
RANDOM MORSE FUNCTIONS AND SPECTRAL GEOMETRY

LIVIU I. NICOLAESCU

Abstract. We study random Morse functions on a Riemann manifold (Mm, g) defined as
random Fourier series of eigenfunctions of the Laplacian of the metric g. The randomness is
determined by a fixed Schwartz function w and a small parameter ε > 0. We first prove that,
as ε → 0, the expected distribution of critical values of this random function approaches a
universal measure on R, independent of g, that can be explicitly described in terms of the
statistic of the Wigner ensemble of random (m+1)×(m+1) symmetric matrices. Moreover,
we prove that the metric g and its curvature are determined by the statistics of the Hessians
of the random function for small ε.
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1. Overview

1.1. The setup. Suppose that (M, g) is a smooth, compact, connected Riemann manifold
of dimension m > 1. We denote by |dVg| the volume density on M induced by g. We assume
that the metric is normalized so that

volg(M) = 1. (∗)
For any u,v ∈ C∞(M) we denote by (u,v)g their L2 inner product defined by the metric g.
The L2-norm of a smooth function u is denoted by ‖u‖.

Let ∆g : C∞(M) → C∞(M) denote the scalar Laplacian defined by the metric g. Fix an
orthonormal Hilbert basis (Ψk)k≥0 of L2(M) consisting of eigenfunctions of ∆g,

∆gΨk = λkΨk, ‖Ψk‖ = 1, k0 < k1 ⇒ λk0 ≤ λk1 .

Fix an even measurable function w : R→ [0,∞) such that

lim
t→∞

tnw(t) = 0, ∀n ∈ Z>0.

For ε > 0 and k ≥ 0 we set

wε(t) := w(εt), ∀t ∈ R, vεk := wε
(√

λk
)
. (1.1)

Consider random functions on M of the form

uε =
∑
k≥0

Xk

√
vεk Ψk, (1.2)

where the coefficients Xk are independent standard Gaussian random variables. Note that

∆Nuε =
∑
k≥0

λNk Xk

√
vεkΨk, ∀N > 0.

The fast decay of w, the Weyl asymptotic formula, [10, VI.4], coupled with the Borel-Cantelli
lemma imply that for any N > 0 the function ∆Nuε is almost surely (a.s.) in L2. In
particular, this shows that uε is a.s. smooth.

The covariance kernel of the Gaussian random function uε is given by the function

E ε : M ×M → R, E ε(p, q) = E
(
uε(p)uε(q)

)
=
∑
k≥0

wε
(√

λk
)
Ψk(p)Ψk(q).

Since wε is rapidly decreasing, the kernel E ε is a smooth function. More precisely, E ε is the
Schwartz kernel of the smoothing operator

w
(
ε
√

∆
)

: C∞(M)→ C∞(M).

Remark 1.1. Let us observe that if w(0) = 1, then as ε ↘ 0 the function wε converges

uniformly on compacts to the constant function w0(t) ≡ 1 and wε(
√

∆) converges weakly
to the identity operator. The Schwartz kernel of this limiting operator is the δ-function on
M ×M supported along the diagonal. It defines a generalized random function in the sense
of [16] usually known as white noise. For this reason, we will refer to the ε→ 0 limit as white
noise limit. ut

In the papers [26, 27] we investigated the distribution of critical points and critical values
of the random function uε in special case

w(t) = I [−1,1] :=

{
1, |t| ≤ 1,

0, |t| > 1.
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In this paper we investigate the same problem assuming that w is a Schwartz function. We
will discuss later the similarities and the differences between these two situations.

The asymptotic estimates in Proposition 2.2 show that the random field duε satisfies the
hypotheses of [1, Cor. 11.2.2] for ε� 1. Invoking [1, Lemma 11.2.11] we obtain the following
technical result.

Proposition 1.2. The random function uε is almost surely Morse if ε� 1. ut

For any u ∈ C1(M) we denote by Cr(u) ⊂M the set of critical points of u and by D(u)
the set of critical values1 of u. To a Morse function u on M we associate a Borel measure
µu on M and a Borel measure σu on R defined by the equalities

µu :=
∑

p∈Cr(u)

δp, σu := u∗(µu) =
∑
t∈R
|u−1(t) ∩Cr(u)|δt.

Observe that

suppµu = Cr(u), suppσu = D(u).

When u is not Morse, we set

µu := |dVg|, σu = δ0 = the Dirac measure on R concentrated at the origin.

Observe that for any Morse function u, and any Borel subset B ⊂ R, the number σu(B) is
equal to the number of critical values of u in B counted with multiplicity. We will refer to
σu as the variational complexity or variational spectrum of u.

To the random function uε we associate the random (or empirical) measure σuε . Its
expectation

σε := E(σuε)

is the measure on R uniquely determined by the equality∫
R
f(t)σε(dt) = E

(∫
R
f(t)σuε(dt)

)
,

for any continuous and bounded function f : R → R. In §2.1 we show that the measure σε

is well defined for ε � 1. We will refer to it as the expected variational complexity of the
random function uε. We are interested in two problems.

(i) Describe the white noise limit of σε.
(ii) Recover the geometry of (M, g) from white noise behavior the random function uε.

Remark 1.3. Before we state precisely our main results we believe that it is instructive to
discuss some elementary topologic and geometric features of the white noise behavior of uε.
For simplicity, we assume that w(0) = 1 so that uε does converge to the white noise on M .

(a) It is not hard to prove that, for any given Morse function f : M → R, and any ~ > 0,
the probability that ‖f − uε‖C3 < ~ is positive for ε sufficiently small. If f happens to be a
stable Morse function, i.e., it has at most one critical point per level set, then for ~ sufficiently
small, any C3-function g : M → R satisfying ‖f − g‖C3 < ~ is topologically equivalent to f .
Thus, as ε→ 0, the random function uε samples all the topological types of Morse functions.

(b) The rescaling w → wε can be alternatively implemented as as follows. Consider the
rescaled metric gε := ε−2g. As ε → 0, the metric gε becomes flatter and flatter. The

1The set D(u) is sometime referred to as the discriminant set of u.
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Laplacian of gε is ∆gε = ε2∆g. Its eigenvalues are λεk = ε2λk and the collection Ψε
k = ε

m
2 Ψk

is an orthonormal eigen-basis of L2(M, |dVgε |). For any ε > 0 we define the random function

vε =
∑
k≥0

Xkw
(√

λεk

) 1
2
Ψε
k =

∑
k≥0

Xk

√
vεk Ψε

k,

where the coefficients Xk are independent standard Gaussian random variables. Observe
that vε = ε

m
2 uε. This shows that the expected distribution σε(v) of critical values of vε is

a rescaling of σε. ut

1.2. Statements of the main results. Observe that if u : M → R is a fixed Morse function
and c is a constant, then

Cr(c+ u) = Cr(u), µc+u = µu,

but

D(u+ c) = c+D(u), σu+c = δc ∗ σu,

where ∗ denotes the convolution of two finite measures on R.
More generally, if X is a scalar random variable with probability distribution νX , then the

expected variational complexity of the random function X + u is the measure E(σX+u ) =
νX ∗σu. If u itself is a random function, and X is independent of u, then the above equality
can be rephrased as

E(σX+u ) = νX ∗E(σu).

In particular, if the distribution νX is Gaussian, then the measure E(σu) is uniquely de-
termined by the measure E(σX+u) since the convolution with a Gaussian is an injective
operation. It turns out that, in certain cases, it is easier to understand the statistics of
the variational complexity of a perturbation of uε with an independent Gaussian variable of
cleverly chosen variance.

To explain this perturbation we need to introduce several quantities that will play a crucial
role throughout this paper. We define

sm :=
1

(2π)m

∫
Rm

w(|x|)dx, dm :=
1

(2π)m

∫
Rm

x2
1w(|x|)dx,

hm :=
1

(2π)m

∫
Rm

x2
1x

2
2w(|x|)dx.

(1.3)

The statistical relevance of these quantities is explained in Proposition 2.2. If we set

Ik(w) :=

∫ ∞
0

w(r)rkdr, (1.4)

then we deduce from [25, Lemma 9.3.10]

(2π)msm =

(∫
|x|=1

dA(x)

)
Im−1(w) =

2π
m
2

Γ(m2 )
Im−1(w),

(2π)mdm =

(∫
|x|=1

x2
1dA(x)

)
Im+1(w) =

π
m
2

Γ(1 + m
2 )
Im+1(w) =

2π
m
2

mΓ(m2 )
Im+1(w),

(2π)mhm =

(∫
|x|=1

x2
1x

2
2dA(x)

)
Im+1(w)
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=
π
m
2

2Γ(2 + m
2 )
Im+3(w) =

2π
m
2

m(m+ 2)Γ(m2 )
Im+3(w).

We set

qm :=
smhm
d2
m

=
m

m+ 2

Im−1(w)Im+3(w)

Im+1(w)2
. (1.5)

The Cauchy inequality implies that Im+1(w)2 ≤ Im−1(w)Im+3(w) so that

qm ≥
m

m+ 2
. (1.6)

The sequence (qm)m≥1 can be interpreted as a measure of the tail of w, the heavier the tail,
the faster the growth of qm as m→∞; see Section 3 for more details. We set

rn := max(1, qn), (1.7)

and define ωm ≥ 0 via the equality

rn =
(sm + ωm)hm

d2
m

. (1.8)

Set šm := sm + ωm so that (compare with (1.5))

rm =
šmhm
d2
m

. (1.9)

Observe that
ωm = 0⇐⇒ qm = rm ≥ 1⇐⇒ šm = sm, (1.10)

while the inequality (1.6) implies that

lim
m→∞

ωm
sm

= 0, lim
m→∞

rm
qm

= 1. (1.11)

Choose a scalar Gaussian random variable Xω(ε) with mean 0 and variance ω(ε) := ωmε
−m

independent of uε and form the new random function

ǔε := Xω(ε) + uε.

We denote by σ̌ε the expected variational complexity of ǔε. We have the equality

σ̌ε = γω(ε) ∗ σε, ω(ε) := ωmε
−m, (1.12)

Note that

N ε =

∫
R
σ̌ε(dt) =

∫
R
σε(dt)

is the expected number of critical points of the random function uε.
To formulate our main results we need to recall some terminology from random matrix

theory.
For v ∈ (0,∞) and N a positive integer we denote2 by GOEvN the space SymN of real,

symmetric N × N matrices A equipped with a Gaussian measure such that the entries aij
are independent, zero-mean, normal random variables with variances

var(aii) = 2v, var(aij) = v, ∀1 ≤ i < j ≤ N.
Let ρN,v : R→ R be the normalized correlation function of GOEvN . It is uniquely determined
by the equality ∫

R
f(λ)ρN,v(λ)dλ =

1

N
EGOEvN

(
tr f(A)

)
,

2GOE = Gaussian Orthogonal Ensemble
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for any bounded continuous function f : R→ R. The function ρN,v(λ) also has a probabilistic
interpretation: for any Borel set B ⊂ R the expected number of eigenvalues of a random
A ∈ GOEvN that are located in B is equal to

N

∫
B
ρN,v(λ)dλ.

For any t > 0 we denote by Rt : R → R the rescaling map R 3 x 7→ tx ∈ R. If µ is a Borel
measure on R we denote by (Rt)∗µ its pushforward via the rescaling map Rt.

The celebrated Wigner semicircle theorem, [3, 24], states that, as N → ∞, the rescaled
probability measures

(R 1√
N

)∗
(
ρN,v(λ)dλ

)
converge weakly to the semicircle measure given by the density

ρ∞,v(λ) :=
1

2πv
×

{√
4v − λ2, |λ| ≤

√
4v

0, |λ| >
√

4v.

We can now state the main results of this paper.

Theorem 1.4. For v > 0 and N ∈ Z>0 we set

θ±N,v(x) := ρN,v(x)e±
x2

4v .

(a) There exists a constant C = Cm(w) that depends only on the dimension m and the weight
w such that

N ε ∼ Cm(w)ε−m
(
1 +O(ε)

)
as ε→ 0. (1.13)

More precisely

Cm(w) = 2
m+4

2 r
1
2
m

(
hm

2πdm

)m
2

Γ

(
m+ 3

2

)∫
R

(γrm−1 ∗ θ+
m+1,rm

)(y)γ1(y)dy. (1.14)

(b) As ε↘ 0 the rescaled probability measures

1

N ε

(
R 1√

šmε−m

)
∗
σ̌ε

converge weakly to a probability measure σ̌m on R uniquely determined by the proportionalities

σ̌m ∝
(
γrm−1 ∗ θ+

m+1,rm
(y)
)
γ1(y)dy (1.15a)

∝ θ−
m+1, 1

rm

∗ γ rm−1
rm

(y)dy. (1.15b)

When rm = qm ≥ 1, we have (see (1.10)) ωm = 0 and σ̌ε = σε. In general, Theorem 1.4
implies the following universality result.

Corollary 1.5 (Universality). As ε→ 0, the rescaled probability measures

1

N ε

(
R 1√

šmε−m

)
∗
σε

converge weakly to a probability measure σm uniquely determined by the convolution equation

γωm
šm
∗ σm = σ̌m.
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Wigner’s semicircle theorem [3, Thm. 2.1.1] allows us extract a bit more about the measure
σm for m large, provided that the behavior of w at ∞ is not too chaotic.

Theorem 1.6 (Central limit theorem). Suppose that the weight w is regular, i.e., the
sequence rm defined in (1.7) has a limit r ∈ [1,∞] as m→∞. Then

lim
m→∞

σm = γ r+1
r
.

The above regularity assumption on w is a constraint on the behavior of its tail. In Section
3 we describe many classes of regular weights.

Corollary 1.7. As m→∞ we have

Cm(w) ∼ 8√
πm

Γ

(
m+ 3

2

)(
hm
πdm

)m
2

∼ 8√
πm

Γ

(
m+ 3

2

)(
2Im+3(w)

π(m+ 2)Im+1(w)

)m
2

.

(1.16)

Following [1, §12.2] we define the symmetric (0, 2)-tensor hε on M

hε(X,Y ) :=
εm+2

dm
E
(
Xuε(p), Y uε(p)

)
, ∀p ∈M, X, Y ∈ Vect(M), (1.17)

where Xu denotes the derivative of the smooth function u along the vector field X.

Theorem 1.8 (Probabilistic reconstruction of the geometry). (a) For ε > 0 suffi-
ciently small the tensor hε defines a Riemann metric on M .
(b) For any vector fields X,Y on M the function hε(X,Y ) converges uniformly to g(X,Y )
as ε↘ 0.
(c) The sectional curvatures of hε converge to the corresponding sectional curvatures of g as
ε↘ 0.

Remark 1.9. The C0-convergence of hε towards the original metric was observed earlier
by S. Zelditch [35]. The main novelty of the above theorem is part (c) which, as detailed
below, implies the C∞ convergence of hε to g. However, the qualitative jump from C0 to
C∞-converges requires considerable extra effort.

The construction of the metrics hε generalizes the construction in [6]. Note that for any
ε > 0 we have a smooth map Ξε : M → L2(M, g)

M 3 p 7→ Ξε(p) :=

(
εm+2

dm

) 1
2 ∑
k≥0

wε
(√

λk
) 1

2 Ψk(p)Ψk ∈ L2(M, g). (1.18)

For small ε > 0 this map is an immersion and hε is the pullback by Ξε of the Euclidean metric
on L2(M, g). Let us point out that [6, Thm.5] is a special case of Theorem 1.8 corresponding

to the weight w(t) = e−t
2
.

Theorem 1.8 coupled with the results in [32] imply that the metrics hε converge C1,α to g
as ε ↘ 0. The convergence of sectional curvatures coupled with the technique of harmonic
coordinates in [2, 32] can be used to bootstrap this convergence to a C∞ convergence.

Suppose that w has compact support, say suppw ⊂ [−1, 1] and w(0) 6= 0. In this case the
map Ξε is actually a map to the finite dimensional Euclidean space

U ε := span
{

Ψk; λk ≤ ε−2
}
⊂ L2(M, g).
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For small ε > 0 it is an embedding and Theorem 1.8 implies that for ε > 0 sufficiently
small the map Ξε is a near-isometric embedding of M in a finite dimensional space. It is
conceivable that this near-isometric embedding could be deformed to an actual isometry by
using the strategy of X. Wang and K. Zhu [34]. ut

Remark 1.10. (a) We want to say a few words about the analytic facts hiding behind
Theorem 1.8. Fix a point p ∈M and normal coordinates (xi) at p. The techniques pioneered
by L. Hörmander [20], [22, §17.4] (see Proposition 2.2) show that, as ε ↘ 0, we have the 1-
term asymptotic expansions

E
(
∂2
xixiu

ε(p) · ∂2
xjxju

ε(p)
)

= hmε
−(m+4)

(
1 +O(ε2)

)
, (1.19a)

E
(
∂2
xixju

ε(p) · ∂2
xixju

ε(p)
)

= hmε
−(m+4)

(
1 +O(ε2)

)
. (1.19b)

All these 1-term expansions are independent of the background metric g. Note that (1.19a)
and (1.19b) imply the estimate

E
(
∂2
xixiu

ε(p) · ∂2
xjxju

ε(p)
)
−E

(
∂2
xixju

ε(p) · ∂2
xixju

ε(p)
)

= O
(
ε−(m+2)

)
. (1.20)

Theorem 1.8 is equivalent with the following sharper estimate

E
(
∂2
xixiu

ε(p) · ∂2
xjxju

ε(p)
)
−E

(
∂2
xixju

ε(p) · ∂2
xixju

ε(p)
)
∼ dmKg

ij(p)ε−(m+2),

where Kg
ij(p) denotes the sectional curvature of g at p along the 2-plane spanned by ∂xi , ∂xj .

To prove Theorem 1.8 it would help if we could extend (1.19a) and (1.19b) to explicit, two-
term asymptotic expansions. Unfortunately, in general it is very hard, if not even impossible,
to produce explicit descriptions of the second order terms.

We can however extract enough partial information and, miraculously, the terms over
which we have no explicit control cancel each other out when considering the asymptotics
(1.20). To extract even this partial information we had to burrow deep into Hörmander’s
proof [22, §17.4] of the short times asymptotic expansion of the wave kernel.

(b) In [30] we described another approach to the probabilistic reconstruction of the geometry
of M using certain Gaussian ensembles of random 1-forms. They are defined as follows.

Consider the covariant Laplacian

∆T ∗M : (∇g)∗∇g : C∞(T ∗M)→ C∞(T ∗M),

with spectrum 0 ≤ µ0 ≤ µ1 ≤ · · · . Fixing an orthonormal eigenbasis (ηk)k≥0 of L2(T ∗M) we
define the family of random 1-forms

ηε =
∑
k≥0

Xk

√
wεk ηk, wεk = w

(
ε
√
µk
)
, ε > 0,

where (Xk)k≥0 are independent standard normal random variables.
The random 1-forms duε employed for geometric reconstruction in this paper are obviously

closed. If w(0) 6= 0, then, for small ε > 0, the probability that ηε is not closed is positive. (We
believe that this probability is 1.) This shows that the ensembles ηε and duε are qualitatively
very different. When w(0) 6= 0, the ensemble ηε samples the entire space C∞(T ∗M) as ε↘ 0,
whereas the ensemble duε samples a rather “thin” subspace, that consisting of exact 1-forms.

This suggests that the random forms duε contain a lot less information than the ensembles
ηε. It is thus natural to expect that it is harder to extract precise information from the “thin”
ensemble duε. This is what we have accomplished in Theorem 1.8.
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(c) When w = I [−1,1], the second order expansions of the Schwartz kernel of w(ε
√

∆) are very
difficult to obtain for an arbitrary metric g since they tend to depend on global properties of
the metric. ut

The convergence of the metrics hε leads to a cute probabilistic proof of the Gauss-Bonnet
theorem for the original metric g (and thus for any metric on M). Here is the simple principle
behind this proof.

Assume for simplicity that M is oriented and m = dimM is even. To a Morse function f
we associate the signed measure

νf =
∑

df(p)=0

(−1)ind(f,p)δp,

where ind(f,p) denotes the Morse index of the critical point of the Morse function f . The
Poincaré-Hopf theorem implies that ∫

M
νf = χ(M). (1.21)

We can also think of νf as a degree 0-current. Thus, the random function uε determines a
random 0-current νuε . It turns out (see Section 4) that the expectation of this current is a
current represented by a rather canonical top degree form. More precisely, we prove that,

E
(
νuε

)
= ehε(M), (1.22)

where ehε(M) is the Euler form defined by the metric hε which appears in the Gauss-Bonnet
theorem. Using (1.21) we conclude that∫

M
ehε(M) =

∫
M
E
(
νuε

)
= E

(∫
M
νuε

)
= χ(M),

and as a bonus we obtain the Gauss-Bonnet theorem for the metric hε. Letting ε → 0 we
obtain the Gauss-Bonnet theorem for g since hε → g and ehε(M)→ eg(M). In particular, this
shows that E( νuε ) converges in the sense of currents to eg(M), the Euler form determined
by the metric g.

Remark 1.11. In [29] we have extended these ideas to arbitrary Gaussian ensembles of
random sections of arbitrary real oriented vector bundles and we have given a geometric
description of the expectation of the random zero-locus current determined by such a random
section. ut

1.3. A bit of perspective. In [26] we proved the counterparts of Theorem 1.4, Corollary
1.5 and Theorem 1.6 in the case of the singular weight w = I [−1,1]. In this case the random
function uε could be loosely interpreted as a random polynomial of large degree because since
this is the case when (M, g) is the round sphere.

The fact that the results in the singular case w = I [−1,1] are very similar to the results in the
smooth case when w is Schwartz function could be erroneously interpreted as an indication
that there are no qualitative differences between these two situations. This is not the case.

There is one subtle and meaningful qualitative difference buried in the proofs of Theorem
1.4 and Theorem 1.6. It has to do with the size of the tail of w as encoded by the quantity
qm = qm(w) defined in (1.5). Loosely speaking, a large qm is an indication of a heavy tail.

The proof of Theorem 1.4 requires different arguments depending on whether qm ≥ 1 or
qm < 1; see Case 1 and Case 2 in the proof of Theorem 1.4. Since qm(w) ≥ m

m+2 for any w,
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we see that, for m large, the situation qm < 1 is rather atypical. The case of the singular
weight w = I [0,1] is atypical because in this case qm(w) = m+2

m+4 < 1.
The size of the tail plays an even more fundamental role in the proof of the the Central

Limit Theorem 1.6. The large m-limit of σm exists because of two facts: Wigner’s semicircle
theorem and the fact limit limm qm = r = r(w) exists. However, the proof depends heavily
on the size of the tail and there are two dramatically different cases, r <∞ and r =∞. The
fact that the central limit theorem has a similar statement in both cases is a bit miraculous
because different forces are at play in these two cases.

In Section 3 we show that the two behaviors, r <∞ and r =∞ are not just theoretically
possible, they can actually happen for various choices of w. The quantity r(w) also affects
the size of the constant Cm(w) in (1.13) which states that the expected number of critical
points of uε is asymptotic to Cm(w)ε−m as ε→ 0.

For example, if w(t) ∼ t− log log(t) as t→∞ (w has a very heavy tail), then

r(w) =∞, logCm(w)
(3.3)∼ m

2
em+2(e2 − 1) as m→∞.

If w(t) ∼ e−c(log t)2
as t→∞, then

r(w) = e8/c, logCm(w)
(3.5)∼ 1

2c
m2 as m→∞.

If w(t) ∼ e−t2 as t→∞ (w has a very light tail), then

r(w) = 1, logCm(w)
(3.1)∼ 1

2
m logm as m→∞.

These examples indicate the existence of three phases r = 1, 1 < r <∞, r =∞. The transi-
tion from one phase to another manifests itself as a dramatic increase in the expected number
of critical points. A similar phase transition phenomenon was observed by Y. Fyodorov [14]
in a different context.

It is well known that if w is a Schwartz function, then the Schwartz kernel of wε(
√

∆) has
a complete asymptotic expansion as ε↘ 0; see e.g. [33, Chap. XII]. While the leading term
of this expansion is well understood, the higher order terms are more nebulous. In Theorem
B.5 we describe an explicit relationship between the second order term of this expansion and
geometric invariants of the Riemann manifold (M, g).

Theorem B.5 is a new result and we have delegated it to an appendix, not to diminish its
importance, but to help the reader separate the two conceptually different facts responsible
for Theorem 1.8.

1.4. The organization of the paper. The remainder of the paper is organized as follows.
Section 2 contains the proofs of the main results. In Section 3 we describe many classes of
regular weights w. In particular, these examples show that the limit r = limm→∞ rm that
appears in the statement of Theorem 1.6 can have any value in [1,∞]. Section 4 contains the
details of the probabilistic proof of the Gauss-Bonnet theorem outlined above.

To smooth the flow of the presentation we gathered in Appendices various technical results
used in the proofs of the mains results. In Appendix A we describe the jets of order ≤ 4 along
the diagonal of the square of the distance function distg : M×M → R which are needed in the
two-step asymptotics of the correlation kernel. This feels like a classical problem, but since
precise references are hard to find we decided to include a complete proof. Our approach,
based on the Hamilton-Jacobi equation satisfied by the distance function, is similar to the
one sketched in [12, p.281-282].
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In Appendix B we describe the small ε asymptotics of the Schwartz kernel of w(ε
√

∆) by
relating them to the short time asymptotics for the wave kernel described in L. Hörmander
[22, §17.4]. The central result in this appendix is Theorem B.5. It essentially states that
the Riemann curvature tensor can be recovered from the second order terms of the ε → 0
asymptotics of the fourth order jets along the diagonal of the Schwartz kernel of w(ε

√
∆).

In Appendix C we describe a few facts about Gaussian measures in a coordinate free form
suitable for our geometric purposes. Finally, in Appendix D we have collected some facts
about a family of Gaussian random symmetric matrices that appear in our investigation.

1.5. Notations.

(i) For any set S we denote by |S| ∈ Z≥0 ∪ {∞} its cardinality. For any subset A of a
set S we denote by IA its characteristic function

IA : S → {0, 1}, IA(s) =

{
1, s ∈ A
0, s ∈ S \A.

.

(ii) For any point x in a smooth manifold X we denote by δx the Dirac measure on X
concentrated at x.

(iii) For any smooth manifold M we denote by Vect(M) the vector space of smooth vector
fields on M .

(iv) For any random variable ξ we denote by E(ξ) and respectively var(ξ) its expectation
and respectively its variance.

(v) For any finite dimensional real vector space V we denote by V ∨ its dual, V ∨ :=
Hom(V ,R).

(vi) For any Euclidean space V we denote by Sym(V ) the space of symmetric linear
operators V → V . When V is the Euclidean space Rm we set Symm := Sym(Rm).
We denote by 1m the identity map Rm → Rm.

(vii) We denote by S(Rm) the space of Schwartz functions on Rm.
(viii) For v > 0 we denote by γv the centered Gaussian measure on R with variance v,

γv(x)dx =
1√
2πv

e−
x2

2v |dx|.

Since limv↘0 γv = δ0, we set γ0 := δ0. For a real valued random variable X we write
X ∈N(0, v) if the probability distribution of X is γv.

(ix) If µ and ν are two finite measures on a common space X, then the notation µ ∝ ν
means that

1

µ(X)
µ =

1

ν(X)
ν.

2. Proofs

2.1. A Kac-Rice type formula. The key result behind Theorem 1.4 is a Kac-Rice type
result which we intend to discuss in some detail in this section. This result gives an explicit,
yet quite complicated description of the measure σ̌ε. More precisely, for any Borel subset
B ⊂ R, the Kac-Rice formula provides an integral representation of σ̌ε(B) of the form

σ̌ε(B) =

∫
M
fε,B(p) |dVg(p)|,

for some integrable function fε,B : M → R. The core of the Kac-Rice formula is an explicit
probabilistic description of the density fε,B.
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Fix a point p ∈M . This determines three Gaussian random variables

ǔε(p) ∈ R, dǔε(p) ∈ T ∗pM, Hessp(ǔε) ∈ Sym(TpM), (RV )

where Hessp(ǔε) : TpM × TpM → R is the Hessian of uω at p defined in terms of the Levi-
Civita connection of g and then identified with a symmetric endomorphism of TpM using
again the metric g. More concretely, if (xi)1≤i≤m are g-normal coordinates at p, then

Hessp(ǔε)∂xj =
m∑
i=1

∂2
xixj ǔε(p)∂xi .

For ε > 0 sufficiently small the covariance form of the Gaussian random vector dǔε(p) is
positive definite; see (2.3). We can identify it with a symmetric, positive definite linear
operator

S
(
dǔε(p)

)
: TpM → TpM.

More concretely, if (xi)1≤i≤m are g-normal coordinates at p, then we identify S
(
dǔε(p)

)
with a m×m real symmetric matrix whose (i, j)-entry is given by

Sij
(
dǔε(p)

)
= E

(
∂xiǔε(p) · ∂xj ǔε(p)

)
.

Theorem 2.1. Fix a Borel subset B ⊂ R. For any p ∈M define

fε,B(p) :=
(

det
(

2πS( ǔε(p)
) )− 1

2 E
(
|det Hessp(ǔε)| · IB( ǔε(p) )

∣∣ dǔε(p) = 0
)
,

where E
(

var | cons
)

stands for the conditional expectation of the variable var given the
constraint cons. Then

σ̌ε(B) =

∫
M
fε,B(p) |dVg(p)|. (2.1)

ut

This theorem is a special case of a general result of Adler-Taylor, [1, Cor. 11.2.2]. Propo-
sition 2.2 below shows that the technical assumptions in [1, Cor. 11.2.2] are satisfied if
ε� 1.

For the above theorem to be of any use we need to have some concrete information about
the Gaussian random variables (RV ). All the relevant statistical invariants of these variables
can be extracted from the covariance kernel of the random function ǔε.

2.2. Proof of Theorem 1.4. Fix ε > 0. For any p ∈ M , we have the centered Gaussian
random vector (

ǔε(p), dǔε(p),Hessp(ǔε)
)
∈ R⊕ T ∗pM ⊕ Sym(TpM).

We fix normal coordinates (xi)1≤i≤m at p and we can identify the above Gaussian vector
with the centered Gaussian vector(

ǔε(p), (∂xiǔε(p) )1≤i≤m, ∂
2
xixj (ǔε(p) )1≤i,j≤m

)
∈ R⊕ Rm ⊕ Symm .

The next result is the key reason the Kac-Rice formula can be applied successfully to the
problem at hand.

Proposition 2.2. For any 1 ≤ i, j, k, ` ≤ m we have the uniform in p asymptotic estimates
as ε↘ 0

E( ǔε(p)
2
)

= šmε
−m(1 +O(ε2)

)
, (2.2a)

E
(
∂xiǔε(p)∂xj ǔε(p)

)
= dmε

−(m+2)δij
(

1 +O(ε2)
)
, (2.2b)
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E
(
∂2
xixj ǔε(p)∂2

xkx`ǔε(p)
)

= hmε
−(m+4)(δijδk` + δikδj` + δi`δjk)

(
1 +O(ε2)

)
, (2.2c)

E
(
ǔε(p)∂2

xixj ǔε(p)
)

= −dmε−(m+2)δij
(

1 +O(ε2)
)
, (2.2d)

E
(
ǔε(p)∂xiǔε(p)

)
= O(ε−m), E

(
∂xiǔε(p)∂2

xjxj ǔε(p)
)

= O(ε−(m+2)), (2.2e)

where šm = sm + ωm and the constants sm, dm, hm are defined by (1.3). ut

Proof. Denote by Ě ε the covariance kernel of the random function ǔε = Xω(ε) + uε. Note
that

Ě ε(p, q) = ω(ε) + E ε(p, q) = ωmε
−m + E ε(p, q).

Fix a point p0 ∈ M and normal coordinates at p0 defined in an open neighborhood O0 of
p0. The restriction of E ε to O0×O0 can be viewed as a function E ε(x, y) defined in an open
neighborhood of (0, 0) in Rm × Rm. For any α, β ∈ (Z≥0)|m we have

E
(
∂αx ǔε(p0)∂βx (ǔε)

)
= ∂αx ∂

β
y Ě ε(x, y)x=y=0.

Proposition 2.2 is now a consequence of the spectral estimates (B.1) in Appendix B. ut

From the estimate (2.2b) we deduce that

S( dǔε(p) ) = dmε
−(m+2)

(
1m +O(ε2)

)
, (2.3)

so that √
| detS(ǔε(p))| = (dm)

m
2 ε−

m(m+2)
2

(
1 +O(ε2)

)
as ε→ 0. (2.4)

Consider the rescaled random vector

(šε, vε, Hε) =:=
(
ε
m
2 ǔε(p), ε

m+2
2 dǔε(p), ε

m+4
2 ∇2ǔε(p)

)
.

From Proposition 2.2 we deduce the following (uniform in p) estimates as ε↘ 0.

E( (šε)2
)

= šm
(
1 +O(ε2)

)
, (2.5a)

E
(
vεi v

ε
j

)
= dmδij

(
1 +O(ε2)

)
, (2.5b)

E
(
Hε
ijH

ε
kl

)
= hm(δijδk` + δikδj` + δi`δjk)

(
1 +O(ε2)

)
, (2.5c)

E
(
šεHε

ij

)
= −dmδij

(
1 +O(ε2)

)
, (2.5d)

E
(
šεvεi

)
= O(ε), E

(
vεiH

ε
jk

)
= O(ε). (2.5e)

The probability distribution of the variable sε is

dγšm(ε)(x) =
1√

2πšm(ε)
e
− x2

2šm(ε) |dx|,

where šm(ε) = šm +O(ε). Fix a Borel set B ⊂ R. We have

E
(
|det∇2ǔε(p)|IB

(
ǔε(p)

) ∣∣ dǔε(p) = 0
)

= ε−
m(m+4)

2 E
(
|detHε|I

ε
m
2 B

(šε)
∣∣ vε = 0

)
= ε−

m(m+4)
2

∫
ε
m
2 B
E
(
| detHε|

∣∣ šε = x, vε = 0
) e

− x2

2šm(ε)√
2πšm(ε)

|dx|︸ ︷︷ ︸
=:qε,p(ε

m
2 B)

.

(2.6)

Using (2.4) and (2.6) we deduce from Theorem 2.1 that

σ̌ε(B) = ε−m
(

1

2πdm

)m
2
∫
M
qε,p(ε

m
2 B)ρL(p)|dVg(p)|,
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where ρε : M → R is a function that satisfies the uniform in p estimate

ρε(p) = 1 +O(ε) as ε→ 0. (2.7)

Hence

εm
(
R
ε
m
2

)
∗
σ̌ε(B) =

(
1

2πdm

)m
2
∫
M
qε,p(B)ρε(p)|dVg(p)|. (2.8)

To continue the computation we need to investigate the behavior of qε,p(B) as ε. More
concretely, we need to elucidate the nature of the Gaussian vector(

Hε
∣∣ šε = x, vε = 0

)
.

We will achieve this via the regression formula (C.3). For simplicity we set

Y ε := (šε, vε) ∈ R⊕ Rm.

The components of Y ε are

Y ε
0 = šε, Y ε

i = vεi , 1 ≤ i ≤ m.

Using (2.5a), (2.5b) and (2.5e) we deduce that for any 1 ≤ i, j ≤ m we have

E(Y ε
0 Y

ε
i ) = šmδ0i +O(ε), E(Y ε

i Y
ε
j ) = dmδij +O(ε2).

If S(Y ε) denotes the covariance operator of Y , then we deduce that

S(Y ε)−1
0,i =

1

šm
δ0i +O(ε), S(Y ε)−1

ij =
1

dm
δij +O(ε). (2.9)

We now need to compute the covariance operator Cov(Hε, Y ε). To do so, we equip Symm

with the inner product

(A,B) = tr(AB), A,B ∈ Symm

The space Symm has a canonical orthonormal basis

Êij , 1 ≤ i ≤ j ≤ m,

where

Êij =

{
Eij , i = j,

1√
2
Eij , i < j,

and Eij denotes the symmetric matrix nonzero entries only at locations (i, j) and (j, i) and
these entries are equal to 1. Thus a matrix A ∈ Symm can be written as

A =
∑
i≤j

aijEij =
∑
i≤j

âijÊij ,

where

âij =

{
aij , i = j,√

2aij , i < j.

The covariance operator Cov(Hε, Y ε) is the linear map Cov(Hε, Y ε) : R ⊕ Rm → Symm

given by

Cov(Hε, Y ε)

(
m∑
α=0

yαeα

)
=
∑
i<j,α

E(Ĥε
ijY

ε
α )yαÊij =

∑
i<j,α

E(Hε
ijY

ε
α )yαEij ,
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where e0, e1, . . . , em denotes the canonical orthonormal basis in R ⊕ Rm. Using (2.5d) and
(2.5e) we deduce that

Cov(Hε, Y ε)

(
m∑
α=0

yαeα

)
= −y0dm1m +O(ε). (2.10)

We deduce that the transpose Cov(Hε, Y ε)∨ satisfies

Cov(Hε, Y ε)∨

∑
i≤j

âijÊij

 = −dm tr(A)e0 +O(ε). (2.11)

Set

Zε := (Hε|šε = x, vε = 0)−E(Hε|šε = x, vε = 0).

Above, Zε is a centered Gaussian random matrix with covariance operator

S(Zε) = S(Hε)−Cov(Hε, Y ε)S(Y ε)−1Cov(Hε, Y ε)∨.

This means that

E
(
ẑεij ẑ

ε
k`

)
= (Êij ,S(Zε)Êk`).

Using (2.9), (2.10) and (2.11) we deduce that

Cov(Hε, Y ε)S(Y ε)−1Cov(Hε, Y ε)∨

∑
i≤j

âijÊij

 =
d2
m

šm
tr(A)1m +O(ε)

E
(

(zεij)
2
)

= hm +O(ε), E(zεiiz
ε
jj) = hm −

d2
m

šm
+O(ε), ∀i < j,

E
(

(zεii)
2
)

= 3hm −
d2
m

šm
+O(ε), ∀i,

and

E(zεijz
ε
k`) = O(ε), ∀i < j, k ≤ `, (i, j) 6= (k, `).

We can rewrite these equalities in the compact form

E(zεijz
ε
k`) =

(
hm −

d2
m

sm

)
δijδk` + hm(δikδj` + δi`δjk) +O(ε).

Note that

hm −
d2
m

šm

(1.9)
=

rm − 1

rm
hm.

We set

κm :=
(rm − 1)

2rm
,

so that

E(zεijz
ε
k`) = 2κmhmδijδk` + hm(δikδj` + δi`δjk) +O(ε).

Using (C.4) we deduce that

E(Hε|šε = x, vε = 0) = Cov(Hε, Y ε)S(Y ε)−1(xe0) = −xdm
šm

1m +O(ε). (2.12)
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We deduce that the Gaussian random matrix (Hε|šε = x, vε = 0) converges uniformly in p
as ε→ 0 to the random matrix A− x

rm(m+4)1m, where A belongs to the Gaussian ensemble

Sym2κmhm,hm
m described in Appendix D. Thus

lim
ε→0

qε,p(B) = q∞(B) :=

∫
B
E

Sym2κmhm,hm
m

( ∣∣det
(
A− xdm

šm
1m

) ∣∣∣ ) e− x2

2šm

√
2πšm

dx

= (hm)
m
2

∫
B
E

Sym2κm,1
m

( ∣∣ det
(
A− xdm

šm
√
hm

1m

) ∣∣ ) e− x2

2šm

√
2πšm

dx

= (hm)
m
2

∫
(šm)−

1
2B
E

Sym2κm,1
m

( ∣∣ det
(
A− αmy1m

) ∣∣ )e− y2

2

√
2π
dx,

where

αm =
dm√
šmhm

(1.9)
=

1
√
rm
.

This proves that

lim
ε↘0

R
(šm)−

1
2
qε,p(B) = (hm)

m
2

∫
B
E

S
2κm,1
m

( ∣∣∣det
(
A− y

√
rm

1m

) ∣∣∣ )e− y2

2

√
2π
dy︸ ︷︷ ︸

=:µm(B)

.

Using the last equality, the normalization assumption (∗) and the estimate (2.7) in (2.8) we
conclude(

R
(šmε−m)−

1
2

)
∗σ̌

ε(B) = ε−m

((
hm

2πdm

)m
2

µm(B) +O(ε)

)
as ε→ 0. (2.13)

In particular

N ε = ε−m

((
hm

2πdm

)m
2

µm(R) +O(ε)

)
as ε→ 0. (2.14)

Observe that the density of µm is

dµm
dy

= E
Sym2κm,1

m

( ∣∣∣det
(
A− y

√
rm

1m

) ∣∣∣ )e− y2

2

√
2π

(2.15)

(Ã =
√
rmA)

= r
−m

2
m E

Sym2κmrm,rm
m

( ∣∣∣ det
(
Ã− y1m

) ∣∣∣ )e− y2

2

√
2π

(2kmrm = rm − 1)

(D.7b)
= r

−m
2

m 2
3
2 (2rm)

m+1
2 Γ

(
m+ 3

2

)
(γrm−1 ∗ θ+

m+1,rm
)(y)γ1(y).

= 2
m+4

2 r
1
2
mΓ

(
m+ 3

2

)
(γrm−1 ∗ θ+

m+1,rm
)(y)γ1(y).

This proves part (a) and (1.15a) in Theorem 1.4. To prove (1.15b) we distinguish two cases.
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Case 1. rm > 1. From Lemma D.2 we deduce that

E
Sym2κm,1

m

( ∣∣∣ det
(
A− y

√
rm

1m

) ∣∣∣ )
= 2

m+3
2 Γ

(
m+ 3

2

)
1√

2πκm

∫
R
ρm+1,1(λ)e

− 1

4τ2
m

(λ− y(τ2
m+1)√
rm

)2+
(τ2
m+1)y2

4rm dλ,

(2.16)

where

τ2
m :=

κm
κm − 1

=
rm − 1

rm + 1
.

Thus

dµm
dy

= 2
m+3

2 Γ

(
m+ 3

2

)
1√

2πκm
e

(τ2
m+1−2rm)y2

4rm

∫
R
ρm+1,1(λ)e

− 1

4τ2
m

(λ− y(τ2
m+1)√
rm

)2

dλ

= 2
m+3

2 Γ

(
m+ 3

2

)
1√

2πκm

∫
R
ρm+1,1(λ)e

− 1

4τ2
m

(λ− y(τ2
m+1)√
rm

)2− rmy
2

2(rm+1)dλ.

An elementary computation yields

− 1

4τ2
m

(
λ− (τ2

m + 1)
y
√
rm

)2

− rmy
2

2(rm + 1)
= −1

4
λ2 −

(√
1

2(rm − 1)
λ− y

√
rm

2(rm − 1)

)2

.

Now set

βm :=
1

(rm − 1)
.

We deduce

dµm
dy

= 2
m+3

2 Γ

(
m+ 3

2

)
1

2π
√
κm

∫
R
ρm+1,1(λ)e−

1
4
λ2
e−

βm
2

(λ−√rmy)2
dλ.

(λ :=
√
rλ)

= 2
m+3

2 Γ

(
m+ 3

2

)
1√

2πκm

∫
R

√
rmρm+1,1(

√
rmλ)e−

rm
4
λ2
e−

rmβm
2

(λ−y)2
dλ

(D.6)
= 2

m+3
2 Γ

(
m+ 3

2

)
1√

κmrmβm

∫
R
ρm+1,1/rm(λ)e−

rm
4
λ2
dγ 1

βmrm

(y − λ)dλ.

(κmrmβm = 1
2)

= 2
m+4

2 Γ

(
m+ 3

2

)∫
R
ρm+1,1/rm(λ)e−

rm
4
λ2
dγ 1

βmrm

(y − λ)dλ

= 2
m+4

2 Γ

(
m+ 3

2

)∫
R
ρm+1,1/rm(λ)e−

rm
4
λ2
dγ rm−1

rm

(y − λ)dλ

Using the last equality in (2.13) we obtain the case rm > 1 (1.15b) of Theorem 1.4.

Case 2. rm = 1. The proof of Theorem 1.4 in this case follows a similar pattern. Note
first that in this case κm = 0 so invoking Lemma D.1 we obtain the following counterpart of
(2.16)

EGOE1
m

( ∣∣∣ det
(
A− y1m

) ∣∣∣ ) = 2
m+4

2 Γ

(
m+ 3

2

)
e
y2

4 ρm+1,1(y).

Using this in (2.15) we deduce

dµm
dy

= 2
m+4

2 Γ

(
m+ 3

2

)
e
−y2

4 ρm+1,1(y),
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which is (1.15b) in the case rm = 1. This completes the proof of Theorem 1.4. ut

2.3. Proof of Corollary 1.5. According to (1.12) we have γωmε−m ∗ σε = σ̌ε. Thus

γωm
šm
∗
(
R 1√

šmε−m

)
∗
σε =

(
R 1√

šmε−m

)
∗
σ̌ε.

Hence

lim
ε→0

1

N εγωm
šm
∗
(
R 1√

šmε−m

)
∗
σε = σ̌m.

We can now conclude by invoking Lévy’s continuity theorem [23, Thm.15.23(ii)]. ut

2.4. Proof of Theorem 1.6. We have

σ̌m =
1

Km
θ−
m+1, 1

rm

∗ γ rm−1
rm

dy, (2.17)

where

θ−
m+1, 1

rm

(λ) = ρm+1, 1
rm

(λ)e−
rmλ

2

4 ,

and

Km =

∫
R
θ−
m+1, 1

rm

∗ γ rm−1
rm

(y)dy =

∫
R
θ−
m+1, 1

rm

(λ)dλ =

∫
R
ρm+1, 1

rm

(λ)e−
rmλ

2

4 dλ.

We set

Rm(λ) := ρm+1, 1
m

(λ), R∞(x) :=
1

2π
I{|x|≤2}

√
4− x2.

Fix c ∈ (0, 2). In [27, §4.2] we proved that

lim
m→∞

sup
|x|≤c
|R̄m(x)−R∞(x)| = 0, (2.18a)

and
sup
|x|≥c
|R̄m(x)−R∞(x)| = O(1) as m→∞. (2.18b)

Then

ρm+1, 1
rm

(λ) =

√
rm
m
Rm

(√
rm
m
λ

)
, θ−

m+1, 1
rm

(λ) =

√
rm
m
Rm

(√
rm
m
λ

)
e−

rmλ
2

4 .

We now distinguish two cases.

Case 1. r = limm→∞ rm <∞. In particular, r ∈ [1,∞). In this case we have

Km =

√
rm
m

∫
R
Rm

(√
rm
m
λ

)
e−

rmλ
2

4 dλ,

and using (2.18a)-(2.18b) we deduce

lim
m→∞

∫
R
Rm

(√
rm
m
λ

)
e−

rmλ
2

4 dλ = R∞(0)

∫
R
e−

rλ2

4 dr = R∞(0)

√
4π

r
.

Hence

Km ∼ K ′m = R∞(0)

√
4π

m
as m→∞. (2.19)

Now observe that

1

K ′m
θ−
m+1, 1

rm

(λ)dλ =
1

R∞(0)
Rm

(√
rm
m
λ

)
rm√
4π
e−

rmλ
2

4 dλ
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=
1

R∞(0)
Rm

(√
rm
m
λ

)
γ 2
rm

(dλ)

Using (2.18a) and (2.18b) we conclude that the sequence of measures

1

K ′m
θ−
m+1, 1

rm

(λ)dλ

converges weakly to the Gaussian measure γ 2
r
. Using this and the asymptotic equality (2.19)

in (2.17) we deduce

lim
m→∞

σ̌m = γ 2
r
∗ γ r−1

r
= γ r+1

r
.

This proves Theorem 1.6 in the case r <∞ since

γ ω
šm
∗ σm = σ̌m and lim

m→∞

ωm
šm

(1.11)
= 0.

Case 2. limm→∞ rm =∞. In this case we have

θ−
m+1, 1

rm

(λ)dλ =

√
4π

m
Rm

(√
rm
m
λ

)
γ 2
rm

(λ)dλ.

Lemma 2.3. The sequence of measures

Rm

(√
rm
m
λ

)
γ 2
rm

(λ)dλ

converges weakly to the measure R∞(0)δ0.

Proof. Fix a bounded continuous function f : R→ R. Observe first that

lim
m→∞

∫
R

(
Rm

(√
rm
m
λ

)
−R∞

(√
rm
m
λ

))
f(λ)γ 2

rm

(λ)dλ︸ ︷︷ ︸
=Dm

= 0. (2.20)

Indeed, we have

Dm =

∫
|λ|<c

√
m√
rm

(
Rm

(√
rm
m
λ

)
−R∞

(√
rm
m
λ

))
f(λ)γ 2

rm

(λ)dλ︸ ︷︷ ︸
=:D′m

+

∫
|λ|>c

√
m√
rm

(
Rm

(√
rm
m
λ

)
−R∞

(√
rm
m
λ

))
f(λ)γ 2

rm

(λ)dλ︸ ︷︷ ︸
=:D′′m

.

Observe that

D′m ≤ sup
|x|≤c
|Rm(x)−R∞(x)|

∫
|λ|<c

√
m√
rm

f(λ)γ 2
rm

(λ)dλ

and invoking (2.18a) we deduce

lim
m→∞

D′m = 0.

Using (2.18b) we deduce that there exists a constant S > 0 such that

D′m ≤ S
∫
|λ|>c

√
m√
rm

γ 2
rm

(λ)dλ.
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On the other hand, Chebyshev’s inequality shows that∫
|λ|>c

√
m√
rm

γ 2
rm

(λ)dλ ≤ 2

c2m
.

Hence

lim
m→∞

D′′m = 0.

This proves (2.20).
The sequence of measures γ 2

rm

(λ)dλ converges to δ0 so that

R∞(0)f(0) = lim
m→∞

∫
R
R∞(0)f(λ)γ 2

rm

(λ)dλ.

Using (2.20) and the above equality we deduce that the conclusion of the lemma is equivalent
to

lim
m→∞

∫
R

(
R∞(0)−R∞

(√
rm
m
λ

))
f(λ)γ 2

rm

(λ)dλ︸ ︷︷ ︸
=Fm

= 0. (2.21)

To prove this we decompose Fm as follows.

Fm =

∫
|λ|<m−

1
4
√
m√
rm

(
R∞(0)−R∞

(√
rm
m
λ

))
f(λ)γ 2

rm

(λ)dλ︸ ︷︷ ︸
=:F ′m

+

∫
|λ|>m−

1
4
√
m√
rm

(
R∞(0)−R∞

(√
rm
m
λ

))
f(λ)γ 2

rm

(λ)dλ︸ ︷︷ ︸
=:F ′′m

.

Observe that

F ′m ≤ sup

|x|≤m−
1
4

|R∞(0)−R∞(x)|
∫
|λ|<m−

1
4
√
m√
rm

f(λ)γ 2
rm

(λ)dλ

and since R∞ is continuous at 0 we deduce

lim
m→∞

F ′m = 0.

Since R∞ and f are bounded we deduce that there exists a constant S > 0 such that

F ′′m ≤ S
∫
|λ|>m−

1
4
√
m√
rm

γ 2
rm

(λ)dλ.

On the other hand, Chebyshev’s inequality shows that∫
|λ|>m−

1
4
√
m√
rm

γ 2
rm

(λ)dλ ≤ 2√
m
.

Hence

lim
m→∞

F ′′m = 0.

This proves (2.21) and the lemma. ut
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Lemma 2.3 shows that

Km ∼ K ′m =

√
4π

m
R∞(0),

and

lim
m→∞

1

Km
θ−
m+1, 1

rm

(λ)dλ = δ0.

On the other hand
lim
m→∞

γ rm−1
rm

(λ)dλ = γ1(λ)dλ,

so that
lim
m→∞

σ̌m = δ0 ∗ γ1 = γ1.

This completes the proof of Theorem 1.6. ut

2.5. Proof of Corollary 1.7. Using (2.14) we deduce

εmN ε =

(
hm

2πdm

)m
2

µm(R) +O(ε)

= 2
m+4

2 Γ

(
m+ 3

2

)(
hm

2πdm

)m
2
∫
R
θ−
m+1, 1

rm

∗ γ rm−1
rm

(y)dy +O(ε)

= 2
m+4

2 Γ

(
m+ 3

2

)(
hm

2πdm

)m
2
∫
R
θ−
m+1, 1

rm

(λ)dλ+O(ε)

= 2
m+4

2 Γ

(
m+ 3

2

)(
hm

2πdm

)m
2

Km︸ ︷︷ ︸
=Cm(w)

+O(ε).

Lemma 2.3 implies that, as m→∞, we have

Km ∼
√

4π

m
R∞(0) =

2√
πm

.

We deduce that

Cm(w) ∼ 2
m+6

2

√
πm

Γ

(
m+ 3

2

)(
hm

2πdm

)m
2

as m→∞.

ut

2.6. Proof of Theorem 1.8. Fix a point p ∈ M and normal coordinates (xi) near p. The
equality (2.2b) shows that as ε→ 0 we have the following estimate, uniform in p.

E
(
∂xiǔε(p)∂xj ǔε(p)

)
= dmε

−(m+2)
(
δij +O(ε)2)

)
.

Hence
hε(∂xi , ∂xj ) = δij +O(ε2) = gp(∂xi , ∂xj ) +O(ε2). (2.22)

This proves (a) and (b) of Theorem 1.4.
With p and (xi) as above we set

E ε
i1,...,ia;j1,...,jb

:=
∂a+bE ε(x, y)

∂xi1 · · · ∂xia∂yj1 · · · ∂yjb
|x=y=0,

hεij := hεp(∂xi , ∂xj ), 1 ≤ i, j ≤ m.
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We denote by Kε
ij the sectional curvature of hε along the plane spanned by ∂xi , ∂xj . Using

[1, Lemma 12.2.1] and that the sectional curvatures of a metric are inverse proportional to
the metric we deduce as in [27, §3.3] that

Kε
ij =

dm
εm+2

×
E ε
ii;jj − E ε

ij;ij

E ε
i;iE

ε
j,j − (E ε

i;j)
2
.

Using Theorem B.5 we deduce that there exists a universal constant Zm that depends only
on m and w such that

E ε
ii;jj − E ε

ij;ij = ε−(m+2)ZmKij(p)
(

1 +O(ε2)
)
, (2.23)

where Kij(p) denotes the sectional curvature of g at p. The estimate (2.2b) implies that

E ε
i;iE

ε
j,j − (E ε

i;j)
2 = d2

mε
−2(m+2)

(
1 +O(ε2)

)
.

Thus

Kε
ij =

Zm

dm
Kij(p)

(
1 +O(ε2)

)
.

To determine the constant Zm
dm

it suffices to compute it on a special manifold. Assume that
M is the unit sphere Sm equipped with the round metric. This is is a homogeneous space
equipped with an invariant metric g with positive sectional curvatures. The metrics hε are
also invariant so there exists a constant Cε > 0 such that hε = Cεg. The estimate (2.22)

implies that Cε = 1 and thus Kε
ij = Kij(p) so that Zm

dm
= 1. ut

3. Some examples

We want to discuss several examples of weights w satisfying the assumptions of the central
limit theorem, Theorem 1.6. Observe first that

rn(w) ∼ Rm(w) =
Im−1(w)Im+3(w)

Im+1(w)
as m→∞.

Moreover
Rn(wε) = Rn(w).

Example 3.1. Suppose that w(t) = e−t
2
. In this case E ε is the Schwartz kernel of the heat

operator e−ε∆ whose asymptotics as ε→ 0 have been thoroughly investigated. The momenta
(1.4) are

Ik(w) =

∫ ∞
0

tke−t
2
dt =

1

2

∫ ∞
0

s
k−1

2 e−sds =
1

2
Γ

(
k + 1

2

)
.

Hence

Rm(w) =
Γ(m2 )Γ(m2 + 2)

Γ(m2 + 1)2
=
m+ 4

m+ 2
≥ 1, qm =

m(m+ 4)

(m+ 2)2
< 1, ∀m

so that rm = 1 for all m. Moreover, in this case we have

Im+3(w)

Im+1(w)
= m+ 2,

so that

Cm(w) ∼ 2
m+6

2

√
mπ

m+1
2

Γ

(
m+ 3

2

)
as m→∞,

and Stirling’s formula implies

logCm(w) ∼ m

2
logm as m→∞. (3.1)
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ut

Example 3.2. Suppose that

w(t) = exp
(
−(log t) log(log t)

)
, ∀t ≥ 1.

Observe that

Ik(w) =

∫ 1

0
rkw(r)dr +

∫ ∞
1

rk exp
(
−(log r) log(log r)

)
dr.

This proves that

Ik(w) ∼ Jk :=

∫ ∞
1

rk exp
(
−(log r) log(log r)

)
dr as k →∞.

Using the substitution r = et we deduce

Jk =

∫ ∞
0

e(k+1)t−t log tdt.

We want to investigate the large λ asymptotics of the integral

Tλ =

∫ ∞
0

e−φλ(t)dt, φλ(t) = λt− t log t. (3.2)

We will achieve this by relying on the Laplace method [9, Chap. 4]. Note that

φ′λ(t) = λ− log t− 1, φ′′λ(t) = −1

t
.

Thus φλ(t) has a unique critical point

τ = τ(λ) := eλ−1.

We make the change in variables t = τs in (3.2). Observe that

λeλ−1s− eλ−1s log(eλ−1s) = eλ−1s− (λ− 1)eλ−1s− eλ−1 log s = eλ−1s(1− log s)

and we deduce

Tλ = τ

∫ ∞
0

e−τh(s)ds, h(s) = s(log s− 1).

The asymptotics of the last integral can be determined using the Laplace method and we
have, [9, §4.1]

Tλ ∼ τe−τh(1)

√
2π

τh′′(1)
=
√

2πτeτ .

Hence

Jk = Tk+1 ∼
√

2πτ(k + 1)eτ(k+1) =
√

2πekee
k

as k →∞.
In this case

Rm(w)→∞ as m→∞.
Note that

hm
dm

=
2Im+3(w)

(m+ 2)Im+1(w)
.

We deduce that

log

(
hm
dm

)
∼ em+4 − em+2 as m→∞.
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Hence

logCm(w) ∼ m

2
em+2(e2 − 1) as m→∞. (3.3)

ut

Example 3.3. Suppose that

w(r) = exp
(
−C(log r)α

)
, C > 0, r > 1, α > 1.

Arguing as in Example 3.2 we deduce that as k →∞

Ik(w) ∼
∫ ∞

1
rk exp

(
−C(log r)α

)
dr =

∫ ∞
0

e(k+1)t−Ctαdt.

Again, set

Tλ :=

∫ ∞
0

e−φλ(t)dt, φλ(t) := Ctα − λt.

We determine the asymptotics of Tλ as λ→∞ using the Laplace method. Note that

φ′λ(t) = αCtα−1 − λ.
The function φλ has a unique critical point

τ = τ(λ) =

(
λ

αC

) 1
α−1

.

Observe that

φλ(τs) = a(sα − bs), a :=

(
λ

C1/αα

) α
α−1

, b := α
1

α−1 ,

Tλ = τ(λ)

∫ ∞
0

e−a(sα−bs)ds.

We set g(s) := sα − bs. Using the Laplace method [9, §4.2] we deduce

Tλ ∼ τ(λ)e−ag(1)

√
2π

ag′′(1)
=

√
2π

aα(α− 1)
ea(b−1).

Hence

log Tλ ∼
(
λα

C

) 1
α−1 α

1
α−1 − 1

α
α
α−1

=: Z(α,C)λ
α
α−1 .

Hence

logRm(w) ∼ log Tm + log Tm+4 − 2 log Tm+2

∼ Z(α,C)
(
m

α
α−1 + (m+ 4)

α
α−1 − 2(m+ 2)

α
α−1

)
= Z(α,C)m

α
α−1

(
1 +

(
1 +

4

m

) α
α−1 − 2

(
1 +

2

m

) α
α−1

)
∼ Z(α,C)m

α
α−1 × 8

m2
× α

α− 1

( α

α− 1
− 1
)

=
8αZ(α)

(α− 1)2
m

2−α
α−1 .

Hence

r = lim
m→∞

rm = ×


∞, α < 2,

e16Z(2,C), α = 2,

1, α > 2.

(3.4)
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which shows that r can have any value in [1,∞]. Note that in this case

log Im+3(w)− log Im+1(w) ∼ Z(α,C)m
α
α−1

((
1 +

4

m

) α
α−1 −

(
1 +

2

m

) α
α−1

)
∼ 2Z(α,C)

α− 1
m

1
α−1 , m→∞,

so that

logCm(w) ∼ Z(α,C)

α− 1
m

α
α−1 , m→∞. (3.5)

ut

Example 3.4. Suppose now that w is a weight with compact support disjoint from the
origin. For example, assume that on the positive semi-axis it is given by

w(x) =

{
e
− 1

1−(x−c)2 , |x− c| ≤ 1

0, |x− c| > 1,
, c > 1.

Then

Ik(w) =

∫ c+1

c−1
tke
− 1

1−(t−c)2 dt =

∫ 1

−1
(t+ c)ke

− 1
1−t2 dt

=

∫ 0

−1
(t+ c)ke

− 1
1−t2 dt︸ ︷︷ ︸

I−k

+

∫ 1

0
(t+ c)ke

− 1
1−t2 dt︸ ︷︷ ︸

I+
k

.

Observe that
lim
k→∞

c−kI−k = 0.

On the other hand

I+
k =

∫ 1

0
(c+ 1− t)ke−

1
t2 dt,

and we deduce

ck
∫ 1

0
e−

1
t2 dt ≤ I+

k ≤ (c+ 1)k
∫ 1

0
e−

1
t2 dt.

Hence the asymptotic behavior of Ik(w) is determined by I+
k . We will determine the asymp-

totic behavior of I+
k by relying again on the Laplace method. Set a := (c+ 1) so that

I+
k =

∫ 1

0
(a− t)ke−

1
t2 dt = ak

∫ 1
a

0
(1− s)ke−

1
a2s2 ds = ak

∫ ∞
a

(u− 1)ku−(k+2)e−
u2

a2 du.

Consider the phase

φ~(s) =
1

~
log(1− s)− 1

a2s2
, ~↘ 0,

and set

P~ = a
1
~

∫ 1
a

0
eφ~(s)

so that
I+
k = P1/k.

We have

φ′~(s) = − 1

~(1− s)
+

2

a2s3
, φ′′~(t) = − 1

~(1− s)2
− 6

a2s4
.
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The phase φ~ as a unique critical point τ = τ(~) ∈ (0, 1/a) satisfying

~ =
a2τ3

2(1− τ)
=
a2τ3

2

(
1 +O(τ)),

so that

τ =

(
2~
a2

) 1
3 (

1 +O
(
~

1
3
) )

as ~↘ 0. (3.6)

Set

v := v(~) := − 1

φ′′k(τ)
∼ a2τ4

6
∼ (2~)

4
3

6a
2
3

=
1

6

(
2~2

a

) 2
3

. (3.7)

We make the change in variables s = τ +
√
vx and we deduce

P~ = eφ~(τ)a
1
~
√
v

∫
J(~)

eφ~(τ+
√
vx)−φ~(τ)dx, J(~) =

[
− τ√

v
,
1/a− τ√

v

]
.

We claim that

lim
~→0

∫
J(~)

eφ~(τ+
√
vx)−φ~(τ)dx =

∫
R
e−

x2

2 dx =
√

2π. (3.8)

It is convenient to think of τ as the small parameter and then redefine

~ = ~(τ) =
a2τ3

2(1− τ)

and think of v as a function of τ . Finally set σ :=
√
v and

ϕτ (x) := φ~(τ)(τ + σx)− φ~(τ)(τ) =
2(1− τ)

a2τ3
log(1− s)− 1

a2s2

=
2(1− τ)

a2τ3

(
log(1− τ − σx)− log(1− τ)

)
− 1

a2

(
1

(τ + σx)2
− 1

τ2

)
=

2(1− τ)

a2τ3
log

(
1− σ

1− τ
x

)
− 1

a2τ2

(
1

(1 + σ
τ x)2

− 1

)
=

1

a2τ2

(
2(1− τ)

τ
log

(
1− σ

1− τ
x

)
−
(

1

(1 + σ
τ x)2

− 1

))
.

The equality (3.8) is equivalent to

lim
τ→∞

∫
J(~)

eϕτ (x) =

∫
R
e−

x2

2 dx. (3.9)

By construction, we have

ϕτ (0) = ϕ′τ (0) = 0, ϕ′′τ (0) = −1, ϕτ (x) ≤ 0, ∀x ∈ J(~).

Let us observe that

lim
τ→0

ϕτ (x) =
1

2
ϕ′′τ (0)x2 = −x

2

2
, ∀x ∈ R. (3.10)

Indeed, fix x ∈ R and assume τ is small enough so that

τ |x| < 1

2
. (3.11)

Observe that

ϕ(j)
τ (0) =

1

a2τ2

(
2(1− τ)

τ

dj

dxj
|x=0 log

(
1− σ

1− τ
x

)
− dj

dxj
|x=0

(
1

(1 + σ
τ x)2

− 1

))
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=
1

a2τ2

(
−2(1− τ)

τ

(
σ

1− τ

)j
+ (−1)j+1(j + 1)!

(σ
τ

)j)
.

Using the estimate σ = O(τ2) as τ → 0 we deduce that there exists C > 0 such that, for any
j ≥ 0 we have ∣∣ϕ(j)

τ (0)| ≤ C(j + 1)!τ j−2.

Hence
1

j!

∣∣ϕ(j)
τ (0)xj

∣∣ ≤ Cj|τx|j−2x2, ∀j ≥ 2.

Thus if τ satisfies (3.11), we have

ϕτ (x) +
x2

2
= ϕτ (x)− ϕ′τ (0)x− 1

2
ϕ′′τ (0)x2 =

∑
j≥3

1

j!
ϕ(j)
τ (0)xj ,

where the series in the right-hand side is absolutely convergent. Hence∣∣ϕτ (x) +
x2

2

∣∣ ≤ Cx2|τx|
∑
j≥3

j|τx|j−3 ≤ C|τx|x2
∑
j≥3

j2j−3.

This proves (3.10).
Next we want to prove that there exists a constant A > 0 such that

ϕτ (x) ≤ A(1− |x|), ∀x ∈ J(~), ∀τ � 1. (3.12)

We will achieve this by relying on the concavity of ϕτ over the interval J(~). The graph of
ϕτ is situated below either of the lines tangent to the graph at x = ±1. Thus

ϕτ (x) ≤ ϕτ (1) + ϕ′τ (1)(x− 1) ≤ −ϕ′τ (1) + ϕ′τ (1)x,

ϕτ (x) ≤ ϕτ (−1) + ϕ′τ (−1)(x+ 1) ≤ ϕ′τ (−1) + ϕ′τ (−1).

Now observe that

d

dx
ϕτ (x) =

1

a2τ2

(
−2σ

τ

1

1− σ
1−τ x

+
2σ

τ

1

(1 + σ
τ x)3

)
=

2σ

a2τ3

(
1

(1 + σ
τ x)3

− 1

1− σ
1−τ x

)
.

Using the fact that σ = O(τ2) we deduce from the above equality that

|ϕ′τ (±1)| = O(1), as τ → 0.

This proves (3.12). Using (3.10), (3.12) and the dominated convergence theorem we deduce

lim
τ→∞

∫
J(~)

eϕτ (x)dx =

∫
R
e−

x2

2 dx =
√

2π.

We conclude that
P~ ∼ eφ~(τ)a

1
~
√

2πv as ~→ 0 (3.13)

Now observe that

φ~(τ) =
1

~
log(1− τ)− 1

a2τ2
=

2(1− τ)

a2τ2

log(1− τ)

τ
− 1

a2τ2
∼ − 3

a2τ2
.

Using (3.6) we deduce

φ~(τ) ∼ − 3

a2

(
a2

2~

) 2
3

= − 3

(2a~)
2
3

= −3

(
k

2a

) 2
3

, k =
1

~
.

Also

eφ~(τ) = (1− τ)
2(1−τ)

a2τ3 e−
1

a2τ2 .
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In any case, using (3.6), (3.7) and (3.13) we deduce that

log Ik(w) ∼ k log a = k log(c+ 1) as k →∞. (3.14)

Thus

log rm(w) = log

(
Im−1(w)Im+3(w)

Im+1(w)

)
= 0,

so that

lim
m→∞

qm = lim
m→∞

rm = 1. ut

Example 3.5. If we let c = 0 in the above example , then we deduce that

Ik(w) =

∫ 1

0
tke
− 1

1−t2 dt ∼ eφ~(τ)
√

2πv(~)

where

φ~(τ) ∼ −3

(
k

2

) 2
3

, v(~) ∼ 1

6

(
2

k2

) 2
3

.

Hence

log Ik(w) ∼ −3

(
k

2

) 2
3

,

log rm(w) ∼ − 3

2
2
3

(
(m− 1)

2
3 + (m+ 3)

2
3 − (m+ 1)

2
3

)
→ 0,

so that

lim
m→∞

qm = lim
m→∞

rm = 1. ut

4. A probabilistic proof of the Gauss-Bonnet theorem

Suppose that M is a smooth, compact, connected oriented manifold of even dimension m.
For any Riemann metric g we can view the Riemann curvature tensor Rg as a symmetric
bundle morphism Rg : Λ2TM → Λ2TM . Equivalently, using the metric identification T ∗M ∼=
TM we can view Rg as a section of Λ2T ∗M ⊗ Λ2T ∗M .

We will denote by Ωp,q(M) the sections of ΛpT ∗M ⊗ ΛqT ∗M and we will refer to them of
double forms of type (p, q). Thus Rg ∈ Ω2,2(M). We have a natural product

• : Ωp,q(M)× Ωp′,q′(M)→ Ωp+p′,q+q′(M)

defined in a natural way; see [1, Eq. (7.2.3)] for a precise definition.
Using the metric g we can identify a double-form in Ωk,k(M) with a section of ΛkT ∗M ⊗

ΛkTM , i.e., with a bundle morphism ΛkTM → ΛkTM and thus we have a linear map

tr : Ωk,k(M)→ C∞(M).

For 1 ≤ k ≤ m
2 we have a double form

R•kg = Rg • · · · •Rg︸ ︷︷ ︸
k

∈ Ω2k,2k(M).

We denote by dVg ∈ Ωm(M) the volume form on M defined by the metric g and the orien-
tation on M . We set

eg(M) :=
1

(2π)
m
2 (m2 )!

tr
(
−R•

m
2

g

)
dVg ∈ Ωm(M).
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The form eg(M) is called the Euler form of the metric g and the classical Gauss-Bonnet
theorem states that ∫

M
eg(M) = χ(M) =: the Euler characteristic of M. (4.1)

In this section we will show that the Gauss-Bonnet theorem for any metric g is an immediate
consequence of the Kac-Rice formula coupled with the approximation theorem Thm. 1.8.

Fix a metric g. For simplicity we assume that volg(M) = 1. This does not affect the
generality since ecg(M) = eg(M) for any constant c > 0. Consider the random function uε
on M defined by (1.2, 1.1). Set

vε =

(
εm+2

dm

) 1
2

uε.

Observe that for ε > 0 sufficiently small, any X,Y ∈ Vect(M) and any p ∈M we have

hε(X(p), Y (p)) = E
(
Xvε(p), Y vε(p)

)
where hε is the metric on M that appears in the approximation theorem, Theorem 1.8.

For any smooth function f : M → R and any p ∈ M we denote by Hessεp(f) the Hessian
of f at p defined in terms of the metric hε. More precisely

Hessεp(f) = XY f(p)− (∇εXY )f(p), ∀X,Y ∈ Vect(M),

where ∇ε denotes the Levi-Civita connection of the metric hε. Using the metric hε we can
identify this Hessian with a symmetric linear operator

Hessεp(f) : (TpM,hε)→ (TpM,hε).

For any p ∈ M we have a random vector dvε(p) ∈ T ∗pM . Its covariance form S(dvε(p)) is
precisely the metric hε, and if we use the metric hε to identify this form with an operator we
deduce that S(dvε(p)) is identified with the identity operator.

For every smooth Morse function f on M and any integer 0 ≤ k ≤ m we have a measure
νf,k on M

νf,k =
∑

df(p)=0, ind(f,p)=k

δp,

where ind(f,p) denotes the Morse index of the critical point p of the Morse function f . We
set

νf =
m∑
k=0

(−1)kνf,k

The Poincaré-Hopf theorem implies that for any Morse function we have∫
M
νf (dp) = χ(M). (4.2)

Using the random Morse function vε we obtain the random measures νvε,p, νvε . We denote
by νεk and respectively νε their expectations. The Kac-Rice formula implies that

νk =
1

(2π)
m
2

ρεk(p)|dVhε(p)|,

where

ρεk(p) =
1√

detS(vε(p))
E
(
|det Hessεp(vε)|

∣∣ dvε(p) = 0, ind Hessεp(vε) = k
)
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= (−1)kE
(

det Hessεp(vε)
∣∣ dvε(p) = 0, ind Hessεp(vε) = k

)
.

As shown in [1, Eq. (12. 2.11)], the Gaussian random variables Hessεp(vε) and dvε(p) are
independent so that

ρεk(p) = (−1)kE
(

det Hessεp(vε)
∣∣ ind Hessεp(vε) = k

)
.

Thus

νε =
1

(2π)
m
2

m∑
k=0

(−1)kρεk(p)|dVhε(p)|,

=
1

(2π)
m
2

m∑
k=0

E
(

det Hessεp(vε)
∣∣ ind Hessεp(vε) = k

)
|dVhε(p)|

=
1

(2π)
m
2

E
(

det Hessεp(vε)
)
|dVhε(p)|.

From the Poincaré-Hopf equality (4.2) we deduce

χ(M) =

∫
M
νε(dp) =

1

(2π)
m
2

∫
M
E
(

det Hessεp(vε)
)
|dVhε(p)|. (4.3)

Observe that Hessian Hessε(f) of a function f can also be viewed as a double form

Hessε(f) ∈ Ω1,1(M).

In particular, Hessε(vε) is a random (1, 1) double form and we have the following equality,
[1, Lemma 12.2.1]

− 2Rhε = E
(
Hessε(vε)

•2 ), (4.4)

where Rhε denotes the Riemann curvature tensor of the metric hε. On the other hand we
have the equality [1, Eq. (12.3.1)]

det Hessε(vε) =
1

m!
tr Hessε(vε)

•m (4.5)

Using (4.4), (4.5) and the algebraic identities in [1, Lemma 12.3.1] we conclude that

1

(2π)
m
2

E
(

det Hessεp(vε)
)

=
1

(2π)
m
2 (m2 )!

tr
(
−R•

m
2

hε

)
.

This proves (1.22). Using this equality in (4.3) we deduce

χ(M) =

∫
M
ehε(M),

i.e., we have proved the Gauss-Bonnet theorem for the metric hε. Now let ε→ 0. As we have
mentioned, Theorem 1.8 implies that hε → g so in the limit, the above equality reduced to
the Gauss-Bonnet theorem for the original metric g.
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Appendix A. Jets of the distance function

Suppose that (M, g) is a smooth, m-dimensional manifold, p0 ∈M , U is an open, geodesi-
cally convex neighborhood of p0 and (x1, . . . , xm) are normal coordinates on U centered at
p0. We have a smooth function

η : U × U → [0,∞), η(p, q) = distg(p, q)2.

We want to investigate the partial derivatives of r at (p0,p0). Using the above normal
coordinates we regard η as a function η = η(x, y) defined in an open neighborhood of (0, 0) ∈
Rm × Rm.

If f = f(t1, . . . , tN ) is a smooth function defined in a neighborhood of 0 ∈ RN and k is
a nonnegative integer, then we denote by [f ]k the degree k-homogeneous part in the Taylor
expansion of f at 0, i.e.,

[f ]k =
1

k!

∑
|α|=k

∂αt f
∣∣
t=0

tα ∈ R[t1, . . . , tN ].

In the coordinates (xi) the metric g has the form (using Einstein’s summation convention
throughout)

g = gijdx
idxj ,

where gij satisfy the estimates [18, Cor. 9.8]

gk` = δk` −
1

3
Rikj`(0)xixj +O(|x|3). (A.1)

We deduce that

gk` = δk` +
1

3
Rikj`(0)xixj +O(|x|3). (A.2)

The function η satisfies a Hamilton-Jacobi equation, [31, p. 171],

gk`
∂η(x, y)

∂xk
∂η(x, y)

∂x`
= 4η(x, y), ∀x, y. (A.3)

Moreover, η satisfies the obvious symmetry conditions

η(x, y) = η(y, x), η(0, x) = η(x, 0) = |x|2 :=
m∑
i=1

(xi)2. (A.4)

As shown in [7, Lemma 2.2] we have

[η]2 = |x− y|2 =
m∑
i=1

(xi − yi)2. (A.5)

The symmetries (A.4) suggest the introduction of new coordinates (u, v) on U × U ,

ui = xi − yi, vj = xj + yj .

Then

xi =
1

2
(ui + vi), yj =

1

2
(vj − uj), ∂xi = ∂ui + ∂vi .

The equality (A.2) can be rewritten as

gk`(x) = δk` +
1

12

∑
i,j

Rikj`(ui + vi)(uj + vj) +O(3). (A.6)



32 LIVIU I. NICOLAESCU

The symmetry relations (A.4) become

η(u, v) = η(−u, v), η(u, u) = |u|2, (A.7)

while (A.5) changes to
[η]1 = 0, [η]2 = |u|2. (A.8)

The equality (A.3) can be rewritten∑
k,l

gkl(x)
(
η′uk + η′vk

)︸ ︷︷ ︸
=:Ak

(
η′u` + η′v`

)︸ ︷︷ ︸
=:A`

= 4η. (A.9)

Note that
[Ak]0 = [A`]0 = [gk`]1 = 0, (A.10)

while (A.8) implies that

[Ak]1 = 2uk.

We deduce

4[η]3 =
∑
k,`

[gkl]0
(

[Ak]1[A`]2 + [Ak]2[A`]1
)

=
∑
k

2[Ak]2[Ak]1 = 4
∑
k

uk[Ak]2.

We can rewrite this last equality as a differential equation for [η]3 namely

[η]3 =
∑
k

uk(∂uk + ∂vk)[η]3.

We set P = [η]3 so that P is a homogeneous polynomial of degree 3 in the variables u, v.
Moreover, according to (A.7) the polynomial P is even in u and P (u, u) = 0. Thus P has
the form

P =
∑
i

Ci(u)vi︸ ︷︷ ︸
=:P2

+ P0(v),

where Ci(u) is a homogeneous polynomial of degree 2 in the variables u, and P0(v) is homo-
geneous of degree 3 in the variables v.

We have ∑
k

uk∂vkP2 =
∑
k

Ck(u)uk︸ ︷︷ ︸
=:Q3

, Q1 :=
∑
k

uk∂vkP0,
∑
k

uk∂ukP0 = 0,

and the classical Euler equations imply∑
k

uk∂ukP2 = 2P2.

We deduce
P = 2P2 +Q3 +Q1,

where the polynomials Q3 and Q1 are odd in the variable u. Since P is even in the variable
u we deduce

Q3 +Q1 = 0,

so that P2 + P0 = P = 2P2. Hence P2 = P0 = 0 and thus

[η]3 = 0. (A.11)

In particular
[Ak]2 = 0, ∀k. (A.12)
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Going back to (A.9) and using (A.10) and (A.12) we deduce

4[η]4 =
∑
k,`

[gk`]2[Ak]1[A`]1 +
∑
k,`

[gk`]0
(
[Ak]1[A`]3 + [Ak]3[A`]1

)
= 4

∑
k,`

[gk`]2uku` + 2
∑
k

uk[Ak]3.
(A.13)

We set P = [η]4. The polynomial P is homogeneous of degree 4 in the variables u, v, and it
is even in the variable u. We can write P = P0 + P2 + P4, where

P4 =
∑
k

cijkluiujuku`, P2 =
∑
i,j

Qij(u)vivj ,

and P0 is homogeneous of degree 4 in the variables v, Qij(u) is a homogeneous quadratic
polynomial in the variables u. We have∑

k

uk[Ak]3 =
∑
k

uk(∂uk + ∂vk)P.

We have ∑
k

uk∂ukP2ν = 2νP2ν , ν = 0, 1, 2,
∑
k

uk∂vkP4 = 0,∑
k

uk∂vkP2 =
∑
k,i,j

ukQij(δkivj + δkjvi) =
∑
k,j

(
Qkjukvj +Qjkvjuk

)
Using these equalities in (A.13) we deduce

4P4 + 4P2 + 4P0 = 4
∑
k,`

[gk`]2uku` + 4P4 + 2P2 +
∑
k

uk∂vkP0

+
∑
k,j

(
Qjk +Qkj

)
ukvj .

This implies P0 = 0 so that P = P4 + P2, and we can then rewrite the above equality as

P2 = 2
∑
k,`

[gk`]2uku` +
∑
k,j

(
Qjk +Qkj

)
ukvj . (A.14)

Note that the equality r(u, u) = |u|2 implies P (u, u) = 0 so that

P4(u) = P4(u, u) = −P2(u, u).

Therefore it suffices to determine P2. This can be achieved using the equality (A.6) in (A.14).
We have

2
∑
k,`

[gk`]2uku` =
1

6

∑
i,j,k,`

Rikj`(ui + vi)(uj + vj)uku`

=
1

6

∑
i,j

(∑
k,`

Rikj`uku`

)
︸ ︷︷ ︸

Q̂ij(u)

vivj +
∑
j

Sj(u)vj ,

where Sj(u) denotes a homogeneous polynomial of degree 3 in u. The equality (A.14) can
now be rewritten as∑

i,j

Qij(u)vivj =
1

6

∑
i,j

Q̂ij(u)vivj +
∑
j

Sj(u)vj +
1

2

∑
k,j

(
Qjk +Qkj

)
ukvj .
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From this we read easily

Qij(u) =
1

6
Q̂ij(u) =

1

6

∑
k,`

Rikj`uku`.

This determines P2.

P2(u, v) =
1

6

∑
i,j

Q̂ij(u)vivj . (A.15)

As we have indicated above P2 determines P4.

P4(u) = −P2(u, u) = −1

6

∑
i,j,k,`

Rikj`uiujuku`. (A.16)

The skew symmetries of the Riemann tensor imply that P4 = 0 so that

[η]4(u, v) =
1

6

∑
i,j

Q̂ij(u)vivj , Q̂ij(u) =
∑
k,`

Rikj`uku`. (A.17)

Example A.1. Suppose that M is a surface, i.e., m = 2. Set

K = R1212 = R2121 = −R1221.

Note that K is the Gaussian curvature of the surface. Then

Q̂11 =
∑
k,`

R1k1`uku` = Ku2
2, Q̂22 =

∑
k,`

R2k2`uku` = Ku2
1.

Q̂12 =
∑
k,`

R1k2`uku` = −Ku1u2 = Q̂21.

Hence

P2(u, v) =
K

6
(u2

2v
2
1 + u2

1v
2
2 − 2u1u2v1v2) =

K

6
(u1v2 − u2v1)2.

ut

Appendix B. Spectral estimates

As we have already mentioned, the correlation function

E ε(p, q) =
∑
k≥0

wε(
√
λk)Ψk(p)Ψk(q)

is the Schwartz kernel of the smoothing operator wε(
√

∆). In this appendix we present in
some detail information about the behavior along the diagonal of this kernel as ε → 0. We
will achieve this by relying on the wave kernel technique pioneered by L. Hörmander, [20].

The fact that such asymptotics exist and can be obtained in this fashion is well known to
experts; see e.g [13] or [33, Chap.XII]. However, we could not find any reference describing
these asymptotics with the level of specificity needed for the considerations in this paper.

Theorem B.1. Suppose that w ∈ S(R) is an even, nonnegative Schwartz function, and
(M, g) is a smooth, compact, connected m-dimensional Riemann manifold. We define

E ε : M ×M → R, E ε(p, q) =
∑
k≥0

w(ε
√
λk)Ψk(p)Ψk(q),

where (Ψk)k≥1 is an orthonormal basis of L2(M, g) consisting of eigenfunctions of ∆g.
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Fix a point p0 ∈ M and normal coordinates at p0 defined in an open neighborhood O0 of
p0. The restriction of E ε to E ε to O0 × O0 can be viewed as a function E ε(x, y) defined in
an open neighborhood of (0, 0) in Rm × Rm. Fix multi-indices α, β ∈ (Z≥0)m. Then

∂αx ∂
β
y E ε(x, y)|x=y=0 = ε−m−2d(α,β) i

|α|−|β|

(2π)m

(∫
Rm

w(|x|)xα+βdx+O(ε2)

)
, ε→ 0, (B.1)

where

d(α, β) :=

⌊
|α+ β|

2

⌋
.

Moreover, the constant implied by the symbol O(ε) in (B.1) uniformly bounded with respect
to p0.

Proof. For the reader’s convenience and for later use, we go in some detail through the process
of obtaining these asymptotics. We skip many analytical steps that are well covered in [22,
Chap. 17] or [28].

Observe that for any smooth f : M → R we have

wε(
√

∆)f =
1

2π

∫
R
ŵε(t)e

it
√

∆fdt =
1

2πε

∫
R
ŵ

(
t

ε

)
eit
√

∆fdt. (B.2)

The Fourier transform ŵ(t) is a Schwartz function so ŵ(t/ε) is really small for t outside a
small interval around 0 and ε sufficiently small. Thus a good understanding of the kernel of

eit
√

∆ for t sufficiently small could potentially lead to a good understanding of the Schwartz
kernel of wε(

√
∆).

Fortunately, good short time asymptotics for the wave kernel are available. We will describe
one such method going back to Hadamard, [19, 31]. Our presentation follows closely [22, §17.4]
but we also refer to [28] where we have substantially expanded the often dense presentation
in [22].

To describe these asymptotics we need to introduce some important families homogeneous
generalized functions (or distributions) on R. We will denote by C−∞(Ω) the space of gen-
eralized functions on the smooth manifold Ω, defined as the dual of the space compactly
supported 1-densities, [17, Chap. VI].

For any a ∈ C, Re a > 1 we define χa+ : R→ R by

χa+(x) =
1

Γ(a+ 1)
xa+, x+ = max(x, 0).

Observe that we have the following equality in the sense of distributions

d

dx
χa+1

+ = χa+(x), Re a > 1.

We can use this to define for any a ∈ C

χa+ :=
dk

dxk
χa+k

+ ∈ C−∞(R), k > 1−Re a.

For Re a > 0 we denote by |χ|a the generalized function defined by the locally integrable
function

|χ|a(x) =
1

Γ(a+1
2 )
|x|a.
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The correspondence a 7→ |χ|a is a holomorphic map {Re z > 0} → C−∞(R) which admits a
holomorphic extension to the whole complex plane, [15, Chap. 1], [28]. This is a temperate
generalized function, and its Fourier transform is given by, [15, 28],

|̂χ|a (ξ) =
√
π2a+1|χ|−(a+1)(ξ), ∀a ∈ C. (B.3)

Denote by Kt(x, y) the Schwartz kernel of eit
√

∆. We then have the following result [22,
§17.4] or [28].

Theorem B.2. Set n := m+ 1, and let

η(x, y) = distg(x, y)2, x, y ∈M.

There exists a positive constant c > 0, smaller than the injectivity radius of (M, g), such that
for distg(x, y) < c we have the following asymptotic expansion as t→ 0

Kt(p, q) ∼
∞∑
k=1

Uk(p, q)dm(2k)Hk(t,p, q), |t| < c, (B.4)

where for Re a > 0 we have

Ha(t,p, q) = ∂t

(
χ
a−n

2
+

(
t2+ − η(p, q)

)
− χa−

n
2

+

(
t2− − η(p, q)

) )
,

dm(2a) =
Γ(2a+1

2 )

π
m
2 Γ(2a)

.

Let us explain in more detail the meaning of the above result. The functions Uk are smooth
functions defined in the neighborhood distg(p, q) < c of the diagonal in M ×M . For fixed q,
the functions p 7→ Vk(p) := Uk(p, q) are determined as follows.

Fix normal coordinates x at q, set |g| := det(gij), and

h(x) := −1

2
g
(
∇ log |g|, x

)
= −1

2

∑
j,k

gjkxj∂xk log |g|.

Then Vk(x) are the unique solutions of the differential recurrences

V1(0) = 1, 2x · ∇V1 = hV1, |x| < c, (B.5)

1

k
x · ∇Vk+1 +

(
1− 1

2k
h

)
Vk+1 = −∆gVk, Vk+1(0) = 0, |x| < c, k ≥ 1. (B.6)

We have the following important equality

lim
distg(p,q)→0

Ha(t,p, q) = |χ|2a−2−m(t), ∀a ∈ C. (B.7)

The asymptotic estimate (B.4) signifies that for any positive integer µ there exists a positive
integer N(µ) so that for any N ≥ N(µ) the tail

T̃N (t,p, q) := Kt(p, q)−
N∑
k=1

Uk(p, q)dm(2k)Hk(t,p, q)

belongs to Cµ
(

(−c, c)×M ×M
)

and satisfies the estimates∥∥∂jt T̃N (t,−,−)
∥∥
Cµ−j(M×M)

≤ Cj |t|2N−n−1−µ, |t| ≤ c, , j ≤ µ, N ≥ N(µ). (B.8)
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Fix a point p0 ∈ M and normal coordinates at p0 defined in a neighborhood O0 of p0.
Then we can identify a point (p, q) ∈ O0 ×O0 with a point (x, y) in a neighborhood of (0, 0)
in Rm × Rm.

Using (B.2) we deduce

∂αx ∂
β
y E ε(x, y)|x=y =

1

ε

〈
∂αx ∂

β
yKt(x, y)|x=y︸ ︷︷ ︸

=:Kα,β
t

, ŵ

(
t

ε

)〉
. (B.9)

Choose an even, nonnegative cutoff function ρ ∈ C∞0 (R) such that

ρ(t) =

{
1, |t| ≤ c

4 ,

0, |t| ≥ c
2 ,

where c > 0 is the constant in Theorem B.2. Then

∂αx ∂
β
y E ε(x, y)|x=y =

1

ε

〈
Kα,β
t , ρ(t)ŵ

(
t

ε

)〉
+

1

ε

〈
Kα,β
t ,

(
1− ρ(t)

)
ŵ

(
t

ε

)〉
.

Let us observe that that for any N > 0

1

ε

〈
Kα,β
t ,

(
1− ρ(t)

)
ŵ

(
t

ε

)〉
= O(εN ) as ε→ 0

Thus

∀N > 0 ∂αx ∂
β
y E ε(x, y)|x=y ∼

1

ε

〈
Kα,β
t , ρ(t)ŵ

(
t

ε

)〉
+O(εN ), ε→ 0. (B.10)

On the other hand

∂αx ∂
β
yKt(x, y) ∼

∞∑
k=1

dm(2k)∂αx ∂
β
y {Uk(x, y)Hk(t, x, y) } . (B.11)

Recall that

d(α, β) =

⌊
1

2
|α+ β|

⌋
.

One can show (see [7, 28])

∂αx ∂
β
yKt(x, y)|x=y=0 ∼

∞∑
k=0

Am,α,β,k|χ|−m−2d(α,β)+2k(t), (B.12)

where Am,α,β,0 is a universal constant depending only on m,α, β, which is equal to 0 if |α+β|
is odd.

Lemma B.3. (a) For any r ∈ Z and any N > 0 we have

1

ε

〈
|χ|r, ρŵε

〉
= εr

( 〈
|χ|r, ŵ

〉
+O(εN )

)
as ε→ 0.

(b) For every positive integer r we have

〈|χ|−r, ŵ〉 =

√
π21−r

Γ( r2)

∫
R
|τ |r−1w(τ)dτ.
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Proof. (a) For transparency we will use the integral notation for the pairing between a gen-
eralized function and a test function. We have〈

|χ|r, ηŵε
〉

=
1

ε

∫
R
|χ|r(t)ρ(t)ŵ(t/ε)dt =

∫
R
|χ|r(εt)ρ(εt)ŵ(t)dt

= εr
∫
R
|χ|r(t)ρ(εt)ŵ(t)dt = εr〈|χ|r, ρεŵ〉, ρε(t) = ρ(εt).

Now observe that ρεŵ − ŵ = ŵ(ρε − 1)→ 0 in S(R). More precisely for k ≥ 0 we have

∂k

∂k
(ρε − 1) = O(εN tN ) as ε→ 0.

This implies that 〈
|χ|r, ŵ(ρε − 1)

〉
= O(εN ) as ε→ 0,

so that

〈|χ|r, ρεŵ〉 = 〈|χ|r, ŵ〉+
〈
|χ|r, ŵ(ρε − 1)

〉
= 〈|χ|r, ŵ〉+O(εN ) as ε→ 0.

(b) We have

〈|χ|−r, ŵ〉 =
〈
|̂χ|−r, w

〉 (B.3)
=
√
π21−r〈|χ|r−1(τ), w(τ)

〉
=

√
π21−r

Γ( r2)

∫
R
|τ |r−1w(τ)dτ.

ut

Using (B.10) and the above lemma we deduce

∂αx ∂
β
y E ε(x, y)|x=y = Dm,α,βε

−m−2d(α,β) +O
(
ε−m−2d(α,β)+2

)
as ε→ 0, (B.13)

where Dm,α,β is a universal constant that depends only on m,α, β which is = 0 if |α + β| is
odd,

Dm,α,β = Am,α,β,0

√
π21−r

Γ( r2)

∫
R
|τ |r−1w(τ)dτ, r = m+ 2d(α, β). (B.14)

To determine the constant Dm,α,β it suffices to compute it for one particular m-dimensional
Riemann manifold. Assume that (M, g) is the torus Tm equipped with the flat metric

g =
m∑
i=1

(dθi)2, 0 ≤ θi ≤ 2π.

The eigenvalues of the corresponding Laplacian ∆m are

|~k|2, ~k = (k1, . . . , km) ∈ Zm.

Denote by ≺ the lexicographic order on Zm. For ~θ = (θ1, . . . , θm) ∈ R and ~k ∈ Zm we set

〈~k, ~θ〉 :=
m∑
j=1

kjθ
j .

A real orthornormal basis of L2(Tm) is given by the functions

Ψ~k
(~θ) =

1

(2π)
m
2


1, ~k = ~0

2
1
2 sin〈~k, ~θ〉, ~k � ~0,

2
1
2 cos〈~k, ~θ〉, ~k ≺ ~0.
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Then

E ε(~θ, ~ϕ) =
1

(2π)m

∑
~k∈Zm

w(ε|~k|)ei〈~k,~θ−~ϕ〉,

so that

∂α~θ ∂
β
~ϕE ε(~θ, 0) =

i|α|−|β|

(2π)m

∑
~k∈Zm

wε(|~k|)~kα+βei〈
~k,~θ〉.

Define
Wm, uε : Rm → R, Wm(x) = w(|x|), uε(x) = Wm(εx)xα+β.

Using the Poisson summation formula [21, §7.2] we deduce

∂α~θ ∂
β
~ϕE ε(0, 0) =

i|α|−|β|

(2π)m

∑
~ν∈Zm

ûε(2π~ν).

Observe that

ûε(ξ) =

∫
Rm

e−i〈ξ,x〉w(ε|x|)xα+βdx = (i∂ξ)
α+β

(∫
Rm

e−i〈ξ,x〉Wm(εx)dx

)
= ε−m(i∂ξ)

α+β

(∫
Rm

e−i〈
1
ε
ξ,y〉Wm(y)dy

)
= ε−m(i∂ξ)

α+βŴm

(
1

ε
ξ

)
.

Hence

∂α~θ ∂
β
~ϕE ε(~θ, 0) =

i|α|−|β|

(2πε)m

∑
~ν∈Zm

{
(i∂ξ)

α+βŴm

(
1

ε
ξ

)}
ξ=2π~ν

.

As ε→ 0 we have

∂α~θ ∂
β
~ϕE ε(0, 0) = ε−m−|α+β| i

|α|−|β|

(2π)m

(
(i∂ξ)

α+βŴm(0) +O(εN )
)
, ∀N.

Now observe that

(i∂ξ)
α+βŴm(0) =

∫
Rm

w(|x|)xα+βdx.

so that

∂α~θ ∂
β
~ϕE ε(0, 0) = ε−m−|α+β| i

|α|−|β|

(2π)m

(∫
Rm

w(|x|)xα+βdx+O(εN )

)
, ∀N. (B.15)

This shows that

Dm,α,β =
i|α|−|β|

(2π)m

∫
Rm

w(|x|)xα+βdx. (B.16)

This completes the proof of Theorem B.1. ut

Remark B.4. Note that∫
Rm

w(|x|)xα+βdx =

(∫
|x|=1

xα+βdA(x)

)(∫ ∞
0

w(r)rm+|α+β|−1dr

)
︸ ︷︷ ︸

=:Im,α,β(w)

.

On the other hand, according to [25, Lemma 9.3.10] we have

∫
|x|=1

xα+βdA(x) = Zm,α,β :=


2
∏k
i=1 Γ(

αi+βi+1

2
)

Γ(
m+|α+β|

2
)

, α+ β ∈ (2Z≥0)m,

0, otherwise.
(B.17)
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We can now rewrite (B.16) as

Dm,α,β = ε−m−|α+β| i
|α|−|β|Zm,α,β

(2π)m
Im,α,β(w). (B.18)

ut

Theorem B.5. Fix a point p ∈M and normal coordinates (xi) near p. For i 6= j we denote
by Kij(p) the sectional curvature of g at p along the plane spanned by ∂xi , ∂xj . For any
multi-induces α, β ∈ (Z≥0)m we set

E ε
α;β := ∂αx ∂

β
y E ε(x, y)|x=y=0.

Then there exists a universal constant Zm that depends only on the dimension of M and the
weight w such that

E ε
ii;jj − E ε

ij;ij = ZmKij(p)ε−m−2
(
1 +O(ε2)

)
as ε→ 0. (B.19)

Proof. Using (B.12) we deduce

E ε
ii;jj − E ε

ij;ij ∼
1

ε

〈
Kii,jj
t −Kij,ij

t , η(t)ŵ

(
t

ε

)〉
+O(εN ), ε→ 0 (B.20)

On the other hand from (B.9) we conclue

Kii,jj
t −Kij,ij

t ∼
∞∑
k=1

dm(2k)
(
∂2
xi∂

2
yj − ∂

2
xixj∂

2
yiyj

)
{Uk(x, y)Hk(t, x, y) } |x=y=0 (B.21)

To investigate the above asymptotics we use the technology in [28].
Let us introduce some notations. For a positive integer k we denote by ∂k a generic mixed-

partial derivative of order k in the variables xi, yj . We denote by ∂kη the collection of k-th
order derivatives of η(x, y). Pi(X) will denote a homogeneous polynomial of degree i in the
variables X, while Pk(X)P`(Y ) will denote a polynomial which is homogeneous of degree k
in the variables X and of degree ` in the variables Y . We then have the equalities

Ha = P1(∂η)Ha−1, (B.22)

∂2Ha = P2(∂η)Ha−2 + P1(∂2η)Ha−1, (B.23)

∂3Ha = P3(∂η)Ha−3 + P1(∂η)P1(∂2η)Ha−2 + P1(∂3η)Ha−1, (B.24)

∂4Ha = P4(∂η)Ha−4 +
(
P2(∂η)P1(∂2η)

)
Ha−3

+
(
P2(∂2η) + P1(∂η)P1(∂3η)

)
Ha−2 + P1(∂4η)Ha−1.

(B.25)

To simplify the presentation we will assume that in (B.19) we have i = 1, j = 2. Also,
we will denote by O(1) a function f(x, y) such that f(x, y)|x=y=0 = 0. The computations in
Section A show that

Pj(∂η) = Pk(∂
3η) = O(1). (B.26)

In particular, the above equalities show that the 1st and 3rd order derivatives of Ha are O(1).
We have

∂2
x1∂

2
y2(UkHk) = ∂2

x1

( (
∂2
y2Uk

)
Hk + 2∂y2Uk∂y2Hk + Uk∂

2
y2Hk

)
=
(
∂2
x1∂

2
y2Uk

)
Hk +

(
∂2
y2Uk

)(
∂2
x1Hk) +

(
∂2
x1Uk

)(
∂2
y2Hk)

+4(∂2
x1y2Uk)(∂

2
x1y2Hk) + Uk∂

2
x1∂

2
y2Hk +O(1),

(B.27)
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∂2
x1x2∂

2
y1y2(UkHk) = ∂2

x1x2

( (
∂2
y1y2Uk

)
Hk + ∂y1Uk∂y2Hk + ∂y2Uk∂y1Hk + Uk∂

2
y1y2Hk

)
=
(
∂2
x1x2∂

2
y1y2Uk

)
Hk +

(
∂2
y1y2Uk

)(
∂2
x1x2Hk

)
+ ∂2

x2y1Uk∂
2
x1y2Hk + ∂2

x1y1Uk∂
2
x2y2Hk + ∂2

x2y2Uk∂x1y1Hk + ∂2
x1y2Uk∂

2
x2y1Hk

+ ∂2
x1x2Uk∂

2
y1y2Hk + Uk∂

2
x1x2∂

2
y1y2Hk +O(1). (B.28)

Using (B.22)-(B.25) we deduce that(
∂2
x1∂

2
y2 − ∂2

x1x2∂
2
y1y2

)
(UkHk)x=y=0 =

4∑
j=0

T jkHk−j |x=y=0,

where the coefficients T jk are polynomials in the derivatives of Uk and η at (x, y) = (0, 0).
Using (B.22)-(B.25) we deduce

T 4
k = T 3

k = 0.

Moreover, in view to (B.26), the terms in T 2
k are due only to the 4-th order derivatives of Hk.

Upon inspecting (B.27) and (B.28) we see that the 4-th order derivatives of Hk are multiplied
by Uk. According to (B.6) the function Uk is O(1) if k > 1. Hence T 2

k = 0 for k > 1. We
deduce

Kii,jj
t −Kij,ij

t ∼
∞∑
k=1

dm(2k)
(
T 0
kHk + T 1

kHk−1 + T 2
kHk−2

)
|x=y=0

= B−1H−1|x=y=0 +B0H0|x=y=0 +B1H1|x=y=0 + · · · ,
where

B−1 = dm(2)T 2
1 , B0 = dm(2)T 1

1 , B1 = dm(2)T 0
1 + dm(4)T 1

2 , . . . .

The term B−1 can be alternatively described as

B−1 = Am,ii;jj,0 −Am,ij;ij,0,

where the coefficients Am,α,β,0 are defined as in (B.12). Using (B.14) and (B.16) we deduce

B−1 = 0.

To compute T 1
1 we observe first that

η(x− y) =
∑
i

(xi − yi)2 + higer order terms. (B.29)

Using (B.23) we can simplify (B.27) and (B.28) in the case k = 1 as follows.

∂2
x1∂

2
y2(U1H1) =

(
∂2
x1∂

2
y2U1

)
H1 + U1∂

2
x1∂

2
y2H1 +O(1), (B.30)

∂2
x1x2∂

2
y1y2(U1H1) =

(
∂2
x1x2∂

2
y1y2U1

)
H1 + ∂2

x1y1U1∂
2
x2y2H1

+∂2
x2y2U1∂x1y1H1 + U1∂

2
x1x2∂

2
y1y2H1 +O(1).

(B.31)

Using (B.23), (B.25) and (B.29) we deduce that

T 1
1 =

(
∂2
x1∂

2
y2 − ∂2

x1x2∂
2
y1y2

)
η|(0,0)

+2
(
∂2
x1U1 + ∂2

y2U1

)
|(0,0) + 2

(
∂2
x1y1U1 + ∂2

x2y2U1

)
|(0,0).
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Using the transport equation (B.5) we obtain as in [10, VI.3] that U1 coincides with the
function ϕ(x, y) in [10, VI.3 Eq.(33)] or the function u0(x, y) in [6, p. 380]. For our purposes
an explicit description of U1 is not needed. All we care is that

U1(x, y) = U1(y, x), U1(x, x) ≡ 1.

These conditions imply that the Hessian of U1(x, y) at (0, 0) is a quadratic form in the
variables ui = (xi − yi) so that

∂2
x1U1(0, 0) + ∂2

x1y1U1(0, 0) = ∂2
y2U1(0, 0) + ∂2

x2y2U1(0, 0) = 0. (B.32)

Hence

T 1
1 =

(
∂2
x1∂

2
y2 − ∂2

x1x2∂
2
y1y2

)
η|(0,0).

Using (A.17) we conclude that

T 1
1 = ZR1212 = ZK12(p),

where Z is a universal constant, independent of (M, g). Hence

Kii,jj
t −Kij,ij

t ∼ dm(2)ZK12(p)H0|x=y=0 +
∑
k≥1

BkHk|x=y=0.

The equality (B.19) now follows from the above equality by using (B.20), (B.7) and Lemma
B.3. ut

Appendix C. Gaussian measures and Gaussian vectors

For the reader’s convenience we survey here a few basic facts about Gaussian measures.
For more details we refer to [8]. A Gaussian measure on R is a Borel measure γµ,v, v ≥ 0,
m ∈ R, of the form

γµ,v(x) =
1√
2πv

e−
(x−µ)2

2v dx.

The scalar µ is called the mean, while v is called the variance. We allow v to be zero in which
case

γµ,0 = δµ = the Dirac measure on R concentrated at µ.

For a real valued random variable X we write

X ∈N(µ, v) (C.1)

if the probability measure of X is γµ,v.
Suppose that V is a finite dimensional vector space. A Gaussian measure on V is a Borel

measure γ on V such that, for any ξ ∈ V ∨, the pushforward ξ∗(γ) is a Gaussian measure on
R,

ξ∗(γ) = γµ(ξ),v(ξ).

One can show that the map V ∨ 3 ξ 7→ µ(ξ) ∈ R is linear, and thus can be identified with a
vector µγ ∈ V called the barycenter or expectation of γ that can be alternatively defined by
the equality

µγ =

∫
V
vdγ(v).

Moreover, there exists a nonnegative definite, symmetric bilinear map

Σ : V ∨ × V ∨ → R such that v(ξ) = Σ(ξ, ξ), ∀ξ ∈ V ∨.
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The form Σ is called the covariance form and can be identified with a linear operator S :
V ∨ → V such that

Σ(ξ, η) = 〈ξ,Sη〉, ∀ξ, η ∈ V ∨,
where 〈−,−〉 : V ∨×V → R denotes the natural bilinear pairing between a vector space and
its dual. The operator S is called the covariance operator and it is explicitly described by
the integral formula

〈ξ,Sη〉 = Σ(ξ, η) =

∫
V
〈ξ,v − µγ〉〈η,v − µγ〉dγ(v).

The Gaussian measure is said to be nondegenerate if Σ is nondegenerate, and it is called
centered if µ = 0. A Gaussian measure on V is uniquely determined by its covariance form
and its expectation.

Example C.1. Suppose that U is an n-dimensional Euclidean space with inner product
(−,−). We use the inner product to identify U with its dual U∨. If A : U → U is a
symmetric, positive definite operator, then

γA(du) =
1

(2π)
n
2

√
detA

e−
1
2

(A−1u,u) |du| (C.2)

is a centered Gaussian measure on U with covariance form described by the operator A. ut

If V is a finite dimensional vector space equipped with a Gaussian measure γ and L : V →
U is a linear map, then the pushforward L∗γ is a Gaussian measure on U with expectation
µL∗γ = L(µγ) and covariance form

ΣL∗γ : U∨ ×U∨ → R, ΣL∗γ(η, η) = Σγ(L∨η,L∨η), ∀η ∈ U∨,
where L∨ : U∨ → V ∨ is the dual (transpose) of the linear map L. Observe that if γ is
nondegenerate and L is surjective, then L∗γ is also nondegenerate.

Suppose (S, µ) is a probability space. A Gaussian random vector on (S, µ) is a (Borel)
measurable map

X : S→ V , V finite dimensional vector space

such that X∗µ is a Gaussian measure on V . We will refer to this measure as the associ-
ated Gaussian measure, we denote it by γX and we denote by ΣX (respectively S(X)) its
covariance form (respectively operator),

ΣX(ξ1, ξ2) = E
(
〈ξ1, X −E(X) 〉 〈ξ2, X −E(X) 〉

)
.

Note that the expectation of γX is precisely the expectation of X. The random vector is
called nondegenerate, respectively centered, if the Gaussian measure γX is such.

Let us point out that if X : S → U is a Gaussian random vector and L : U → V is a
linear map, then the random vector LX : S→ V is also Gaussian. Moreover

E(LX) = LE(X), ΣLX(ξ, ξ) = ΣX(L∨ξ,L∨ξ), ∀ξ ∈ V ∨,
where L∨ : V ∨ → U∨ is the linear map dual to L. Equivalently, S(LX) = LS(X)L∨.

Suppose that Xj : S→ V 1, j = 1, 2, are two centered Gaussian random vectors such that
the direct sum X1 ⊕ X2 : S → V 1 ⊕ V 2 is also a centered Gaussian random vector with
associated Gaussian measure

γX1⊕X2 = pX1⊕X2(x1,x2)|dx1dx2|.
We obtain a bilinear form

cov(X1, X2) : V ∨1 × V ∨2 → R, cov(X1, X2)(ξ1, ξ2) = Σ(ξ1, ξ2),
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called the covariance form. The random vectors X1 and X2 are independent if and only if
they are uncorrelated, i.e.,

cov(X1, X2) = 0.

We can then identify cov(X1, X2) with a linear operator Cov(X1, X2) : V 2 → V 1, via the
equality

E
(
〈ξ1, X1〉〈ξ2, X2〉

)
= cov(X1, X2)(ξ1, ξ2)

=
〈
ξ1,Cov(X1, X2)ξ†2

〉
, ∀ξ1 ∈ V ∨1 , ξ2 ∈ V ∨2 ,

where ξ†2 ∈ V 2 denotes the vector metric dual to ξ2. The operator Cov(X1, X2) is called the
covariance operator of X1, X2.

The conditional random variable (X1|X2 = x2) has probability density

p(X1|X2=x2)(x1) =
pX1⊕X2(x1,x2)∫

V 1
pX1⊕X2(x1,x2)|dx1|

.

For a measurable function f : V 1 → R the conditional expectation E(f(X1)|X2 = x2) is the
(deterministic) scalar

E(f(X1)|X2 = x2) =

∫
V 1

f(x1)p(X1|X2=x2)(x1)|dx1|.

If X2 is nondegenerate, the regression formula, [5], implies that the random vector (X1|X2 =
x2) is a Gausian vector with covariance operator

S(Y ) = S(X1)−Cov(X1, X2)S(X2)−1Cov(X2, X1), (C.3)

and mean

E(X1|X2 = x2) = Cx2, (C.4)

where C is given by

C = Cov(X1, X2)S(X2)−1. (C.5)

Appendix D. A class of random symmetric matrices

We denote by Symm the space of real symmetric m ×m matrices. This is an Euclidean
space with respect to the inner product

(A,B) := tr(AB).

This inner product is invariant with respect to the action of SO(m) on Symm. We set

Êij :=

{
Eij , i = j

1√
2
Eij , i < j.

.

The collection (Êij)i≤j is a basis of Symm orthonormal with respect to the above inner
product. We set

âij :=

{
aij , i = j√

2aij , i < j.

The collection (âij)i≤j the orthonormal basis of Sym∨m dual to (Êij). The volume density
induced by this metric is

|dA| :=
∏
i≤j

dâij = 2
1
2(m2 )

∏
i≤j

daij .
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Throughout the paper we encountered a 2-parameter family of Gaussian probability measures
on Symm. More precisely for any real numbers u, v such that

v > 0,mu+ 2v > 0,

we denote by Symu,v
m the space Symm equipped with the centered Gaussian measure dΓu,v(A)

uniquely determined by the covariance equalities

E(aijak`) = uδijδk` + v(δikδj` + δi`δjk), ∀1 ≤ i, j, .k, ` ≤ m.
In particular we have

E(a2
ii) = u+ 2v, E(aiiajj) = u, E(a2

ij) = v, ∀1 ≤ i 6= j ≤ m,

while all other covariances are trivial. The ensemble Sym0,v
m is a rescaled version of of the

Gaussian Orthogonal Ensemble (GOE) and we will refer to it as GOEvm.
For u > 0 the ensemble Symu,v

m can be given an alternate description. More precisely a
random A ∈ Symu,v

m can be described as a sum

A = B + X1m, B ∈ GOEvm, X ∈N(0, u), B and X independent.

We write this

Symu,v
m = GOEvm +̂N(0, u)1m, (D.1)

where +̂ indicates a sum of independent variables.
The Gaussian measure dΓu,v coincides with the Gaussian measure dΓu+2v,u,v defined in

[27, App. B]. We recall a few facts from [27, App. B].
The probability density dΓu,v has the explicit description

dΓu,v(A) =
1

(2π)
m(m+1)

4

√
D(u, v)

e−
1
4v

trA2−u
′

2
(trA)2 |dA|,

where

D(u, v) = (2v)(m−1)+(m2 )(mu+ 2v
)
,

and

u′ =
1

m

(
1

mu+ 2v
− 1

2v

)
= − u

2v(mu+ 2v)
.

In the special case GOEvm we have u = u′ = 0 and

dΓ0,v(A) =
1

(2πv)
m(m+1)

4

e−
1
4v

trA2 |dA|. (D.2)

We have a Weyl integration formula [3] which states that if f : Symm → R is a measurable
function which is invariant under conjugation, then the the value f(A) at A ∈ Symm depends
only on the eigenvalues λ1(A) ≤ · · · ≤ λn(A) of A and we have

EGOEvm

(
f(X)

)
=

1

Zm(v)

∫
Rm

f(λ1, . . . , λm)

 ∏
1≤i<j≤m

|λi − λj |

 m∏
i=1

e−
λ2
i

4v

︸ ︷︷ ︸
=:Qm,v(λ)

|dλ1 · · · dλm|,

(D.3)
where the normalization constant Zm(v) is defined by

Zm(v) =

∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2
i

4v |dλ1 · · · dλm|
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= (2v)
m(m+1)

4

∫
Rm

∏
1≤i<j≤m

|λi − λj |
m∏
i=1

e−
λ2
i
2 |dλ1 · · · dλm|︸ ︷︷ ︸

=:Zm

.

The precise value of Zm can be computed via Selberg integrals, [3, Eq. (2.5.11)], and we
have

Zm = (2π)
m
2 m!

m∏
j=1

Γ( j2)

Γ(1
2)

= 2
m
2 m!

m∏
j=1

Γ

(
j

2

)
. (D.4)

For any positive integer n we define the normalized 1-point corelation function ρn,v(x) of
GOEvn to be

ρn,v(x) =
1

Zn(v)

∫
Rn−1

Qn,v(x, λ2, . . . , λn)dλ1 · · · dλn.

For any Borel measurable function f : R→ R we have [11, §4.4]

1

n
EGOEvn

(
tr f(X)

)
=

∫
R
f(λ)ρn,v(λ)dλ. (D.5)

The equality (D.5) characterizes ρn,v. Let us observe that for any constant c > 0, if

A ∈ GOEvn⇐⇒cA ∈ GOEc
2v
n .

Hence, for any Borel set B ⊂ R we have∫
cB
ρn,c2v(x)dx =

∫
B
ρn,v(y)dy.

We conclude that

cρn,c2v(cy) = ρn,v(y), ∀n, c, y. (D.6)

The behavior of the 1-point correlation function ρn,v(x) for n large is described by Wigner’s
semicircle theorem [3, Thm.2.1.1]. It states that, for any v > 0, the sequence of probability
measures on R

ρn,vn−1(x)dx = n
1
2 ρn,v(n

1
2x)dx

converges weakly as n→∞ to the semicircle distribution

ρ∞,v(x)|dx| = I{|x|≤2
√
v}

1

2πv

√
4v − x2|dx|.

The expected value of the absolute value of the determinant of of a random A ∈ GOEvm can
be expressed neatly in terms of the correlation function ρm+1,v. More precisely, we have the
following result first observed by Y.V. Fyodorov [14] in a context related to ours. Set

Cm(v) := 2
3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
.

Lemma D.1. Suppose v > 0. Then for any c ∈ R we have

EGOEvm

(
| det(A− c1m)|

)
= Cm(v)e

c2

4v ρm+1,v(c).

Proof. Using the Weyl integration formula we deduce

EGOEvm

(
|det(A− c1m)|

)
=

1

Zm(v)

∫
Rm

m∏
i=1

e−
λ2
i

4v |c− λi|
∏
i≤j
|λi − λj |dλ1 · · · dλm



RANDOM MORSE FUNCTIONS 47

=
e
c2

4v

Zm(v)

∫
Rm

e−
c2

4v

m∏
i=1

e−
λ2
i

4v |c− λi|
∏
i≤j
|λi − λj |dλ1 · · · dλm

=
e
c2

4vZm+1(v)

Zm(v)

1

Zm+1(v)

∫
Rm

Qm+1,v(c, λ1, . . . , λm)dλ1 · · · dλm

=
e
c2

4vZm+1(v)

Zm(v)
ρm+1,v(c) = v

m+1
2
e
c2

4vZm+1

Zm
ρm+1,v(c)

= (m+ 1)
√

2(2v)
m+1

2 e
c2

4vΓ

(
m+ 1

2

)
ρm+1,v(c) = 2

3
2 (2v)

m+1
2 Γ

(
m+ 3

2

)
e
c2

4v ρm+1,v(c).

ut

The above result admits the following generalization, [4, Lemma 3.2.3].

Lemma D.2. Let u, v > 0. Set θ+
m,v(x) := ρm+1,v(x)e

x2

4v . Then

ESymu,v
m

(
|det(A− c1m)|

)
= Cm(v)

1√
2πu

∫
R
ρm+1,v(c− x)e

(c−x)2

4v
−x

2

2u dx (D.7a)

= Cm(v)(γu ∗ θ+
m+1,v)(c). (D.7b)

In particular, if u = 2kv, k < 1 we have

E
Sym2kv,v

m

(
|det(A− c1m)|

)
= Cm

1√
2πk

∫
R
ρm+1,v(c− x)e

− (x+t2kc)
2

4vt2
k

+
(t2k+1)c2

4v
dx,

(λ := c− x)

= Cm(v)
1√
2πk

∫
R
ρm+1,v(λ)e

− 1

4vt2
k

(λ−(t2k+1)c)2+
(t2k−1)c2

4v
dλ

where t2k := k
1−k .

Proof. Recall the equality (D.1) Symu,v
m = GOEvm +̂N(0, u)1m. We deduce that

ESymu,v
m

(
| det(A− c1m)|

)
= E

(
det(B + (X − c)1)|

)
=

1√
2πu

∫
R
EGOEvm

(
| det(B − (c−X)1m)|

∣∣ X = x)e−
x2

2u dx

=
1√
2πu

∫
R
EGOEvm

(
| det(B − (c− x)1m)|

)
e−

x2

2u dx

= Cm(v)
1√
2πu

∫
R
ρm+1,v(c− x)e

(c−x)2

4v
−x

2

2u dx.

Now observe that if u = 2kv then

(c− x)2

4v
− x2

2u
= − x2

4kv
+

1

4v
(x2 − 2cx+ c2)

=
1

4v

(
− 1

t2k
x2 − 2cx− c2t2k

)
+
c2(1 + t2k)

4v
= − 1

4vt2k
(x+ t2kc)

2 +
c2(1 + t2k)

4v
.

ut
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