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SEIBERG–WITTEN INVARIANTS AND SURFACE
SINGULARITIES. II: SINGULARITIES WITH GOOD C∗-ACTION

ANDRÁS NÉMETHI and LIVIU I. NICOLAESCU

Abstract

A previous conjecture is verified for any normal surface singularity which admits a good C∗-action.
This result connects the Seiberg–Witten invariant of the link (associated with a certain ‘canonical’
spinc structure) with the geometric genus of the singularity, provided that the link is a rational
homology sphere.

As an application, a topological interpretation is found of the generalized Batyrev stringy
invariant (in the sense of Veys) associated with such a singularity.

The result is partly based on the computation of the Reidemeister–Turaev sign-refined torsion
and the Seiberg–Witten invariant (associated with any spinc structure) of a Seifert 3-manifold
with negative orbifold Euler number and genus zero.

1. Introduction

The main motivation for writing this paper was [28], where the authors formulated
a very general conjecture which relates the topological and the analytical invariants
of a complex normal surface singularity whose link is a rational homology sphere.

Let (X, 0) be a normal two-dimensional analytic singularity. From a topological
point of view, it is completely characterized by its link M , which is an oriented
3-manifold. Moreover, by a result of Neumann [30], any decorated resolution graph
of (X, 0) carries the same information as M . A property of (X, 0) will be called
topological if it can be determined from M , or equivalently, from any resolution
graph of (X, 0). For example, for a given resolution, if we take the canonical divisor
K, and the number #V of irreducible components of the exceptional divisor, then
K2 + #V is independent of the choice of the resolution, hence it is an invariant of
the link M (cf. Subsection 2.4).

Let us recall some definitions regarding the analytical structure of (X, 0).
Consider the line bundle Ω2

X\{0} of holomorphic 2-forms on X\{0}. If this line
bundle is holomorphically trivial then we say that (X, 0) is Gorenstein. If one of
its powers is holomorphically trivial then we say that (X, 0) is Q-Gorenstein. Let
π : X̃ −→ X be a resolution over a sufficiently small Stein representative X of the
germ (X, 0). Then pg := dim H1(X̃,OX̃) is finite and independent of the choice of
π. It is called the geometric genus of (X, 0).

Our goal is to investigate in which instances one can express the geometric genus
in terms of topological invariants of the link. By the conjecture [28], if the link of a
Q-Gorenstein singularity is a rational homology sphere, then it determines pg (by
the precise formula (1) below. The conjecture has grown partly from the work of
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Artin on rational singularities [2, 3], and of Laufer, Wagreich, Yau and Némethi
on elliptic singularities [18, 27, 43], and partly from the work of Fintushel and
Stern [10], and of Neumann and Wahl [32] connecting the signature of the Milnor
fiber with the Casson invariant of the link, provided that the link is an integral
homology sphere. The conjecture formulated in [32] about this connection had a
crucial influence on our project. For more details and historical data the reader is
invited to consult [28]. (For a related set of conjectures, see also [33].)

In the conjecture [28], the main new ingredient is the Seiberg–Witten invariant
of the link M associated with a ‘canonical’ spinc structure. We recall (see [28]
and the references therein, or Subsections 2.2 and 2.3 below) that the Seiberg–
Witten invariant associated with any spinc structure σ of M is a rational number
sw0

M (σ). In [28] we introduced a ‘canonical’ spinc structure σcan of M as follows.
The (almost) complex structure on X\{0} induces a natural spinc structure on
X\{0}. Then σcan, by definition, is its restriction to M . The point is that σcan

depends only on the topology of M .
In general, it is very difficult to compute sw0

M (σ) from its original analytic
definition. In this paper we will replace it by the invariant swTCW

M (σ) which is
defined topologically, and conjecturally equals sw0

M (σ) (cf. also [35]); swTCW
M (σ)

is the sign-refined Reidemeister–Turaev torsion of M associated with σ normalized
by the Casson–Walker invariant (see Subsection 2.3). If M is an integral homology
sphere then σcan is the unique spinc structure of M , and −swTCW

M (σcan) is the
Casson invariant of M .

In this paper we prove the conjecture [28] for singularities with good C∗-action.
A complex affine algebraic variety X admits a C∗-action if and only if the affine
coordinate ring A admits a grading A=

⊕
k Ak. Following Orlik and Wagreich,

we say that the action is good if Ak = 0 for k < 0 and A0 = C. This means that the
point 0 corresponding to the maximal ideal

⊕
k>0 Ak is the only fixed point of the

action. Additionally, we assume that (X, 0) is normal. (Notice also that by [29],
if a normal surface singularity admits a good C∗-action and its link is a rational
homology sphere then it is Q-Gorenstein.)

For these singularities we prove the following.

Theorem 1.1. Let (X, 0) be a normal surface singularity with a good C∗-action
whose link is a rational homology sphere. Then

swTCW
M (σcan) − K2 + #V

8
= pg. (1)

In particular, if (X, 0) is Gorenstein and has a smoothing with Milnor fiber F , then
its signature σ(F ) satisfies −swTCW

M (σcan) = σ(F )/8.

The last statement follows from (1) and from the well-known formula 8pg +
σ(F )+ K2 + #V = 0 (valid for smoothings of Gorenstein singularities), see for
example [22]. The proof of (1) is based, in part, on Pinkham’s formula [36] for
pg expressed in terms of the Seifert invariants of the link (cf. also Dolgachev’s work
about weighted homogeneous singularities; see for example [6]). On the other hand,
in the proof we use the formulae for K2 +#V and the Reidemeister–Turaev torsion
determined in [28], and a formula for the Casson–Walker invariant proved in [20].
The Fourier transform of Reidemeister–Turaev torsion is very closely related to
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the (equivariant) Poincaré series associated with the graded coordinate ring of the
universal abelian cover of (X, 0). In the proof we also borrow some techniques used
by Neumann in his investigation of this Poincaré series [29]. Nevertheless, our proof
and results provide new interpretations of several of the coefficients of the Poincaré
series (see Section 4).

The theorem has the following corollary, which can also be applied for
singularities without C∗-action (but with some other type of additional rigidity
properties).

Corollary 1.2. Assume that the link of a normal surface singularity (X, 0)
is a rational homology sphere Seifert 3-manifold. If (X, 0) is rational, or minimally
elliptic, or Gorenstein elliptic, then the identity (1) holds.

Indeed, in the case of these singularities, all the numerical invariants involved
in the conjecture are characterized by the link. Moreover, each family (with fixed
topological type) contains a special representative which admits a good C∗-action.
In fact, the above corollary can automatically be extended to any family of
singularities with these two properties.

The paper is organized as follows. In Section 2 we review the needed definitions
and results. For a more complete picture and list of references the reader is invited
to consult [28]. The first theorem of Section 3 determines the Reidemeister–Turaev
torsion of M (associated with an arbitrary spinc structure) in terms of the Seifert
invariants of M . This result, via equations (2) and (6), provides the complete
Seiberg–Witten invariant of a Seifert manifold with e< 0. This is really remarkable
(even independent of Theorem 1.1), since, in general, Seiberg–Witten computations
are difficult (see for example [26], [35] or [28] for the Seifert case) and only
sporadic cases were completely clarified. The next result, Theorem 3.2, connects
four topological invariants of the link: the Reidemeister–Turaev torsion, the Casson–
Walker invariant, the Dolgachev–Pinkham invariant DPM (which is the topological
candidate for pg), and finally K2 + #V (which can be identified with the Gompf
invariant, cf. Subsection 2.4). This result implies Theorem 1.1 via Pinkham’s result
[36] (cf. equation 2).

Finally, in Section 4, we analyze more closely the relationship with some of the
coefficients of the Laurent expansions appearing in this paper (for example, of the
Poincaré series), provided that (X, 0) is a complete intersection or hypersurface
singularity. In the second case, using some results of Saito [38] and Ebeling [9],
we also give a topological/geometrical interpretation of the (generalized) Batyrev
stringy Euler number [4] (as generalized by Veys in [41]). (This suggests a possible
connection with Arnold’s strange duality and with the mirror symmetry of K3
surfaces, see the comments in [9] and [7].)

2. Preliminaries

2.1. The canonical spinc structure of M

Let (X, 0) be a normal surface singularity. Its link M is a compact oriented
3-manifold. In this paper we assume that M is a rational homology sphere, and
we write H := H1(M, Z).
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The almost complex structure on X\{0} determines a spinc structure on X\{0},
whose restriction σcan ∈ Spinc(M) to M depends only on the oriented C∞ type of
M [28].

2.2. The Seiberg–Witten invariants of M

To describe the Seiberg–Witten invariants one has to consider additional
geometric data belonging to the space of parameters

P = {u = (g, η); g = Riemann metric, η = closed two-form}.
Then for each spinc structure σ on M one defines the (σ, g, η)-Seiberg–Witten
monopoles. For a generic parameter u, the Seiberg–Witten invariant swM (σ, u)
is the signed monopole count. This integer depends on the choice of the parameter
u and thus it is not a topological invariant. To obtain an invariant of M , one needs
to alter this monopole count by the Kreck–Stolz invariant KSM (σ, u), cf. [21] (or
see [17] for the original ‘spin version’). Then, by [5, 21, 23], the rational number

1
8KSM (σ, u) + swM (σ, u)

is independent of u and thus it is a topological invariant of the pair (M,σ). We
denote this modified Seiberg–Witten invariant by sw0

M (σ).
At present there is intense activity to replace the analytic definition of sw0

M by a
topological one. In this paper we will consider the candidate swTCW

M which involves
the sign-refined Reidemeister–Turaev torsion of M .

2.3. The Reidemeister–Turaev torsion and the Casson–Walker invariant

For any spinc structure σ on M , we denote by

TM,σ =
∑
h∈H

TM,σ(h)h ∈ Q[H]

the sign-refined Reidemeister–Turaev torsion associated with σ (see [40]). We think
of TM,σ as a function H −→Q given by h �−→ TM,σ(h). Let λ(M) be the Casson–
Walker invariant of M normalized as in [20, § 4.7]. Then one defines (see for
example [35])

swTCW
M (σ) = − 1

|H|λ(M) + TM,σ(1). (2)

Below we will present a formula for TM,σ in terms of the Fourier transform. For this,
consider the Pontryagin dual Ĥ := Hom(H,U(1)) of H. Then a function f : H −→C

and its Fourier transform f̂ : Ĥ −→C satisfy

f̂(χ) =
∑
h∈H

f(h)χ̄(h), f(h) =
1
|H|

∑
χ∈Ĥ

f̂(χ)χ(h).

It is known that T̂M,σ(1) = 0.

2.4. M as a plumbed manifold

Let π : X̃ −→X be a resolution of the singular point 0∈X such that the
exceptional divisor E := π−1(0) is a normal crossing divisor with irreducible
components {Ev}v ∈V . Let Γ(π) be the dual resolution graph associated with π
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decorated with the self-intersection numbers {Ev · Ev}v. Γ(π) can be identified
with a plumbing graph, and M with a plumbed 3-manifold constructed from Γ(π).
Since M is a rational homology sphere, Γ(π) is a tree and any Ev is rational. Denote
by δv the degree of any vertex v (that is #{w : Ew · Ev = 1}).

Let Dv be a small transversal disc to Ev in X̃. In fact, ∂Dv can be considered
as the generic fiber of the S1-bundle over Ev used in the plumbing construction of
M . Consider the elements gv := [∂Dv] (v ∈ V) in H. It is not difficult to verify that
they generate H.

Next, we define the canonical cycle ZK of (X, 0) associated with the resolution
π. This is a rational cycle ZK =

∑
v∈V rvEv, rv ∈ Q, supported by the exceptional

divisor E, and defined by (the adjunction formula)

ZK · Ev = Ev · Ev + 2 for any v ∈ V.

Since the matrix {Ev · Ew}v,w is non-degenerate, this system has a unique
(rational) solution. We write K2 for ZK ·ZK , and #V for the number of irreducible
components of E. Then K2 + #V does not depend on the choice of the resolution
π; it is an invariant of M .

[One can define on M a canonical contact structure ξcan induced by the natural
almost complex structure on TM ⊕RM with c1(ξcan) torsion (see for example [13,
p. 420]). On the other hand, in [12], Gompf associates with such a contact structure
ξ an invariant θM (ξ). It turns out that θM (ξcan) = K2 + #V − 2 (see [28, 4.8]).]

If (X, 0) is a normal surface singularity with a good C∗-action, then M is a Seifert
3-manifold, and the minimal resolution graph is star-shaped. Hence, it is convenient
to express the topological invariants of M in terms of the Seifert invariants. In
the following subsections we recall briefly some definitions, notations and needed
properties.

2.5. The Seifert invariants [16, 29, 31]

Consider a Seifert fibration π : M −→Σ. In our situation, since M is a rational
homology sphere, the base space Σ has genus zero (Σ ≈ S2).

Consider a set of points {xi}ν
i=1 in such a way that the set of fibers {π−1(xi)}i

contains the set of singular fibers. Set Oi := π−1(xi). Let Di be a small disc in
X containing xi, Σ′ := Σ\

⋃
i Di and M ′ := π−1(Σ′). Now, π : M ′ −→Σ′ admits

sections; let s : Σ′ −→M ′ be one of them. Let Qi := s(∂Di) and let Hi be a circle
fiber in π−1(∂Di). Then in H1(π−1(Di), Z) one has Hi ∼αiOi and Qi ∼−βiOi for
some integers αi > 0 and βi with (αi, βi)= 1. The set {(αi, βi)}ν

i=1 constitutes the
set of (un-normalized) Seifert invariants. The number

e :=−
∑

βi/αi

is called the orbifold Euler number of M . M is a link of singularity if and only
if e < 0. Replacing the section by another one, a different choice changes each βi

within its residue class modulo αi in such a way that the sum e=−
∑

i(βi/αi) is
constant.

The set of normalized Seifert invariants {(αi, ωi)}ν
i=1 are defined as follows. Write

e = b +
∑

ωi/αi (3)
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for some integer b, and 0� ωi <αi with ωi ≡−βi(mod αi). Clearly, these properties
define {ωi}i uniquely. Notice that b� e< 0. In the sequel we assume that ν � 3.
(Recall that for cyclic quotient singularities (1) was verified in [28].)

For each i, consider the continued fraction αi/ωi = bi1 − 1/(bi2 − 1/(. . . − 1/
biνi

) . . .). Then (a possible) plumbing graph of M is a star-shaped graph with
ν arms. The central vertex has decoration b and the arm corresponding to the
index i has νi vertices decorated by −bi1, . . . ,−biνi

(the vertex decorated by −bi1

is connected by the central vertex).
We will distinguish those vertices v ∈ V of the graph which have δv �= 2. We

will denote by v̄0 the central vertex, and by v̄i the end-vertex of the ith arm for all
1 � i � ν. Then gv̄0 is exactly the class of the generic fiber. The group H has the
presentation

H = ab

〈
gv̄0 , gv̄1 , . . . , gv̄ν

∣∣∣∣ g−b
v̄0

=
ν∏

i=1

gωi
v̄i

, gv̄0 = gαi
v̄i

for all i

〉
. (4)

Let α := lcm(α1, . . . , αν). The order of the group H and the order o of the
subgroup 〈gv̄0〉 can be determined by (cf. [29])

|H| = α1 . . . αν |e|, o := |〈gv̄0〉| = α|e|. (5)

2.6. Invariants computed from the plumbing graph

In the sequel we will also use Dedekind sums. They are defined as follows [37].
Let �x� be the integer part, and {x} := x − �x� the fractional part of x. Then

s(h, k) =
k−1∑
µ=0

((
µ

k

))((
hµ

k

))
,

where ((x)) denotes the Dedekind symbol

((x)) =
{{x} − 1/2 if x ∈ R \ Z

0 if x ∈ Z.

Assume that M is a Seifert manifold with e < 0 and genus zero. Then one has the
following formulae for some of its invariants.

(1) The Casson–Walker invariant [20, (6.1.1)]:

− 24
|H|λ(M) =

1
e

(
2 − ν +

ν∑
i=1

1
α2

i

)
+ e + 3 + 12

ν∑
i=1

s(βi, αi). (6)

(2) K2 + #V [28, (5.4)]:

K2 + #V =
1
e

(
2 − ν +

ν∑
i=1

1
αi

)2

+ e + 5 + 12
ν∑

i=1

s(βi, αi). (7)

(3) The coefficient r0 of Ev̄0 in ZK (see for example [28, 5.2 and 5.5]):

r0 = 1 +
1
e

(
2 − ν +

ν∑
i=1

1
αi

)
. (8)

R := r0 − 1 is called the ‘exponent of (X, 0)’, and −R the ‘log discrepancy of Ev̄0 ’.
Some authors (see for example [29]) prefer to use the notation χM := 2 − ν +∑ν

i=1(1/αi) = eR as well.
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(4) The Reidemeister–Turaev sign-refined torsion: For any χ ∈ Ĥ (and t ∈ C)
set

P̂χ(t) :=

(
tαχ

(
gv̄0

)
− 1

)ν−2∏ν
i=1

(
tα/αi χ

(
gv̄i

)
− 1

) . (9)

Recall that Spinc(M) is an H-torsor. For an arbitrary σ ∈ Spinc(M) take the unique
hσ ∈ H so that hσ · σcan = σ. Then, by [28, 5.7, 5.8], one has

T̂M,σ(χ̄) = χ̄(hσ) · lim
t→1

P̂χ(t) for any χ ∈ Ĥ \ {1}. (10)

(5) The geometric genus of (X, 0): Let M be a Seifert manifold with e < 0 and
Seifert invariants as above. Define the Dolgachev–Pinkham (topological) invariant
of M by

DPM :=
∑
l�0

max

(
0 , −1 + lb −

ν∑
i=1

⌊
−lωi

αi

⌋ )
. (11)

Assume that (X, 0) is a normal surface singularity with a good C∗-action (see for
example [36]) such that its link M is a rational homology sphere. Then, by [36,
(5.7)]

pg(X, 0) = DPM . (12)

3. The main results

In [28] (cf. (9), (10)) we determined the Fourier transforms T̂M,σ(χ) (χ �= 1) of
the Reidemeister–Turaev torsion of M in terms of a regularization limit. The first
theorem of this section provides TM,σ (for any spinc structure σ) in terms of the
Seifert invariants of M .

Theorem 3.1. Assume that M is a Seifert 3-manifold with e < 0 and genus
zero. Fix an arbitrary spinc structure σ ∈ Spinc(M) characterized by hσ · σcan =
σ. Write hσ as ga0

v̄0
ga1

v̄1
. . . gaν

v̄ν
for some integers a0, a1, . . . , aν . Finally, define ã :=

α · (a0 +
∑

i ai/αi). Then

1
|H|

∑
χ∈Ĥ

χ̄(hσ)P̂χ(t) =
∑

l�−ã/o

max
(

0 , 1 + a0 − lb +
ν∑

i=1

⌊
−lωi + ai

αi

⌋ )
tol+ã.

Therefore,

TM,σ(1) = lim
t→1

( ∑
l�−ã/o

max
(

0, 1+ a0−lb+
ν∑

i=1

⌊
−lωi + ai

αi

⌋)
tol+ã− 1

|H| · P̂1(t)

)
.

In particular, for σ = σcan or for hσ = 1, one can take a0 = a1 = . . . = aν = ã = 0;
hence

TM,σcan(1) = lim
t→1

(∑
l�0

max
(

0 , 1 − lb +
ν∑

i=1

⌊
−lωi

αi

⌋)
tol − 1

|H| · P̂1(t)
)

.

Proof. Notice that there is a ‘mysterious’ similarity between our formula (9),
(10) for the Fourier transform of the Reidemeister–Turaev torsion, and the formula
[29, 4.2] of Neumann of the Poincaré series of the graded affine ring associated
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with the universal abelian cover of (X, 0). The idea of the next proof is based on
Neumann’s computation of this graded ring in [29, p. 241].

Using the identity gαi
v̄i

= gv̄0 in H (cf. (4)), first write χ̄(hσ)P̂χ(t) as

χ̄(hσ) ·
(
1 − tαχ

(
gv̄0

))−2 ∏
i

1 −
(
tα/αi χ

(
gv̄i

))αi

1 − tα/αi χ
(
gv̄i

)
= χ̄(hσ)

( ∞∑
s0=0

(1 + s0)χ
(
gv̄0

)s0
tαs0

)
·
∏

i

αi−1∑
si =0

tsi α/αi
(
χ
(
gv̄i

))si

=
∑

(1 + s0) tαs0+
∑

i αsi /αi χ
(
gs0−a0

v̄0
gs1−a1

v̄1
. . . gsν −aν

v̄ν

)
,

where the (unmarked) sum is over s0 � 0 and 0� si <αi for each i. However∑
χ∈Ĥ χ(h) is non-zero only if h = 1, and in that case it is |H|. Using the group

structure (4) one finds that all the relations in H have the form

gl1+...+lν −lb
v̄0

∏
i

g−ωi l−αi li
v̄i

= 1,

where l1, . . . , lν and l are integers. Therefore, gs0−a0
v̄0

gs1−a1
v̄1

. . . gsν −aν
v̄ν

= 1 if and
only if s0 = a0 + l1 + . . . + lν − lb and si = ai − ωil − αili (1 � i � ν) for some
integers l1, . . . , lν , l. Since 0 � si < αi one obtains

li =
⌊
−lωi + ai

αi

⌋
.

In particular,

1 + s0 = 1 + a0 − lb +
∑

i

⌊
−lωi + ai

αi

⌋
,

and only those integers l are allowed for which this number 1 + s0 is � 1. It is easy
to see that this cannot happen for l < −ã/o. Indeed, for such an l (cf.(5)),

a0 − lb +
∑

i

⌊
−lωi + ai

αi

⌋
� a0 − lb +

∑
i

−lωi + ai

αi
=

ã + lo

α
< 0.

The exponent α(s0 +
∑

i si/αi) of t is −lαe+ ã = lo+ ã again by (5). Finally, recall
that T̂M,σ(1) = 0 (cf. Subsection (2.3)); hence TM,σ(1) follows from the Fourier
inversion (Subsection 2.3 and (10)).

Theorem 1.1 is a consequence of the following key identity.

Theorem 3.2. Let M be a Seifert 3-manifold with e < 0 of genus zero (that is,
M is a rational homology 3-sphere). Then the invariants TM,σcan(1), λ(M), K2+#V
and DPM are connected by the identity

TM,σcan(1) − λ(M)
|H| =

K2 + #V
8

+ DPM .

The proof is carried out in several steps.
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Corollary 3.3. Theorem 3.1 implies that

TM,σcan(1) − DPM = lim
t→1


∑

l�0

(
1 − lb +

ν∑
i=1

⌊
−lωi

αi

⌋ )
tol − 1

|H| · P̂1(t)


.

Proof. Use (11), Theorem 3.1 and the identity max(0, x) − max(0,−x) = x.

On the right-hand side we have a difference of two series, both having poles of
order two at t = 1. The following results provide their Laurent series at t = 1. In
fact, we prefer to expand the series in terms of the powers of to−1 (instead of t−1).

Proposition 3.4. Recall the definition of χM after (8). Then

∑
l�0

(
1 − lb +

ν∑
i=1

⌊
−lωi

αi

⌋)
tol =

−e

(to − 1)2
+

−e − χM/2
to − 1

+
2−χM

4

+
ν∑

i=1

s(βi, αi) + R(t),

with limt→1 R(t) = 0.

Proof. The first step is as in [29, p. 241]. The left-hand side of the equation,
via (3) becomes

∑
l�0

(
−le +

χM

2

)
tol +

ν∑
i=1

∑
l�0

(
−

{
−lωi

αi

}
+

αi − 1
2αi

)
tol.

Evidently ∑
l�0

(
−le+

χM

2

)
tol =

−eto

(1 − to)2
+

χM/2
1 − to

,

which gives the non-holomorphic part. The second contribution is a sum over 1 �
i � ν.

For each fixed i, write l =αim + q with m� 0 and 0� q < αi. Using the notation∑
q :=

∑αi−1
q=0 and

∑′
q :=

∑αi−1
q=1 , the ith summand is

∑
q

(
−

{
−qωi

αi

}
+

αi − 1
2αi

) ∑
m�0

toαi m+oq =

∑
q

(
−

{
−qωi

αi

}
+

αi − 1
2αi

)
toq

1 − toαi
.

Separating the two cases q = 0 and q > 0, and using the definition of the Dedekind
symbol and the identity {−x} = 1 − {x} for x �∈ Z, this is transformed into

A(t) :=

αi − 1
2αi

+
′∑
q

((
qωi

αi

))
toq − 1

2αi

(
to + t2o + . . . + t(αi−1)o

)
1 − toαi

.

By L’Hospital’s theorem (and some simplifications),

lim
t→1

A(t) = −
∑

q

′
((

qωi

αi

))
q

αi
+

αi − 1
4αi

.
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Since
∑′

q((qωi/αi))= 0 and ωi ≡−βi (mod αi), the result follows from the
definition of the Dedekind symbol and the Dedekind sums.

Remark 3.5 (cf. also [29, p. 242]). In fact,

∑
l�0

(
1− lb +

ν∑
i=1

⌊
−lωi

αi

⌋)
tol =

−e

(to − 1)2
+

−e − χM/2
to − 1

+
ν∑

i=1

1
αi

∑
ξ∈Zα i

′ 1
(1 − ξ)(1 − ξωi to)

,

where the last sum is over ξαi = 1, ξ �= 1. Since we do not need this statement now,
we will skip its proof. The interested reader can prove it easily using the expression
A(t) above and property (16c) of the Dedekind symbol from [37, p. 14].

Proposition 3.6. P̂1(t)/|H| has the Laurent expansion

P̂1(t)
|H| =

−e

(to − 1)2
+

−e − χM/2
to − 1

+ E + Q(t),

where limt→1 Q(t) = 0 and

E := − (e + 1)(e + 5)
12e

+
1
4

∑
i

(
1 − 1

αi

)
+

1
12e

∑
i

(
1 − 1

αi

)(
4 +

1
αi

)

− 1
4e

∑
i<j

(
1 − 1

αi

)(
1 − 1

αj

)
.

Proof. First notice that one has the Taylor expansion

tγ − 1
tτ − 1

=
γ

τ
+

γ

2oτ
(γ − τ) · (to − 1) +

γ

oτ
(γ − τ)

(
2γ − τ

12o
− 1

4

)
· (to − 1)2 + . . . .

Now, use this formula ν + 2 times in the expression

P̂1(t) =
1

(to − 1)2
·
(

to − 1
tα − 1

)2

·
∏

i

tα − 1
tα/αi − 1

.

A long (but elementary) computation, together with (5), gives the result.

Proof of Theorem 3.2. Apply (6) and (7), respectively Corollary 3.3,
Proposition 3.4 and Proposition 3.6.

Corollary 3.7. Assume that (X, 0) is Gorenstein and admits a smoothing
with Milnor fiber F . Then the topological Euler characteristic χ(F ) of F satisfies

2 · χ(F ) = 24 · TM,σcan(1) +
1
e

(
2 − ν +

∑
i

1
α2

i

)
− 1

e

(
2 − ν +

∑
i

1
αi

)2

.

(Notice that the first Betti number of F is zero because of [15]. Hence χ(F ) = 1+µ,
where µ is the Milnor number of the smoothing.)

Proof. By the generalization of Steenbrink [39] of Laufer’s formula [19] one has
µ = 12pg + K2 + #V. Then use Theorem 1.1 (or Theorem 3.2) and (6), (7).
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Assume that in Corollary 3.7 one has |H| = 1. Then in the identity TM,σcan(1) =
0, and −1/e = α =

∏
i αi; cf. (5). Moreover, in this case, by [29], (X, 0) is a

Brieskorn–Hamm complete intersection X(α1, . . . , αν). For such singularities the
Milnor number is computed in [14, (3.10.b)]. This formula agrees with our identity
(simplified for |H| = 1).

4. Examples

4.1. The Poincaré series

Let (X, 0) be a normal singularity with a good C∗-action and affine graded
coordinate ring A=

⊕
kAk. Then its Poincaré series is defined by p(X,0)(t)=∑

k dim(Ak)tk. The point is that the last expression from Theorem 3.1 involves
exactly p(X,0)(to), provided that the genus of (X, 0) is zero. More precisely (cf. [29,
p. 241]),

p(X,0)(t) =
∑
l�0

max

(
0, 1 − lb +

ν∑
i=1

⌊
−lωi

αi

⌋)
tl.

Moreover, if (Xab, 0) denotes the universal abelian cover of (X, 0), then p(Xab ,0)(t) =
P̂1(t) (cf. [29, p. 240]). Therefore, Theorem 3.1 reads as

TM,σcan(1) = lim
t→1

(
p(X,0)(to) − p(Xab,0)(t)/|H|

)
. (13)

Notice that for many special families, the Poincaré series p(X,0)(t) is computed very
explicitly, see for example [42]. For p(Xab ,0)(t) = P̂1(t) one can use the expression
(9) which provides it in terms of the Seifert invariants of M .

Notice that both Poincaré series are rational functions with pole of order 2 at
t = 1 (the Laurent expansion of P̂1(t) is given in Proposition 3.6). In the following
examples we will emphasize the first three terms of the corresponding Laurent
expansions.

4.2. Complete intersections

The above formula provides p(X,0)(t) in terms of the Seifert invariants.
Nevertheless, if (X, 0) ⊂ (Cn, 0) is a complete intersection with weights q1, . . . , qn

(where gcd(q1, . . . , qn)= 1) and degrees d1, . . . , dn−2, then one also has (cf. for
example with [42])

p(X,0)(t) =
∏n−2

i=1 (1 − tdi )∏n
j=1(1 − tqj )

.

Similarly as in Proposition 3.6, one can determine its Laurent expansion at t = 1,

p(X,0)(t) =
∏

i di∏
j qj

[
1

(t − 1)2
+

∑
i di −

∑
j qj + 2

2(t − 1)
+ F + U(t)

]
,

where limt→1 U(t) = 0 and

F := 1
6

∑
i

d2
i + 1

4

∑
i<j

didj + 1
4

∑
i

di + 1
12

∑
j

q2
j + 1

4

∑
i<j

qiqj − 1
4

∑
j

qj

− 1
4

∑
i,j

diqj + 1
12 .
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By (13), the coefficients of (to −1)k (k =−2,−1) of p(X,0)(to) and P̂1(t)/|H| should
agree. By this (and Proposition 3.6), we recover two identities well known by
specialists (see [8], or [42] for the hypersurface case):

−e =
∏

i di/
∏

j qj and R =
∑

i di −
∑

j qj ,

where R is the ‘exponent of (X, 0)’, see (8). On the other hand, the interpretation
of the coefficients of (to − 1)0 as the Reidemeister–Turaev torsion is the novelty of
the present paper:

TM,σcan(1) = −e · F − E,

where F is given above and E in Proposition 3.6.

4.3. Hypersurface singularities

Assume that (X, 0) ⊂ (C3, 0) is a hypersurface weighted homogeneous singularity
whose link is a rational homology sphere. Then (13) can be rewritten in a rather
surprising form. Denote by ∆(t) the characteristic polynomial of the algebraic
monodromy operator. By a recent result of Ebeling [9], ∆(t) is in a very subtle
relationship with p(X,0)(t). In order to explain this, we need to recall Saito’s duality
[38].

Fix an integer h > 0 and assume that φ(t) is a rational function of the form

φ(t) =
∏
m|h

(1 − tm)χm. (14)

Then Saito in [38] defined a dual rational function (with respect to the integer h)
by

φ∗(t) =
∏
k|h

(1 − tk)−χh/k .

In this paper we wish to eliminate the dependency of the duality on the integer h,
and we will use the following principle. If φ(t) is a rational function of the form∏

m(1 − tm)χm , then we take h = h(φ) := lcm{m : χm �= 0}, and we define φ∗(t)
using this h = h(φ). It is not difficult to prove that if gcd{m : χm �= 0} = 1 then
h(φ∗) = h(φ) and φ∗∗(t) = φ(t).

Let M be the link of (X, 0) with Seifert invariants as above. Following Ebeling,
we write

ψ(t) := (1 − t)2−ν
ν∏

i=1

(1 − tαi ),

and φ(t) := p(X,0)(t) ·ψ(t). Notice that ∆(t) can always be written in the form (14)
with gcd{m : χm �= 0} = 1 (in fact, χ1 �= 0, cf. [1]). Then by [9], φ also has the
form (14), and

∆(t) = φ∗(t) or ∆∗(t) = φ(t).

[In [9] it is not explicitly stated that h = h(φ), but it can be verified using [25].]
This has the following connection with our result. Notice that ψ∗(t) = P̂1(t) and

by (13)

TM,σcan(1)= lim
t→1

[
φ(to)ψ−1(to)− 1

|H|ψ
∗(t)

]
= lim

t→1

[
φ(to)− 1

|H|ψ
∗(t)ψ(to)

]
·ψ−1(to).
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Since

lim
t→1

ψ−1(to)(to − 1)2 = lim
t→1

(to − 1)ν∏
i(tαi o − 1)

=
∏

i

1
αi

=
|e|
|H|

via Ebeling’s result and ψ∗(t) = P̂1(t), one obtains

TM,σcan(1) =
|e|
|H| · lim

t→1

∆∗(to) − P̂1(t)P̂ ∗
1 (to)/|H|

(to − 1)2
. (15)

In the following expressions it is convenient to introduce the notation

Rp := (−e)min{p,0} ·
(

2 − ν +
∑

i

αp
i

)
, p ∈ Z.

For example, R−1 = −R (cf. (8)). Similarly as in Proposition 3.6, one can write the
Taylor expansion at t = 1 (with respect to to − 1):

1
|H| P̂1(t)P̂ ∗

1 (to) =
1
|H|

(
1 − tα

1 − to

)ν−2

·
∏

i

1 − toαi

1 − tα/αi

= |H|
(

1 + X1(to − 1) +
2X2 + X2

1

2
(to − 1)2 + . . .

)
where

X1 := 1
2 (R1 − R−1), X2 := 1

24 (R2 − R−2) − 1
4 (R1 − R−1).

Therefore, by (15),

∆∗(t)
|H| = 1 + X1(t − 1) +

(
2X2 + X2

1

2
− 1

e
TM,σcan(1)

)
(t − 1)2 + . . .

In this expansion, the first term, namely ∆∗(1)= |H|, is not very deep; it can also
be deduced from the definition of Saito’s duality and from ∆(1)= |H|. However,
the second term has an interesting interpretation. If we examine our list in
Subsection 2.6, we realize that the numerical expression R1 is not involved in it,
but it is involved in the stringy Euler number computation of Veys [41, (6.4)].
More precisely, let est denote Batyrev’s stringy Euler characteristic of (X, 0) (cf.
[4]) as generalized by Veys in [41]. It can be defined by the resolution of (X, 0), and
a possible geometrical/topological interpretation was sought. For our germ (X, 0)
(provided that it is not strictly log canonical), [41, (6.4.ii)] reads as est = −R1/R.
Hence, our result provides

d∆∗

dt
(1) = |H| · R · (1 − est)/2.

Finally, the next Taylor coefficient of ∆∗(t) involves TM,σcan(1) (and also R2, for
which we know no other geometrical interpretation).

We end with the following remark. It is interesting to compare the Taylor
expansions

∆∗(t)
|H| = 1 +

R

2
(1 − est)(t − 1) + . . . and

∆(t)
|H| = 1 +

µ

2
(t − 1) + . . . .

Here µ is the Milnor number of (X, 0) (and the second expansion follows easily
from [1]). This shows that the Milnor number, respectively R(1 − est), correspond
to each other via some duality (which extends Arnold’s strange duality).

For another application of [9] (in the spirit of the present paper), see [24].
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forms and related topics, Progress in Mathematics 160 (ed. M. Kashiwara, A. Matsuo, K.
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