AN INVITATION TO TAME GEOMETRY
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1. GOALS

e Describe large categories of nice spaces and maps.
e Describe some of the nice properties of these nice spacesapsl
e Describe nice applications of these nice spaces and maps.

2. "REASONABLE” CATEGORIES OF SPACES
The spaces belonging to reasonable cate§atyould be subsets of some Euclidean space so that

S = U 8™, 8™ = the collection of spaces idiwhich are subsets &".
n>1

Via the inclusionsR™ — R™*+! we can regar@” as a subcollection &§"*!. A reasonable category
should satisfy the following requirements.

E. The collection8™ contains all the real algebraic subsetsidf, i.e., the subsets described by
finitely many polynomial equations.

E. The collectionS™ contains all the closed affine halfspaces.

P;. The collectionS™ is closed under all the boolean operatioans), \, i.e.,

A,Be8" = AUB,ANB,A\ Be§"
Py. If Ac 8™ andB € 8" thenA x B € §™",
Ps. If Ae 8 andT : R™ — R"is an affine map, thei'(A) € 8".

M. If A, B € 8 then anS-morphismA — Bis amapf : A — B such thatits grapli; ¢ A x B
belongs tcs.
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We will refer to the sets i§ asS-definableor constructible setsand to the morphisms aefinable
or constructible maps

3. CONNECTION WITH HUMAN LANGUAGE

The boolean operations, N, \ correspond to the logical operators AND, OR, NORz/, —. The
projectionw : A x B — B corresponds to the existential quantifterFor example, iZ ¢ A x B,
thenw(Z) can be described as

Z={acA; FbeB; (a,b)eZ}.
Note that the universal quantifier can pe expressed as a &mpo-d—. We obtain the following
metaprinciple

If § is a reasonable category and a sétis defined by a statement involving only the basic logic
operators and-definable sets, theA is also8 definable.

Example 3.1. Suppose that is a reasonable categorf,: A — B is 8-definable, and’ C B is also
definable. Then

FHS)={ac A IseS; (a,8)ely}
is definable. Note that ii € R"™, andey then the map
F:R" 5 R, F(z)=|z—al? -
is definable since it is a polynomial. The set= (0, co) is definable because it is the complement

of a closed halfspace and thiis ! (S) is definable. Note that this set is precisely the open Euatide
ball B, (¢) of centera and radiug. O

Example 3.2. Supposed € 8™, B € 8™. Consider the set
Ag:={a€ 4; (a,b) e AxB, Vbe B}.
Then
A\Ag={acA; BbeB; (a,b)g Ax B} =n(R"™\ (4AxB)),
wherer : R™ x R™ — R denotes the natural projection. This shows thgis S-definable. O

Example 3.3. SupposeS is a reasonable category, adde S8™. We denote by:l(A) its closure in
R™. Observe that

c(A) = {z € R"; Ve € (0,00),3a € AN By(e) }.

We can rewrite the above description by saying ¢a#l consists of al: € R™ such that the follow-
ing statement is true

V5(5>0:>E|a(a6A)/\(|az—a|<e)).

This shows thatl(A) is 8-definable because the logical operatprcan also be rewritten ag—. O

4. EXAMPLES OF REASONABLE CATEGORIES

Example 4.1 (Semialgebraic sets)Consider the collectio,;, consisting ofsemialgebraicsubsets.
More precisely

N
A€, = A= UAk’
k=1
where for evenyk = 1, ..., N the setd;, described by finitely many polynomial inequalities.
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A theorem of Tarski-Seidenberg (1950’s) states thg} is a reasonable category, and in fact, it
is the smallestreasonable category. Observe that everyAet S, is a finite union of intervals
(possible of infinite or zero length). O

Example 4.2. (a) Suppose tha is a reasonable category, add is a collection of subsets @&*.
We setA := UgA, and we denote b§[A| the smallest reasonable category contairfirand all the
collectionsA*. We say tha8[A] is the category obtained frofby adjoining the collectiomd.

(b) We denote bys,, the category obtained fro,;, by adjoining the graphs of real analytic
functions

f:00,1]" = R.

The sets obtained in this fashion are calkdanalytic setgnd first appeared in the works of A.
Gabrielov, R. Hardt and H. Hironaka in late 60s and early 70s.

(c) We denote b)gan the smallest reasonable categ8rgontainings.,,, and satisfying the prop-
erty:

If £:(0,1) — Ris C! and8-definable then so are its antiderivatives

Note thatS.,, C gan becauséog t is an antiderivative ot /¢ sologt is gan—definable, and! is
the inverse ofog ¢ and thus it is alséan-definable. O

5. TAME CATEGORIES

A reasonable categowyis calledtameor o-minimal (order minimal) if it satisfies the condition
T. Any setA c 8! is a finite union of intervals.

Example5.1. (a) The Tarski-Seidenberg theorem in the 50s implies tleat#tegons,, is tame.
(b) Work of Garbrielov, Hardt, Hironaka in the 70s impliesit§,,, is tame.
(c) Work of Khovanski and Wilkie in the 90s implies th&, is tame. a

In the sequel we will refer interchangeably to the spacegajnas tame, or definable or, con-
structible. Let us point out that any compact real analytmnifold is a tame set.

6. PROPERTIES OF TAME SETS AND MAPS

We list some nice properties of tame sets and maps. For pnaofefer to [, 2].
(1) If f£:(0,1) — R is a tame map (not necessarily continuous, then for anyipesittegerp
there exists a patrtition
O=agy<a < <ay=1, N:N(p)

such that the restriction gf to every subintervalay, ax1) is of classC? and weakly mono-
tone.

(2) Supposed, B ¢ R are compact tame sets affid: A — B is a tame map. Therf is
continuous if and only if its graph is a closed subsetiot B.

(3) Any tame se#4 is a disjoint union of finitely many real analytic subsets

N
A= 5 6.1)
k=1

If we definedim A = max dim S}, then the dimension ofl is independent of the choice of
stratification 6.1). Moreover

dim A > dim(cl(A) \ A).
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4 If f: A— Bisacontinuous map then there exists a finite partitiof afto finitely many
real analytic manifold$3 = |_|]/<;V:1 By, such that each of the mags: f~'(B) — By is a
tamely trivial fiber bundle. In particular, there can be ofihjtely many topological types
amongst the fibers of. (See FigL.)

FIGURE 1. A piecewise fibration.

(5) Any tame setA can be triangulated which means that there exists (faifA; },c;) where
F is a tame homeomorphism from to a tame subset/ of some Euclidean spade”
and {A;};c; is afinite family of mutually disjoint affine open simplices R, of various
dimensions, such that

M=[]JA;

i€l
and for everyi, j € I the intersectiorel(A;) Nel(A;) is either empty, or it is a common face
of cl(A;) andel(Aj).

7. EULER CHARACTERISTIC

Supposed is a tame set. For any triangulatiOn= (F, {A; }icr). we set

Xi(T) = Y (~)Tm A
iel
The integerx, (7) is independent of the triangulatian and it is called théame Euler characteristic
of A. If Ais atame locally compact subsetl®? then

xi(4) =3 HE(AR),
k>0

where H? denotes the cohomology with compact supports. Equivalegtl(A) is the Euler char-
acteristic of the Borel-Moore homology of. Theo-minimal Euler charateristic isot a homotopy
invariant. For example, if is the open inteval0, 1) thenx, (1) = —1.

We say that two tame setsand B arescissor equivalenit there exists a tame, but not necessarily
continuous, bijectiorf : A — B. We have the following fundamental result of Lou van der Brie

Scissor Principle. Two tame setsl and B are scissor equivalent if and only if they have the same
dimension and the same tame Euler characteristic.

Note that the scissor principle implies that if two tame sets tamely homeomorphic then they
have the same Euler characteristic.
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8. “"MOTIVIC” INTEGRATION

For every tame sek we denote byTx the collection of tame subsets &f. Suppos&5 is an
Abelian group. AG-valuationon X is a mapu : Ty — G such that ifA, B are two tame subsets of
X then

Y(AUB) =¢(A)+¢(B) —p(ANB), YA, B € Tx.

Example 8.1. The tame Euler characteristic iZavaluation. O

Example 8.2. For everyA € Tx we denote by, : X — Z the characteristic function od

o -{y 254

We denote by x the Abelian subgroup of the additive grobfap (X, Z) generated by the charac-
teristic functions of tame subsets. The functiong inare callecconstructible Note thatf : X — Z
is constructible if and only if its range is finite, and for eye ¢ Z the level setf ~!(n) is tame. We

have
f = Z n]Ifq(n).

neL
From the equality

Taup =1a +1p — lanB
we deduce that the map
H:‘Tx—>ex, A'—)HA

is aCx-valuation onX called theuniversal valuationon Tx. Note that any morphism of groups
® : Cx — G defines a-valuationyp on X given by

©(A) =®(1y), VA€ Tx. O
We have the following fundamental theorem]. [

Groemer Extension Theorem. For everyG-valuationp on X there exists a unique morphism of
Abelian groupsb : Cx — G such that

p(A) = ®(1a).
The morphismd extending the valuatiop is called theintegral with respect to the valuatiop, and

for every f € Cx we set
[ tdo= [ sap =2,
X

We deduce that the Euler characteristic defines a linear @aap—~ Z called theintegral with
respect to the Euler characteristit.et us point out that the construction — Cyx is bi-functorial.
Any tame mapr : X — Y induces a pullback morphism

™ :Cy = Cx, Cydf—a"f:=fomeCx.

Suppose now that : X — Y is a tame continuous map. For everg Y we setd, := AN 1(y)
We define a map

e ITx = Cy, Tx D A W*(A),

T (4) € €, m(A)(y) = xu(Ay) = /X Lo Lad x, = / L.

T 1(y)
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Sincer| 4 is a piecewise fibration we deduce that the functioA) is indeed constructible. Note
also that ifA B are two disjoint tame subsets &f then the setsl, and B, are disjoint for everyy
so that

Xt (Ay U By) = x(Ay) + x:(By)
which shows that the mapxy — Cy is aCy-valuation. We obtain in this fashion a morphism of
Abelian groupsr, : Gy — Cx called theintegration along fibersFor f € Cx we have

o f(y) = /X L1y fdx; = / .
w1y

The operations* andr, satisfy several desirable properties first formulated bgti@ndieck while
working with coherent sheaves.

Functoriality. If X &Y % 7 are tame continuous maps then

(Boa)=pfioay, (foa)'=a"op"
Projection formula. If o : X — Y is a tame continuous mape Cx andg € Cy then
a.(f-a*(g)) = ax(f) g
Base change formula. If X % S andT’ i S are tame continuous map and we define
TxsX:={(t,x) eT x X; B(t) =p(x)},
then we have a commutative (cartesian) diagram

TxgX X x

T p

T S

and
B* o pe = (m7)s 0 TX.
9. INTEGRAL KERNELS AND TRANSFORMS

SupposeX andY are tame sets. Aimtegral kernelfrom X toY is a functionK € Cy x. Given
such a kernel we define a linear map

Ik : GX — ey, GX > f — (Wy)*(ﬂ}(f) . K) S ey

wherery : X xY — X andny : X x Y — Y are the natural projections. The linear nfapis
called theintegral transform defined by the kernkl. We will represent it as a “roof”

N

More intuitively, for anyf € Cx, the integral transforniix f is a constructible function olr” such
that

Tk f(y /Ky, 2)d ().

The following result follows rather easily from the propestof the pushforward and the pullback.
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Composition formula. If Sy, S, S, are tame setdS 1y € Cg, x5,, K21 € Cs,x5,, then
jK21 Oij = jK21='<K10
where

Ko« Kqo(s2,s0) = : K1 (s2,51)K10(s1, 50)d X (51)-
1

More rigorouslyK oy = Ko * K is given by the equality
Ky = ({5 Ko1 - 10K 10),

where

(Sg X Sl) Xsl (Sl X So)

L2y ‘/ 710
s

10. TOPOLOGICAL TOMOGRAPHY

Denote byGraff!(R") the Grassmannian of affine hyperplane®ih This is a constructible set.
Note that the lines ifR? are hyperplanes iR2.

The classical Radon transform associates to a fungtioR? — R a function® f on Graff'(R!)
such that the value dRf on the lineL is equal to the integral of along the lineL. The classical
Radon inversion formula allows the reconstructionfdfom its Radon transform. In particular, ff
is the characteristic function of a bounded opertset R?, then we can completely reconstriigif
we know the length of the intersection of any lihewith the region(.

We want to show that {2 is a compact tame set, then we aampletely reconstruct if we know
only the number of connected components of the intersecti@wath any line.

We have a natural constructible set

A={(H,z) € Graff'(R") xR"; H>z}

We regard the characteristic function.éfas a kernel fronR™ to Graff'(R"™), and we denote bR,
the associated integral transform. Let us comtéls), whereS C R” is a tame set. We look at
the integral transform given by the roof

(Graff'(R™) x R", T4)
/ \
Graff!(R") R™
Note thatp*(Is) is the characteristic function of the set
Ag = {(H,z) € Graff'(R") xR"; z€ SNH}
Then, for anyH, € Graff!(R") we have a homeomorphism
)\_1(H0) NAg > (HQ,SL') —xe HynS.
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We deduce that

A(Tag)(Ho) = x(Ho N S).
Hence

Rp(Is) : Graff!(R") — Z
is given by

Ro(La) = X, (H N S) = / Tnsd X,
Rn

so thatR,, is a topological version of the Radon transform. More gdherfar every hyperplangd
we have

R, f(H) = /R Iy fdx;.
Consider now the dual set
Al :={(2,H) € R" x Graff'(R"); =€ H,},

and denote by}, : Carafri ) — Crr the integral transform defined by the keriigl. We have the
following result due to A. Khovaskii and P. Schapira.

Inversion Formula. For anyf € Cr» We have

R0 Ry (f) = (-1 4 HECD ( [ fix ) In-

We can expres$ fd x. in terms of the Radon transforfi, f as follows. Consider the linear map
m:R" =R, (z},...,2") — 2l

The fiber ofr overt € R is the hyperplanéd, given by the equation' = t.
Denote byc; the constant mag* — {x}. Note thatC, = Z

(@) = [ Fixi, Vf €
On the other hand,
Fdxe = (e)a(f) = (1) 0 m(f) = / (ma ) (D x4 (8):
R R

Now observe that

T f (1) = /Rn L1 fdx, = /Rn Ly, f = Rn(Hy).

Hence
[ = [ Rasmiaxo).
so that
F= ()R, o Ry() + U ( [ Rastmiaxi o )
R
If we define

B={(z,H) € R" x Graff'(R"); H=nr""(n(z))}
then we deduce that

/[R R f(H)A X (£) = 1y (R f)-
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Finally if we set
n 1+ (=1
K = (—1) +1]IAT + #HB G eRnXGraﬁl(R”)
then we deduce that

Ik oRn(f)=f, Vf € Crn.
This proves that the Radon transform is injective.
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