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1. GOALS

• Describe large categories of nice spaces and maps.
• Describe some of the nice properties of these nice spaces andmaps.
• Describe nice applications of these nice spaces and maps.

2. “REASONABLE” CATEGORIES OF SPACES

The spaces belonging to reasonable categoryS should be subsets of some Euclidean space so that

S =
⋃

n≥1

S
n, S

n = the collection of spaces inS which are subsets ofRn.

Via the inclusionsRn →֒ R
n+1 we can regardSn as a subcollection ofSn+1. A reasonable category

should satisfy the following requirements.

E1. The collectionSn contains all the real algebraic subsets ofR
n, i.e., the subsets described by

finitely many polynomial equations.
E2. The collectionSn contains all the closed affine halfspaces.
P 1. The collectionSn is closed under all the boolean operatioons∪,∩, \, i.e.,

A,B ∈ S
n =⇒ A ∪B,A ∩B,A \B ∈ S

n.

P 2. If A ∈ Sm andB ∈ Sn thenA×B ∈ Sm+n.
P 3. If A ∈ Sm andT : Rm → R

n is an affine map, thenT (A) ∈ Sn.
M . If A,B ∈ S then anS-morphismA → B is a mapf : A → B such that its graphΓf ⊂ A × B
belongs toS.
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We will refer to the sets inS asS-definableor constructible sets, and to the morphisms asdefinable
or constructible maps.

3. CONNECTION WITH HUMAN LANGUAGE

The boolean operations∪,∩, \ correspond to the logical operators AND, OR, NOT =∧,∨,¬. The
projectionπ : A × B → B corresponds to the existential quantifier∃. For example, ifZ ⊂ A × B,
thenπ(Z) can be described as

Z =
{
a ∈ A; ∃b ∈ B; (a, b) ∈ Z

}
.

Note that the universal quantifier can pe expressed as a composition ¬∃¬. We obtain the following
metaprinciple

If S is a reasonable category and a setA is defined by a statement involving only the basic logic
operators andS-definable sets, thenA is alsoS definable.

Example 3.1. Suppose thatS is a reasonable category,f : A → B is S-definable, andS ⊂ B is also
definable. Then

f−1(S) :=
{
a ∈ A; ∃s ∈ S; (a, s) ∈ Γf

}

is definable. Note that ifa ∈ R
n, andε0 then the map

F : Rn → R, F (x) = |x− a|2 − ε2

is definable since it is a polynomial. The setS = (0,∞) is definable because it is the complement
of a closed halfspace and thusF−1(S) is definable. Note that this set is precisely the open Euclidean
ball Ba(ε) of centera and radiusε. ⊓⊔

Example 3.2. SupposeA ∈ Sm, B ∈ Sn. Consider the set

A0 :=
{
a ∈ A; (a, b) ∈ A×B, ∀b ∈ B

}
.

Then
A \A0 =

{
a ∈ A; ∃b ∈ B; (a, b) 6∈ A×B

}
= π

(
R
m+n \ (A×B)

)
,

whereπ : Rm × R
n → R

m denotes the natural projection. This shows thatA0 is S-definable. ⊓⊔

Example 3.3. SupposeS is a reasonable category, andA ∈ Sn. We denote bycl(A) its closure in
R
n. Observe that

cl(A) =
{
x ∈ R

n; ∀ε ∈ (0,∞),∃a ∈ A ∩Ba(ε)
}
.

We can rewrite the above description by saying thatcl(A consists of allx ∈ R
n such that the follow-

ing statement is true

∀ε
(
ε > 0 ⇒ ∃a(a ∈ A) ∧

(
|x− a| < ε

) )
.

This shows thatcl(A) is S-definable because the logical operator⇒ can also be rewritten as∨¬. ⊓⊔

4. EXAMPLES OF REASONABLE CATEGORIES

Example 4.1 (Semialgebraic sets). Consider the collectionSalg consisting ofsemialgebraicsubsets.
More precisely

A ∈ S
n
alg ⇐⇒ A =

N⋃

k=1

Ak,

where for everyk = 1, . . . , N the setAk described by finitely many polynomial inequalities.
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A theorem of Tarski-Seidenberg (1950’s) states thatSalg is a reasonable category, and in fact, it
is thesmallestreasonable category. Observe that every setA ∈ Salg is a finite union of intervals
(possible of infinite or zero length). ⊓⊔

Example 4.2. (a) Suppose thatS is a reasonable category, andAk is a collection of subsets ofRk.
We setA := ∪kA, and we denote byS[A] the smallest reasonable category containingS and all the
collectionsAk. We say thatS[A] is the category obtained fromS by adjoining the collectionA.

(b) We denote bySan the category obtained fromSalg by adjoining the graphs of real analytic
functions

f : [0, 1]n → R.

The sets obtained in this fashion are calledsubanalytic setsand first appeared in the works of A.
Gabrielov, R. Hardt and H. Hironaka in late 60s and early 70s.

(c) We denote bŷSan the smallest reasonable categoryS containingSan, and satisfying the prop-
erty:

If f : (0, 1) → R isC1 andS-definable then so are its antiderivatives.

Note thatSexp ⊂ Ŝan becauselog t is an antiderivative of1/t so log t is Ŝan-definable, andet is
the inverse oflog t and thus it is alsôSan-definable. ⊓⊔

5. TAME CATEGORIES

A reasonable categoryS is calledtameor o-minimal(order minimal) if it satisfies the condition

T . Any setA ⊂ S1 is a finite union of intervals.

Example 5.1. (a) The Tarski-Seidenberg theorem in the 50s implies that the categorySalg is tame.
(b) Work of Garbrielov, Hardt, Hironaka in the 70s implies thatSan is tame.
(c) Work of Khovanski and Wilkie in the 90s implies thatŜan is tame. ⊓⊔

In the sequel we will refer interchangeably to the spaces inŜan as tame, or definable or, con-
structible. Let us point out that any compact real analytic manifold is a tame set.

6. PROPERTIES OF TAME SETS AND MAPS

We list some nice properties of tame sets and maps. For proofswe refer to [1, 2].
(1) If f : (0, 1) → R is a tame map (not necessarily continuous, then for any positive integerp

there exists a partition

0 = a0 < a1 < · · · < aN = 1, N = N(p)

such that the restriction off to every subinterval(ak, ak+1) is of classCp and weakly mono-
tone.

(2) SupposeA,B ⊂ R
N are compact tame sets andf : A → B is a tame map. Thenf is

continuous if and only if its graph is a closed subset ofA×B.
(3) Any tame setA is a disjoint union of finitely many real analytic subsets

A =
N⊔

k=1

Sk. (6.1)

If we definedimA = max dimSk then the dimension ofA is independent of the choice of
stratification (6.1). Moreover

dimA > dim
(
cl(A) \ A

)
.
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(4) If f : A → B is a continuous map then there exists a finite partition ofB into finitely many
real analytic manifoldsB =

⊔N
k=1Bk such that each of the mapsf : f−1(Bk) → Bk is a

tamely trivial fiber bundle. In particular, there can be onlyfinitely many topological types
amongst the fibers off . (See Fig1.)

A

B

FIGURE 1. A piecewise fibration.

(5) Any tame setA can be triangulated which means that there exists pair(F, {∆i}i∈I) where
F is a tame homeomorphism fromA to a tame subsetM of some Euclidean spaceRN

and{∆i}i∈I is a finite family of mutually disjoint affine open simplices inRN , of various
dimensions, such that

M =
⋃

i∈I

∆i

and for everyi, j ∈ I the intersectioncl(∆i)∩cl(∆j) is either empty, or it is a common face
of cl(∆i) andcl(∆j).

7. EULER CHARACTERISTIC

SupposeA is a tame set. For any triangulationT = (F, {∆i}i∈I). we set

χt(T) :=
∑

i∈I

(−1)dim∆i

The integerχt(T) is independent of the triangulationT, and it is called thetame Euler characteristic
of A. If A is a tame locally compact subset ofR

n then

χt(A) =
∑

k≥0

Hk
c (A,R),

whereH•
c denotes the cohomology with compact supports. Equivalently, χt(A) is the Euler char-

acteristic of the Borel-Moore homology ofA. Theo-minimal Euler charateristic isnot a homotopy
invariant. For example, ifI is the open inteval(0, 1) thenχt(I) = −1.

We say that two tame setsA andB arescissor equivalentif there exists a tame, but not necessarily
continuous, bijectionf : A → B. We have the following fundamental result of Lou van der Dries.

Scissor Principle. Two tame setsA andB are scissor equivalent if and only if they have the same
dimension and the same tame Euler characteristic.

Note that the scissor principle implies that if two tame setsare tamely homeomorphic then they
have the same Euler characteristic.
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8. “M OTIVIC” INTEGRATION

For every tame setX we denote byTX the collection of tame subsets ofX. SupposeG is an
Abelian group. AG-valuationonX is a mapµ : TX → G such that ifA,B are two tame subsets of
X then

ϕ(A ∪B) = ϕ(A) + ϕ(B)− ϕ(A ∩B), ∀A,B ∈ TX .

Example 8.1. The tame Euler characteristic is aZ-valuation. ⊓⊔

Example 8.2. For everyA ∈ TX we denote byIA : X → Z the characteristic function ofA

IA(x) =

{
1 x ∈ A

0 x 6∈ A.

We denote byCX the Abelian subgroup of the additive groupMap (X,Z) generated by the charac-
teristic functions of tame subsets. The functions inCX are calledconstructible. Note thatf : X → Z

is constructible if and only if its range is finite, and for every n ∈ Z the level setf−1(n) is tame. We
have

f =
∑

n∈Z

nIf−1(n).

From the equality
IA∪B = IA + IB − IA∩B

we deduce that the map
I : TX → CX , A 7→ IA

is aCX-valuation onX called theuniversal valuationon TX . Note that any morphism of groups
Φ : CX → G defines aG-valuationϕ onX given by

ϕ(A) = Φ(IA), ∀A ∈ TX . ⊓⊔

We have the following fundamental theorem, [4].

Groemer Extension Theorem. For everyG-valuationϕ on X there exists a unique morphism of
Abelian groupsΦ : CX → G such that

ϕ(A) = Φ(IA).

The morphismΦ extending the valuationϕ is called theintegral with respect to the valuationϕ, and
for everyf ∈ CX we set ∫

fdϕ =

∫

X

fdϕ := Φ(f).

We deduce that the Euler characteristic defines a linear mapCX → Z called theintegral with
respect to the Euler characteristic. Let us point out that the constructionX 7−→ CX is bi-functorial.

Any tame mapπ : X → Y induces a pullback morphism

π∗ : CY → CX , CY ∋ f 7→ π∗f := f ◦ π ∈ CX .

Suppose now thatπ : X → Y is a tame continuous map. For everyy ∈ Y we setAy := A ∩ π−1(y)
We define a map

π∗ : TX → CY , TX ∋ A 7→ π∗(A),

π∗(A) ∈ Cy, π∗(A)(y) = χt(Ay) =

∫

X

Iπ−1(y)IAdχt =

∫

π−1(y)
IA.
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Sinceπ|A is a piecewise fibration we deduce that the functionπ∗(A) is indeed constructible. Note
also that ifA B are two disjoint tame subsets ofX then the setsAy andBy are disjoint for everyy
so that

χt(Ay ∪By) = χt(Ay) + χt(By)

which shows that the mapTX → CY is aCY -valuation. We obtain in this fashion a morphism of
Abelian groupsπ∗ : CY → CX called theintegration along fibers. Forf ∈ CX we have

π∗f(y) =

∫

X

Iπ−1(y)fdχt =

∫

π−1(y)
fdχt .

The operationsπ∗ andπ∗ satisfy several desirable properties first formulated by Grothendieck while
working with coherent sheaves.

Functoriality. If X
α
→ Y

β
→ Z are tame continuous maps then

(β ◦ α)∗ = β∗ ◦ α∗, (β ◦ α)∗ = α∗ ◦ β∗.

Projection formula. If α : X → Y is a tame continuous mapf ∈ CX andg ∈ CY then

α∗

(
f · α∗(g)

)
= α∗(f) · g.

Base change formula. If X
ρ
→ S andT

β
→ S are tame continuous map and we define

T ×S X :=
{
(t, x) ∈ T ×X; β(t) = ρ(x)

}
,

then we have a commutative (cartesian) diagram

T ×S X X

T S

wπXuπT u ρw
β

and
β∗ ◦ ρ∗ = (πT )∗ ◦ π

∗
X .

9. INTEGRAL KERNELS AND TRANSFORMS

SupposeX andY are tame sets. Anintegral kernelfrom X to Y is a functionK ∈ CY×X . Given
such a kernel we define a linear map

IK : CX → CY , CX ∋ f 7→ (πY )∗
(
π∗
X(f) ·K

)
∈ CY

whereπX : X × Y → X andπY : X × Y → Y are the natural projections. The linear mapIK is
called theintegral transform defined by the kernelK. We will represent it as a “roof”

(Y ×X,K)

Y X

'''')πX[[[[̂πY

More intuitively, for anyf ∈ CX , the integral transformIKf is a constructible function onY such
that

IKf(y) =

∫

X

K(y, x)f(x)dχt(x).

The following result follows rather easily from the properties of the pushforward and the pullback.
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Composition formula. If S0, S1, S2 are tame sets,K10 ∈ CS1×S0
, K21 ∈ CS2×S1

, then

IK21
◦ IK10

= IK21∗K10

where

K21 ∗K10(s2, s0) =

∫

S1

K21(s2, s1)K10(s1, s0)dχt(s1).

More rigorouslyK20 = K21 ∗K10 is given by the equality

K20 = π∗(ℓ
∗
21K21 · r

∗
10K10),

where
(S2 × S1)×S1

(S1 × S0)

S2 × S1,K21 S2 × S0,K20 S1 × S0,K10

S2 S1 S0

AAAAAAAAD ℓ21
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10. TOPOLOGICAL TOMOGRAPHY

Denote byGraff
1(Rn) the Grassmannian of affine hyperplanes inR

n. This is a constructible set.
Note that the lines inR2 are hyperplanes inR2.

The classical Radon transform associates to a functionf : R2 → R a functionRf onGraff
1(R1)

such that the value ofRf on the lineL is equal to the integral off along the lineL. The classical
Radon inversion formula allows the reconstruction off from its Radon transform. In particular, iff
is the characteristic function of a bounded open setΩ ⊂ R

2, then we can completely reconstructΩ if
we know the length of the intersection of any lineL with the regionΩ.

We want to show that ifΩ is a compact tame set, then we cancompletely reconstructΩ if we know
only the number of connected components of the intersection ofΩ with any line.

We have a natural constructible set

A =
{
(H,x) ∈ Graff

1(Rn)×R
n; H ∋ x

}

We regard the characteristic function ofA as a kernel fromRn toGraff
1(Rn), and we denote byRn

the associated integral transform. Let us computeRn(IS), whereS ⊂ R
n is a tame set. We look at

the integral transform given by the roof

(Graff
1(Rn)× R

n, IA)

Graff
1(Rn) R

n

hhhhhhhjρ'''''* λ

Note thatρ∗(IS) is the characteristic function of the set

AS =
{
(H,x) ∈ Graff

1(Rn)× R
n; x ∈ S ∩H

}

Then, for anyH0 ∈ Graff
1(Rn) we have a homeomorphism

λ−1(H0) ∩AS ∋ (H0, x) 7→ x ∈ H0 ∩ S.
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We deduce that
λ∗(IAS

)(H0) = χt(H0 ∩ S).

Hence
Rn(IS) : Graff

1(Rn) → Z

is given by

Rn(IA) = χt(H ∩ S) =

∫

Rn

IH∩Sdχt,

so thatRn is a topological version of the Radon transform. More generally, for every hyperplaneH
we have

Rnf(H) =

∫

Rn

IHfdχt .

Consider now the dual set

A† :=
{
(x,H) ∈ R

n ×Graff
1(Rn); x ∈ H,

}
,

and denote byR†
n : C

Graff
1(Rn) → CRn the integral transform defined by the kernelIA† . We have the

following result due to A. Khovaskii and P. Schapira.

Inversion Formula. For anyf ∈ CRn We have

R
†
n ◦ Rn(f) = (−1)n+1f +

1 + (−1)n

2

(∫

Rn

fdχt

)
IRn

We can express
∫
fdχt in terms of the Radon transformRnf as follows. Consider the linear map

π : Rn → R, (x1, . . . , xn) 7→ x1.

The fiber ofπ overt ∈ R is the hyperplaneHt given by the equationx1 = t.
Denote byck the constant mapRk → {∗}. Note thatC∗ = Z

(ck)∗(f) =

∫

Rk

fdχt, ∀f ∈ CRk .

On the other hand,
∫

Rn

fdχt = (cn)∗(f) = (c1)∗ ◦ π∗(f) =

∫

R

(π∗f)(t)dχt(t).

Now observe that

π∗f(t) =

∫

Rn

Iπ−1(t)fdχt =

∫

Rn

IHt
f = Rn(Ht).

Hence ∫
fdχt =

∫

R

Rnf(Ht)dχt(t).

so that

f = (−1)n+1
R
†
n ◦ Rn(f) +

1 + (−1)n

2

(∫

R

Rnf(Ht)dχt(t)

)
.

If we define
B =

{
(x,H) ∈ R

n ×Graff
1(Rn); H = π−1(π(x) )

}

then we deduce that ∫

R

Rnf(Ht)dχt(t) = IIB (Rnf).
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Finally if we set

K = (−1)n+1
IA† +

1 + (−1)n

2
IB ∈ C

Rn×Graff
1(Rn)

then we deduce that
IK ◦ Rn(f) = f, ∀f ∈ CRn .

This proves that the Radon transform is injective.
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