

Hence
HQ(TA) 79D 7.
We get again
H(Ts) =2 Z & coker(1 — A).
so that coker(l — A) = Z & Zy. We deduce
H(Ty) = 72 @ Zo.

The following table summarizes the above conclusions.

| ATy [Ho| Hy | Hy [Hs]
(a) Z Z Zo 0
(b) Z Z 0 0
(c) Z 7’ ® Zo Z®Zs| 0
(d) 7 |7 ®Zo® Zo Z Z
(e) Z 7 Zo Z Z




Homework # 10: The generalized Mayer-Vietoris principle.

Suppose X is a locally compact topological space, and U = (U, )qeca is an open cover of
X. Assume for simplicity that the set A is finite. Fix a total ordering on A. For each finite
subset S C A we set

Us = () Ua

The nerve of the cover U is the combinatorial simplicial complex N (U) defined as follows.

e The vertex set of N(U) is A.
e A finite subset S € A is a face of N(U) if and only if Ug # 0.

For example, this meas that two vertices «, 3 € A are to be connected by an edge, i.e.,
{a, B} is a face of N(U), if and only if U, N Uz # 0.

In Figure 1 we have depicted two special cases of the above construction
(a) The nerve of a cover consisting of two open sets Uy, Us with nonempty overlap.
(b) The nerve of the open cover of the one-dimensional space X depicted in Figure 1.

Uy U3

n

=
[N

(b)
FIGURE 1. An open cover of a 1-dimensional cellular complex X .

In general, for any X, any open cover U as above, and any p,q > 0 we set

Kpq(U) := @ Cp(Us),
SCA, |S|=q+1
where Cp(Usg) denotes the free Abelian group generated by singular simplices o : A, — Usg.

Note that the above direct sum is parameterized by the ¢-dimensional faces of the nerve
N(U).
The elements of K, ; have the form

c= EB cs, cs € Cp(Us).
S|=q+1

The chain ¢ assigns to each ¢-dimensional face S of the nerve N(U) an element cg in the
group Cp(Ug).
1



We now form a double complex (K, o, 0r,011) as follows.

Or: Kpq = @ Cp(Us)— @ Cp-1(Us) = Kp-1,4
SCA, |S|=¢+1 SCA, |S|=q+1
01 (®)51=q+1¢5) = B|sj=g+10cs
To define 97, note that for every inclusion S — S we have an inclusion Us — Uss. In
particular, for every
S={sp<s1<--<sgt CA, Us#0
we have inclusions
i Us — Us\s;,
and thus we have morphisms ¢; : Cp(Us) — Cp(Us\s,;) Given a singular simplex
o:A, —Us
so that o determines an element in K, 4, we define 6o € K, ,_1 by
q

q
do =Y (-1)p;(0) € P Cp(Us\s;) € Kpgr.
§=0 §=0

The map 0 extends by linearity to an morphism 4 : K, ; — K, ,—1 called the Cech boundary
operator. Note that

Kpo = @D Cp(U).

a€A

Exercise 10.1. (a) Describe K, o, d; and ¢ for the two situations in (a) and (b). Prove that
in both these cases 62 = 0.
(b) Prove in general that 62 = 0, and define

d[[ . Kp,q — Kp,q—b d[[ = (_1)]35_
Show that dyd;; = —drrds. O

Proof. In both cases we have Ug = () for |S| > 2 so that in both cases we have
K,,=0, Vg>2
so that in either case the double complex has the form in Figure 2 where the o’s denote the

places where K, ; = 0.
In case (a) we have

Kpo = Cp(Ur) © Cp(Ua), Kp1=Cp(Ur2), U2 =U1N0U,

Denote by ¢, the inclusion
Cp(Ur2) = Cp(Ua).
We will identify ¢ (Cp(Uy)) with Cp(Uy). Then for (cq,c2) € K, we have
dr(c1,c2) = (Ocr,0c2) € Kp-10
and
5(01, CQ) =0.

For c € K1 = Cp(U12) we have

dic=0c € Kp_1,1, c=(—pi(c),p2(c)) = (—c,c) € Kpp.
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FIGURE 2. A highly degenerate double complex

In case (b) we have
Kpo = Cp(Ur) ® Cp(Usz) @ Cp(Uz) ® Cp(Us) @ Cp(Us)
We describe the elements of K, as quadruples (¢, c2, ¢3,¢4) and we have
d(c1,c2,c3,c4) = 0.
Kp1 = Cp(Ur2) ® Cp(Uzs) ® Cp(Usa) ® Cp(Usr).
We describe the elements of K, 1 as quadruples (c12, ¢23, ¢34, c14). Then
d(c12, €23, €34, €14) = (—Cla — C12, C12 — €23, C23 — €34, C34 + Cl4).

The condition 62 = 0 is trivially satisfied in both cases.
Consider now the general situation, and let ¢ € Kp g = @) /=441 Cp(Us). We can write

= @ os
|S|=g+1

We will first show that
8%cg =0, VS.

Fix one such S. Assume S = {0,1,2,---q}. For every i,j € S denote by ¢;; the inclusion
Cp(S) = Cp(S\ {i, }).

Then .
dcg = Z(—l)jgoj(cs).
i=0
i—1 q
5(es) = 3 (~1)8(pics) = 2 Z(Z Veseiles) + > (-1 pjies) )
= i=0 j=it+1
= > (=Di(es)+ D (1) py(cs) =0
0<j<i 0<i<j
This proves 6> = 0. Form the definition of § it follows that
ddr = djd.

For c € K, 4 we have
drdyrc = (—1)pd1(56 = (—1)p5(d18) = (_1)p . (—1)p71d[[d[C.
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Exercise 10.2. Denote by C,(X,U) the free Abelian group spanned by singular simplices
in X whose images lie in some U,. Note that we have a natural surjection
(SN Kp70 — Cp(X, U)
Prove that for every p > 0, ¢ > 0 we have

Im (Kp,q+1 2, Kp,q) = ker( Kpq i, Kpg—1 )7

and

Tm (K1 25 Kpp) = ker(Kpo —— Cp).

(In other words, you have to show that the columns of the expanded double complex
(Ko,naball) =5 (C*(Xa u)aa)
are exact. Hint: Workout some special cases first.

Proof. We have
Cp(X,U) := > Cp(Ua) C Cp(X).

The natural map

e Kpo =D CpUa) = > Cp(Ua)

is given by
D) > Pear ) co
o [0} o

For every @5—2cs € Kj1 we have
6(cs)=(—cs) ®cs € Cp(Usl) 87 Cp(Usz)v (S = {51752})’
and clearly €(d(cg)) = 0. Set
K, _1:=Cy(X,U).
We denote by IN(U), the set of g-faces of the simplicial complex N (U). For S € N(U), we
set

8pg(S)i={0: AP - X; o(AP) CUs}={0:A" = X; o(AP) € U,, VseS}.
For each singular simplex o : A? — X we set
supp, (o) :=={S € N(U)y; o(AP) CUs <= o(AP) € Us, Vs € S}.
Denote by 8, , the set of singular p-simplices o : A? — X such that supp,(c) # . Then
K. P p z
SEN(U)g 0€8p.4(S)

We denote by {(c,5); S &€ N(U)y, o€ 8,,(5)} the canonical basis of K, , corresponding
to the above direct sum decomposition. We will denote the elements in group by sums

c= > > oSS =Y > 0S50S
SeEN(U)q 0€8p,4(S) 0ESp,q SEsuppy (o)
Denote by (Ce(IN(U)), ) the simplicial chain complex associated to the nerve IN(U). Then
CNW)= P z

SeN(U),
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and we denote by {(S); S € N(U),} the canonical basis of Cy(IN(U)) determined by the
above direct sum decomposition. Observe that for every o¢ € §,, we have a canonical
projection
7q(00) : Kpq — Co(IN(U)),
> n@SeS)— Y nloo, S)S).
0ES8p,q SEsupp,(0) Sesupp,(00)
We see from the definition of § that the morphism
T(00) : (Kp,e,0) = (Co(N(U)), D)
is a chain map. In particular, if
c= Z Z n(o,S)(o,S)
0E€8p,q SEsupp, (o)

is a 0-cycle, dc = 0, then for every 7 € 8, we get a J-cycle in C,(IN(U)),

m(t)e=" > n(r,9)(S) € Cyo(N(W)), Iry(r)c=0.

Sesuppy ()

Consider the set of vertices
V(r) = U S
Sesupp,(7)

We deduce that the image of 7 lies in all of the open sets Uz, t € V(7). In other words, the
vertices in V(7) span a simplex of the nerve IN(U). The 0-cycle m4(7)c is a cycle inside this
simplex so it bounds a simplicial chain of this simplex. Hence

mg(T)c =0 Z m.(T).

Tesupp,11(T)

c:5< > > mT<T,T>>. O

TESp,q+1 Tesuppy 1 (1)

We conclude that

Exercise 10.3 (The generalized Mayer-Vietoris principle). Suppose that we have a double

complex

(Ko,o = @ Kp,q, DI, d[[?)>

P,4=>0
where
d[ : Kp,q — Kp_Lq, d[[ : Kp,q — Kp,q—ly

satisfy the identities

d? = d%] =ddrr +dyrdr = 0.
(see Figure 3.)

Form the total complex

(KMD)v Ky, = @ Kp,qa D=d;+d: Kp— Kp_1.
ptHg=m
(a) Prove that D? = 0.
(b) Suppose we are given another chain complex (C,, ), and a surjective morphism of chain
complexes

€: (Kep,0r) — Co,0),



F1GURE 3. A double chain complex

such that
codrr =0.
Prove that € induces a morphism of chain complexes
£: (Ko, D) — (Cs,0). (10.1)
(c) Assume that for every p > 0, ¢ > 1 we have

Im (Kp,q+1 o, vaq) = ker( Kpq o, pg—1 )v

and

Im (Kp1 25 K,o) = ker( Kpo —— Cp).

Prove that the morphism (10.1) induces isomorphisms in homology.
Proof. (a) We have
D? = (dy +dy;)* = d? +d%; + drdy; + dypd; = 0.

For part (b) we note that a chain ¢ € K is a sum

P
Cp = Z Cip—ir Cip—i € Kip—i.
i=0
We define
e(ep) = e(epo),
and it is now obvious that the resulting map ¢ : Ko — (4 is a morphism of chain complexes.
To prove that € induces an isomorphism in homology we need to prove two things.
A. For any p > 0, and any c € C), such that dc = 0, there exists z = Z?:o zjp—j € Kp
such that Dz = 0 and €(2p) = ¢. Observe that the condition Dz = 0 is equivalent
to the collection of equalities

d[Zp_jJ‘ + d[[Zp_j_l,j +1=0, Vj=0,...p—1.



7

B. If z € K, is a D-cycle, Dz = 0, and ¢(z) € C) is a 0-boundary, i.e., exists ¢ € Cpi1
such that Oc = e(z), then there exists x € K1 such that Dz = z.
A. We will construct by induction on 0 < j < p elements z; € K,_;; such that (see Figure
4)

e(zpo) = ¢, drzi—1 +drrz; =0, Vi=1,...,]. (Z;)
— Z.
| ]
I l
'4 - - -
0 l
(0 — Zl
dﬂl
d
0|<_ &)
I Sl
Y
~ - ¢

FIGURE 4. A zig-zag

Observe that since € is surjective, there exists zg € Ko such that
£(z0) = c.

Since 0c = 0 we deduce
66(2’0) = S(dIZO) — —djzy € kere.

Hence, we can find z; € K7 such that djrz; = —djzg.

Suppose that we have determined the elements 2o, . .., z; satisfying (Z;). We want to show
that we can find 211 € Kp_j_1,41 such that the extended sequence zp, ..., zj41 satisfies
(Zj+1)-

From the equality drjz; = —drzj—1 we deduce

d[d]]Zj = —d%Zj_l =0= d]]d[Zj =0.
Hence
—d]Zj € kerdrr = Im (d]]) - 32’]‘_;,_1 S Kp_j_17j+1 : Cl[[Zj_H = —d[Zj.

This completes the proof of A..
B. Suppose we have
Z2=2p0+ Zp-11+ -+ 20p € Ky,
and ¢ € Cpy1, such that
Oc = €(DZ) = E(Zp,()) and djzp_i,,; + dIIZp—i—l,i+1 =0, Vi=0,...,p—1.

For simplicity, we write z; = 2,_;;. Since € is surjective we deduce that there exists by €
Kp11,0 such that e(bg) = c¢. We deduce

E(Zo) =0Jc= 86(60) = E(d[bo)

Hence
zg — drbg € kere = Im (d[]) — db; € Kp,l iz — drbg = dyrby.
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Suppose we have determined
bi € Kpi1-i4, 0<i<j: z =dibiy1+drb;, Yi=0,...,7,
and we want to determine b1 € Kj_j j+1 such that

zZj = d][bj+1 + d]bj.

4 Y
I l
Y b
0~ — +— Ui
Zj_l

FIGURE 5. Another zig-zag

Observe that (see Figure 5)
0= d[Zj,1 + d[[Zj — d][Zj - *d[ijl - *d](d[]bj + d[bjfl) == *d]d[[bj = d][d[bj.
Hence
25 — d[bj € kerdyr = Im (d[[)
so that there exists bj 11 € Kj_j j+1 such that
d][bj+1 = Zj — d[bj.
This completes the proof of B.. a

Exercise 10.4. Obtain the usual Mayer-Vietoris theorem from the generalized Mayer-Vietoris
principle.

Proof. Consider and open cover of X consisting of two open sets Uy, Us. Denote by K,
the double complex constructed in Exercise 10.1 determined by this cover, and by K, the
associated total complex constructed as in Exercise 10.3. We have the short exact sequence
of complexes

0 — (Ae,ds) = (B, D) = (Ca,dy) — 0,
where
Ap = m,0, B, =K, Op =Rpo11-
Observe that
Hm(A.) = Hm(Ul) D Hm(UQ), Hm(C*O) = Hm—l(Ul N UQ)

From Exercise 10.3 we deduce

We get a long exact sequence

Ty T Ox
- — Hy(Uy) @ Hp(Uz) = Hyp(X) = Hyp 1 (U NU2) = Hyp—1(Uy) @ Hyp—1(Uz) — - -+

One can easily verify that 7, coincides with the connecting morphism in the Mayer-Vietoris
long exact sequence. a





