RANDOM MORSE FUNCTIONS AND SPECTRAL GEOMETRY
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ABSTRACT. We study random Morse functions on a Riemann manifold (M™, g) defined as
random Fourier series of eigenfunctions of the Laplacian of the metric g. The randomness is
determined by a fixed Schwartz function w and a small parameter € > 0. We first prove that,
as ¢ — 0, the expected distribution of critical values of this random function approaches a
universal measure on R, independent of g, that can be explicitly described in terms of the
statistic of the Wigner ensemble of random (m+1) x (m+ 1) symmetric matrices. Moreover,
we prove that the metric g and its curvature are determined by the statistics of the Hessians

of the random function for small €.
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1. OVERVIEW

1.1. The setup. Suppose that (M, g) is a smooth, compact, connected Riemann manifold
of dimension m > 1. We denote by |dV}| the volume density on M induced by g. We assume
that the metric is normalized so that

voly(M) = 1. (%)

For any u,v € C*°(M) we denote by (u,v), their L? inner product defined by the metric g.
The L?-norm of a smooth function u is denoted by ||u].
Let Ay : C®°(M) — C°>°(M) denote the scalar Laplacian defined by the metric g. Fix an
orthonormal Hilbert basis (Wf)r>0 of L?(M) consisting of eigenfunctions of Ay,
AgWp = MWy, [[Wrll =1, ko < k1= Ay < Ak,
Fix an even measurable function w : R — [0, 00) such that

lim t"w(t) =0, Vn € Zso.

t—o0
For ¢ > 0 and k£ > 0 we set

we(t) == w(et), VteR, v :=we(/ ). (1.1)
Consider random functions on M of the form
Ue =Y Xp/vf Uy, (1.2)
k>0
where the coefficients X, are independent standard Gaussian random variables. Note that
AVug = M\ X /op T, VN > 0.
k>0

The fast decay of w, the Weyl asymptotic formula, [10, VI.4], coupled with the Borel-Cantelli
lemma imply that for any N > 0 the function ANwf is almost surely (a.s.) in L% In
particular, this shows that w. is a.s. smooth.

The covariance kernel of the Gaussian random function u® is given by the function

M x M =R, &(p,q) = E(u(p)uc(q)) = > w:(V ) Vi(p)¥i(q).
k>0
Since w, is rapidly decreasing, the kernel ¢ is a smooth function. More precisely, &¢ is the
Schwartz kernel of the smoothing operator

w(eVA) : C®(M) — C=(M).

Remark 1.1. Let us observe that if w(0) = 1, then as € N\, 0 the function w. converges
uniformly on compacts to the constant function wg(t) = 1 and w.(v/A) converges weakly
to the identity operator. The Schwartz kernel of this limiting operator is the J-function on
M x M supported along the diagonal. It defines a generalized random function in the sense
of [16] usually known as white noise. For this reason, we will refer to the e — 0 limit as white
noise limit. O

In the papers [26, 27] we investigated the distribution of critical points and critical values
of the random function u. in special case

Lo f <1,
wit) = Ti1y = {0 jt] > 1.
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In this paper we investigate the same problem assuming that w is a Schwartz function. We
will discuss later the similarities and the differences between these two situations.

The asymptotic estimates in Proposition 2.2 show that the random field du® satisfies the
hypotheses of [1, Cor. 11.2.2] for ¢ < 1. Invoking [1, Lemma 11.2.11] we obtain the following
technical result.

Proposition 1.2. The random function u. is almost surely Morse if e < 1. O

For any u € C'(M) we denote by Cr(u) C M the set of critical points of u and by D(u)
the set of critical values' of w. To a Morse function w on M we associate a Borel measure
ty on M and a Borel measure o, on R defined by the equalities

fy = Z Op, Ou = Us(fty) = Z lu™t(t) N Cr(u)|d;.

pECr(u) teR
Observe that
Supp fiy, = Cr(u), suppo, = D(u).
When w is not Morse, we set

fo = |dVy|, o4 = g = the Dirac measure on R concentrated at the origin.

Observe that for any Morse function u, and any Borel subset B C R, the number o, (B) is
equal to the number of critical values of u in B counted with multiplicity. We will refer to
o, as the variational complexity or variational spectrum of w.
To the random function u® we associate the random (or empirical) measure o, . Its
expectation
o° = E(oy,)

is the measure on R uniquely determined by the equality

JRCISCR: ( o w(dﬂ) 7

for any continuous and bounded function f : R — R. In §2.1 we show that the measure o°
is well defined for ¢ < 1. We will refer to it as the expected variational complexity of the
random function u.. We are interested in two problems.

(i) Describe the white noise limit of o°.
(ii) Recover the geometry of (M, g) from white noise behavior the random function ..

Remark 1.3. Before we state precisely our main results we believe that it is instructive to
discuss some elementary topologic and geometric features of the white noise behavior of u..
For simplicity, we assume that w(0) = 1 so that u® does converge to the white noise on M.

(a) It is not hard to prove that, for any given Morse function f : M — R, and any i > 0,
the probability that ||f — u.||cs < & is positive for € sufficiently small. If f happens to be a
stable Morse function, i.e., it has at most one critical point per level set, then for i sufficiently
small, any C3-function g : M — R satisfying ||f — g||cs < & is topologically equivalent to f.
Thus, as € — 0, the random function u. samples all the topological types of Morse functions.

(b) The rescaling w — w. can be alternatively implemented as as follows. Consider the
rescaled metric g. := € 2g. As ¢ — 0, the metric g. becomes flatter and flatter. The

IThe set D(w) is sometime referred to as the discriminant set of w.
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Laplacian of g. is Ay, = 62Ag. Its eigenvalues are \j = €2\, and the collection Ue = 2,
is an orthonormal eigen-basis of L?(M, |dV,.|). For any € > 0 we define the random function

1
ve =3 Xew(\0F) W5 = >0 Xi /o7 5,
k>0 k>0

where the coefficients Xj are independent standard Gaussian random variables. Observe
that v. = €2 u.. This shows that the expected distribution o¢(v) of critical values of v, is
a rescaling of o°. a

1.2. Statements of the main results. Observe that if u : M — R is a fixed Morse function
and c is a constant, then
Cr(c+u) = Cr(w), fieru = fius
but
D(u+c)=c+ D(u), oytc=10c%0ny,
where * denotes the convolution of two finite measures on R.

More generally, if X is a scalar random variable with probability distribution vx, then the
expected variational complexity of the random function X + w is the measure E( o x4q, ) =
Ux % 0q. If w itself is a random function, and X is independent of u, then the above equality
can be rephrased as

E(oxiy) =vx x E(oy).
In particular, if the distribution vx is Gaussian, then the measure E(o,,) is uniquely de-
termined by the measure E(o x4.) since the convolution with a Gaussian is an injective
operation. It turns out that, in certain cases, it is easier to understand the statistics of
the variational complexity of a perturbation of u. with an independent Gaussian variable of
cleverly chosen variance.

To explain this perturbation we need to introduce several quantities that will play a crucial
role throughout this paper. We define

1 1

om = /R Lullads, dni= /R adu(ja))dr,
1
_— W/]Rm 2222w(|z|)da.

The statistical relevance of these quantities is explained in Proposition 2.2. If we set

I (w) == /000 w(r)rkdr, (1.4)

then we deduce from [25, Lemma 9.3.10]

(1.3)
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T 7 (w) oz I (w)
== W) = ————— w).
or(2 + @) " m(m +2)0(2) "™
We set h Loy ()T ss(w)
Smim m m—1\W)Im3(W
= = 1.5
M= "R T 2 Lna(w)? (1.5)
The Cauchy inequality implies that I, 1(w)? < I,_1(w) Ly 3(w) so that
m
> —. 1.6
dm =2 m 2 ( )

The sequence (gm)m>1 can be interpreted as a measure of the tail of w, the heavier the tail,
the faster the growth of ¢, as m — oco; see Section 3 for more details. We set

rp = max(1, q,), (1.7)
and define w,, > 0 via the equality
Sm + wWm)hm
T = ( 2 ) ) (1.8)

Set 8, := S, + wyy, S0 that (compare with (1.5))

Smh
Tm = %. (1.9)
m
Observe that
W =0<=qn =71m > 1<= 35, = 5m, (1.10)
while the inequality (1.6) implies that
lim 2™ =0, lim ™ =1. (1.11)
m—00 S, m—00 @,
Choose a scalar Gaussian random variable X, () with mean 0 and variance w(e) == wpe™ ™
independent of u. and form the new random function
U 1= Xw(e) + u..
We denote by ¢ the expected variational complexity of @.. We have the equality
G =Yp(e) ¥0°, w(e) =wpe ™, (1.12)

Note that

W:Af@héf@)

is the expected number of critical points of the random function u°.

To formulate our main results we need to recall some terminology from random matrix
theory.

For v € (0,00) and N a positive integer we denote® by GOEY, the space Symy of real,
symmetric N x N matrices A equipped with a Gaussian measure such that the entries a;;
are independent, zero-mean, normal random variables with variances

var(a;) = 2v, var(a;) =v, V1 <i<j<N.

Let pn,w : R — R be the normalized correlation function of GOEY;. It is uniquely determined
by the equality

[ e = B, (i 1(4).

2GOE = Gaussian Orthogonal Ensemble
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for any bounded continuous function f : R — R. The function py,()) also has a probabilistic
interpretation: for any Borel set B C R the expected number of eigenvalues of a random
A € GOEY that are located in B is equal to

N/ pN,v(A)d)"
B

For any ¢ > 0 we denote by R; : R — R the rescaling map R > z — tx € R. If i is a Borel
measure on R we denote by (Ry).pu its pushforward via the rescaling map R;.

The celebrated Wigner semicircle theorem, [3, 24|, states that, as N — oo, the rescaled
probability measures

(R )e (prp(N)a)

converge weakly to the semicircle measure given by the density

1 =N, |\ <V
Poow(A) 1= 5— X
2mv 0, I\ > V4.

We can now state the main results of this paper.
Theorem 1.4. Forv >0 and N € Z~q we set
$2
Qﬁ’v(a:) = pN,U(m’)ei@.

(a) There ezists a constant C = Cy,(w) that depends only on the dimension m and the weight
w such that

N® ~ Cr(w)e™™(1+0(€)) ase— 0. (1.13)
More precisely
mya L h, 3 m+3
Cntw) =27 (5 ) 0 (P52 [Onc s )0y (10
7Tdm 2 R ’

(b) As e N\, 0 the rescaled probability measures

1 .
_ZV-6 (:R1/§m1€7'm )*0-6

converge weakly to a probability measure &, on R uniquely determined by the proportionalities

G O (Vr—1 % Opi1r, () )1 (y)dy (1.15a)
x 9;“7# *Yrm=1 (y)dy. (1.15b)

When 7, = ¢, > 1, we have (see (1.10)) w,, = 0 and 6° = o°. In general, Theorem 1.4
implies the following universality result.

Corollary 1.5 (Universality). As e — 0, the rescaled probability measures

N(® )

Sme—M

converge weakly to a probability measure o, uniquely determined by the convolution equation

Yem * O = O .
Sm
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Wigner’s semicircle theorem [3, Thm. 2.1.1] allows us extract a bit more about the measure
o, for m large, provided that the behavior of w at co is not too chaotic.

Theorem 1.6 (Central limit theorem). Suppose that the weight w is regular, i.e., the
sequence ry, defined in (1.7) has a limit r € [1,00] as m — co. Then

lim o, = yra1.
m—0o0 T

The above regularity assumption on w is a constraint on the behavior of its tail. In Section
3 we describe many classes of regular weights.

Corollary 1.7. As m — oo we have

m

Con(w) N\/iimr <m2+3> <:£:n>
i () (e

Following [1, §12.2] we define the symmetric (0, 2)-tensor h® on M

" (1.16)

€m+2

he(X,Y) := E(Xu.(p),Yu.(p)), Vpe M, X,Y € Vect(M), (1.17)

m

where Xu denotes the derivative of the smooth function u along the vector field X.

Theorem 1.8 (Probabilistic reconstruction of the geometry). (a) For ¢ > 0 suffi-
ctently small the tensor h® defines a Riemann metric on M.

(b) For any vector fields X, Y on M the function h*(X,Y) converges uniformly to g(X,Y)
as € N\ 0.

(c) The sectional curvatures of h® converge to the corresponding sectional curvatures of g as

€ \,0.

Remark 1.9. The C%convergence of h? towards the original metric was observed earlier
by S. Zelditch [35]. The main novelty of the above theorem is part (c¢) which, as detailed
below, implies the C* convergence of h® to g. However, the qualitative jump from C° to
C*°-converges requires considerable extra effort.

The construction of the metrics h® generalizes the construction in [6]. Note that for any
e > 0 we have a smooth map =, : M — L?(M, g)

m—+2 % 1

MapoEm) = () Su(Va) e e Porg.
m k>0

For small € > 0 this map is an immersion and h® is the pullback by . of the Euclidean metric

on L?(M, g). Let us point out that [6, Thm.5] is a special case of Theorem 1.8 corresponding

to the weight w(t) = e *".

Theorem 1.8 coupled with the results in [32] imply that the metrics h° converge C1< to g
as € \( 0. The convergence of sectional curvatures coupled with the technique of harmonic
coordinates in [2, 32] can be used to bootstrap this convergence to a C'™° convergence.

Suppose that w has compact support, say suppw C [—1,1] and w(0) # 0. In this case the
map E. is actually a map to the finite dimensional Euclidean space

U, = span{\I/k; e < e 2 } C L3(M,g).
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For small ¢ > 0 it is an embedding and Theorem 1.8 implies that for ¢ > 0 sufficiently
small the map E. is a near-isometric embedding of M in a finite dimensional space. It is
conceivable that this near-isometric embedding could be deformed to an actual isometry by
using the strategy of X. Wang and K. Zhu [34]. O

Remark 1.10. (a) We want to say a few words about the analytic facts hiding behind
Theorem 1.8. Fix a point p € M and normal coordinates (z°) at p. The techniques pioneered
by L. Hormander [20], [22, §17.4] (see Proposition 2.2) show that, as € N\, 0, we have the 1-
term asymptotic expansions

B( 2,0 (p) - 02,,0%(p) ) = hme™ ™ (14 0(c) ), (1.19a)
E(@iixju‘s(p) : Oiixjua(p)> = Ry~ (mF4) ( 14+ 0(?) ) (1.19b)

All these 1-term expansions are independent of the background metric g. Note that (1.19a)
and (1.19b) imply the estimate

E(Biiwius(p) - 0%;,5u(p) ) - E(Biimjue(p) - 0% ,u’(p) ) = O(E*(mw) ). (1.20)
Theorem 1.8 is equivalent with the following sharper estimate
E( 0%, (p) - 02,,u (p) ) — B(0%,,u(p) - 02,05 (p) ) ~ dn K (p)e™ "),

where K fj (p) denotes the sectional curvature of g at p along the 2-plane spanned by 9,i,0,;.

To prove Theorem 1.8 it would help if we could extend (1.19a) and (1.19b) to explicit, two-
term asymptotic expansions. Unfortunately, in general it is very hard, if not even impossible,
to produce explicit descriptions of the second order terms.

We can however extract enough partial information and, miraculously, the terms over
which we have no explicit control cancel each other out when considering the asymptotics
(1.20). To extract even this partial information we had to burrow deep into Hérmander’s
proof [22, §17.4] of the short times asymptotic expansion of the wave kernel.

(b) In [30] we described another approach to the probabilistic reconstruction of the geometry
of M using certain Gaussian ensembles of random 1-forms. They are defined as follows.
Consider the covariant Laplacian

AT™M . (V9Y*V9 . C°(T* M) — C®(T*M),

with spectrum 0 < pig < p3 < ---. Fixing an orthonormal eigenbasis (1x)x>0 of L?(T*M) we
define the family of random 1-forms

n° = z:X/rm/w,imc7 wy, :w(e\/,tTk), e >0,

k>0

where (X} )r>0 are independent standard normal random variables.

The random 1-forms du® employed for geometric reconstruction in this paper are obviously
closed. If w(0) # 0, then, for small € > 0, the probability that n° is not closed is positive. (We
believe that this probability is 1.) This shows that the ensembles n° and du® are qualitatively
very different. When w(0) # 0, the ensemble 1® samples the entire space C>°(T*M) as € N\, 0,
whereas the ensemble du® samples a rather “thin” subspace, that consisting of exact 1-forms.

This suggests that the random forms du,. contain a lot less information than the ensembles
n®. It is thus natural to expect that it is harder to extract precise information from the “thin”
ensemble du.. This is what we have accomplished in Theorem 1.8.
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(c) When w = I|_; j), the second order expansions of the Schwartz kernel of w(ev/A) are very
difficult to obtain for an arbitrary metric g since they tend to depend on global properties of
the metric. O

The convergence of the metrics h® leads to a cute probabilistic proof of the Gauss-Bonnet
theorem for the original metric g (and thus for any metric on M). Here is the simple principle
behind this proof.

Assume for simplicity that M is oriented and m = dim M is even. To a Morse function f
we associate the signed measure

df (p)=0

where ind(f, p) denotes the Morse index of the critical point of the Morse function f. The
Poincaré-Hopf theorem implies that

/ v =x(M). (1.21)
M

We can also think of v; as a degree O-current. Thus, the random function u® determines a
random O-current v,e. It turns out (see Section 4) that the expectation of this current is a
current represented by a rather canonical top degree form. More precisely, we prove that,

E(vus ) = eps (M), (1.22)

where e (M) is the Euler form defined by the metric h® which appears in the Gauss-Bonnet
theorem. Using (1.21) we conclude that

/M ens (M) = /ME(VUE) —E </M yua> = x(M),

and as a bonus we obtain the Gauss-Bonnet theorem for the metric h°. Letting ¢ — 0 we
obtain the Gauss-Bonnet theorem for g since h* — g and ejs (M) — e4(M). In particular, this
shows that E( 1y ) converges in the sense of currents to ey(M), the Euler form determined
by the metric g.

Remark 1.11. In [29] we have extended these ideas to arbitrary Gaussian ensembles of
random sections of arbitrary real oriented vector bundles and we have given a geometric
description of the expectation of the random zero-locus current determined by such a random
section. 0

1.3. A bit of perspective. In [26] we proved the counterparts of Theorem 1.4, Corollary
1.5 and Theorem 1.6 in the case of the singular weight w = I_ ;). In this case the random
function u® could be loosely interpreted as a random polynomial of large degree because since
this is the case when (M, g) is the round sphere.

The fact that the results in the singular case w = I_; ;j are very similar to the results in the
smooth case when w is Schwartz function could be erroneously interpreted as an indication
that there are no qualitative differences between these two situations. This is not the case.

There is one subtle and meaningful qualitative difference buried in the proofs of Theorem
1.4 and Theorem 1.6. It has to do with the size of the tail of w as encoded by the quantity
Gm = qm(w) defined in (1.5). Loosely speaking, a large ¢y, is an indication of a heavy tail.

The proof of Theorem 1.4 requires different arguments depending on whether ¢, > 1 or

Gm < 1; see Case 1 and Case 2 in the proof of Theorem 1.4. Since g, (w) > mLJFQ for any w,
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we see that, for m large, the situation ¢,, < 1 is rather atypical. The case of the singular
weight w = Iy ] is atypical because in this case gn(w) = z—ﬁ <1

The size of the tail plays an even more fundamental role in the proof of the the Central
Limit Theorem 1.6. The large m-limit of o, exists because of two facts: Wigner’s semicircle
theorem and the fact limit lim,, g,, = 7 = r(w) exists. However, the proof depends heavily
on the size of the tail and there are two dramatically different cases, r < oo and r = co. The
fact that the central limit theorem has a similar statement in both cases is a bit miraculous
because different forces are at play in these two cases.

In Section 3 we show that the two behaviors, r < co and r = co are not just theoretically
possible, they can actually happen for various choices of w. The quantity r(w) also affects
the size of the constant C),(w) in (1.13) which states that the expected number of critical
points of u® is asymptotic to Cp,(w)e™™ as € — 0.

For example, if w(t) ~ t~1°8198(t) a5 t — 00 (w has a very heavy tail), then

(3.3) m m+2(62

r(w) = oo, logCh(w) "~ 5 ¢ —1) as m — oo.

If w(t) ~ ec1988)* a5 ¢ — 0o, then

5 1
T(w) = 68/C> log Cm(w) (%\?) 277712 as m — oQ.
C

If w(t) ~ e as t — oo (w has a very light tail), then
1)1
r(w) =1, log Cp(w) @2 §mlogm as m — oo.

These examples indicate the existence of three phases r =1, 1 < r < oo, r = oco. The transi-
tion from one phase to another manifests itself as a dramatic increase in the expected number
of critical points. A similar phase transition phenomenon was observed by Y. Fyodorov [14]
in a different context.

It is well known that if w is a Schwartz function, then the Schwartz kernel of w.(v/A) has
a complete asymptotic expansion as £ \ 0; see e.g. [33, Chap. XII]. While the leading term
of this expansion is well understood, the higher order terms are more nebulous. In Theorem
B.5 we describe an explicit relationship between the second order term of this expansion and
geometric invariants of the Riemann manifold (M, g).

Theorem B.5 is a new result and we have delegated it to an appendix, not to diminish its
importance, but to help the reader separate the two conceptually different facts responsible
for Theorem 1.8.

1.4. The organization of the paper. The remainder of the paper is organized as follows.
Section 2 contains the proofs of the main results. In Section 3 we describe many classes of
regular weights w. In particular, these examples show that the limit r = lim,, o 7, that
appears in the statement of Theorem 1.6 can have any value in [1, 00]. Section 4 contains the
details of the probabilistic proof of the Gauss-Bonnet theorem outlined above.

To smooth the flow of the presentation we gathered in Appendices various technical results
used in the proofs of the mains results. In Appendix A we describe the jets of order < 4 along
the diagonal of the square of the distance function dist, : M x M — R which are needed in the
two-step asymptotics of the correlation kernel. This feels like a classical problem, but since
precise references are hard to find we decided to include a complete proof. Our approach,
based on the Hamilton-Jacobi equation satisfied by the distance function, is similar to the
one sketched in [12, p.281-282].
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In Appendix B we describe the small € asymptotics of the Schwartz kernel of w(ev/A) by
relating them to the short time asymptotics for the wave kernel described in L. Hérmander
[22, §17.4]. The central result in this appendix is Theorem B.5. It essentially states that
the Riemann curvature tensor can be recovered from the second order terms of the ¢ — 0
asymptotics of the fourth order jets along the diagonal of the Schwartz kernel of w(ev/A).

In Appendix C we describe a few facts about Gaussian measures in a coordinate free form
suitable for our geometric purposes. Finally, in Appendix D we have collected some facts
about a family of Gaussian random symmetric matrices that appear in our investigation.

1.5. Notations.

(i) For any set S we denote by |S| € Z>o U {co} its cardinality. For any subset A of a
set S we denote by I 4 its characteristic function

1, se€A

IA:S—>{O,1}, IA(S):{O SES\A..

(ii) For any point z in a smooth manifold X we denote by d, the Dirac measure on X
concentrated at x.
(iii) For any smooth manifold M we denote by Vect(M) the vector space of smooth vector
fields on M.
(iv) For any random variable £ we denote by E () and respectively var(§) its expectation
and respectively its variance.
(v) For any finite dimensional real vector space V we denote by V'V its dual, V¥ :=
Hom(V,R).
(vi) For any Euclidean space V' we denote by Sym(V') the space of symmetric linear
operators V. — V. When V is the Euclidean space R™ we set Sym,, := Sym(R").
We denote by 1,, the identity map R™ — R™.
(vii) We denote by §(R™) the space of Schwartz functions on R™.
(viii) For v > 0 we denote by -, the centered Gaussian measure on R with variance v,

22
Yo(z)de = e 2 |dx|.

vV 21

Since lim,\ o7y = 0o, We set g := dg. For a real valued random variable X we write
X € N(0,v) if the probability distribution of X is ~,.
(ix) If g and v are two finite measures on a common space X, then the notation u o< v

means that
1 b 1 .
p(X)" v(X)
2. PROOFS

2.1. A Kac-Rice type formula. The key result behind Theorem 1.4 is a Kac-Rice type
result which we intend to discuss in some detail in this section. This result gives an explicit,
yet quite complicated description of the measure &°. More precisely, for any Borel subset
B C R, the Kac-Rice formula provides an integral representation of &°(B) of the form

55(B) /M f-5(p) [V, ()],

for some integrable function f. p : M — R. The core of the Kac-Rice formula is an explicit
probabilistic description of the density f; p.
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Fix a point p € M. This determines three Gaussian random variables
u:(p) € R, du.(p) € T,M, Hessp(i.) € Sym(TpM), (RV)

where Hessp () : TpM x TpM — R is the Hessian of u,, at p defined in terms of the Levi-
Civita connection of g and then identified with a symmetric endomorphism of T, M using
again the metric g. More concretely, if (z°)1<;<m are g-normal coordinates at p, then

Hessp(t:)0,; = Z 3§¢$g”as(p)a:ci-
i=1

For ¢ > 0 sufficiently small the covariance form of the Gaussian random vector du.(p) is
positive definite; see (2.3). We can identify it with a symmetric, positive definite linear
operator

S(du.(p)) : TpM — TpM.
More concretely, if (z')1<ij<m are g-normal coordinates at p, then we identify S(du.(p))
with a m x m real symmetric matrix whose (i, j)-entry is given by

Sij(die(p)) = B(0r,1:(p) - O tte(P) )
Theorem 2.1. Fiz a Borel subset B C R. For any p € M define

fe.8(p) := (det(27S(a.(p) ))_%E( | det Hessp(w)| - Ip(u:(p)) | du.(p) = 0),

where E( var | cons ) stands for the conditional expectation of the variable var given the
constraint cons. Then

5°(B) = /M f-.5(p) |4V, (@), (2.1)
Od

This theorem is a special case of a general result of Adler-Taylor, [1, Cor. 11.2.2]. Propo-
sition 2.2 below shows that the technical assumptions in [1, Cor. 11.2.2] are satisfied if
e L

For the above theorem to be of any use we need to have some concrete information about
the Gaussian random variables (RV'). All the relevant statistical invariants of these variables
can be extracted from the covariance kernel of the random function ..

2.2. Proof of Theorem 1.4. Fix ¢ > 0. For any p € M, we have the centered Gaussian
random vector

(te(p), ditc(p), Hessp(u:) ) € R & Ty M & Sym(Tp M).

We fix normal coordinates (mi)lgigm at p and we can identify the above Gaussian vector
with the centered Gaussian vector

(ﬂa(p)v (02ie(p) )1<i<ms aiixj (2 (p) )1§7j,j§m) €eRBR™ @ Sym,, .

The next result is the key reason the Kac-Rice formula can be applied successfully to the
problem at hand.

Proposition 2.2. For any 1 <1i,j,k,f < m we have the uniform in p asymptotic estimates

as e\, 0
E(.(p)?) = &me (14 0(e?)), (2.2a)

E(0,i1:(p)0yite(p) ) = dme™ ™25, (14 0(?)), (2.2b)
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E(9%,,1:(p)0% 0t:(p) ) = hime™ ™V (85010 + 0idje + 0i0dx) (1 + O(£2)), (2.2¢)

E(’lls(P)az J;J'U'E(p) ) = _dmg_(m+2)5ij ( 1+ 0(52) )7 (2'2d)
E(u(p)dyti-(p)) = O(e™™), B(0,1t(p)d%,t(p)) = O(e~ ™), (2:2e)
where 3y, = Sy, + Wy, and the constants Sy, dp, hy, are defined by (1.3). O

Proof. Denote by &€ the covariance kernel of the random function @, = Xw(e) + ue. Note
that 5

& (p,q) = w(e) + & (p,q) = wme ™ + &°(p, q).
Fix a point p, € M and normal coordinates at p, defined in an open neighborhood Qg of

Po- The restriction of &€ to Op x Qg can be viewed as a function &°(x,y) defined in an open
neighborhood of (0,0) in R™ x R™. For any «, 8 € (Z>()|™ we have

E(8974:(p)07 (@) ) = 070, 6% (2, y)a—y0-

Proposition 2.2 is now a consequence of the spectral estimates (B.1) in Appendix B. O

From the estimate (2.2b) we deduce that
S(di(p)) = dme™ ™ (L, + O(£?)), (2.3)

so that
m m(m+2) (

|det S(te(p))| = (dm) 2™ 2
Consider the rescaled random vector
- m+4
(5,0°, HY) == (e Fa(p), "% dic(p), "% VZie(p)).

From Proposition 2.2 we deduce the following (uniform in p) estimates as £ \ 0.

+0(e%)) ase —0. (2.4)

E((5)%) =3, (1+0(?)), (2.5a)
E(viv5) = dmbij (14 O(e)), (2.5b)
lg(I{(E Hkl ) = hm (5zj(skf + 5zk5ﬂ + 5155316 ( 1+ O ) (250)
E(5Hj; ) =—d 5U(1+Oa)), (2.5d)
E(50vf) =0(e), E(viH5) =O0(e). (2.5€)
The probability distribution of the variable s¢ is
1 __a?
drys = ———¢ 2m0©)|dx],
Vsum(e) (T) () |dx|

where 3,,,(¢) = &, + O(¢). Fix a Borel set B C R. We have
. . . _ m(m+4) .
E(|det V*u.(p)|Ig(u-(p)) | du.(p) =0) =¢" 2 E(\detHa\IsgB(sE) |v*=0)

ZS_W/M E(|det H?| } $£=z,0v°=0)
€2 B

m
=¢e,p(e2 B)

Using (2.4) and (2.6) we deduce from Theorem 2.1 that

&5(B) =™ (ledm> ‘ /M Gep(£% B)pr(p)|dVy(p),
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where p. : M — R is a function that satisfies the uniform in p estimate
p(p) =14 0(e) as e — 0. (2.7)

Hence

= (R3), o ) = (5 ) ’ | ten(Blo )V (o) (28)

To continue the computation we need to investigate the behavior of ¢. ,(B) as . More
concretely, we need to elucidate the nature of the Gaussian vector

(HS } §F =z, v° :0).
We will achieve this via the regression formula (C.3). For simplicity we set
Y€ :=(5,0v°) e RpR™.
The components of Y are

}/68 — gE, YE — UE

(2 (2

1< <m.
Using (2.5a), (2.5b) and (2.5e) we deduce that for any 1 <i,j < m we have
E(Y5Y?) = 3nb0i + O(e), E(YSY])=dmbij + O(e?).

If S(Y¢) denotes the covariance operator of Y, then we deduce that

1

m
We now need to compute the covariance operator Cov(H®,Y*). To do so, we equip Sym,,
with the inner product

1
S(YE)E; — ?502. +0(e), S(YE)i—jl _

(A,B) =tr(AB), A,B € Sym,,

The space Sym,,, has a canonical orthonormal basis

Eyj, 1<i<j<m,

E;; = 1”17?“ . ].,

ﬁ 179 1< Js
and FE;; denotes the symmetric matrix nonzero entries only at locations (¢,7) and (j,4) and
these entries are equal to 1. Thus a matrix A € Sym,,, can be written as

A= a;Ej;=)_ ai;Bij,

i<y 1<]

where

where

G — Qij, =17,
* V2a;;, i< j.
The covariance operator Cov(H¢®,Y?) is the linear map Cov(H®,Y®) : R ¢ R™ — Sym,,
given by

Cov(H®,Y?) <Z yaea) =Y EHY)yaEi; =Y E(H;YS)yaEij,

1<j,x 1<j,a
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where eq, ey, ..., e, denotes the canonical orthonormal basis in R & R™. Using (2.5d) and
(2.5e) we deduce that

Cov(H®,Y*) <Z yaea) = —yodmLm + O(e). (2.10)

We deduce that the transpose Cov(H®, Y)Y satisfies
Cov(H*,Y*)' | Y i Eij | = —dmtr(A)eg + O(e). (2.11)
i<j

Set
Z° = (H?|5* = 2,0v° =0) — E(H®|$° = z,v° =0).
Above, Z¢ is a centered Gaussian random matrix with covariance operator
S(Z°) = S(H®) — Cov(H®,Y*)S(Y®) ™! Cov(H®,Y*)V.
This means that
E(Z5% ) = (Eij, S(Z°)Eye).
Using (2.9), (2.10) and (2.11) we deduce that

Cov(H®,Y*)S(Y®) ! Cov(H®,Y*)" Zaw i | = Cvi—mtr(A)]lm—i—O(s)

E((zfj)z) = hm +O0(e), E(2;25;) = hm — f—i—O( ), Vi<,
2
B((:5)°) = 3hm jm (e), Vi,

and
E(ijzliﬁ) = 0(5)a Vi < ja k < Ea (Za]) 7& (k:7£)

We can rewrite these equalities in the compact form

d2
E(zsz}iz) = <hm S > (SU(SM +h (5ik5j€ + 5i£5jk) + O(e).
Note that
2 _
hm - Cvlm (1—9) Im 1hm
Sm 'm
We set
(rm—1)
Fom = 2
so that

E(zszlié) = 26mhm 0300 + hm(éikdjg + 5@(5]};) + O(e).
Using (C.4) we deduce that
E(H®|5° = z,v° = 0) = Cov(H®,Y®)S(Y®) Hzey) = —%]l + O(e). (2.12)
3

m
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We deduce that the Gaussian random matrix (H¢|3° = z,v® = 0) converges uniformly in p
as € — 0 to the random matrix A

mlm, where A belongs to the Gaussian ensemble
Sym?2emhmhm described in Appendix D. Thus

li B) =
lim @ep(B) = qo(B

22
/ E m2rmhmhm ( ‘ det( 2dn

ATy )y o

d
Sm 21 S m o
:c2
E, d ¢ g
o (] et )
/ i (| det(4 sm\/Tn W) Vs
v
=(h )Zl/ E. - 1<‘det(A—a yl )‘)idm‘
" Sy ke S " Vor
where
dm (19 1
Oy, = = .
Smhm VTm
This proves that

o [ o)V

pm (B)
conclude

dy .
Using the last equality, the normalization assumption (x) and the estimate (2.7)

.7) in (2.8) we
(R ),6°(B)=¢" b\ # (B)+0() | ase—0 (2.13)
(me=m)~3 /% - 27d, Him c c ’
In particular
hn \ 2
Ne=g™ m(R) +0() | ase —0 (2.14)
2rd,,
Observe that the density of py, is
d il
A, Y e 2
o= B znm1<‘det(A rmlm)D\/ﬂ (2.15)
(A= /rmA)
2
Y
m ~ e 2
— 2 _
= Tm Esymgr;;mrm,rm ( ’ det(A y]lm) ’ > \/ﬂ
(2kmrm = rm — 1)
(D.76) —m 3 myl m+ 3
D 2t 2m) T (12 ) Gt 0, ) 0)
mta 1 m+3
=20 (752 G 4O, )M

This proves part (a) and (1.15a) in Theorem 1.4. To prove (1.15b) we distinguish two cases
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Case 1. r,,;, > 1. From Lemma D.2 we deduce that

B (f1e(4- 1) )

2.16)
m 3 1 1 >\_y(7'72n+1) 2, (P2 41)y? (
=2 (1 /pm+11(A)e g O TR
2 V2T Jr '
where
7_2 L Rm _ Tm — 1
™ ok —1 41
Thus
d mas 3 1 (T2 41-2rm)y? 1 _¥TmtD e
m _ o= <m+ > P T A /Pm+1,1(>\)e AT T
dy 2 V2T km R

1 ()\_y(n%ﬁrl))z_ rmy?
VTm 2<T'm+1) d)\

m+3 m+3 1 _
=22 T Ne 4
< 9 > \/m /Rpm+1,1( )6

An elementary computation yields

2
1 Y 2 rmyQ 1 1 Tm
Arl, (A_(T%Jrl)\/m) T 2rm A+ 1) =3V (\/ 2(7‘m—1))\_y\/27(rm_1)> :
1

Now set
Bm = (rm — 1)
We deduce
d,LLm m+43 m + 3 ]. l/\2 _ Bm A— 2
_ 9™ . A A=vrmy)? g\
=T (M) g [t
(A= VN
3 1 Tm ™TmPm
e <mz+ 3) Nz /R\/mpmﬂ,mﬁA)ew”e— 200
(D.6) _m+3 m—+3 1 / _rm )2
=2 T A d — A)dA.
’ ( 2 ) \V /‘Cmrmﬁm Rpm+171/rm( )e ! ’Yﬁmlrm (y )

3

I
[\]
\

+4 m+ 3 _Tm
I <2> /Rpm—l-l,l/rm()‘)e 4 /\ZdV L (y — A)dA

m+d m+3 _rm )2
=220 (52 [ s N F ¥ s (5~ N

Using the last equality in (2.13) we obtain the case 7, > 1 (1.15b) of Theorem 1.4.

Case 2. r,, = 1. The proof of Theorem 1.4 in this case follows a similar pattern. Note
first that in this case k., = 0 so invoking Lemma D.1 we obtain the following counterpart of

(2.16)
2
Using this in (2.15) we deduce

d m+4 m+3 =
dL;":z 3 r( >e T o1 (),

2
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which is (1.15b) in the case r,,, = 1. This completes the proof of Theorem 1.4. O

2.3. Proof of Corollary 1.5. According to (1.12) we have v, .-m * 0® = &°. Thus

’}/cgim*(fR 1 )0‘6:(3{ 1 )6’8.
Sm Vame—m / % Vime—m / %

Hence .
Iy e s * (R\/ﬁ)*aa = m-
We can now conclude by invoking Lévy’s continuity theorem [23, Thm.15.23(ii)]. O

4. Proof of Theorem 1.6. We have

. 1
Om = K—Qmﬂ a1 *fyrm 1dy, (2.17)
m
where
0 i1, (A) =Py L (M,
and
- — _'rm)\2
Km:/Rgm—i-l,rl *’er;nl dy—/9 1 /Rpm'i'lvrin()\)e 4 dM\.

We set

1
Bin(X) = g1, 1 (A); Roo() := o a2y VA = 2.
Fix ¢ € (0,2). In [27, §4.2] we proved that
lim sup |Ry,(z) — Reo(w)| = 0, (2.18a)

m—o0 |£E‘<C

and
sup |Ri(z) — Roo(z)] = O(1) as m — oo. (2.18b)

lz|>c
Then

m m . m m

™m 2
pm+1,i()‘) - TﬂRm ( Tm)\> ’ 0;1+1 2= @Rm ( 7“M)\> ann
We now distinguish two cases.

Case 1. r = lim, 00 7 < 00. In particular, r € [1,00). In this case we have

rm2
Km:,/rm/Rm (,/””A) e,
m R m

and using (2.18a)-(2.18b) we deduce

lim Rm< ””A) ~2% 08 = R (0 )/e— Tdr = Roo(0)4] —.
R R

m—o0 m

Hence

4
KmNK;n:ROO(O)U% as m — oo. (2.19)

Now observe that

1 1 Tm T'm 7T‘m>\2
—0 ANd\ = —=Ry, —A dA
K!, m+1,$( ) ROO(O)R <\/ m > \/47Te '
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-m () e

Using (2.18a) and (2.18b) we conclude that the sequence of measures

1,
0y 1 ()X

19

converges weakly to the Gaussian measure vz. Using this and the asymptotic equality (2.19)

in (2.17) we deduce

lim &, = Y2 % Yre1 = Yra1.
m—0o0 T T r

This proves Theorem 1.6 in the case r < oo since

Wy (111
Y kO =0, and lim vm(:)O.

m—0oo S,

Case 2. limy,—00 7m = 00. In this case we have

— [4m [Tm,

Lemma 2.3. The sequence of measures

R, <\/E/\> 72 (N)dA

converges weakly to the measure R (0)dp.

Proof. Fix a bounded continuous function f: R — R. Observe first that

Jm [ (Rm (ﬁx) — Ro (ﬁx)) F)72 (A= 0.

Indeed, we have
D / (R < TmA) R ( TmA)) FO)y2 (\)dA

m — m - — Lo - 2

|>\|<C\/\{,% m m ™m

+/A|>c - <Rm < 7;;;%) — Re < ;’:A» FN)v 2 (VdA.

NG
=D
Observe that
Dy, < sup |Rip(7) — Roo() F)y2 (N)dA
|z|<c m«fﬁm rm
and invoking (2.18a) we deduce
lim D), = 0.

m—00

Using (2.18b) we deduce that there exists a constant S > 0 such that

(2.20)
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On the other hand, Chebyshev’s inequality shows that
2
A)dA < —.
/|>\>Cﬁ ’Y%( Jax < c2m

Vrm
Hence

This proves (2.20).
The sequence of measures v_2 (\)dA converges to dy so that

™m

Roo(0)f(0) = lim [ Reo(0)f(A)y 2 (A)dA.

m—00 R ™m

Using (2.20) and the above equality we deduce that the conclusion of the lemma is equivalent

) % Jo (me) — fleo (ﬁx)) fO)y .2 (\dAr =0, (2:21)

=Fpn

To prove this we decompose F;, as follows.

Fp = /A|<mi . (ROO(O) —ROO< ;’:A)) F)72 (A)dA

o[
[A|>m™ 4

g

3
VN
s

I
S
|
oy
3
VN
B
>
N———
N————
=
>
2
3[\3
>
QL
>

g

Observe that

Fi < sup [Roo(0) — Reo(2)| / L e (N

1
ja<m ™1

and since R is continuous at 0 we deduce
lim F), =0.
Since R, and f are bounded we deduce that there exists a constant S > 0 such that

Fl <S8 v.2 (A)dA.

_1
[A|>m 4\/‘/Tim rm

On the other hand, Chebyshev’s inequality shows that

2
va (WA < ——.
/|>\>m411\/‘/£ rm vm

™m

Hence
lim F =0.

m—r0o0

This proves (2.21) and the lemma. O
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Lemma 2.3 shows that

Ko~ K =1/ R(0),
m
and )
lim 6", (\dA = do.

m—00 Km m+1,
On the other hand
lim Vrm=1 1 (A)dA = y1(N)dA,

m—0oQ

so that

lim &m = (50 *Y1 = V1.

m—0o0
This completes the proof of Theorem 1.6. a
2.5. Proof of Corollary 1.7. Using (2.1 deduce

% m(R) 4+ O
<2W ; ) (R) +0(c)

:Cm(w)
Lemma 2.3 implies that, as m — oo, we have

4 2
Ky~ —Rx(0) = .
m (0) N Tm

m
2

22 m+3 hom,
~ F .
Cmw) ~ < 2 )(%dm) asm = oe

We deduce that

O

2.6. Proof of Theorem 1.8. Fix a point p € M and normal coordinates (x?) near p. The
equality (2.2b) shows that as € — 0 we have the following estimate, uniform in p.

E( 8&71'{"5(17)81]' ﬁs(p) ) = dme_(m+2) (613 + 0(5)2) )
Hence
h5<8xi, 890]) = 5ij + 0(52) = gp(axi, 817) + 0(82). (2.22)
This proves (a) and (b) of Theorem 1.4.
With p and (2?) as above we set
g 0y
Woeiaidlids T Gt L G dydt - - - Dyiv

‘x:y:07

hfj = (0, 0,), 1<, <m.
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We denote by Kj; the sectional curvature of h° along the plane spanned by 9,:,0,;. Using
[1, Lemma 12.2.1] and that the sectional curvatures of a metric are inverse proportional to
the metric we deduce as in [27, §3.3] that

dm % (9@5 377 éaz? 31
T G55 — (67
Using Theorem B.5 we deduce that there exists a universal constant Z,, that depends only

on m and w such that

€ __

Eeii — 65 = ML Kii(p) (1+0(%)), (2.23)

ii;jj — Cijsi
where K;;(p) denotes the sectional curvature of g at p. The estimate (2.2b) implies that
61675 — (635)7 = dpe 2" (14 0(7)).

Thus
Zm

dm,
To determine the constant Z it suffices to compute it on a special manifold. Assume that
M is the unit sphere S™ equlpped with the round metric. This is is a homogeneous space
equipped with an invariant metric g with positive sectional curvatures. The metrics h® are
also invariant so there exists a constant C. > 0 such that h* = C.g. The estimate (2.22)
implies that C: = 1 and thus Kj; = Kj; (p) so that 5—7’: =1. O

KZEJ = Kij(p)(l-i-O(&Z)).

3. SOME EXAMPLES

We want to discuss several examples of weights w satisfying the assumptions of the central
limit theorem, Theorem 1.6. Observe first that

rn(w) ~ Ry, (w) = L1 (W) Iy 3(w) as m — oo.

L1 (w)

Moreover
Ry (we) = Ry (w).

Example 3.1. Suppose that w(t) = e~t*. In this case & is the Schwartz kernel of the heat

operator e *2 whose asymptotics as € — 0 have been thoroughly investigated. The momenta
(1.4) are
& 1 [ & k+1
I (w) :/ the P dt = / s T e ds = fF ( + > .
0 2 Jo 2
Honee LCDN(Z+2) _motd i+
S5+ m + m(m +
R =2 2 = >1 =—¥>5<1, V
so that r,,, = 1 for all m. Moreover, in this case we have
1
M =m+2,
Imy1(w)
so that
275" m+ 3
Cn(w) ~ m+1F< > as m — 0o,
mr 2 2

and Stirling’s formula implies

log Cpp (w) ~ % logm as m — oo. (3.1)
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Example 3.2. Suppose that
w(t) = exp(—(logt)log(logt) ), Vt> 1.
Observe that

I(w) = /01 rRw(r)dr + /100 ¥ exp(—(log ) log(log ) )dr.
This proves that
I (w) ~ Ji == /100 rk exp(—(logr)log(logr) )dr as k — occ.
Using the substitution r = e! we deduce
I, = /OO o(k+1)t—tlogt gy
We want to investigate the large A asym([))totics of the integral
Ty = /OOO et ¢y(t) = At — tlogt. (3.2)

We will achieve this by relying on the Laplace method [9, Chap. 4]. Note that
1
OA(E) = A —logt — 1, ¢X(t) = ——.
Thus ¢,(t) has a unique critical point
r=7(\):=e "t

We make the change in variables t = 7s in (3.2). Observe that

et s — A lslog(erls) = e s — (A — 1)t s — e llogs = e*ls(1 — log s)
and we deduce -

T\ = 7'/ e ™M) ds, h(s) = s(logs —1).
0

The asymptotics of the last integral can be determined using the Laplace method and we
have, [9, §4.1]

Th(1)

=V2rre’.

T)\NTe Th”

Hence
Jp =Tpy1 ~\2r7(k+1)e” Tk t1) — \oreke as k — oc.
In this case
R, (w) = 0o as m — oo.

Note that
h 21m+3 (U))

do 0+ D ()

We deduce that
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Hence .
log Crp(w) ~ §€m+2(62 —1) as m — oc.

Example 3.3. Suppose that
w(r) = exp(—C(logr)*), C>0, r>1, a>1

Arguing as in Example 3.2 we deduce that as k — oo

Iy (w) N/ ¥ exp( —C(logr)® )dr :/ o+ 1)t=Ct gy
1 0

Again, set
Ty == /OO e~ MOdt, py(t) == Ct* — At.
We determine the asymptotics of OTA as A — oo using the Laplace method. Note that
P\(t) = aCt*™! — .

The function ¢, has a unique critical point

Observe that

A o1 1
oA(T8) = a(s® —bs), a:= (Cl/aa> , bi=ao-T,

T\ = T()\)/ e~ bs) g,
0
We set g(s) := s — bs. Using the Laplace method [9, §4.2] we deduce

27 2
Ty ~ —ag(1) _ a(b—1)
o~ (M \/ag”(l) \/aa(a - 1) c

Hence N
Aa a—T1 a—1 _1 J e 2
log Ty ~ () aia =: Z(a,C)\a-T.
C Qa1
Hence
IOng(w) ~ log Ty, +log Tinia — 2log T2
NZ(a,C)(mﬁ—i-(m—i-él)ﬁ—2(m+2)ﬁ>
o 4N\ 39 2 \asT
= Z(a, C)ma-1 <1+ (1+7) ! —2(1+7> 1)
m m
o 8 « « 8aZ(a) 2-a
~ Z(a, CYma-T x — 7( _1):7 &
(e, C)m 2 a—1\a—1 (a—1)2m
Hence
00, a <2,
r= lim r, = x {0220 =29

m— 00

1, a > 2.

(3.4)
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which shows that r can have any value in [1, 00]. Note that in this case

log Ln+3(w) — 10g Ln1(w) ~ Z(a, C)ma=1 < (1 + %) - (1 L2 ) . )

m
2Z(a,C) 1
~ ———"ma-1, m — 00,
a—1
so that Z(0.C
log Cp (w) ~ m’l)maa—l, m — o0. (3.5)
o —

O

Example 3.4. Suppose now that w is a weight with compact support disjoint from the
origin. For example, assume that on the positive semi-axis it is given by

1
_lf(zfc)2 —
w(z)={° e c|§1,c>1.
0, |z —c| > 1,
Then

C+1 I S 1 1
I(w) = / 1 the T--02 gt = / 1(t + c)ke 12 ¢t
c— _

0 1 1 1
= / (t+ c)ke =22 dt+/ (t+c)ke T2 dt .
-1 0

— +
I, I

Observe that

lim ¢ "I, = 0.
k—o0

On the other hand )
L= /0 (c+1-— t)keft%dt,
and we deduce

1 1
Ck/ e Edt <LF<(c+ 1)"’/ e dt.
0 0

Hence the asymptotic behavior of I (w) is determined by I ,j . We will determine the asymp-
totic behavior of I ,j by relying again on the Laplace method. Set a := (¢ + 1) so that

1 1 - g
Ll = / (a— t)ke_t%dt = ak/ (1- S)ke_ﬁds = ak/ (u—1)*u= 2w qu.
0 0 a
Consider the phase

1 1
on(s) = —log(l—s) — poyol h\0,

h
and set )

Py = af / * eon(s)

0
so that
I = Py
We have
, 1 2 ) 1 6

n(s) = T R(1—s) T on(t) = T h(1—s)2  a2st
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The phase ¢y, as a unique critical point 7 = 7(h) € (0,1/a) satistying
o273 o273
h= = 1
2(1—7) 9 ( + O(7)),

-2)

1 a?rt  (2h)3 1<2h?>§

so that

i

(1+0(n1)) ash 0.
Set

SO 6 Gas 6
We make the change in variables s = 7 + y/vz and we deduce

v:=v(h):=

a

Py = (Mgt /o TN =n(T) g  J (1) = {_
J(h)

VUiV
We claim that

1,;2
lim ePn(THVUT)=6n(7) g0 — / e Zdx =+2T.
h—0 J(h) R

It is convenient to think of 7 as the small parameter and then redefine

o273
h = h/ = -
(7) 21— 7)
and think of v as a function of 7. Finally set o := /v and
2(1—7) 1
SOT(:E) = ¢h(7‘)(7— + O'l‘) - ¢h(7)(7-) = W log(l - S) - a2s2

—ﬂ;?(log(l—T—ox)—log(l—T)) 1 <(1—1>

a? \(t +ox)?2 72

2(1—17) o 1 1
=" g (1 - 1
a?73 8 ( 1— Tx> a?712 <(1 + Z2x)? )

- ({11 20) (1)

The equality (3.8) is equivalent to

2
lim e () :/6_2dx.

By construction, we have
0r(0) = ¢7(0) =0, ¢7(0) =~1, ¢r(x) <0, V€ J(h).
Let us observe that

. o 1 " 2 _ xQ
71_1_H)?(l)§07-(l‘) = 5907(0):17 =—3 Vo € R.

Indeed, fix x € R and assume 7 is small enough so that

< —.
el < 5

Observe that

; 1 [(20—7) & o d’ 1
@ (o) = = |._nl 1—- S
#7°(0) ( dx? =0 log < 1— Tx) dxd =0 ((

a?72 T

T 1/(1—7'}'

1+ Zx)?

(3.8)

(3.9)

(3.10)

(3.11)

1))
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- a217-2 <_2(1T_ - <1 i T>j ISR AR (i)]> '

Using the estimate o = O(72) as 7 — 0 we deduce that there exists C' > 0 such that, for any
7 > 0 we have

PP (0)] < O + i 2.
Hence
jl"w(Tj)(O):vj‘ < Cj”i'.%"j_2$2, Vj > 2.
Thus if 7 satisfies (3.11), we have
z? 1 1 :
pr(@) + 5 = pr(2) — h(0) — SeH(0)a* = 3 2o (0)a7,
Jj=3
where the series in the right-hand side is absolutely convergent. Hence
x2 . .
)+ — | < Cx?|rx 72?3 < Clra|x? 1273,
| or(z) + 5 | | ’;ﬂ | 7| ;]

This proves (3.10).
Next we want to prove that there exists a constant A > 0 such that

or(x) < A1 —|z|), Vx e J(h), VT < 1. (3.12)

We will achieve this by relying on the concavity of ¢, over the interval J(h). The graph of
- is situated below either of the lines tangent to the graph at x = £+1. Thus

pr(x) < @r(1) + @r(D(w — 1) < =L (1) + ¢ (),

pr(x) < @r(=1) +r(=1)(z + 1) < @l (=1) + ¢l (=1).
Now observe that

d (@) 1 20 1 n 20 1 20 1 1
— Q7 €Tr) = —— _—— _— = — .
dz? a?7? Tl1-:Zx 71 (14 %2)? a3 \ (1+ %23 1-1%x

1—
Using the fact that o = O(72) we deduce from the above equality that
|t (£1)| = O(1), as T — 0.
This proves (3.12). Using (3.10), (3.12) and the dominated convergence theorem we deduce

xZ
lim e (@) dy = / e  z2dx = V2.
J(h) R

T—00

We conclude that

Py ~ e Man/2r0 as h— 0 (3.13)
Now observe that
1 1 2(1—7)log(1—1) 1 3
On(T) = ﬁlog(l —T)— 22 a2r2 - T2 T T a2

Using (3.6) we deduce

2 2
3 [a?\3 3 k\3 1
o)~ = (%) =i ° (20) k=5

2(1—71
ePn(T) — (1—71) 2273) e~ a217‘2 )

Also
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In any case, using (3.6), (3.7) and (3.13) we deduce that

log I,(w) ~ kloga = klog(c+ 1) as k — oo. (3.14)
Thus
Im—l(w)lm—i-ii(w))
log rp(w) = lo =0,
so that
lim ¢, = lim 7, =1. O
m—0o0 m—r0o0

Example 3.5. If we let ¢ = 0 in the above example , then we deduce that

1
I (w) :/ the™ T gt ~ 91T 2mv(h)
0

where ,
k\3 1/2)\3
i) ~-3(2)" v~ 1 ()
Hence
g\ 3
log Ij,(w) ~ —3 <2> ,
3
log P (w) ~ =5 ((m = 1)F + (m+3)F = (m+1)F) =0,
23
so that
lim ¢, = lim 7, = 1. O
m—0o0 m—00

4. A PROBABILISTIC PROOF OF THE GAUSS-BONNET THEOREM

Suppose that M is a smooth, compact, connected oriented manifold of even dimension m.
For any Riemann metric g we can view the Riemann curvature tensor R, as a symmetric
bundle morphism R, : A°’T'M — A*T M. Equivalently, using the metric identification 7* M =
TM we can view Ry, as a section of A2T*M @ A*T*M.

We will denote by QP4(M) the sections of APT*M @ A9T*M and we will refer to them of
double forms of type (p,q). Thus R, € Q%%(M). We have a natural product

o QPI(M) x QP9 (M) — QPFPhatd ()

defined in a natural way; see [1, Eq. (7.2.3)] for a precise definition.
Using the metric g we can identify a double-form in Q%*(M) with a section of A*T*M ®
AT M, i.e., with a bundle morphism A*T'M — A*TM and thus we have a linear map

tr: QPR (M) — C=(M).
For1 <k < % we have a double form
R;k =Rye---e R, € sz’zk(M).
k

We denote by dV, € Q"(M) the volume form on M defined by the metric g and the orien-
tation on M. We set

ey (M) := 7!tr<—R;%>dVg e Q™(M).
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The form ey(M) is called the Euler form of the metric g and the classical Gauss-Bonnet
theorem states that

/ eq(M) = x(M) =: the Euler characteristic of M. (4.1)
M

In this section we will show that the Gauss-Bonnet theorem for any metric g is an immediate

consequence of the Kac-Rice formula coupled with the approximation theorem Thm. 1.8.
Fix a metric g. For simplicity we assume that vol,(M) = 1. This does not affect the

generality since e.q(M) = e4(M) for any constant ¢ > 0. Consider the random function u.

on M defined by (1.2, 1.1). Set
6m—i—2 %
v, = ( i > u.

Observe that for € > 0 sufficiently small, any X,Y € Vect(M) and any p € M we have
h*(X(p), Y (p)) = E(Xv:(p), Yv:(p))

where h® is the metric on M that appears in the approximation theorem, Theorem 1.8.
For any smooth function f : M — R and any p € M we denote by Hess,(f) the Hessian
of f at p defined in terms of the metric h®. More precisely

Hessi,(f) = XY /(p) — (VY)f(p), VX,Y € Vect(M),

where V¢ denotes the Levi-Civita connection of the metric h®. Using the metric h® we can
identify this Hessian with a symmetric linear operator

Hessy,(f) : (TpM, h®) — (TpM, h*).

For any p € M we have a random vector dv.(p) € T, M. Its covariance form S(dv.(p)) is
precisely the metric h®, and if we use the metric h® to identify this form with an operator we
deduce that S(dv.(p)) is identified with the identity operator.

For every smooth Morse function f on M and any integer 0 < k < m we have a measure

Vg on M
szk = Z 5}77
df (p)=0, ind(f,p)=k

where ind(f, p) denotes the Morse index of the critical point p of the Morse function f. We

set
m

k
vi =Y (—DFup
k=0
The Poincaré-Hopf theorem implies that for any Morse function we have

/ vp(dp) = x(M). (4.2)
M

Using the random Morse function v, we obtain the random measures vy, p, V.. We denote
by v and respectively v° their expectations. The Kac-Rice formula implies that

1

= P (P)|dVie ()],

where

E( | det Hessy, (v)| |dv5(p) =0, indHess,(ve) = k)

pr(p) = Jae S )
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= (—1)kE(det Hessj, (ve) | dve(p) =0, ind Hessy,(v.) = k:)

As shown in [1, Eq. (12. 2.11)], the Gaussian random variables Hessj(v:) and dv.(p) are
independent so that

pi(p) = (—l)kE<det Hess,(v.) | ind Hessg (v.) = k)

Thus

1 m

V= ——= Y (—=1)Fpi(p)|dVi (p)],
(27) 2 kZ:o

- ! T iE(det Hess;,(v.) | ind Hess}) (v.) = k)\ths (p)|
(27.‘_)7 — p p
1
s ( e essp(vg) )| he ()|

From the Poincaré-Hopf equality (4.2) we deduce

1
X1 = [ vp) = [ B(detHessy (v) ) aVie 9. (43)
M (2m)2 Jm
Observe that Hessian Hess®(f) of a function f can also be viewed as a double form
Hess®(f) € Qb (M).

In particular, Hess®(v.) is a random (1, 1) double form and we have the following equality,
[1, Lemma 12.2.1]

— 2Rye = E(Hess®(v.)*?), (4.4)

where Rps denotes the Riemann curvature tensor of the metric h. On the other hand we
have the equality [1, Eq. (12.3.1)]

1
det Hess® (v.) = -1 tr Hess® (v )*™ (4.5)

Using (4.4), (4.5) and the algebraic identities in [1, Lemma 12.3.1] we conclude that

1 o
W(%)' tr(—Rh€ )

(27:)T;E ( det Hessp,(ve) ) =

This proves (1.22). Using this equality in (4.3) we deduce
X0 = [ en(an)
M
i.e., we have proved the Gauss-Bonnet theorem for the metric h*. Now let ¢ — 0. As we have

mentioned, Theorem 1.8 implies that h* — ¢ so in the limit, the above equality reduced to
the Gauss-Bonnet theorem for the original metric g.
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APPENDIX A. JETS OF THE DISTANCE FUNCTION

Suppose that (M, g) is a smooth, m-dimensional manifold, p, € M, U is an open, geodesi-
cally convex neighborhood of p, and (x!,...,2™) are normal coordinates on U centered at
Po- We have a smooth function

n:UxU —[0,00), n(p,q) = disty(p, q)2.

We want to investigate the partial derivatives of r at (pg,pg). Using the above normal
coordinates we regard 7 as a function n = n(z,y) defined in an open neighborhood of (0,0) €
R™ x R™.

If f=f(t',...,t") is a smooth function defined in a neighborhood of 0 € R and k is
a nonnegative integer, then we denote by [f]i the degree k-homogeneous part in the Taylor
expansion of f at 0, i.e.,

1
e =3 D 08t € R, 27].
la|=k

In the coordinates (') the metric g has the form (using Einstein’s summation convention
throughout)

g = gijda’da’,
where g;; satisfy the estimates [18, Cor. 9.8]

1 o
Gre = Oy — gRikjg(O)xej + O(|l’|3) (A1)
We deduce that )
g* = e + gRikjg(O)xixj +O(|z]3). (A.2)

The function 7 satisfies a Hamilton-Jacobi equation, [31, p. 171],
keOn(z,y) On(z,y)

Dk ol An(z,y), Vz,y. (A.3)
Moreover, 7 satisfies the obvious symmetry conditions
n(z,y) =y, x), n(0,z) =n(x,0) = |z|* := i(wi)2- (A.4)
i=1
As shown in [7, Lemma 2.2] we have
[z = |z —yf* = i(rvi — ) (A.5)
i=1

The symmetries (A.4) suggest the introduction of new coordinates (u,v) on U x U,
(% ::L‘i—yi, Vj :xj+yj.
Then
= %(u, ), 3y = %(vj —uj), Opi = Oy, + O,.
The equality (A.2) can be rewritten as

1
gkg(w) ="+ 12 E 4 Rigje(ui + vi)(uj +v;) + O(3). (A.6)
Z!]
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The symmetry relations (A.4) become

n(u,v) = n(—u,v), nu,u) = |ul?, (A7)
while (A.5) changes to
i =0, [z = |ul*. (A.8)
The equality (A.3) can be rewritten
> g @) (i, + ) (0, + b, ) = 4n. (A.9)
Kl r Y
Note that
[Arlo = [Ado = [¢"1 =0, (A.10)
while (A.8) implies that
[Ap] = 2u®
We deduce
Anls =D _[9"0 ([Akl1[Ada + [Arl2[Ad1 ) = 2[Akla[Arh = 4D ur[Axla.
k¢ k k

We can rewrite this last equality as a differential equation for []3 namely

[n]s = Zuk(auk + Oy, ) [n]3-
k

We set P = [n]3 so that P is a homogeneous polynomial of degree 3 in the variables u,v.
Moreover, according to (A.7) the polynomial P is even in v and P(u,u) = 0. Thus P has
the form
P = Z Ci(u)v; + Py(v),
-
=P,
where C;(u) is a homogeneous polynomial of degree 2 in the variables u, and Py(v) is homo-

geneous of degree 3 in the variables v.
We have

Zuk(?kag = ZC’k(u)uk, Q1 := Zukakao, Zukaukpo =0,
k k k k

—_——
=:Q3

and the classical Euler equations imply

> updy, Py = 2P,
k

We deduce
P =2P+ Q3+ Q1,

where the polynomials (3 and )1 are odd in the variable u. Since P is even in the variable
u we deduce

Q3+ Q1 =0,
so that P, + Py = P = 2P,. Hence P, = Py = 0 and thus

[]s = 0. (A.11)

In particular
[Ak]2 =0, VEk. (A.12)
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Going back to (A.9) and using (A.10) and (A.12) we deduce

Agla = (6" A1 [Adr + > [9"0 ([Akl1[Ads + [Akla[Ach)
)

et (A.13)

=4 Z[gké]gukw + 2 Z Uk [Ak]g
k.t k

We set P = [n]4. The polynomial P is homogeneous of degree 4 in the variables u, v, and it
is even in the variable u. We can write P = Py + P> + P4, where

Py = Zcijkluiujukufa P, = ZQU(U)%%
k 2,7

and P is homogeneous of degree 4 in the variables v, Q;;(u) is a homogeneous quadratic
polynomial in the variables u. We have

> ur[Apls =D ur(Qu, + 0, ) P.
k k

We have
> kb, Poy = 20Py, v=0,1,2, Y updy, Py =0,
k k
> urdp Po =Y urQij (Spivy + Orjvi) = Y (Qrjurvs + Qjrvjug )
k k7i7.j k’]

Using these equalities in (A.13) we deduce
APy + 4Py + 4Py = 4 [¢™]aupug + 4Py + 2P + > 1y, Py

k0 k
+ Z (ij + Q;j )Ukvj-
"
This implies Py = 0 so that P = P, —|—7;32, and we can then rewrite the above equality as
Py,=2 Z[gkqguklm + Z (ij + ij )ukvj. (A.14)
k0 k.j

Note that the equality 7(u,u) = |u|? implies P(u,u) = 0 so that
Py(u) = Py(u,u) = —Py(u,u).

Therefore it suffices to determine P>. This can be achieved using the equality (A.6) in (A.14).
We have

1
9 Z[ng]ZUkuZ = 6 Z Rikjg(ui + Ui)(u]' + vj)ukw
k0

i7j7k7£
1
= 6 Z (Z RikjgukUg) viv; + Z Sj (u)vj,
i,j k.t J
Qij(u)

where Sj(u) denotes a homogeneous polynomial of degree 3 in u. The equality (A.14) can
now be rewritten as

Z Qij(w)viv; = % Z @ij(u)vivj + Z Sj(u)vj + % Z (ij; + Qr;j )ukvj.
.7 1,7 J

k,J
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From this we read easily

Qij( ) Qz] Z Rzkjfukué
k.l
This determines Ps.
1 ~
= 6 Z Qij (U)Ui?}j. (A.15)
Z?]
As we have indicated above P, determines Pj.
1
P4(’LL) = —PQ(’LL,U) = _6 Z Rikjguiujukw. (A16)
/LA7Lj7]€7Z

The skew symmetries of the Riemann tensor imply that Py = 0 so that
1 ~
[77]4(u7 U) = 6 Z Qm( V;Uy, sz Z Rzkﬂukué (A17)
1,J

Example A.1. Suppose that M is a surface, i.e., m = 2. Set
K = Ry212 = Ro121 = —Ri221.

Note that K is the Gaussian curvature of the surface. Then

A 2 A 2
Qu =Y Riproupue = Ku3, Qo2 =Y  Roppeupuy = Kuf.

k.0 k¢
Q12 =Y Rupaeupy = —Kugug = Qo1
Kl
Hence K
2.2, .2 2 2
Py(u,v) = E(ugvl + uivs — 2ujuguivy) = g(ulvg — uguy)”.

APPENDIX B. SPECTRAL ESTIMATES

As we have already mentioned, the correlation function

(9@8 p, Zws )\Ijk( )

k>0

is the Schwartz kernel of the smoothing operator w.(v/A). In this appendix we present in
some detail information about the behavior along the diagonal of this kernel as ¢ — 0. We
will achieve this by relying on the wave kernel technique pioneered by L. Hérmander, [20].
The fact that such asymptotics exist and can be obtained in this fashion is well known to
experts; see e.g [13] or [33, Chap.XII]. However, we could not find any reference describing
these asymptotics with the level of specificity needed for the considerations in this paper.

Theorem B.1. Suppose that w € 8(R) is an even, nonnegative Schwartz function, and
(M, g) is a smooth, compact, connected m-dimensional Riemann manifold. We define

M xM—R, &(p,q) =Y wev/\)U(p)
k>0

where (Vi )k>1 is an orthonormal basis of L?(M, g) consisting of eigenfunctions of A,.
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Fiz a point py € M and normal coordinates at py defined in an open neighborhood Qg of
po- The restriction of &€ to &° to Oy x O can be viewed as a function & (x,y) defined in
an open neighborhood of (0,0) in R™ x R™. Fix multi-indices o, B € (Z>0)™. Then

;lal—18]
0208 &% (2, y)|o—y—0 = g2 </ w(|z|)z*Pdr + 0(52)> , e—0, (B1)
@m)™ \ Jrm
where
+
(e, B) = V“f'J .

Moreover, the constant implied by the symbol O(e) in (B.1) uniformly bounded with respect
to py.

Proof. For the reader’s convenience and for later use, we go in some detail through the process
of obtaining these asymptotics. We skip many analytical steps that are well covered in [22,
Chap. 17] or [28].

Observe that for any smooth f: M — R we have

w.(VAf =~ [ @wmwdVira -1 [ & (t) VA ft. (B.2)
2T R R 3

The Fourier transform w(t) is a Schwartz function so w(t/e) is really small for ¢ outside a

small interval around 0 and e sufficiently small. Thus a good understanding of the kernel of

VA for ¢ sufficiently small could potentially lead to a good understanding of the Schwartz

kernel of we(v/A).

Fortunately, good short time asymptotics for the wave kernel are available. We will describe
one such method going back to Hadamard, [19, 31]. Our presentation follows closely [22, §17.4]
but we also refer to [28] where we have substantially expanded the often dense presentation
in [22].

To describe these asymptotics we need to introduce some important families homogeneous
generalized functions (or distributions) on R. We will denote by C'~°°(2) the space of gen-
eralized functions on the smooth manifold €2, defined as the dual of the space compactly
supported 1-densities, [17, Chap. VIJ.

For any a € C, Rea > 1 we define x4 : R — R by

@) = o

Tl)xi’ x4 = max(z,0).

Observe that we have the following equality in the sense of distributions

d a1
@Xi =x%(z), Rea>1.

We can use this to define for any a € C
dk
X4 = %x?ﬁk € C"*(R), k>1-Rea.

For Rea > 0 we denote by |x|® the generalized function defined by the locally integrable

function
1

") = Fmy

]
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The correspondence a — |x|* is a holomorphic map {Rez > 0} — C~°°(R) which admits a
holomorphic extension to the whole complex plane, [15, Chap. 1], [28]. This is a temperate
generalized function, and its Fourier transform is given by, [15, 28],

X[ (€) = V2o x|~ (¢), VaeC. (B.3)

Denote by Ky(z,y) the Schwartz kernel of ¢VA_ We then have the following result [22,
§17.4] or [28].

Theorem B.2. Set n:=m+ 1, and let
n(x,y) = disty(2,y)*, =,y € M.

There ezists a positive constant ¢ > 0, smaller than the injectivity radius of (M, g), such that
for disty(z,y) < ¢ we have the following asymptotic expansion ast — 0

Ki(p,q) ~ Y _ Ui(p, Q)dm (2k)Hi(t, p, ), [t <c, (B.4)
k=1
where for Rea > 0 we have
Halt,p,q) = 0 (xff (&3 —n(p.@)) — X1

2a+1
dm(2a) = M.

n
2

(2 —H(P,Q))>7

Let us explain in more detail the meaning of the above result. The functions Uy are smooth
functions defined in the neighborhood disty(p, q) < c of the diagonal in M x M. For fixed g,
the functions p — Vi(p) := Ux(p, q) are determined as follows.

Fix normal coordinates x at g, set |g| := det(g;;), and
1 1 .
h(z) == —5g(Vloglgl, x) = =5 Y g™ d,loglg.
Jik

Then Vi (z) are the unique solutions of the differential recurrences

Vi(0) =1, 2z-VVi =hV1, |z| <e, (B.5)
1 1
%LU . VVk+1 + (1 - Qth) Vk+1 = —Ang, Vk+1(0) = 0, ‘JZ| < c, k 2 1. (BG)
We have the following important equality
lim  Hu(t,p,q) = |x|** 2™ (t), VacC. (B.7)

distg(p,q)—0

The asymptotic estimate (B.4) signifies that for any positive integer p there exists a positive
integer N(u) so that for any N > N(u) the tail

N
Tn(t,p,q) = Ki(p,q) — > Uk(p, @) (2k) M (t, P, q)
k=1

belongs to C*( (—c,¢) x M x M) and satisfies the estimates

HagTN(t”_’_) HC’#*J'(MxM) < Cj‘t‘QNinili'lL? ‘t‘ <c 7j < W, N> N(:U’) (BS)
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Fix a point p, € M and normal coordinates at p, defined in a neighborhood Og of py.
Then we can identify a point (p, q) € Op x Op with a point (z,y) in a neighborhood of (0, 0)
in R™ x R™.

Using (B.2) we deduce

o e 1 o [t
0006 (2. )lemy = +{ DB E )y <5) ) (B.9)

::K?’B

Choose an even, nonnegative cutoff function p € C§°(R) such that

o(t) = {é :j

where ¢ > 0 is the constant in Theorem B.2. Then

020587 (w,lomy = (K000 () )+ 2(27 (1= o) (1)),

9 9

Let us observe that that for any N > 0

e (1= p0)a (1) ) =0e) ase 0

9 3

Thus

YN >0 920PE5(z, y)lamy ~ %<Kfﬁ,p(t)@ (i) ) +0(N), 0 (B.10)

On the other hand
020K (w,y) ~ Y dm(2k)050] { Up(, y)Hy(t, 2,y) }. (B.11)
k=1

Recall that
1
da,) = | gla+ 81
One can show (see [7, 28])

00
8;[651(15(1', y)|x:y:O ~ Z Am,a,ﬂ,k|X|_m_2d(a7ﬁ)+2k (t)a (B12)
k=0

where A, 3,0 is a universal constant depending only on m, o, 3, which is equal to 0 if |a+ 3|
is odd.

Lemma B.3. (a) For any r € Z and any N > 0 we have

1 P r [
g<lxlT,pw€>:g <<|X\ ,w>—|—0(€N)> as e — 0.

(b) For every positive integer r we have

(IxXI™"w) =

WQH/Hrl

r
2
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Proof. (a) For transparency we will use the integral notation for the pairing between a gen-
eralized function and a test function. We have

(o) = - [ et/ = [ eonmoa

=< [ I Oplen@tdt =< (N ). p.(0) = plet).
Now observe that p.w — @ = wW(p. — 1) — 0 in $(R). More precisely for k > 0 we have
ak
%(Ps —1) =0(VtY) ase — 0.
This implies that
(x|, @(p: — 1)) = O(eV) as e — 0,
so that
(IxI", p@) = (Ix|" @) +{|x|", W(pe — 1) ) = (x|, @) + O(e™) as e — 0.
(b) We have

(X" @) = (7w ) ) ymm (= ), w(r))
= ﬁQl_T 1" Yw(r)dr
- A|r (r)dr.

I'(3)
O
Using (B.10) and the above lemma we deduce
020 E (2, ) lmy = Dparpe ™ 24P) 4+ 0 (e—m—“(aﬁ)“) as e — 0, (B.13)

where D,, o g is a universal constant that depends only on m, «, 8 which is = 0 if |a + 3] is
odd,

21—7’
Dm,a,ﬁ = Am,a,B,O \/F?r(r) / ’T‘Tilw(T)dTa r=m+ 2d(a7 B) (B14)
3 R
To determine the constant D, , g it suffices to compute it for one particular m-dimensional
Riemann manifold. Assume that (M, g) is the torus 7™ equipped with the flat metric

m
g=> _(do")?, 0<6' <2r.
i=1
The eigenvalues of the corresponding Laplacian A,, are
k1%, k= (ki,... km)eEZ™

Denote by < the lexicographic order on Z™. For g = (6',...,0™) € R and k € Z™ we set

~ 1
V(0) =
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Then
E50.7) = Ty 2 (el
kezm
so that . a1 o N
02026°(6,0) = 2 w. (K] R+ kD)
kezm
Define

Win, tte : R™ 5 R, Wi(z) = w(|z|), ue(x) = Wy (ez)zo.
Using the Poisson summation formula [21, §7.2] we deduce
4lal=18]
(2m)m

U (277).
vezm™

aaf e _
920567(0,0) =

Observe that

U (§) = / e~ 8 (el z]) 2P dr = (i) ( /
= & " (i0g)* "7 < / e‘i@g’y)Wm(y)dy) = & "(i0) W, <i£> .

e_i<§’x>Wm(€x)dm>

Hence
slal=18l

0%056°(6,0) = E Z { i0¢) P W, ( g>} .
€ E=2n

As ¢ — 0 we have

lal=18]

05056°(0,0) = eIt (((30g) P Won(0) + O(EN) ), AV,
(2m)™
Now observe that
(i06) W (0) = [ w(lal)a
Rm
so that
ilal—|8]
aaaﬁga(o 0) = emlotBlt </ w(x|)xa+ﬁdx+0(sN)> , VN.
(2m)™ R™
This shows that
slal=18l

Dy = a+B gy
0= gy [ wllaha™ e

This completes the proof of Theorem B.1.

Remark B.4. Note that

/ (e = ( /|z1 xa+ﬂdA(x)> < /O - w(r)rm+a+ﬁl—1dr> .

::Im,a,ﬁ(w)
On the other hand, according to [25, Lemma 9.3.10] we have

2[Th, D(2it2it
= , a4+ 8 € (2Z>9)™,
/ Ot-thA( )_ ma,,B — F( +|2+ﬁ\) B ( ZO)
|lz|=1 0, otherwise.
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(B.15)

(B.16)

(B.17)
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We can now rewrite (B.16) as

fat g 8T Z

Gy Imas (). (B.18)

O

Dpap=c¢

Theorem B.5. Fiz a point p € M and normal coordinates (x%) near p. Fori # j we denote
by K;j(p) the sectional curvature of g at p along the plane spanned by 0,i,0,;. For any
multi-induces o, B € (Z>0)™ we set

5;5 = :‘;‘8555(:0, Y) | w=y=0-

Then there exists a universal constant Z,, that depends only on the dimension of M and the
weight w such that

Eiii — 65y = ZmKij(p)e " 2 (1+ O(%)) ase — 0. (B.19)
Proof. Using (B.12) we deduce
L/ iigj ijig [t
G~ 850~ H(KP - KPO00 (1) ) 40N, ev0 (B20)

On the other hand from (B.9) we conclue
K9 = K7 3 (20) (0202 = 02,002, ) {Uk(@ )3 (6, 2,9) amymo (B.21)
k=1

To investigate the above asymptotics we use the technology in [28].

Let us introduce some notations. For a positive integer k we denote by 0% a generic mixed-
partial derivative of order k in the variables z¢, y/. We denote by 0*n the collection of k-th
order derivatives of n(x,y). P;(X) will denote a homogeneous polynomial of degree i in the
variables X, while Py (X)P,(Y) will denote a polynomial which is homogeneous of degree k
in the variables X and of degree ¢ in the variables Y. We then have the equalities

fH:a = fpl (877)9{a_1, (B.22)
O*H, = Po(0n)Ha—z + P1(0*n)Ha1, (B.23)
DPH, = P3(0n)Haos + P1(0n)P1(0°0)H oo + P1(0°n) Ha1, (B.24)

*Hy = Pa(0n)Haa + (P2(90)P1(8%n) ) Ha—s
+({PQ(62T1) + iPl (877)?1 (8377) )j‘fa_Q + ?1(84?7)9{(1_1.
To simplify the presentation we will assume that in (B.19) we have i = 1, j = 2. Also,

we will denote by O(1) a function f(x,y) such that f(z,y)|z—y—0 = 0. The computations in
Section A show that

(B.25)

P(0n) = P(9°n) = O(1). (B.26)
In particular, the above equalities show that the 1st and 3rd order derivatives of H? are O(1).
We have

851 852(Ukj'fk) = 821 ( (652 Uk)f]'fk + 28y2 Ukayzg'fk + Ukajﬂfk)
+4(021,p Uk) (021, M) + Up01 023 + O(1),
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02120212 (UHG) = 9212 ((021,2UK) 3 + 0, Uk, 36 + 02U + U 250 )
= (01420512 Uk) Hi + (9y1,2U) (05142 )
+ 02 Up021 o Hp + 021 1 Up020,p 0+ 0% s UpDy1 K, + 021 2 Up021 M,
+ 02,2 UkO o M + U021 12000 M + O(1). (B.28)

Using (B.22)-(B.25) we deduce that

4
(851 852 — 331332 a§1y2> (Uk%k)x:yzo = Z T]gj{k—jb:y:o’
7=0

where the coefficients Tg are polynomials in the derivatives of Uy and n at (z,y) = (0,0).
Using (B.22)-(B.25) we deduce

Ty =T: =0.
Moreover, in view to (B.26), the terms in T,? are due only to the 4-th order derivatives of J.
Upon inspecting (B.27) and (B.28) we see that the 4-th order derivatives of 3}, are multiplied

by Ug. According to (B.6) the function Uy is O(1) if k > 1. Hence T2 = 0 for k > 1. We
deduce

o0
K7 — KPP o> ™ dy (2k) (TRH + T He—1 + TEHk—2) a=y—0
k=1
= B_1H _1|p=y=0 + BoHo|o=y—0 + B1H1|s=y—0 + - - - ,
where
B_1 = dn(2)TE, By =dnm(2)T}, Bi=dn(2)T) +dm(4)Ts,. .. .
The term B_; can be alternatively described as
Bo1 = Am.iisjj0 = Am.ijiij 0,
where the coefficients A,, o 5,0 are defined as in (B.12). Using (B.14) and (B.16) we deduce
B_;=0.

To compute T} we observe first that

n(x —y) = Z(;p’ — yi)2 + higer order terms. (B.29)

)

Using (B.23) we can simplify (B.27) and (B.28) in the case k = 1 as follows.
02100 (U1 H,) = (9202 U1) Hy + U105 0231 + O(1), (B.30)
aﬁlxza?glyz (Ulg{l) = (6§1x2851y2U1):H1 + 831?/1 Ulaizyzg{l
+8§2y2U18z1y19{1 + U18§1$2851y2j{1 + O(l)
Using (B.23), (B.25) and (B.29) we deduce that
Tll = (851332 - 8§1x28§1y2> 77|(0’0)

+2 (ailUl + 8§2U1) ’(0,()) + 2 (8313!1 Ul + a§2y2U1> ‘(070)-

(B.31)
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Using the transport equation (B.5) we obtain as in [10, VL.3] that U; coincides with the
function ¢(z,y) in [10, VI.3 Eq.(33)] or the function ug(x,y) in [6, p. 380]. For our purposes
an explicit description of Uy is not needed. All we care is that

Ui(z,y) = Ui(y,z), Ui(z,x)=1.

These conditions imply that the Hessian of Ui(z,y) at (0,0) is a quadratic form in the
variables u; = (z' — ") so that

92:U1(0,0) + 021, U1(0,0) = 92U1(0,0) + 82,2 U1 (0,0) = 0. (B.32)
Hence
Ty = (5951352 - a§1m28§1y2> 1l (0,0)-
Using (A.17) we conclude that
T! = ZRis12 = ZK15(p),
where Z is a universal constant, independent of (M, g). Hence
K" — K7~ dn (2) ZK12(P)Holo=y—0 + > BeHrlo—y—o-
k>1

The equality (B.19) now follows from the above equality by using (B.20), (B.7) and Lemma
B.3. ad

APPENDIX C. GAUSSIAN MEASURES AND GAUSSIAN VECTORS

For the reader’s convenience we survey here a few basic facts about Gaussian measures.
For more details we refer to [8]. A Gaussian measure on R is a Borel measure 7, ,, v > 0,
m € R, of the form

1 _(==w)?

'Y,u,v(x>=\/%€ 20 dx.

The scalar p is called the mean, while v is called the variance. We allow v to be zero in which
case

Yu,0 = 0, = the Dirac measure on R concentrated at .

For a real valued random variable X we write
X € N(u,v) (C.1)

if the probability measure of X is v, ,.

Suppose that V is a finite dimensional vector space. A Gaussian measure on V is a Borel
measure v on V such that, for any £ € V'V, the pushforward &, () is a Gaussian measure on
R,

&(7) = V) w(e)-

One can show that the map V'V 3 ¢ — u(€) € R is linear, and thus can be identified with a
vector ., € V called the barycenter or expectation of v that can be alternatively defined by
the equality

m:/‘/vd'y(v)-

Moreover, there exists a nonnegative definite, symmetric bilinear map

¥: VY x VY 3R such that v(€) = 2(£,€), Ve VY,
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The form X is called the covariance form and can be identified with a linear operator S :
VY — V such that

X(&,n) = (& 8n), VE&neVY,

where (—, =) : V¥ x V — R denotes the natural bilinear pairing between a vector space and
its dual. The operator S is called the covariance operator and it is explicitly described by
the integral formula

(&, 8n) = S(E,) = /V (60— 1) (0 — o) (v).

The Gaussian measure is said to be nondegenerate if 3 is nondegenerate, and it is called
centered if g = 0. A Gaussian measure on V is uniquely determined by its covariance form
and its expectation.

Example C.1. Suppose that U is an n-dimensional Euclidean space with inner product
(—,—). We use the inner product to identify U with its dual UY. If A : U — U is a
symmetric, positive definite operator, then

1
Yaldw) = oy A

is a centered Gaussian measure on U with covariance form described by the operator A. O

—o (AT ) | gy (C.2)

If V is a finite dimensional vector space equipped with a Gaussian measure yand L : V —
U is a linear map, then the pushforward L,y is a Gaussian measure on U with expectation
pr,, = L(p,) and covariance form

YU xUY =R, Bp4(n,n) =3(L"n, LYy), ¥eU”,
where LV : UY — V" is the dual (transpose) of the linear map L. Observe that if v is
nondegenerate and L is surjective, then L.~ is also nondegenerate.
Suppose (8, i) is a probability space. A Gaussian random vector on (8, x) is a (Borel)
measurable map
X :8 =V, V finite dimensional vector space

such that X,u is a Gaussian measure on V. We will refer to this measure as the associ-
ated Gaussian measure, we denote it by vx and we denote by X x (respectively S(X)) its
covariance form (respectively operator),

Bx(1,6) = E((&, X — E(X)) (&, X — E(X)) ).

Note that the expectation of vx is precisely the expectation of X. The random vector is
called nondegenerate, respectively centered, if the Gaussian measure yx is such.

Let us point out that if X : 8§ — U is a Gaussian random vector and L : U — V is a
linear map, then the random vector LX : 8§ — V is also Gaussian. Moreover

E(LX) = LE(X)7 ELX(gvg) = EX(ngang)v v§ € Vva

where LY : V¥V — U is the linear map dual to L. Equivalently, S(LX) = LS(X)L".

Suppose that X; : 8§ — V1, j = 1,2, are two centered Gaussian random vectors such that
the direct sum X; & X : 8§ — V1 @ V4 is also a centered Gaussian random vector with
associated Gaussian measure

VX1 0X2 = PX19X, (%1, T2)|[dT1dT2).

We obtain a bilinear form

cov(X1,X2) : VY x Vi = R, cov(X1,X2)(&1,&) = 2(&, &),
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called the covariance form. The random vectors X; and X, are independent if and only if
they are uncorrelated, i.e.,
cov(X1,X2) =0.
We can then identify cov(X1, X2) with a linear operator Cov(X1, X2) : Vo — V', via the
equality
E( (&1, X1) (&2, X2) ) = cov(X1, X2)(&1,&2)

= (&, Cov(X1, X)e}), Va1 € VY, &€ VY,
where §; € V3 denotes the vector metric dual to £,. The operator Cov (X7, X2) is called the

covariance operator of Xq, Xo.
The conditional random variable (X1|X2 = z2) has probability density

Px16X, (%1, T2)
_.y(x1) = .
p(Xl‘XZ—:EZ)( 1) fVl PX10Xs (a:l, IBQ)’Clwl‘

For a measurable function f: V; — R the conditional expectation E(f(X1)|X2 = x2) is the
(deterministic) scalar

B(f (X)X = @) = /V F (@)Dt Xy (1) |21 |

If X is nondegenerate, the regression formula, [5], implies that the random vector (X;]| X2 =
x2) is a Gausian vector with covariance operator

S(Y) = 8(X;) — Cov(X1, X2)S(X2) ! Cov(Xs, X1), (C.3)
and mean
E(Xl‘XQ = .%'2) = CQ?Q, (C4)
where C' is given by
C = Cov(X1,X2)8(Xy)™ L, (C.5)

APPENDIX D. A CLASS OF RANDOM SYMMETRIC MATRICES

We denote by Sym,, the space of real symmetric m x m matrices. This is an Euclidean
space with respect to the inner product

(A, B) :=tr(AB).
This inner product is invariant with respect to the action of SO(m) on Sym,,. We set

- E;;, =7
E;; = . .
" {\}ﬁEija 1< ].

The collection (Ej;j)i<; is a basis of Sym,, orthonormal with respect to the above inner
product. We set

PO ) 1=
E \/iaij, 1< J.

The collection (;j)i<; the orthonormal basis of Sym,, dual to (EU) The volume density

induced by this metric is
dA| = [ dai; = 22 () ][ dayy.

i<j i<j
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Throughout the paper we encountered a 2-parameter family of Gaussian probability measures
on Sym,,. More precisely for any real numbers u, v such that

v > 0,mu+ 2v >0,

we denote by Sym»" the space Sym,, equipped with the centered Gaussian measure dI', ,(A)
uniquely determined by the covariance equalities

E(ajjare) = udijore + v(0ikdje + 0iedjr), V1 <, j, .k, 0 < m.
In particular we have

E(a}) =u+2v, E(ajaj;)=u, E(a})=v, Y1<i#j<m,

[ ]
while all other covariances are trivial. The ensemble Sym%" is a rescaled version of of the
Gaussian Orthogonal Ensemble (GOE) and we will refer to it as GOE}, .
For u > 0 the ensemble Sym,;” can be given an alternate description. More precisely a
random A € Sym,;” can be described as a sum

A=B+ X1,,, BeGOE!,, X € N(0,u), B and X independent.
We write this
Sym%¥ = GOEY, +IN (0, u)1,y,, (D.1)
where + indicates a sum of independent variables.
The Gaussian measure dI', , coincides with the Gaussian measure dI',12, 4, defined in

[27, App. B]. We recall a few facts from [27, App. B].
The probability density dI',, has the explicit description

AT »(A) = m(ﬂj o trA2_%/(trA)2‘dA|’
(2m)— 7 /D(u,v)
where
D(u,v) = (20)m=D+(%) (mu+2v),
and

sl 11y

S om \mu+2v 20)  2v(mu+20)

In the special case GOE?, we have u =« = 0 and
1
dFO’U(A> == me_flu tI‘A2‘dA’, (DQ)
(2mv)~ 4

We have a Weyl integration formula [3] which states that if f : Sym,, — R is a measurable
function which is invariant under conjugation, then the the value f(A) at A € Sym,,, depends
only on the eigenvalues A\j(A) < --- < \,(A) of A and we have

m

1 A7
E v X)) = Ay oy A i — N T |dA - d A,
GOEm(f( )) Zm(’U) R f( 1, ’ ) 1<ig<m| ]| He 4 | 1 ‘

=@ (M)
(D.3)
where the normalization constant Z,,(v) is defined by

zoo)= [ 11

1<i<j<m

m )\2
N = N [T e 5 1A -+ dAn
=1
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_ ’”“"“’/ 11 |)\—>\|H FldA -+ do

1<i<j<m

-~

=Zm
The precise value of Z,, can be computed via Selberg integrals, [3, Eq. (2.5.11)], and we

have .
Zm=(2m)Em! ] L) _ o IIr (;) . (D.4)

1
j=1 ') j=1

For any positive integer n we define the normalized 1-point corelation function py, ,(z) of
GOE, to be

1
o) = ——— o Mgy o AR)dAL - - d .
Pn, (SU) Zn(U) Rnle y (:E 2 ) 1
For any Borel measurable function f : R — R we have [11, §4.4]
1
*EGOE“ tl" / fA ,Onv (D.5)

The equality (D.5) characterizes py,. Let us observe that for any constant ¢ > 0, if
A € GOE!, «<=>cA € GOES™.

Hence, for any Borel set B C R we have

/ pn,CQU(x)d:E:/pn,U(y)dy'
cB B

Cpn,c2v(cy) = Pnw (y)7 vn,c,y. (DG)
The behavior of the 1-point correlation function py, ,(z) for n large is described by Wigner’s
semicircle theorem [3, Thm.2.1.1]. It states that, for any v > 0, the sequence of probability
measures on R

We conclude that

1 1
Pn,on—1 (.Z')dﬂj‘ =n2 ,On,v(TLQ x)dx
converges weakly as n — oo to the semicircle distribution

Poo,(@)|d] = I{|x\<2f}2 Vv — 2?|dz|.

The expected value of the absolute value of the determinant of of a random A € GOE}, can
be expressed neatly in terms of the correlation function py,41,. More precisely, we have the
following result first observed by Y.V. Fyodorov [14] in a context related to ours. Set

C(v) = 25 (20)"5°T (m;:‘) |

Lemma D.1. Suppose v > 0. Then for any ¢ € R we have

2

EGOE;JH ( | det(A — C:ﬂ.m)| ) == Cm(v)ei%’pm+l,v(c)'

Proof. Using the Weyl integration formula we deduce

Egogy, (|det(A — cln, Ic—)\IHM — N\jldAg - dAy

1<J
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2 m

€ 4v _ﬁ _ﬁ
:zm(v)/me wLe #le— NI TN = AjldAs - - dm,

i=1 i<j

62
eHZmH(v) 1
- it o(C AL A - dA,
Z(0)  Zyia(0) Jam @rrie(@ N Jdd

C2 C2
€@Zm+1(’u) 7n2+1 et Lmi1

= T(z))pm+1’v(c) =0 Tmpmﬂ,v(c)
mi1 2 fm+1 3 m1_ (m+3\ 2
= (m+ )V " e () pnafe) = 2820 T (2 % g o),
g
The above result admits the following generalization, [4, Lemma 3.2.3].
22
Lemma D.2. Let u,v > 0. Set 6, () := pmy1,0(x)e®. Then
E det(A — cl,,)|) = C ! i D.7

Symliz“(’ et(A—c m)’) = m(v)iﬁ Rpm+1,y(c—$)€ v v ax (D.7a)
= Cp(v) (7 * g'r-"r_z—i-l,v)(c)' (D.7b)

In particular, if u = 2kv, k < 1 we have
_(z-&-t%c)g (t2+1)c?

1 , .
E v,v det A — C]lm = Cmi m s(c—1x)e 4Utk v dm_7
SymZ¥ (’ ( )’) \/H/Rp +1, ( )
A=c—=zx)

(#2 -1)c?
f@()\f(ti+1)c)2+kT

1
)= [ pense

_k_
I-k-

Proof. Recall the equality (D.1) Sym%" = GOE?, + N (0,u)1,,. We deduce that
Egy e (det(A —cly)|) = E(det(B+ (X —¢)1)])

where ti =

! 2
= \/m/REGOE“m(’det(B— (c—X)1,,)]| ‘X =ux)e 2udr
1 a2
= m/ EGOE“m( | det(B — (C— :C)Ilm)| )6 2udx
R
1 (cfz)2iﬁ
= Cm("l))\/ﬁ Pm-i—l,v(c — $)6 1v 2u do.
R
Now observe that if ©w = 2kv then
(C—$)2 z? z? Lo s 2
—_—— —= _ _ 2
4v 2u 4kv+4 (@ ca +¢’)
= 12 242 A1+ 1) 1 22, CL+1)
0 < ix cx —c k> 0 o2 (x +tge)” + T
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