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Introduction

Notations and terminology

For any real number ¢ we set
Lse = {nEZ; an}.
The sets Z., Z«. etc. are defined similarly.

For any multi-index a = (v, ..., ), o € Z>( we set
m
la] := Zai, al i=a! as!---ap,!.
=1

For any finite dimensional real vector space V' we denote by A¥V its k-th exterior power and
we set

ALV = AV e C.
If A, B are subset of a topological Hausdorff space, then we write A € B if the closure A of
A si compact and contained in the interior of B.

If M is a smooth manifold and E is a finite dimensional vector space we denote by £, the
trivial smooth vector bundle M x E — M.

We will use the notation tr A to denote the trace of a finite dimensional linear operator, and
T'r A the trace of an infinite dimensional linear operator, whenever this trace is well defined.






Chapter 1

The Fourier transform and
Sobolev spaces

1.1. The Fourier transform

In the sequel V' will denote real Euclidean space of dimension m. We denote by (—, —) the inner
product on V, by | — | the Euclidean norm, and by |dz| the Euclidean volume element. We let w,y,
denote the volume of the unit ball in V' and by o,,,_1 the “area” of the unit sphere in V' so that (see [N,
Ex. 9.1.10]

k

r(1/2)™ - m= 2k or(1/2)™
Wy = ——L = Ol = MWy, = —2L2 (1.1.1)
P(l + m/2) 92k+1 k) P(m/2)
e M= 2k +1,
We fix an orthonormal basis {e1, ..., e} on V and we denote by (21, ...,z ) the resulting coordi-
nates. For 1 < 5 < m we define
0 1 .
8] = 8xj = 87:[;.7-7 ij = ;axg = —z@xj.
For every multi-index o = (a1,...,qp,) € L%, we set
= 1
ot =t O = 005, ol =Y 0y, DY = an
j=1
Finally, for z € V we set
() = (1+[2*)">.
We will sometime need the following classical equality.
Lemma 1.1.1. For any s > m/2 and any u > 0 we have
4L(p)T(s —
/ <u2 + ’x|2)7s ’d$| _ qus/ (1 4 ’y|2)78|d1" — um72sam 1 (p) (S p)’ (112)
|4 v 2I°(s)
where I" denotes Euler’s Gamma function and p = mT_Q

1



2 1. The Fourier transform and Sobolev spaces

Proof. The first equality follows by via the change in variables x = uy. Next we observe that

00 m—1 00 1(m—2)/2
/ (14 1) ~° |dy] = o / Mgy = et / O
\%4 0 ( 0

L+r2)s " 2 (1+4t)s
The last integral can be described in terms of Euler’s Gamma function (see[WW, Sec. 12.41])
9] 75(m—2)/2 ()T )
/ =", mo2
0 (1 + t)s F(S) 2
O
We have For any smooth function f : V' — C, and any non-negative integer s we set
ps(f) = sup  (2)°|DFf(z)l.
z€V, 0<|a|<s
A smooth function f : V' — C is said to have fast decay if
p(f) < oo, foranys € Zxo.
We denote by S(V) the vector space of smooth functions V' — C with fast decay. Note that
[€8(V) <= Va,B € ZT,, sup 22 D? f(z) ‘ < 00. (1.1.3)

zeV

The space 8(V) is equipped with a natural locally convex' topology. A set N C 8(V) is a neigh-
borhood of 0 in this topology if and only if there exists s € Z>¢ and € > 0 such that N contains all the
functions f € 8§(V') satisfying p,(f)s < e.

A sequence of functions f,, € 8(V') converges to f € § in this topology if and only if
Ve>0,Vs>0, AN >0: p(fn—f)<e, ¥n>N. (1.1.4)

We will refer to this topology as the natural topology of §(V').

For any vector v € V' and any multi-index o we define Ey,, Ty, Myo : 8(V') — (V)

Eyf(z) := ¢V f(z), Tof(x):= f(z +v), Mef(z)=a"f(z).
Forevery j =1,...,mand any h € R we define
T} = Theyo A} =TS~ f.
The proof of the following elementary fact is left as an exercise.
Proposition 1.1.2. (a) For any p € [1, 0] we have
S(V) C LP(V,|dx|).

(b) For any j = 1,...,m the linear operators

9
M,,;,0;:8(V) = 8(V), fr0;f = %fj

are continuous with respect to the natural topology on 8.

(c) Forany j =1,...,mandany f € 8(V'). we have

1oy :
}lgr{l) EAjf = 0;f, inthe topology of $(V).

o topological vector space is called locally convex if any neighborhood of O contains a convex neighborhood.



1.1. The Fourier transform 3

Proposition 1.1.3 (Integration by parts). Let u : V' — C be a smooth function. Suppose that there
exists C, k > 0 such that

Oju(z)] < C(L+|zF), Ve eV, j=1,...,m.

Then for any f € 8(V) and any j = 1,...,m the functions Ojuf and u0;f are integrable and
moreover

/ dyu(w) f () |dal :—/u(x)ajf(x) dal (1.1.5)
\%

Proof. Note that the growth condition on the partial derivatives of v implies via the mean value theorem
that for some constant Cy > 0 we have

lu(z)| < Co(1 + |zF), Vo e V.

The integrability of (0;u) f and u(0; f) follows from the growth properties of u, f and their derivatives.
From the divergence formula we deduce
/ B, u(x) f () |dz| = / w(@) f(2) (e, €)do () — / w(@)d, f(x) da],  (1.1.6)
lz|<R lz|=R lz|<R

where do r denotes the “area” element on the sphere {|z| = R}, n denotes the unit outer normal vector
field along this sphere, while the inner product (n,, e;) is equal to %. Now observe that

1
7 L @rdontz)

/ w(@) f(2) (n, €;)dom(x)
|x|=R

Cop, (f)(1 + R*1) om-1P,(f)Co(1 + R*)
= - Rs ~/|x=R dO’R(J}) = - RsfreHrl

If we let s > m + k we deduce
om-1Ps(f)Co(1 + RFF1)

Py Re—m1 -0
The equality (1.1.5) now follows by letting R — oo in (1.1.6). O
For simplicity we set
|dz|, == (27)"™/?|da|. (%)
Definition 1.1.4. The Fourier transform of a function f € 8(V') is the function f: V — C defined by
flo) = [ e p(w)dal.. o
\%4
Proposition 1.1.5. If f € S(V) then fe 8(V). Moreover, forany j = 1,...,m, and any bv € V we
have
T'uf: Eyf, E'vf :T—'vf7 (1.1.7)
D,,f = Mg, , (1.1.8)

M,,f =D, f. (1.1.9)
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Proof. The equalities (1.1.7) follow by direct computation.

Let us first observe that fis smooth. Forany j = 1,..., m we have
Ok, (e_i(f’x)f(x)> = —iz;e 6D f(z) € (V).

Invoking classical theorems on the differentiability of integrals depending on parameters we deduce
that f is smooth and

ijf: —'i/ xje_i(f’m)f(x)]dﬂ* = —i@j\f
\'4

which proves (1.1.9). Observe that (1.1.8) follows from the integration by parts formula (1.1.5).
Let us prove that f € §(V). From (1.1.9) we deduce that for any multi-indices « and 5 we have

D) = (-1)PDeMlf.

The smooth function g = Dg‘Mf f has fast decay so it suffices to show that for any g € S(V) the
Fourier transform g is bounded. We have

§O1 < [ lotwllde] < o
since the functions in 8(V') are Lebesgue integrable. Hence

& DL | < 1D fll ey,

sup
£ev

Using (1.1.3) we deduce f € (V). 0
The Fourier transform thus defines a linear map F : §(V) — 8(V') which is also continuous
(Exercise 1.4).

Example 1.1.6. Consider the gaussian function I'y € §(V') given by 'y (z) = e~171*/2. We want to
prove that

FIlv]=Ty. (1.1.10)
We follow the elegant approach of L. Hormander [H1, §7.1]. Observe first that

(xj + ’I:ij)l_‘v = (xj + 8xj)rv =0, so that (—ng + 1€ )fv =0.
(2" % = (2" Py (0) = [ e o] = [ ]
\%

(/ e /2 \da:ﬂ) = (2m)™/2,
j=1\/ e

This proves (1.1.10). O

This implies that T'y (£) = ce~¢I*/2, where

m

Theorem 1.1.7 (Fourier Inversion Formula). The Fourier transform ¥ : 8(V') — 8(V') is bijective
and its inverse is given by

F'=RoF=FoR,
where R : S(V') — 8(V) is the reflection operator

(Rf) (z) = f(—x), Vfe8(V),z € V.
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In other words, f € 8(V') can be recovered from f via the Fourier inversion formula

1

m/g/vei(x’g)f(i)ldﬁl Z/Ve"(m’é’f(f) |d€]. (1.1.11)

@)= G

Proof. We consider the operator J = R o F2 : (V') — 8(V') and we will prove that J = 1. From the
equalities (1.1.7), (1.1.9) and (1.1.10) we deduce

JoMy; = My; 03, JoTy =Tyo0J, Vj=1,...,m, Yo eV, (1.1.12a)

ITy] =Ty. (1.1.12b)
For f € 8§(V') we have?

1 m 1
Fa) =50 = [ Gesteyat =3, [ @0 () a
=1 g

=:f;(z)

Clearly the functions E are smooth and have moderate growth. We have
m ~
fla) = f(0) =) _ M, f;
j=1

If f(0) = 0 then we deduce from (1.1.12a) that

n

9f) = M, (f]]

j=1

so that I[f](0) = 0. If now g € §(V), ¢ = ¢(0), then the function f = g — cI'y vanishes at 0 which
shows that

J[g](0) = ¢- IT'v](0) = g(0).

Using the translation invariance of J we deduce that for any v € V' we have

Ifl(v) = (TuI)[£1(0) = ITu f1(0) = (T f) (0) = f(v).
In a similar fashion we conclude that ] = Fo RoF =1 sothat F ' = RoF =Fo R. O

The Fourier inversion formula has several important consequences. Let (—, —) ;2 denote the inner
product in L?(V, |dz|)

(f.9)12 = /V F(2)9(@) |dal, ;¥f,g € LA(V., |dal).

Corollary 1.1.8 (Parseval formula). For any f,g € (V') we have
(f,9)r2 = (f,9) L2

2This trick is sometimes called Hadamard’s lemma.
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Proof. If f,g € §(V') then

(Fawe = [ Fleraeael - /V<A<s>/v (“’()Idftl*)ldﬁl
:/V</V <>\d§) ol "= [ 5050 e = (F.0)12

O
Corollary 1.1.9. For every f,g € 8(V') we have
/ f(@)g(w)|de| = /V F©a(=¢)lde]. (1.1.13)
Proof. This follows from Parseval formula since
|| s@a@ldsl = (7.9 = P9z = [ Feyat-olasl.
O

A final operation we want to discuss is the convolution. Given f,g € (V') we define fxg : V — C
via the integral formula

f gl / F(z — y)g(y) ldy] /V F(=2)glz + ))dz]| = /V Rf(2) Tog(2) |dz].  (1.1.14)
Lemma 1.1.10. f xg € S(V) forany f,g € 8(V).

Proof. It is not hard to see that f x g € C°°(V'). To prove that f * g has fast decay at oo we will rely
the following elementary inequality known as Peetre’s inequality

(u+0)* <2820\l vy veV, seR (1.1.15)

We will present a proof of this inequality a bit later.
Observe that

De(f xg) = (f x D%)
For any integers N, v > 0 there exists a constant C' > 0 such that

[f(=2)] < C(=)7"

IDY%(~z+2)| <Clz—2)" < Cla)™(2)”
so that
|f(—2)D%(~z +z)] < C(=) N (a) ™.

If we choose N > v + m then the function (z)*~ is integrable on V" and we deduce

D(f * g)(x)] < /V F(=2)D%g(— + )] |dz] sc<x>—"( /V <z>”—Nrdz|>.



1.2. Temperate distributions 7

Proof of Peetre’s inequality. We have

(14 Ju+0*) < 201+ [ul) (1 + o),
so that, if s > 0 we have

(u+ 0)* < 2/ (u)* ()",

In particular, if ¢ > 0 we have

() = (v = (v+u)) <2%(0)"(u +0)f
so that

(o) (4 v) ™ < 2% () )’

which proves (1.1.15) for s = —t < 0. O

The Fourier transform interacts nicely with this operation. More precisely, we have

Fxg(&) = @n)™2F(©)a(€), Vf,ge8(V), V. (1.1.16)

Indeed, if we denote by |dzdy| the volume element on V' x V' we have

Frg(e) = M /V . (ei“"”)f(x - y>g<y>> dady|

(z=z—y)
1 .
= W /V v <€_Z(§’y+z)f(2)9(y)> |dzdyl|

Fubini m —i(€,2 —i m/2 7y NS
2 (2r) ”( /V e M6 f(2) rdz|*> : ( /V e <fyy>g<y>\dyr*> = (2m)™2 F(€)g(9).
From the Fourier inversion formula we deduce

(f9)(&) = (2m)™*(F*9) (=€), Vf.geS(V), €€ V. (1.1.17)

1.2. Temperate distributions

A temperate or tempered distribution is a continuous, C-linear map u : §(V') — C. Observe that a
linear function u : (V') — C is continuous if and only if
ds € Z>p, 3C >0: |u(f)| < Cpy(f), Vf e S8(V).
We denote by S(V')Y the vector space of temperate distributions on V. We have a natural bilinear map
(=, =) :S(V)Y x S(V) = C, S(V)" xS8(V) 3 (u, f) = (u, f) = u(f).

The space 8(V')" is equipped with a natural topology, namely the smallest topology such that for any
f € 8(V) the maps

S(V)V3ur— (u, f)eC
are continuous. The open sets of this topology are unions of polyhedra P(A), where A an arbitrary
finite subset A C §(V') and

PA) ={ues(V); |(u,a)| <1, YVac A} (1.2.1)
We will refer to this topology as the weak fopology on §(V')V .
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Example 1.2.1. (a) If p € [1, o0], then any function ¢ € LP(V,|dx|) defines a temperate distribution

up :8(V) = C, (up, f) = (o, ) == /‘/w(m)f(w) |dz|, Vf€8(V).
The functional u, uniquely determines ¢ so that the space LP(V,|dx|) is naturally a subspace of
S(V)V.

(b) Suppose ¢ : V\ — C is a locally integrable function with polynomial growth, i.e., there exists an
integer k > 0 and R > 0 such that

sup () F|p(z) |dz| < co.
|z[>R

We get a continuous linear functional u,, : $(V') — C,

(g ) = (0 ) = /V () () |dz].

This shows that the locally integrable functions with polynomial growth can be viewed as temperate
distributions. The functions (x) = |z|*, A > —dimV have this property and thus they define
temperate distributions. O

Example 1.2.2. (a) For any ¢y € V we define the Dirac distribution concentrated at x to be the
temperate distribution d,, defined by the linear map

5m0 : S(V) - C, <6m0a f> = f(w0>

One can verify easily that d,, is indeed continuous. Often, in the physics literature, the distribution dg
is viewed as a function () that is identically 0 outside the origin, it has the value co at the origin and

/Vé(a:) |dx| = 1.

In this notation we have 0., = d(z — xo).

(b) Suppose M is a submanifold of V' such that the embedding M < E' is proper. The metric on V'
induces a volume density |dvys| on V. Assume the |dvys| has polynomial growth, i.e.,

/ |dvys| = O(R¥) as R — oo.
Mn{|z|<R}
Then we can define a tempered distribution
Su i S(V) > €, (oar.f) = [ f@lduai(a)l, ¥ € S(V).
M

When M = {x(} the distribution §; coincides with the Dirac distribution at p. Other interesting
case is when M is a linear subspace of E. For example when £ = R?, and A is the diagonal subspace

A={(z,y) eR* z=y},

then
1

(6a,f) = ﬂ/Rf(x,x) dal, Vf € Sge. 0
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Example 1.2.3. Let ¢ € $(V') be a nonnegative function such that

/V o() ldo] = 1.

pe(r) = e "p(x/e).

For any ¢ > 0 we define . € $(V') by

Then
lim . = J§p in the weak topology of S(V')V.
E—r

In other words, we have to prove that for any f € S(V') we have

lim (.. /) = (0).

/ e |dz| =1
\%

(per ) — F(0) = /V oo f lda] — £(0) /V e |dz]

To see this note first that

so that

e / (/) (f(x) — F(0)) |da| = / (@) (flex) — £(0)) de]
\% \%4
Observe that
sup | f(ez) — £(0)] < 2 sup | ()],

zeV zcV
and lim._,o f(ex) = f(0), Vo € V. The dominated convergence theorem now implies that the last
integral above converges to 0 as € \, 0. O

The continuous linear map
Myo : 8(V) — 8(V).
extends by to a continuous linear map
Mo : (V)" = 8(V)", (Myau, f) = (u, Moo f), V(u, f) € S(V)" x $(V).
For any A > 0 we have a rescaling map
Sr:8(V) = 8(V), (Saf)(@) = fOa).
Observe that for any f, g € 8(V'), and any A > 0 we have

(usyr9) = (Srfog) = /V f(a)g(z) |dz]

=T\ —m
2 [ K0S 00 il = (g XS 1)
This allows us to define Sy : $(V)¥ — §(V)" by
<S>\u,g) = <u7 AimS)\*lg% Vu € S(V)v7 g€ S(V)

Similarly, the reflection operator R : §(V') — 8$(V') and the translation operators Ty, v € V, extend
to operators R, Ty, : S(V)V — §(V)V

(Ru, g) := (u, Rg), (Tyu, f):= {u,T_pg) Yu € 8§(V)Y, ge (V).
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Let us observe that if ¢ € §(V'), then forany j = 1,...,m and any f € $(V') we have
(1.L.5)
(toyer F) = (050.£) = [ Dyof ol /V 003 f ldx| = —(ug, 95 ).

Using this as inspiration we define the weak or distributional derivative O;u of a temperate distribution
u to be the linear functional 0;u : §(V') — C determined by

<a]u7 f) = —(u,8]f>, vf € S(V)
Example 1.2.4. (a) Observe that

(D360, f) = (=D)I*'Dg f(0), Vf €S(V). (1.2.2)
(b) Consider the Heaviside function 8 : R — R,
1, t>0
0t):=<  —
0, t<O0.
Then 8 € L>*°(R) C 8(R)Y and its distributional derivative 0,6 is the Dirac distribution do. O

We can also define the Fourier transform of a distribution. Observe that if f € $(V') then for any

g € 8(V') we have
7Tm/2 —i(z,§)
/ F()a(e) lde| = (2) /V f(rr)< /V e g(é)\d€*>ld~’r\*

/f 2) ldz] = (£,3) = (us,5)-

Following this pattern we define the Fourier transform of a temperate distribution u € S(V')Y to be the
linear functional u : §(V') — R given by

(@, f) = (u. f), Vf €8(V).
In other words, the extension F of F to $(V')" is none other than the dual of the map
F:8(V)—8(V),
1.e.,
(Flul, £) = (w,Ff]), YueS(V)', fe8(V).

Example 1.2.5. (a) Consider the distribution given by the constant function 1. Then

A f) =07 = /V £(6) |de]

— (2m)m/? /V 09 () |de]. = (2™ £(0) = (2m)™ (6o, ).
Hence
1= (2m)™/24,. (1.2.3)

A simple computation shows

~

o = (2m) ™21, (1.2.4)
More generally for any v € V' we have

Gon ) = (60, F) = Fl0) = /V e~ £ () | de],



1.2. Temperate distributions 11

so that )
(g; =
({) (27_‘_)/2 €

(b) For any multi-index « the monomial z® is a function with polynomial growth and thus can be
viewed as temperate distribution. For any f € $(V') we have

@, f) = (&, F) = / e (e e LY / DEf(€)|de| = (2m)™/D2 £ (0).
\%4 \%
Using (1.2.2) we deduce

—iwd) e L2(V)ncO(v). (1.2.5)

20 = (1)l (2m)™/2 D2, (1.2.6)
g

The Fourier transform thus defines a linear map F : (V)" — 8(V)". We leave the proof of the
following result as an exercise to the reader.

Proposition 1.2.6. The Fourier transform F : $(V)¥ — 8$(V')Y is a continuous linear, bijective map.
Moreover F~' = FR, where R = RY : 8(V)" — 8(V')" is the extension to 8(V')" of the reflection
operator.

Proof. Forany u € §(V')" and o € §(V') we have

<§“(u),a> = (u, F(a)).
This shows that if A is a fine subset of (V') and u belongs to the neighborhood P(F(A) ) defined as
in (1.2.1) then F(u) € P(A). This proves the continuity of the map F : S(V)¥ — §(V)".
The Fourier inversion formula implies that
RoFoF=FoRoTF =Ilgw).
Passing to duals we deduce

F'oFoR' =F' o R o F¥ = Ig(yy.

Since F¥ = F the above equalities prove that F is bijective with inverse F¥ o RV. O

In the sequel we will continue to denote by F the extension of F to S(V).

We have seen that L2(V, |dz|) can be identified with a subspace of §(V')". It behaves rather nicely
with respect to the Fourier transform. More precisely, we have the following result.

Proposition 1.2.7 (Plancherel). The Fourier transform F : 8(V)V — 8(V)” maps L*(V,|dz|) C
8(V')V into L*(V,|dx|) and the resulting map F : L*(V,|dz|) — L?(V,|dx|) is an isomorphism of
Hilbert spaces.
Proof. We know that §(V') is dense in L?(V, |dx|) and F maps §(V') bijectively onto itself and

H F(u) — F(v) HL2 = ||lu — vz, Yu,ve (V).

Let us first show that
F(L*(V)) C L*(V).
Let f € L?(V, |dz|) then there exist functions fc8(V') such that f, — f in L?, as n — oo. Then

li ;- =
j,klgloonf] fellp2 =0
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and (see Exercise 1.5)
fo— f in8(V)". (1.2.7)
From the Parseval formula we deduce

1F5 — Fellze = 15 — fll e

This proves that the sequence (J?n)nzo C L*(V) is Cauchy. Since L?(V,|dz|) is a complete space,
there exists g € L*(V,|dxz|) such that f,, — g in L?(V,|dx|) as n — oo. In other words, F(f,) — ¢
in L2(V,|dxz|) as n — oo. Invoking Exercise 1.5 again we deduce

F(fn) > g€8(V) asn — oc.
On the other hand, using Proposition 1.2.6 and (1.2.7) we deduce that
. _ . . v
Jim F(f) = F(lim_f) in8(V)".

Hence F(f) = g € L*(V, |dx|).
Conversely, let us show that
LA (V) CcF(L*(V)).

Let g € L?(V). Then there exist g,, € 8(V) such that g, — g in L?. Set f,, = F1(g,). Since F~*
is an L2-isometry and the sequence (g,,) is Cauchy in the norm L2, we deduce that the sequence (f;,)
is Cauchy in the same norm and thus there exists f € L?(V') such that f,, — f in L2. We conclude as
above that g = F(f) € F(L*(V)). O

Finally we want to define the operation of convolution of a temperate distribution » with a function
¢ € 8(V') using (1.1.14) as a guide. Note that we can rewrite (1.1.14) as

fxg(@) = (Ruy, Tpg).
Ifue 8(V)"and g € 8(V) then we defineu*g: V — C by
uxg(x) = (Ru, Trg).
The convolution formule (1.1.16) and (1.1.17) and generalize to temperate distributions

Fu = (2m)™2Mt, Mou = (27) ™?Rp* 0, Yo € $(V), ues(V)". (1.2.8)

1.3. Other spaces of distributions

Let €2 be an open subset of V. We denote by £(£2) the vector space of complex valued smooth functions
on §). For every nonnegative integer v and every compact subset K C €2

Pox  €(Q) = [0,00), p,g(f) = sup [Dyf(z)].
zeK, |a|<v

We define a linear topology on &(£2) such that a basis of open neighborhoods of 0 € £(£2) is given by
the collection

Noerx ={f€E&); p,(f)<e}, vEZLsy, >0, KCQcompact.
Observe that we have a canonical continuous linear map

S(V)—=E(Q), 8(V)> fr fla-
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Denote by D(2) the subspace of £(2) consisting of smooth functions with compact support. For any
compact subset K C 2 denote by D (€2) the subspace of D(£2) consisting of functions with support
in K. Note that

D(Q) = Dk ().
K

The space D (£2) admits a natural linear topology such that a basis of open neighborhoods of the
origin in D () is given by the sets
OV,E,K = NV,E,K N ®K(Q) = {f € DK(Q)a pu,K(f) <e€ }7 Ve Zzo~
The natural topology on D(€) is the largest locally convex topology such that all the inclusion maps
D (Q) — D(Q) are continuous.
For a proof of the following result we refer to [Schw, §I11.1,2] or [Tr, Ch.13,14].
Theorem 1.3.1. (a) If F' is a locally convex topological vector space and L : D(Q)) — F is a linear

map, then L is continuous if and only if for any compact set K C S the restriction L : D (Q2) — F'is
CONtinuous.

(b) A sequence (f,) C D(Q2) converges in the topology of D(2) to f € D(Q) if and only if there exists
a compact set K C 2 such that

supp f C K, supp fr, C K, Vn and f, — f in Dg(Q). O

Observe that if 23 C Q then D(Q1) C D(Q2) and the canonical inclusion D(Q;) — D(Qs) is
continuous. Note also that the natural inclusion D(2) < 8§(V) is also continuous.

We now denote by D(2)Y the vector space of continuous linear functionals v : D(2) — C. We
will refer to the elements in D(2)Y as distributions. on ).

From Theorem 1.3.1(a) we deduce that a linear functional u : D(€2) — C is continuous if and only
if for any compact set K C ) there exists an integer ¥ = v > 0 and a constant C'x > 0 such that

[u(H < Crpuge x(f), VI € Dr(Q).
Again we have a natural pairing
(= =) : D) xD(Q) = C, (u, f) =u(f), Y(u,f) € D) x D).

Just like the space of temperate distributions we can equip D(Q2)" with a weak topology. This is the
smallest topology on D(2)Y such for any f € D(Q) that the linear map

D) = C, urs (u,f)

is continuous. The open sets of this topology are unions of polyhedra P(F'), where F an arbitrary finite
subset F' C D(Q2) and

PF)={ueDQ)Y; |(u f)|<1, VfeF}.
Example 1.3.2. Any smooth function f € £(€2) defines a distribution uy € D(£2)" by setting

(up,g) = (f,g) = /Q fgldz|, ¥g € D(w).

The above integral is well defined since the integrand f ¢ is continuous and has compact support. Thus
we have a natural embedding
E(Q) = D(N)Y
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and the resulting map is continuous with respect to the natural topology on €(£2) and the weak topology
on D(02). For this reason the distributions are sometime called generalized functions. O

The distributional derivatives of a generalized function v € D(€)" are defined as before
<a$ju7 SO> = —<U, amj SD>7 V()D € D(Q)
Example 1.3.3. Observe that if f € C°°(2) then
8xj’U,f = Uazjf in @(w)v. O

Note that for any open subset O — ) we have an inclusion D(0) — D(Q) and by duality, a
map D(2)" — D(0)Y called the restriction to O of a distribution on 2. We say that a distribution
u € D(N)Y vanishes on the open set O C € if it has a trivial restriction to O. Equivalently, this means
that

(u, f) =0, Vf € D), supp f C O.

Lemma 1.3.4. Suppose u € D(Q)Y and (O;);cy is a family of open subsets of ) such that vanishes on
Oy, Vi € 1. Then u vanishes on the union of the open sets Q.

Proof. Set O := [ J;c; O;. We need to show that

(u, f) =0, Vf e D(O).
Let f € D(0O). Since supp f is compact there exists a finite subset J C I such that
supp f C Oy := U 0;.
jeJ
We can now choose a partition of unity subordinated to the cover (O;);c s, that is, a collection of
functions { p; € C*°(0) };c such that

suppp; C O;, Vj € J and Z% =1.
jeJ
We set f; := ;f. Then f; € D(O;), so that (u, f;) = 0. From the equality f =, f; we deduce

(. ) = 3. 1j) = 0.

J
O

For any u € D(Q2)" we denote by O,, the union of all the open subsets O C (2 such that u vanishes
on O. Then O, is an open subset of 2, and u vanishes on O,,. The complement 2 \ O, is called the
support of u and it is denoted by supp u. Clearly, supp u is a closed subset of (2.

We define £(12)Y as the space of continuous linear functionals v : £(Q2) — C, that is, linear
functions u : £(2) — C such that there exists a compact set X C {2, and integer » > 0 and a constant
C > so that

[u(N)I < Cp, (f), Vf € &) (1.3.1)
Note that the inclusion D(w) < €(2) induces a continuous map £(Q2)" — D(Q)".

Theorem 1.3.5. The natural map E(Q)Y — D(Q)Y is injective and its image coincides with the space
of distributions with compact support.
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Proof. Letu € £(£2)Y. We want to prove first that « has compact support when viewed as a distribution
in D(Q2)V. We know that there exists a compact set K C (2, an integer v > 0 and a constant C' > 0
such that (1.3.1) holds. This shows that if f € D(Q) and supp f N K = 0 the u(f) = 0. This proves
that supp v C K, and thus u has compact support.

To prove the injectivity of the map €(€2)" — D(2)Y we consider u € E(£2)Y such that
(u, f) = 0,Yf € D(Q). (13.2)

and we have to prove that (u, g) = 0, Vg € £(€2). Choose a compact set i C (2, an integer v > 0 and
C > 0 such that (1.3.1) holds. This proves that

(u,g) =0, Vg e &(Q), suppgn K = 0. (1.3.3)
Next fix ¢ € D(Q2), such that ¢ = 1 on K. Then, Vg € £(2) we have
g € D(Q), supp(l —)gNK = 0.

Thus

(1.3.2),(1.3.3)

(u, ) = (u, 09) + (u, (1 = ¢)g) 0.

In view of the above proposition, and Example 1.3.2 we will introduce the notations
C™(Q) :=D(Q)Y, Cy>(Q) :=¢&(N)".
The natural inclusion D(Q2) — 8(V') induces a continuous ‘restriction” map
S(V)Y = C™>(Q)
This restriction is injective if and only if 2 = V. Also we have a natural restriction map 8(V') — £(Q2)
that and we obtain by duality an “extension” map
Cy () — 8(V).
Arguing as in the proof of Theorem 1.3.5 we deduce that this map is injective. In particular, we have a
sequence of inclusions
Cy (V) = 8(V) — C™(V).
A diffeomorphism F' : {2y — ()5 induces a continuous linear map
F*:C®(Q) —» C®(Q1), C(Q2) 2v—uoF € C®().
By duality we get a continuous linear map
F,:=(F")': Cy® () — Cy > (Q2),
called push-forward given by
(Fyu, f) = (u, F* f), Vf € C®(Qa). (1.3.4)
The restriction of the push-forward operation to C§°(£21) is more subtle than it looks. One might
think that Flu = (F~1)*u, for u € C§°(€2y). This is far from the truth.

Suppose u € C§°(€21) is a genuine smooth compactly supported function. We fix Euclidean
coordinates y = (y1,...,Ym) on 9 and Euclidean coordinates = = (x1,...,Z;) on ;. Then the
diffeomorphism F' is described by a collection of m smooth functions

Z/i:yi@lw--w@m), ]-Slgma
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while its inverse is described by m smooth functions

xj:xj(ylm"wym)a ]-Sjgm
We set

gz’ - 'det(gZ >1gi,jSm '

Set v := Fiu, Then v € C§°(Q2) and for every f € C*°(£2) we have

(0. F) = /Q o(y)F (), |dy| = / u(@) f(y(x)) |de| = / u(z(9)) () gy

Ql QQ

|dyl

T ox
=/QQ<F Dty |5

Ox
Iy
Remark 1.3.6. To give another interpretation to the operation

F: O(Q) — O ()

f(y) |dyl.

Hence

(Fou)(y) = (F~YH*u(y) - , Yu e CyP (), y e . (1.3.5)

we consider the compactly supported measure (i, on §2; defined by

pulB) = [ ula)ldal,
for any borelian subset B C €2;. We get a new measure 11, on ()3 defined by
Fop(B') = pu (F~1(B')),
for any borelian subset B’ C 5. The equality (1.3.5) implies that
Fipru = pipu,

i.e., for any borelian B’ C 25 we have

Fopa(B') = /B (Fan)(w) o]

In particular, for any u € C5°(£2;) we have

/Q ()| = /Q (R (y) b 0

The definition of the pushforward implies immediately the following result.
Proposition 1.3.7. If F' : Q)1 — Qs is a diffeomorphism, then the push-forward operation
F.: C§° (1) — C5°(922)

is continuous. O

We obtain by duality a continuous map
(Fo)Y : C7°(Q2) = C™°(Oy),

uniquely determined by
(F)u,v) = (u, (FLv), Yo e C°(Q.
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From (1.3.5) we deduce that if u € C*°(€Q3) C C~°°(€2) then (Fy)"u € C*°(£2), more precisely
(F)'u=wuoF = F*u. (1.3.6)

Because of this equality we will refer to the operation (F} )V as the pullback of a generalized function
via a diffeomorphism and we will denote it by F™.

If O i) Qs i) Q)3 are diffeomorphisms then
(GoF)y=GxoF, and (Go F)" =F* o G".

Example 1.3.8. Let Q = (0,00) C Rand F : Q — ( the diffeomorphism f(x) = z*, k # 0. Fix
xo, Yo € (0,00). We want to compute Fyd,, and F*0,,.

We have

<F*59607<10> = <55E0’F*Qp> = <5w0790($k)> = Qp(l‘l(;)
Hence
F.o,, = 590'8 = 0F(a0)-

To find the pullback of d,, we need to describe Fip for ¢ € C§°(€2). We lety = F(z) = z*, so that
z = F~!(y) = y'/*. Using (1.3.5) We have
dx

de| 1 ey 1
| = R ey'").

(Fep)(y) = p(z) - k

Then
N 1 1/k-1 1/k
(F 5ym<P> = <5yan*<P> = %yo/ @(yo/ )
This shows that

« 1 1/k—1
F 5y0 = %yo/ 5F_1(yo)' O

Let u € C~°°(2). We say that u is smooth at zy € € if there exists an open neighborhood O of x¢
in © and a function v € C*°(0) such that u|p = f, i.e.

() = /O v(z)p(a) |de], Vo € C5°(0),

The singular support of u is the set of points x such that u is not smooth at x. The singular support is
a closed subset of €2 denoted by sing supp u.

We conclude this section with a fundamental result due to Laurent Schwartz. We need to introduce
some notation. Given u,v € C*°(Q2) we define u X v € C*(Q x Q) by

(uXv)(x,y) = u(z)v(y), Vr,y € .
Observe that any generalized function K € C'~°°({2 x 2) defines a linear operator
Tk : C5°(Q) — C™°(Q),

uniquely determined by
(Tru,v) = (K,vRu), Yu,v e C;(N).

Observe that if K were a genuine smooth function {2 x €2, then the above equality would imply that

(Tiw)(@) = [ K(.)ulw) dyl, Yu € CF(@), €.



18 1. The Fourier transform and Sobolev spaces

Theorem 1.3.9 (The Kernel Theorem). (a) For any generalized function K € C'~°°(Q2x Q) the induced
operator Ty = C°(Q) — C~>(Q) is continuous.’

(b) If T : C°(Q) — C~>(Q) is a linear continuous* operator; then there exists a unique generalized
function K € C~°(Q x Q) such that Tiy = T. The generalized function K is called the Schwartz
kernel of T. O

For a proof we refer to [H1, §5.2].

1.4. Generalized sections of a vector bundle
Often in geometry we need to work with vector valued functions. Suppose that E' is complex Hermitian
vector space of complex dimension . We denote by EV its complex dual,

E" := Hom¢(E, C).

We can define in a similar way the space $(V, E) of smooth functions f : V — FE with temperate
growth. The Fourier transform of such a function is then the function

7le) = /V e~H60) f() |da..

The dual §(V, E)" is defined in a similar fashion and we observe that we have an inclusion

8(V,E") = 8(V,E)", 8(V,E")3 ¢~ u,c8(V,E)

(g f) = (o ) = /V (o0 fp |da], U € S(V,EY),

where (—, —)g : F X E" — C denotes the natural bilinear pairing between a vector space and its dual.

If (2 is an open subset of V' then we define C§°(€2, E') and C*°(€2, F) in an obvious fashion. Their
duals C5° (€2, E)Y and C*>°(Q2, E)" are defined as before. Similarly C*°(€2, E') can be identified with
the subspace of C3°(€2, E)Y consisting of distributions with compact support. Observe that we have
natural inclusions

C®(Q,EY) — C (Y, E)Y, CP(Q,EY) — C®(Q, E)Y
and for this reason we introduce the notations
C > (QE):=C(Q,E)Y, Cy>®(Q,E) :=C®Q,E")

More generally, let M be a smooth m-dimensional manifold. We denote by C,, the trivial complex
line bundle over M. Fix a smooth complex vector bundle E — M, a Riemann metric g on M, a
hermitian metric A on E, and a connection V on E, compatible with h. Denote by VY the Levi-Civita
connection, and by |dV}| the volume density determined by g. Denote by E" the dual bundle of E. By
coupling the connection E with the Levi-Civita connection we obtain connections *VV on each of the
bundles (7*M)®*~1) @ EV, and then an operator

V& C®(EY) — C®°(T*M®" @ EY)
obtained from the composition
v VY v 2V ®2 v 3V * 1 r@(r—1) v 'V ko @ ]
E' —TMFE —T"M**QFE — - ---—T"M QFE —T"M*"®FE". (14.1)

3The continuity should be understood with respect to the natural topology on C§°(€2) and the weak topology on C'~°° ().
4in-
Ditto.
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The metric g and h also define metrics on the bundles T* M @ EV.

For every compact subset K C M, any integer v > 0 and any smooth section f of EY we set

Pux(f)= sup [V f(@)gn
zeK, j<v

A generalized section of E is then linear map u : C§°(EY) — C such that, for any compact set X' C M
there exists a nonnegative integer v and a constant C' > 0 such that

lu(f)| < Cpur(f), Vf e C®(E"), supp f C K.

Observe that if 1) is a smooth section of E, then 1) determines a generalized section u,, described by

up(6) = (b, 8) = /M<w,¢>E|dVg,l, Vo € CF°(EY),

where (—, —)g : E ® EY — C,, denotes the natural pairing between a bundle and its dual.

) 3k ok
1 A word of warning! Let us observe that the above correspondence
C*3¢r—u,cC™™

depends on the choice of metric g! To see how this happens, for every ¢ € C°°(E") and any metric g
on M we denote by u,, , € C~°°(E) the associated generalized section. If go, g1 are two metrics on

M then

1
Ugp,g1 = © Uap,gos (1.4.2)
Pg1.90

where pgy, 4, is the smooth positive function on M uniquely determined by the equality

|qu1 (x)‘ = Pg1,90 (x) |deJ0 (x)‘

To eliminate this pesky dependence on metric we would have to introduce the notion of half-density,
and generalized half-density, but we will not follow this approach in these notes. A nice presentation
of this point of view can be found in [GS, Chap.VII].

) 3k ok

We denote by C~°°(E) the space of generalized sections of E, and by C;°°(E) the space of
generalized sections with compact support,

C™®(E) == C°(EY), Cy™(E):=C>(E")"
The proof of the following result is left to the reader.
Proposition 1.4.1. The isomorphism classes of the topological vector spaces C~>°(E) and Cy > (E)

are independent of the choices of metrics g, h and connection V. O

Let us observe that when M is an open subset of the Euclidean vector space V and E = C,; then

C™(Cy) = O (M).
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Remark 1.4.2. Suppose that 1, C V and g1, g2 are Riemann metrics on 2; and respectively (2o.
If F: Q1 — Qo is a diffeomorphism, then the induced push-forward map depends on these metrics.

More precisely, if we describe the inverse of F' as a collection of smooth functions
x] = xj(ylw"?ym)a ,7 = 17"'7m7
where () and (y;) are Euclidean coordinates on €2; and respectively {29, then we can write
[V ()] = wi(@)|dal, [dVy, ()] = wa(y) |dyl
If u e C§°(£21) and v € C°(€22) we have

<wwm=wmwm=4wm@@mmww

ox ox

wi(z(y))
= w(x(y))v(y)w (x d:/umvw d
| et o) |57 vl = [t “L 28 |5 iy
wi(z(y)) |9z )
= u(z —_ ) dV, .
[ (et =5 ZE) ) v, )
Hence (z(4)) |
wr (z(y x
Fou=ulz — .
)00 |y
If yo € Qo, then for any u € C5°(£2;) we have
* w1 (7(yo)) |0z
F*6,,u)q, = (0y,, Fxu)q, = _— = )
(8 )0, = {6 P, = ulalun))*, 0 50
so that, if we set zg = F~1(yo) we deduce
5, = wi (o) | Oz .
wa(yo) |0y |y—y,
If Q1 = Qy, F = 1 and g; is the Euclidean metric, then w; = 1. We set w = wo, and we deduce
1
(Lou)(x) = w(x)u(x) 0

Example 1.4.3. Suppose (M, g) is smooth Riemann manifold of dimension m. For every 0 < k < m
we set
AETM .= A*TM @ C, AET*M = A*T*M @ C.
Observe that A(IETM V can be identified with AcT* M so that a generalized section of A{(‘ETM vV can be
identified with a continuous linear functional
w: QF(M) := C(APT* M) — C.

These are known in geometry as currents of dimension k. The space of such currents is denoted by
Qi(M), so that
C™®(AET*M) := Qu(M).

Observe that an orientation of M induces an inclusion
Qm_k(M) S0 = uy € Q(M), (uy, ) = / nAa, Ya € QIS(M),
M

where the orientation of M is needed to make sense of the above integral.
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Any oriented, properly embedded, k-dimensional submanifold S < M defines a current [S] €

(181, ) ::/Sa, Vo € OF (M), .

The kernel theorem extends to this more general context but its formulation requires more care.

For i = 0,1 we denote by m; : M x M — M the projection (z¢,z1) — x;. Given complex
vector bundles E; — M, i = 0, 1 we define the vector bundle Ey X Ey — M x M by

E X E, :=mEy)@mkE;.

Given sections u; € C*°(E;) we define ug K u; € C*°(EpE7) to be the sections 7§ @ 7} u.
A generalized section K € C~*°(E;" X E) defines a linear operator

Tk : C5°(Ey) — C™*(Eh)

uniquely determined by the equality
(Tku,v) = (K,vRu), Yue C{°(Ey), veCF(E),

where we used the natural identification

(E\RE")" = E,"RE,.
Observe thatif K € C*°(E1XE,") and we identify the bundle E1XFE," with the bundle Hom (7§ E, 7] E1),
then we can alternatively define T’k via the equality

(Tku)(x / K(z,y)u(y) |[dVy(y)| € Ei(z), Yz e M, ue Cy°(Ey).

The kernel theorem generalizes as follows.

Theorem 1.4.4. (a) For any generalized section K € C~°(E; K E") the induced linear operator
Tk : C§°(Eo) — C~°°(E)) is continuous.

(D) IfT : C§°(Eoy) — C~°°(E) is a linear continuous operator, then there exists a unique generalized
section K € C~°(E 1 X E\Y) such that Tix = T. The generalized section K is called the Schwartz
kernel of T. O

1.5. Sobolev spaces

For every s € R we define A, : 8(V') — 8(V) to be the continuous linear operator

8(V) > f(x) = (2)" f(z) = (1+ )2 f(z) € 8(V).
This defines by duality a linear operator
A S(V)Y = 8(V)Y,
whose restriction to $(V') coincides with [A\ For this reason we will continue to denote the operator
A by A Note that it is bijective and its inverse is A_S
We define the Sobolev space H*(V') to be the complex subspace of (V)Y consisting of distribu-
tions f such that A;f € L?(V, |d¢|). Equivalently, this means that

Fe L2V, (€)¥|de]), or feA_L*(V,|dg)),
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so we can define
HA V) = F(L2(V, (©%]de]) ) = (R 22V, Jag)) ).
We can equip H*(V') with the inner product

(f.g si—/f 9(6) (©)*|dg| = (f, 9) L2(V,(£)25|de]) >
and corresponding norm

1/2
Il = (| IFORG+IePyiae))
This proves that the Fourier transform defines an isometry.
F: H*(V) — L*(V, (€)**|dg)).
From Plancherel’s theorem we deduce that
H(V) = L*(V, |dz]).
The following result is an immediate consequence of the above definitions.
Proposition 1.5.1. The space H*(V') equipped with the inner product {(—, —)s is a separable Hilbert
space. Moreover 8(V') is a dense subspace in H*(V'). 0

Proof. We use the fact that $(V') is a dense subspace of the space L%(V/, |dz|). We have A, f € L%(V').

We can then find a sequence of functions g, € $(V') such that g, L—2> IAXSf Weset f, == F 1 ( A, v )
and we observe that f, € $(V) since A_,g, € $(V') . Then

£ — FI? = llgw — Asf]|22 — 0.
O

Observe that the inclusion §(V') < H*(V') is continuous with respect to the natural topology on
8(V') and the above Hilbert space topology on H*(V"). Since C§°(V') is dense in (V') (see Exercise
1.3) we deduce the following useful density result.

Corollary 1.5.2. C§°(V') is dense in H*(V'), Vs € R. 0

Observe that HY (V') is isometric to the space L?(V, |dx|), while for sy < s; we have an inclusion
HA(V) € HOV), [l < [[ullor, Yu € H(V). (15.1)
Proposition 1.5.3. For any multi-index «, and any real number s the linear operator
D*:8(V)" —= §(V)¥

induces a continuous operator D* : H*(V') — H*~lol(V).
Proof. We use the formula 5‘1\]" (& =¢~ f(ﬁ ) to deduce that

D2 10 = [ I PIFOR (14 162) st < [ IFOR (14 162) el = 112
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From Proposition 1.5.3 we obtain the following alternate characterization of the spaces H*(V), k
nonnegative integer.

Proposition 1.5.4. A temperate distribution v € 8(V')V belongs to the Sobolev space H*(V), k €
Z>o if and only if uw € L*(V,|dx|) and all the distributional derivatives 0%u, |a| < k, belong to
L?(V,|dz|). Moreover

=3 /V D2 f()]? |da]. 0

| <k

We denote by H*(V')¥ the topological dual of H*(V'), and by
(—,—)s: H¥ (V)" x H(V) = C
the natural pairing, between a Banach space and its dual. For u,v € $§(V') we have

(1.1.13)

{(u, v)) = / u(@)o(z) |de| = / u(§) v(=¢) |dg],
\4 \4
which implies that
[((u, o) | < |lull=s - |lvlls, Yu,v € 8(V), VseR. (1.5.2)
Since §(V') is dense in H*(V'), Vs € R, the above inequality shows that the pairing
(== :8(V)x8(V)—=C
extends to a continuous bilinear map
{(=,=):H*(V)x H(V) = C.
We obtain a continuous linear map
Ls: H (V)= H (V)Y ur— Ls(u) = {u,—),
ie.,
(Ls(u),v)s = (u,v)), Yue H V), ve H*(V).
Theorem 1.5.5 (Duality Principle). The linear map
Lg: H (V) — H*(V)Y, ur— L(u):= {u,—))

is isometry of Banach spaces.

Proof. We carry the proof in two steps.

Step 1. The case s = 0. The bijectivity of linear map Lo : L?>(V) — L?(V')V is the classical Riesz
representation theorem for Hilbert spaces. The fact that it is an isometry follows from the elementary
fact

sup | ({u, )| = [|u]-

vl L2=1

Step 2. The general case. For any » € R we consider the operator
A 8(V) = 8(V), urs FL(AT).
Since () = (—¢) we deduce
(Ayu,v)) = (u, Ayv)), Yu,v e (V). (1.5.3)
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By construction, the maps A, induce isometries
H*(V)— H*"(V), Vs,r €R.
In particular, it induces isometries
AV HT(V)Y — HY(V)Y, Vs,r € R.
The bijectivity of L is a consequence of the identity
Ls=A_YoLgoA,.
Indeed, for any u,v € 8(V') we have

(A_YoLgoAsu, v >S = (LooAgu, A_sv >0 = (Asu, A_sv)) (15:3) (A_sAsu,v)) = (u,v)).

Since §(V) is dense in all the subspaces H!(V') we deduce that the above equality holds for all u, v €
L?(V'). We see that L is an isometry since it is a composition of isometries. O

Proposition 1.5.6 (Interpolation inequality). For any real numbers sy < s1 < s and any € > 0, there
exists a constant C(e) = C(e, so, 51, 51) > 0 such that

[£llse < ellfllse + CENfllsor VF € 8(V). (1.5.4)

Proof. Fix ¢ > 0 and consider the function

7”251 _ 62,,,.282

ge : [1,00) = R, ge(r) = r2s0

Note that lim,_, » g=(r) = —00 so that

C(e)? = sup g-(r) < oo.
r>1

Thus, if we set r = (£) we deduce
(€)% < 2(6)*2 + C(e)*(§)*
so that, for any f € $(V') we have

IFI2, < IF12, + CEPIAIL < (el flls + CENfllso )™
O

Remark 1.5.7. Sometimes it is useful to have some idea on the dependence of C'(¢) on e. To do this
we use the classical inequality’

We take
81 =950

_ 2t
t= a=¢e2r?2 h=g Tip20,

52 — 80’
so that
s1 = (1 —t)so + tso, atp(t=t) = P28t

and we deduce

_ 2t _251*50
P21 < te?r?52 4 (1 — t)e U0 250 < 2252 4 o7 “p=sr %0,
_ 8130
Thus we can take C'(e) =& 251 O

SUse Jensen’s inequality for the concave function z — log x.
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The previous three results are often used in conjunction with the following trick.

Theorem 1.5.8 (Interpolation theorem). Suppose A is a linear operator
A:8(V)— §(V)Y
such that there exist real numbers sg < s1,tg < t1 and positive constants Cy, C1 with the property
1AFll, < C5l1 ey, ¥i =01, f€S(V),
Then for every u € [0, 1] we have
where s(z) = (1 — z)sp + zs1, t(z) = (1 — 2)tg + zt1, Vz € C.

Proof. We follow the approach in [Se, Thm.2.5] based on a classical result of complex analysis.
Phragmen-Lindelof Theorem [f F'(z) is bounded and analytic for Re z € [0, 1] and

[F(iy)| < Co, [F(1+1iy)| <C1, Vy€eR,
then

|F(z +iy)| < C;7“CY Yz €[0,1], y€R. 0
For a proof we refer to [La, Thm. XII1.6.4].

For a complex number z we denote by A, the linear operator

A :8(V) = 8(V), Af=F (O f(9))

Then A, is an isometry

Az HSTRG(V) - HY(V),
ie.,

[Azflls = [[fls+Re(z), Vf €8(V).

Given f,g € §(V) and z € C we define

F(2) = (AA_s) f, Mii2y9))-
We obtain a holomorphic function F'(z) : C — C. Let us prove that it is bounded in the strip {0 <
Rez < 1}. For z = x + 4y we have

(1.5.2)
[(AA_s) s Mg < IJAA o) Fllea 1Ay 9Nl =0 < ClIA_si) Fllso 1A 4(2) 9Nl () -1,

(1.5.1)
= C|flls;—s@9llt@)-s < Cllflls1—s0llgllto—t:-
Now observe that

sup [F(2)] = sup [|AA s flleo 1 Asciy) 9ll-to < CollA—so fllso [Arogll—1o = Collfll2lgll 2,
Y

e z=0
and similarly
sip |F(z) < Chllfllzzllgll -

Rez=
Invoking the Phragmen-Lindel6f theorem we deduce that for any x € [0, 1] we have

(AN —s(ari) f Mirin O] < Co ™ CE N fll2llgllzz, VF g € 8(V).

Now choose f and g of the form

f= As(a:—i—iy)f) g = A—t(m—i—iy)gv
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to conclude that for any f,§ € $(V') we have
[(AF, a0 < Co™"CE I flls(@) 1311 -e0a)
The duality principle implies
1A ) < Co~"CE I flls(wys Y € 8(V).
O

Corollary 1.5.9. Let p € C§°(V') then, for any s € R there exists a constant C = C(s,¢) > 0 such
that

leulls < Cllulls, Yue8(V).

In particular, the operation of multiplication by ¢ induces a bounded linear operator H*(V') —
H3(V).
Proof. Let s > 0 and k = |s| + 1. Consider the linear operator

A:8(V)—=8(V)C8(V)', ur ou.
We have

2 2 2 2

JAull} = | lpul? lda] < (sup ()] ) - flull,
|4 €V

and
JAul? = oul? = 3 / D ()2 |da] < Clky) 3 / D*|? |da| = C(k, @)|Jull?.
la|<k la|<k

Using the interpolation theorem we deduce that for any s € [0, k] there exists a constant C' = C/(s, ) >
0 such that

JAull, < Cllulls, Vu € S(V).
This proves the claim for s > 0. Now observe that for any u, v € §(V') and s > 0 we have
| (Au, v))] = [(u, Av)| < [Julls[[Av]ls < Cllul—s[lv]ls.
Invoking the duality principle we conclude
vl = 165(Au) 2y < Callul s, Vu € S(V)

which proves the claim for negative exponents —s. O

Theorem 1.5.10 (Morrey). Let s > m/2 = dim V' /2. Then for any o € (0, 1) such that s > o +m/2
and any f € H*(V') there exists a Holder continuous function f € C*(V') such that f = f a.e. on
V,ie.,

/f 2) |dz|, Vg€ 8(V).

Moreover, there exists a constant C' > 0 that depends only on s, o and m such that, for any v € V,
|v] <1 we have

f@) < Cliflls, [f(utv) = fw)] SC[f]ls - |v]* YueV. (1.5.5)
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Proof. Let us observe that for any v € V' we have (see (1.2.5))
~ 1

6v(£) = ) e W9 e LX(V)

and we deduce R
(€)76,(¢) € LA(V), Vs >m/2.
Using the pairing (—, —)) : H*(V) x H*(V') — C we deduce that for any f € §(V') we have

(60 = [ HOF=)ldel. = fw).
Using (1.5.2) we deduce
[f (@) = [€0ufN] < N0ull sl flls,
[f(u+v) = f(u)| = [Gurv = Ou, /)] < [|durv = Soll—s - || f]s-
Thus, we need to estimate ||0,[|% , and ||0,4, — 0u||? 4 for u,v € V, |v| < 1. We have

2 _ 2\—s (1.12) o2 T(P)(s—p)  (m—2)
ot = [ (vt jag 047 P2 TORG P, (n22)

Next we have,

||5u+v — 5uH2_S = /V(l + |£|2)—3|€—i(u+v,§) o e—i(u,g)’2 ‘d§|
= [ s gpygeseo —ap
\4

= (L+[¢[%) 78 — 17 |dg] +/ (1+[€%) 7 e8) — 17 |de]

1€1<1/|v| 1€1>1/|v|
<Pl [ POl e O S 1P g+ [ ey lagl,
1€]<1/]v] 1€1>1/v|
I I
Now observe that
) Yl pm+1
Il S O'm71|'U| /0 mdr

Now choose a € (0, 1) such that s > o + m/2 so that
(1 + 7“2)5 > (1 + T2>a+m/2 > r2a+m.

We conclude that®

1/|v]
ot [ v
0 2 — 2«

Since |v| < 1 and 2s — m > 2a we deduce
0 m—1 o]
r Om— Op—
I, = Uml/ g dr < crml/ P28 g = ML 25 < 27”71|v|2a.
1) (1 +72) 1/l 2s—m s—m

This proves the inequality (1.5.5) for any f € 8y. To prove it for any f € H*(V') it suffices to choose
a sequence (f,) in 8(V') that converges to f in the norm of H*(V'). Then f,(x) — f(x) for almost
all x € V. We can now let ¥ — o0 in the inequalities

[fo(@)] < Cllfulls, [fo(u+v) = f(u)] <Clfulls - o]

OHere we use the assumption o < 1.
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Remark 1.5.11. The above theorem can be a bit strengthened. Namely one can prove that if f €
H#(V'), then besides being Holder continuous, the function f decays to 0 at infinity.

To prove this let us first observe that f € L*(V, |d¢]). Indeed,

[ \F©nas = [ 1@ ag
< ([ 1o 23|d€|>1/2 (/L <5>—28|df|)1/2=c<s,m>ufrs.

From the Fourier inversion formula we deduce that f is the Fourier transform of the L'-function & —
f(=§). We can now invoke the Riemann-Lebesgue lemma to conclude that lim|,|_,, f(z) = 0. Here
is fast proof of this fact courtesy of [ReSi, Thm. IX.7].

Observe first that if f € S(V'), then f € $(V') and thus decays to zero at co. Moreover,

[fllzee < [1F NIz

The space 8(V) is dense in both L*(V') and the Banach space C°(V, o0) of continuous functions
vanishing at oo equipped with the sup-norm. Thus the Fourier transform extends to a continuous map

F: LY V) — C®(V,0). O

Theorem 1.5.10 coupled with Proposition 1.5.3 imply immediately the following result.

Corollary 1.5.12. Let k be a nonnegative integer, i € (0,1), and s > p+k+m/2. Then any function
f € H*(V) belongs to the Hilder space C**(V') and there exists a positive constant C' that depends
only on s, 1w and m such that,

[DYf(u)] < Cliflls; [D*f(u+v) = Df(u)]| <C|fls - o],
Vu,v €V, a €%, |v| <1, |laf <k O

Theorem 1.5.13 (Rellich-Kondrachov). Fix real numbers t > s and a compact subset K C V. If
(uy) C HY(V) is a bounded sequence such that

suppu, C K, Vv,

then a subsequence of (u,) converges in the norm of H*(V').

Proof. First, we replace the sequence (u, ) with a sequence ( f,)) of smooth compactly supoorted func-
tions such that

lim |Ju, — ful|t = 0.

V—r00
Choose a compactly supported smooth function ¢ : V' — R such that ¢ = 1 on K. Next, choose a
sequence of functions (g, ) in 8(V') such that

1
gy —wlls < llgp —wnlle < o

Set f, = vg,. Observe that u, = pu, so that f, — u, = ¢(g9, — u,). Corollary 1.5.9 implies that
there exists a constant C' > 0, independent of v such that

C
fo —unlls + || fv — up|le < — Yv > 0. (1.5.6)

We will show that f,, admits a subsequence convergent in H®. The inequalities (1.5.6) will then imply
that the same is true for the original sequence (u, ).



1.5. Sobolev spaces 29

Using (1.2.8) and the equality f, = ¢g, we deduce
r" R0 = 2 nle) = [ =gl ldnl, e
We deduce that ﬁ,(ﬁ ) is differentiable and

0, Fo(—€) = (2m) ™2 / 3, 3(€ — n)go () 1.
\%
Hence

10, fo(—€)] < (27r)m/2/vl<95j<ﬁ(§—n)\<n>t/2|§u(n)\<77>t/2\dn!

1/2
S(27r)_m/2!gu!t</v\3sj95(§—77)!2<77>_t!dn\) :

Since » € 8(V') we deduce that for some constant C' > 0 we have

(1.1.15)
10, P(6 —n)[> < Cle —n) 172 < O gy gy~ mm2lt

and we deduce that, for some constant C' > 0 independent of  we have
106, £ (=€) < Ch(O)lgulle, h(&) = (T HHAD2 vy ¢,

A completely analogous argument yields a similar estimate for |ﬁ,(£ )|

From the Arzela-Ascoli theorem we deduce that a subsequence of ]?,, converges uniformly on the
compacts of V. For simplicity we continue denote this subsequence with (f, ). We want to prove that
f, is a Cauchy sequence in the norm of L2(V, (€)23|d¢|).

Fix ¢ > 0. We have

Iy — fullt = /V FolE) = Tal©) ()% de]

- / F€) — Fal©)2(€)%|de] + /
|€|<r €]

I<r I>7‘

) 17 (€) = Ful€)1246) | de]

Now observe that
I, = /|§|> ()72 F,(€) — Ful€)P(€)H|de] < 1+ 12722 £, — full2.

Now fix r > 0 such that
2

9(t—s €
L+ 209 f, = fulE < S

With r > 0 fixed as above, we deduce from the uniform convergence of ﬁ,(f ) on the compact {|¢| < r}
we deduce that there exists N > 0 such that for v, u > N, and any |¢| < r we have

P 82 62

(&) = FulO)P(€)* <

= ol {[E[ <7t 2w

, Y, .

We deduce that
HfV - fMHS < g, V,U,,V Z N.

The proof of Theorem 1.5.13 also yields the following useful corollary.
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Corollary 1.5.14. Let ¢ : V' — C be a smooth, compactly supported function. Then for any t > s the
linear map
H' (V)3 frof € H(V)

is continuous and compact. O

Let €2 be an open subset of V. For s € R, and K C () a compact set we define
H () = {u e C™(Q); pue H(V), VoeD(Q)},
H}(Q) = {ue H(V); suppuC K }.
The space Hj,(12) is a Hilbert space. In fact, it is a closed subspace of H*(V'). We then define

Honp () = [ Hi ().
K

We equip H,p,,(€2) with the finest locally convex topology such that all the inclusion maps
Hj(Q) = Homp(€)
are continuous.
We can put a locally convex topology on H}} (2) as follows.
e Choose an exhausting sequence of open precompact sets
Mehme - eWeyne e Q=].
n>1
e For any n € Z~¢ choose smooth function ¢, € D(Qy41), on = 1 on .
e Define

Pn = DPsn : Hﬁjc(Q) - R, pS,n(f) = ”SOanSa Vfe Hlsoc(Q)-

e The locally convex topology of H? () is the topology defined by the collection of semi-

loc
norms {ps n }n>1-

Proposition 1.5.15. The inclusion of C§°(€2) in Hg,,,(S2) is continuous and has dense image.

Proof. We follow the approach in [Pet, Lemma 4.5.2]. Let
CE(Q) = {ue C5°(Q); suppuC K }.

The inclusion CFE(2) — H(€2) is continuous and thus the inclusion of C3E(2) — HZ,,,(2) is
continuous for any compact X C €. This is equivalent to the fact that the inclusion C5°(£2) —

Hopnp (£2) is continuous.

Ifu € HZ,pp () we can find ¢ € C5°(€2) such that pu = u. Now choose u, € §(V') such that
up, — win H*(V'). From Corollary 1.5.9 we deduce that there exists a constant C' > 0 depending only
on ¢ and s such that

lo(u = un)|ls < Cllu = un|ls, Vn.
Thus,

pun, C C57(Q) and pu, — pu=u in Hg,,, ().

Proposition 1.5.16. The space C3° () is dense in H;:

loc

(Q), forany s € R.
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Proof. We need to prove that for any uv € H;

(@), and any ¢ € C§°(£) there exists a sequence
up, € C5°(§2) such that

Jim {lp(u —up)||s = 0.

Choose a function ¢ € C§°(£2) such that ¢) = 1 on supp p. Then ¢u € HZ,,,,(£2) and there exists
up, € C5°(82) such that ||u,, — ¢ul|s — 0. We deduce

loun — @ulls = ||pun — eYulls < Cllu, — Pulls — 0.

Another simple application of the Interpolation Theorem 1.5.8 is the following useful result.

Proposition 1.5.17. Let F' : Q1 — Qg be a diffeomorphism, and ¢ € C§°(21), n € C3°(X2). Then for
any s € R there exists a constant C' > 0 such that for any v € Hf (Q1) and any v € Hf (Q2) we
have

1 1 "
cleulls < B (pu)lls < Cligulls, Flleuls < [1F7@mv)]ls < Cllnvlls. O

Remark 1.5.18. The Sobolev spaces have an obvious vectorial counterpart. If E is a complex Hermit-
ian vector space of dimension r, then

H*(V,E) = {ue8(V,E)" / (1+ [€[*)*[a(€) [ |dg| < oo }.
\4

The Duality Principle (Theorem 1.5.5) continues to hold for vector valued Sobolev distribution and has
the following form. We have a natural pairing

(= =) : S(EY) x8(E) = C, (u,v)) = /V<U(w)7v($)>E!d$\,

where (—, —)g : EY x E — C is the natural pairing between a vector space and its dual. This pairing
satisfies the inequalities

[ (u, v)| < flull—s - [lo]ls,
and in this fashion we obtain a continuous linear map

Lp:H *(EY)— H*(E)" (1.5.7)
and as in the scalar case we deduce that this is a bijection. The spaces H¢,,,,, and Hy . are defined in a
similar fashion. O

1.6. Exercises

Exercise 1.1. (a) Prove that function

4:8(V) % 8(V) = [0,00), d(f,0) = 3" g min(p,(f ~9),1)
n>0

is a complete, translation invariant metric on 8(V'), and the topology defined by this metric coincides
with the natural topology’ of §(V), i.e.,

lim d(f,, f) =0<=f, — f inthe natural topology of $(V').
n—oo
(b)* Suppose N C 8§(V) is a barrel i.e., it satisfies the following conditions.

7In modern parlance, the space (V') with its natural topology is a Fréchet space.
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(b0) It is closed.

(bl) It is absorbing, i.e., for every f € 8(V') there exists e; > 0 such that tf € N, V¢t € C,
t| < ef.

(b2) Itis convex.

(b3) Itis balanced,i.e., \N C N, ¥\ € C, |\| < 1.

Prove that N is a neighborhood of 0. Hint. Use Baire’s theorem stating that a complete metric
space cannot be written as a countable union of closed sets with empty interiors. O

Exercise 1.2. Prove Proposition 1.1.2. O

Exercise 1.3. Prove that for any f € S(V) there exists a sequence of smooth, compactly supported
functions f,, : E — C such that f,, — f in the topology of §(V') as n — 0.

Hint: Choose a compactly supported function ¢ : E — C such that |p(z)| = 1, V|z| < 1, define
‘Pn(x) = go(x/n), Vr € V? ne Z>07
and then show that o, f — fin §(V). O

Exercise 1.4. Prove that the Fourier transform F : §(V')¥ — 8§(V')" is continuous with respect to the
natural topology on §(V'). O

Exercise 1.5. Let p € (1, 00). Prove that the natural inclusion
LP(V,|dz|) — 8(V)", LP(V,|dz|) > f+— up € 8(V)¥

is continuous, with respect to the natural topology on LP (V| |dx|) and the natural topology on 8(V')".O

Exercise 1.6. A subset A C 8(V) is called bounded if for every p, s > 0 we have

sup sup |z|*|D*f(z)| < oc.
feEAzEV |a|<s
(a) Prove that if A C §(V') is a bounded subset in (V') then its closure is also bounded.
(b) Prove that A is bounded if and only if for any neighborhood N of 0 € §(V') there exists g > 0
such that
tf eN, VteC,|t| <eo, VfeA
(c) Prove that if A is a closed and bounded subset of $(V'), then any sequence in A admits a subse-
quence that is convergent in the natural topology of S(V').
(d) If u,, € 8(V)' is a sequence of temperate distributions converging weakly to v € 8§(V')’ then for
any € > 0 the set
{£es8(V) fiun)l <&, Vn>1}
is a barrel (see Exercise 1.1(b)).
(e)* If u, € 8(V)" is a sequence of temperate distributions converging weakly to v € §(V)¥, and

A C §(V) is a bounded subset, then the resulting linear functions u,, : A — C converge uniformly
(on A) to the function u : A — C. O
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Exercise 1.7. Prove that if f € L'(V'), then the Fourier transform of the temperate distribution defined
by f is the distribution defined by the bounded function

gw/ve—“f’f)f(mdm O

Exercise 1.8. Consider the function
©:V\{0} = C, )=z, 0<A<m=dimV.

As explained in Example 1.2.1 this function is locally integrable and has polynomial growth and thus
it defines a temperate distribution u,. Show that its Fourier transform is the temperate distribution
represented by the locally integrable function with polynomial growth C|¢|*~™, where the constant C'
is determined from the equality

C/ €A meIel/2 gg| = / 2| e 7112 |da. 0
\%4 \%4

Exercise 1.9. Let u € C~°°(V') Prove that the following statements are equivalent.

(a) The support of u is the origin {0} C V.

(b) The distribution w is a finite linear combination of the Dirac distribution dy and some of its
derivatives.

O

Exercise 1.10. Consider the diffeomorphism F' : R — R, F(z) = cz, ¢ > 0. Let dp be the Dirac
distribution concentrated at 0 and denote by d;, its derivative. Express the distributions F..dg, F*dy,
F.,¢&), and F*§], as linear combinations of &y and . O

Exercise 1.11. Let s > %dim V.
(a) Prove that the map
Vovid, € H3V)
is continuous with respect to the natural topologies on V' and H*(V).
(b) Suppose A : §(V') — §(V) is a linear map such that, for any s > 0 there exists Cs > 0 such that
[Aul[s < Csllul|-s, Vu € 8(V).

Prove that A : (V') — 8§(V) is continuous and the dual map A : §(V')¥ — 8(V')" induces continu-
ous linear maps AV : H=*(V') — H*(V) forall s > 0.

(c) Let A as in part (b) . For any z,y € V and s > dim V/2 we set
Ka(z,y) = {(dy, A'0z)s.
where
(== : H(V) x H¥(V) > C
is the pairing in Theorem 1.5.5. Prove that K 4(z, y) depends smoothly on z,y € V, for every $(V)
the function y — K 4(x,y) f(y) is integrable and

(Af)(x) = /V K. 9)f (v)dy. 0

Exercise 1.12. Prove Proposition 1.5.17. Hint: Mimic the proof of Corollary 1.5.9. O
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Exercise 1.13. Let f € H'(V). Fix an orthonormal basis (e1, ..., e;) of V. Let h = Yot hiej €
V', and set

flw) = 5 (Fla + th) = f(2)).

Prove that as ¢ — 0 the functions f; converge in the L2-norm to the function o, 0if(z)h;, where
0;f € L?(V) are the distributional derivatives of f. O



Chapter 2

Pseudo-differential
operators on R".

In this chapter, we will continue to denote by V' a fixed, real Euclidean space of dimension m, and
by 2 an open subset in V. We will define the pseudo-differential operators following the approach in
[H3, Shu] based on oscillatory integrals.

2.1. Oscillatory Integrals

Let €2 be an open subset of V. We consider a scalar differential operator
A=C"(Q) - C*(Q), Au= Z ao()05u = Z i1 ag (z)D2u.
|la|<k la|<k
Define the total symbol of A to be the function
oA, AxV = C, oa(@,§) = ias(x)¢".
loo| <k
For any u € D(Q2) we have u € §(V') and we can write
Lu= 3 o @F 5 [ e (z it*laa(2)”) )a(©) |de].
la|<k la|<k

A (CE,f)

/V ez’mm(m,s)( [ e ()\dy!>d€|*= /V ( /| ei@—y@m(x,f)u(y)dy|*)|ds*.

If we close our eyes, and we pretend that we do not have any integrability concerns, we can define a
“function” on 2 x 2

K(ay) = @n) " [ 190, (0,6 g, @1
v
and then we can define the action of the differential operator A as the action of an integral operator
0= [ K@l .12

35
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The integral in (2.1.1) is a special example of oscillatory integral. It is not convergent in any meaningful
sense but in this section we will explain to explain how to correctly interpret K (x,y) as a generalized
function (or distribution) on {2 x 2, namely the Schwartz kernel of A. We will achieve this by relying
on the concept of oscillatory integral.

We fix another real Euclidean space U of dimension /N, an open set O C U, a smooth complex
valued function

a:0xV —=C, a=a(z¥),
called amplitude and a smooth real valued function

3:Qx (V\{0}) SR, &=d(z¢)

called phase. We want to give a meaning to integrals of the form
/ @ q(z, O)u(z) |dz d€], u e D(0O).
OxV

Definition 2.1.1. (a) Fix a real number k. An amplitude of order < k on O x V is a smooth function
a: O x V — V such that for any multi-indices o € Zgo and 8 € ZY, and any compact set K C O,
there exists a constant C' = C,, g i (a) > 0 such that

sup |D2DJa(z,€)| < C()F 1A, (2.1.3)
2K eV

We denote by Ak(O x V') the space of amplitudes of order < k, and we set
AOx V)= A O xV), AT xV):=[)AOxV).
kER kER

(b) An admissible phase function on O x V is a smooth function ® : O x (V' \ {0}) — R satisfying
the following conditions.

(bl) The function ® is positively homogeneous in &, i.e., for any ¢ > 0 and any (z,£) € O x (V'

{0}) we have
D(z,t6) = 19(2,€).
(b2) The function ® does not have critical points, i.e., for any (z,£) € O x (V' \ {0}) we have

|d=@(2,€)| + |de®(2,£)| # 0.
We denote by (O x V') the space of admissible phases. O

Note that A* (O x V) is a Frechet space with respect to the seminorms defined by the best constants
Ca.p,k(a)in (2.1.3). We topologize A (O x V') as an inductive limit of Fréchet spaces. In other words,
the topology of A is the largest locally convex topology such that all the inclusion maps AF < A are
continuous. We will need the following fact [Tr, Chap. 13, 14]

Theorem 2.1.2. (a) If X is a locally convex topological vector space, then a linear map L : A — X
is continuous if and only if its restriction to any A is continuous.

(b) A sequence a,, € A(O x V') converges to a € A(O x V') in the above inductive topology of A if
and only there exists k € R such that

a,an € A¥, VYn and a, — a € A", O
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We denote by Ay (O x V') the subspace of A(O x V') consisting of amplitudes a(z, £) such that
dR>0: a(z,£{) =0 VzeO, | >R.
Proposition 2.1.3. The space Ao(O x V') is dense in A(O x V).

Proof. We follow the presentation in [Me, Chap.2]. Let
ac AFOx V) c AMHO X V) C AO x V).
We will construct a sequence a,, € Ap(O x V') such that
a, — a in AFTL.

To prove this we consider a smooth, even cutoff function

1 <1
©:V —[0,1], w(f)z{o’ E;i (2.1.4)

For any positive integer vwe set ¢, (£) = ¢(€/v) and for a € A¥(O x V) we define

CLV(Z,f) = @V(g)a(27§)7 Ve Z>0'

Then a,, € Ag(O x V).
Forany b € A¥™ (O x V), a,f € 2"y and any compact K C O we set
Papi(b) = sup (&FIF1DeDlb(,¢). (2.1.5)
zeK, eV
We need to prove that
lim pa g x(ay —a) = 0.

Observe that

ay(z,§) —a(z,§) =0, V[§| <v
so we only need to investigate the difference a,(z,&) — a(z, ) for |£] > v. In this region we have
(€) > (14 v2)"/? and thus

() Hay(2,6) = alw, )] < (1+ %) sup(€) Fla(z,€)] = 0 asv — oc.
I7§

Next, consider the ¢ derivatives of a,, — a. At this point we want to invoke the following elementary
result whose proof is left to the reader as an exercise.

Lemma 2.1.4 (Leibniz formula). For any multi-index v € 2%y, any x = (z1,...,2m) € V, y =
(Y1,---,Ym) € Vand any f,g € C®(Q) we have

N(fg(@) = D, - A,8:,? ()02 g(), (2.1.6)

K+A=y
where ! = (aq!) - -+ (am!), V(u, ..., am) € 2, ]
We have
H-i—)\
= (1= (&/v))Df Z v M DRp(x/v)Dia(z,€)
K+A=0

Kk#0
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Since D? a € AR 18l we deduce as above that
lim  sup (&) F ) (1 - p(g/v) ) Dla(z,€) | = 0.
V=0 peK, E€EV

All the other terms have compact supports in . This proves (2.1.5) for & = 0. For general « observe
that

D%, (x,€) = Dy (pu(§)a(z,€))) = pu(§) Dyalx, ).
The equality (2.1.5) for a general o follws from the equality (2.1.5) for o = 0 involving the amplitude
D&a € A", O

Lemma 2.1.5. Forany s,t € R, any1 < ¢ < N andany1 < j < m we have
AOxV)-A(Ox V) Cc ATHO x V),
9., A(Ox V) C AN O x V), 9, A (O x V) C ATHO X V).

Proof. The inclusion A*- A" C A*" follows easily using Leibniz’ formula (2.1.6) while the remaining
two follow directly from the definition of the spaces .A°. O

Observe that any phase function ® defines a linear map

Ip : Ap(O x V) x D(O) = C

(a,u) — Ip(au) := / 0 a(z, €)u(z) |dz d¢| € C. (2.1.7)
OxV
We want to show that for appropriate choices of phase function we can extend this linear operator to

very general choices of amplitudes.

Theorem 2.1.6. Suppose ® is an admissible phase function and k € R. Then there exists a unique
linear map

I3 A0 x V) x D(O) — C, (2.1.8)
separately continuous in the variables a and u, whose restriction to Ag(Ox V') C A(O x V) coincides
with the oscillatory integral I (au) defined in (2.1.7).

Proof. The theorem contains three separate statements: existence, continuity and uniqueness. We will
deal with them one by one.

Existence. We explain how to extend the linear operator I to A*(O x V') x D(O x V). The proof is
based on the following elementary fact.

Lemma 2.1.7. There exists a first order differential operator on O x V

m N
L=1Lo=> aj(2,6)0 + Y bi(2,8)0, +c(2,€),
=1

j=1
such that
a; €AY O x V), by, ce AHOXV)VI<j<m, 1</<N, (2.1.9)
and
LVe!® = ¢t (2.1.10)
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where L' is the formal transpose of L defined by

m N
L'u==Y 0 /(aju) = > _ 0, (bpu) + cu, Yu e C®(0OxV). O
j=1 =1

Before we present a proof of this lemma, let us explain how it implies the existence of a linear
extension to A(O x V') x D(O) of the map Iy : Ag(O x V) x D(O) — C.

Observe thatif a € Ap(O x V'), u € D(0O) and L is a first order differential operator O x V as in
the above lemma, then for any positive integer n we have.

I () = /o P (EENa(z, Eul) | | =

:/ eié(z’g)Ln(a(z,g)u(z)) |dz dg].
OxV

We will show that if a € Ak(O x V') then the above integral is convergent if n is sufficiently large.
The properties of symbols show

L"(a(z,f)u(z)) e AF MO x V).

Indeed, observe that ua € A*, while Lemma 2.1.5 implies that LA* ¢ A*1. We take n > k + m
and define

I35 (au) := /O , PEO LM (a2, E)u(z)) |dz |dE]. (2.1.11)

Continuity. It suffices to prove that for any £ € R and any compact set K C O there exist a constant
C > 0 and an integer v > 0 such that for any u € D(0O), suppu C O and any a € AX(O x V) we
have

| I3 (au) | < C sup  (©VITFDeDa(z,€) - sup  [D2u(z)].
zeK,EEV |al,|B|<v zeK |a|<v|

This follows by observing that (2.1.9) implies that there exists a constant C' > 0 such that

sup ()" F[L™(a(z, Qu(z)| < C sup  (©PITFDEDla(z,€)] - sup  [Du(z).
2€K eV 2€K, |al,|B|<n €K |al<n]

Uniqueness. This follows from the continuity of a — I3 (au) for fixed v and the density of in A(O x
V). This proves Theorem 2.1.6.

O

Proof of Lemma 2.1.7. We have
85].61:(1) = z@'gj e 9,6 = @;Zem.

so that

m N m N
. i i L
=16 30,0 + 3000, ) = (16 210 P4 D JoL et = e,
j=1 =1 j=1 =1
where 1) € C*°(0 x V' \ {0}) is homogeneous of degree —2 in &, i.e.,
U(z,t6) =t %Y(2,6), VE>0, £€V\0.
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Now choose a smooth cutoff function (&) as in (2.1.4) and define the linear operator

m N
M= —i(1 - m}(m? N a0+ > 20, ) Yo, L=M.
j=1 =1
One can check immediately that the coefficients of L satisfy the decay conditions (2.1.9). O

Given a € .Ak((‘) x V') we thus obtain a continuous linear map
D(O) > u— I3 (au) € C.
It thus defines a distribution Iy (a) € C~>°(0).

Definition 2.1.8. The distribution I3 (a) € C~*°(0), a € A(O ® V) is called the oscillatory integral
with amplitude a and phase ¢ and we will denote it

I3 (a) = /V T 0z, ) |del.

Definition 2.1.9. A first order differential operator satisfying the conditions (2.1.9) and (2.1.10) in
Lemma 2.1.7 is said to be mollifying (with respect to the phase ®.) O

Example 2.1.10. Let us illustrate the above general theory on a simple example. Namely, we want to
compute the oscillatory integral

I(w) = / ¢ |dg| € C—°(R).
R
In this case ® = z¢, a = 1 € A°(R x R). Choose a smooth function o(€) as in (2.1.4) and set
en(€) = @(&/n).
Then ¢,, — a in A and we set

Tn(z) = / e, (€)|dE| = (2m)Y2F V] € S(R).

Using the substitution £ = n7 and the fact that ¢ is even we deduce
3ula) = n [ () ldr| = (2m) ()

where 1 = @. We claim that J,, — (27)/28p in C~>°(R) as n — oc. Indeed, given u = u(z) €
C3°(R) we have

/ I (2)u(x) |de| = (2m)'/2 / A(E) on(—E)|dE] — (2m)"/2 / a(e) |de| = (2m)2u(0). O
R R R

Remark 2.1.11. The construction of the oscillatory integral I3 (a) used a mollifying operator L but
the uniqueness of this integral shows that it is in fact independent of the choice of such an operator. In
fact, by choosing this mollifying operator carefully we can obtain various interesting properties of the
oscillatory integral. The next result illustrates this principle. g
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Proposition 2.1.12. Let a € A*(O ® V) and ® € ©(O x V). Define
Cop := {z €0; eV \0; O,®(x,8) =0, Vj= 1,...,m}.

Then
sing supp I (a) C Co.

Proof. Set Ry := O \ Cy. The inclusion sing supp I3 (a) C Cg is equivalent to the existence of a
smooth function A € C*°(Rg ) such that, for any u € C§°(Rg) we have

(I3 (a),u)y = A(2)u(z) |dz|. (2.1.12)
Ry
For each z € Rg we define a, € A(V)and @, € O(V),
az(§) = a(z,£), ®:(§) = P(z,).
Observe that z € Rg<=®, € O(V'). Now define

AE) =T a) = [ O (0.0)1dl €T 0> mtk,

where the mollifying operator L is defined by

v_ 1= p(8) <= 09
L' =— O,

where @ is as in (2.1.4). The proof of Theorem 2.1.6 shows that A(z) depends smoothly on z. To prove
(2.1.12) we regard L as a differential operator on Rg x V and we observe that for any u € C§°(Rq)
we have

Lz(a(z,ﬁ)u(z)) = Lz(a(z,f) ) u(z).

2.2. Pseudo-differential operators

Let € be an open subset of V. For any amplitude a € A" (€2 x Q x V') and any admissible phase ¢ on
Q2 x 2 x V we obtain a distribution

Kpq = (2m)"™/? / @) g (z,y,€)|dE| € C7F(Q x Q).
1%
Using (2.1.2) as inspiration we define a continuous linear map
Opg(a) : C°(Q) = C°(Q2), (Opg(a)u,v) = (Koq,vXRu), Yu,ve C°(Q), (2.2.1)
where v K u € C3°(€2 x ) is the function
Ax Q3 (z,y) = (vRu)(z,y) :=v(x)u(y) € C.

// a(@, y, §)u(y)|dE|.|dyl..

Equivalently, this means that K , is the Schwartz kernel of Opg (a).

Loosely speaking,
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Definition 2.2.1. A pseudo-differential operator (1pdo) of order < k on 2 is an operator of the form
Opy(a) : C(Q) — C~°°(Q) with phase ®(z,y,£&) = (z — y, &), and amplitude a € AX(Q x Q).
We denote by W* (€2) the space of pseudo-differential operators of order < k, and we set

)= J v*©) Q) =) Q)
keR keR
Then operators in ¥~ °°(Q2) are called smoothing operators. O

The uniqueness statement in Proposition 2.1.6 implies the following useful result.
Proposition 2.2.2 (Universality trick). Suppose
L:AQxQxV)xDQ)xD(Q) —C
is a linear map separately continuous in each of its variables such that
L(a,u,v) = (Op(a)u,v), Y(a,u,v) € Ag(2 x Q2 x V) x D(Q) x D(Q).
Then the above equality holds for any (a,u,v) € A(Q x Q x V) x D(Q) x D(R). O

A pseudo-differential operator is uniquely determined by its amplitude a € A(Q2 x 2 x V). We
will denote such an operator by Op(a). Its Schwartz kernel K, is given by the oscillatory integral

K, = (27)"™/? /VN @Yz, y, €)|de|, € CT°(Q x Q).

Proposition 2.1.12 implies that
sing supp K, C Aq = { (x,y) €A xQ; z=y } (2.2.2)

We have a linear map
AQ2xQxV)>3a~— Op(a) € ¥(Q).

Proposition 2.2.3. Ifa € A(2 x Q x V') then Op(a)C§°(Q2) C C*(Q).

Proof. If u,v € C5°(£2) then Op(a)u is defined by the oscillatory integral

u—// @1Oa(z, y, £)u(y)|delldyl. € C(Q),

ie.,
©Op(yu.) = [ ( [/ ei@-y@a(x,y,ou(y)v(x)rdsr*)\dy*)\dxr.
Q Q \4
To compute this oscillatory integral we can use any of the mollifying operators L, = M," or L, =
M,", where

M, = —iw(l T |x (If\ Z — Y;)0¢; + ijaxj) + (&),
j=1

. 1-
My =i o (6 Z 4l = Zfﬂ % ) +2(6)
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and (§) is a cutoff function as in (2.1.4). Observe that

(Op(a)u,v) = / ( /Q L (e Euly) )v<x>|dy*da*> daf

Q

:/Q </vaei(xy,é)Lg(a(x,yaf)u(y))]dy|*d§|*> v(@)|dz]

U(z)
The integrand U () is a smooth function on €2 that can be identified with the distribution Op(a)u. O

Thus, for any a € A(Q x  x V') we get a linear operator
Op(a) : C5°(2) — C().
The arguments in the proof of Theorem 2.1.6 yield the following more precise result.

Theorem 2.2.4. For any amplitude a € A(Q x Q x V) the operator Op(a) induces a continuous
linear operator

Op(a) : C5°(2) — C(92). O
Observe that we have a transposition map
AQXxQOxV)sa—a e AQxQxV), a'(z,y,€) = a(y,z,—£).
The universality trick implies that for any a € Ay(Q2 x Q x V') we have
(Op(a")u,v) = (u,Op(a)v), u,ve CE(NQ). (2.2.3)
We say that Op(a ') is the formal dual of A = Op(a) : C§°(2) — C(Q).
We can allow Op(a) to act on rather singular functions. More precisely, we can give a rigorous
meaning to Op(a)u, when u € Cy>°(Q).
The continuous linear operator
Op(a'): CF°(Q) — C™(Q)
induces by duality, a continuous linear operator
Op(a')": Cy™(Q) = C7(Q),

defined by
(Op(a’)Vu,v) = (u,0p(a")v), Yu € Cy>(Q), ve Q).
From (2.2.3) we deduce the following result.

Theorem 2.2.5. The continuous linear operator Op(a')¥ : Cy>°(Q) — C~°°(Q) is an extension of
the continuous linear operator Op(a) : C3°(2) — C°(). 0

Thus, for any u € C;*°(€2) we define Op(a)u € C~>°(2) via the rule
(Op(a)u,v) := (u,0p(a’ )v), Yv e CF(Q).
For this reason, when no confusion is possible, we will write Op(a)" instead of Op(a ).

Proposition 2.2.6. Suppose A : C§°(Q2) — C~>°(Q) be a continuous linear operator. Then the
following statements are equivalent.



44 2. Pseudo-differential operators on R".

(a) A e T=(Q).
(b) There exists a smooth function K € C*(Q x Q) such that

(Au)(z) = (Trku)(z /K x,y)u(y) |dy|, Yu e C5°(Q).

Proof. (a) = (b) Let A = Op(a), a € A™°(Q x  x V). Then the integral

Ka(z,y) = (2r) ™2 /V v oz, y, €) |de],

is absolutely convergent since a decays very fast as |{| — oo. The functions K,(z,y) depends
smoothly on z, y and, by definition Tk, = Op(a).

(b) = (a) Choose a function ¢ € C§°(V') such that

/ () |de], = (2m)™2,
\%

and set .
a(z,y,8) = e TVIK (2, ) (6).
Clearly a € A™>°(Q2 x 2 x V') and

Ka(a,y) = (2m) /2 /V T e g,y €) |del = K (a,y).

Hence Tx = Op(a).

The next result perhaps explains why the operators in ¥~ °° are called smoothing.

Proposition 2.2.7. If A € ¥~>°(Q) then A(Cy>°(2)) C C=(Q). O

The proof is left to the reader as an exercise.

Example 2.2.8 (Quantization). Consider an amplitude
a(z,y,€) € AMQ x Qx V),
that is independent of y a = a(z, ). We want to show that for any u € C§°(€2) we have

Op(a)u(z) = /V Uz, )a(E) |l (2.2.4)

This is clearly true for a € Ao (€2 x  x V') because in this case we can write

= a(a, €)a(€) de], = (2m) ™2 eV a(z, €)|del. ) uly)ldy]
\% \4 \%4
- /V Ka(x,y)uly) |dy,

Ka(z,y) = (2m) ™2 /V @ Va(a, €) |del..

The general case follows by invoking the universality trick. When a is independent of both = and y that
we say that the operator Op(a) is a Fourier multiplier.

where we recall that
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The equality (2.2.4) shows that if
A= Z aq(z) DS
lof <k
is a differential operator on €2 and
A = UA(l"a‘f) = Z aa(x)£a7
o] <k
is its symbol, then Op(c4) = A.

The correspondence A(2 x V) 3 a(z,€) — Op(a) € ¥(Q) is called quantization. Observe
that 2 x V' can be identified with the total space of the cotangent bundle 72 which is the classical
phase space. An amplitude a is a function on the phase space, i.e., a classical physical quantity and
the operation of quantization associates to this function a linear operator Op(a) which is a quantum
physical quantity. O

Theorem 2.2.9. The pseudo-differential operators are pseudo-local, i.e., fora € A(2 x Q x V') and
u € Cy () we have
sing supp Op(a)u C sing supp u.

Proof. We imitate the proof of Proposition 2.1.12. Let a € A(Q2 x Q x V), u € Cy*°(£2) and set
R, := Q )\ sing supp u.

We need to show that there exists a function 4,, € C*°(R,,) such that
(Op(a)u,v) = / Ay(x)v(z) |dz|, Yv € C§°(Ry).
Ry

Denote by & € C*°(R,,) the smooth function @ := u|g,. Let L, denote the first order partial differen-
tial operator defined in the proof of Proposition 2.2.3. For v € C§°(R,) we have

©Op(yu.) = [

Q

( / ei(””_y’g)LéV(a(x,y,&)u(y))|dy|*|d§|*> o) |de].
QOxV

We see that the smooth function

Ay(z) = (/Q , etlevO Ll (a(x,y,i)U(y))Idy\*|d§|*>

will do the trick. a

2.3. Properly supported ydo’s

We say that a distribution K € C~°°(Q x Q) is properly supported if the restrictions to supp K of the
natural projections
lr:QxQ—Q, lx,y) =z, r(z,y) =1y

are proper maps. For example, a distribution on {2 x {2 whose support is the diagonal

Ag :={(z,y) eQxQ 2=y}
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is properly supported. A pseudo-differential operator Op(a), a € A(Q x Q x V) is called properly-
supported if its Schwartz kernel K, € C~°°(§2 x ) given by the oscillatory integral

~

Ka(z,y) = (27) ™2 /V ) oz, y, €) |del,

is properly supported.

Proposition 2.3.1. Suppose Op(a) is a properly supported pseudo-differential operator on Q, a €
A(Q x Q x V). Then Op(a) induces continuous linear operators

Co () = G5°(Q2), C7(Q) = C7=(Q)
such that
Op(a)(C*(Q)) € C*(Q) and Op(a)(Cy=(Q)) C Cy=(Q).
Proof. Observe that for any u € C5°(2) we have
supp Op(a)u C supp K, osuppu := {x €Q; Jyesuppu: (x,y) € supp K, }

Indeed, if v € C5°(€2) and supp v N supp K, o supp u = {) then supp K, N supp u(y)v(z) = (. This
proves that supp Op(a)u is compact since K, is properly supported. This proves that Op(a) induces
a continuous linear map C§°(2) — C3°(Q).

Let us now observe that K v, the Schwartz kernel of A is also properly supported since
supp K, = R(supp K,),
where R : Q x Q — Q x Qs the reflection (z,y) — (y, z). Thus we have a continuous map
Op(a') : C§°(Q) — C§°()

and by duality, a continuous linear map Op(a')¥ = Op(a) : C~°(Q) — C~>°(Q). The pseudo-
locality of ¢do-s implies that Op(a) maps C*°(2) to C*°(Q2).

Finally, using the continuous map Op(a ') : C>(Q2) — C>(£2) we deduce that the dual Op(a ' )Y =
Op(a) maps C; () to itself. O

We have the following characterization of properly supported operators whose proof is left as an

exercise.

Proposition 2.3.2. Let A € U(Q)). Then A is properly supported if and only if for any compact subset
K C Q there exists a compact set K' C §) such that

ue€ C™ (), suppu C K = supp Au, supp A'u C K'. 0

We have the following proper counterpart of Proposition 2.2.7 whose proof is left to the reader as
an exercise.

Proposition 2.3.3. If A € ¥;>°(Q) then A(C~>°(2)) C C=(Q). O
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Proposition 2.3.4. If A € ¥(y(2) and S € ®~°°(Q) then the operators
AS : C0(Q) 55 0 (Q) 25 0=(Q)

and

SA: C(Q) -5 00(Q) -2 0(Q)

are smoothing.

Proof. We will describe only the main steps in the proof leaving some technical details (marked with
?s) to the reader. Let K4 € C~°°(Q x ) denote the Schwartz kernel of A and Kg € C®(Q x Q)
denote the Schwartz kernel of S. For every z € () we define p, : Q2 — 2 x ) to be the inclusion
y = p=(y) = (y, 2)-
Thus
p:Ks(y) = Ks(y,2), Vy,z €.
Then for any u, v € C§°(£2) we have

(ASu,v) = (Ka,v X Su) = (K4, v(x)Su(y))
(Kavo@) [ Kstou) i) = [ (Kao@) @) ) ule) iz
zlxkqwxoﬁKw>uuﬂwr=le<f@ v)u(z) ).

Observe that for any z we have A(p;Kg) € C°°(€2), and in fact the resulting function
(2, 2) > W (2,2) i= A(pKs) (@)

is smooth (???7). We deduce

(ASu,v) = /(/sz ]d:c\) 2 |dz|

so that the Schwartz kernel of AS is the smooth function W. This proves that AS is smoothing.

To prove that SA is smoothing we will use the fact that the dual RV of a smoothing operator
C3e(©2) — C*°(Q) is a smoothing operator. Then SA = (AYSY)". Using the result that we have just
proved we deduce that AYSY is smoothing since S is smoothing, A" is properly supported. O

Definition 2.3.5. (a) A relatively closed subset C' C €2 x € is called proper if the restriction to C' of
the projections (z,y) — z and (z,y) — y are proper maps.

(b) For a function a : © x © x V' — C we denote by supp,, , a the closure of the projection of the
support of a onto the component ) x €.

(¢) The function a : 2 x  x V' — Cis said to be properly supported if supp,, , a is a proper subset
of ) x Q. O

The following result is left to the reader as an exercise (Exercise 2.5).

Lemma 2.3.6. If C' C Q2 x Q) is a proper subset, then there exists a smooth function x : QxQ — [0, 00)
such that x|c = 1 and supp Y is a proper subset of 0 x L. O
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Proposition 2.3.7. Any vdo on 2 can be decomposed as a sum between a properly supported 1pdo and
a smoothing operator.

Proof. Leta € A(Q2 x Q x V). Choose a smooth, properly supported function
X2 xQ—[0,00)
such that x = 1 in a neighborhood of the diagonal Aq. Define

aO(xvyag) = X(-T,y)a(l',y,g), ap = a — ap.

Then Op(a) = Op(ag)+Op(a1) and Op(ap) is properly supported. To show that Op(aq) is smooth-
ing we denote by K, the Schwartz kernel of Op(a) any by K, the Schwartz kernel of Op(ag). Then
Ka() = X(xa y)Ka

and we deduce that the Schwartz kernel of Op(a;) is
Kal = (1 - X)Ka-

Note that K, is identically zero in a neighborhood of the diagonal, and since its singular support is
contained in the diagonal, we deduce that K,, has trivial singular support. In other words, K, is
smooth. O

Definition 2.3.8. We say that two ©do’s A, B € ¥(Q) are smoothly equivalent (or s-equivalent), and
we denote this by A ~ B if they differ by a smoothing operator, i.e., A — B € ¥~ °°(Q). O

We can rephrase the above result as saying that any )do is s-equivalent to a proper one.

Proposition 2.3.9. Suppose A € W(Q) is a properly supported pdo. Then there exists a properly
supported amplitude a € A(2 x Q x V') such that A = Op(a).

Proof. Leta € A(Q2 x Q2 x V) such that A = Op(a). Consider the kernel of A, i.e., the distribution
K € C, (92 x Q) given by the oscillatory integral

K = (2m) /2 /V GOV a(z, y, )|de].

Now choose a smooth function x : € x 2 — [0, c0) with proper support such that x|supp k = 1, and
set

a(x,y,€) = x(x, y)a(z,y, ).

Then a is a properly supported amplitude. Then Y K = K and the universality trick shows that we have
an equality of distributions

[ty ldel. = [N yate. .l
%4 1%
so that A = Op(a), a properly supported. O

Definition 2.3.10. We will denote by \IIIS(Q) the space of properly supported )do’s of order < k and
we set

() = | THOQ). O
keR
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2.4. Symbols and asymptotic expansions
For any { € V' we define e € C*°(V)
ee(x) = & r eV,

Observe that for any u € C§°(V') we have

(ecu) = (e, ul) = /V ee()u() [da| = (2m)"™%i(~). @4.1)
Suppose A = Op(a) is a properly supported 1ydo on Q. Then its symbol is the function
oa(x,§) = e_gAeg. (2.4.2)

Proposition 2.4.1. If A is a properly supported 1»do on €, then for any u,v € D(Q2), and we have
v(z)oa(z,E)u(€) € C°(Q x V)N LY Q x V)

and

Au(z) = /V @ g 4 (z, O)a(€) |dE | (2.4.3)

Proof. Suppose A = Op(a), a € A*(Q2xQx V). Set K = supp v. Since the operator A : C(Q) —
C°(Q) is continuous we deduce that there exists a compact K C €2, and integer n > 0 and a constant
C' > 0 such that for any £ we have

sup |oa(x,€)| = sup |Aeg(z)] < C sup  |Dgeg(z)| = C max €7
zeK zeK z€K1,|al<n lo|<n

This proves the integrability statement since u(§) € S(V').

A similar argument shows that for every « € () and every multi-index « the map

§ = Dioa(x,§)u(E)

is integrable and thus we get a continuous linear map

Co () 2 u(z) = Agu(z) := / o4 (@, )u(8) dE|« € O=().

%
We have to prove that Agu = Au, Yu € C5°(Q). If v € C§°(€2) we have

(Aou, v) // Uy ()0 a(w, £)U(E) |dE]|da]

_ /V ( /Q v(x)egmx,f>|dx|)a<5>|d£|*= /V (6) (Aeg, v)ldel.
:/ () (Op(a’)Vee,v) |d£y*:/ u(€) (e, Op(a”)v) |dé].
\%Z \ 4

(2.4.1)

(2m)™/? /V (&) FOp(a")v](=&)|d¢l. = /V (&) FOp(a)v](—€)|d¢|

(1.1.13)

- /V u(x) Op(a" Yv(x) |dz| = (u,Op(a Jv) = (Op(a)u,v).
This proves (2.4.3). O
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Remark 2.4.2. The equality (2.4.3) implies that the Schwartz kernel of A can be expressed in terms of
the symbol o 4(x, §) as the oscillatory integral

K= (2m)™/2 / T =05, (1 €) |de]. (2.4.4)
\4

O

The above equality tacitly assumes that 04 € A(£2 x V). This is what we intend to show next. We
will achieve in several steps of independent interest.

Definition 2.4.3. Leta € C°°(Q x V') and suppose a; € A% (2 x V), j =0,1,2,..., where (k;) >0
is a strictly decreasing, unbounded sequence of real numbers. We write

oo
a~ Z a; (2.4.5)
j=0
if for any integer » > 0 we have
r—1
a—>Y a;e AF(Qx V). (2.4.6)
§=0
We will refer to a relation such as (2.4.5) as an asymptotic expansion of a. Observe that in this case
ac AR QX V). O

Proposition 2.4.4 (Completeness). For any sequence a; € Ak (Q x V) such that kj ~, —oo there
exists a function a € A() x V') such that

o0
a ~ Z aj. (2.4.7)
j=0

Moreover if a’ € Ao (Q x V) satisfies the same asymptotic expansion as a, then

a—a e AT®Qx V).

Proof. The proof is based on an old trick of E. Borel. We begin by choosing an exhaustion of §2 by
open precompact sets

Wehe - a=[]J9,
>0
and smooth cutoff function
0, [{<1
:V —[0,1], =
X [0,1], x(&) {17 6> 2

Observe that for any multi-index « there exists a constant C, such that
0 x(§/1)] < Caf§)™, VE=1.
We want to emphasize that the above constant C,, is independent of t.
Since a; € AFi (© x V) there we deduce that there exists a constant C’; > 0 such that

| 0708 (x(&/D)aj(x,&) ) | < &)1, Vo e @, t>1, |o| +[8] < j
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Observe that
x(&§/t)a;j(x,&) =0, V¢ <t.
Fix jo > O such that k; < —3, Vj > jo. Next, for j > jo choose t; > 0 such that
C(g)lel < a7iglimlel el 2 5, ol <

Equivalently, this means that
kj_1—k;

9 1755 .

(1+6) = >052.

We deduce that for any j > jo we have
sup  |0£O7 (x(&/t)ay(x,€))] < 279 ()Rimrlel < 27 (6) 72,
x€Qy, |af+|B|<j
If K is a compact subset of (2, then there exists j(K) > jo such that
Q3 K, Vj>j(K).
We deduce that for any positive integer N we have and any j > max(j(K), N) we have
sup 0800 (x(&/t)a;(x,€)) < 279 (Mo V) > max(j(K), N). (24.8)
ze K, |al+[B|<N

This proves that the series

(o9}

> a2, 8), @, €)= x(&/ty)a;(x,€),

j=0
and the corresponding series of partial derivatives converge uniformly on the compacts of 2 x V. Thus,
there exists a function a(z, ) € C°°(€2 x V') such that

a(z,§) = Z X(f/tj)aj(x7 £,
=0

and the partial derivatives of a are described by the corresponding series of partial derivatives.

Let us show that for any » > 0 we have
r—1
a— Zai e A (Qx V).
i=0
Fix multi-indices «, 5 and the compact set X' C 2. We need to show that there exists a constant C' > 0
such that

r—1

sup 0207 (a = Y ;)| < Clg)™lol
Let N := |a| + | 5], and fix
jl > maX(j(K), Na T)‘
Then
r—1 r—1
a—Zai:Z(ﬁi—ai) + Z 5j + Zaj.
i=0 i=0 r<j<j1 J>J1
— N——
T T2 T3

Clearly T5 € AP Next, observe that
T1(1:7£) = 0’ \V/‘ﬂ Z QtT
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so that 77 € A~°°. Finally, using (2.4.8) we deduce that
sug \8?8£T3(x,§)] < 279 (g)kn —lal < (g\kr—lal,
S

O

The conditions in the definition of an asymptotic expansion are cumbersome in many concrete
situations since they amount to checking growth conditions for infinitely many partial derivative. The
next result, describes one instance when we can relax some of these requirements.

Proposition 2.4.5. Leta; € AY (Q x V), j =0,1,..., k;j \, —00, and a € C®(Q x V') such that
for any multi-indices o, 5 and any compact set K there exists a real number n = u(«, 8, K) and a
constant C' = C(«a, B, K) > 0 such that

sup [0805a(x,&)| < C(H, VEEV. (2.4.9)
rxeK

Then the following statements are equivalent.

(a) a ~ ijo aj.
(b) For any compact set K C ) there exists a sequence of real numbers (i, \, —00 and constants
C.>0,r=1,2,... ,such that

r—1
sup|a(z,§) — Zaj(a:,f) ‘ < C P, Yr>1, L€ V. (2.4.10)
zeK =0

Proof. The implication (a) = (b) is obvious so we only need to prove that (b) = (a). We follow the
very elegant presentation in [H3, Prop. 18.14].

Choose b € A" (Q x V) such that
b~ Z a;

Jj=0
We need to prove that c = a—b € A~ °°(Q2 x V). The hypothesis (2.4.10) implies that c¢(x, £) is rapidly
decreasing as |{| — oo and we need to show that the same is true for all its partial derivatives. It suffices
to do this for first order derivatives and then iterate. We will achieve this via a simple application of
Taylor’s formula.

Fix a compact set K C €2 and set 09 = dist (K, 0€2). Then forevery z € K,v € V, |v| = 1 and
0<e< %0 we have

e g2
o+ 20,8) = ol €) + el o+ 5 [ el + 0,

o dt?
so that
1 [¢d?
edzc(x,&)v = c(z +ev, &) —c(z, &) — 3 @c(x + tv, §)dt
0
so that
eldec(z, ] < Je(z + ev, &)| + |e(x, §)| + Ce* sup |die(x, &),
zeK,
where

K.={ze® dist(z,K)<e}.
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Now choose N > 0 and € = %(@‘N. We deduce

G0 16y N sup |Re(e,€)].

|dzc(x,&)v| <
4 IGKE

4
SO (Jew + 20, 6)| + el )] ) +
The quantity sup,¢ . |d2c(z,§)| grows at most polynomially in &, while the quantity

;@)N( le(@ + ev, &) + |e(x, €)])
0

is rapidly decreasing as & — oo uniformly in x € K. This proves that d,c is rapidly decreasing as
€] — oo.

Similarly
1 [ d?
c(x, & +ev) = c(x,§) + edec(x, §)v + 2/ @c(x,f—k tv)dt,
0

ldeca, €)0] < e, & + 20)| + ez, &) + O sup e, & + 1),
€K, |t|<e

and we deduce in a similar fashion that d¢c is rapidly decreasing as |£| — oo. O

We have the following important result referred to as the Workhorse Theorem in [LM, II1.3].
Theorem 2.4.6. Suppose A € WE(Y) is a properly supported 1)do,
A=0p(a), ac A*QUxQx V).
Then its symbol 0 4(x,§) = e_¢ Aeg admits the asymptotic expansion

1
oa(2,€) ~ Y S DyOga(e, Y, €)l=y, (24.11)

«

where (a1, ..., am)! = a1l apy!.

Proof. We follow the approach in [Shu, Thm. 3.1]. We plan to use Proposition 2.4.5 which requires
an a priori rough estimates of the type (2.4.9). We set

' (z,y,£) == 0falx,y,§).

First note that Proposition 2.3.9 implies that we can assume that the amplitude a(z,y, §) is properly
supported. We can then rewrite the equality o 4(x,&) = e_¢(z)(Aeg)(x) as

UA(SC,E)Z/V (/Va(:v,y,é)ei(”_yﬂ)e"(y—‘”’g)Idyl*> |d6)].

Above, for every x the support of the function y — a(z, y, §) is compact since a is properly supported.
Making the change in variables z = y — x, n = 6 — £ and invoking the universality trick we deduce

~

oa(z,§) = /V

Let L, denote the partial differential operator

(/ a(m,x—i—z,f—i—n)e_i(z’")\dz]*) |dn].. (2.4.12)
\%4

m
L.=1+) D2.
j=1
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Observe that L,e %> = ()2e~%=m) Integrating by parts in (2.4.12) we deduce

oa(z,€) = /V ) ( /V La(e,x+ 2,6 +1) <77>2”6i(z’”)|d2|*> dnle, 413)

where v is an arbitrary positive integer. Using the condition a € AF (Q2xQ x V') we deduce that for any
multi-indices «, 8 and any compacts K, K’ C € there exists a positive constant C' = C(«, 8, K, K')
such that

sup 97 LZal ) (@ @+ 2, &+ n) [(n) 7P < CLE+ m)h ol )

zeK,x+zeK'
Peetre’s inequality now implies
(€ +mtlel <Rl P, p =Tk ol |.

Using these inequalities in (2.4.13) we deduce
sup |O¢" Poa(x, &) < e~ |a|/ YT dy),.

This proves the rough estimates of the type (2.4.9). We need to prove the estimates of the type (2.4.10).
Fix a compact set K C ).
Expanding n — a(z,x + z,£ + n) near ) = 0 using Taylor formula we get

a

a(z,x+z,E+n) =Y d° >(:cx+z£> [Nz, Tz 6om),
la]<N—1

where

ry(z, o+ 2,6,m) = Z

lal=N

/ ( / 2@ (s, x+z,s>nae-i<m>rdz\*> s
\ 4
al/ (/ (2,2 4+ 2,€) D210 2], )\dm*

- / / D@ (2,2 + 2,€) =D dz], |dy,
\% \% P

/,l—tNl(Nxx+z§+m)

Now observe that

- /V Feldnl. = £(0) = D2a@ (2, 2+ 2,€) oo,

where at the last step we used Fourier inversion formula. Using these facts in (2.4.12) we deduce

Ry 8 =oa(@ &)~ Y D5a(@,y,6)kny

la|<N—1

/(/ /) ) (@, x + 2,& + tn)n®e " |dz|. |y .dt
|\N

NN
-y // / V10O (2,5 + 2, € + )02~ D] d |dy | dt

laj=N
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= / / / N 16& ( )(l‘;x+Zaf+tn)6_1(z’n)|d2’*|dn‘*dt

|ox | N
For N sufficiently large these integrals are absolutely convergent, uniformly in z € K, |{| < R. We
need to produce estimates for the integrals

Ryt = / / 8?a(°‘)(x,x + 2,6+ tn)e‘i(z’") |dz|«|dn|«, |a] =N
v/)v

uniformin z € K and ¢ € [0, 1]. Assume |£| > 1. We split these integrals into two parts

R, = / / 020 (2,2 + 2,€ + tn)e G |dz],|dn)..
n|<I€]/2

R, —/ / 6?(1(0‘)(3:,33—1—z,§+tn)e*i(z’")\dz]*|dn\*.
nI>1€l/2

)

Note that
vol {m; [n| < [€l/2} ~ (&)™,
and if || < [¢]/2, then we have

sup yaga<a>(x,x +z,&+1tn)| < C(f)k*N,

z€K,te[0,1]
which proves that
sup [ Ry, (w,€)| < (). (2.4.14)
zeK
Consider the Laplacian
m
DI
j=1

Observe that
In|~2A,e M) = =iz
Then

R, = / / 020 (2, + 2,€ + tn)|n|~ ALe= O dz . i,
n|>1€]/2

(integrate by parts in the z-integral)
= [, A 2 e O
Inl>l¢1/2

Now observe that

sup [AZ02a() (@ + 2,6 + tn)] < Gy (€ + )N < Cu ()N (1) ¥

z,eK
where at the second step we used Peetre’s inequality, and C,, stands for a positive constant that depends
only on v. Since (tn) < (n) we deduce

sup [ R (2,)] < Covol (YO [ )™+ aa.. (2.4.15)
zeK [n|>1€1/2

By choosing v sufficiently large, 2v > m + N — k, we deduce from (2.4.14) and (2.4.15) that for every
compact subset K C 2 and any positive integer N there exists a positive constant C' = C'(N, K) such
that )

sup (I($,£) - Z aDga(o‘)(a},y,ﬁﬂz:y’ < O<£>k+m_N

reK la]<N-1



56 2. Pseudo-differential operators on R".

This proves the estimate (2.4.10) and concludes the proof of the theorem. O

Remark 2.4.7. The result in Theorem 2.4.6 can be concisely formulated as follows. We introduce the
second order partial differential operators

(O, O¢) 0z, 0
2, O¢) Z 2O — Z 335]35]
Then the asymptotic expansion (2.4.7) can rewritten as

oa@,a) ~ (O a(w,y,€) ) omy- (24.16)
O

Corollary 2.4.8. Suppose that k € Rand A : C§°(Q2) — C>(Q) is a continuous linear operator such
that for any 1, ¢ € C§°(Q) we have pAn € ®F(Q). Then A € T*(Q).

Proof. Choose a partition of unity of (¢;)icr on £, ¢; € C§°(2). Set A;; = ¢;Ap;. Then A;; €
Wk (Q) and we set a;;(, &) = 0 4,;- Define

§) = Z,aij(l‘,f),
i

where Z/ indicates that the summation is over pairs ¢, j such that supp y; N supp ¢; # 0. The sum is
locally finite and thus a’ is well defined and o’ € Sk(Q) Set A’ = Op(d’). If K is the Schwartz kernel
of A then the Schwartz kernel of A — A’ is

"
Z pi(z)pi(y) K
4,3
where E" indicates that the summation is over pairs i, j such that supp ¢; N supp ¢; = (). Since the

singular support of K is contained in the diagonal of €2 x €} we deduce that the Schwartz kernel of
A — A’ is smooth, so that A — A’ € ¥~>°(Q), A’ € ¥*(Q). O

Let us summarize the facts we have uncovered so far. We denote by 8¥(€2) the space A(Q2 x V)

and we set
= [Js"Q), s>©) = s* )
keR kER
We will refer to the functions in $(£2) as symbols.

Every symbol o € 8¥(2) can be viewed as an amplitude o € A (Q x Q x V') and thus determine
ado Op(o) : CF°(2) — C°°(2) that can be alternatively defined by

Op(o)u(z) = / @ (i, €)(€)|de] .

v
Conversely, to any properly supported »do A € \IIIS(Q) we can associate a symbol

oa(e,€) i= e AHER),

and A = Op(ca). Moreover, if A ~ B, B € WE(Q), then 04 — op € $7°°(Q). Since any tdo is
smoothly equivalent to a properly supported one we deduce that we have a natural linear bijection

o W(Q)/T0(Q) — 8(Q)/872(Q), (2.4.17)
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that associates to a pseudo-differential operator A the symbol of a properly supported 1»do A’ smoothly
equivalent to A. The inverse of this map is called the quantization map.

2.5. Symbolic calculus

We want to prove that the composition of two properly supported y»do’s is a 1do. This shows that space
W (Q)/PT~>°(Q) is and algebra equipped with various other natural operations. Using the symbol
map (2.4.17) we can transport these to operations on S$(2)/8~°°(2), and we will provide explicit
descriptions of these operations on the space of symbols.

Suppose A is a properly supported )do. It defines a continuous linear operator A : C3°(Q2) —
C°(Q). Its transpose or form dual is the linear operator A : C5°(£2) — C§°(£2) uniquely determined
by

(Au,v) = (u, A), Yu,v € CF(Q).
The operator AV is also a ¢»do. More precisely, if A = Op(a), a € A(Q x Q2 x V)

Aua) = [ [ e ate . utwldlde).
Vv JQ
then AY = Op(a'),
Ao(z) = / / =19 4y, 2, —)o(y)|dyl|dE].. 25.1)
Vv JQ
Theorem 2.5.1. Suppose A € WE(Q) is a properly supported (do with symbol o 4(€). Then AV €
Wk (Q) and
1 Lo
N L gapa oy —i(0e0) _
O'AV(I',g) Z Oé'aé DacO-A(x7 5) =e" ¢ O-A(:Ba g) (2.5.2)

Proof. We write A = Op(a) where a € A*(Q x Q x V) is properly supported. We set o 4(z, y; &) :=
oa(x,§) so that

UZ(% Y, 5) = UA(y7 xz, _5) = UA(y7 _E)
From the equality A = Op(c4) we deduce AV = Op(c}) and therefore
0 Av ($7 E) ~ eii(awag)al (.’E, Y, g)y:m = eii(ayﬁg)o'A(yv _5)‘11:95 = eii(ahag)UA(x? _6)

O

IfAe \IIIS(Q) is a properly supported 1»do we define its formal adjoint A* to be the conjugate of
its dual, i.e., for any u € C*°(§2) we have

A*u = AV, (2.5.3)

where for any smooth function v : 2 — C we denoted by @ its conjugate. Recall that the L2-inner
product of two smooth, compactly supported functions u, v : Q — C s

(u,v)r2 = (u,v) = / u(x)v(x) |dx|.

Q
We deduce that A* satisfies the equality

(u, A*0) 12 = (Au,v) 12, Yu,v € C3°(Q). (2.5.4)
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The equality (2.5.4) determines A* uniquely,
Ay = Ave=A*v = AV,
From the definition we see
oa(2,8) = oav(z, =) ~ Z 08 Do 4(x, ). (2.5.5)
Theorem 2.5.2. If A € WE(Q) and B € \I!é (Q) are properly supported 1)do’s on ) then the induced
linear operator Ao B : C§°(Q) — C§°(Q) is also apdo Ao B € T (Q) and
0A0B(7,§) ~ (a4 ® op)(z,8),

where

(ca®op)(x,&) ~ Z 35 oalx,§)DSop(x,§). (2.5.6)

Proof. The equality B = (B)" shows that B = Op(c},) Using (2.5.1) we deduce that

u(z _// =¥ o py (y, —€)uly)|dy|.|de|., Yu e C§(9).

Using the Fourier inversion formula we deduce
Bul®) = [ "ol ~€)uty)ldy..
We deduce
ABu(w) = /V g a(w, € Bu(€)|dE]. = /V /Q gy (2, €)op (y, —€)u(y) |yl |dE ..
Using Theorem 2.4.6 we deduce

UAB € f Z 8?DQ(UA<$ S)UBV( _g))y:w

1 Thm 2.5.1
= 3 % (o, 008, =0)) " S 08 (0t 100 DE (. 0).
(03
At this point we want to invoke the following elementary result whose proof is left to the reader as an
exercise.

Lemma 2.5.3 (Newton multinomial formula). For any multi-index~y € ZZ, and any x = (X1,...,2m) €
V.y= (1, ,ym) €V
(x4 y)” Z KW . (2.5.7)
K+A=7y
O

Using Leibniz’ formula (2.1.6) we deduce

1)181
TR i e T )
a,B,k+A=a

1)18l
= Z (ﬁ' '))\' 850 (z, §)8A+’BD“+)‘+BUB(3: §)
B,
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\ﬂl
- Z Y Z( Z /3|/\| )8?014(30,5)8ng+703($7§)

7 \B+A=y
Using (2.5.7) we deduce that

1, v=(0,...,0)
0, otherwise.

(—1)l8l :{
ﬁ-%zk::’y BIA

This shows that
oap(z,§) ~ Z BéaA(x &)Dfop(x,§).

Remark 2.5.4. Note that we can reformulate (2.5.6) as

—i(0y,0y)

UAOB(xag) ~ e O-A(x77])0-3(y>£)’77:§7y:1" =

We now want to introduce a special class of symbols, namely the polyhomogeneous or classical
symbols.

Definition 2.5.5. (a) A symbol a € 8% (Q) is called polyhomogeneous of degree k, if there exist smooth

functions a;(x,§), 7 = 0,1, ... that are positively homogeneous of degree k& — j in the variable £ such
that
2,8) ~ Y p(&aj(x,€)
Jj=0
where ¢ € C(V),
0, [¢f<1
#le) = {1, 62

We denote by SIShg(Q) the vector space of polyhomogeneous symbols of degree k and we set
Sphg (2 U Sphg
keR

(b) A classical 1pdo is a ¥do smoothly equivalent to a properly supported ydo whose symbol is poly-
ho:lnogeneous. We denote by ¥ ,,1,," () the set of classical 1/do’s A such that o4 € Sphg( )/ one (2)
and we set

g (2 U ‘I’phg =
keR
We have the following immediate consequence of Theorem 2.5.1 and 2.5.2.

Corollary 2.5.6. The transpose of a classical 1bdo is a classical 1do, and the composition of two
properly supported classical 1dos is a classical 1)do. O
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2.6. Change of variables

In this section we want to investigate the effect of smooth changes in variables on 1)do’s. Suppose €2, O
are two open subsets in V and F' : O —  is a diffeomorphism. Given a properly supported ydo
A € WE(Q) we define F*A : C3°(0) — C§°(0O) to be the linear operator defined by the commutative
diagram

C5(Q) —2— O ()

where F* : C§°(2) — C§°(0) is the pullback by F'. We will refer to F* A as the pullback of A via the
diffeomorphism F. We denote by G the inverse of F', G = F~!. For every x € O, we let G, denote
the differential of G at F'(x),

Go : Tr()Q = T,0,
and by GV, its transpose
Gv

xT

Using the metric on V' we can identify T;(x)Q = Tpand T;0 = T, 0 so we can view sGYasa
linear map
G; :T,0 — Tp(x)Q

Theorem 2.6.1. If O, Q, F, G and A are as above, then F*A is a properly supported 1ydo on O,
WE(0). Moreover,

opea(z,n) ~ > pale,mey (F(z), Gn), 2.6.1)
5

where
oV (2,6) = Ooalz.©),
pg(x,n) is a polynomial in 1 of degree < |[3|/2,
and po(x, &) = 1. In particular, if A is classical, then so is F* A.

Proof. Our approach is a compilation of the approaches in [Tay, I1I§5] and [Shu, §4]. We need an
auxiliary result whose proof we defer to the end of the proof of Theorem 2.6.1.

Lemma 2.6.2. There exists a neighborhood N of the diagonal Ay C O x O and a smooth map
T:N— GL(V)
such that
(F(x) = F(y),n) = (x =y, T(z,y)n), V(z,y) eN, neV

and
det T(x,x) = FY,Vz € 0. 0



2.6. Change of variables 61

We now want to present the proof of Theorem 2.6.1 assuming Lemma 2.6.2. Suppose A € ¥X(Q).
We set A = F'*A. Then

D)= [ ] S0 o (Fa). yuto)] det ) dul .
Equivalently, this means that
(Au,v) = (Kq,v @ u), Yu,v € C;°(0),
where the kernel K 4 is the distribution on O x O defined by the oscillatory integral.

Ka(z,y) = (2m)~™/? /V e F@FW.8 g\ (F(x), ¢ )| det Fy||dé].

The phase ®(x,y,&) = (F(x) — F(y), &) satisfies all the assumptions in Lemma 2.6.2.

Choose a neighborhood N of the diagonal Ay in O x O and amap 7' : N — GL(V') as in Lemma
2.6.2. Next choose another closed neighborhood N; such that Ny C intN. Finally, choose a smooth
function ¢ : O x O — [0, c0) such that |y, = 1 and supp ¢ C N. Then

Kqp=0Kq+(1—p)Ky.

From (2.2.2) we deduce that sing supp K4 C Ag so that (1 — @)Ky € C*°(0 x O). Denote by A,
the operator defined by the kernel K 4. We deduce that A — A, is the operator defined by the smooth
kernel (1 — ) K 4. Proposition 2.2.6 then implies that A — A, is a smoothing operator. Thus, it suffices
to check that A, is a 1pdo. We have

o) = [ [ OO0 ol )oa(F@).€ ulw) det By el
_ /V /o G T@DO o a( F(z), € )uly)| det Ey||dyl.|de].
= /Vw/oei(x_y’n) ‘P(ﬂfay)a(F(x),T(x,y)_ln)\detT(az,y)]‘l\detFy|u(y)|dy|*|d77|*,

a(z,y,m)

The last equality of oscillatory integrals is justified by observing that a(x,y,n) € .Ak(O x O x V) and
then invoking the universality trick, Proposition 2.2.2. Theorem 2.4.6 now implies that A, € vk (0),
and

1 -
O-A(x’ 77) ~ Z aagD?a(ﬂfv Y, 77)|y=1‘~
«
We write

a(z,y,n) = a(F(z), S(z, y)n)w(z,y),
where
S(x,y) = T(x,y) ™", wlz,y) = ¢(z,y)| det S(z, y)|| det Fy|.
Now observe that S(z, z) = ,G and Oy Dya(z,y,n)|y=x is a sum of terms of the form
e()'o ) (F(x), Gin),
where ¢(x) depends only on F' and
18] < 2lal, v+ laf <8

This implies that
v <18l = laf < B8] = 181/2 = [5l/2,
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and concludes the proof of Theorem 2.6.1.

Proof of Lemma 2.6.2. We have

b d
(Ple) = Fu).&) = [ GG+t —u)).€)ae 262)

We denote by L(x,y) the linear operator V' — V' defined by

1
L(ZL’,y):/ Fym yt:y—i_t(x_y)
0
Then L(x,y) depends smoothly on x and y and we can rewrite (2.6.2) as

(F(J:) - F(y)7§) = (L(l‘,y)(l’ - y)vf) = (LU _y7L(x)y)v§)‘

Observe that L(x, ) = Fj. Since F, € GL(V), Yz € O, we deduce L(z,y) € GL(V) for all (z, )
in a neighborhood N of the diagonal Ay. Now define T'(x,y) = L(z,y)". O

Remark 2.6.3. With a little bit of extra effort one can show that

1 ) .
opea(G(z),n) ~ Z - E4a) (=, GV ) D eta(z)m) (2.6.3)
where ¢, (z) := G(2) — G(z) — G4(z — x). For details we refer to [Shu, Thm. 4.2]. O

Corollary 2.64. If ' : O —  is a diffeomorphism, and A € ¥(2), non necessarily properly
supported, then F*A € ¥(0).

Proof. We write A = Ap+S where A is a proper ¢»do and S is smoothing. Then F*A = F*Ag+F*S,
so it suffices to show that F'*.S is smoothing, i.e., it is an integral operator with smooth kernel. This is
obvious since S is such an operator. a

Observe that the diffeomorphism F' : O — €2 induces a diffeomorphism
F:T*0 = T*Q, (z,n)— (F(z),(FY)"'n). (2.6.4)

If we use the metEic induced identifications 7*O = O x V, T*Q) = ) x V then we can describe the
diffeomorphism F’ as

Ox V3 (2,n) = (F(z), () "'n) = (F(x),Gn) € Ax V.

If 04 € 8¥(Q), then we can regard o 4 as a function on 7*€). The asymptotic expansion (2.6.1) implies
that

Froq—opea € 8F71(0). (2.6.5)

For any open set D C V/, and any real number £ we define

25(D) = 8"(D)/8" (D), Tpe(D) := 851, (D)/85 (D).

For every o € 8¥(D) we denote by o7 its image in $*(Q), and we will refer to it as the principal part
of . We can now rephrase the equality (2.6.5) as

(F*04)™ = 07 4. (2.6.6)
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Definition 2.6.5. A v»do A € W((Q) is said to have order k if A € ¥5(Q) and 07} # 0. In this case
the quantity o7} is called the principal symbol of A. O

Observe that
O = OX0p.
For classical 1/do’s the principal symbol can be canonically identified with a function defined on the
punctured cotangent bundle
T*Q := T*Q — zero section.
Denote by f}{k(f *Q2) the space of smooth functions a = a(z,§) : T*Q) — C that are homogeneous of
degree k in £. Consider a polyhomogeneous symbol

o =0(x,¢) € e ().

Thus ¢ has an asymptotic expansion
O'(ZL‘, 5) ~ Z (10(5)0%—] (CB, 6)7
Jj=0

where o,_; € HFJ (f *Q), and ¢(&) is a smooth cutoff function

_ )L =2
s0(§)—{0’ €l <1

Observe that for any £ # 0 and any = € ) we have
i 4k
O—k('r>£) _tliglot o(z,t§).

We say that oy, is the leading term of the polyhomogeneous symbol o and we denote it by [o]. This

defines a linear map
8k (Q) 3 0 = [o] € HH(T*Q)
that vanishes on Sﬁi gl (Q). The induced map
Sk (Q) — H(TQ).
is a linear isomorphism. In particular, we can identify [o] with o™ because

o1 = 0y <=01] = [02], Vo1,09 € Sghg(Q)'

We obtain in this fashion a linear map

TE () 3 A [04] € HH(THQ),

We will continue to refer to it as the principal symbol of a classical 1do.
Denote by Diff(Q2) the group of diffeomorphisms of 2. We have (right) actions of Diff(2) on
Wk (Q) and H*(T*Q),

phg
Tl (Q) x Diff(Q) 3 (A, F) = F*A € ¥,,,5(Q),

H*(T*Q) x Diff(Q) 5 (a, F) — F*a € H*(T*Q).
We can now rephrase the equality (2.6.6) in the following geometric fashion.

ghg(Q) — H*(T*Q) is equivariant with respect to the

canonical (right) action of the group Diff (Q2) on ‘Ilghg (Q) and 3* (f*Q) 0

Corollary 2.6.6. The principal symbol map ¥
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Example 2.6.7 (Symbols of differential operators). Suppose
L= an(2)0: C™(Q) — C™(Q)

| <k

is a partial differential operator. The full symbol is the function
O’L(m, é‘) — efz(gvﬁ)Le"’(gvf)

We would like to explain a method of computing its principal symbol

lon)(2,€) =i ) aa(2)E?,

|a|=k

regarded as a function on 7*() homogeneous of degree k in the fiber coordinates £. This method is
particularly useful when working on manifolds.

To do this define for every smooth function f : {2 — R, and every partial differential operator P of
order £ on () a new partial differential operator

ad(f)P : C(Q) — C*(Q), ad(f)Pu= P(fu)— fPu, Yue C®(Q).
If we denote by PDO*(Q) the set of partial differential operators of order < £ on 2 and we set

PDO(Q) := | | PDO' (%)
=0
then we see that ad(f) defines a linear operator
ad(f): PDO(Q?) - PDO(Q)

such that
ad( f)(PDoﬂ(Q)) c PDOY(Q), V> 0.

The operator ad(f) is a derivation of the algebra PDO((f?) in the sense that it satisfies the Leibniz
rule

ad(f)(PQ) = (ad(f)P)Q + P(ad(f)Q ), YP,Q € PDO(Q). (2.6.7)
If L has order k, 29 € 2, o € T; Q2 and f : @ — R is a smooth function such that df (z¢) = &o. Then

ad(f)¥L is a zeroth order partial differential operator on {2 and thus can be identified with a smooth
function sy 7, : 2 — C. Then

ik it

lor](z0,&0) = HSf,L(xO) = H( d(f) L) (xo).
Thus we can write

1‘,2
or)(z. df(@) = 5 (2d(F)L)(2), Vf € C(),x € 0. (2.6.8)

Equivalently, we consider the operator e*24(/) : PDO — PDO. For every P € PDO¥ we obtain
a polynomial in ¢ with coefficients in PDO
¢'*0)p e PDOVt]], deg,e”*)P <k.

The principal symbol of P is then the leading coefficient of this polynomial.
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2.7. Vectorial Pseudo-Differential Operators

So far we have presented only scalar pseudo-differential operators, i.e., those acting on complex valued
functions. Often in geometry we are faced with operators acting on smooth sections of complex vector
bundles. Over R™ such vector bundles are trivializable, an their sections can be viewed as vector valued
functions. In this sections we will briefly indicate how to extend the general theory presented so far in
order to include such situations.

Suppose Fy, E1 are complex vector spaces of dimensions 7y and respectively r1. If €2 is an open
subset in V, then we can regard the space C'*°(£2, Ej) of smooth functions Q@ — E;, j = 0,1, as the
space of smooth sections of the trivial vector bundle EjQ =Qx B — Q.

Recall that
C_‘X’(Q,Ej) = CSO(Q,EJ-V)V, CO_"O(Q, Ej) = C>(Q, Ej")".

Recall that we defined scalar 1»do’s on €2 using their kernel which are distributions K € C~>°(£2 x Q)
defined by certain oscillatory integrals. We use the same approach using kernels defined by oscillatory
integrals of the form

~

Ka(z.y) = (20)™? /V SO a(z, y, €)|de]..

where the amplitude is a function
a:QxOQxV %Hom(Eo,El) ~ F® EyY

satisfying growth conditions of the type (2.1.3), where the norms |8§‘05 8ga(x, y,&)| are defined in

terms of Hermitian inner products on Ey and E7. We denote by A(Q?; Ey, E1) the vector space of
such amplitudes.

The arguments in the proof of Theorem 2.1.6 show that such an oscillatory integral defines a dis-

tribution
K, e CT®(Q x Q, B @ EyY).
Given a € A(Q?; Ey, E1) we define
Op(a) : C5° (2, Ey) = C™°(Q, En)
via the equality
(Op(a)u,v) = (Kq,vRu), Yue C5*(Q,Ep), velC;,E"). (2.7.1)
The above equality requires some explanations. Given u, v as above we define v X u to be the function
vRue C( x QB @ Ey), (vRu)(z,y) =v(z)®u(y).

The pairing in the left-hand-side of (2.7.1) is the natural pairing between C~°°(2, E1) and C§° (2, E1Y)
while the pairing in the right-hand-side of (2.7.1) is the natural pairing between C~>°(Q?, E; ® Ep)
and 080(92, EV® E())

Arguing exactly as in Proposition 2.2.3 we deduce that Op(a) induces a continuous linear operator
C(C))O<Qa EO) - Coo(Qa El)
The definition of the transpose of a vectorial ¢)do is a bit more involved.

We recall that there exists a natural bijection Hom(Ey, F1) — Hom(FE1", EyY) that associates to
each complex linear map 7" : Ey — FEj its dual TV : E1Y — Ey". This induces a transposition map

A(Q} Ey, B1) Darra € A EY, EyY), a'(z,y,) := aly,z,—€)".
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The continuous linear operator
Op(a'): CP(Q, EyY) — C=(Q, EyY),
satisfies
(u, Op(a)v) = (Op(a)u,v), Yu € C(Q, Ey), ve CF(Q, ErY).
This this shows that the dual operator
Op(a") : C®(Q, EyY)Y = Cy ™ () = C5°(Q, EnY)Y = C™(Q, Ey),
is an extension of
Op(a) : C5° (2, Ey) — C*(Q, Ey).
The notion of properly supported ydo extends in an obvious fashion to vectorial »do’s and we get a
vector space W (€2, Ey, E1) of properly supported 1)dos mapping sections of Ly, to sections of Ey,.
More precisely, any A € ¥ (2, Ey, F1) induces continuous linear operators
A: COO(Q,E()) — COO(Q,El) and A : CSO(Q,E(]) — CSO(Q,El)
The symbol of a properly supported »do A € ¥ (€2, Ey, E1) is the function
o4:QxV — Hom(Ey, E)
defined by
oAz, §u = e H®E) fei@:L)qy V(z,&u) € Q2 xV x Ep,
where u : ) — FEjy is the constant function 2 3> z — u € FEjy. The symbol admits an asymptotic
expansion of the type (2.4.11). The proof is identical to the scalar case. In particular, the notion
of classical ¥do extends word for word to the vector case. We obtain two spaces of matrix valued
symbols
S(Qv EO) El) D Sphg(Qa E07 El)

The vectorial counterpart of Theorem 2.5.1 is
1 i
oa(,€) ~ 3 08 DE A, —6)" = e 0w, )", (27.2)
— o

while Theorem 2.5.2 generalizes word for word to the vectorial case. The formal adjoint of a properly
supported ¢do A € \I"g (Q, Ey, E1) is defined as in the scalar case by the equality (2.5.3). The equality
(2.5.5) has the vectorial counterpart

1 .
0 A* (:1:7 5) ~ Z JagaDgUA(ﬂfy _5)* = e_z(az’ag)UA(xa 5)*7 (273)

where o 4(x,§) : E1 — Ej is the conjugate transpose of the linear map o 4(x,§) : Eg — FEj.

The change in variables formula requires a bit more care since in the vectorial case there are several
possible changes of variables: change of variables on (2, and conjugation with automorphisms of the
trivial bundles £; . Since a bundle automorphism can be viewed as a 1pdo of order zero we see that
the conjugation of a ¢»do with such automorphisms produces another v»do. The effect of the changes of
coordinates on the base of these vector bundles can be understood using the same techniques we used
in the scalar case. The up-shot is: the class of vectorial 1)do’s is closed under changes of coordinates
on €2 and conjugations by bundle automorphisms of Ej o

The notion of principal symbol of a classical 1)do requires much more care. Again, denote by
T*() the punctured cotangent bundle of (2 and by 7 : T*Q) — (2 the natural projection. We form the
pullback bundles 7*E); := W*EjQ, and we denote by F* ( Hom(7n*Ey, 7*E7) ) the space of smooth
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sections o of the vector bundle Hom(7*Ey, 7*E7) — T*Q such that, for any x € (), the restriction of
oto T\ {0} is a homogeneous function of degree k

T;Q\{0} > = o(x,§) € Hom(Ep, By ),
where & . denotes the fiber over x € (Q of the vector bundle & o

We fix an open set O C V/, a diffeomorphism F' : O — €2 and bundle isomorphisms 77 : QQ —
F*FE; covering F, i.e., the diagrams below are commutative

0
T.
F*&Q — g
O - Q

For 7 = 0,1 we then get bijections
Fr, : C'OO(F*%Q) — COO(%Q), Frou(F(x)) = Tj(z)u(z), Yue COO(F*%Q), z € 0.
Given A € WE(Q, Ey, E1) we define
Ty F*ATy == F;.' APp, : C™(F*Ey,) — C™(F*Ey),

so that the diagram below is commutative
T~ Lp= ATy

C™(F*Ey) - C®(F*Ey,)
FT() FTI
C™(Eqg) C™(Erg)
Then
A€ Ok(Q, Ey, Fy) = Ty L F* ATy € WE(0, Fy, By). (2.7.4a)
Ae Wl (0, Ey, ) = Ty ' F* ATy € Wk, (0, By, Ey). (2.7.4b)

Now observe that the diffeomorphism F' induces a diffeomorphism F : T*O — T*Q defined as in
(2.6.4). The bundle isomorphisms 7; induce bundle isomorphisms

T KR T * T
T; : " F &Q — 1 Ej 0
covering F, i.e., the diagrams below are commutative

B A T

i i

0 — = T'Q
We thus get a linear map

C*°(Hom(r*Ey, m*E1)) 2 0 — Tflafo € C*(Hom(r*F*Ey, 7" F*E1) ).
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The change in variables formula implies that for any A € \IIIS(Q, Ey, E1) we have
Ortpeary — 11 ' FroaTo € 8°71(0, Bo, B).

The above constructions define right actions of the groups Diff () x Aut(Ep) x Aut(E1) on \Il’ljhg (Q, Eo, Er)
and JH* (Hom(Tr*Eg, T E) ), and the principal symbol map

O (Q,E, B1) 3 A [04] € H* (Hom(r* Eo, 7 Ey) ) (2.7.5)

is equivariant with respect to these actions. We have the equalities

loaB] = [oa] o [oB], [oa+] = [oa]".

Example 2.7.1 (Vectorial partial differential operators). Consider a vectorial partial differential opera-
tor of order ¢

L= aa()d5 : C(Q, Fo) = C=(, Ey),
o] <t

where the coefficients a,, are smooth maps 2 — Hom(FEy, E7). Then

loL)(z,€) =i > aa(w)€".

laf=¢

We denote by PDO(S2, Ey, E1) the space of partial differential operators C*(€, Ey) — C°(€, E;)
of order < /. As in the scalar case, any smooth function f : {2 — R defines a linear map

ad(f) : PDO*(, Ey, E1) — PDO"\(Q, Ey, B1), L+ [L,my],

where m ¢ denote the operator of multiplication by f and [—, —] denotes the commutator of two opera-
tors. For every L € PDO(Q, Ey, E1), x € Q we have
it '
o1) (@, df (2) = 2 ad(/)'L.

Consider by way of example the exterior derivative
d: QT2 C) - Q*(T"Qx C).

A complex valued form w € Q°*(T*V ® C) can be viewed as a smooth section of the complex vector
bundle A*T*Q ® C with fiber By = F1 = AVV®C. If f : Q@ — R is a smooth function and
w e Q*(T*Q ® C) then

(ad(f)d)w =d(fw) — fdw =df Nw

and we deduce that the principal symbol of d is given by exterior multiplication by z¢,

[oa](z, ) =i A O
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2.8. Functional properties of 1/do’s

Observe that for every real k the function
Ae(,6) = ()" = (1+¢[*)*"2
is a classical symbol of order k& on (). Indeed, we can write
Ae(@,€) = €M (1 + €742, e #0,
and we deduce that we have the following asymptotic expansion as || — oo
_ k/2 _
) =1+ X (7)1
>0

We denote by A;, € ¥*(V) the 1»do with symbol \;(z, £) given by

Mala) = T((©4(6)) = [ 9(4T(6) lael., Yu e CE(V),
The operator Ay defines isometries
Ap: HS(V) = H®(V), Vs eR.
Recall that for every s € R we have defined the locally convex spaces Hilbert space HJ,,,,(€2) and
Hif, (2).
Theorem 2.8.1. Let a € 8¢(Q). Then Op(a) induces a continuous linear operator
OP(a) : Hippy () — H'(Q),

for any s € R. More precisely, for any ¢ € C§°(S2) there exists a positive constant C' depending only
on s, a and  such that

lpOp(a)flls—¢ < Cliflls; Vf € Heomp(€2): (2.8.1)

Proof. According to Proposition 1.5.15 the space C5°(€2) is dense in HZ, - (£2) so it suffices to prove

comp

the inequality (2.8.1) only for f € C§°(€2). Our proof is inspired by the proof of [Se, Thm. II.1] and is
based on the following classical result.

Lemma 2.8.2 (Schur). Suppose (X, 1) is a measured spaces and
K: XxX-—>C

is a measurable function such that there exists a constant C > 0 so that
/ | K (x1, 2)|dp(2) / |K (z,z2)|du(z) < C, Vai,z9 € X. (2.8.2)
Then K defines a bounded linear operator
Tie : L2(X, p) = LA(X, ), = (Tief)(a /Ka: 9) F () dply)

of norm < C, i.e.,
1Tk fll2 < Clfll2, Vf € LA(X,p).
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Proof. It suffices to show that for any f,g € L?(X, 1) we have

(T f,9) 2l < Clfllz2 - gl 2
‘We have

(Tt g Lzr—i/ (/. K0 dut))ate) dute)

< [ VK@) i) < d
XxX

1/2 1/2
< (/ K (2, 9)| - [ f(y)[* dp x du) (/ K (2, y)| - [g(2)|* du x du)
XxX XxX

1/2
:(/X|f /|Ka:y)|du( ))du ) (/ lg(x (/X\K(x,y)\du(y))du(:r)>

2.8.2)
< CHfllL2 ~Nlgllz2-

Observe that ¢ Op(a) = Op(pa). Set
0(2,€) = p(a)a(z,€) € 8'(Q).
Observe that o has compact z-support, i.e., there exists a compact set S C €2 such that
o(2,6) =0, V() € (2 9) x V.

In particular, extending o by 0 for z € V' \  we can regard it as a symbol o € 8¢(V'). We will prove
that for any s € R there exists C's > 0 such that

10p(0) flls—e < Csll s, VS € G (V).
Since A, defines isometries Ay : HY (V') — H'5(V) it suffices to show that the composition A; =
A,_¢ Op(o)A_ defines a bounded operator L?(V') — L?(V). Define

51.€) = | ¢ o(z,6)|dal..
Using the support condition on o we deduce Y
15(0.6) = [ Dl e dal., Vo,
This implies that for every N > 0, there exists Cy > 0, independent of ¢ such that!
G(n, &) < Cn () )™, YEneV. (2.8.3)
For f € C§°(V') we have
Asf(n) = (n)*~*F(Op(o)A—sf ) (1),

and

F(Op(0)Asf)(n) = /Ve_i(””’")</vei(””’5) (2, (&) F(€) |del. ) |dx].«

IFor more precise info about the dependence of C'y on the symbol a we refer to Remark 2.8.3.
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= / ( / e"<*f‘">a<x,§><§>—5f<£>\dwh) dg]. = / 5(n—&€)(€)°F(©) ldg..
viJv %
Hence
A7 = [ 3= 1 fie) dgl. 284)

=K (7775)
Using (2.8.3) we deduce that for any N > 0 there exists C'y > 0 such that

| Ks(n,€)] < Onn — &)~ (m)>~(&) .
Using Peetre’s inequality we deduce
(©F <2y — gl

so that

|Ko(n, )] < 2*lCn(n — g)l=I=N
Choosing N :=m + 1 + |¢ — s| we deduce

[K(n, )] < 217010 (n — €)=+,
If we set

o i= 21510 / (€)= g,
\%

we deduce from Schur’s Lemma 2.8.2 that ||//1} Iz < Cis ||f|| 2. The desired conclusion follows by

invoking Plancherel’s theorem.

Remark 2.8.3. Let us observe that the constant C'yy in (2.8.3) can be chosen of the form

O

C =k - vol(supp o) - sup{ | D2 (p(x)a(x,£)) ‘<§>*£; rEsuppy, |of <N, eV },

where k is a constant that depends only on m and V.

O

Theorem 2.8.4. Suppose A € W5(Q) is a properly supported 1ydo of order < {. Then for any ¢ €
0

C3° () there exists 1 € C5°(Q2) and a positive constant C' such that
lpAulls—¢ < Cllpulls, Vu € Hio(2).

Proof. We will need the following elementary fact.

Lemma 2.8.5. For any p € C3°(Q2) there exists 1) € C3°(S2) such that
pAYu = pAu, Yu e C™°(Q).

Proof. Let K 4v € C7°°(£2 x Q) denote the kernel of A" so that, for any u € C~°°(£2) we have

(Au,v) = (u, A, Yv € C(Q),
where
(A, w) = (Kav,w @u), Yw € C;° (),
and w ® v(z,y) = w(z)v(y). Let ¢ € C§°(Q). Then (pA)" = A¥p and

(Av,w) = ( Kav,w @ (pv) ).
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Fix a compact neighborhood N, of supp ¢ in §2. The operator A" is properly supported so that the set
Sy = {(z,y) €suppKav; y €N, }

is compact. In particular, the image X, of S, via the projection 2 x 2 3 (z,y) — x € 2 is a compact
set. Choose a function 1) € C§°(€2) such that 1) = 1 in a compact neighborhood of X,. Then

(pAYu,v) = (u,p AV puv),
and
(YA v, w) = (Kav, (Yw) @ (pu) ),
so that
(AYpv,w) — (YA pv,w) = <KAV, (1 —vY)w (pu) >
Now observe that
supp ( (1 — ¥)w ® (¢u) ) Nsupp Kav = 0,
so that,
A v = AVpv, Vv e C§°(Q)
and therefore p AYpu = pAu, Yu € C~°(Q). 0

Let ¢ € C3°(€2). Lemma 2.8.5 implies that there exists ¢ € C§°(£2) such that ¢ A1) = @ A. Then,
forany u € H; () we have yu € HZ (). Using (2.8.1) we deduce

loc comp
leAulls = lpAdulls < Clldpulls,

for a constant C' > 0 independent of w. O

Remark 2.8.6. Theorem 2.8.4 has an obvious vectorial counterpart. Its formulation and proof are
identical and we leave them to the reader. O

2.9. Elliptic /do’s

Fix complex vector spaces Fy, 1 of dimensions rg and respectively r;.

Definition 2.9.1. A symbol a € 8*(Q, Ey, F) is called elliptic if there exists b(z, £) € 87%(, Ey, E)
such that

a(z, &) ® b(w, &) — 1p, € 871 (2, B1, Bv), (2.9.1a)
b(w,€) ® alw,€) — Lg, € 87(, Eo, Eo). (2.9.1b)
Ado A € ¥ (Q, Ey, Ey) is called elliptic if it is properly supported and its symbol is elliptic. O

Observe that ellipticity of a symbol a € Sk(Q, Ey, Ey) is completely determined by its princi-
pal part a™ € ¥¥(Q, Ey, E1). More precisely, we have the following immediate consequence of the
definition.

Proposition 2.9.2. A symbol a € 8*(Q, Ey, E) is elliptic if and only if there exists b € ©~%(Q, Ey, Ep)
such that

a™b=1g, € X°(Q, By, Fy), ba™ = 1, € 2°(Q, Ey, F). m
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In particular, we see that if a is an elliptic symbol, then dim Ey = dim F;. Indeed, the equality
(2.9.1a) and (2.9.1b) imply that for any = €  there exists C' > 0 such that for any || > C the linear
map

a(z,§) : By — Fy

is an isomorphism.
Example 2.9.3. Consider the first order partial differential operator
d: C®(ALVY) = C(ALVY),
where
m
VY =Hom(V,R), ALV =PA'V'&C.

k=0
The principal symbol of this operator is

[04](x,&) = 1N : AZVY — AZVY,
the exterior multiplication by 2§ € V¥V @ C. We denote this operator by e(%£).
The metric on V induces hermitian metrics on A(’é V'V, so we can define the formal adjoint of d,
d* : C®(ALVY) = C®(ALVY),
(dw,m)r2 = (w,d"n)r2, Yw,n € CG°(AZVY).
Its principal symbol is
[od+](x, &) = (i€A)"

If we identify the covector £ € V'V with a vector £ € V using the Euclidean metric on V/, then we see
that

(EN)" = —i&, (2.9.2)
where _| denotes the contraction by a vector. To prove this note first that we can assume that || = 1.
Next, we choose an orthonormal basis e!, ..., e™ of V'V, such that e! = £. We denote by e1, ..., e,,

the dual basis of V' so that {; = e;. Then, a direct computation shows that for any monomials
el :=et N Ne e AFVY) el i=efonelt Ao Aelk € AF(VY)

we have

(et nel,el) = (el,e; 1e!),
where (—, —) denotes the inner product in A®V"V. This proves (2.9.2). Set

L= (d+d*)?*=dd" +d*d.
Then

lo1) = ([oa) + [ow])* = (&) —i(&1))”,

where i(&;) denotes the operation of contraction with the vector &;. At this point we want to invoke a
useful identity, usually referred to as the Cartan identity

e(©)i(&) +i(&p)e(€u = [[Pu, Yue A VY. (2.9.3)

The elementary proof is left to the reader as an exercise. Observing that e(£)? = i(&)? = 0 we deduce
o) (2, €) = e(€)i(&) +i(€1)e€) = € Lasyv.

This proves that (d + d*)? is an elliptic operator, and so is (d + d*). 0



74 2. Pseudo-differential operators on R".

Theorem 2.9.4. Let A € \If]g (Q, Ey, E1) and set a = o 5. Then the following statements are equivalent.

(a) The operator A is elliptic.
(b) There exists ado B € \Ilgk(Q, E\, Ey) such that

AB—1, BA—-1e€ ¥,
(c) There exists ado B € \Ilak(Q, Ey, Ey) such that

BA-1e€W¥ ™.
(d) There exists ado B € \Ilak(Q, E\, Ey) such that
AB—-1e ¥ ™.

Proof. Clearly (b) = (c), (d). The implications (b), (c), (d) = (a) follow from the composition rule
(2.5.6). Thus, it suffices to show that (a) = (b). Given that this result is key to all the other results in
these lectures we will present two proofs.

1st Proof. We follow closely the approach of L. Hérmander [H3, Thm. 18.1.9]. Using the composition
formula (2.5.6) and the assumption (a) we deduce that there exists B € \If_k(Q, E1, Ep), and R €
U~Y(Q, By, Fy) such that

AB=1-R.
Indeed, the ellipticity of A implies that there exists b € 87%(Q, E1, Ey) such that ba — 1 € 871, If we
set B = Op(a) then the composition formula (2.5.6) implies that R = 1 — AB € T Setr = op.

We want to invert 1 — R using the geometric series
oo
1-R)"=> R"
n=0

We define C' € ¥°(Q) such that
C~> R ie, C=> Op(r)f e & " (Q), Vn>0.
k>0 k=0
More explicitly, we let
ro(z,€) i=opn(,&) ~r®r®---®r(r,€) € 8 "(Q).
—_—

and we define
C =0p(c), c(x,&) ~> ru(z,€), Co=> R"
n>0 k=0
Then C' — C,, € ¥~""1(Q) and we deduce

ABC = ABC,, + AB(C — C,,)

=(1-R)Y R'"+AB(C-C,)=1-R""+AB(C - C,).
k=0
Observe that.
R™ AB(C - C,) € ¥7"H(Q).
Hence, if we set B’ = B(C then we can conclude from the above that

AB'—1e€e¥™ Vn >0.
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If B’ is not properly supported, we can modify it by a smoothing operator so it becomes properly
supported.

Similarly, we can find B” € &~ (Q, Eq, Ep) such that B” is properly supported and
B"A—-1€®™ >,
Next observe that

B"— B~ (B"(1-AB') + (B"A-1)B') e ™.

If we let B = (B’ + B"), then

B-B e€W¥ > B-B'cW¥ >
and

AB—-1, BA—1€ ¥ >,

2nd Proof. This is the traditional proof. It is not as elegant as the previous argument but it has the
advantage that it contains more detailed information about the operator b. For simplicity we assume
that A is a classical ¥do so that its symbol a has an asymptotic expansion

a ~ Z Ak—j,
Jj=0
where aj_;(x, ) is positively homogeneous of degree k — j for [£| > 1.
We seek a classical »do B such that BA — 1 € ¥~ °°. The symbol b of B has an asymptotic

expansion
b~ bk,
>0

where b_j_(z, £) is positively homogeneous of degree —k — ¢ for |£| > 1.
Using (2.5.6) we deduce

1
1= O0p(b) Op(a) ™ b®a= Z aagb . Dg‘a.
— ol
Rearranging the above sum according to the homogeneities in ¢ we deduce

1
L=(0b®a)~bgar, 0=0b®a),~ aagb_,@_wgak_j ~0, v>0. (294

JHtt|al=v
This leads to an infinite linear system
1= B_pa}, (2.9.5a)
1
h h
0=B_kvap+ Y, —O8BpiDia)_j, v >0, (2.9.5b)
JHt|al=v

I<v

where the unknown S_j_, (z, £) are positively homogeneous of degree —k — v in € and a i(2,8)
denotes the unique positively homogeneous function of degree & — j that agrees with aj,_;(z,§) for
|¢] > 1. Note that for large v and j the functions 3_j_, and aj_; are not defined at £ = 0. Its is clear
that the system (2.9.5a) + (2.9.5b) has a unique solution (8__,),>0, Where _j, = (aﬁ)_l.
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Let ¢ : R — [0, 00) be a smooth function such that
0, [t <1/2,
t) = - .
() {L It > 1.

Now define

Qp(g)ﬁk‘—u(xag)a 575 07

Yv > 0.
Oa ‘5:07

b_k_l,(l’,f) = {

Note that b_j,_, € S;fg_”(Q). The functions (b_x_,) satisfy the system (2.9.4) so that if we define B
to be a v¥do with symbol b admitting the asymptotic decomposition

bﬁajz:b,k,g
14

we deduce from (2.5.6) that BA — 1 ~ 0.

Similarly, we can find an operator C' such that CA" — 1 ~ 0. If we set B’ = C¥ we deduce
AB’ — 1 ~ 0. Arguing as in the first proof we deduce that B ~ B’. 0

Definition 2.9.5. Let A € WX(Q, Ey, E1) be an elliptic operator. An operator B € ¥ *E,(E\, Ey)
such that

AB-1, BA-1€®

is called a parametrix of A. O

Theorem 2.9.4 has several important consequences.

Corollary 2.9.6. Let A € W(Q, Ey, Ey) be an elliptic operator and f € C®(Q,Fy). If u €

C~°(Q, Ey) is a distributional solution of the equation Au = f, then u € C*° (2, Ep).

Proof. Let B be a parametrix of A. Then BA = 1 + S, where S is a smoothing operator. We deduce
Bf = BAu=u+ Su,

so that u = Bf — Su. Since S is smoothing we deduce from Proposition 2.3.3 that Su € C°°. Since
f € C* we that B f is smooth. O

Remark 2.9.7. The result in Corollary 2.9.6 is truly remarkable. The following example may perhaps
illustrate some of its hidden subtleties.

Consider the partial differential operators
A=—07-0;, O0:=0.-0..

The operator A is elliptic, while [ is not. Corollary 2.9.6 shows that if u € C~°°(R?) satisfies Au = 0
in the sense of distributions then in fact w is smooth, although, a priori, © may not even be differentiable.
This special case is known as Weyl’s lemma.

Things are dramatically different with the wave operator L. Consider the distribution
1 1
w = 56(:6 +y) + 56(y —x) € CT®(R?),

where the Dirac type distributions §(y 4 z) are obtained as follows.
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e Choose a smooth, compactly supported, even function ¢ : R — [0, c0) such that

/ () ] =1,
R

and set ©,(t) := np(nt), n € Zso, t € R. The sequence ,, converges in C~>°(R) to the
Dirac function dg.

e Set
My £z) =limp,(y £ z).

The distributional derivatives of §(y + x) are computed using the chain rule
0 dot 0 d ot
dr  dtdr’ dy  dtdy’
and a simple computation shows that [Jw = 0. On the other hand, w is very singular,

sing supp w = suppw = { (z,y) € R 22 —¢% = ()},

The operators A and OJ differ by a sign, yet they have dramatically different behaviors! O

Corollary 2.9.8 (Elliptic regularity and estimates). Let A € lIllg (Q, Ey, E1) be an elliptic operator and
feH.(QE).

(a) Ifu € C~°(Q, Ey) and Au € H (Q, By) thenu € HETF(Q, Ep).

(b) For any { € R and any ¢ € C§°(R2) there exists a function ¢ € C3°(2) and a constant C > 0 such
that such that

loullser < CllbAulls + |bulle, Yu e HEE N HE (9, Ep). (2.9.6)

loc

Proof. Set f = Au. Let B be a parametrix of A. Then BA = 1+ .5, where S is a smoothing operator.
We deduce as before that
u= Bf — Su.

From Theorem 2.8.4 we deduce Bf € H:tF(9Q, Ep). Moreover Su € H{HF(Q, Ep) since Su € C™,
This proves (a).

If p € C5°(£2) we deduce from Theorem 2.8.4 that there exists ¢ € C5°(€2) such that

leBfllstre < CllYfls: NeSullsir < Clliule.
This proves (b). a

2.10. Exercises

Exercise 2.1. Prove Theorem 2.2.5. O
Exercise 2.2. Prove Propositions 2.2.7 and 2.3.3. O
Exercise 2.3. Justify the statements marked (?7?) in the proof of Proposition 2.3.4. O

Exercise 2.4. Prove Proposition 2.3.2.
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Exercise 2.5. Prove Lemma 2.3.6. Hint. Show that any proper subset admits a proper neighborhood.
Next, choose a proper neighborhood N of C' and a proper neighborhood U of N. Then any function x

such that supp x C N and x|¢c = 1 will do the trick. O
Exercise 2.6. Prove the equality (2.4.7). O
Exercise 2.7. Prove the equality (2.1.6) and then show that it implies (2.5.7). O
Exercise 2.8. Prove the equality (2.6.7) and then show that it implies (2.6.8). O
Exercise 2.9. Prove the identity (2.7.3). O
Exercise 2.10. Prove Cartan’s identity (2.9.3). O

Exercise 2.11. Consider the distribution §(y — ) € C~°°(R?) defined in Remark 2.9.7.

(a) Prove that

600 =5 [ 0(5.3) ldul, Ve € CRRY),

(b) Describe the Fourier transform of d(y — x). O

Exercise 2.12. Fix 0 < A < m = dim V and consider the linear operator
Ko G (V) = C¥(V), Kaa)) = [ o=l utw). ol

Show that Ky is a v»do of order m — A with principal symbol C|z1|™~*, where the constant C' is
determined as in Exercise 1.8. O

Exercise 2.13. Let {2 be an open subset in R™, and €21, Q23 be open relatively compact subset of 2
such that 2; C 9. Fix a nonnegative integer k£ > 0, and denote by A the Laplacian

A==3"07:C%(Q) = C™(Q).
j=1

(a) Show that if u € C~°°(Q2) and Au € Hf _(Q) then u € HFT2(Q).

loc
(b) Prove that there exists a constant C' > 0 such that for any v € C~>°(2) N L (2) such that
f=Aue€ Hf _(Q) we have

>/ |Dau|2|dx\sc< JRCZE |Dﬁf|2|dx|>.
191 Qo 92

o] <k+2 18I<k



Chapter 3

Pseudo-differential
operators on manifolds
and index theory

3.1. Pseudo-differential operators on smooth manifolds

Suppose M is a smooth, connected manifold of dimension m and Ey, E; — M are smooth complex
vector bundles of ranks 7y and respectively r; equipped with the following structures.

e A Riemann metric g on M with Levi-Civita connection V¢ volume density |dVj|.
e Hermitian metrics hg, hi on E( and respectively E;.

e A connection V! = VF¥i on E; compatible with h;.

With these choices in place can define the locally convex topologies on the spaces of smooth sections
C°(E;) and C*°(E;). The topology on C*°(E;) is given by the family of seminorms

lullnre sup  [(VE Y u(@)lgn, ue C=(Ey),
zeK,j<n

where K C M is a compact set and (VF#)J denotes the composition
E; E; E; .
C®(E;) Y5 C®(T*M @ E;) ¥ 2% ... VENT ooo(m* (% @ ).

The space C{°(E;) is topologized with the locally convex inductive limit topology on the union of the
spaces C'%°(E;) consisting of smooth sections with support contained in the compact set /. By duality
we obtain the spaces of generalized sections C; *°(E;) and C~>°(E;).

A coordinate neighborhood for the triplet (M, Ey, E1) is an open set O C M together with the
following data.

e A diffeomorphism
F:0—Q, Qopensubsetin V =R",

e Complex vector spaces Ey, F/; of dimensions g and respectively 7.
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e Bundle isomorphisms 7; : F*QQ — FE;

0,i=0,1.

We will use the symbol (O, Q, F, T;, E;) to label such a coordinate neighborhood, and we will refer
to O as the domain of the coordinate neighborhood.

Definition 3.1.1. A linear map A : C§°(Ey) — C°°(E;) is said to be a tdo (respectively pdo) of
order < k if and only if, for any coordinate neighborhood (O, 2, F, T;, E;) the linear map

Ap : C3° (2, Eg) = C™(Q, Eq)
given by the composition

* —1 *)—1
u Tg T()F*(u) é) AT()F*U Tl—LO Tl_l(AToF*u)‘@ () (F*)ilTl_l(ATQF*(u))‘o

is a classical ¥do in \Ilf)hg(Q, Ey, Ey) (respectively a partial differential operator of order < k). We

denote by U*(Ey, E;) the space of pseudodifferential operators A : C3°(Eg) — C*(Ey) of order
< k. When E( = E; = E we will use the simpler notation ¥ (E) := ¥(E, E). O

Remark 3.1.2. (a) Observe that if (0,Q, F, T;, E;) and (O, O, F,T;, Ei) are two coordinate neighbor-
hoods with identical domain then the change in variables formula (2.7.4b) implies that

Ap isaclassical pdo <= Ag is a classical ydo.

(b) We must draw attention to a rather subtle point. If the manifold M in the above definition happens
to be an open subset of the Euclidean vector space V' and E, E are the trivial, £, = E; A then the
class operators that are pseudo-differential in the sense of Definition 3.1.1 is a priori more restrictive
than the class of classical 1/do’s in the sense of Chapter 2.

Indeed, a linear operator A : C§°(M, Ey) — C°°(M, E7) which is a classical 1/do in the sense of
Chapter 2 is a ¥do in the sense of Definition 3.1.1 if and only if, for any open subset O C M the linear
map

CSO(O,EO) Surr Agu = (Au)\@ S COO(O)
is also a classical ¥do in the sense of Chapter 2.

Let us show that in fact these two classes of ydo’s coincide. Suppose A is a classical ¥do as
defined in the previous chapter. If A is smoothing then clearly Ao is also smoothing for any open
O0cCcM.

If A is properly supported, we denote by o 4(z, £) its total symbol so that A = Op(c4), i.e.,
Aua) = [ 042,06, Y € CFF (M. Eo).
v

This shows that if O C M is open, then Ag = Op(o4|e), where o4|9 := caloxyv. Thus Ag is a
classical ©do in the sense of Chapter 2. The general case reduces to these two since any classical »do
is a sum of a properly supported classical »do and a smoothing operator. Thus, when M is an open
subset of a vector space V, the class of operators introduced in Definition 3.1.1 coincides with the
space of classical 1»do’s defined in the previous chapter. O

Remark 3.1.3. The definition of a 1/do has a built-in subtlety that we want to address. More precisely
we want to discuus the following isue. Given a ¥do A € \Ilk(Eg, E;) and a smooth compactly
supported compactly supported section u € C3°(E) express Au in terms of the operators Ay entering
into the definition of A as a vy do.
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We need to introduce a language that will be useful in other instance. define a coordinate region of
M to be an open subset O of M satisfying the following properties.

e The set O is precompact and has finitely many connected components such that their closures
are disjoint.

e Each component of O admits an open neighborhood diffeomorphic to an m-dimensional
open ball.

Note three things.

(i) Any connected open subset contained in a geodesic ball of M is a coordinate region. We use
the normal coordinates on that geodesic ball to coordinatize the respective component of O.

(i1) The restriction of any bundle to a coordinate region is trivializable. Indeed, over a geodesic
ball we will trivialize E using the parallel transport along the radii defined by the hermitian
connection V on E.

For any compact subset K C M we let inj(K ) denote the infimum of injectivity radii of points in
K.

Suppose u € C§°(Eq), g € M, r < % inj(zo). How do we describe the restriction of of Au to
the open ball B, (z() in some local coordinates on this ball?

Set K := suppu U cl( B,(z0) ), p := inj(K). We can now construct a finite family of smooth
functions n; € C5°(M), i € I with the following properties.

e For any ¢ € I the support of 7; is contained in a geodesic ball centered at a point in K and of
radius r; < %p.
e The function ) _,_; n; is identically 1 on a neighborhood N of K.

Define
V= Z i A(niu).
ijel
Observe that v = Au on N so that (Au)|p, (z,) = V|B,(z). We set vi; := 1;A(n;)u and we observe
that

(Av)| B, (2) = Z(Uij)’BT(xo)
ihj
Thus, we only need to know how to compute (vi;)|p, (z0)-

The set supp 7; U suppn; U B.(z) is contained in a coordinate region. This is the case because
each component of this set is contained either in a ball of radius < % centered at a point in K, orin a
ball of radius r + %p < inj(xo) centered at . In both cases these geodesic balls are diffeomorphic to
Euclidean balls.

Let O;; be a coordinate region containing supp 7; U suppn; U B;.(zg). Choose local coordinates
in on this region and fix trivializations of Eo|o,; and E1]e,;. We can thus identify O;; with an open set
;5 in E™, and the sections of Eofoij and F, ‘oij with maps from €2;; to vector spaces E and E;. The
operator

Co (Eolo;;) 2 w = (Aw)lo;; € CF(Eilo,;)

can be identified with a1»do A;; € W*(;, Eg, E1). Then the function (1; A(n;u) |o,, can be identified
with the function 7; A;; (n;u).
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Remark 3.1.4. Perhaps this is a good place to stop and comment a bit about the differences between
differential operator and pseudo-differential operators.

First, let us point out that the differential operators on manifolds admit a simple intrinsic definition.
Denote by £(FEy, E) the space of linear operators C§°(Ey) — C°(E1). For any smooth function
f € C°°(M) we define a linear map

ad(f) : L(Eo, E1) = L(Eo, E1), T ad(f)T = M;T — TMy,

where M denotes the operation of multiplication by f. If ad(f)T" = 0, for any f € C5°(M) then T’
is a bundle morphism 7' : Ey — FE, or equivalently, a partial differential operator of order zero. We
can now define inductively the space of PDO’“(EO, E)) of partial differential operators of order < k
from sections of E to sections of E;. More precisely

T € PDO"Ey, E1) &% ad(f)T € PDO*\(Ey, Ey), . Vf € C°(M).

In particular, if L € PDO*(Ey, E;), then for any f € C§°(M) we have
ad(f)*L € PDO°(Ey, E,).

This bundle morphism determines the principal symbol of L, more precisely, we have

k
o) (2, df(@)) = 2 (ad(H)'T),.

In the beautiful paper [H65] L. Hormander gives an intrinsic definition of a pseudo-differential oper-
ator. More precisely, a continuous linear operator P : C§°(Ey) — C°°(E;) is a pseudo-differential
operator of order k if for any f € C§°(Ey), and any g € C°°(M) such that dg # 0 on supp f there is
an asymptotic expansion

eTHIP(eMIf) ~ ZP (£, )t" 7, t = 0o, Pi(f,g) € C(Ey),
7=0

which has the following property: for every integer N > 0, for every compact set X of smooth func-
tions g such that dg # 0 on supp f the error

N—-1
tka( fztgP ztgf Z Pj )
=0

belongs to a bounded set of C>°(E1), whent > 1 and g € K. A subset B C C*°(E;) is called
bounded if for any compact set S C M, and any n > 0 we have

sup{|E1V®ju(w) s x €S, j<n, ueB}<oo. O

‘hl’

Arguing as in previous chapter we deduce that any do A € \Ilk(Eo, E) defines a continuous
linear operator
A: C(;OO(E0> — O_OO(El)
Ado A € ¥(Ey, E;) has a Schwartz kernel K4 € C~*°(E; X E\") characterized by the equality

<KA7v®u>:/ (Au,v)g, |dVy|, Yu € C5°(Ey), v e C(ELY),
M

where
(= =B, : CT(E;") x C*(E;) — C™(Cyy)
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is the natural bilinear pairing between a bundle and its dual.
The transpose or dual of A is the continuous linear operator AY : C§°(E;Y) — C~>°(E") with
Schwartz kernel K 4v € C~°(E,¥ X E) given by the equality
(Kav,ulKv) = (K4, vRu), Yue CF(Ey), veCFT(EL).

The arguments in the previous chapter show that AV is also a 1do, and defines a continuous linear
operator

AV CR(EYY) — C™(EyY)
uniquely determined by the equality

[ A, 4,1 = [ A, 4| Vo e CRELY), v e O (Bo).

If we fix hermitian metrics h; on E; we obtain complex conjugate linear bundle isomorphisms Ij,; :
E; — E;". These isomorphisms transport the dual A" to an operator

A" =LA, - CO(Ey) — C™(E))
called the formal adjoint of A.

If Eqg = E, = C,,, then the action of A* on a smooth, compactly supported function f : M — C
is given by

A*f=A"f.

The operator is said to be properly supported if the Schwartz kernel is properly supported. We
denote by Wy(Ey, E1) the vector space of properly supported 1)do’s. As in the previous chapter one
can prove that any properly supported 1»do A € ¥ (E, E1) induces continuous linear operators

C*(Ey) — C*(E1), C§°(Eo) = C5°(EL).
Arguing exactly as in the proof of Proposition 2.3.7 we obtain the following result.

Proposition 3.1.5. Let A € W(Ey, E1). Then there exists a properly supported »do Ay € ¥(Ey, E1)
such that A — Ag is smoothing, i.e., its Schwartz kernel is a smooth section of E1 X E".

Denote by T*M denote the punctured cotangent bundle of M, i.e., the cotangent bundle with the
zero section removed. Let 7 : T*M — M denote the canonical projection. We define H*(M, Ey, E1)
the space of bundle morphisms

S:7*Ey — 7" E;
such that, forany x € M, & € Ty M \ {0} and ¢t > 0 we have
S(x,t&) = tFS(x,€) € Hom(Eo(z), E1(z)).

The equivariance of the principal symbol map (2.7.5) discussed at the end of Section 2.7 shows that
every properly supported @do A € \I!](‘j (M, Ey, E1) has a well defined principal symbol [o4] €
H*(M, Eo, E1). More precisely, for v € M and ¢ € T;M \ {0} we define [04](z,¢) : Eo(z) —
E(x) as follows.

e Fix a coordinate neighborhood (O, 2, F, T;, E;) such that z € O.

o IfF:T,0 — T’ ()0 denotes the differential of F' at z and 1 = (FV)*l(,f),
[04](2,€) = T1(2)[oag) (F (), )Ty (2),

where
Aq = (F*) "I (AT F* ) o.
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Proposition 3.1.6. Suppose Eq, E1, E5 are complex vector bundles over M. If A; € Wo(E;, E;41),
i=0,1, then Aj 0o Ay € Wo(Ey, E3), A§ € ¥o(E1, Ey). Moreover

[UAloAO] = [UA1 © [UAo]a [UAS] = [UAO]*- (3.1.1)

Proof. The only non-obvious statements are that the operators Ay o Ag and Aj are ¢do’s. We will
prove only the first statement. It suffices to show that for any smooth compactly supported functions
N, € C§° (M) the operator nA; Apyp is a ¢pdo. Since Ay, Ay are properly supported, for any compact
K C M there exist compacts K 4, and K 4, such that for any ug € C*°(Ey) and u; € C*°(E}) such
that supp ug, supp u; € K then

supp Aju; C Ka,, 1 =0,1.
Consider the compact set

K = suppn Usupp ¢ U (supp p) 4, U ( (supp ) a, ) 4 -

We construct a finite collection (1););c; of smooth, compactly supported functions on M such that
following hold.

e The function 1) = ), 1); is identically 1 on a pre-compact open neighborhood N of K.

e Forany i1, ¢2, 3,74 € I the union of the supports of ¢;, ..., 1;, is contained in a coordinate
region of M.

We do this as follows. Fix open precompact neighborhoods O N of K. Then there exists a
number § > 0 such that any open subset of M of diameter < § that intersects N is contained in a
coordinate region. It suffices to take § smaller than the distance form N to M \ O and the injectivity
radius of any point in the closure of O. Observe that the union of any four geodesic balls of radius
< 0/8 centered at a point in K is contained in a coordinate region, because each connected component
of such a set has diameter < 6. Now choose a finite open cover (B;);cs of the closure N of N by
geodesic balls of radii < ¢/16 and centered at points in the closure of N. Set

By :=M\N, I,=10U{x}.

Choose a partition of unity (¢;)jez, subordinated to the cover (B;);e.s. The collection (v;);cr has all
the claimed properties. Observe that

A= Ay, Ao= Y kAo,
ijel. kel

and

nAoAip = > mbiArr Aoty
ijo el

T ke

If we set B; jr¢ = B; U---U By, then by construction this is a coordinate region. In this coordinate
region the operators ¢, Agt)ep and np; A1), are 1pdo’s, and the results in the previous chapter imply
that 715 ; . ¢ is a ¥do. 0O

3.2. Elliptic 1»do’s on manifolds

Definition 3.2.1. A vdo A € W*(E, E,) is said to be elliptic if it is properly supported and its
principal symbol [o4] : 7 Ey — 7*E; defines an isomorphism of complex vector bundles over
ToM. O
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We have the following counterpart of Theorem 2.9.4.

Theorem 3.2.2. Let A € WE(Eq, E1). Then the following statements are equivalent.

(a) The operator A is elliptic.
(b) There exists a ypdo B € \Ilak(El, Ey) such that

AB—-1, BA—1lew >,
(¢c) There exists ado B € \Ilak(El, Ey) such that

BA-1e€W¥ >,
(d) There exists a ypdo B € lIlak(El, Ey) such that
AB—-1e€ ¥~ >,

Proof. Clearly (b) = (c), (d). The implications (b), (c), (d) = (a) follow from the composition rule
(3.1.1). Thus, it suffices to show that (a) = (b).

Choose a locally finite open cover (O;);c; of M by pre-compact coordinate regions. We set
Ai : Aoi : Cgo(Eo‘ol) — COO(E1|OZ)

Let A’ be a properly supported t»do on O; such that S; = A; — A} is smoothing. Invoking Theorem
2.9.4 we can find B; € \Ilak(Oi, Ei|o,, Eolo, such that B;A] — 1 = B;S; € ¥~°°. Using Proposition
2.3.4 we deduce B;A; — 1 €¢ —°°,

Let (n:)ier, mi € C3°(0;) be a partition of unity subordinated to the cover (0;);er. Next, choose
i € C§°(0;) such that ¢; = 1 on an open neighborhood N; of supp7; in O;. Since the collection
(Oi)ier is locally finite, so is the collection (N;);cs. For u € C5°(E1) define

Bu:=Y n;Bipiulo,.
i

Let us show that B is a do, i.e., for any coordinate neighborhood with domain O the operator B
(defined as in Remark 3.1.2(a)) is a »do. We will use Corollary 2.4.8 so it suffices to show that for any
n, ¢ € C3°(0) the operator nBoy € \Il_k((f), E., Ey) is a ¢do. There exists a finite set ,, C I such
that

nBopu =Y miBipipu, Yu € C3°(Eilo).
i€l
Note that 1m; Bipip € W %(0, Eq, Eo), Vi € I,
We want to prove that BA — 1 € ¥~ °°. We will show that given iy € I and x € O, there exists a
small neighborhood of N, of xin O;, such that

opaln, ~ 1,

where the symbols are computed using the given trivializations and local coordinates over O;,.

Since the collection (N;);cy is locally finite there exists a small open neighborhood N, of = € O;,
such that the set

Li={iel; N;AN, #0}
is finite. Note that

> mily) =¢iy) =1, WyeN,, Vje L.
i€ly
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Hence, on N, we have

opa= Y ni(op®oa)~ 1.
O

Definition 3.2.3. If A € \II’S(EO, E;) is an elliptic operator, then a parametrix of A is an operator
B € W;(M, Ey, Ey) such that

AB—]IElelI’_OO, BA—]IEOE\I/_OO. O

Arguing as in the proof of Corollary 2.9.6 we obtain the following result.

Corollary 3.24. If A € Wk(Ey, E) is an elliptic 1do and u € C~*(Ey) is such that Au €
C*(E,), thenu € C*>*(E)). O

The method of construction of the parametrix presented in the proof of Theorem 3.2.2 yields the
following more general result.

Corollary 3.2.5. For any element S € H*(M, Eq, E1) there exists a properly supported operator
T € Wk(E, E1) whose principal symbol is S, [o7] = S.

Proof. Consider again the open cover (O;);c; of M and the functions 7;,p; € C§°(0;) used in
the proof of Theorem 3.2.2. Then on the coordinate neighborhood O; we can find an operator 1" €
Wk (0;, Eo, E1) such that [o7,] = S|o,. We deduce again that the operator

T =2 nTipi
i
is pseudo-differential and its principal symbol is S. a

We conclude this section with a couple of of classical examples of elliptic operators that have found
numerous applications in geometry and topology.

Definition 3.2.6. Suppose M is a smooth connected m-dimensional manifold , g is a Riemann met-
ric on M, FE is a complex vector bundle on M of rank r and h is a Hermitian metric on E. A
Laplacian-type (or generalized Laplacian) operator on E is a second order partial differential oper-
ator L : C*°(E) — C*°(FE) such that the following hold.

(a) L=1L"

(b) Forany z € M, & € Ty M we have [or](z,€) = [¢|21 g,

From the definition we deduce that the generalized Laplacians are elliptic operators.

Example 3.2.7. Suppose (M, g) is a connected, smooth Riemann manifold of dimension m. Denote
by Q% (M) the space of smooth, complex valued differential forms of degree k on M. We set

Q% (M) = éﬂ(’é(M) - C“(éA’“T*M ® C).
k=0 k=0
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The exterior derivative defines a first order operator
d:Qe(M) — Q¢ (M).
Observe that for any x € M and £ € T M we have
[od (2, €) = e(S)

where e(i¢) : @ A*T* M ® C — @, AFT M @ C denotes the operation of exterior multiplication with
the complex covector ¢£. We form the Hodge-DeRham operator

D:=d+d" :Q¢(M) — Q¢ (M).
From (2.9.2) we deduce that
0+ (§) = 0a(§)” = e(i§)” = &,

where &;_I denotes the contraction with the vector &; dual to £ with respect to the metric g. The Cartan
identity (2.9.3) then implies that the operator

D? = (d+d*)? =dd* +d*d: QL(M) — Q%(M)
is a generalized Laplacian. From the definition it follows that

DQ(Q{E(M)) c QE(M), Yk > 0.

Thus, D? decomposes as a direct sum of generalized Laplacians

— P2
=D Ak A= Doxu
k=0

The operator Ag acts on smooth functions
Ag=d"d: C¥(M) — C®(M).
It is called the scalar Laplacian of the Riemann manifold (M, g).
Definition 3.2.8. Suppose (M, g) is a smooth, connected m-dimensional manifold and (E, h),
(E1, hp) are two complex vector bundles of the same rank r equipped with Riemann metrics. A first

order partial differential operator D : C*°(E() — C*°(E) is said to be a Dirac-type operators if the
differential operators

D*D : C°(Eq) — C°(Eg) and DD* : C%(E,) — C(E)

are Laplacian-type operators. g

Clearly the Dirac type operators are elliptic. The computations in Example 3.2.7 show that the
Hodge-DeRham operator is a Dirac-type operator.

Definition 3.2.9. Suppose (M, g) is a smooth, connected m-dimensional manifold and (E, k) is a
complex vector bundle equipped w1th a Hermltlan metric. A super-symmetric Dirac-type operator
on E is a palr (D I‘) where' : E — Eis a unitary automorphism of E such that I’ = 1, and
D : C>=(E) — C>(E) is a Dirac-type operator such that

D*=D, DI +TI'D = 0.

The involution I is called the chirality operator associated to the super-symmetric Dirac-type operator.
O
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To every Dirac-type operator D : C*>°(Ey) — C°°(E;) we can associate a canonical super-
symmetric Dirac type operator (D,I") on E := Ey @ E1, where I" and D are given by the block
decompositions

HE() 0 Ey Ey R 0 D* COO(E0> COO<E0)
I:.= - &, D= : &) — &) .
0 —IlEl FE, FE, D 0 Coo(El) COO<E1)

Conversely, if (D,I") is a super-symmetric Dirac-type operator on E then chiral operator induces an
orthogonal direct sum decomposition

E=E.®E_,

where E 4 is the +1-eigenbundle of I', Ey := ker(+1 —I') . Since D anti-commutes with I’ we
deduce that

@(O“(EQ) C C(E-).
The induced differential operators Dy : C*°(EL) — C*(E+) satisfy
DY =D
since D = D*. This proves that @+ is a Dirac-type operator and D is the super-symmetric Dirac-tzpe

operator associated to D_.. The operator D is called the even Dirac-type operator determined by D.

Example 3.2.10. Consider the Hodge-DeRham operator
D : Qg (M) — Qg (M),

on the m-dimensional smooth Riemann manifold (M, g). Define

m m
k=0 k=0

Thus, if « is a differential form of degree k on M then e(a) = (—1)*a. Clearly D anti-commutes
with € so (D, €) is a super-symmetric Dirac-type operator on A2T™ M. We will refer to it as the Gauss-
Bonnet operator.

Suppose now that M is also oriented and even dimensional, m = 2mg. We then have a Hodge
x-operator
x 1t ART* M — AP0~k 0
uniquely determined by the equality
a(z) A (+8)(z) = (al2), B(z) ), dVy(), Yo, € Q" (M), z€M

where dV;, € Q2mo (M) denotes the volume form determined by the metric g and the orientation on
M. We extend * by complex linearity to an unitary bundle isomorphism
w1 AET*M — AR T* M.
This operator satisfies the identity [N, Prop. 2.2.70]
#(xa) = (=1)*a, Ya e Qk(M),

The adjoint of the exterior derivative d can be expressed using the Hodge operator via the classical
equality, [N, Lemma 4.1.49]
d* = —xdx*.
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Now define the Hodge chirality operator
Lo = @7y, Tap s AET*M — AZ™ "M, Thia =" xa, pk) = k(k — 1) +mo.
Observe that if o € Qf « M) then

F%\Ja — B +pmo—k)+k,, _

because p(k) + p(2mgy — k) = 2k% mod 4.
Dsxa=(d—x*ds)xa=dxa—(—1)F«da
Next, for v € Q% (M) we have
DIy = "B (d s a — (=1)F x da),

and
Ty Da = i*¢6+D) « do — iu(k—n(il)zmo_kﬂd .

Now observe that for any ¢ we have ) — (—1)“11'“(@) which shows that D anti-commutes with
I'js. The resulting super-symmetric Dirac-type operator D, T"y/) is called the signature operator. O

3.3. Sobolev spaces on manifolds

Suppose M is a smooth connected, m-dimensional manifold equipped with a Riemann metric, £ —
M 1is a smooth complex vector bundle of rank r equipped with a hermitian metric h and compatible
connection. We denote by V9 the Levi-Civita connection on the various bundles of tensors, and by
|dV,| the volume density on M determined by g.

We define L%OC(E) to be the vector space of Borel measurable sections w : M — FE such that, for

any compact subset K C M we have

/ () 2 |4V, (2)] < oo.
K

Equivalently, a Borel measurable section v : M — E belongs to L (E) if and only if

/M loul2[dV,| < co, Ve € C5°(M).

We define
Hi (E):={ueC >™(E); Aue L} (E), VAe ¥{(E)}.
Finally we define
Hipnp(E) := {u € H} (E); suppu is compact }.

comp
Observe that if M happens to be an open subset of an Euclidean vector space V' of dimension m, and
E is the trivial vector bundle E = E;, then Theorem 2.8.4 shows that the spaces Hj (E,,) and
Homp(E ) defined above coincide with the space Hy (M, E) defined in Section 1.5. To ease the
burden of notation we will assume that E is the trivial complex line bundle C,; over M, so that the
(generalized) sections of E are (generalized) functions on M. The general situation can be safely left

to the reader. We set

HISOC(M) = HISOC(QM)7 H;, (M) = Hgomp(gM)‘

comp
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We want to equip H,,,(M) and Hy (M) with a locally convex topologies. The construction will
require some additional choices, but the resulting topologies will be independent of these choices. We

begin by defining a structure of Hilbert space on the vector spaces
H*(K) :={u € H}.(M); suppu C K },

where K C M is an arbitrary compact subset. Choose a finite open cover of K by precompact coor-
dinate neighborhoods (O;);cr and let (¢;);cs be a partition of unity subordinated to O;. On particular
i € C§°(0;). The local coordinates F; : O; — €; allows us to identify O; with an open subset
); C V, while for any w € C;>°(0;, E) we can identify w with the compactly supported distribution
(F;7Y) % w € Cy (4, CT). For simplicity we set G; := F; '. Given u,v € H*(K) we define

(u,0)s. = D ((Gi)*(piw), (Gi)*(wiv) ),

i€l

:E:/LgﬂGHmeH@)-9KG0Wwwﬂ®Dﬂ+ﬂﬂ%ﬂ&ﬂ

el

so that

[

2= SG) (v 2-

iel
The norm || — ||, x depends on the choice = consisting of a finite open cover (O;) consisting of precom-
pact sets, local coordinates F; on O;, and a partition of unity (¢;);er subordinated to (O;);cs. Thus, it
is more appropriate to denote this norm by || — || =. We want to prove that for any two such choices Z,

E, and any s € R there exists a constant C' = C(s, 2, E) > 0 such that
lullsz < Cllullyz, Yu € H(K).
This boils down to proving the following result.

Proposition 3.3.1. Suppose ) is an open precompact subset of V, and (€;)ic7 finite collection of open
precompact subsets of V' such that
oclJo

1€l
For every i € I we fix a diffeomorphism F; : Q; — D; where D; is also a subset of V. Then, for any
¢ € C3° () and any partition of unity (n;)icr, i € C§°(§%;), there exists a constant C > 0 such that,
forany v € HP (Q) we have
lpulls < C Y II(G) (nipw)s,
i€l
where G; = F;l.

Proof. We have
pu=>_ pnu
el
so that
loulls <D llensulls
el
We conclude by invoking Proposition 1.5.17. g
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The natural topology on HZ, (M) is the finest locally convex topology such that all the inclusions

comp

H*(K)— HZ, (M), K C M compact

comp

are continuous. We equip H;} (M) with the topology given by the family of seminorms

Py Hige(M) = R, po(u) = [lpullssuppe, # € Cg~ (M).
The embedding theorems in Section 1.5 imply the following result.

We can define Holder spaces of sections in a similar fashion. If ¢ is a nonnegative integer and
a € (0,1) thena C’fog(E) consists of C*-sections of E such that for any coordinate region O we have
the restriction

[ulolle.a < o0,
where the above norm is constructed using normal coordinates on the components of O and trivializing

the bundle by radial parallel transport. If ' C M is compact and u € C*®loc(E) is supported on K
then we define

lullea =Y lpiulleas
i

where (p);er is a partition of unity subordinated to a finite cover of K by coordinate regions, and
the norms ||v fi;ul|¢,o are determined using local coordinates and trivializations of FE|o,. This norm
depends on the various spaces, but the induced Banach space topology of section u € C*(E),
suppu C K, is independent of these choices.

Theorem 3.3.2. Suppose M is a smooth, connected, m-dimensional manifold equipped with a smooth
metric and E — M is a smooth complex vector bundle of rank r equipped with a hermitian metric and
compatible connection.

(a) Let k be a positive integer, jv € (0,1) and s > p+ k + m/2. Fix a function ¢ € C§°(M). Then
Hy,o(E) € CM(B),
and there exists a positive constant C such that for any v € H{ (M, E) we have

HSOUHIW < CH‘PUH&suppw'

(b) For any real numbers t > s, and any compact set K C M the inclusion H'(K, E) — H*(E)
is compact, i.e., any sequence (fn)n>1 C H'(K, E) that is bounded in the || — ||¢ x norm contains a
subsequence that converges in the || — ||s-norm. 0

If M is a compact manifold then

Hiyo(B) = iy (M. B) = H*(E), Vs €R

comp

and we obtain the following consequence of Theorem 3.3.2.

Corollary 3.3.3 (Embedding theorems). (a) Suppose M is a compact manifold, k be a positive integer,
p € (0,1)and s > p + k +m/2. Then H*(E) embeds continuously in the Banach space C*"(E).

(b) If t > s then the natural inclusion of Hilbert spaces H'(E) — H*(E) is a compact, continuous
operator, i.e., the sets that are bounded in the || — ||;-norm are precompact in the || — ||s-norm. 0
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Remark 3.3.4. If g is a Riemann metric on the compact manifold M, E — M is a smooth complex
vector bundle on M, h a hermitian metric on F, and V is a connection on FF compatible with the metric
h, then for any nonnegative & the topology of H*(E) is defined by the norm

k
, /
e = (3 | @, @)

where V7 : C®(E) — C*((T*M)® @ E) is defined as in (1.4.1) and | — |5, , denotes the induced
metric on (T*M)®’ @ E. 0

# Notational convention. When working on manifolds the various Sobolev spaces H*(M) could
be confused with various cohomology groups. To eliminate this confusion we will use the alternate
notation L*2(M) to denote the spaces H*(M). Thus L*? stands for functions (sections) that have
weak derivatives up to order s which belong to L?. We keep the superscript 2 since there exist spaces
L*P forany s € R, p € [1, 0].

From Theorem 2.8.4 we deduce immediately the following important continuity result.

Theorem 3.3.5. Suppose A € WE(M, Eq, E) is a properly supported 1)do of order < k and s € R.
Then for any @ € C§°(M) there exists ¢ € C§°(M) and a positive constant C such that

k,2
lpAullssuppe < Cllullsirsuppy, Yu € Lit?(Eq). 0

Later we will need the following consequence.

Corollary 3.3.6. Suppose M is a compact manifold of dimension m, Eq, E1 — M are smooth com-
plex vector bundles of ranks ry and respectively r1, and A € \Il_k(Eo, E,), k> 0 Thenforany s € R
the operator A induces a continuous compact map

A: L*2(Ey) — L**(Ey).

Proof. We know that A induces a continuous map L*>?(Ey) — L*T%2(E;). Since the inclusion
L¥t*2(Ey) «— L*?(E;) is compact we deduce that the composition

LS’2(E0) i> Ls+k,2(E1) N Ls’2(E1)
is compact. 0

The elliptic regularity and estimates (Corollary 2.9.8) have obvious counterparts for 1)do’s on man-
ifolds. Their formulations can be safely left to the reader.

3.4. Fredholm operators

We want to survey here a few more or less classical facts of functional analysis that will play a key part
in the sequel. For simplicity we will restrict ourselves to a Hilbert space context.

Definition 3.4.1. Let Hy, H; be two (separable) complex Hilbert spaces.
(a) A continuous linear operator 1" : Hy — H; is called Fredholm if the following hold.
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(al) The kernel of 7' is finite dimensional.

(a2) The range of T is a closed subspace ran(7T") C H;.

(a3) The cokernel of T is finite dimensional, i.e., the orthogonal complement of ran(7’) in H; is

finite dimensional.
(b) The index of a Fredholm operator 7' : Hy — H, is the integer
ind T := dimker T — dim ran(7T")*.

(c) We denote by F'red(Hy, H) the space of Fredholm operators 7o — 11. If Hy = H; = H we use
the simpler notation Fred(H) = Fred(H, H).

Example 3.4.2. Consider the Hilbert space /2 of sequences of complex numbers £ = (z,),>0 such

that
Z |z, |? < o0.

n>0
For every integer k£ we define the shift map

, k>0
Sk ile =ty Sx=vy, y,= ks PF N
- 0, otherwise.

Then Sj, is a Fredholm operator and ind Sy, = k. O

We have the following important characterization of Fredholm operators.

Theorem 3.4.3. Suppose Hy, H1 are separable complex Hilbert spaces and T : Hy — Hj is a contin-
uous linear operator. Then the following statements are equivalent.

(a) The operator T is Fredholm.

(b) The adjoint operator T : Hi — Hy is Fredholm.

(c) There exist a continuous linear operators () : Hy — Hy such that the operators T'Q) — 1 g,
and Q)T — 1y, are compact.

Proof. (a) <= (b). This follows from Banach’s closed range theorem (see [Br, II] or [Y, VIL.5]) which
states that if 7" : X — Y is a continuous operator between two Hilbert spaces the following conditions
are equivalent.

e The range of 7T is closed.

e The range of T is closed.

e ran(7T) = (ker T%)*.

o ran(7T*) = (ker 7).

(@) = (c) Let V :=ran(T) C Hy and U := (ker T')*; see Figure 3.1.

Then the induced map T'|yy : U — V is bijective, and the open mapping theorem implies that its
inverse S is continuous. Define () : H; — Hj by

Sx, zeV
xr =
@ {0, reVt
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ker T 1

Figure 3.1. Decomposing Hy and H;.

If we denote by Py the orthogonal projection onto ker 7', and by P; the orthogonal projection onto V',
then Py, P are compact because they have finite dimensional ranges and moreover

QT::H-HQ_PCH TQ::H-Hl_Pl

(c) = (a) Let Q : Hy — Hj be a continuous linear operator such that Ko = QT — 1g, and
K; =TQ — 1, are compact.

Let us first prove that dim ker 7" < co. This follows from the following result.

Lemma 3.4.4. Any bounded sequence in ker T admits a convergent subsequence.

Proof. Let (x,),>0 be a bounded sequence in ker T'. Hence
Koz, = —QTxy + xp, = x4y

Since the operator — K is compact and the sequence (z,,)n>0 is bounded we deduce that the sequence
— Koz, admits a convergent subsequence. O

The above lemma implies that ker T is locally compact and therefore (see [Br, Thm. Vi.5] or [RSz,
§77, 89] ) it must be finite dimensional. Since K| = Q*T™ — 14, is compact we deduce as above that
ker T is also finite dimensional.

Let us now show that ran(7") is closed. We denote by 7T the restriction of 7' to U = (ker T')* and
we observe that 7" is one-to-one and ran(7") = ran(7T") so it suffices to prove that ran(7") is closed. If
we denote by Py the orthogonal projection onto U we observe that the operator () = P satisfies

QT = 1y + Ko, Ko:= PrKo|y
so that @f — 1y is compact.
Lemma 3.4.5. There exists C > 0 such that
ul| < ¢|Tul|, YueU.

Proof. We argue by contradiction. We assume that there exists a sequence (uy)n>0 in U such that
|un| =1 and Tu, — 0. (3.4.1)

Then
Up + f(oun = éfun —0
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Since (uy,) is bounded and Ko is compact we deduce that a subsequence K, 0Un,, of Kouy, is convergent.
From the above equality we deduce that u,,, is also convergent to an element u,. Moreover

[ | = Tim [Jug, || = 1 7 0.

Using this in (3.4.1) we deduce that Tu, = 0. Thus ker T’ # 0. This contradicts the fact that T is
one-to-one. O

Suppose y, = fun converges to y. We need to prove that there exists u € U such that y = T'u.
Using Lemma 3.4.5 we deduce that there exists C' > 0 such that

|tn — um|| < ||Tv(un —um)|| £ Cllyn — ymll, Ym,n >0.

The sequence (y,,) is Cauchy and we deduce from the above inequality that the sequence (u,,) is also
Cauchy and thus converges to some u € U. Clearly y = T'u. This proves that ran(7") is closed.

From the closed graph range theorem we deduce that ran(7)* = ((ker 7*)*)+ = ker T* so that
dimran(T)* < co. This completes the proof of Theorem 3.4.3. O

We record for later use some consequences of the above proof.
Corollary 3.4.6. If'T : Hy — H; then so is its adjoint and moreover
indT = dimker T — dimker T* = —ind T"". O
Corollary 3.4.7. If T : Hy — H1 is a Fredholm operator then there exists a constant C > 0 such that
x|z, < C\Tx||fry, Vo € Hy, o LkerT.
In particular, if T is injective, then there exists a constant C' > 0 such that

|zl g, < C||Tx||g,, Vx € Hy. -

Definition 3.4.8. A quasi-inverse of the continuous linear operator 7' : Hy — H; is a continuous linear
operator () : Hy — Hj satisfying condition (c) in Theorem 3.4.3, i.e., the operators

QT— ILHO and TQ— ﬂHl

are compact. O

Corollary 3.4.9. If S, T : Hy — H; are continuous linear operators and K ='T' — S is compact, then
T is Fredholm if and only if S is Fredholm.

Proof. Suppose T is Fredholm. If @ is a quasi-inverse of 7" then QT — 1 and T'Q) — 1 are compact.
We observe that S =T — K so that

QS-1=Q(T-K)-1=QT—1-QK.

Since K is compact we deduce Q) K is compact as well so that )5 — 1 is compact. A similar argument
shows that SQ — 1 is compact so that () is a quasi-inverse of .S so that S is Fredholm. O

Corollary 3.4.10. Suppose T’ : Hy — H is a continuous linear operator, U,V are finite dimensional
complex Hermitian vector spaces an A : U — Hy and B : Hy — V are continuous linear operators.
Define

Ta:Ho®U — Hy and TP : Hy — Hi @V
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b
’ Ta(x ®u) =Tz + Au, TPz = (Tz)® (Bz), Yo € Hy, ueU.
Then the following statements are equivalent.
(a) The operator T is Fredholm.
(b) The operator T4 is Fredholm.
(c) The operator T is Fredholm.

Proof. Set Ty = T4, A= 0and T° = T5, B = 0. Clearly
T 1is Fredholm <= Tj is Fredholm <— T° is Fredholm.

To conclude we observe that for any B the operator T2 — T is compact because it has finite dimen-
sional range C V. The equivalence (a) <= (c) now follows from Corollary 3.4.9.

Observe that (T4)* = (T*)?" and since T4 is Fredholm if and only if its adjoint is we see that the
equivalence (a) <= (b) is a special case of the equivalence (a) <= (c). O

We denote by B(Hy, Hy) the vector space of continuous (or equivalently bounded) linear operators
T : Hy — H;. This is a Banach space with respect to the operator norm

1T = sup |Tz||, VI'e B(Ho, H1).
w€Ho, [z =1]

The space F'red(Hy, Hy) is a subset of B(H, H1). We have the following important result.
Theorem 3.4.11. The space Fred(Hy, H) is an open subset of B(Hy, H1) and the index function
ind : Fred(Hy, H,) — Z

is continuous.
Proof. We have to prove that for any operator Ty € Fred(Hy, H) there exists € > 0 such that if
T € B(Hy, Hy) and | T — Tp|| < € then

T € Fred(Hy, Hy) (3.4.2a)

ind T = ind Ty. (3.4.2b)

Both statements above are consequences of the following fundamental fact whose proof is left to the
reader as an exercise.

Lemma 3.4.12. The set B.(Hy, H1) of invertible continuous linear operators Hy — Hy is open in
B(Hy, Hy). 0

Denote by Fy : Hy — ker Ty the orthogonal projection onto ker 7j and by Ij the natural inclusion
ker Tjy < Hj. Define N N
Hy:= Hy @ kerTiy, Hy:= H; & ker T,
and for every T' € B(Hy, H,) define T : Hy — H by
Fl2]=[L 0] (2] wenvermn
Observe that

|T(@ & w)l| = [Ta +ull + [Pzl < (1+|TI|)lle @ ull, Vo € Ho, uekerTy,
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so that T € B(Hy, H,). Note also that for any S, T € B(H, H,) we have
1T =S| < IT =S|
so that the map
B(Hy,H,)>T+— T € B(Hy, Hy)
is continuous. Corollary 3.4.10 implies that 7" is Fredholm if and only if T is Fredholm.

Now observe that T is one-to-one and onto so that Ty € B..(Hy, H). Since B*(IA{TO7 E’l) is open
in B(Hy, Hy) we deduce that if T is sufficiently close to Tp we have

T S B*(ﬁo,ﬁl) C F’I"ed(ﬁo,ﬁl)

so that ' € Fred(Hy, Hy). This proves (3.4.2a).
To prove (3.4.2b) it suffices to show that the map 7" — ind 7" is lower semicontinuous, i.e.,

ind7T < liminfind T (3.4.3)
T—)To
Indeed (3.4.3) implies
—indTp = ind 7y < liminfind 7" = — limsupind T’
=15 T—To
so that

limsupind7T < ind7T < liminfind T
T—To T—To

which clearly implies (3.4.2b).
To prove (3.4.3) we will show that if T is sufficiently close to Ty, then there exists an injection

ker T* & ker Ty — ker T’ & ker Tjy
so that
dimker T + dim ker Ty < dimker 7"+ dimker 75 + ind 7Ty <ind7T < ind7p < ind 7.
Let T sufficiently close to Tj so that T is invertible. Set
Vo :=kerTy, V:=kerT, U:=kerT*, Uy:=kerTy, X:=V+CHy, Y:=UtcCH,.
Then T is a linear continuous bijective map (see Figure 3.2)

XoVaelUy—=YaoUal.

X T Y
A \
1% U
~~
-1
4 r \7)

Figure 3.2. Visualizing T.
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Its inverse defines three continuous linear maps
YoU®Vy 3 (y,u,vo) — z(y,u,v9) € X,
YaeU®V > (y,uv) — v(y,u,v) €V,
YoU®Vy 3 (y,u,vo) — up(y,u,vg) € Up.
We claim that the induced map

T,

Ud V> (u,vo) LT, (U(O,u,vo), uo(0, u, vo)) eVl
is one-to-one. Suppose (u,vy) € ker L, i.e.,
v(0,u,v9) =0, up(0,u,vy) =0.
Set x = (0, u, vg). We deduce that
T(x,0,0) = (0,u,v9) < Tax =0, Pyx = up.
The induced map 7" : X — Y = ran(7) is bijective so that z = 0. Hence
x(0,u,vg) = v(0,u,vo) = up(0,u,vy) =0,

ie., Tv_l(O, u,vg) = 0. Since T-" is one-to-one we deduce u = vy = 0, i.e., ker L = 0. O
Corollary 3.4.13. Suppose T, S € Fred(Hy, Hi) and T — S is compact. Then ind T = ind S.

Proof. Observe that for any ¢ € R the operator A; = S + ¢(T" — S) is Fredholm. Then the map
[0,1] €t — ind(A;) € Z

is constant so that ind S = ind Ag = ind A; = ind T O

Corollary 3.4.14. If Ty € F’I"ed(Ho, Hl), T € F'red(Hl, H2) then T\ € F’I"ed(Ho, Hg) and
ind(TyTp) = ind(T1) + ind Tp. (3.4.4)

Proof. Let Q1 € B(H2, Hy) be a quasi-inverse of 77 and Qo € B(H;, Hy) be a quasi-inverse of Tj.
then

Qo111 Ty = Qo(1 + compact)Tp = 1 + compact.

Similarly T1ThQoQ1 = 1+compact. Hence QQ¢Q)1 is a quasi-inverse of 7717} so that 717} is Fredholm.
To prove the equality (3.4.4) we use the elegant argument in [H3, Cor. 19.1.7]. Define

| 1y O (cost)ly, (—sint)ly, T, 0
At_|: 0 Tl] [(sint)]lH1 (cost)lp, 0 1y, € B(Hy® Hy,H, ® Hj).

Observe that Ay is Fredholm for any ¢ because the middle operator in the above product is invertible
for any t. Moreover,

1 oo [0 —1p,
AO_[O Tl]’A”/Q_[TlTO 0 }

indTy + ind 77 = ind Ap = ind AW/Q = ind(TlTo).

and
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3.5. Elliptic operators on compact manifolds

Throughout this section we fix a smooth, compact connected manifold M of dimension m and a Rie-
mann metric g on M.

Let Ey, E1 — M be two smooth, complex vector bundles over M. Fix metrics h; and compatible
connections on E; so we can define the Hilbert spaces L*2(E;).

Theorem 3.5.1. Suppose A € \I'k(EO, E\) is an elliptic operator. Then the following hold.
(a) For any s € R the induced continuous linear operator
Ay L5+k’2(E0) — L**(E)
is Fredholm and its index is independent of s. We denote this index by ind A.
(b)If B € W*(Ey, E1) and [0] = [0 4] then B is elliptic and ind B = ind A.
Proof. (a) Let Q) € gk (Eq, Eg) be a parametrix of A then the induced operator
Qs : L*X(E1) — L3+k’2(E0)

is a quasi-inverse of Ag. Indeed QA — 1 is a smoothing operator, thus has negative order, and invoking
Corollary 3.3.6 we conclude that the induced operator

QsAs —-1: L8+k72(E0) — LS—HC,Q(EO)

is compact. In a similar fashion we conclude that A;Qs — 1 is a compact operator. This proves that A
is Fredholm.

To prove that ind A, is independent of s observe that Corollary 2.9.6 implies that
ker A; = {u € C®(Eg); Au=0} = kerA.
To show that dim coker A is independent of s we will prove that it is isomorphic to
ker A* = {u € C™(Eg); Au=0},
where A* denotes the formal' adjoint of A. This requires a bit of foundational contortionism.

First let us explain how to extend the Duality Principle (Theorem 1.5.5) to Sobolev spaces of
sections of smooth bundles over compact smooth manifolds. Let E be a complex vector bundle over
M. Observe that we have a bilinear pairing

(=, =) :C®(EY) x C*(E) = C, (u,v)— ((u,v) = /M<u,v>E |dVy| € C,
where
(—,—)g : C®(EY) x C*(E) — C>(M)

is the natural pairing between a bundle and its dual. From the inequality (1.5.2) we deduce that there
exists a constant C' > 0 such that

(u,v)) < Clull=sllvlls.g,, Y(u,v) € C®(EY) x C(E). (3.5.1)
For any u € C*°(E") we denote by £ g(u) the linear map
{u,—) : C>*(E) — C.

INot to be confused with the adjoint of the operator A acting between the Hilbert spaces L°1%:2 and L*:2! This confusion seems to
appear in a large part of the literature on »do’s that I have consulted.
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The inequality (3.5.1) shows that we have a natural map
Lg:C®EY)>u— Lp(u) € L**(E)Y, (L(u),v) = {u,v),
where (—, —) denotes the natural pairing between a Banach space and its dual. Note that
ILe()] < Cllull-s, Vu.
Since C*°(E") is dense in L~%2?(E") we deduce that £ defines a continuous map
Lp: L %*(EY) = L**(M,E)".

Proposition 3.5.2 (Duality trick). The continuous map

L:L**(E") —» L**(E)".

is bijective so L~%%(E") is isomorphic as a topological vector space to the dual of L*?>(M,E). O

The proof is elementary, and reduces via finite partitions of unity to the Duality Principle in Theo-
rem 1.5.5 and (1.5.7).

The operator A : L*t%2(Eq) — L*?(E1) has a dual
(As)v . Ls,Q(El)v N L5+k’2(E0)V.

The operator A, has closed range and the Banach space version of the closed range theorem [Y, VIIL.5]
implies that

ran(As) = ker(A")" == {v e L**(E1); (w,u) =0; Yw € ker A" }. (3.5.2)
This proves that

coker Ag = ker(Ay)".
Consider the dual v»do A € W*(E;", E(") defined by
((AVu,v)) = ((u, Av)), Vu,v smooth.

Let us observe that we have a commutative diagram

(AY)—s—
L7872(E]_V) k Lfsfk,Q(EOV)

LE LE

1 0

Ls,2(E1)v

oy LB

Indeed, for u € C*°(E1") and v € C*°(E1) we have
< LEO ( (Av)*sfk u ) y U > = «Avu, U>> = «u7 AU>>

= <(u, ASU» = <£’E1 (u)7 ASU> = < (AS)VLEl (u>7 v >
Since the spaces of smooth sections are dense in all Sobolev spaces we deduce that the above equality
holds for all w € L=%2(E;) and v € L*2(Ej) thus establishing the commutativity of the above
diagram.

Proposition 3.5.2 shows that the maps £ g, are bijective which implies that

ker(As)" = ker(AY)s.
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Since AY is also elliptic we deduce from Corollary 2.9.6 that
ker(AY), c C*°, ie., ker(AY), ={ue C™(E"); Au=0}.

Since AV is conjugate to the formal adjoint A* via the conjugate linear isomorphism I}, : E' - E
induced by the metric h we deduce that

Iy (ker A" ) = ker A*. (35.3)

In any case this shows that dim coker(A;) is independent of s. This proves (a).

To prove (b) consider a »do B € W*(E,, E1) that has the same principal symbol as A. Then B is
elliptic and

B—Ac$YE, E,).

Thus B — A induces a continuous operator L*T%2 — L5+12 and since the embedding L5+t12 — L2
is compact we deduce that the operator By — A, : L5752 — %2 is compact. This shows that

ind A; = ind By, Vs.

Let us mention a useful consequence of the above proof.
Corollary 3.5.3. Suppose A € W*(Ey, E\) is an elliptic operator. Set
ranzz A :=ran( A: L*2(Ey) — LY(Ey) ).

Then ran;2 A coincides with the orthogonal complement in L?(E1) of the kernel of A*.

Proof. This follows from the following key observation. If J, : EY — E is the natural conjugate
linear isomorphism defined by a hermitian metric on the vector bundle E and R : L*(E)" — L*(E)
is the conjugate linear isomorphism induced by the Riesz representation theorem then the composition
2 B rovy LB r2 v R 2
L*(E) = L*(E") == L*(E)" — L°(E)

is the identity map. g

If (M, g) is a Riemann manifold, we denote by S, (7 M) the unit sphere bundle
Sy(T"M);={ (2,€); x € M, € T;M, [¢ly=1}.
Observe that if 0o, 01 € H¥(M, Eq, E1) then
og = (71<:>UO‘SQ(T*M) = Jl\SQ(T*M). (3.5.4)
We have the following generalization of Theorem 3.5.1(b)
Proposition 3.5.4. Consider two elliptic operators Ay € W*(Ey, E,), A, € " (Ey, E,). If

[0a0]ls, () = [0a1]ls, ()

then ind Ag = ind A;.
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Proof. If Ay and A, have the same orders, kg = ki, then the conclusion follows from (3.5.4) and
Theorem 3.5.1(b). Assume r = k; — kg > 0. Using Corollary 3.2.5 we deduce that there exists

S € W'(E;) suchthat [og] = [¢|" - 1E,.
Set
A= %(S +5%) € UT(E).
Then A, = A} and [0, ](2,&) = |¢|" - 1 g,. Thus, A, is elliptic and
ind A, = dimker A, — dimker A7 = 0.
Set By := A, 0 Ay € \Ilkl(Eo,El). Then A; and Bp have the same order and [aAlﬂgg(T*M) =

(08,5, (T 1) Hence
ind A; = ind By = ind A, + ind Ag = ind Ay.

O

We denote by WEII(Ey, E1) the space of elliptic pseudodifferential operators C*°(Eqy) — C*°(E1).
We denote by E;, the pullbacks to S,(7™* M) of the vector bundles E;, i = 0,1, and we denote by

Iso (EO, El) the space of bundle isomorphisms Ey — El. The principal symbol map induces a
surjection

0] : VEL(Eq, E1) — Iso (Eo, E1), A~ [oalls, ),
while Proposition 3.5.4 implies that there exists a map ind,, : Iso (Eo, E‘l) — Z such that the diagram

below is commutative

VEI(Eo, E1) —20 7

Iso (EQ, El)
The map ind, is called the analytic index and one can prove that it is continuous with respect to a
natural topology on Iso (Eq, E1).

Suppose (@, I') is a super-symmetric Dirac-type operator on a Hermitian vector bundle (E‘, h) over
the compact, m-dimensional, Riemann manifold M. As explained on page 88, the chiral operator I
induces an orthogonal bundle decomposition E = E_ & E_ and Dirac-type operators

Dy :C*(E+) - C*(E+) suchthat D_ = DY

The operator D is elliptic and its index is called the index of the super-symmetric Dirac-type operator
D.

3.6. Spectral decomposition of elliptic selfadjoint
partial differential operators on compact manifolds

Throughout this section we fix a smooth, compact Riemann manifold (M, g) of dimension m and a
complex vector bundle E — M of rank r equipped with a Hermitian metric h.
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Let A : C*(E) — C*(E) be an elliptic partial differential operator of order k. We assume that
A is formally self-adjoint, i.e., A = A*. The operator defines an unbounded? operator
A:Dom(A) c L*(E) — L*(E),
with domain Dom(A) = L¥2(E), defined by
L*(E) 3 u— Auc L*(E).
We will refer to A as the analytic realization of A.

Proposition 3.6.1. The operator A is closed, and selfadjoint, i.e., the following hold.
(a) The graph A is closed in L*(E) x L(E).
(b) Forany u,v € LF%(E) we have (Au,v) 2 = (u, Av) .
(¢) Ifv € L*(E) and there exists C > 0 such that
|(Au,v) 2] < Cllull 2, Yu € LM (E),
then v € Dom(A) = LF2(E).

Proof. Part (b) follows from the equality A = A*. To prove (a) we need to show that if (u,)n>0 is a
sequence in L*2(E) such that there exist (u,v) € L?(E) x L*(E) so that

lim (|lun — ul|z2 + [|Aup — vl[f2) =0
n—o0

then u € L*?(E) and v = Au. This follows from the elliptic estimates. Indeed, there exists a constant
C > 0 such that for any n,n, > 0 we have

ltn =t [l 2 < C (N Aun — Aunllzz + [lun — w2 ).

Since the sequences (u,) and (Au,,) are Cauchy in the L?-norm we deduce from the above inequality
that the sequence (u,,) is also Cauchy in the L*2-norm. This implies that u,, — u in L*? and thus
Au,, — Au = v in LF2,

Part (c) follows from elliptic regularity. Denote by I}, the conjugate linear bundle isometry [, :
E — E'. Forany u € L*%(E) we have
(Au,v)r2 = (Au, Iyv) = {u, A Iv)).

Set w := AVIv. A priori, all that we know is that w € L?(E") so that w € L~%2(E"). On the other
hand we know that

|, w)| < Cllull2, Yue LM(E).
Hence, the linear map
L*2(E) 3 u s (u,w) € C
is continuous with respect to the L?-topology. Since L*?(E) is dense in L?(E) we deduce that the
above linear functional extends to a continuous linear functional L?(E) — C. From the Riesz rep-
resentation theorem this implies that I, 'w = I, ' AVI,v = A*v € L?(E). Since A* is elliptic, we
deduce that A*v € LF?(E).
O

2For basic facts about unbounded operators we refer to [Br, I1.6], [K, Chap 3, §5], [ReSi, VIII].



104 3. Pseudo-differential operators on manifolds and index theory

Definition 3.6.2. Suppose A : C*°(E) — C*(E) is an elliptic, partial differential operator of order
k.

(a) The resolvent set of A is the subset p(A) C C consisting of complex numbers A such that the
induced operator A — A : L*?(E) — L?(E) is bijective. The spectrum of A is the subset

spec(A) :=C\ p(4) c C.

(b) The complex number \ is said to be an eigenvalue of A if the operator (A\—A) : LF?(E) — L*(E)
has nontrivial kernel. The sections in this kernel are called eigensections of A corresponding to the
eigenvalue A\. We denote by spec,(A) the collection of all the eigenvalues of A. O

Observe two things. First, the resolvent set of A is open so that spec(A) is a closed subset of
C. Second, for any A € C the operator A — A is also elliptic so that ker(A — A) C C*°(FE) and
dimker(\ — A) < co. This dimension is called the multiplicity of A with respect to A. Observe that A
is an eigenvalue of A if and only if its multiplicity with respect to A is positive.

Theorem 3.6.3 (Spectral decomposition). Suppose (M, g) is a smooth, compact Riemann manifold
of dimension m and (E,h) is a smooth complex vector bundle of rank r over M equipped with a
Hermitian metric. Let A : C*°(E) — C*°(E) be a formally self-adjoint elliptic pdo of order k. Then
the following hold.

(a) The spectrum of A is real, i.e., spec(A) C R
(b) The spectrum of A is a discrete subset of R consisting only of eigenvalues, i.e.,
spec(A) = spec,(A).

(c) There exists a Hilbert basis (¢,,)nez of L*(E) consisting of eigensections ¢,, € C*(E) of
A. If A\, is the eigenvalue corresponding to ¢,, then

spec(A) = {An; neZ}.
We will refer to such a basis as a spectral basis of L?(E) relative to the operator A.

(d) If u € L?(E) decomposes along a spectral basis (¢, )ncz as a series

u = Zun(j)n, uy € C, Z |un|? < o0,

nez n
then v € L*%(E) if and only if

ZP‘“U”‘Q < 0.
n

In this case Au has the decomposition

Au=> " Aptin,,.

Proof. To prove (a) it suffices to show that for any A € C\ R the induced operator A\ — A : L*2(E) —
L?(E) is bijective. Observe that A — A is an elliptic operator that has the same symbol as A so that

ind(A— A) =ind A =0,
where the last equality is due to the fact that A = A*. Thus
A € p(A)<=ker(A — A) =0. (3.6.1)
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If A € C\Rand u € ker(A — A) then we have
Au = du = (u, \u) 2 = (u, Au) 2 = (Au,u) 2 = (Au,u) 2.

Hence Al|ul|3, = Al|lul|3, and since X is not real we deduce u = 0. This proves (a).

To prove (b) let us first observe that (3.6.1) implies that the spectrum of A consists only of eigen-
values. Let us show that spec(A) is a discrete subset of A. Fix Ay € spec(A). We need to prove that
there exists € > 0 such thatif 0 < |A — Ag| < &, then A € p(A), i.e., ker(A — A) = 0.

We argue by contradiction. Suppose that there exists A,, — Ag, A, # A such that ker(\,, — A) # 0.
Choose u,, € ker(A, — A) such that ||uy,|| 2 = 1. Observe first that
AA)uy, = (A= \p)up,
which implies that
Uy, € ran( L*(E) A4 L*(E)).
Since (A — A)* = XA — A we deduce from Corollary 3.5.3 that
(Up,v)r2 =0, Vv € ker(A — A), Vn. (3.6.2)
From the elliptic estimates we deduce that there exists C' > 0 such that
[unllzre < C(IAunllz2 + [lunll 2 ) = C(IAa] + 1)

This proves that the sequence (u,,) is bounded in L*?(E). Using the fact that the inclusion L*?(E) —
L?(E) is compact we conclude that a subsequence of (u,,) converges in the norm L?. Let (uy,) be this
subsequence, and denote by w its L? limit. Note that ||u||;2 = 1.

Using the elliptic estimates again we deduce that

| tn; — unj||Lk’2 < C( | Ay, — Aunj‘|L2 + [|wn; — unjHL?)

= C( H)‘mum - )\njunjHL2 + Hum - un]-HL2 )

The sequences (uy,) and (\p,uy,,) are Cauchy in the L? norm and so we conclude from the above
inequality that the sequence (uy,) is convergent in the LF? norm to u. Passing to limit in the equality
Auy,; = A\, upn, we deduce that Au = Au. Hence

u € ker(A—A) and |jull;2 = 1.

Finally, using (3.6.2) we deduce (uy,,u)r2 = 0,Vi. Passing to limit in the last equality we reach the
contradiction 1 = [|ul|3, = 0.

To prove (c) observe first that since spec(A) is a discrete subset of R there exists ¢y € p(A) N R.
We deduce that co — A : L*?(E) — L?(E) is continuous and bijective. By the open mapping theorem,
its inverse (co — A)~' : L?(E) — L¥?(E) is continuous. The resulting operator

(/\0—_14>)7

R(co, A) : L*(E) CIM(E) = [X(E)

is compact since the inclusion L¥?(E) < L?(E) is compact. Since A = A* we deduce that R(cg, A)
is also self-adjoint as a bounded operator L?(E) — L?(E).

Invoking the spectral theorem for compact selfadjoint operators on Hilbert spaces ([Br, VL.4],
[K, V.3]) we deduce that there exists a Hilbert basis (¢,,) consisting of eigen-sections of R(co, A).
The spectrum of R(cgp, A) has a unique accumulation point, the origin, and any nonzero number in
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the spectrum of R(cp, A) is an eigenvalue with finite multiplicity. Moreover we have an orthogonal
decomposition

L*(E) = @ker(,u — R(co, A)).

If 11 is an eigenvalue of R(co, A) then p # 0 since R(cg, A) is injective. Moreover, if ¢ is an eigenvec-
tor of R(cp, A) corresponding to x then

R(co, A)¢p = =6 = p(co — A)p=A¢ = (co — ™).
This proves (c).

To prove (d) fix a spectral basis (¢,,) of L?(E) and denote by )\, the eigenvalue corresponding to
¢,,- Fix cg € p(A) N R and for every \ € R set

n(A) =

so that \ is an eigenvalue of A if and only if 1()) is an eigenvalue of R(cp, A).
Letu € LF2(E),

1
co— M\

u= Zu"¢”’ up € C, Z |un|? < 0o
n n

Set v = Aw so that cou — v = (¢o — A)u. We can write

v= Zvnqbn, v, € C, Z [un|? < oo0.
Note that
cou — v = (cog — A)u<=u = R(cg, A)(cou —v) = Z 1(An) (cotin, — vn) by,

and we deduce

(co — An)un = (coup — vp), ie., Apun = vy, Vn.

Z\)\nun\Q < 0.
n

This implies that

Conversely, let
u = anqﬁn € L*(E) such that Z |Anzn|* < co.
n n

We want to prove that u € L*2(E). Define
V= Z AMnp, € L*(E).
n

For any positive integer v we set
Uy = Z $n¢nv Vy = Z An$n¢n
In|<v [n|<v
Then Au, = v, and

Tim ([luy — ull g2 + [[o, — o]l 2) = 0.

Invoking Proposition 3.6.1(a) we deduce u € L*2(E) and v = Au. O
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Example 3.6.4. Let us consider a simple example when M is the unit circle and E is the trivial complex
line bundle. The operator
d
A= —i@COO(Sl) — C™=(Sh),
is elliptic and self-adjoint and its spectrum is

spec(A) = Z, ker(n — A)span (e, () = ™).

The collection
1
Wen(G), n ez
is a spectral basis relative to A. The decomposition of a function v € L?(S') determined by this basis
is note other than the Fourier decomposition of w,

¢, (0) =

27 .
u= Zﬁ(n)en(ﬁ), u(n) := (2711)1/2/0 u(B)e " de.

ne”

Observe that u € L%?(S1) if and only if
> Inii(n)|* < co. O

neL

3.7. Hodge theory

Recall that a (cochain) complex of vector spaces is a sequence (E", dy,),>0 of complex vector spaces
FE,, and linear operators d,, : E™ — E™t1 such that

dpt1dn, =0, Vn > 0. (3.7.1)
The complex is said to have finite length if E™ = 0 for all n > 0. Note that (3.7.1) implies that for any
n > 0 we have
ran(d,—1) C kerd,,
where we set d_; := 0. The elements in Z"(E*®) := ker d,, are called cocycles (of degree n) while the
elements in B"(F,) := ran(d,_1) are called coboundaries (of degree n. ,
The cohomology of a complex (E,,d) = (E™, d,) is the vector space

ker d,,

—, Vn >0,
rand,_1

H*(E,,d) := @Hn(Eo,d), H"(E,,d) :=

The complex is called acyclic if H"(E,) = 0, for all n > 0.
We declare two cocycle zg, z1 € Z™(E,) cohomologous, and we write this zy ~ z1, if there exists
u € E™1 such that
zZo — 21 = du,
We see that the binary relation “~” is an equivalence relation on the space of cycles and H"(E,) can

be identified with the space of cohomology classes of cocycles of degree n. For a cocycle z we denote
by [z] its cohomology class.
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Example 3.7.1 (Baby Hodge theory). We want to discuss a special, finite dimensional case of Hodge
theory for two reasons. First, we get to see the main ideas in the proof, unencumbered by technicalities.
The second reason is that we need the finite dimensional version to establish some important technical
facts about elliptic complexes.

Suppose (Fe,d) = (E™, dy)n>0 is a cochain complex of finite dimensional complex vector spaces
and
E"=0, Yn> N.

Fix an a Hermitian inner product h,, on each E,,. We can now define adjoints d;, : E" — E™ 1. Set

N
E*:=(PE"
n=0
The operators d,, and the metrics h,, define operators
d=®,d, : E* — E°,
and a metric h = @,h,, on E°®. The adjoint of d is the operator ®,,d;. The condition (3.7.1) can be

rewritten simply as d> = 0. Define

H"(E*,h):={ueE"; dyu=d,_ju=0}, H*(E*h) ::@H”(E‘,h).

The elements in H™ (E*®, h) are called harmonic (with respect to the metric h). We have a natural map

H"(E®* h) - H"(E®), uw [u] (3.7.2)
which associates to each harmonic element its cohomology class. Hodge theorem states that this map
is an isomorphism of vector spaces. This is a consequence of the Hodge decomposition theorem which

states that the subspaces H"(E®, h), ran(d,,—1), ran(d;,, ;) of " are mutually orthogonal and we
have a direct sum decomposition

E™ = H"(E*, h) @ ran(dp—1) ® ran(d;, ). (3.7.3)
Let us verify the orthogonality statement. Denote by (—, —) the hermitian inner product h. Let u €
E™ = H"(E*,h), yo € ran(d,—1) and y; € ran(d}, ). Then there exist zo € E" ! and z; € E"*!
such that
Yo = dxo, y1 = dx1.
Then
(u,90) = (u, dxo) = (d"u, x0) = 0, (u,41) = (u,d"x1) = (du, 1) = 0,
(yo,yl) = (dxo,d*xl) = (d2x0,x1) = 0.
To prove the decomposition (3.7.3) we consider the selfadjoint operator d + d* : E* — E*°. Note first
that
(d+d")z = 0<=dx =z"z = 0. (3.7.4)
Indeed, we have
0 = (dz + d*z,dx) = |dz|* + ((d*)*z, z) = |dz|?,
and similarly,
0= (de + d*z,d*z) = |d*z|> + (d*z, x) = |d*z|*.
Then
E*® =ran(d + d*) ® ran(d + d*)*

CLY ran(d + d*) @ ker(d + d*) = ran(d + d*) & H*(E, h).
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In the above string of equalities the key role is played by the equality

ran(d 4 d*)* = ker(d + d)
which in the finite dimensional context follows by elementary methods, while in the infinite dimen-
sional context is a consequence of the highly nontrivial closed range theorem.

It is now easy to prove that the map (3.7.2) is an isomorphism. Indeed if z is a harmonic element
cohomologous to 0 then
z € H*(E*, h) Nran(d) = {0}.
This proves that (3.7.2) is injective. To prove the surjectivity, consider a cohomology class c and a
cocyle z such that [z] = c¢. Using the Hodge decomposition we can write

z=2zy+du+d"v, zg € H*(E® h).
From the equality dz = 0 we conclude dd*v = 0 so that
0 =)dd*v,v) = |d*v|>.
Thus z = 2 + du so that [z] = [2] = c.

The operator Ay, := (d + d*)? is called the Laplacian of the complex determined by the metric h.
From the conditions d? = (d*)? = 0 we deduce that

Ay = (d+ d*)? = dd* + d*d.
Observe that
H*(E*, h) = ker(d + d*) = ker Ay,
The first equality follows from (3.7.4). The inclusion
ker(d + d*) C ker(d + d*)* = ker A,
is obvious. To prove the opposite inclusion let v € ker Aj,. Then
0= (Apu,u) = (dd*u, u) + (d*du,u) = |d*u|* + |du|?.
Let us observe a simple consequence of the above facts. More precisely, we see that
the complex (E°, d) is acyclic <= d + d* : E®* — E*® is alinear isomorphism. (3.7.5)
O

Definition 3.7.2. A complex of 1»do’s on a smooth manifold M is a finite sequence of smooth complex
vector bundles (Ey)o<k<n over M and first order® properly supported )do’s

Ay € O§(Ey, Eppq), 0<k<N -1,
such that the following hold A 0 Ap_1 =0,V1 <k <N — 1.

The complex is called elliptic if for any x € M and any £ € T M \ {0} the finite dimensional
symbol complex

[040)(2:) [oa)(@€)  loay_J(z:8)
H _> “ e H

0— Eo(l‘) El(x)

is acyclic. 0

N(.%') — 0

3The restriction on the order is not really necessary, but this is what one encounters in concrete applications.
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Suppose that ( Ay € lIll(Ek, Ej11) Jo<k<n—1 is a complex of 1pdos. We fix a Riemann metric

g on M, and Hermitian metrics hj; on the vector bundles E} so we can define the formal adjoints
Af € UY(E}1, E;). Now form the direct sums

N

E, = @Ek, he = ®h_ohk, Ae= ®h 5 Ay

k=0

Then
Ao, Af € OH(E,).

Proposition 3.7.3. The complex of do’s ( Ay, € W (Ey, Ey11) Jo<k<N-1 is elliptic if and only if the
operator Ae + A} is elliptic.

Proof. This is a consequence of the baby Hodge theory, more precisely (3.7.5). O

Suppose (A, € WY(Ey, Ey.1) Jo<k<n-—1 is a complex of ¢do’s. Its space of cocycles is the
vector space
Z%(Ad) = ker(C®(Ey) 25 C(Eyy, ),
its the space of coboundaries is

BY(A) = ran( C®(Ey_y) 25 0= (E,),

and its degree k-cohomology space is
H*(A,) := Z*(A.)/Br(As).

Theorem 3.7.4 (Hodge Decomposition). Suppose ( Ay, € P! (B, Ery1) Jo<k<N-—1 is an elliptic com-
plex of 1¥do’s over the compact manifold M. Fix a Riemann metric on M, Hermitian metrics hy and
compatible connections on Ey. Set

H"(A,,g,he) := {u € C®(Ey); Apu=A}_ju=0},

ranyz Ay 1= ran(Lm(Ek) SN LQ(EkH)),

A*
ranye Aj, = ran(L1’2(Ek+1) — LQ(Ek)>.
Then the following hold.

(a) The spaces H* Ao, g, he), rtang2 Ag_1, rangz A} are closed in L%(E}), they are mutually orthog-
L L k
onal and we have a direct sum decomposition

L*(Ey) = Hk(A.,g, he) @ ranyz Ap_1 ®rany2 Ag_1.
(b) The space H"(A,, g, h,) is finite dimensional and the natural map
H"(A,,g,he) — H*(As)

is a linear isomorphism.

Proof. From Proposition 3.7.3 we deduce that the operator
Dp=Ae+ A, : C°(E) —» C(E).
is elliptic. Arguing as in the proof of (3.7.4) we deduce that

(Ae + AYu = 0<=Aqu = Aju = 0.
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This implies that
HY(A,, g,he) = {ue C®(Ey); Dau=0} and kerDy = @Hk(A.,g, he).
k
Since D 4 is elliptic we deduce that the space H*(A,, g, h) is finite dimensional and is also equal to
{ue C~°(Ey); Dau=0}.
The operator D 4 induces a Fredholm operator
Dy : LY*(E) — L*(E).

Therefore its range rany2(D4) is closed and, according to Corollary 3.5.3, it is equal to the L>-
orthogonal complement of the kernel of D* = D 4. In particular, we have an orthogonal decomposition

L(Ey) = H"(As,g,ha) & (van2(Da) N LA(Ey) ).
Clearly
rang2(D4) N L2(E}L) = rang2 Ajp_; ® rangz A},
so to prove (a) it suffices to show that the subspaces ran;2 Aj_1, rany2 A} are closed and orthogonal
to each other.
The orthogonality is immediate. Indeed, let u € ran;» Ay and v € rany2 A;. Then there exist
u' € LY2(Eg_1) and v’ € LY2(E} 1) such that
u=Ag_1u, v=A".
then
(u, )12 = (Ag_1u’, Ajv") = (ApAg_1u,v) = 0 since ApA,_1 = 0.
To prove that rany2 A,_1 is closed we consider a sequence u,, € rany2 Ag_1 that converges in the
L?-norm to some u € L?(E}). Observe that u,, € ran;2 D4 N L?(E}), and since ran2 D 4 is closed,
there exists v = vy_1 ® vpy1 € LV2(Ep_1 @ Eg,1) such that
u=Dav=Avi_1 + A% Vg1
Since u,, L ranj» A} we deduce by passing to limit that u | ran;» A}. Hence
0= (u, Agogi1) 2 = (Avg-1 + A vpr, Ajvin) 2 = [ Apokga |72
Thus
U= Ap_1vp_1 Erany2 Ag_1.
In a similar fashion we prove that ran; > Ay, is closed in L? (E%). This completes part (a) of the theorem.

To prove part (b) we need to show that the natural map
H*(As,g,he) — H*(Ad) (3.7.6)

is both injective an surjective. Both facts are consequences of the Hodge decomposition in part (a).
Consider a cohomology class z € H*(A,) represented by a smooth section v € C°°(E},) such that
Au = 0. We decompose
u=ug+ Ap_1u’ + Aju"
where
ug € H*(Aa, g, he), u € LY*(Ej_1), v’ € LY*(Ej41).
Then Apug = AkAj_1u' so that

0= Apu = ApAju" = 0= (u, Ay Afu") 12 = || A" |[3..
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Hence u = ug + Agu’ so that u is cohomologous to ug and therefore the class x is also represented by
the element ug € H¥(A,, g, ha). This proves the surjectivity of the morphism (3.7.6).

To prove that this is also injective, consider ug € H k(A., g, he) that is cohomologous to 0. Thus
ug € ranyz Ag_1. It follows that ug = 0 since
Hk(A., g,he) Nrany2 Ax_1 = 0.

O

Definition 3.7.5. The spaces H k (Ae, g, he) defined in Theorem 3.7.4 are called the spaces of harmonic
sections determined by the complex and the metrics g and h,. g

Example 3.7.6 (Classical Hodge theory). Suppose (M, g) is a compact, connected, smooth Riemann
manifold of dimension m. Denote by Qfé (M) the space of smooth, complex valued differential forms
of degree k on M. Consider the DeRham complex

0— QM) -% L) -% - -5 (M) — 0.

As we have seen in Example 3.2.7 the Hodge-DeRham operator D = d + d* : Qg (M) — Q(M)
is elliptic so that the DeRham complex is an elliptic complex. It thus leads to an (orthogonal) Hodge
decomposition

QE(M) = dQg (M) @ d* Qg™ (M) @ HM(M, g),
where H" (M, g) is the space of harmonic k-forms, i.e., k-forms a which are both closed and co-closed
do=d*a=0.

The space H* (M, g) is finite dimensional, it depends on the metric g but its dimension is independent
of g. We deduce that the k-th DeRham cohomology space

d
(1) = KO0 2 D)
ran( Q (M) = QE(M))

is finite dimensional. Its (complex) dimension is equal with to the k-th Betti number of the cohomology
of M with rational coefficients.

The index of the Gauss-Bonnet operator (D, ) is the index of the elliptic operator

even o even/odd
D : Q@ (M) — QE(M), oM = B ok
k=0/1 mod 2

Hodge theory now implies that the index of the Gauss-Bonnet operator is the integer

Z(—l)k dimg HY (M) = the Euler characteristic of M with rational coefficients.
k>0

3.8. Exercises

Exercise 3.1. Suppose that Hy, H; are two complex separable Hilbert spaces. Prove that the set
B, (Hy, H1) C B(Hy, Hy) of invertible continuous linear operators Hy — H is open. O
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Exercise 3.2. We say that two operators 7Ty, 71 € Fred(H) are homotopic in F'red(H) if there exists
a continuous map
[0,1] >t~ T(t) € Fred(H)

such that 7'(0) = Tp, T'(1) = T3. Prove that if T, T € Fred(H) then the following two conditions
are equivalent

(a) The operators Ty and 77 are homotopic in Fred(H).

(a) ind Ty = ind 7.
Hint: You need to use the fact that the group GL(H) of continuous, bijective maps H — H is
connected.* O

Exercise 3.3 (Poincaré). Suppose that M is a compact oriented manifold. Prove that for every Riemann
metric g on M there exists a positive constant C' = C'(g) > 0 such that

[ 1aiavi < [ vy, vae =), [ ulav <o,
M 0 M
Hint: Use Corollary 3.4.7 for the Fredholm operator A : L*2(M) — L?*(M). O

Exercise 3.4 (The Dirichlet Principle). Let (M, g) be a compact Riemannian manifold, and f €
L*(M,|dV,|). Define

.r11,.2 uzl u2 u2 eu‘
J:LY2(M) = R, J(u) 2/M(|d\ + |ul )+/MR(f)\dvg.

(a) Prove that Jy := inf,, J(u) > —oc.

(b) Show that if J(ug) = Jy then uy is a distributional solution of the equation
Agu+u=f.

Conclude that there exists at most one g such that J(ug) = Jo.

(c) Show that there exists at least one function ug € L%?(M) such that J(ug) = .Jo. Hint: Have a look
at [N, Thm. 10.3.15, Prop. 10.3.20]. O

Exercise 3.5. Consider the complex (E*, d) from Example 3.7.1 equipped with the hermitian metric
h. Let u € E™ be a cocycle, i.e., du = 0. The cohomology class of u can be identified with the affine
subspace

Sy={u € E" v —ueran(d,_1)} ={u+dv; veE" !}
Denote by [u]y, the element in S,, of closest to the origin. Prove [u]y is harmonic. Moreover, if u’ is
another cocycle, then u is cohomologous to «’ if and only if [u], = [u/]p. 0

A stronger result is true. Namely, a theorem of N. Kuiper states that the group GL(H) is contractible. The connectedness of GL(H)
can be proved much faster using a bit of functional calculus. First one proves that the natural inclusion of the unitary group U (H) in GL(H)
is a homotopy equivalence with homotopy inverse the map GL(H) > T + T(T*T)~/2 € U(H). To prove the connectivity of U(H)
we can use Stone’s theorem [RSz, §137] which states that for any S € U(H) there exists a (possibly unbounded) selfadjoint operator A
such that S = e*4. Then t + S; = ¥4, ¢ € [0, 1], is a continuous path in U (H) from 1 to S.
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Chapter 4

The heat kernel

4.1. A look ahead

This is a rather technical chapter, and to help the reader endure the analytical work to come, we thought
it would help if we outline the main goal and the strategy for achieving it.

As in the last part of the previous chapter we will work on a smooth, compact Riemann manifold
(M, g) of dimension M. We fix a smooth complex vector bundle E — M over M and a Hermitian
metric h on it. Suppose A : C°(E) — C*°(FE) is formally self-adjoint elliptic operator of order k.
We also assume it is positive, i.e.,

(Au,u)r2 >0, Yue C°(E)\ {0}.

It is very easy to produce such operators. Start with and elliptic partial differential operator L :
C*(E) — C*(F), where F — M is another smooth complex Hermitian vector bundle. Then
the operator

A=L"L+1
is elliptic, formally self-adjoint and positive .

Fix a spectral basis (¢,,)n>0 of L?(E) with respect to A, where the eigenvalue corresponding to
®,, 18 M. Then A, > 1 for any n > 0. We may assume that the eigenvalues are thus labeled so that

0< DS

In the sequence (\,) each eigenvalue of A appears as many times as its multiplicity. The main goal of
this chapter is to gain a better understanding of the behavior of \,, — oo.

To achieve this we consider the bounded operator

e L2(E) —» L*(E), e (Z unqb") = Ze_t)‘"unq’)n.
n n
We want to prove that for any ¢ > 0 this is a trace class operator, i.e.,

Tre 4 .= Z e <0,
n

and then investigate the behavior of T'r e =4 as ¢ \ 0.

115
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To achieve this we will express e ¥4 as an operator valued integral over a contour g, 0 < R, of

the type depicted in Figure 4.1. In this figure, the two linear branches are described by
arg A = :I:%, Al > R.

I
N

Figure 4.1. The contour yr.

More precisely, under the “right circumstances”™ we have'

—1)n!
a1 e\ — A" g) = L e RN —A)TL, neZsy. (41.1)
2metn A =
TR TR

2mat™
The right circumstances alluded to above guarantee the following things.
(i) The inverse (A — A)*1 exists for any A € vyg.
(ii) The improper integral in (4.1.1) is convergent, i.e., we have some control on the norm || (A —
A)~( )| for large ||

To prove the existence of (A — A)~! we use the same idea in the construction of a parametrix of an
elliptic operator. More precisely we will construct a family of 1ydo’s B), such that

Ry=A)\B)—1€ ¥ *(E) 4.1.2)
such that
[BAll = O(]AI™?) as [A] = oo, (4.1.3)
for some p > 0. This show that the operator R}, is small for large A so that the operator 1+ Ry = Ay B),
is invertible.
For large n the operator (A — A)*("H) is of trace class and then we conclude that
(—=1)"n!

Tre 4 = .
2mat™

/ A Tr(N— A)~ D aN n e Zs. (4.1.4)
TR

In fact, the Schwarz kernel of (A — A)~("*1) is given by a continuous section K (z,y) of the bundle
EXEY — M x M, and we have

Tr(A= 4y 0 = [ K (o0) [V )] = aO).

1To understand the equality (4.1.1) think that A is a positive real number and then use the residue theorem.
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We obtain a smooth kernel

Tr e—tA — (_1)nn'
2met™

/ e A fa(N) dA. (4.1.5)
TR

From here we proceed using two clever tricks of classical real analysis. The first will allow us to convert
an asymptotic expansion of f4 () for A near oo to an asymptotic expansion of T'r e~ *4 as ¢t \, 0. Next
using a Tauberian theorem we convert the latter asymptotic expansion into an information about the
asymptotic behavior of \,, as n — o0.

The key moment in the proof is the construction of the operator B) satisfying (4.1.2) and (4.1.3).
This is based on the concept of 1»do with parameters.

4.2. Pseudo-differential operators with parameters

We have to redo most of Chapter 2 working with symbols depending in a rather constrained way on a
complex parameter. We follow the approach in [Shu, Chap. II] which suffices for the application we
have in mind but has some limitations. For more general classes of symbols depending on parameters
we refer to [GrSe95, GrH].

Fix ¢ > 0 very small and denote by A the open cone (It is the complement of the shaded area
Figure 4.2.)
A= {re’e €C; r>0, |0 >¢}.
Let U,V be real Euclidean spaces of dimensions N an respectively m, {2 an open subset in V', and

A

Figure 4.2. The cone A is the complement of the narrow shaded angle.

O an open subset of U. For any numbers s € R and d > 0 we define Af\’d((f) x V') to be the space of
smooth functions

a:O0xVXxA—-C, OxV xA> (2,6~ ax(z,f),
such that the following hold.
e Forany (z,£) € O x V, the map A — a)(z,£) is holomorphic.

e For any compact K C O, any multi-indices o, § € ZT, and any j € Zx>o, there exists a
constant C' = C(«, 3, K) such that

D3O8 ax(x, &) < C(1+ €]+ NY) T v e K, Ae A, 4.2.1)
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We set
007d «-— 57d —oo,d Pp— 37d
At =AY, ATt =) A
seR seR

The quantity (1 + [£* + | A2/ ) Y2 will appear very frequently in the sequel and for this reason we
introduce the notation

(&) = a6, ) = (1+[¢[ +[\V!), ¥eeV, reC.
Observe that g(£,0) = (£). Note that (4.2.1) is equivalent to

D10 0% ax(x,€)| < Cog(6,N)* 71448, vz e K, XeA. (4.2.2)
Example 4.2.1. (a) Suppose that for any x € V the function a(z, ) is a polynomial in & of degree .
Equivalently, a(x, §) is a polynomial in £ with smooth coefficients. Then

a)\(l',f) - a(l’,f) - A€ ‘A'&[(V)'

This follows from the fact that in this case we need to check the inequalities (4.2.1) involving only
derivatives J¢" and 93 with |a| < £and j < 1 so that g(&, Aélal > (gye=lel,

(b) The function (&, \) — bx(€) = (1 + [£]?)1/2 — X is not a symbol with parameters, though the
function £ — by () is a symbol of order 1 for every A € A. 0

Given ay € .Af\’d(Q x  x V') we can define a continuous operator
Op(ay) : C5°(2) — C77(Q)
whose Schwartz kernel K, is given by the oscillatory integral
Koy (0.9) = @0) ™ [ 090,25, 6) |de].
\'4
We denote by lIls’d(Q, A) this class of pseudo-differential operators.

We say that Op(ay ) is properly supported if there exists a proper subset C' C §2 x € (see Definition
2.3.5) such that
supp Ko, C C, VA€ A.

We denote by \II(S)’d(Q, A) the subclass of ¥*4(€2, A) consisting of properly supported operators. Again,
we have a decomposition

T4, A) = BT(Q,A) + T4, A).
If Ay € ®5%(, A) then we can define
oAy (2,€) = e—¢(§) (Aree) (2).
Then
o4, € AV (O X V) =834,
and for any u € C§°(£2) we have

Awwzﬂﬂwm$ﬁmm@*

The space Sf\’d(Q) is called the space of symbols with parameters of bi-order (s,d). The theory of
asymptotic expansions extends almost word for word to the parametric case. In particular, we have the
following parametric version of Theorem 2.4.6.
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Theorem 4.2.2. Suppose Ay € \Ilg’d(Q) is a properly supported 1do,
Ay = 0Op(ay), ac AP xQxV).

Then its symbol 0 4, (x,§) = e_¢ Axe¢ admits the asymptotic expansion

o, (2,E) ~ Z — O Dyax (@, €) a=y. (4.2.3)

Similarly, Theorems 2.5.1 and 2.5.2 have a parametric counterpart whose formulations can be left
to the reader.

A symbol with parameters a) € Sf\’d(Q) is said to be polyhomogeneous or classical if it admits an
asymptotic expansion of the form

o0
ax ~ Z as_j(xa 57 )‘)7

§=0
where a,_;(z,&,\) € Af\_j’d(Q x V) is quasi-homogeneous of degree (s — 7) for |€] 4+ |A[Y/¢ > 1,
ie.,

o (2, t6,t90) =t Ja(x, &, N), VE =1, [+ AV > 1.

The symbol in Example 4.2.1 is an example of classical symbol with parameter. We will denote by
Sll?ihg(Q) the subclass of 8%(€2) consisting of classical symbols.

We want to spend a bit more time investigating the functional properties of the pseudo-differential
operators with parameters. Clearly, the pseudo-differential operators with parameters do define contin-
uous linear maps between appropriate Sobolev spaces. More precisely, if a) € Sf\’d(Q), then for any
© € C§°(Q2) we have pay € Slf\’d(V), and for any s € R we obtain a bounded linear operator

Op(pay) : H (V) — H*k(V).

The resulting family of bounded operators A — Op(pay) depends holomorphically on A € A, i.e.,
0

—0 0,

55 OP(var) =

where the above derivative is computed using the norm topology on the space of bounded linear oper-
ators H*(V') — H**(V). Moreover

0 day,
E> Op(pay) = Op< N > 4.2.4)
Observe that (4.2.1) implies that
dax _ ok-dd
—_— (R
BN € SA ( )
so that
a% Op(pay) € B34 A) (4.2.5)

The dependence of the norms of these operators on the parameters will play a crucial role in this
chapter, and for this reason we want to prove the following more refined version of Theorem 2.8.1.
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Theorem 4.2.3. Suppose a € Sxk’d(Q), k > 0. Then for every p € C§°(Q2), any 0 < £ < k and any
s € R there exists a constant C = C(s, £, p, a) such that for any f € C3°(€2) we have

—(k—¢
loOP(a)fllsse < C(1+ AV F £,
In particular, if we choose s = 0, £ = 0, we deduce
—k
le Op(a) fll2 < C(1+ NMYE) 5| F]l 2 (4.2.6)

Proof. Observe that ¢ Op(ay)f = Op(pay)f. Set
ox(2,€) = p()ax(x,€) € 8°(9).
Observe that o has compact z-support, i.e., there exists a compact set S C €2 such that
ox(x, &) =0, Y(x,§,\) € (2\95) xV xA.

In particular, extending o) by 0 for z € V' \ © we can regard it as a symbol o, € Se(V).

We set Ay = Op((£)%) € ¥*(V) so that A, defines isometries A; : H{(V) — H™5(V). We
observe that

10p(pax) flls+e = [Aste Op(par)f| 12
If we write g = A f then

f=A—sg and |[flls = llgll 2,

and thus we have to estimate ||As1¢ Op(par)A_sg||r2 in terms of ||g||z2. In other words, we need to
estimate the norm of the bounded operator

Ag: Ao Op(par)A_g : LA(V) — LA(V).
Define
5A(1,6) = /V e~ g, (2, €) |

Using the support condition on o) we deduce

n“o(n,§&) = / Dg‘a,\(l‘,f)e—i(m’”) |dz|., Va,n.
%4
This implies that for every N > 0, there exists C'y > 0, independent of £ such that

GA(m, &) < Crne& ) Fm ™, YeneV. 4.2.7)
For f € C§°(V') we have
Asf(n) = )*TF(Op(or)A—sf)(n),

and
F(Op(o2)Asf ) (n) = /V e—“z’")( /V @ oy (2, )(E) T F(€) Id§|*> ||,
- / ( / ei<xvf">m<x,§><s>Sf@)rda:\*) d]. = / G — £ E)(€) 7 FE) |de]..
\4 \% \4
Hence

~

Af(n) = /V 50— £,€)m)*4E)~ F(€)|de]..

:3K5(77»§)
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Using (4.2.7) we deduce that for any N > 0 there exists C = C(a, N) > 0 such that
K )] < Cln— &~V ()" (6) "6, )7

Observe that
2§ N = 0(&,0) o6, )T F Y < p(£,0) (0, )" < O (1 + MM TR0
Hence
|Ks(1,€)] < C(1+ [\ ~F=0(p — &)=V () s+g) ==,
Using Peetre’s inequality we deduce

(€0 < 2y =y — )+
so that
| K(n, )] < 20 (1 4+ AV ~E=0 — g)leFsl=N
Choosing N :=m + 1 + |¢ + s| we deduce
|K(n,&)| < 2110 + A==y — g)=(m+1),
If we set
C _ 2|€+S|C/ —(m+1) ‘df‘
we deduce from Schur’s Lemma 2.8.2 that
1AF|lz2 < Cons (14 N =F=0) £l 2
O

The extension to vectorial 1do’s is immediate we leave it to the reader. For two Hermitian vec-
tor spaces with get parametric versions Sio’d(Q, Ey, E1), °4(Q, A, Ey, Ey) of the spaces of vec-
torial symbols and ¢do’s. When Fy = FE; = FE we use the simpler notations Sf\o’d(Q,E) and
\Iloo’d(Q, A, E). The following result will play an important part in our investigation of the heat kernel.

Proposition 4.2.4. Suppose Ay € \Ilgk’d(Q,A,E) and let Ky, € C™(Q x Q,E ® E*) be the
Schwartz kernel of the operator Ay. Assume k > m = dim V. Then the following hold.

(a) The Schwartz kernel is a continuous function Q2 x Q@ — E ® E* = End(FE).
(b) For any compact K C ) there exists a constant C > 0, independent of \ such that

su%(|KAA(x )] < O+ [AYH)=E=m) iy e A, (4.2.8)
7y€

Proof. Let a)(z,§) denote the symbol of Ay. Then the Schwartz kernel K 4, is given by the oscillatory
integral (see (2.4.4))

K, = (2m)™/2 /V gy (, €)|de]..

The estimate (4.2.1) implies that for every compact K C () there exists a constant C' > 0 independent
of A such that

sup\ ax(z,€) | < O(L+|€]* + [AJ7/4)~F/2,
reK
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Since k > m we deduce that the function & — a)(x, §) is integrable over V. Thus the above oscillatory
integral is a classical Lebesgue integral depending continuously on the parameters x,y. This proves
that the kernel is continuous.

To prove part (b) notice first that there exists a constant x depending only on the dimension r of E/
such that

[tra(z,y,8) | < |ax(z,&) |, Va,y,& N
Thus for any compact K C (2 there exists a constant C' > 0 independent of A such that

sup [ tr K4, (z,2)] < (2m)~ sup/’tranﬁ ||dé]
TeK zeK

<C [ (14 PRI 1) Mgl
\%4

We set u? := 1 + |A\|?/ and we deduce

—k/2 (112) e O m— 1F() (k/Q—p) _m—2
|G+ i) e S =T

Let us say a few words about elliptic operators with parameters.

Definition 4.2.5. Let a) € Si’ih g(Q, Ey, Ey) be a classical symbol with parameters

ay ~ Zakfj(xvéa /\)
7=0

Then a is said to be an elliptic symbol with parameters if ay(z, £, \) € Hom(Ey, E1) is invertible for
any (§,\) € (V '\ {0}) 1/d - 1. A properly supported classical 1)do with parameters is
called elliptic with parameters if its symbol is elliptic with parameters. O

Example 4.2.6. Suppose F is a Hermitian vector space and A : C®(Eq) — C*(E) is a formally
selfadjoint differential operator of order k such that, for any =z € Q and any £ € V' \ {0} the principal
symbol [0 4](x, &) is a positive definite symmetric endomorphism of E. Then the pseudo-differential
operator with parameters A — A is elliptic with parameters. O

Arguing exactly as in the proof of Theorem 2.9.4 we obtain the following parametric version.

Theorem 4.2.7. Let Ay € \Illg’d(Q, A, Ey, E1) and set ay = o4. Then the following statements are
equivalent.

(a) The operator Ay is elliptic with parameters.
(b) There exists a 1vdo with parameters B) € \Ilak’d(Q, A, Ey, Ey) such that

A\B),—1¢ ‘I’ioo’d(Q,A, Eq, El), ByA,—1¢€¢ ‘I’ioo’d(Q,A, Ey, Eo).
(¢) There exists a vdo with parameters B), € \I’gk(ﬂ, A, Eq, Ey) such that
ByAy —1 € 4O A, Ey, Ep).
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(d) There exists a ypdo with parameters By € ¥, k (E1, Ey) such that
AyBy—1¢€ ‘I’foo’d(Q,A,El,El).

An operator B), satisfying one of the equivalent properties (b),(c), (d) is called a parametrix with
parameters. O

Example 4.2.8. Let us explain how to find a parametrix (with) parameters of the operator in Example
4.2.6. The symbol of A has the form

WE

CL]'($,§)

oa(z,§) =
j=0
where a;(z, §) is a homogeneous polynomial of degree j in £ with coefficients End(£)-valued smooth

functions on 2. Then
A—Aec®PRQ A E).

We seek B), € \I!gk’k(Q, A, E)) such that
(A= A)B) — 1 € $~°F(Q, A, E).

The symbol by, of B) has an asymptotic expansion
o0
b)x ~ Z b—k—u(‘T? ga )‘)7
v=0

where b_j_,(z, &, \) satisfying the quasi-homogeneity condition
b—k’—V(xvtgatk)\) = t_k_yb—k—l/(aj7§7 )‘)7 Vi>1, |£| + |)‘|1/k > 1, (ga )‘) eV xA 4.2.9)

The function b_j_, (x,&, ) determines a unique function 3_;_, (z, &, \) satisfying the above quasi-
homogeneity condition for any ({,\) € V' x A\ {(0,0)}. We set

h o )‘*ak(x’g% ]:k
aj,)\(x7§) - {—aj($,f), ] < k.

Arguing as in the second proof of Theorem 2.9.4 we deduce that the sequence (b_j_, ) satisfies the

following system of linear equations.
1 = aj \B-r, (4.2.10a)

1
Boh—vap + Y aaga’,;,jﬁADgﬁ_k_g =0, v>0, (4.2.10b)

Lt al+j=v
I<v

We deduce
B—k(l'vé.v )‘) = ()\ - ak)_la

Bk—v = —< Z éagazijgﬁfka()\ —ap) T, v>1

t+lal+j=v
l<v

For example, for v = 1 we deduce

B =—( Y ol DI -a) ) A —ay)!

laf+j=1
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—ap (N —ap) 2+ ( S 9garDE(A — ay) ! ) A —ap)~ .

laf=1

For many of the applications we have in mind the operator A is a generalized Laplacian. Thus A has
order 2 and its principal symbol is of the form

az(@,€) = €[5 L,

where [¢],(,) denotes the norm of a covector € T2 with respect to some Riemann metric g on 2. In
this case we deduce

Bz =(A—az)"},

Bog=(A—a2)Par+ (A —a2)™ Y (9 az)(Dyaz),

lal=1

— 1 (6% a
674 — —()\ — CLQ) 1( E aag ag_ijﬁ_Q_g>
Hal+i=2
I<v

1
- 1 (0% e - - (6% (0%
=\—ap) ! E 585 asDE(\ —ag) ™t + (A —ag) ™t g g O¢ar—¢Dg B2
la|=2 la|=1 ¢=0

—(A\—a2) (a2 +a1B_3).
Now choose a smooth function

0, |t|<3,
@ :R—[0,00), o(t)=
1, |t >1,

and define
b_p—y = SO( Qd(ga )‘) )5—16—1/(1'7 )‘)
Then the operator with B), such that

0B (1,€) ~ D by (2,€,N)
v=0

will be a parametric ¢)do with parameters. If we define B, (\) € ¥~%k(Q, A, F) to be the operator
with symbol

) (z,8) = Z bok—e(x,§)
=0

then we deduce
A=A)B,\) -1V YNQ A E), Yv>0. 0

The change in variables formula (2.7.4b) extends to ¢)do’s with parameters. As in Chapter 3 we
can use this fact to define ¢)do’s with parameters on manifolds.
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Theorem 4.2.9. Suppose (M, g) is a smooth Riemannian manifold of dimension m. Let E — M be a
smooth complex vector bundle equipped with a hermitian metric h and suppose that

A:C*(E)— C®(E)
is a formally selfadjoint partial differential operator of order k such that for any x € M and £ €
T M\{0} the principal symbol [0 4)(x,&) : E, — E, is a positive definite hermitian endomorphisms,
ie.,
h([oa)(z,&u,u) >0, Vue E;\ {0}

Then the operator \— A € B** (M, A, E) is elliptic with parameters and there exists R > 0 such that
for any |\| > R the operator (\ — A) : LF*(E) — L?(E) is invertible and there exists a constant
C > 0 independent of A € A, |\| > R such that

1= A) 2 < C(1+ A9 |2, Vu e LA(E). (4.2.11)

Proof. From Example 4.2.6 we deduce that the operator (A — A) is elliptic with parameters. Using the
computations in Example 4.2.8 and arguing exactly as in the proof of Theorem 3.2.2 we can find for
every v > 0 and operator B, (\) € $~*¥(M A, E) such that

Sy(A) = (A=A)B,(\) -1 ¥ " (M A E).
Theorem 4.2.3 implies that there exists a constant C' > 0, independent of A such that
—v—1
1Sy (A fllzz < C(L+NY*) 7N £l VF € LA(E).
If we choose R > 0 such that

C(1+ Rkt <

then we deduce that for |\| > R the operator
(A—A)B,(\) =1+ S,(\) : L*(E) — L*(E)

)

N | =

is invertible with inverse
o0

(L+SM) 7" =D ()" (W)™
n=0

As inverse of (A — A) we can take the operator
B,(\)(1+5,(A\) "

Since the norm of (1 + Sv())) as a bounded operator L? — L? is bounded from above by

we deduce that for any u € L?(E) we have
I = A) " ull 2 < 201By(Mull 2.

We observe that B, € ¥~ %*(M, A, E). Invoking Theorem 4.2.3 we deduce that there exists C' > 0
independent of A € A such that

1By (Nullzz < C(L+ AS) a2, Vu € LX(B).
This proves (4.2.11). g
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4.3. Trace class and Hilbert-Schmidt operators

We want to collect here a few basic facts about two important classes of bounded operators that will be
needed for our further developments. For proofs and more information we refer to our main sources,
[DS2, XIJ, [ReSi, V1.6], [RSz, §66,97,98] and [Si].

Suppose H is a separable, complex Hilbert space. and is a Hilbert basis. We denote by (—, —) the
inner product on H. It is linear in the first variable, and conjugate linear in the second variable. We
denote by B(H) the collection of bounded linear operators H — H.

A bounded operator A : H — H is called nonnegative if
e it is self-adjoint, A = A*, and
o (Az,x) >0,Vx € H.

A non-negative operator is said to be trace class if for some Hilbert basis (e;,),>0 of H we have
Tr(A) = Z(Aen,en) < 0.
n>0

In fact this condition is independent of the Hilbert basis, so that, for any pair of Hilbert bases (e;)n>0
and (f,,)n>0 we have

Z(Aen, en) = Z(A.fnv fn)

n>0 n>0
For any bounded operator 7" : H — H we set
|T| := (T*T)/2.

The operator T is said to be trace class if |T| is trace class. We denote by J; the collection of trace
class operators. For T" € J; we set
T :=Tr|T|.

Theorem 4.3.1. (a) The functionJy > T — ||T'||; € [0, 00) is a norm on Jy, and I, equipped with this
norm is a Banach space. Moreover

IT| < |IT|ly, VT € Jy.

(b) The collection 11 is a -ideal of B(H), i.e., it is an ideal of the ring B(H ) suchthat T € J1<=T"* €
J1. Moreover,

ISl [1ST [ < 1S]/- 1Tl YT €31, S € B(H).

(c) If T € 3y then for any Hilbert basis (en)n>0 the series ), ~(T'ey, €n) converges absolutely. Its
sum is independent of the choice of the basis (ey,)n>0. It is called the trace of T and it is denoted by
T'rT. It defines a continuous linear map

Tr: (J1,||—11) — C.
Moreover
Tr(AB) =Tr(BA), Tr(A*)=Tr A, YA€J,, Be B e B(H).
(d) Any trace class operator is compact.
(e) If T is compact and self-adjoint, and (\y,)n>0 are its eigenvalues, counted with multiplicities then

Tede= ) |An] < oo
n>0
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Moreover, if T' € J; then
TrT=>Y A 0
n

An operator T' € B(H) is called Hilbert-Schmidt if T*T € J;. We denote by Jo the space of
Hilbert-Schmidt operators. Note that J; C J».
Theorem 4.3.2. (a) The space I, is an x-ideal of B(H).
(b) A € Iy ifand only if A = BC, for B,C € Js.
(c) If we define
(—,—)2:J3 xJ9s = C, (A,B)s:=Tr(AB"),

then (—, —)2 defines a Hilbert space structure on Jo. For T € Iy we set

|T]l2 = (T, T)2.
Then
1T < Tl < ITNl1, 1STI < ||Sll2 - [IT]|2, VS, T € Ja.

(d) Any Hilbert-Schmidt operator is compact. Moreover if T € B(H) is self-adjoint, then T € Iy if

and only if

Z A2 < oo,

n>0
where as in Theorem 4.3.1 the summation is carried over all the eigenvalues of T' counted with their
multiplicities. O

Example 4.3.3. Suppose (X, ) is a measure space. Then a bounded operator T : L?(X, i) —
L?(X, i) is Hilbert-Schmidt if and only if there exists K € L?(X x X, 1 x ). such that

Tf(a) = T (@)= [ K(eo) i) dut), VF € (X0
In this case we have
1 Trcll2 = K] 22
Observe that (T )* = T+, where
K'(z,y) = K(y, ).
If K1, Ky € L*(X x X, ju x p) then Tk, o T, = Tk, +k,, Where

Ko Kale,y) = [ Kolo,2)Ka(eu)duz).
X
In this case Tk, «k, € J1 and

TrTk «k, = (Kl,K;r)B = Ki(z,y)Ka(y, v)dp(z)du(y)
XxX 4.3.1)

Z / Ky * Ko(z, z)dp(z).
X
We left a question mark over the last equality since K7 * K5 is a measurable function, defined only

almost everywhere and thus we may be able to assign a meaning to its restriction to the diagonal on
X x X that has null measure. If both K and K are continuous then the last equality is valid.
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This result has an obvious extension to operator T : L*(X, E,u) — L*(X, E, i) where E is
a finite dimensional complex hermitian space and L?(X E, ;1) denotes the space of L2-functions f :
X — E. In this case the kernel is a function K : X x X — End(F) and

(Tr)" = T+, KT(x,y) = K(y,z)". O

Proposition 4.3.4. Consider the real Euclidean space V' of dimension m, and suppose A € ¥ é(V)
is a properly supported 1do of order —{ with symbol o(x,&) such that o 4(x,&) = 0 for |x| > 0.
Then the operator A : C*(V') — C8°(V') induces a Hilbert-Schmidt operator L*(V') — L*(V) if
0>m/2.

Proof. We set
3(0.6) = [ D o(a,6)|dal..
v
Let f € C3°(V). Arguing as in the proof of (2.8.4) we deduce

F(af) = [ 5= &€ F©) ldel..
V~——
K(n,8)
Using the notations in Example 4.3.3 we can rewrite the above equality F o A = T, o F so that
A=FTxF.
Since the Fourier transform is an isometry L2(V') — L?(V) it suffices to show that the kernel K

isin L?(V x V). Since o has compact support in the x-variable we deduce that for any N > 0 there
exists a constant C' > 0 such that

G(n =€) < Cln =&~
We deduce that if N > m/2 and then for any £ € V' we have

/ K, &) ldy| < C(e)~* / (n—€)2N |dy|
\% \%

C=n-9
—cle) / ()N ld¢| P22 Cm, N ()2,
\%

for some constant C'(m, N') depending only on m and N. Since ¢ > m/2 we deduce that the function
¢ — (£)7% is integrable. The Fubini-Tonnelli theorem now implies that K € L*(V x V). O

Corollary 4.3.5. Suppose (M, g) is a compact Riemann manifold of dimension m, E — M is a
smooth, complex hermitian vector bundle of rank r and A € $~(E) is a ydo of order —0 < —m /2.
Then A induces a Hilbert-Schmidt operator A : L*(E) — L*(E).

Proof. We follow closely the approach in the proof of Theorem 3.2.2. Choose a finite open cover
(O4)icr of M by coordinate domains, and let (1;);cr, 7; € C5°(0O;) be a partition of unity subordinated
to the cover (0;);er. Next, choose ; € C§°(0;) such that ¢; = 1 on an open neighborhood N; of

suppn; in O;. We define
A= Z niApi.
i

Arguing as in the proof of Theorem 3.2.2 we deduce that A" is a 1»)do and A" — A is a smoothing
operator. In particular, we deduce that A" — A is Hilbert-Schmidt since its Schwartz kernel is smooth
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thus L2. Proposition 4.3.4 implies that each of the operators 1; A¢; is Hilbert-Schmidt. Hence A is
Hilbert-Schmidt and so is A. O

Corollary 4.3.6. Suppose (M, g) is a compact Riemann manifold of dimension m, E — M is a
smooth, complex hermitian vector bundle of rank r and A € \Ilfe(E) is a do of order —{ < —m.
Then A induces a trace class operator L*(E) — L*(E).

Proof. Let observe that for any k£ > 0 there exists a selfadjoint, positive definite elliptic operator
Ay, € W*(E). Indeed, we can find an operator S € ¥*/2(E) such that

[05](z,€) = €51, YoeM, €€ T;M\O0.

Then the operator S*S € \Ilk(E) is self-adjoint, elliptic and nonnegative definite. Thus, for some
constant Cj, > 0 the operator A, = S*S+ C} is elliptic, self-adjoint and positive definite. In particular,
Ay, defines a continuous bijective operator Ay, : C°(E) — C°°(E). Its inverse is continuous” and it is
a ydo of order —k.

Observe now that T' = Ay/9A;/5A is a 1pdo of order 0 and thus defines a bounded operator

L*(E) — L?*(E). Next we observe that A = (AZ/12)2T. By Corollary 4.3.5 the induced operator
A:}/2 : L?(E) — L?(E) is Hilbert-Schmidt so that (AZ/IQ)2 is trace class. Since J; is an ideal, we
conclude that A is trace class. O

From (2.4.4) we deduce that the Schwartz kernel K 4 of an operator A € ¢ (E), £ > mis
continuous, and we would like to conclude that

Tr A= / tr Ka(z,x) |dVy(x)).
M

This is however not necessarily true (see [GGL, §5.3]). Still, using the discussion in Example 4.3.3 we
salvage something.

Corollary 4.3.7. Suppose (M, g) is a compact Riemann manifold of dimension m, E — M is a
smooth, complex hermitian vector bundle of rank r and A € \II_Z(E) is a ¥do of order —¢ < —2m.
Then A induces a trace class operator L*(E) — L*(E) and if Ky € C~°°(End(E) ) is its Schwartz
kernel then

Tr A :/ tr Ka(z, x) |dVy(z)]|. (4.3.2)
M

Moreover, there exists a constant C' > 0 that depends only on the geometry of M and F such that

1/2
Al < ([ 1Kale ) PidVsylo)) 433)
X

Proof. Consider again the operators Ay, used in the proof of Corollary 4.3.6. We have A = Ae_/l2 (Agj2A).
Both do’s AZ/12 and (Ag/pA) have order —¢/2 < —m. Hence they are Hilbert-Schmidt and (4.3.2)
conclusion follows from the discussion in Example 4.3.3 . To prove (4.3.3) we observe that

1Al < IAZ5I - 1Ag2AllL < IIAZ5I - 1 Ag2ll2 - A2

ZWe can see this in two ways, either invoking the open mapping theorem for Frechet spaces, or using elliptic estimates.
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Remark 4.3.8 (Another word of warning!). At this point we need to interrupt our line of thought and
comment on an ambiguity built in the above equality. As explained in (1.4.2), the inclusion of

U:C*(ERE")— C(EXE)

depends on the choice of metric. This affects all the local computations. We want to explain how. To
keep the notation at bay, let us assume that F is the trivial complex line bundle, so we are dealing with
operators acting on functions.

The Schwartz kernel of a vydo determines an operator
Tk : C3°(M) — C~>°(M),
but throughout this chapter we consistently regarded as an operator C3°(M) — C°°(M). When doing
so we have implicitly used the map C°°(M) — C~°°(M) which is metric dependent. This is not the

only tacit identification that we used. More precisely, we have identified the Schwartz kernel with a
continuous function, so that we have implicitly used the embedding

COUM x M) — C~°(M x M)

which is also metric dependent. Suppose gg, g1 are two metrics on M. There exists a positive function
p such that

|dVy, (2)] = p(x)[dVy, ()]
Informally, we can write

p(x) = |dVy, (x)]/[dVg, (2)]-
Suppose are given a Schwartz kernel K € C~°°(M x M) that is smooth. This means that there exist
two smooth functions Ky, K7 € C°°(M x M) such that for any w € C§°(M x M) we have

<KW=AM}mewMWMMaw=/ Ky (2)w(z) [dVi, g, (2)]

MxM

:/ Ki (2, y)w(@)p(@) p(y) | AV, (2, )].
MxM

Hence
Ko(z,y) = Ki(z,y)p(x)p(y).
This implies that

1
Agmmmmmzﬂﬁmwmmwm

1.e.,

1
[ K V@) = [ KowaplaVi (@), = Vo @)/ [dV(@)l. @34
M M p(z)
The distribution K also determines a continuous linear operator
Tk : C5°(M) — C™°(M),

such that, for any u € C§°(M) we can identify T u with a smooth function on M. We can do this
in two ways: using the identification given by the metric gg, or using that given by g;. In any case we
obtain two smooth functions vy = Tk 4,u and v = Tk 4, u related by the equality

/mumwmwmzumwzijMMW@wuWE%MM»
M M

We deduce that vg = pv;.
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4.4. The heat kernel

Suppose (M, g) is a smooth, compact Riemann manifold of dimension m, E — M is a smooth
complex vector bundle over M of rank r and A is a hermitian metric on E.

A partial differential operator of order k A : C*°(E) — C*°(E) is called admissible if the follow-
ing conditions are satisfied.

o It is elliptic and formally self-adjoint.

e Its principal symbol is positive definite, i.e., for any x € M and any £ € TM \ {0} the
operator

[UA](?L’,f) E, > E,
is self-adjoint and positive definite.

The spectral decomposition theorem implies that the spectrum of A is real, discrete and consists
only of eigenvalues of finite multiplicity. Theorem 4.2.9 implies that there exists R > 0 such that

spec(4) C (=R, 00). (4.4.1)
We can thus label the eigenvalues of A
—R< X< <-- <\, <-- S0

such that in the sequence (), ),>0 each eigenvalue of A appears as many times as its multiplicity.
We fix a Hilbert basis (¢,,),>0 of L?(E) such that

Ao, = M\, Yn > 0.
For any ¢ > 0 we define a bounded operator
e LA(E) - LA(E),
et (Z un(,bn) = Z e Prund,, Yu = Z un, € L*(E).
n>0 n>0 n>0

The series - le~tAnu,|? is convergent since
|€—>\ntun‘2 < e_2t’\0|un\2, Y > 0’

and the series Y, - |un|? is convergent.
We want to prove that e *4 is a trace class operator, i.e.,
Tr(e_tA) = Ze_ﬂ" < oo, V>0

n>0

and then investigate the behavior of Tr( e A ) as t N\, 0. The next result will play a key role in this
investigation.

Proposition 4.4.1. Suppose Sy € €=M, A, E), v > 0. Then for any t > 0 the integral

1
Lg:i=— [ e MSd\ (4.4.2)
271 R
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is absolutely convergent with respect to the norm on the space bounded operator on L?>(E), and it is
independent of the parameter R defining the path vg. Moreover; the operator L g is smoothing, and for
7 > 0 sufficiently large we have

1
2mitd

TrLs= / e M Tr 8.5y d. (4.4.3)
TR

Proof. Denote by ||S||zz2 72 the norm of a bounded operator S : L*(E) — L*(E). To prove the
convergence we use (4.2.6) to conclude that there exists a constant C' > 0 independent of A € I'p such
that

1531122 22 < C(L+ AV ™.

Since Re A\ — oo as |A\| — oo on v we deduce that this (operator valued) integral is absolutely
convergent to a bounded operator. Since

N EN
as |A\| — oo along v we deduce from an integration by parts that

_ 1
2wt

Lg / e Ml Sy\dN, Vi > 0.
YR

From (4.2.5) we deduce that 8§SA is a ¢do of order —v — jd. We deduce that for any k£ > 0 we can
find j = j(k) such that the Schwartz kernel K PN of 8&5 y is of class C*. Moreover, (4.2.8) shows
A

that the integral
1

Y
is convergent and defines a section of EX EV of class C* representing the Schwartz kernel of £ g. This
shows that £g is smoothing. The fact that it is independent of R follows from the fact that A — Sy
so that the integral of e~** S, along any closed path contained in A is trivial. We we denote by Vr the
portion of the path vy in the region Re A < n then we deduce that for any R; < Ro and any n > 0 we
have (see Figure 4.3)

/ e MS\dA = 0.
YR, "Ry
We then let n — oo in the above equality.

To prove (4.4.3) we first need prove that if j is sufficiently large

/.

Recall that Gf\S \ is an operator of order —v — jd. If we choose j such that v+ jd > 2m, then Corollary
4.3.7 implies that 6f\SA is trace class. Using (4.4.3) and (4.2.8) we deduce

RS dr < oo 4.4.4)

Hais)\Hl < C( 1+ ‘)\ll/d)f(wrjd,m),

for some constant C' > 0 depending only on the symbol of R and the geometry of M. This proves the
convergence of (4.4.4) . To prove (4.4.3) it suffices to take the traces of both sides of (4.4.2).

O
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A
Rz\ n

Y

Figure 4.3. The contours vg, and —7g,.

Corollary 4.4.2. Fix R > 0 sufficiently large such that (4.4.1) holds and consider the path v depicted
in Figure 4.1. Then the following hold.

(a) (A — A) is invertible for any \ € Yg.
(b) Forany ¢ > 0 and any t > 0 we have

—1)¢n
oA (2 13;. / e\ — A)~(+D g, (4.4.5)
™ R

where the integral in the right hand side is absolutely convergent.

Proof. Part (a) follows from (4.4.1). The convergence follows from Proposition 4.4.1. To prove that
Sa(t) = e~ for t > 0 it suffices to show that

Ss(t)p, =e Pe,, Yn>0. (4.4.6)

Fix n > 0, areal number L > \,, and form the path 7]% as in Figure 4.4. Then for any A € 71% Uvyr we
have

e—t)\()\ _ A)—(£+1)¢ _ e—t)\()\ _ )\n)—(f—&-l) b,

~~

Fn(N)

n

Hence

2mitt

—1)te
Salt)p, = ( fn<A>dA> -
YR
The function f,, () has a single pole inside the contour fy]% located at \,,. The residue at this pole is

df —t l
‘)\ \o= ( ) eft)\n.
dN\! " ?!

The residue theorem implies that

—1)¢p é !
( 1) f / 6—t)\()\ o A)—(Z+1)¢n d\ = f /
2mat” Jyr 2mt ~

fn > = et ¢n

Tt
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Y

(] L
\

Figure 4.4. The contour 5.

The equality (4.4.6) now follows from the following elementary equality whose proof is left to the
reader as an exercise.

frn(N)dX = lim fn(A)dA. (4.4.7)
YR L—oo ’y}%
O
Corollary 4.4.3. For any t > 0 the operator e~ is smoothing, trace class and
—1)%0 2
Ty e-ta = (21 / e Tr(\— A D gy wer 1> 2 (4.4.8)
2mitt )., d

Definition 4.4.4. Let A be an admissible operator. Then the Schwartz kernel of e 4 is called the heat
kernel of A. a

Definition 4.4.5. Suppose f : (0,00) — Cis a smooth function, (s;),>0 is strictly increasing sequence
of real numbers such that s; " 0o, and (c¢;) j>0 is a sequence of complex numbers. We say that formal
series ) .~ ¢;1% is an asymptotic expansion of f(t) as ¢ \, 0, and we write this

£ ~o Y et
7>0

if for any £ > 0 we have

k

‘ FE) =D cit* | = O(t*+1) ast N\, 0. O
=0

Theorem 4.4.6 (Heat kernel expansion). Let (M, g) be a smooth, compact, Riemann manifold of di-

mension m, and E — M is a smooth, complex vector bundle of rank r equipped with a Hermitian

metric h. Suppose A : C*(E) — C°(E) is an admissible elliptic partial differential operator of

order k which is also nonnegative definite, i.e.,
/ (Au(z), u(@))n |V, ()] = 0, Yu e C®(E).
M

Then as t — 0 we have the asymptotic expansion

Tre ™ g t™5 ) epth, (4.4.9)
p=>0
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where the coefficients ¢, = c,(A) can be expressed as integrals

qw=/'%@»wwu
M

where for each x € M the quantity e,(x) is a universal (but horrendous) expression in the symbol of
A and its partial derivatives at .

In particular, when A is a generalized Laplacian we have

co(A) = (4m) ™™/ 2rvol,(M). (4.4.10)

Proof. The key trick is contained in the following technical result.

Lemma 4.4.7. Let §2 be an open subset of the Euclidean space V', and let E be a complex Hermitian
vector space of dimension r. Suppose we are given the following data.

e A compactly supported function n € C§°(€2).
e A bounded continuous function p : @ — (0, 00).

e A polyhomogeneous symbol with parameters b = b(x, \,§) € Sx;ﬁg(ﬂ, E).

For every j > 0 we denote by K ,Sjg the Schwartz kernel of the operators Op(n@,ﬁj )), where
V) .= dib.
Then the following hold.
(a) If v + jd > m, then K Isj)? is continuous, the integral

1

e} / e_t’\KIEQ (z,y) dA
R

converges absolutely and uniformly in x,y € ). It is independent of R and j, and determines for every
t > 0 a continuous, bounded map

Linb] : QA x Q= E® E*.

(b) There exists a constant C' > 0 such that

/Q|tr Linb)(z, z) | p(x)|dz| < Ct"HT" vt e (0,1).

(c)If
b~ Z b—l/—k(l‘) )‘7 5)
k>0
Then
[ v bt 0) el ~o 7T Y et
@ k>0
where

ok = (27r)_m/2/ﬂtr Ltzl[nb(_jl)j_k](x, x) p(z)|dx|, (4.4.11)

for any j > 0 such that v + k + jd > m.
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Proof of Lemma 4.4.7. (a) Assume v + jd > m. Then

Ky = (2m) 72 [ s, 2,6) dgl. @412
This integral is absolutely convergent since
(@, A, €) = O(ea(r. €)™
We deduce that K zE],\) depends holomorphically on A and
lim e K —0, Vt>0.
Rel)\rgoo € x?;lel)g | b)\(.%', y)’ ’ >
From the equality
K = oK)
we deduce by an integration by parts that
; 1
/ e P RU AN = - / e Ky ji1ad), V> 0.
TR 7 ¢ TR
The independence on R is proved exactly as in Proposition 4.4.1. This proves (a).
To prove (b) observe that for v + jd > m we have
Linbl(z,y) =t~ / e_t’\n(:n)Kéﬁ (z,y)d\ =t=771 / e “KIE t) 1 (:L’, y)dp. (4.4.13)
Y1/t 71
Now observe that for any z € A, and any z,y € (2 we have
& @y | <C /V b9 (@,2,0)|ldg| < € /V (L4 2/ + (60972 dgl.
In the last integral we make the substitutions z = ¢t~ y, & = t~/%y and we deduce
( V
KO (o) | < COT [ (R uf? oy H99
(112) g o) (124 4 ’MIQ/dﬁ_(ugjd)
For any 1 € 1 we have || > 1 and we conclude
. (v=—m)
‘Kbtl my)‘§0t]+ 4, VME’YL
Using this last inequality in (4.4.13) we obtain the estimate (b).
To prove (c) observe that for j sufficiently large we have
Lonb_y_p)(z, ) =t / e‘t)‘Kéi)HA(z, z)d\ =1t / _“K(J)D (@ @)

Y1/t 71

= (27T)_m/2t_1_j/ e—ﬂ </V n(x)boik(xvt_lﬂ7£)|d£|*> d
7

(& =t"Vip)

= en et [ (i) (e e V. ) d
71

Now use the fact that .
i _ _ vtk o (4
b(jl),fk(xat 1M7t 1/d"7> = t d Jb(j,)/fk(xﬁ-l/v n)a
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for [p|*/? +|¢| > 1,and ¢ € (0,1), and the fact that || > 1 on 7, to deduce

Lt[n(x)byk](m,:z:)—(27r)—m/2t—1+”+3"L/ et (/‘/n(ﬂc)b(jlk(x,u,n)\dn!*) dp
Y1

For any k£ > 0 we set

re=b— Y by

0<tl<k
|
Bk

Then 7y, € szgg’d((l), and from (b) we deduce

v+k—m

/‘trLt[nrk](a:,x) | p(z)|dz| < Ot~ vt € (0,1).
Q

Using (c) we deduce that

/Q [tr LalnBel (2, 2) | plo)lda] = 5 S et

0<t<k
where ¢y are defined as in (4.4.11). This concludes the proof of Lemma 4.4.7. O

We want to work in local coordinates using the set-up in the proof of Theorem 3.2.2.

Choose a finite open cover (O4)qea of M by pre-compact coordinate neighborhoods, and let
(Ma)acAs Na € C§°(O4) be a partition of unity subordinated to the cover (Oq)aca. Next, choose
va € C3°(04) such that ¢, = 1 on an open neighborhood N, of suppn, in O,. We construct a
parametrix B, () of A on O,. Then the operator

B(A) =Y naBa(Nga € THHA, E),
acA

is a parametrix (with parameters) of (A — A). Since A is self-adjoint and non-negative definite we
deduce that (A — A) is invertible for any A € A so that S(\) = (A — A)~! — B()\) is a smoothing
operator with parameters. Observing that

/ e~ tr 9LS(A)dA ~0 0, Vj > 0,
TR

we deduce that )

Tre A — —
2mat)

/ e~ tr &, B(A)dA ~0 0, ¥j > 0.
YR

We have
1

. 1 4
—tA 4 aj _ —tA ()
il /YR e tr i B(M\)dX = il /YR e </M tr KB(/\)(I‘,$) dVg(a:)|> dA,
where K g) denotes the Schwartz kernel of Gﬁ\B( A). Hence

(N
1 - ,
it Z/ e (/MUKS;J&)BQ(A)%(%%)|dVg(:C)|> d\
acA TR

Set By (A) = 1o Ba(N)pq so that,

1
T —tA ~ '
re 0 5riti > /

acA” TR

Tre 4 ~0

- (/O Ky () ]dVg(x)|> dX.
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Fox a € A and denote by a,(z, §) the symbol of A defined by a choice of local coordinates on O, and
a choice of trivialization of E|¢_. Denote by by (\) € 8 **(0,, A, E) the symbol of B, (\) computed
using the recursive procedure detailed in Example 4.2.8. Then, for large j and any = € N, we have

@) _ 70)
Kﬁja(/\)(m,a:) = KniBa(/\)(x,x).

The Schwartz kernel of naﬁf\Ba()\) can be identified with a function of O, x O, using the metric on
O, that is Euclidean in the local coordinates on O,. More precisely, we identify it with the function
decribed in (4.4.12). Using the terminology in Lemma 4.4.7 and (4.3.4) we deduce

1 1
Tre e 5o / ——— rLelnaba 4.4.14
re 05 ;{ e tr £y [naba](z, ) |[dVy ()], ( )

where p, () |dx| is the description of the metric density |dV,(z)| in the local coordinates on O,
|dVy ()| = pa(z) |dz| on Oq. (4.4.15)

We can now invoke Lemma 4.4.7(c) in the case v = d = k for the symbols b, € S*k’k((‘)a, A E)to
obtain an asymptotic expansion

—tA —m/k e
Tre ~g t / Z cptk.
p=>0

The coefficients ¢y are described by integrals

o= [ e vy,
M
where the functions e, are obtained as follows.
On O, the symbols a,, and b, (\) has asymptotic expansions

Ao ~ Z alg’é—p(x’ 5)7

>0
ba()\) ~ Z b;k_p(wv )\7 g)a
p=>0

where 7" is homogeneous of degree k — p in |€] > 0, and by k=p (x, A\, €) is quasi-homogeneous of
degree —k — p for || + |A[V/F > 1.
Then

= (@)Y | ( / » (Q}T / e 8z;ba“<x,u,s>du) |d5|*> 4V, ()]

o Pa(T
(4.4.16)
The computations in Example 4.2.8 show that each b " is a linear combination of terms of the form

ToA—a®)y™ Ty Ty (N —ag) ™ T,

where T); is of the form D Dgaéj (z, &) for some multi-indices 5 and . The integral over ; can be
computed® using the residue formula. This proves the claim about the general structure of ep.

If A is a generalized Laplacian we have k = 2 and
a2(x’§) = |£|:%1Eza b,Q(CC,f) = (>‘ - ‘ﬂi)_llEm?

3This leads to some horrible expressions that can be simplified somewhat using the orthogonal invariance of those expressions.
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where [£|,, denotes the length of the covector £ € T M computed using the metric g. We fix a point

po € M. We have
L e hOl (u— €2 ) 2 tr g, dp = r/ e M (u— €2 ) 2dp = e 1o, r=dim E,.
2mi /., " Po v 2mi /., po ’ *

To compute the integral

[ g,
TZ’;OM

we identify a neighborhood of pg in M with a neighborhood of 0 in the Euclidean space V. For p near
po, the metric g, on T),M is then described by symmetric positive definite map G, : V' — V, while
the induced metric on T} M is described by its inverse, i.e.,

€lp = (G, '€,9),
where (—, —) denotes the inner product on V.

Let A\1(p), ..., Am(p) > 0 the eigenvalues of Gy,. Let us observe that

|dVy| = \/det Gpldz| = /A1 (p) - - - A (p)|dz|.

Using (4.4.15) we can rewrite the above equality as

pPa(p) = \/det Gp. (4.4.17)

We can now choose Euclidean coordinates &1, . . ., &, on V that diagonalize GGy. We then have

/ e_|§|1270]d§|* _ H/ e_r2/>\j(’Po)‘dr‘*
5 M o1 /R

— VN0 o) [T [ sl =2 Ao+ Ao
j=1"R

Using the last equality and (4.4.17) in (4.4.16) where p = 0 we deduce
co = (47) "™ 2rvol,(M).

O

Remark 4.4.8. The same arguments used in the proof of Theorem 4.4.6 imply a slightly stronger result.
To formulate it let us introduce the cones

Cgo = {Z = Tw € (Ca r> 07 |0| < QO}, pE [07 OO) (4.4.18)

Fix |¢| < 7% so that the cone C,, is surrounded by the contour yg. Then one can show that e~t4
defined as in (4.4.5) makes sense for any ¢ € C,,. The resulting operator is smoothing and we have an
asymptotic expansion
Tre ' t™ %Y epth as t =0, t€C,, (4.4.19)
p=>0

where the coefficients ¢, are the ones in (4.4.9). O
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Example 4.4.9. We want to investigate a very simple example and confirm (4.4.10) in this simple case
by an alternate method. Consider the scalar Laplacian on the unit circle

A= —j; :O®(SY) — o*°(sh).
Above, we identify C°°(S!) with the space of smooth 27-periodic functions R — C. For any n € Z
we set
en(0) := (2m) /20,
The collection {e,,(6) },ez is a unitary Hilbert basis of L?(S'). Moreover
spec(A) = {n*; ne€Z} and ker(n® — A) = spanc{esn(0)}.

Hence

Tre 5 = Z et = f(t).

neL
The equality (4.4.10) predicts that

}% 2 f(t) = /2 (4.4.20)

We want to confirm this by independent means.
The function f(¢) is closely related to the classical theta function
Iz, 7) = Z exp(min?t + 2winz), Im7 > 0.
ne”Z

More precisely f(t) = 9(0,4t). The asymptotic behavior of f(¢) is a simple consequence of the
modularity of the function 7 — ¥(z,7). In more concrete terms, we will prove a very surprising
identity involving f(¢) which will imply immediately the equality (4.4.20). We follow the approach in
[Be, §9] based on the so called Poisson formula.

For every ¢ > 0 we consider the function g; € S(R), g(z) = e~ Note that its Fourier transform
is
Gi(6) = / e~to% om0 g |, = (2¢)71/2 / eV 2E VR gy L) g —12 -4 (4 401
R R
We form the 27-periodic function
Gi(x) = th(x + 27mn).
nez

The above series is uniform;ly convergent since the function g;(x) decays very fast as |z| — co. We
regard G as a function on S*. As such, it has a Fourier series decomposition

Gi(z) =) enlt)en(x), (4.4.22)
nez

where the Fourier coefficient ¢, (t) is given by

27
cn(t) = ; Gt(ﬂi)T(l’HdSU‘.

Observe that

2w
) =3 [l + 2R el = [ i) ol = Gn) = (20)7 2,
keZ
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This shows that the series (4.4.22) is uniformly convergent for 0 < x < 27. We obtain in this fashion
the Poisson formula

2
th(x +2mn) = Gi(z) = Z/g\t(n)en(x) = (4mt) /2 Z e~ e e [0,2n], VE>0
nez nez nez
(4.4.23)
If we let z = 0 in the above equality we deduce
S e @ Gy (0) = (4nt) 2 e
nez nez

so that if we use the substitution ¢ = ¢/(472) we obtain

1/2 n)2
S et = (g) Ze—% (4.4.24)

nez nez
This proves that
. 42 . _ (271'71,)2
lim #1/2 g et — 711/2 lim e”am o =i/, O
N0 1N\
nez nez

The asymptotic expansion (4.4.9) has the following remarkable consequence.

Theorem 4.4.10 (Weyl asymptotic formula). Ler (M, g) be a smooth, compact, Riemann manifold of
dimension m, and E — M is a smooth, complex vector bundle of rank r equipped with a Hermitian
metric h. Suppose A : C*°(E) — C°°(FE) is an admissible partial differential operator of order k
which is also nonnegative definite. We collect the eigenvalues of A in a nondecreasing sequence

A<M < <A <o 00

such that each eigenvalue )\ appears in this sequence as many times as its multiplicity m(\) =
dimker(\ — A). For every X\ > 0 we set

na(A\) = #{n; Ay <A}

Then
co(A)

A) v ——————
AN~ B gE)
where co(A) is given by the asymptotic expansion (4.4.9), i.e.,

co(A) = 1i\n(1) /Ry et
t

NE g XA — o0, (4.4.25)

and I denotes Euler’s Gamma function. In particular, if A is a generalized Laplacian, then
rvoly (M) \m/2
(47)™/2T (1 +m/2)

na(A) ~

Proof. The equality (4.4.25) is a consequence of the following Tauberian theorem..

Theorem 4.4.11 (Karamata). Suppose (\;) ;>0 is a non-increasing sequence of non-negative real num-
bers such that
F#)=> e < oo,
Jj=0
and there exist o, A > 0 such that

lim 2 f(t) = A. (4.4.26)
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We set
NA) :=#{n; A\ <A}
Then e
N(}\)Nm, aS)\—>OO.

Proof of Karamata’s theorem For any continuous function g : [0, 1] — R we set
wy(t) = Zg(e_ﬂj)e_t’\j.
Jj=0
We first want to prove that for any such g we have

. A [ a1
}{{I(l) t%wgy(t) = F(a)/o g(e™%)s e %ds =: I(g). (4.4.27)
Denote by X the set of g € C°(]0, 1]) for which (4.4.27) holds. We will prove that X = C([0, 1]).

Clearly X is nonempty vector space since 0 € X. Let us show that X contains all the monomials
g(z) = 2™, n > 0. Indeed, we have

wan(£) = S e DN = f (4 1)) ¢

Jj=0

4.4.26) A

—t“ t 0.
(n+1)>" ast

On the other hand, in this case we have

A /OO —s\ a1 — A /OO —(n+1)s ca—1 A /Oo -1
— g(e™*)s* e ¥ds = — e\ g = — e Yy* T dy
T Jy 9 T(a) J (1 DT (@) Jy

A
(n+1)

This shows that X contains all the polynomials.
Now observe that if gg, g1 : [0, 1] — R are two continuous functions then
[wgo (1) = wgy ()] < D[ go(e™7) = go(e™) [e" < Jlgo — galloo f (1),
Jj=0
where || — || denotes the sup-norm in C([0, 1]). We conclude that
[t%wgy () — t*wg, ()] < llgo — g1lloct® f(£), VE >0, go, g1 € C°([0,1]).
Similarly,
| I(g0) — I(91) | < Allgo — 91]|so-

We deduce that there exists a constant C' > 0 such that for any continuous function gy : [0,1] — R,
any t € (0,1] and any g; € X we have

[t%wgy (8) = 1(go)| < [t%wgy (t) — t%wg, ()] + |t%wg, () — I(g1)| + [1(g91) — I(g0)]

< Cllgo = g1lloo + [t%wg, (t) — I(g1)]-
Hence there exists C' > 0 such that for any continuous go : [0,1] — R and any g; € X we have

lim\s‘up [t%wg, (t) — I(g0)| < Cllgo — g1lloo-
t\0

This proves that X is closed with respect to the norm || — ||oo. The Stone-Weierstrass theorem now
implies that X = C°([0, 1]).
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For any 0 < r < 1 we let g € C°([0, 1]) be the continuous function such that

1)z, x>1]e,
gr(z) =40, x <rle,
linear, z € [r/e,1/€].
We set
I (a) = / gr(e7%)s* e %ds.
(@) =i [ ol
Observe that
A 1 A A
lim I, (o) = —— arlgs = = : 4.4.28
Y Ir(2) = 1 /0 S = N ) T Tas D) (44.28)
Then
wg, (1/X) = Zg(e*)‘j/)‘)e*)‘j/’\ = Z gle™ /M e M/ < N (A1 —logr) ).
j>0 A;<A(1-logr)

On the other hand, we have
w, (1/3) 2 Y gle M/ M)eV/A > N(Y)
A <A
Thus, if we set g, := 1 — log r, we deduce
wg, (qr/A) < N(A) < wg, (1/A).

Letting A — oo we deduce from (4.4.27) that

: . o 1
¢-°I,(a) = lim W <lmACN() < Tm AN () < lim e g

A—00 oo A—00 A—00 e

If we now let 1 in the above inequalities and use (4.4.28) we obtain (4.4.26). O

Returning to our we see that Karamata’s theorem implies that we deduce that

co(A)

m/k
I‘(l—i—m/k))\ as A — oo.

na(A) ~

Remark 4.4.12. The above asymptotic estimate suggests that

Co(A)

_ OV am/k
F(l—i—m/k))\” n asn — oo.

This implies
k/m
co(A)

In other words the eigenvalues of a positive selfadjoint elliptic operators of order k& on an m-dimensional
manifold ought to grow like n*/™. This is indeed the case. For a proof we refer to [Shu, Prop. 13.1].
O
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4.5. McKean-Singer formula

Suppose (M, g) is a smooth, compact Riemann manifold of dimension m, and Eq, E; are smooth
complex vector bundles over M of the same rank r equipped with hermitian metrics and compatible
connections.

Suppose now that L : C*°(Ey) — C*°(E) is an elliptic partial differential operator of order k.
We form the operators

A+ =L"L: COO(E()) — COO(E()), A_=LL": COO(El) — COO(El),

Both operators A, A_ are admissible and non-negative definite so Theorem 4.4.6 implies that we have
asymptotic estimates
Tre 'A% = 3 Z cp(Ai)t%.
p=0

The coefficients ¢, (A.) are described by integrals

(A) = [ el As) V(o))

where the densities e, (x, A ) are obtained in an universal way from the coefficients of A. We set
pr(x) =en(x,Ay) —ep(z, A).

We will refer to the function p; as the index density of L.

Theorem 4.5.1 (McKean-Singer). If L is as above, then

ind L = dimker L — dimker L* = / pr(x)|dVy(z)|.
M

Proof. The key facts behind the proof are contained in the following lemma.

Lemma 4.5.2. (a) ker A, = ker L, ker A_ = ker Lx.
(b) For any A > 0 we have dimker(A — A} ) = dimker(\ — A_). O

Assuming temporarily the validity of this lemma we deduce
Tre A —Tret4- = Z e M (dim ker(A — Ay) — dimker(A — A_) )
A>0
= dimker Ay — dimker A_ =ind L.
From the asymptotic expansion as ¢ ™\, 0 of the trace of the heat kernel we deduce that
ind L ~ t ™2k Z( cp(Ay) —cp(Al) )t%.
p=>0

Since the left-hand side of the above expansion is independent of ¢, we deduce that the terms the right-
hand side involving ¢", » # 0 must be trivial. This leaves us with the equality

L = eu(A) —en(A-) = [ pufa) 0V, (o).



4.6. Zeta functions 145

Proof of Lemma 4.5.2. (a) Observe that for any u € C*°(E) we have

/M<L*Lu,u>Eo av,| = /M<Lu, L), |dV ()] = /M Lu(2) 2, |dV, ()|

This shows that v € ker L*L if and only if u € ker L, i.e., ker A, = ker L. The equality ker A_ =
ker L* is proved in a similar fashion.

We will prove (b) by showing that for any A > 0 we have
dimker(A — Ay) < dimker(A — A_) and dimker(A — A;) > dimker(A — A_).
Observe that LA, = A_L. If u € ker(A — A4 ) then AL u = Au and
A_Lu=LAiu= A\Lu.

Thus L induces a liner map L : ker(A — A4 ) — ker(A — A_). Part (a) shows that this map is injective
so that
dimker(A — Ay) < dimker(A — A_).

Similarly, L* induces an injection ker(\ — A_) — ker(A — A} ) thus proving the opposite inequality.0]

4.6. Zeta functions

Let (M, g) be a smooth, compact, Riemann manifold of dimension m, and E — M is a smooth,
complex vector bundle of rank r equipped with a Hermitian metric h. Suppose A : C*°(E) — C*(E)
is an admissible partial differential operator of order k£ which is also positive definite, i.e., there exists
¢ > 0 such that

[ aute),ue)) V@) = ¢ [ hu(o) @) dy(o)l, Yu e CZ(E).

M M

We collect the eigenvalues of A in a nondecreasing sequence
0<XAHsSAM< <A <r =0

such that each eigenvalue X appears in this sequence as many times as its multiplicity m(\) = dim ker(A—
A). We set

CA(S) = Z AL

n>0
Lemma 4.6.1. The series (4(s) converges absolutely and uniformly on the compacts of the half-plane
{Res > 7'}
Proof. We write n(\) := n(\), and we set 1 := min(Ag, 1). Then
D AT <A+ (n(2) —n(W))1* + - 4 (n( + 1) = n(4) )i~
A <(j+1)
(use Abel’s trick)
=n()(p " =17") +n@2) (17 =27 )+ +n() (G- =5°) +n( +1)57°
Now observe that
G-1)" = =0G""") asj— oo,
while
n(j) = O(™"*) asj — oco.
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Proposition 4.6.2. Let, M, A, E be as above. Then the holomorphic function
Ca: {I{es >-%;} — C,

admits an extension as a meromorphic function (4 : C --» C with only simple poles located at
m—p

Sp 1= o p=0,1,..., s, & Z<o.

The residue of (A(s) at sp is

Ress:sp ( CA(S) ) = %ﬁp)’

where ¢, = c,(A) is the coefficient that appears in the asymptotic expansion (4.4.9). This meromorphic
extension is called the zeta function of the operator A.

Proof. We follow the approach in [GrSe96, Prop. 5.1]. This relies on some basic facts about the
Gamma function that can be found in[La, §XV.2]. Define

e:(0,00) = C, e(t)= Ze_t’\".
n>0
The function e(t) decreases exponentially as ¢ — oo and we have an asymptotic expansion
p—m
t) ~ e t ==y = —.
e(t) Zcp as t N\, 0, ap Sp ?
p=>0
In particular,
le(t)] = O(]t]*), as £, 0.
To describe the behavior of e(t) as ¢ — oo we argue as in the proof of Lemma 4.6.1. We have

Z < ef“tn(l) + eft(n(2) — n(l)) 4+ 4 efjt(n(j +1)— n(]))
An<j+1

= () — ) 4 n@)(e ) k() (e U ) o 1)
J
<n(Le +CY (4 1)™ke 4 (4 1) Fe
v=1
This shows that e(¢) decays exponentially to 0 as t — oo.
The Mellin transform of e(t) is the function

f=Me]:{s€C; Res>—a}—>C, f(s):= /0°° e(t)ts% = /OOO e()t>Ldt.

The function f(s) is holomorphic in the half-plane {Re s > —ag}. Moreover

o0
OEDY / e"Pnldt, YRes > —ag.
n>0"0
Observe that
00 oo
/0 e tAngs—1lgp — )\ns/o e T lds = L'(s)A,”,

where I'(s) denotes Euler’s Gamma function. Hence

f(s) = T(s)Ca(s)-
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We construct a meromorphic extension of f(s) to the entire plane. We have

f(s) = /01 e(t)tsldtJr/loo e(t)t*tdt.

=:fo(s) =:f1(s)

The integral defining f1(s) is convergent for any s € C and thus defines a holomorphic function
f1 : C — C. It thus suffices to show that f(s) admits a meromorphic extension to the whole plane.
We define

ep(t) =e(t) = > cjt".
=0

Then
ep(t) = O(t%*) as t \, 0, 4.6.1)

and for any Re s > —a( we have

1 ) ) )
fols) = / e(t)t*'dt = / ep(t)t* dt — ch/ taits=1qy
0 0 = 0

1 p
.
= [ e, (Ot dt — A
[ etora -y 9

J=0

The estimate (4.6.1) implies that the integral fol ep(t)t5~1dt is convergent for any Re s > —a,;; and
defines a holomorphic function in this half-plane. The above equality shows that for any p > 0, the
function fy(s) admits a meromorphic extension to the half-plane Res > —a,41 with only simple

poles located as s = —ay, . . . , —a,. Moreover, the residues at these points are given by the coefficients
Co, - . ., Cp. Letting p — oo we deduce that f(s) admits a meromorphic extension to the whole plane,
with simple poles located at s = —a,, p > 0, and residues at these poles given by c,,.
We have

Ca(s) = F(ls)f(s), Res > —ag
The function ﬁ admits a holomorphic extension to the entire complex plane given by the Weierstrass
product

L oe T (14 2 el 462
F(S)—ze E( —i-n)e , (4.6.2)

where v denotes Euler’s constant

1 1
v = lim (1+7+--~+——10gn>.
2 n

n—o0

Example 4.6.3. Let a € (0, 1), and consider the first order elliptic operator
. d oo/ gl oo/ gl
Da:—z@+a:0 (S7) = C(S7).
Then
spec(D,) = a + Z.
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We form the Laplacian A, = D?2. Then its spectrum is
spec(Ag) = { (a+n)* neZ}l.
If we set (4(s) := (a, (s) then we deduce that for any s > 3 we have

1 1
)= 2 s * L T

n>0 n>0
For every z with Re z > 1 we define

- 1

Hal(z) = —

a(2) ;&a+mz
so that
Ca(s) = Za(28) + Z1-4(2s).

We want to show that =,(z) admits a meromorphic extension to the whole plane with a single simple
pole at z = 1. We follow the presentation in [La, XV§4]. For Re z > 1 we have

o dt o0 d
1) = [T et = [Tetrrg oy,
0 0

t T
so that - -
( F+(Z)>z = / G = / e+ ) LT
n a 0 0 T
and thus
oo —aT dT
—(n+a)7' z —(n+a 7'),7_ Zr= / € e puiay
Consider the functlons
o 6—(17’
Fa(T) = m, Ga(T) = i = —Fa(—7'>, T E C,

so that

/ Gl (4.63)

Consider the Hankel contour C; depicted in Figure 4.5

Consider the function

where
-

z _ ‘T|z€izarg7

, argT € (—m, 7.
This is clearly an entire function. We want to show that
H,(z) = —2isinmzl'(2)E,(z), YRez > 1. (4.6.4)
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Let us show why this equality implies the existence of a meromorphic extension of =, (z) with a single
pole at z = 1. We rewrite (4.6.4) as

1

= =———-—H
() 2¢sinmzl(2) alz),
and use the classical identity
m
I'z)I'l—=z) =
()T ?) sinmz

to conclude that

Ea(z) = f—F(l — 2)H,y(z).

2w
This shows that =,(z) has a meromorphic extension to C. Its poles can be only simple and can be
located only at the poles of I'(1 — z). From (4.6.2) we deduce these poles are all simple and are located
at z = 1,2,3,.... Since Z,(z) is holomorphic for Re z > 1, we deduce that it can have at most a
simple pole located at z = 1.

The proof of (4.6.4) is by direct computation. We have
. € dt d o dt
m(2) = [ R+ [ RoOeT e [ Rar
—00 t |z|=¢ T — t
First we observe that since Re z > 1 then
lim F,(r)7"— = 0.
e\0 |z|=¢ a( ) T

As for the remaining two integrals, we have

e dt L [ dt T A dt
e—ﬂ'lZ/ Fa(t)‘t’27 — —e_ﬂzz/ Fa(—t)tzf — 6_7”"2/ Ga(t)
. t c t 0
i [ R o= [T Guor
—€

This proves (4.6.4). If we set
eq(t) = Tre tPa
then we have an asymptotic expansion
eq(t) = t71/2 Z ept?/? as 1N\, 0.
p=>0
According to Proposition 4.6.2, the zeta function can only have simple poles located at
1 1 n
=—0—=—-1,...,—, ...
S 2 9y 2 ) Y ) 2 9y

and the residue at — 3 < 0,

0, n =2k
Ty = Cyk—1 1
f| BTk - 9k 1, k> 0,

n
2

Since we know that (,(s) has only a simple pole, located at s = % we deduce that cgi 1 = 0, for all
k> 0. 0
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4.7. Exercises

Exercise 4.1. Prove the equality (4.4.7). O



Chapter 5

Witten’s deformation of
the DeRham complex

In this chapter we will describe Witten’s analytical proof of the classical Morse inequalities. Our
approach follows closely [Roe]
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duality principle, 23, 26

elliptic

complex, 109, 112

estimates, 77

operator, 72, 84
admissible, 131, 134
parametrix, 76
with parameters, 122

regularity, 77

symbol, 72

fast decay, 2
formal adjoint, 57, 83
formal dual, 43, 57
formula
Leibniz, 37, 58
Newton multinomial, 58
Poisson, 141
Weyl asymptotic, 141
Fourier
inversion formula, 4, 28, 58
multiplier, 44
transform, 3

Gamma function, 2, 141
gaussian, 4
generalized functions, see also distribution

Hadamard’s lemma, 5
harmonic, 108, 112
heat kernel, 134
Hodge
decomposition, 108, 110
theory, 108, 110, 112
Hodge-DeRham operator, 87

index, 92
index density, 144

Laplacian, 109

leading term, 63

lemma
Riemann-Lebesgue, 28
Schur, 69, 121

Mellin transform, 146

operator
chirality, 87
Dirac-type, 87
even, 88
index, 102
super-symmetric, 87, 102
elliptic
parametrix, 86
Fredholm, 92
index of, 92
Gauss-Bonnet, 88, 112
Hilbert-Schmidt, 127
Hodge-DeRham, 87, 112
Laplacian-type, 86
nonnegative, 126
pseudo-differential, 42
formal dual, 57
classical, 59, 75
dual of, 83
elliptic, 72, 84
formal adjoint, 57, 83
pullback, 60
transpose, 83
signature, 89
smoothing, 42, 44, 48, 76
trace class, 126
oscillatory integral, 40

parametrix, 76, 86
Peetre’s inequality, 6, 54, 55, 71, 121
phase, 36
admissible, 36
proper
map, 47
subset, 47, 118
properly supported, 45, 47, 49, 118
pseudo-local, 45
push-forward, 15

quantization, 45, 57
quasi-inverse, 95

Schwartz kernel, 18, 21, 41
singular support, 17
smooth equivalence, 48
Sobolev
space, 21
spectral basis, 104
symbol, 36
classical, 59, 119
elliptic, 72
polyhomogeneous, 59, 119
principal, 63
principal part, 62
with parameter, 118
symbol complex, 109

theorem
Arzela-Ascoli, 29
closed range, 93
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dominated convergence, 9

Hodge, 110

interpolation, 25

Karamata, 141

kernel, 18, 21

Morrey, 26

Phragmen-Lindeldf, 25

Plancherel, 11, 71

residue, 133

Riesz representation, 23

spectral decomposition, 104

Stone-Weierstrass, 142
transpose, 57, 83
transposition, 43

universality trick, 42, 61

weak derivative, 10
weak topology, 7

zeta function, 146
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