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2 LIVIU I. NICOLAESCU

1. DERIVED CATEGORIES AND DERIVED FUNCTORS: A SHORT INTRODUCTION

For a detailed presentation of this subject we refer to [4, 6, 7, 8]. Suppose A is an Abelian category.
We can form the Abelian category C'(A) consisting of complexes of objects in A. We denote the
objects in C(A) by A*® or (A*, d). The homology of such a complex will be denoted by H*(A*).

A morphism s € Homg(4)(A®, B*) is called a quasi-isomorphism (qis brevity) if it induces an
isomorphism in co-homology. We will indicate qis-s by using the notation

A® s B

Define a new additive category K (A) whose objects coincide with the objects of C'(A), i.e. are
complexes, but the morphisms are the homotopy classes of morphisms in C'(A), i.e.

HOII]K(A)(A., B.) = HomC(A)(A', B.)
where ~ denotes the homotopy relation. Often we will use the notation
[A., B.] = HomK(A) (A., B.)

The derived category of A will be a category D(A) with the same objects as K (A) but with a
much larger class of morphisms. More precisely, a morphism in Homp(4) X*,Y*) is a “roof”, i.e. a
diagram of the form

X* a2t Ly
This roof should be interpreted as a “fraction”
x5y

Two such roofs
fls =X n 23 Ly and g/t = X* bz Sy
define identical morphisms in D(A), f/s ~ g/t, if there exists a roof
X daz Dy
and qis
7% 78 k=0,1

such that the diagram below is homotopy commutative.

N

Py Sy

WA

The composition of two such morphisms

X[; S0 Y. fo Xl, Xlo S1 Yo f1 X2
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is a roof X; &% Z° figg X5, where Y VAN Y[ is a roof such that the diagram below is

homotopy commutative.
Z.
RN
)/'0. Yl.
2N N
X3 Xt X5

One can verify that such operations are well defined. D(A) is an additive category. The group
operation on Homp4) (X*,Y"*) is defined as follows. Any two fractions

f/Svg/t € HomD(A)(X.v Y.)

o,
have a “common denominator”, i.e. there exists a qis Z* v X* and morphisms Z* 79 ye such
that

f/s~ f'Ju, g/t ~du.
We then set
f/s+g/t=(f"+d)/u.

Note that we have a tautological functor
Q:KA) - DA, X*—X*

f € Homp( ) (X*,Y*) = f/Lx = X* & X* L ¥* € Homp ) (X*, V).

Q is called the localization functor and it has the following universality property. For any additive
functor F : K (A) — B, B additive category, such that F/(p) is an isomorphism for every gis X * v»
Y'®, there exists a unique functor Qr : D(A) — B such that the diagram below is commutative

The category K (A) has several interesting subcategories K*(A), « € {b,+,—}, where b stands
for bounded complexes, + for complexes bounded from below and — for complexes bounded from
above. Using the same procedure as above we obtain derived categories

Q" : K*(A) —» D*(A)
satisfying similar universality properties. We deduce that there exist natural injective functors
i*: D*(A) > D(A)

so we can regard D*(A) as subcategories of D(A). In fact they are full subcategories of D(A) (see
[6, Prop. 6.15]). This means that for every objects X*,Y* in D*(A) we have

HomD*(A)(X°, Y.) = HOHID(A)(X., Y.)
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This is established using a useful trick called fruncation. Given a complex (X*,d) and an integer n
we define complexes 7<, X * and 7=, as follows.

XP if p<n XP if p>n
TenXP = 0 if p>n |, 75,XP = 0 if p<n
kerd, if p=n cokerd, 1 if p=n

Observe that we have natural morphisms of complexes
TanX® S5 X0, XS, X

The first morphism is a gis in dimensions < n and the second one is a qis in dimension = n. In
particular, if HP(X*) = 0 for p > n then 7, is a qis while if H?(X*) = 0 for p < n then 7, is
aqis. If HP(X*) = 0 for all p # n then X* and 7=,,7<, X* are isomorphic in the derived category.
The latter is a complex concentrated only in dimension 7.

Recall that an object I € A is called injective if the functor

Hom(e,I) : A®” - Ab

is exact. More precisely, this means that for any monomorphism A <% B in A the morphism
Homu(B,I) — Homy(A, ) is surjective. Equivalently, this means that every morphism f €
Hom 4(A, I) can be extended to a morphism g € Hom 4 (B, I)

AC_SD)B

9
N

I

The injectives form a full additive category of A which we denote by J = J 4. The Abelian category
is said to have enough injectives if any object of A is a sub-object of an injective.

Theorem 1.1. If the Abelian category A has enough injectives then every object in Ct(A) has an
injective resolution, i.e. it is quasi-isomorphic to a complex of injectives. m|

The resolution of a complex should be regarded as an abstract incarnation of the geometrical oper-
ation of triangulation of spaces. Alternatively, an injective resolution of a complex can be thought of
as a sort of an approximation of that complex by a simpler object. The above result should be com-
pared with the more elementary result: every continuous function can be uniformly approximated by
step functions.

Theorem 1.2. Suppose A enough injectives and I* € C*(J). The every gis A* > B between
objects in C*(A) induces an isomorphism

SO* . [B.,I.] N [A.,I.].

This means that for every homotopy class of morphisms f € [A*, I*] there exists a unique homotopy
class of morphisms g € | B*, I*| such that the diagram below is homotopy commutative

A. ,\&B.

r
Xv

I.
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For a proof we refer to [7, Thm. 1.6.2]. Note that this theorem implies that the quasi-isomorphisms
between bounded below complexes of injectives are necessarily homotopy equivalences. This theo-
rem implies the following important result.

Theorem 1.3. If the Abelian category has sufficiently many injectives then the composition
KT(J) - K+ (A) -2 DT (A)
is an equivalence of categories.

Remark 1.4. The above result can be generalized as follows. First we introduce the notion of gener-
ating subcategory to be a full additive subcategory J of A satisfying the following conditions

(i) Every object of A is a sub-object of an object in J.
(i) If0 > A - B — C' — 0is a short exact sequence in A such that A, B € Jthen C' € J

We form a category D*(J) whose objects are complexes J* € K1 (J) and whose morphisms are

roofs of the form

J3 <>~ objectin K+ () ER Js.

We get a functor
Q3 : D*(3) —» D*(A).

Then this functor is an equivalence of categories. For a proof we refer to [8, Prop. 1.6.10, 1.7.7].

The additive category K (A) has an extra structure which is inherited by D(A). Formally it is
equipped with a structure of triangulated category. Note first that there exists an automorphism of
categories

T K(A) > K(A), A® > A[L]" = A, dyyy = —da.

In K(A) we can speak of triangles, which are sequences of homotopy classes of morphisms

Z
(XY, Zu,v,w) = X* -5 Y 5 720 5 X[1]° = V Y
X

Y

u

The (clockwise) rotation of (X,Y, Z;u, v, w) is the triangle

X[1]
R(X,Y, Z;u,v,w) = (Y, Z, X[1],v,w, —u[l]) = ‘“[1]/ y
Y

v

Z

The morphisms of triangles are defined in an obvious way, through commutative diagrams.
To a morphism u € Homg(,4)(X*®,Y*) we can associate its cone complex C(u) € C(A) defined

byl

N R B ES | P

1Waming: There are various sign conventions in the literature. Our convention agrees with the ones in [, §2.6] and
[7]. In [4, 8] the cone of u coincides with our C'(—u).
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(Recall that dx ) = —dx. ) If we denote by p(f) the projection Y* & X[1]* — X[1]* and by i(f)
the inclusion Y* < Y* @ X[1]* we obtain a triangle

A, = (X,Y,C’(u),X[l]; u,i(u),p(u),) = x5 v U oy 2 xqpe.

We will refer to this as the triangle associated to a cone. One can think of the cone complex as a sort
of difference between X and Y along .

C(u) = dist, (Y*, X*) = dist(Y* «— X*)

Its cohomology is a measure of the difference between the cohomologies of X and Y. The short
exact sequence of complexes

0- Y ™ o) ™™ x111* -0

implies the following identity between Euler characteristics
X(H*(C(w))) = x(H*(Y)) = x(H* (X))

This justifies the interpretation of C'(u) as distance between X and Y. A distinguished triangle will
be a triangle in K (A) isomorphic to the triangle of a cone. We denote by T (4 the collection of
distinguished triangles.

The collection J = Ty () of distinguished triangles in K (A) satisfies a few fundamental proper-
ties. We list them below.

TRI1. (a)(Normalization axiom) Every triangle isomorphic to a triangle in 7T is a triangle in 7.
(b) For any morphism X* % Y™* there exists a triangle (X, Y, Z; u, v, w) € T.
(©) (X,X,0;1x,0,0) € 7.
TR2. (Rotation axiom)
(XY, Z;u,v,w) € T < R(X,Y, Z;u,v,w) = (Y, Z,T(X);v,w, —u[l]) € T.
To prove this note that for every morphism u € Hom¢4)(X,Y’) we have a homotopy commutative
diagram

p(w) —ufl

y 2 o) 2 x g L vy, (.0

]lyl ﬂC(u)l ¢ ]IY[I]\L
v

Y= O S O ey Y I

where C(i(u)) = C(Y & c(u)) = cw @ Y[1] = Y ® X[1] @ Y[1],

and

X[1] 22" S | 2t | e Ci(w)
_ u( "t 1)
is a homotopy equivalence. More precisely, if we denote by 1) the natural projection C'(i(u)) — X|[1]
then

Yo =1xp
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Define
0 0 0
5:Y"@X" M@yt = C(i(u))"—Ci(u)[-1]" = Y '@X @Y ™", s= 0 00
—1y» 0 O
Observe that
n [ yn 1y 0 0 yn
(LG — o) | ™t | = 0 = 0 0 0 gzt
ynJrl | u(x"“)—i—y"“ 0 u[l] ﬂY[l] yn+1
Note that
1y 0 0 | dy —ull] —]ly[l] 0 0 0
0 0 0 = 0 dX[l] 0 0 0 0
0 u[l] ]lY[l] 0 0 dY[l] —]lYn 0 O
0 0 0 dY —u[l] _ILY[I]
+ 0 0 0 0 dX[l] 0
—Iy» 0 O 0 0 dy[l]
Hence

Legay — &Y = sdogiwy) + deguys:
This homotopy commutative diagram implies that

TR3. (Completion axiom) For every (X,Y, Z;u,v,w), (X, Y', Z;4/,v',w") € T and every X EN

X', Y % Y’ so that we have a commutative diagram

X —>Y

o

X ==Y
we can find Z 2 7 , not necessarily unique, such that the diagram below is commutative
X ——=Y ——=7—>T(X)

fl Lg h lT(f)

X/ u Y/ v ZV’ w T(X/)

TR4 (The octahedron axiom ) It states among other things that there exists a morphism w such that
diston(Z°, X*) = disty (distv(Z', Y*), disto(Y*, X*) [1])

“ =7 disty(Z°,Y") + distu (Y*, X°).

For more details see [4, 6].

A triangle in D(A) is called distinguished if it is isomorphic (in D(A)) to the image via the
localization functor @) of a distinguished triangle in K (A). The collection Jp(ay of distinguished

triangles in D(A) will continue to satisfy the axioms TR1-TR4.
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Example 1.5 (Fundamental example). To every short exact sequence of complexes in C*(A)

04 LB Sc o (1.2)
we can associate in a canonical way a distinguished triangle in D* (A)
A* L Be S o0 B Ape (1.3)
First form the cylinder of f which is the complex (Cyl(f),d) = (C(14 @ —f)) so that where
a” da 0 _ﬂA[l] a™
Cyl(f)* =A*®@B* @ A°[1], d b" = 0 dp f[1] b
an+1 0 0 dA[l] an+1

Denote by ¢p the natural projection Cyl(f)* — B®, and by j the natural inclusion B* < Cyl(f)*.
One can check that these are chain morphisms and satisfy

gojp = 1B, jBogB = Loy y)-

The morphism g induces a natural map vy : C'(f) = B* @ A[1]* — C* and we obtain a commutative

diagram
00— a0 —t g Do) — 0
]lAl/ ljB 1lc
7 7
00— A* —= Cyl(f) C(f) 0
HA\L QB\L 'Y\L
f g
0 A B* cCe 0

where the last two rows are exact. The morphisms 1 4 and gp are homotopy equivalences and invok-
ing the five lemma we deduce that 7 is a gis as well. Define now h € Homps(4)(C*®, A[1]*) as the
roof

o o) " ange

The top row defines a distinguished triangle quasi-isomorphic to the bottom row
(A*,B*,C*; f,g9,h) = Ay

The morphism
he HomD(A)(C', A[1]%)

is called the characteristic class of the short exact sequence (1.2).

We have the following result.
Proposition 1.6. A triangle (X,Y, Z,u,v,w) is distinguished if and only if it is isomorphic to a
triangle of the form
(A*,d4) > (A*@® B*,d) > (B*,dp) > A[1]", (1.4)
where h is defined by (h(b),dpb) = d(0,b), i.e. h is the off-diagonal component of d with respect to
the direct sum decomposition
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The morphism h € Hom g 4)(B*, A[1]*) is an invariant of the homotopy class of (A* ® B*®, d). The
morphism induced by h in cohomology coincides with the connecting morphism of the long exact
sequence associated to the short exact sequence

0= (A°,d4) > (A* @ B*,d) > (B*,dp) — 0.

Proof The condition d?> = 0 implies that h € Hom K(a)(B*, A[1]*). Note that
(A*® B*,d) = C(—h)[-1].
and thus we have a distinguished triangle
A0 oy =11 MM e a0
O

A cohomological functor on D*(A) is an additive functor F' : D*(A) — B, B Abelian category,
such that for every distinguished triangle

x* Ly s 2o b xpye

we get an exact sequence in B

Px*) X Py 59 pezey.
If we set F" := F o T" so that F"(X*) := F(X[n]*). Using the axiom TR2 we deduce that for
every distinguished triangle (X Y, Z, f,g,h) we obtain a long exact sequence in B
In particular, a homological functor associates to each short exact sequence in C*(A)

0-X*">Y*"->27*">0

the long exact sequence (1.5). A homological functor is an additive functor G : D*(A)°? — B which
associates to each distinguished triangle an short exact sequence as above.

Remark 1.7 (Food for thought). Suppose the Abelian category is a subcategory of a category of
modules. Then the the morphisms of C'(A) are actual set-theoretic maps, while the morphisms of
D(A) are not. Let’s call them “virtual maps”. A cohomological functor sends “virtual maps” to
genuine maps! O

Example 1.8. We have a tautological homological functor

H:D*(A)—> A
which associates to each complex X * its 0-th cohomology H(X*). In this case H"(X*) = H(X[n]*)
coincides with the n-th cohomology of the complex X*. ]

Example 1.9 (Yoneda’s Description of Ext). For every object R* € D(A) the functors
HOHID*(A)(R., —) and HOHID*(A)(—, R')

are (co)homological functors. We prove this for the functor Hom px«(4y(—, R*). Suppose we are

given a distinguished triangle

x Ly s 2o b xpye
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We need to show that the sequence

HomD*(A)(Z°, R.) g_) HomD*(A)(Y°, R.) f—> HomD*(A)(X°, R.)

is exact, i.e. f*g* = 0 and ker f* < Img®*. To prove the first part we will show that gf = 0 €
D*(A). From the normalization axiom we get a distinguished triangle (X, X, 0; 1x,0,0). From the

completion axiom we can find 0 % X to complete a commutative diagram

1x 0

X X O T(X)
ﬂxl fl <Z5 l
/ g Y
X Y Z T(X)

sothat go f = ¢ o0 = 0. Suppose @ € HomD*(A)(Y°, R*) isin ker f*, i.e. we have a commutative
diagram

X‘L>Y‘ .

BN
0
R.
We have to show that there exists ¢ : Z* — R* such that the diagram below is commutative
Y* T> zZ° .
>\w¢
R.
The existence of such ¢ is postulated by the completion axiom since 1 completes the commutative
diagram
/ g h

X Y Zo X[l]'

i l v
\

0—5=R >R 0

Given a short exact sequence of complexes
0-X*">Y*">272">0
we obtain a long exact sequence
-+ — Hompu(4)(Z°, R*) — Homps(4)(Y*, R*) —
— Homp#(4)(X*, R*) — Homps«(4)(Z°, R[1]*) — -
For any two complexes A®, B* € C*(A) we define the hyper-Ext
Ext"(A*, B*) := Homps(4)(A*, B[n]*) = Homps«4)(A[k]*, B[k + n]*). (1.6)
If A*, B* € K*(A) are complexes of injective objects then
Ext"(A®, B®*) = [A®, B[n]*].
We have a natural fully faithful functor

[-]: A — C*A)
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which associates to each object A the complex [A] the complex [A]* with [A]° = A and [A]" = 0 if
n # 0. Then

Ext"(A, B) = Ext"([A], [B]),

where in the left-hand-side we have the classical Ext-functors associated to a pair of objects in an
Abelian category.
i

An additive functor F' : A — B between Abelian categories is called left exact if for any short
exact sequence
0->A—->B->C
the sequence
0— F(A) —» F(B) —» F(C)
is exact. F induces a functor K*(F') : K*(A) — K*(B).

Definition 1.10. A derived functor for F is a pair (RF, pr) with the following properties.

(a) RF is an exact functor D*(A) — D(B)*, i.e. an additive functor which maps distinguished
triangles to distinguished triangles.
(b) pr is an morphism of functors Qp o K*(F) — RF o Q4

D*(A)
Qa
i
K*(

(c) For any exact functor G : D*(A) — D(B)* and morphism of functors

RF
\D(B)
B)

o (K*(A) Q@ oK(F) D(B)) = (K*(A) GoQu D(‘B))

there exists a unique morphism
c: (D*(A) EE p(B) ) o (D*(A) S, D(B) )
such that
p=(coQa)opr.

This definition is a mouthful. We will trade a little bit of rigor in favor of intuition. First of all we
will drop the localization functors @ from notation because the category K*(A) (resp. K*(B)) has
the same objects as D*(A) (resp. D*(B)). These categories differ only through their morphisms.
The functor RF assigns to each complex X* in C*(A) a complex RF(X*) in C'(B) and to every
roof

@ : X* « something Lyee Hom ps(4)(X*,Y*)
aroof RF(¢) : RF(X*) — RF(Y*)in D(B). These assignments behave nicely with respect to the
morphisms in D*(A) which come from genuine morphisms of complexes. More precisely there exist
roofs

pr(X*®): F(X*) > RF(X*)
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(call them quasi-resolutions) such that for every complexes in X°*, Y* in A and every genuine mor-
phism of complexes we have a commutative diagram in D(B)

rE(x*) Y Ry

TPFO“)
ﬂ) F(Y*)

pF(X')T
F(X*)

We can say that py defines a a coherent system of quasi-resolutions.

The universality property states that given a similar exact functor D*(A) <, p* (B) equipped as

well with a “coherent system of quasi-resolutions” p(X*) : F(X*®) — G(X*) there exists a unique
systems of “compatibilities”

D*(A) 3X* > cxe€ HomD(B)(RF(X°),G(X.)),

such that for any complexes X *, Y* and any roof ¢ between them we have the following commutative
diagrams.

G(X*) e 2o
P(X')T Cxe Cye
F(X*) —— RF(X*) RF(X*) —> RF(Y"*

(X%) — RE(XY) RE(X) s RE(Y)

The derived functor, when it exists, is unique up to isomorphism. We see that to establish the existence
of the derived functor we need to have a procedure of constructing resolutions of complexes. We
indicate below one such situation.

Definition 1.11. The left exact functor F' : A — B is said to admit enough F'-injective objects if
there exists a generating subcategory J of A such that the restriction of F' to J is exact, i.e. if

0->A->B->C-0
is a short exact sequence in J then
0—> F(A) - F(B)—> F(C)—>0
is a short exact sequence in B. The subcategory J is also called a class of objects adapted to F.

Remark 1.12. Observe that given a left exact functor /' : A — B and a short exact sequence of
injective objects in A
01 >T-1">0

the resulting sequence
0— F(I'") > F(I)—> F(I") >0
is also short exact. In particular, if A has enough injectives it also has enough F'-injective objects.

Proposition 1.13. If ' admits enough F-injective objects then there exists a derived functor
RTF : DT (A) — D(B).
It is constructed as follows.

Step 1: Localize along a class of adapted objects. Fix a class J of objects adapted to F'. Form the
derived category DT (J) described in Remark 1.4.
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Step 2: The construction of the derived functor. Fix an equivalence
U:D"(A) - D*"(J).

We have a functor

K+(9) S K (B) > DY (B).
By definition F' maps acyclic complexes in J to acyclic complexes in B and in particular it maps qis’s
to isomorphisms in DT (B). We deduce the existence of a functor

D*(3) - D (B)

Composing this functor with the equivalence U we obtain a functor

RF* : D" (A) —» D" (B).

Definition 1.14. Suppose the left exact functor F' : A — B admits enough F-injective objects.

(a) For every complex X* in A we define the F'-hypercohomology of X* to be the cohomology of
RF*(X*) (this complex in B is unique up to a an isomorphism in D(B)). We denote this hyperco-
homology by

R"F(X*®):= H"(RF(X?*)).
(b) Every object X € A can be identified with a complex [X] concentrated in dimension zero. In this
case we set

R"F(X):=R"F([X])
(c) An object A € A is called F-acyclic if R"F(A) = 0, Vn > 0.
i

Observe that if F' admits enough injective F'-injective objects, then the class of F'-acyclic objects
is adapted to F'. In particular, this implies that the subcategory of F'-acyclic objects is a generating
subcategory and thus to compute RF'(X*) for a complex X* € C*(A) it suffices to find a resolution
of X* by F-acyclic objects.

The following result follows immediately from the above discussion.

Proposition 1.15. Suppose A1, Ao, As are Abelian categories and
FZ.Al —>.A2, FQ 2.A2 —>.A3

are two left exact functors. Assume J1 is a class of Fi-acyclic and Js is a class of Fy-acyclic objects
such that
F1(31) < Jo.

Then J1 is a class of Fy o Fy-acyclic objects and we have an isomorphism

R+(F2 o F1) = R+F2 ¢} R+F1.

Example 1.16 (The hypercohomology spectral sequences). Let us describe a basic procedure for
computing the hypercohomology groups.

Suppose F' : A — B is a left exact functor, and that A has enough injective. Denote by J full
additive subcategory of A consisting of injective objects. Given a complex X* € C*(A) we can find
a quasi-isomorphism

X.V\?\’)I.
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and then the hypercohomology groups of X* are isomorphic to H"(F'(1*)). To compute them we
can use the hypercohomology spectral sequence. Suppose first X" = (0 for n < 0. First we choose a
Cartan-Eilenberg resolution. This is a double complex (I**, dy, dr) together with a morphism

p:(X*dx) — (I"°,dp)
satisfying the following conditions.

(i) The objects I** are injective.
(ii) For every p = 0 the p-th column complex

OHXPP_H)IP,OMIPJ%IPQM...

is acyclic.
(iii) For every ¢ = 0 we have a g-th row complex

d d d
Joe 41, rlq 91, r2.q 9

whose co-cycles Z;*, co-boundaries B;?, and cohomologies H;'? are injective objects.
(iv) For every p > 0 the complexes (Z7°,drr) (B}?,drr) and (HY*,d;r) are resolutions of the
objects ZP(X*,dx), BP(X*,dx) and HP(X*,dx).

Form the total complex
Tot™(I**) = @1 k=", D =d; +drr: S(I)° — S(1)*

The objects Tot*® (/) are injective, and the map p : X* — Tot*(I) is a quasi-isomorphism. Thus the
cohomology of F'(Tot®([)) is isomorphic to the F-hypercohomology of X*. There are two spectral
sequences converging to this cohomology. The first spectral sequence

B = HYy(P()
Using condition (ii) of the Cartan-Eilenberg resolution we deduce
Y, (F(IP*)) = RIF(X7).

We conclude

'EP? = HP(RIF(X*)).
As for the second spectral sequence we have

"EDY = HY(P(I™)).
Using the condition (iv) in the definition of a Cartan-Eilenberg complex we deduce

"EP? = RIF(HP(X)).

This spectral sequence is called the hypercohomology spectral sequence.
Suppose we are in the context of Proposition 1.15, where we had two left exact functors

AL 8 Y% e
such that
R(Go F) = RG o RF.

Arguing in a similar fashion we deduce that for every object X € A we obtain a spectral sequence
E?* which converges to R*(G o F)(X), whose Ea-term is

EDY = RPG(RIF(X)).
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Example 1.17 (R Hom). Suppose A is an Abelian category. We have a functor
Hom*(—.—) : C(A)? x C(A) — C(Ab)
(X*,Y*) > Hom*(X*,Y*),
where
Hom™(X*,Y*)" := [ [ Homa(X?,Y[n]?),
with differential ’
D = Dyom : Hom™(X*,Y*) —» Hom" ™ (X*,Y*)
Hom™(X*,Y*) 3 ¢ — Dy = dyp — (—1)"pdx € Hom" ™ (X*,Y"*).

One can show that Hom*® induces a functor

Hom® : K(A)? x K(A) - K(Ab)
and

H"(Hom*®*(X*, Y*)) = [X°*,Y[n]*].
Assume that A has enough injectives. Fix X* € K (A). The functor

Hom*(X*,—): KT(A) » K(Ab)
enjoys the following properties.
@ If I* € K*(A) is a complex of injective objects quasi-isomorphic to zero then the complex
Homg,; (4 (X, I*) is quasi-isomorphic to zero. Indeed we have
H"™(Homg, (4)(X*,I%)) = [X*, I[n]*].

Theorem 1.2 shows that we have isomorphisms

[I°,1°] =[0,I°], [I°,0] =[0,0] =0
so that the quasi-isomorphism /* v 0 is a homotopy equivalence whence the desired conclusion.

@If f : I* w» J*® is a gis between bounded from below complexes of injective objects then the
induced map

f 1= Homg. 4 (X*,I°) — Homg+ () (X*, J*)
is a quasi-isomorphism. -

Indeed one can show that the cone of fis the complex Homg,., 4 (X*,C(f)), where C(f) is the
cone of f and it is a complex of injective objets. Since f is a qis we deduce 0 v~ C'(f) and we can
now conclude using .

If we denote by J = J 4 the full subcategory of A consisting of injective objects we deduce that the
functor

Hom®(X*,—): KT (J4) —» K" (Ab)
sends quasi-isomorphism to isomorphisms. In particular we obtain a functor
Rj;Hom(X*,-): D*(A) —» D" (Ab).
This functor maps distinguished triangles to distinguished triangles. We obtain a bi-functor
R;yHom(—,—) : K(A)? x DY (A) — D" (Ab).

Observe that for any complex of injectives /* and any qis f : A®* v~ B*® we get according to Theorem
1.2 aqis
f:Hom®*(B*,I*) - Hom"®(A*, I*).
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We thus obtain a functor
RrRj;Hom : D(A)®? x D" (A) - D" (Ab).
Using Theorem 1.2 again we deduce
H"( RiR}; Hom(X*,Y"*) ) = Homp4)(X*,Y[n]*) = Ext"(X*,Y*).

Observe that if X is an object in A identified with a complex concentrated in dimension 0 then
the Hypercohomology spectral sequence shows that there exists a spectral sequence converging to
Ext*(X,Y*) whose F-term is

EDY = Ext?(X, HI(Y"*)).

O

Example 1.18 (Products). Suppose A is an Abelian category with sufficiently many injectives and
F : A — B is aleft exact functor to another Abelian category. For any objects X,Y € A we have a
natural product

Ext"(X,Y) x RPF(X) —» R"™P(Y), (f,a)— fua
define as follows. Choose injective resolutions I* for X * and J* for Y. Then
ae H'(F(X®), fe[X*,Y[l'].
In particular, f induces morphisms
P(f): F(X*)—F(YV)[pl*, RE(f): H'(F(X*)) - H™7(Y*))

We set
fua=R'F(f)a).

2. BASIC OPERATIONS ON SHEAVES

For every commutative ring R we denote by pSh (X)) (resp. Shr (X)) the category of presheaves
(resp. sheaves) of R-modules on X. For every open set U < X and every presheaf & over X we will
denote he space of sections of 8 over U by §(U) or I'(U, 8).

A morphism of (pre)sheaves f : Sy — 87 is a collection of morphisms

fu :80(U) — 81(U),

one for each open set U — X, compatible with the restriction maps. pShy(X) is an additive
category, while Shz(X) is an Abelian category.
Note that Sh(X) is naturally a full subcategory of pSh(X). Moreover there exists a functor
*:pShy(X) — Shy(X)

the sheafification which is a left adjoint to the inclusion functor i : Shr(X) — pShpy, ie. there
exists an isomorphism

Homgh,, (5%, ) = Hompgh,, (F,i(9) ), 2.1
natural in F € pShy and § € Shp.
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Remark 2.1. In practice, most sheaves are defined as sheafifications of some presheaves. The above
isomorphism essentially states that if G is a sheaf, and F is the sheafification of F that any morphism
F* — G is uniquely determined by a collection of morphisms

FU) - S(U)

compatible with the restriction maps. In practice, this is how most morphisms of sheaves are de-
scribed, by first indicating a morphisms of presheaves and then using the tautological isomorphism
(2.1). mi

We will write Sh(X) for Shy,(X). For every Abelian group G we denote by G = xG € Sh(X)
the associated constant sheaf over X. For every sheaf 8 € Sh(X) and every open subset U ¢ X we
denote by 8| the restriction of 8 to U, i.e. the sheaf

open

U= Vi38V).
For F € Shi(X),U < X and s € T'(U, F) we set
supps :={ueU; s, # U}.

supp s is closed in U, but it may not be closed in X.
We denote by Hom(8p, 81) = Homgy(x(80, 81) the Abelian group of morphisms §g — 81. We
denote by Hom(8, 81) the sheaf

Uw— HOIH(S(), 51)(U) = HomZ(So |U7 81 |U)
By definition
HOHl(SQ, 81) = F(X, Hom(So, 81))

Note that if & and T are two sheaves of Abelian groups on X and xg € X then there exists a natural
morphism of Abelian groups

M(Sa T)mo - Hom(smoa Ta:())
In general this morphism is neither injective nor surjective.

Example 2.2. Suppose X is a smooth manifold and £x denotes the sheaf of smooth complex valued
functions on X . A partial differential operator P defines a morphism P € Hom(Ex, £x ). Conversely,
every endomorphism of the sheaf £x is a partial differential operator, [9, 10]. m]

Given two sheaves S, 81 € Shr(X) we define their tensor product as the sheaf So®rS; associated
to the presheaf

U 8((U)®81(U).
Remark 2.3. Let us point out that the natural map
So(U) ®r $1(U) — I'(U, 8o ®r 81)

need not be an isomorphism. Consider for example X = RP?2, §y=Z-orientation sheaf of RP? and
81= the Z/2-orientation sheaf, or equivalently the constant sheaf 27/2 Then 8¢ ® 81 = 81 however
8o(X) = 0 so that

8o(X) ®@81(X) =0 2 (80 ®81)(X) = Z/2.
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The functors Hom and ® are related by the adjunction formula which states that there exists an

isomorphism
Hom(F ® G, H) =~ Hom(F, Hom(G, H)) (2.2)
natural in F, G, H € Shr(X).
Proposition 2.4. (a)Shr(X) is an Abelian category which has enough injectives.
(b) The functor
I'(X,—):Shr(X) > g Mod

is left exact.

Proof (a) Let F € Shyr(X). For every x € X we consider an embedding of &, in an injective
R-module M. Now form

M= ] M., raﬁﬁ)zz{on@xax;ynx::07 Vo e X\U}
reX

Then for every 8 € Shp(X) we have

Hom($, M) = [ | Hom(8,, M)
rzeX
which shows that M is injective. Part (b) is elementary.

The Godement resolution of a sheaf F € Shy(X) is constructed inductively as follows. We set

G5 =[] Fur GHU):=]]%u

rzeX uelU
We get a natural inclusion
F - GY.
We set
F1 := coker(F — G%).

Then G 15 = Ggﬂ' Iterating we obtain the Godement resolution
0-F >G5 - Gh— -

For every sheaf F € Shr(X) we get two left exact functors

Hom(—, %) : Shr(X)?” - rMod

Hom(—, ) : Shg(X)” — Shg(X).
Given a continuous map f : X — Y we get two functors

fx : Sh(X) — Sh(Y) and f~':Sh(Y) - Sh(X).
More explicitly, for every 8 € Sh(X) the push-forward f,8 is the sheaf
Y o U — 8(f71(U)),

while for T € Sh(Y') we define f~!T as the sheaf associated to the presheaf (f~1)oT defined by

X oV TV, (fT) = lig T(U,T).
Usf(V)

[« is left exact while f~1 is exact. For every sheaf T € Sh(Y') and every open set U Y we have
DU, fuf7'T) =D(f7HU), f717).
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Since U o f(f~1(U)) we deduce from the universality property of inductive limit that there exists a
natural map
D(U,T) = T(f 1 (U), (f )T) = LU, fuf 7).
This defines a canonical morphism
Ap: T—sfuf17.
We regard Ay as a natural transformation between the functors 1gy,(yy and f f ~1. This is known as
the adjunction functor.
Given a morphism
¢ € Homgp(x)(f 7, 8)

we obtain a morphism

f+¢ € Homgpx)(fo f 7' T, f48)
and thus a morphism

f«® o Ay € Homgpy, (T, f+8).
We obtain in this fashion a natural isomorphism i.e. we have natural isomorphisms

Homgpx)(f7'7,8) = Homgp(y)(7, f«8), ¥S8 € Sh(X), TeSh(Y). (2.3)

which shows that f, is the right adjoint of f~'. The adjunction morphism A s corresponds to 1 Foig
via (2.3).

Example 2.5. (a) Suppose f : R? — R is the continuous map (z, %) — 22 4 32. We denote by T the
sheaf of continuous functions on R. Then f~'7 is the subsheaf of the sheaf of continuous functions
on R? whose sections are the continuous functions constant along the level sets of f.

Observe that for every open interval I = (¢, L) c R we have

C((,L)) if £>0
LI, fof17) = 0 if L<0
C([o,L)) if £<0<L
(b) Suppose f : C — C is the holomorphic map z — z3. We denote by O the sheaf of holomorphic
functions on C. Denote by p a primitive cubic root of 1. Then

, Q3 if 2 #£0
1 ~ 2 0
(f«f O)ZOZ{ og if 20=0 "~

Note that the holomorphic map f induces a morphism of sheaves
7. flo—o.

For every sheaf 8 € Sh(X) and every subseti : A < X we set
8|a:=i '8 € Sh(A).
We set
[(A,8) i= D(4,8]4) = limy T(U, ).
UDA
We have a tautological map
N'X,8) - T'(A,8).
A family of supports® on a paracompact topological space is a collection ® of closed subsets of X
satisfying the following conditions.

2Traditi0nally, a family of supports with these properties is called a paracompactifying family of supports.
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¢ Any finite union of sets in @ is a set in P.
¢ Any closed subset of a set in ® is a set in P.
¢ Every set in ® admits a neighborhood which is a set in .

Example 2.6. (a) The collection of all closed subsets of X is a family of supports. Usually we will
not indicate this family by any symbol. Sometimes we will use the notation ¢l for this family.

(b) If X is a locally compact space then the collection of all compact subsets is a family of supports.
We will denote this family by ¢ = cx.

(c) Suppose Y — X is a locally closed subset of the paracompact space X, and ® is a family of
supports on X. Then the collection

O |y:= {Se@; Scvy}

is a family of supports on Y. For example if X = C, Y is the open unit disk in C and ® consist of all
the closed sets in C then ® |y consists of all the compact subsets of the unit disk.

(d) Suppose ¥ — X is a locally closed subset of the paracompact space X, and @ is a family of
supports on X . Then the collection

dAY = {Smy; S e o}

is a family of supports on Y. |

In the sequel all topological spaces will be tacitly assumed to be locally compact, unless otherwise
indicated.

Suppose @ is a family of supports. For every open set U — X we set
I's(U,S8) := {s e I'(U,8); suppse @}.
The resulting functor
I's(X,—): Shr(X) - g Mod.
is left exact. In particular, I'. denotes sections with compact support.

Example 2.7. Suppose X < R is the set of all integers equipped with the induced topology and R is
the constant sheaf on X. Then

N(X,R) =] [R, T(X,R)=PR.

neZ nez

Suppose f : Y — Z is continuous map between two spaces. Then f defines a functor
fi:Sh(Y) - Sh(2),
where for every 8§ € Sh(Y') we define f8 as the sheaf

U T(U, A8) =T (fHU),8) := {se L(f~YU),8); supps LU s proper3}.

The resulting functor f; : Shr(X) — Shr(Y) is left-exact.

A subset W of a topological space is called locally closed if any point w € W admits an open
neighborhood V in X such that V. n W is closed in V. Observe that the open subsets are locally
closed. The closed subsets are locally closed. In fact a subset is locally closed if and only if it can be
described as the intersection of a closed subset of X with an open subset of X.

3This means that f is closed (maps closed sets to closed sets) and its fibers are compact.
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Consider the inclusion ¢ : Z — X of a subset Z. We get an exact functor
iy : Shr(Z) — Shr(X).
Note that
T(U,i8) = {s eT(U A Z,8); supps is closed in U}.

For every sheaf § on X we set
Sy = i]S|Z= i!i_lg.

We have the following result whose proof can be found in [5, I1.2.9].

Proposition 2.8.
8 it =zeZ
Z locally closed <= (87), = { 0 if zeX\Z
Moreover Sy is the unique sheaf on X with the above property. 0O

In the sequel we will assume Z is locally closed.
For every locally closed set Z the correspondence Shr(X) — Shr(X), 8 — 8 defines an exact
functor, and we have a natural isomorphism

Sz~ R;®S8.
Note that for every Abelian group G we have
i(zG) = (xG)z =1 G.

Let us emphasize that zG is a sheaf on Z, while G is a sheaf on the ambient space X. When
J : Z — X is the inclusion of a closed subset we have

Ji = J« : Shr(Z) — Shr(X).
and thus, according to (2.3) a natural isomorphism
Homgp (7 (i 7', 8) = Homgy,(x)(F, 5:S), F € Shg(X), 8eShp(2).
In particular if we let § = j~'F we obtain a morphism
F—>TFz =78 (2.4)

corresponding to [;-14 € Homgy () (G1F, 5 19).
Suppose ¢ : O — X is the inclusion of an open subset. Then S = iyi 18 is the sheaf described
by

XoUr—80(U)={s€8(0nU); supps isclosedin U}. (2.5)
We have an isomorphism of Abelian groups
Homgp,,(x)(i1F, 8) = Homgy, ,(0)(F, i '8) = Homgp (0 (F, 8 |0) (2.6)

which is natural in F € Shr(O) and 8§ € Shr(X) . In particular, if we let F = i~ 1§ we obtain a
natural extension by zero morphism
T:89—38 (2.7)

corresponding to I;-1g € Homgy, 0y (i '8, '8).

Let us describe the isomorphism (2.6). Suppose ® € Homgp () (F,i718) so that ® is described by
a family of morphisms

oy DU, F) - (U, i 18) = T(U, 8),

one morphism for each open subset U < O. We need to produce a family of morphisms

Uy T(V,iF) - T(V, 8),



22 LIVIU I. NICOLAESCU

one morphism for each open subset IV < X. To do this observe that
LV, 4F) = {u eT(OnV,F); suppu is closed in V}.

The morphism ® o~y maps the sections in I'(O n V,F) with support closed in V' to sections in
I'(O n V, 8) with support closed in V, i.e. sections of 8¢ over V. We get a morphism
Ty :T(ONV,F) - T(V,89) =5 T(V,8).

The last morphism coincides with the tautological morphism (2.7).

We define a good neighborhood of alocally closed set S to be an open neighborhood U of .S such
that .S is closed with respect to the subspace topology on U. For any good neighborhood U of S we
define

Is(U,F) :={se'(U,F); suppsc S} = ker(F(U) - FU\S)).
Note that if V' is another good neighborhood of S then U n V is a good neighborhood of .S and we
deduce
Ps(UnV,F)=Ts(U,F) =Tg(V,5F).
The module I'g(U, F) is thus independent of the good neighborhood U and we will denote it by
I's(X'). We obtain in this fashion a left exact functor
Fs(X, —) . ShR(X) - RMOd .
The correspondence
U Tsau(U,9)
defines a sheaf on X which we denote by I's(F). We obtain in this fashion a left exact functor
I's(—) : Shr(X) — Shr(X).

Let us point out that

I's(F) @ Hom(Rg, F). (2.8)
When U is open we have

Ty(F) =igi 7. (2.9)
For closed subset Z — X we obtain a left exact functor
P4(X,—) = I(X, ) o T4(=) : Shp(X) - p Mod, F > [(X,T5(5)).
Note that in general for ¥, G € Shr(X) and any locally closed set S — X we have
Hom(Fs, §) = Hom(F, T's(9)).
The last isomorphism follows from the adjunction isomorphism
Hom(F ®Rg, ) = Hom(F, Hom(Rg, 9)).
Hence the functor § — T'g(§) is the right adjoint of the exact functor ¥ — Fg. Let us observe that
for any open set U ¢ X and any 8 € Shr(X) we have
HomShR (EU’ 8) = Hom(E, FU(S)) = FU(S) = F(U, 8)

Remark 2.9 (Warning). There is a striking similarity between the sheaves Fg and I'g(F). Are they
really different?

If for example F = R and S is an open disk in R? and B is a small open disk intersecting S but
not contained in S then a section of Jg on B is a section of F on B n S with support closed in B.
But any section of R on B n S is constant so its support is either the empty set or the entire B n .S
which is not closed in B. We deduce

I'(B,Fs) = 0.
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On the other hand
I'(B,I's(¥)) =Tsnp(B,F) =T(SnB,F) =R.

If S is the horizontal axis in R? and F = R, then for any open disk D intersecting this axis there is
no section of R on D supported on the segment along which D meets the horizontal axis. This shows
that I's(R) = 0. Clearly, Rg is nontrivial.

We have constructed several (semi-exact) functors on the Abelian category of sheaves. To describe
the associated derived functors it will be convenient to describe large families of sheaves adapted
to these functors. Recall that a full additive subcategory J of an Abelian category is adapted to a
left-exact additive functor F' : A — B if the following conditions hold.

¢ Every object is a sub-object of an object in J.
e If0 > A —> B — C — 0is a short exact sequence in A such that A, B € J then C € .
¢ [ maps short exact sequences of objects in J to short exact sequences in B.

Definition 2.10. Suppose ® is a family of supports on X.

(a) A sheaf 8§ — X is called flabby if for every open set U — X the restriction map 8(X) — 8§(U)
is onto.

(b) A sheaf § is called ®-soft if for every set S € ® the tautological map

I'e(X,8) = I'(S,8) =T(S,8|s)

is surjective.
(c) A sheaf 8 is called ®-fine if the sheaf Hom(S, 8) is ®-soft.
(d) The sheaf S is called flat if the functor ®8 is exact.

O

Remark 2.11. Flabby sheaves are also ®-soft. When & is the collection of all closed (resp. compact)
subsets we will refer to the ®-soft sheaves simply as soft (resp. c-soft) sheaves. ]

We have the following sequences of inclusions
injective sheaves — flabby sheaves — ®-soft sheaves,

®-fine sheaves < ®-soft sheaves.

Proposition 2.12 ([8]). Suppose X,Y are locally compact spaces, Z < X is a locally closed set and
f: X — Y is a continuous map.
(a) Let 8 € Shr(X). The class of injective sheaves is adapted to the functors

Homgp ,(x)(—,8), Homgy, (xy(—8), fa.
(b) The class of flabby sheaves is adapted to the functors
Lo (X, ), T'z(-), T'z(X,—).
(c) The class of c-soft sheaves is adapted to the functors
Le(X,-), fi
(d) Let 8 € Shr(X). The class of flat sheaves is adapted to the functor ®S.

To study the compositions of such functors we need to know the behavior of these classes of
sheaves with respect to these functors
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Proposition 2.13 ([8]). Suppose X,Y are locally compact spaces, Z < X is a locally closed set and
f: X - Y is a continuous map.

(a) If 8 is injective then f.8 and I z(8) are injective, and Hom(F, 8) is flabby for any sheaf F €
Shr(X).

(b) fx(flabby) = flabby, I z(flabby) = flabby.

(c) fi(c-soft) = c-soft. If 8 is c-soft then so is 8|z and 8 7.

Definition 2.14. Suppose P is a family of supports on the space X.
(a) We denote by Hj (X, —) the cohomology with supports in ®, i.e. the derived functors of

F@(X, —) : ShR(X) — RMOd.
(b) If G is an Abelian group we set
H*(X,G) := H(X,G).

(c) If X is locally compact then the collection ¢ of compact subsets defines a family of supports and
we set

H(X,G) = H(X,G).
|
Lemma 2.15. Suppose ® is an admissible family of supports on X. For every locally closed subset
i: W — X and any sheaves § € Sh(X), F € Sh(W) we have natural isomorphisms

3 (W.5) = H3(X, %),

2 (W,i718) = H (X, Sw).

Proof The second equality follows from the first. To prove the first equality observe that the functor
iy : Sh(W) — Sh(X)

is exact and we have a commutative diagram of functors

i

Sh(W) Sh(X)
F@W(vv,k /r(p(X,f)

Ab

O

Remark 2.16. Suppose X is a locally compact space. If O < X is open then for every sheaf
F € Sh(X) we have

HZ(0,F o) = HX (X, Fo).
If additionally O is pre-compact we deduce
HX0,59) = H*(X,F0).
If S — X is closed then
H*(X, %) = H*(S,F|s), H(X,Fs) = HX(S,]s).
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For every closed subset Z — X and every sheaf § € Sh(X) we have a short exact excision
sequence in Sh(X)

More generally, given a locally closed subset Z, a closed subset Z' — Z and an arbitrary sheaf
F € Sh(X) we get a short exact excision sequence

OHSZ\Z/HSZHSZ/—)() (211)

Given open sets Uy, Us < X, closed sets Z1, Zo X and arbitrary sheaf F we have the following
short exact Mayer-Vietoris sequences of sheaves

0 - §U1QU2 - gUl ®3'U2 - g’UlUUQ - O; (2123)

0_)?21Uz2_)?Zl@?Z2_>?Z1ﬂZ2_>O (2.12b)
The sequence (2.12a) induces the well known Mayer-Vietoris sequences in the cohomology with
compact supports while (2.12b) induces the Mayer-Vietoris sequence for the usual cohomology.

Remark 2.17. If Z is a closed subset of the locally compact space X, and O = X\Z, the sequence
(2.10) shows that we can interpret H*(X, 8¢) as a relative cohomology

H*(X,80) = H*(X,Z;8) = H*(X, X\0,38).
This statement can be made quite rigorous.

Suppose @ is the set of all closed subsets of the paracompact space X, Z is a closed subset of X,
and G is an Abelian group. Then we have an isomorphism

Hy,. . (X\2,G) = H*(X, Z; ),

where in the right had side is the relative Alexander-Spanier cohomology. When X and Z are not
too wild this coincides with the singular cohomology. For more details we refer to [3, II.12] or [5,
I1.4.10]. Note also that Lemma 2.15 implies that for every sheaf & we have and isomorphism

H%X\Z(X\Z’ G) = H*(XvQX\Z) = H*(X5Q0)~

FIGURE 1. A closed cone and an open cone over L.

Example 2.18. Suppose that L is a “nice” compact space (e.g. a CW -complex). Form the cones (see
Figure 1)
X :=[0,1] x L/{0} x L, U = X\({1} x L).
For any Abelian group GG we have a short exact sequence
O—)QUHQXHQL—)O,
From Remark 2.16 we deduce
H.(ngU) = HC.(U7 G)a H.(XaQL) = H.(ng)
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Hence we obtain a long exact sequence
> HFYU,G) > H¥(X,G) > HN(L,G) » HY (U,G) — -+
For m = 2 we get isomorphisms
H™U,G) =~ H" YL, Q).
For m = 1 we get a short exact sequence
0— HYX,G) 5 HYL,G) > HN(U,G) - 0
If bo(L) denotes the number of components of L then
HY(L,G) =~ GW(D)
and the map ¢ has the form
Gagm (g, ,g) € GO,
NS/
bo(L)
The image of this group is the diagonal subgroup of G (L), We deduce
HYU,G) = GWW) A (GP 1)) ~ Gho(E) 1

In particular
Xe(U) == x(HI(U,Q)) = 1 = x(L).

Finally we would like to say a few words about the local cohomology modules supported by a
locally closed set. These are the derived functors of I' 7 (X, —) and they are denoted by H?, (X, F).
For every locally closed set and every closed set Z' < Z we have a long exact sequence

- — HL(X,F) - HL(X,F) — H)

I (X, F) 5 (2.13)

To understand the origin of this sequence let us observe that if F is a flabby sheaf then we have a short
exact sequence of flabby sheaves

0—->Tz(F) - Iz(F) > Tznz(F) -0

The injectivity of the first arrow is tautological, while the surjectivity of the second arrow follows
from the flabiness of I"z(F) and the isomorphism

DU, L z(F)) = T(U\Z', T2(F)).
We obtain a distinguished triangle in the derived category of sheaves

L7/(5%) > T2(3F°) > Tpz(F°) 4,

In particular if Z = X and Z’ = S < X is closed so U = X\S is open we obtain the distinguished
triangle in the derived category of R-modules

RTs(X,5*) — RD(X,F*) -% T(x\s,5*) 11,

The morphism « is called the attaching map. We obtain the long exact sequence
> HL(X,F) > HI (X, F) > HI(X\S,F) 5 ... (2.14)

Given a cohomology class u € H7 (X \S, JF) we can ask when it extends to a cohomology class on X,
i.e. it is the image of an element & € H7 (X, JF) via the natural morphism. We see that this happens if
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and only if the element du € H f;“l (X, F) is trivial. Thus the local cohomology groups can be viewed
as collecting the obstructions to extension problems.

Let us point out that for any flabby sheaf F, any open subsets U1, Us and any closed sets 71, Zs we
have short exact sequences

0—- Ty o, (3") - Iy, (3') (—BFUQ(?) — FUlmUQ(ff) —0 (2.15a)

05T 2n2(F) > Tz (F)®T4(F) > Lz02,(F) > 0. (2.15b)

In (2.15a) the arrows are induced by the restriction maps I'(U, F) — T'(V,F), U o V open subsets.
In (2.15b) the arrows are “extension by zero” morphisms. The exactness of these sequences is due to
the flabiness of J.

The local cohomology sheaves, i.e. the homology of RI"z(F) is are the sheaves associated to the
presheaves

HL,(U) := H, (U, 7).

Remark 2.19. Suppose X = R? and Z is a line in this plane. Note that the sequence (2.14) implies
that the local cohomology of R supported on Z is in general not zero although, as shown in Remark
2.9, T'z(R) is zero!!! The local cohomology is of F along Z is not the cohomology of I'z(F).
The long exact sequence (2.14) suggests that we can interpret the local cohomology as the relative
cohomology of the pair (X, X'\ Z). For more on this interpretation we refer to [3, II§12].

O

Proposition 2.20. If Z is a closed subset of a locally compact space X and i : Z <— X denotes the
canonical inclusion then for any field K and any sheaf F of K-vector spaces on X we have

HY(X,F) = Ext?(i,K, F) = Ext? (K, F).

Proof We have an isomorphism of functors Shk (X) — Vectx (see [8, Prop. 2.3.10])
Homgpx) (i 2K, F) = Homgp(x)(Kz, F) = I'z(X, F).

Their derived functors must be isomorphic as well whence the desired conclusion.
O

Example 2.21. Consider again the cone X discussed in Example 2.18. We denote by z its vertex.
We would like to compute the local cohomology H {'ﬁ} (X,R). We have a long exact sequence

o Hy (X) > HY(X) = H*(X\{a}) — Hi[ (X) = -

Note that we have a natural morphism H? ,(X) — HZ(U), U = X\({1} x L). Observing that
X\{z} deformation retracts to {1} x L. Comparing the above sequence with

= H(U)—H*(X)—H*(C)—H " (U)— - .
we deduce from the five-lemma that
H{(X) = H(U) = H(B,(2)),

where B,.(x) is a small open ball in X centered at x. O
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Example 2.22 (Baby micro-local Morse theory). Consider the function

¢(z,y) = |z[> = |y[?
defined on a small open ball BP"4 centered at the origin of RPT4 = RL @ RY, p > 0. We would like
to compute H¢, <0}(B, R). For simplicity we set
Z:={¢p <0} nBPTL
This region is shaded in gray in Figure 2. Observe that
BPTI\Z ~ BP\0 ~ SP~1,

where ~ stands for the homotopy. Using (2.14) we deduce

.« - HI(BP*1 R) —» HI(SP"',R) — H%H(Berq,R) — HIFY(BPTI R) — ...

FIGURE 2. The region y2 —z2>0.

We deduce that
HLPY(BPTR) = HI(SP~Y,R) =~ HI*Y(SP,R), Vj > 0.
For j = 0 we have a short exact sequence
0 — H°(BPT,R) — H°(SP~! R) — HL(BP™, R) — 0.
This proves that

H],_o,(BP*%,R) = HI(B?,0B%;R) = H'(¢7((0,¢]), 67" (e); R).
Similarly ‘
Hy, (BP9 R) = H'(B?,0B%R)
so that
X(H gy (B,R)) = (=1)7 = (=1)"®0),
where m(¢, 0) denotes the Morse index of ¢ at 0. o

Let J denote one of the full additive subcategories of injective, flabby, or c-soft sheaves, or the
opposite of the full subcategory of flat sheaves. .

A sheaf F on a locally compact space X is said to have J-dimension < r if it admits a resolution
of length < r by objects in g, i.e. there exists a long exact sequence in Sh(X)

0>F>8—>---—38. -0, 8.
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We write this

dimg F < r.
We define the J-dimension as the smallest 7 with this property. Observe that I € J iff dimgJ < 0.
We can regard the ring R as a sheaf over the space consisting of a single point. Clearly R is flabby and

hence soft. On the other hand we can speak of the flat, or injective dimension. We have the following
result.

Theorem 2.23 ([13]). Suppose R is a commutative Noetherian ring with 1 and r € Z=q. Then the
following statements are equivalent.
(a) dim;,; R = 7.
(b) dimypqs R =1
(c) dimyo; R = 1.
When any of these conditions is satisfied we write

gldim R = r.

The space X is said to have J-dimension < r if every sheaf on X has J-dimension < r. We write
this
dimg X <.
All sheaves have finite flat dimension provided that the coefficient ring has finite global dimension.
We have the following result whose proof could be found in [2, §6].

Proposition 2.24. For any F € Shi(X) we have
dim ¢ F < gldim R.

When J is one of the categories, injective, flabby, soft, then the notion of J-dimension depends on
the algebraic topology of the space X and captures some of our intuition of dimension. For a proof
of the following results we refer to [11, Exposé 2]. In particular, they give an algebraic-topologic
description of the sheaves in { since they are the sheaves of J-dimension 0.

Proposition 2.25. Assume X is a locally compact space. Then the following statements are equiva-
lent.

(a)
dimg, s F < 7.
(b)
HYX,F) =0.
HI(X,¥) =0, Yq¢>np.
(d) For any resolution
0->F -8 >8> —>8_1—-8 —0

where Sy, - -+ , 8,_1 are c-soft, then 8, is c-soft as well.

(e) Every point x € X has an open neighborhood V, such that H. (U, ) = 0, for all open subsets
U—V,.

Proposition 2.26. Assume X is a locally compact space. Then the following statements are equiva-
lent.
(a)

dimflabby F<r
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(b) For every closed set S — X we have
H{PN(X,F) = 0.
(c) For every closed set S © X we have
H (F) = 0 € Shg(X).

There are some relations between these notions of dimensions. We state them under a simplifying
assumption on the topological space X.

Proposition 2.27. Assume X is a subset of an Euclidean space and F € Shr(X). Then the following
hold

(a)

dim fappy I < dimgopr I < dim prappy I+ 1.
(b) If R is a regular ring”* of dimension p then
dim frappy X < dimg,; X < dimgep X +p + 1.
In particular, if R = C we have p = 0 and

dimflabby X < dimmj X< dimsoft X +1.

L
Example 2.28 (The bi-functor R Hom and ®). Fix a Noetherian commutative ring with 1. For any
injective sheaf § € Shp, the functor

Shr(X)? — Shyr(X), F+— Hom(F,S)
is exact and thus we obtain a derived functor
D~ (Shi X)? x D" (Shg X) — D*(Shr X), (f°,§°) — RHom(3*,G").

Every sheaf admits a resolution by a bounded from above complex of flat sheaves. We obtain in this
fashion a (left) derived bi-functor

L L
®: D7 (Shyp X) x D™ (Shr X) - D™ (Shp X), (F°,5*)—» F*®rG"°.
For any ¥, G € D~ (Shg) and any 8 € D" (Shy X)) we have the adjunction isomorphism
L
RHom(F®8§,8) ~ RHom(F, R Hom(S,8)). (2.16)

When JF, g are sheaves (i.e. complexes of sheaves concentrated in dimension 0 then we set

Eat*(F,S) := R Hom' (%, 5).

4 This means that all its local rings are regular of dimension p.
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3. THE DERIVED FUNCTOR R f

Fix a commutative noetherian ring R with 1. For every topological space T and * € {b,+, —} we
set
D*(Rg) := D*(Sh(T)).
Suppose f : X — S is a continuous map between locally compact spaces. Then the full subcategory
of Shx(X) consisting of c-soft sheaves is adapted to the functor

fi: Shy(X) — Shy(S).
In particular we have a derived functor
Rfy: DY (Rx) —» D*(Rg)

We list below some of its most frequently used properties. For proofs we refer to [7, &].
For every sheaf 3 on X, j € Z, and every s € S we have a natural isomorphism

(R £iF)s == H(RAF)s = HI(f71(s),9), (3.1)
where 37 (R f;F) denote the cohomology sheaves of the complex R fF. This shows that we can view

Rf as a sort of integration-along-fibers functor. Observe that if X N S 2 T then we have a
natural isomorphism
R(go f)1 = Rg o Rfi.
To formulate the other natural properties of R f; we need to discuss Cartesian diagrams.
Suppose f : X —» Sandg : Y — S are two continuous maps of finite dimensional, locally
compact spaces. We set

XXM“=ﬁ%w€XxY;ﬂ®=Mw}

A Cartesian diagram associated to f and g is a diagram of the form

XxgY 2y

X

7 S

Example 3.1. Here are a few interesting examples of cartesian diagrams. Given a continuous map

(a)If g : X — S'is alocally trivial fibration then X xg Y — X is the pull back of X -4, S via f.

(b) S ={pt}and f: X —> Sand g:Y — S are the constant maps then X x g Y coincides with the
Cartesian product of X and Y.

(c) Suppose f : X — S is continuous, Y := {s} < S and g is the inclusion {s} < S Then
X g Y = fH(f(2)

and the corresponding Cartesian diagram is

Fi(s) —— (s}

X

S
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where j¢ denotes the inclusion of the fiber
JHs) = X
@Iff: X > Sandg:Y — S are inclusions of subsets X, Y © Sthen X xgY = X nY.

Proposition 3.2 (Base Change Formula). Given a Cartesian diagram

X xgY 2y

X

7 S

we have a natural isomorphism of functors D (Ry) — Dt(Rx)

f_le! x~ R(Wx)!ﬂ';l.
and a natural isomorphism of functors D™ (Rx) — DT (Ry)
g 'Rfi = R(ﬂ'y)!ﬂ';(l.

Observe that the base change formula coupled with Example 3.1(b) implies (3.1).
The key fact behind the base change formula is the following.

Lemma 3.3. Given a Cartesian diagram

X xgY >y

X

7 S

we have a natural isomorphism of functors Shy(Y )— Shy(Y)
g o fix(my)omy. (3.2)

Proof First we construct a natural morphism

fro(mx)s = gu o (my ) (3.3)
Let G € Shy(X xgY)and V an open subset of S. Then

fro(mx): (V) = T4(f7H(V), (7x)+5)

where we recall that I'; signifies sections with compact vertical (with respect to f) support. Next
observe that

T (FHV) ={@,y) e X xY; fla) =g(y)eV}=m'(g7 (V) =X xvY.
Thus u € fio (rx)«G(V) if and only if u € T'(X xy Y, G) and there exists T < X proper over S
such that
suppu < 7T)_(1 (7).
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Then

Ty :suppu — Y
is proper and u defines a section of g, o (my)).
Remark 3.4. There may not exist a natural morphism g, o (wy); — fi o (mx)«. As an example
suppose S = R, X = (0,2), Y = [1,2) and f, g are the canonical inclusions. Then X xgY =
X nY =Y =[1,2) so that the map 7y is tautologically proper. Let G be the constant sheaf R over
X n'Y. Then the constat section 1 € T'(X n Y, R) is proper over Y = X n Y. However, there is no

subset C' of X proper over S (i.e. a closed subset of R contained in X such that X nY < C. Thus
this section defines a section of g, o (7y ), but does not define a section of f; o (7x ). O

-1

To construct the morphism (3.2) we observe that since g, is the right adjoint of g~ we have

Hom(g_1 o fi,(my ) o 7r)_<1) ~ Hom(fi, g« (7y )1 © 7r)_<1)
Using the morphism (3.3) we obtain a morphism

Hom( f, g« (my )1 © 7T)_(1) «— Hom(fi, fio (Wx)*ﬂ')_{l)
The natural morphism I — (7 X)*Tr;(l defines a canonical morphism in

fi= fro(mx)emy'
which via the above chain of morphisms defines a canonical morphism
g lofio (my)omy
We claim that this is an isomorphism. Let 8 € Shx(X) and y € Y. Then
(97" 0 £i8)y = (fi8)4(y) = Tl f " (9(»)), 8).
The map mx induces a homeomorphism
T (y) = f W)
and an isomorphism
Le(f7H(9(9)), 8) = Telmy (y), 1%'8) = ((my )imy'S),

O

L
The functor R f, interacts nicely with the functors R Hom and ®. For several reasons listed below
we need to make some additional assumptions on the maps X J, S.

L
¢ We need to make sure the derived functor ® is defined. Thus we need to require that each bounded
(resp. from above) complex on X and S has resolution by a bounded (resp. from above) complex of

L

flat sheaves. This is the case if both spaces X and S have finite dimension. In this case ® is defined
onD™ x D™,
e The functor R Hom is defined on D x D*. Thus the common domain of definition of R Hom and
L
®is D~ x D,

To summarize, in the sequel we will assume that all space are admissible, i.e they are locally
compact and finite dimensional. Will regard R f as a functor

Rfi: D"(Rx) — D°(Rs).
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Proposition 3.5 (Projection Formula). Suppose f : X — S is a continuous between admissible
spaces. Then we have an isomorphism

(RfiT*) @n§" = RA(T Gnf'9")
natural in F* € D*(Rx) and G* € D°(Ry).

Let us describe the key fact behind the projection formula. Given a sheaf ¥ € Shy(X) and a flat
sheaf G € Shg(S) there exists a canonical isomorphism

HMFP)®r G — [T = F71(F))
induced by a morphism
Fo(F) @ G — f+(F Oz ().

Put it differently, the above morphism is some canonical element

Hom(f+(F) ® G, f:(F® f1(9))

where for simplicity we omitted any reference of the ring R. This element is the image of Igg -1
via the the following sequence of morphisms

Ie Homx(F® f 16, F® f19)
(use the adjunction morphism (f~1 f,)F — F)
— Homy ( (f_lf*gf) ® f_lga F® f_lg)
= Hom( fH(f.T7®9),F® f19)
(use the fact that f, is the right adjoint of f~1)
= Hom( f.F®G, f+(F®f'G)).
At stalk level this map can be described as follows. Given s € .S we have
A@)s®Gs = T 1), T |-136)) ® s
4 Fc(f_l(s)v F |f_1(s) ®&)
— f(F®F9)s

The tautological morphism 7 is an isomorphism when § is flat. This follows from the following fact,
[8, Lemma 2.5.12].

Lemma 3.6. Suppose R is a commutative ring with 1 and M is a flat R-module. Suppose F is a sheaf
of R-modules over the locally compact space X. Then there exists a canonical isomorphism

F(X,F)@M—T.(X,F® M).
In particular, if F is c-soft then so is F Q@ M.

Proposition 3.7 (Kiinneth Formula). Given a Cartesian diagram of admissible spaces and continuous
maps

XxgY 2oy

X N\ g
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where 6 = frx = grmy. We have a isomorphism

L L
Ro(ny'F@7y'S) = RAFQRgS. (3.4)
natural in ¥ € D*(Rx) and G € D*(Ry).

Proof Using the projection formula we deduce

P L ~1
(Rrx ) (my'FQmy'G) = FR(Rrx)imy' G

Using the base change formula we deduce

(Rrx)imy'S = f'RgS
so that

gk 1 Lo
(Rﬂx)g(ﬂ'X FRmy 9) >F®f "Rg§.
Using the projection formula once again we deduce
gk 1 gk 1 L
R51(7TX Ty 9) ~ Rf;(Rﬂ'X);(ﬂ'X TRy 9) ~ RAF® Rg:S.

O

Kiinneth formula together with Proposition 2.25 implies that the product of two finite dimensional
spaces is a finite dimensional space.

Corollary 3.8. Given two admissible spaces X,Y we denote by my the natural projection
Ty : X xY =Y.
Then for any Noetherian ring R we have an isomorphism in D (Rx)
(Rry )R = ¢y RT (X, R)
In particular, the higher derived sheaves of (Rmy )W/ R are constant on'Y'.

Proof Consider the Cartesian diagram

Xxy 25 x

Y

pt

Cy
The base change formula implies

(R?Ty)[g >~ R(ﬂ'y)!ﬂ')_(lg ~ C;I(CX)IE ~ C;IRFC(X,E).
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4. LIMITS

We would like to survey and generalize the classical concepts of inductive/projective limits. We
start with the classical notions.

Suppose (I, <) is an ordered set. We identify I with a category, where we have an object O; for
each ¢ € I and a exactly one morphism O; — O; for each i < j. If C is a category, then an inductive
family in € parametrized by I is a functor

X:I-C imX; i<jm¢j:X; — Xj.
A projective family in C is then a functor
Y:I?-C im Y, i<j—y:Y; oY
Definition 4.1. (a) Suppose (X;, ¢;;) is an inductive family of objects in a category C. We say that

X =lim X;
T

if there exists a collection of morphisms ¢; : X; — X satisfying the following conditions.

(al) For every © < j we have a commutative diagram
Dji

NI

(a2) For every family of morphisms X; i, ¥ such that
bji

N

there exists a morphism f : X — Y such that the diagram below is commutative
bji

N7

fi X fi

Xi

X

X; X

X

X

s
Y
(b) Suppose (Y;, ;) is a projective system in C. The definition of Y = lim Y is obtained from the
definition of lim by reversing all the arrows.

(c) Suppose (X, ¢;;) is an inductive family of objects in a category C. We say that

Lim ; Xi=X
if there exists a collection of morphisms ¢; : X; — X satisfying (al), (a2) and there exists ig € I and
a morphism ey : X — X, such that

Gigoeg =1y
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and for every ¢ there exists j > i, 79 such that the diagram below is commutative

Pji
Xj _— Xio

Xi — X
Z (4.1)
(d) The definition of Lim is the same but with all the arrows reversed. O

Remark 4.2 (Mnemonic device). lim produces an initial object while lim produces a ferminal object.
— —
i

Example 4.3. If [ is equipped with the trivial order relation, i.e. not two different elements in I are
comparable then

I i€l
and

limY; = [ | V.

Iop iel

O

Example 4.4. Suppose (A, dnm)n=m=0 is an inductive sequence of R-modules, R-commutative
ring with 1, such that Lig;n A, exists. We denote this limit by A. In particular

A=limA, =P An/Dy, Ay =) Ay,
n n i<j
where
Aij - {(Cla"' ’Ck,...) € @An, anp =0, Vn #1,7J, a; = —gbﬂ(ai)}.
For example
A = {(6% —¢12(a),0,0---); a€A1} etc.
and we have
(a17a27"' 7an707"') = (a17a27"' 7an707"') - (a17_¢21(a1)70"') =
= (07 7070'71 + (bnl(al) +oeee 4+ ¢n,n—l(an—1);07" ) € h_r)nAn

n
n—1

Since A = Lign A, there exists sg : A — A such that ¢gsg = 1 4, and for any k& > 0 there exists
n = ny, = k such that the diagram below is commutative

A, Pk A

5

An < AO .
d)n(]

Note that ¢, Sy, = PpdnoSo = PoSg = 14 so that s, must be 1 — 1. This shows in particular that

ker(Ag Ongy n) = ker(Ay 2o, A).
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In other words the increasing sequence of submodules ker(Ag Fnoy A,,) stabilizes. We can visualize
this condition in a different way. Form

A, = A,/ ker(4, — h_II)lAn)

3

the morphisms ¢,,,,, induce monomorphisms

and

If h_n)1n A, = Lign A, then the ascending chain (A; = Ay < ---) stabilizes. This happens automat-
ically if A,, are modules over a Noetherian ring R and A = lim A, is a finitely generated R-module.
Conversely, if the limit A = li_n)ln A, is a finitely generated projective module over the Noetherian
ring R then
A=limA, = Limn An

n
For example if A is a sheaf of Abelian groups on a metric space X and A,, = I'(By-»(x), A) then

li_I)nAn = A,

n

then Ligln A,, = A, iff and only there exists a natural method of extending a germ f € A, to the ball
Bj(x). Moreover the sections of the sheaf satisfy a weak form of the unique continuation principle:
there exists 79 > 0 such that if the germ at x of f € I'(B;(x),A) is zero then the restriction of f to
By, () must be trivial. ]

Definition 4.5. Suppose (A, Ymn)n>m>0 is a projective system. We say that it satisfies the Mirrag-
Leffler condition if for every k > 0 there exists my > k such that the morphisms

Ui Ap — Ay,
have the same image for all m = my. We will refer to the projective systems satisfying the Mittag-

Lefler condition as Mittag-Leffler systems. m]

Example 4.6. Suppose (A, ),>0 is a projective sequence of Abelian groups, i.e. for every n > 0 we

are given a morphism A, Yo, A,—1 and for n > m we denote by ,,,,, the composition

m w’ﬂ
djmnAnw—) mfl_)"'—+)1 n-
Suppose
A= len A,.
Then

A=1lmA, = {5= (ap,a1,---,) € HAn; ai = ¥ij(az), Vj> Z}

The natural projections 7, : A — A, lie in commutative diagrams

I

A, — A,

Ymn
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Additionally, there exists pg : Ag — A such that pgmg = 1 4 such that, for every m > 0 there exists
n = Ny, > m for which the diagram below is commutative

A, 2 4, 42)

wmni pn ip()
N

We set p, = po © Yon : An — A. If we choose m = 0 in the above diagram and we set By =
Yong (Any) © Ao we obtain a commutative diagram

A,
d)OnO i Pro
BO ? A.

We deduce that 7 is onto By and its inverse is pg. po is thus an isomorphism

po: Bo— A, By 3by > (bo,t1(bo), -+ ,tn(bo),--) € A

tm : Bo — Amv to = ILBQ) tm = wmntna ¥Ym < n.

We conclude that

Yon 0ty = ]lBO - wOn(An) > By = w()no (An0)7 Vn = 0.
In other words, the decreasing sequence of subgroups Im (A4,, o, Ap) stabilizes.
Now observe that

Pm © Tm = P0 © Yo © Ty, = L 4.
(S
0

We can now play the same game with 0 replaced by m and ng replaced by n,,,. We denote by By, the
image of ¥y, + An,, = Am. Using the diagram (4.2) we deduce in a similar fashion that

¢mn(An) = Bm7 Vn = m.

This shows that (A,,, ¥n,y,) is a Mittag-Leffler system.
m|

Let N := Z-( and denote by Hom(N°, Ab) the category of projective systems of Abelian groups.
This is an Abelian category and lim defines an additive covariant functor

lim : Hom(N°?, Ab) — Ab.
—
Let us observe that for every Abelian group G' we have

lim Hom(G, A,) = Hom(G, lim 4,,)
Pa— —

n n

This is a left exact functor, i.e. transforms injective morphisms into injective morphisms. However it
is not an exact functor.
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Example 4.7. Let R be a principal ideal domain (R = 7Z,Q]t]), and p € R a prime element. Set
A, = R, B,, = R/p"™ Denote by 7, the natural projection A,, — B, so that we have a commutative
diagram

Ap=R—"% B, = R/p"

p.l i

A,_1=R R/pnil

Tn—1

Observe that lim R/p"R is the ring of p-adic integers while lim = 4,, = 0.
m]

Proposition 4.8. Suppose we are given a short exact sequence of projective sequences of Abelian
groups

Jn E gn

0 . B, Ch 0
anl /3nl l“/n
0= Ant 5 Buot 5 Comt ——0

(a) If (Ay,) and (Cy,) satisfy the Mittag-Leffler condition then so does (B,,).
(b) If (By,) satisfies the Mittag-Leffler condition then so does (Cy,).
(c) If (Ay,) satisfies the Mittag-Leffler condition then the sequence
0 — lim 4, -5 lim B, =% lim C,, — 0
— — —

is exact.

Proof Diagram chasing and soul searching. m|

Consider a projective sequence of complexes of Abelian groups (A}, d) so that for every n > 1
we have a commutative diagram

. d 1
Ay ——A3F

* d L]

n—1"—_> Antll
We get projective sequences Z*(A,), B*(A,), H*(A,). The inverse limit

Ay =lm A},

n
is a complex and the canonical morphisms A3, — A are morphisms of complexes. We get mor-
phisms
k. rrk k
¢y - H"(Ap) = H"(An)
and by passing to the limit we obtain morphisms
o*  H¥(Ay) — @Hk(An)

n
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Proposition 4.9. Assume that for each k the projective system (AF),~q satisfies the Mittag-Leffler
condition. Then the following hold.

(a) The morphism " is surjective for every k.
(b) If for some k the projective system ( HF1 (An) )n>0 satisfies the Mittag-Leffler condition then ¢*
is bijective.

Proof (a) For every k we have short exact sequences

0— ZF—Ak_pBktl 0, (4.3)
0— By — Zy — H(4,) = 0. (4.4)
They induce a short sequence
0 — lim BY — lim Z} — lim H*(4,) — 0. (4.5)
n n n

Since (A?) satisfies M L we deduce from (4.3) and Proposition 4.8(b) that (By,) satisfies M L so that
the sequence (4.5) is exact.
Now observe that

Zk = ker(Ak, 2% AR = lim Z)
n

and the canonical map
BY, = Tm (A5 25 A% )— lim B
n

is one-to-one. Hence we have a natural surjection

4.5
75 /BE — lim 28/ 1im B 2 1im 15(4,,).
n n n

(b) Using the short exact sequence (4.4) with k replaced by k — 1 and using the fact that B(B*~1),,,
(H*=Y(A)n))n=o satisfy M L we deduce from Proposition 4.8(a) that (Z5~1),,~ satisfies M L. We
deduce that the sequence

. _ . do 1.
0 — lim ZF 1 —1im A* 2% 1im Bf — 0
P Pa— p—
n n n

is exact so that the canonical map

B = limIm (A5 <2 A% )—s lim BE
n n
is a bijection.

O

Proposition 4.10. Let X be a topological space and F € Dt (Shy(X)). Consider an increasing
sequence of open subsets (Uy,)n>1 and a decreasing sequence of closed subsets. We set

U=|]JUn, Zy = () Zn.

nzl1 nxz1
Then the following hold.
(a) For any j the natural map
¢; + Hy(X,F) — lim H}, (U, )
n

is surjective.
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(b) Assume that for a given j the projective system {HZl(Un,?)}n>1 satisfies M L Then ¢; is
bijective.
(c) Suppose now that (X,,) is an increasing family of subsets of X satisfying

X =|JXn, XncInt(Xni1).
n

If for some j the projective system {H'~Y(X,,, F) satisfies M L then the natural map
HI(X, ) - lim 9 (X,,, )

n

is bijective.

Proof We can assume that J is a complex of flabby sheaves. Denote by £ the simple complex
associated to the double complex

| T

(U, 371 LUy, 37%)

Then
H%n(Un,S-“) > H'(Ey), H%(U,f{) = H](lLHEn)

(a) and (b) follows from Proposition 4.9. Part (c) also follows from Proposition 4.9 using the fact that
the projective system {H’~!(Int X,,, F)},>1 satisfies M L and

lim H (X,,,F) = lim B (Int X,,, F).
<“— —

O

Itis very easy yet very profitable to enlarge the notion of projective, injective limit. We will achieve
this by replacing the directed index family I in the definition of a projective(inductive) family by a
more general object.

Suppose I, C are categories. Then an [-inductive (resp. I-projective) family in € is a functor
X : I - C(resp. Y : I°P - ©). We denote by Ind (I, C) (resp. Proj(I,C)) the collection of
inductive (resp. projective) families in €. These collections are categories in a natural fashion.

Suppose C = Set and Y € Proj (I, Set). We define

mY = {(yi; iel)e| [V vi=Y(fy, Vi i&i}'
1 iel
We have a natural functor

Const : ¢ — Proj (/,C), €3 C — Constc,

where
Constc (i) = C, Constc(f) =1¢, Vi 4, j.
Given Y € Proj (1, C) and C € C we can identify a morphism

Constg —» Y
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with a collection of maps C' % Y; such that for every ¢ J, J we have a commutative diagram

C
%‘i \\¢i
Y, ——v,
X(f)
Hence
Hompyoj(Constc, Y) = lim Home(C, Y;).
I
Define

limY : C” — Set, '+ Hompyoj(Constc,Y) = lim Home(C, Y;).
I I
Similarly, given X € Ind (I, C)

lim X : C'— Set, C'— Hompuya(X, Constc) = lim Home(X;, C).
I I
Definition 4.11. (a) If X' : I — C s an inductive family we say that lim | X; exists in C if the functor
lim X : C' — Set
T

is representable, i.e there exists an object X, € C and bijection

Home(Xo, C) = Hompya (X, Conste) = lim Home(X;, C)
I

P aai—

natural in C € C.
(b)If Y : I°? — C'is a projective limit in C then we say that the limit lim - Y; exists in C if the functor
lim Y : C°” — Set is representable, i.e. there exists an object Y, € € and bijections
Home(C, Yoo) = Hompyoj(Constc, V) = lim Home(C, Y;),
T

natural in C' € C.

Observe that when [ is the category associated to a directed ordered set we obtain the old definitions
of lim and lim.

- —
Definition 4.12. A (nonempty) category [ is called directed (or filtrant) if it satisfies the following

conditions.

(i) For every i, j € I there exists k € I and morphisms ¢ — k and 7 — k.
(ii) For any morphisms f, g : 4 =3 j there exists a morphism h : j — k such that

hf=fg.
Suppose I is a directed small category. Consider an inductive family of sets
X :I— Set, i— X;.
Observe that h_r)n . X exists in Set and we have a natural isomorphism
lim X, =| | X/~ wi~a; =35k 5k X(fe = X(9);
I i€l

In the sequel we will work exclusively with directed small categories I so that lim ; exists in Set.
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Suppose we are given a category C, an inductive family X : I — €, and a projective family
Y : I°P — C. We obtain a contravariant functor

"1im X;” : € 3 C' — lim Home(C, X;) € Set
T T

and a covariant functor
"1lim”Y; : €3 C + lim Home(Y;, C).
T v
A functor C°? — Set isomorphic to some ” h_H)l . X;” is called an IND-object while a functor € —
Set isomorphic to some ” lim  "Y; is called a PRO-object.

Remark 4.13. The reason for introducing such concepts is that the homological properties of the
inductive (projective) limit constructions depend only on the IND (resp. PRO) objects they define
(see [11, Exp. 6], [12]). More precisely two inductive families (X;);er, (X;);es (resp two projective
families (Y;)ier, (Yj)jes) are called essentially equivalent if they define isomorphic IND-objects
(resp. PRO-objects). When working with inductive (projective) families in Abelian categories which
admit arbitrary inductive (projective) limits then essentially equivalent families will have isomorphic
higher derived limits lim? (resp. lim?).

We would like to understand when an IND-object (resp. a PRO-object) is representable. Differently
put, an inductive (projective) family defines a representable IND-object (resp. PRO-object) when it
is essentially equivalent to a constant family. We consider only the case of ” lim , X;”.

Let us first observe that every element ¢ € lim Home(C, X;) is described by some morphism

Two morphisms ¢; : C — X; and ¢; : C' — X describe the same element if there exists k € I and

morphisms % EN k, j 5 k such that the diagrams below are commutative

X, X,
ANa
Cc — X;, c—Xj.

Suppose there exists an object X, € C' and natural isomorphisms

lim Home(C, X;) = Home(C, Xo).
I

If we let C' = Xj,, for some ¢ € I we obtain

lim Home(X, X;i) = Home(Xi,, Xoo)
I

The morphism 1x, € Home(X,, Xiy) < ||; Home(X;,, X;) defines an element in
lim  Home(X;,, X;) and thus a morphism

¢i0 € HOHl@(XZ‘O s Xoo)
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Suppose we have a morphism 4 4, Jo. Then f and 1x, determine the same elementin lim, Home(X,, X;).
We have a commutative diagram

li_r)nl Home(Xj,, X;) <— Home(Xj), Xoo)

f*i lf*

which implies that
. f .
f*(¢jo) = ¢io — Qbio = ijo o f, Yig = jo.
If we take C' = X, we conclude that the element 1y, € Home(Xq, X ) determines an element

p € lim Home(X o, X;).
1

This is represented by an element in | |; Home(Xq, X;) so that there exists ko € I and a morphism
pk’o : XOO g Xk'()

which corresponds to 1y, . Now consider a morphism ¢; : X; — X,. We get a commutative
diagram

Pk € lim, Home(Xoo, X5) Home(Xow, Xoo) 3 1x,

¢;‘l ¢>j‘i

Pko © ¢j € li_r)n[ Hom@(Xj,Xi) B ]lXj <~ HOme(Xj,Xoo) 3 ¢j.

This shows that the morphisms py, © ¢; and 1, define the same element in limy, Home(X;, X;).

Hence, there must exists k > kg, j and morphisms kg 4, k,j 9, such that

Pk
Foprod =g Xo—> Xk,

4

If we now assume that I is the category associated to a directed ordered set we obtain the following
characterization of the functors Lim. For more details we refer to [8, [.11] or [1 1, Exp. 6].

Proposition 4.14. Suppose I is a directed ordered set and (A;, ¢ji)j~i is an inductive family and
(Bi, ;) j>i is a projective family in a category C. Then the following hold.
(a) Ay = Lim s A; iff A represents the functor

€% 5 C — lim Home(C, 4;) € Set.
I

natural in X € C.
(b) By, = Lim : B, iff represents the functor

€ 5 lim Home(B;, C) = Home(Bw, X) € Set.
I
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Proposition 4.15. If F' : C© — €' is a functor and
Lim X;, =X
%I

then

Proof Let p; = F(¢;) : F(X;) —» F(X), pji = F(¢ji) : F(X;) - F(X;). Suppose we have
and object Z € €' and morphisms g; : F'(X;) — Z such that for every i < j the diagram below is
commutative

F(X;) —— F(X;)
N

We define so = F'(ep), g := ¢iy,S0- We have to show that for every i € I we have a commutative
diagram

F(X;) —"— F(X)

Z
Choose j > 4,4g as in (4.1). Then
9i = 9jPji> 9jPjioc = Jio-
On the other hand

(4.1
Pji = PjipS0Pi == Gi = GjPjioS0Pi = JixS0Pi = gPi-

O
Definition 4.16. Suppose A is an Abelian category, C — A is a subcategory (not necessarily Abelian).
We say that an inductive family (X;, ¢j;)icr in A is essentially of type C if for every i there exists

J > 4 such that the morphism ¢;; factorizes through an object in C, i.e. for every 7 < j there exists an
object C; in € and morphisms

fii : Xi = Cjiy gji - Cji > X;
such that the diagram below is commutative.
Xi

bji
fii !

C.. X.
" J

For a proof of the following result we refer to [1 1, Exp. 6, Prop.5.4].
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Proposition 4.17. Suppose (X, ¢ji)ier is an inductive family in A such that Lin . X; exists. Then
the family (X;) is essentially of type C if and only if the following holds.

There exists an inductive family (Cs, fis)ses in C such that
LimS Cs ~ Liml X;.

Example 4.18. Suppose the category C consists of a single object O and a single morphism, 1. An
inductive family of type C is called an essentially constant family. We see that an essentially constant
family is an inductive family (X3, ¢;;)ses for which Lim ; X exists. O

5. COHOMOLOGICALLY CONSTRUCTIBLE SHEAVES

We need a brief algebra interlude. R will denote a Noetherian ring with 1. We assume that A has
finite global dimension, gldim R < 0.

In geometric applications it is desirable to associate numerical invariants to various objects in a
derived category of complexes. Clearly this cannot happen without some finiteness assumption. The
perfect complexes are precisely those from which we can extract numerical invariants.

When working with sheaves, it is convenient and necessary to impose certain rigidity assumptions,
much like the requirement of coherence for the sheaves in algebraic geometry. The right notion of
rigidity will be that of constructibility.

Definition 5.1. An object C* € D*(gr Mod) is called perfect if it is isomorphic (in D?) to a bounded
complex of finitely generated projective [2-modules.

We denote by r Mod/ the Abelian category of finitely generated R-modules and by D®(x Mod/ )
the associated derived category of bounded complexes of finitely generated [2-modules.

Proposition 5.2. Every object in D*(r Mod) is perfect.

Proof  We have to prove that any bounded complex of finitely generated R-modules is quasi-
isomorphic to a bounded complex of finitely generated projective R-modules. The finitely generated
projective modules form a full additive category of the Abelian category of finitely generated R-
modules. Moreover, every finitely generated R-module is the quotient of a finitely generated R-
module. If we choose n > gldim R then we deduce that if

X—->FP1—->P->FP—>M-—>0

is an exact sequence with M and X finite and P; finite projective then we deduce X must be projec-
tive. We can now conclude using [8, Cor. 1.7.8].
O

We denote by Dg’c( rMod) the full subcategory of D°(z Mod) consisting of complexes with
finitely generated cohomology. Clearly D(z Mod/) is a full subcategory of D?( r Mod).
Proposition 5.3. The inclusion

i: D"(gMod/) — D%(zrMod)

is an equivalence of categories. In other words, to every bounded complex with finite cohomology we
can associate in a natural way a quasi-isomorphic bounded complex of finite projective modules. O
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Proof The category of finitely generated R-modules is a thick Abelian subcategory of r Mod
(see [8, §1.7] for a definition of thickness). Observe that for any finitely generated R-module M and
every epimorphism of R-modules f : N — M there exists a finitely generated R-module X and a
morphism g : X — N such that the composition

gof: X—->M

is an epimorphism. We can now apply [8, Prop. 1.7.117°.
|

Remark 5.4. Putting together the above results we deduce that every bounded complex with finitely
generated cohomology is quasi-isomorphic to a perfect complex, i.e. finite length complex of finitely
generated projectives. |

Given R-modules A, B, C we have natural morphisms
adj : Homp(A ® B,C) —» Hompg (A, Hom(B, C)),

Homp(A® B,C) 3T — adjr € Homg(A, Hom(B, (), adjr(a)(b) =T(a®Db).
and
ev : HOmR(A, B) ®R C - HOmR(A, B ®R C),
Homp(A,B)®r C 3T ®c+— evy € Homg(A, BRr C), evr(a) =T(a)®c.

The first morphism is an isomorphism and it shows that the functor Hom(B, —) is the right adjoint
of the functor ®pB. The second morphism is in general not an isomorphism. For example, if we
take B = R so that Hom(A, B) = Hom(A, R) =: A* then the image of ev consists of morphisms
A — (' with finitely generated image. Still, there is a more subtle obstruction. We have the following
result, [1, §1, Thm. 1].

Proposition 5.5. The following are equivalent.

(a) The R-module C'is flat.

(b) ev : Homp(A, B) ®r C — Hompg(A, B ®g C) is an isomorphism for any finitely presented
R-module A and any R-module B.

(c¢) The natural morphism A* @ C — Homp(A, C) is an isomorphism for any finitely presented
R-module A.

Any finitely generated projective module over a Noetherian ring is automatically finitely presented.
We deduce that for a flat module F' and a finitely generated projective module we have an isomor-
phism

P*® F =~ Hom(P, F).
Note that for every R-module M have a tautological morphism
Jy M — M**
which corresponds to the tautological linear map
M®M* - R, m®m®*— m*(m),
via the adjunction isomorphism

Hom(M ® M*, R) - Hom(M, Hom(M*, R)).

SWe are actually using the dual statement, with all arrows reversed, and monomorphisms replaced by epimorphisms
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Observe that if any morphism of modules M JN induces a morphism f** : M** — N** and the
diagram

M I A
f prE

N ——— N**
JN

Proposition 5.6. Assume R is Noetherian with 1. Suppose P is a finitely generated projective module.
Then the tautological morphism
J: P — P*

is an isomorphism.
Proof We have a short exact sequence
0->K—->R" 5 P0.

Since P is projective the sequence is split. Fix a section s : P — R™, wos = 1p. Using the
tautological identifications R* = R and

= \Yj=1 = = Dj=1
j=1
we get a split exact sequence

and a commutative diagram

0—=K—>R"___P—>0

S
ik

0—K—R" P——0

Since 7** is onto we deduce Jp is onto. On the other hand
s**Jp = Jgs.

and since Jgs is one-to-one we deduce that Jp is one-to-one.
O

Proposition 5.7 (Special adjunction formula). © Suppose R is a Noetherian ring with 1 such that
gldim R < co. Then we have a natural isomorphism

L
RHom(A*®, B*)® C* ~ RHom(A*, RHom(B*,C")) (5.1)
which is natural in A*, B* € D?(R Mod), C* € D’(r Mod).

Proof This is clearly true for A*, B* € D®(zr Mod/), C € D’( Mod). Next use the equivalence
of categories
D"(g Mod/) — D%( Mod).

% Formule d’adjonction cher a Cartan”
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Definition 5.8. Suppose X is a locally compact space of finite soft dimension and R is a Noetherian
ring of finite global dimension. An object F € D®(Shr (X)) is called cohomologically constructible
(c.c. for brevity) if for any point x € X the following conditions are satisfied.
(a) Lim _ RI'(U,%)and Lim, _ RIc(U, ) exist and the canonical maps

IMUSI RI'(U, %) — o, (5.2a)
Rl (X, 3) - Lim ,_ RT(U, ) (5.2b)

are isomorphisms (in the derived category).
(b) The complexes F, and RI'(,; (X, F) are perfect.

The cohomologically constructible complexes form a full subcategory of D®(Shr (X)) which we
denote by D..(Shr(X)).

Remark 5.9. Observe that condition (a) can be rephrased as saying that for every € X the inductive
system

{RT'(U,¥); U neighborhood of z }
and the projective system
{RT.(U,F); U neighborhood of z }

are essentially constant and
lim RU(U,F) = F,, lim RT(U, ) = Rl (X, F).
Usz Usz

The constructibility condition has some obvious co-homological consequences. It implies for exam-
ple that the inductive system

{H*(U,¥); U neighborhood of z }
and the projective system
{H%(X,9); K compact neighborhood of z }
are essentially constant in p Mlod, and

lim H* (U, F) = H*(F,) € p Mod/, lim H} (X, %) = H},, (X, F) € g Mod .
Usx Kax

Often all one needs in applications are these cohomological statements (see [2, Chap. V], [11, Exp.
8, 9] for more details). In particular, in [2, Chap. V,§3] it is shown that if

H*(F,), Hi, (X,5)e g Mod/

then the condition
lim H (X, F) = Hy,y (X, F)
Kazx
implies
h_r)nH'(U, F) = H*(F,).
Usx

We will discuss later on how to produce a large supply of c.c. complexes of sheaves.
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6. DUALITY WITH COEFFICIENTS IN A FIELD. THE ABSOLUTE CASE

Suppose K is a field and X is a locally compact space. For every K-vector space £ we denote by
EY its dual
EY := Homg (F,K).

Suppose 8§ is a sheaf K-vector spaces on X. The inclusion j : V' < U of two open sets induces an
“extension by zero” map

Jr:T(V;8) > T'(U, s)
and by duality a map

g DU, 8)Y — Te(V, 8)Y.

We obtain a presheaf 8" by setting

rU,8Y) :=T.(U,8)".

Remark 6.1 (Food for thought). The presheaf 8¥ should not be confused with the presheaf Hom(
Suppose K = R and 8 is the constant sheaf R on a compact smooth manifold X. Then Hom(8,
R. On the other hand 8¥ = 0 since I'.(V,R) = 0 for every open ball V' — X.

As a different type of example consider X = R. For each open set U — R denote by Q! the sheaf
of 1-forms on U.

Let U = (—1,1) and set p = ﬁdw. The segment I := (—1,1) can be viewed as a linear

functional Q1 (U) — R by

8, K).
K) =

1 L o
OUU) 36— () JIsO-

Although the linear functional §, : Q}(U) — R admits many extensions to a linear functional
QY(U) — R, the “natural choice” is not defined for the 1-form 1.
O

Proposition 6.2. If S is a c-soft sheaf on the locally compact space X then the presheaf 8" is a sheaf.

Proof Suppose U,V are two open subsets of X. Applying the functor I', to the Mayer-Vietoris
sequence (2.12a) we obtain an exact sequence

0> To(UNV,8) > To(U,8) @T(V,8) > To(U U V,8) » HAU V).

Since the restriction to an open set of a c-soft sheaf is also c-soft we deduce HX(U n V., 8) = 0 so
that we have a short exact sequence

0T (UnV,8) 5T (U,8)DT(V,8) > T (U uV,8) — 0.
Applying Homg (—, K) to this sequence we obtain an exact sequence
0-TUuV,8) ->TUS8)eI'(V,8) ->T(UnV,8). (6.1)

This shows that given two sections si; € I'(U, 8V) and sy € I'(V, 8Y) which agree on the overlap there
exists a unique section sy € I'.(U U V, 8") which extends both si; and sy .

Consider now a directed family U of open subsets of X, i.e. for any U, V" € U, there exists W € U
such that W o U u V. Denote by O the union of all open sets in U. We see immediately from the
compactness of supports that

I'.(0,8) = h_r)n I'e(U,8).
UelU
Using the natural isomorphisms
Homg (lim I'+(U, 8),K) = lim Homg (T'c(U, §), K) = lim I'(U, 8")
Uelu UelU Uelu
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We deduce that given a directed family sy € Homg (I'c(U, 8),K) = I'.(U, 8Y), U € U (i.e. a family
satisfying sy | (v,sy= sv, VU D V) there exists a unique s : I'c(0, §) — K such that

S@ |FC(U,S): sy, YU e U.

Given an arbitrary open cover V of an open subset O < X we can enlarge it to the directed cover
Vof O consisting of all the finite union of members of V. A family of sections {sy; V € V} which
agree on the overlaps, extends using (6.1) to a directed family of sections {sy;; U € \~7} which defines
a unique section s € I'(0, 8"). This implies that 8¥ defines a sheaf.

O

Proposition 6.3. Suppose X is a finite dimensional locally compact space. Then for every c-soft
sheaf 8§ € Shg (X)) and any F € Shx(X) the sheaf § @k F is c-soft.

Proof The proof is carried in two steps. First we notice that if 7 : U — X denotes the inclusion of
an open set then we have a natural isomorphism

$®ji(vK) = jij '8 = 8.
Next we construct a resolution of F'
o P 5P 5Py > F o0,

where each P; is a direct sum of sheaves of the form K;, U END'¢ open. Since we are working with
sheaves of K-vector spaces the functor

Shi(X) %% Shy (X)
is exact and thus we get another resolution
5 8RP B L8RP BSRPRS®T -0,

In particular we get a resolution of ker d,.

0—>kerd, >8@Pr 1 —> - >8P, >8@Ps BSRF -0

where 8 @ P; are c-soft for any 0 < j < r. If r > dim, X we deduce F ® 8 is c-soft.
O

Proposition 6.4. Let X be a finite dimensional locally compact space and 8 a c-soft sheaf. Then
there is an isomorphism of functors

Shr(X)3F > T(X,F®S)" € Vectk
and
Shi(X) 3 F — Hom(F,8") € Vectk .
In other words, the functor
Shr(X)?3F - (X, F®S8)" € Vectk
is represented by the sheaf 8".

Idea of proof First we need to define the morphism of functors. In other words, for any sheaf F we
need to construct linear map

Ty :T.(X,F®8)" > Hom(F,8").
Equivalently, this means that we have to associate to each open set U <— X a linear map
Ty :Te(X,F®8)'— Homg (I'(U, F),T'.(U, 8§)").
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which is compatible with the restriction maps. Given a linear functional
L:T(X,7®8) —>K,
we define
Ly :T(U,F) - T'(U,8)"

as follows. For fiy € I'(U,F) and sy € I'(U, 8) we have fy @ sy € [(U,F®8) < I'o(X, F® )
and we set

Lu(fv),suy =L, (fu ® sv)),

where (—, —) denotes the natural pairing between a vector space and its dual.
We observe first that T3 is an isomorphism when J is a sheaf of the form Ky, U <— X open
subset. In general, any K-sheaf I admits a presentation of the form

R—>G->F—»0

where GG and R are direct sums of sheaves of the form K;;. The two functors are left exact and we
conclude using the five-lemma.
O

Remark 6.5. Proposition 6.4 result is the heart of the Verdier duality. When the space X is a point it
coincides with the adjunction formula

(U XK VV)V = HOIIIK(U, V),

for every K-vector spaces U and V. m]

Corollary 6.6. If X and S are as in Proposition 6.4 then the sheaf 8" is injective.

Proof We have to show that the functor
Shg(X) 3 F — Hom(F,8") =T.(X,F®S)"

is exact.
Indeed, suppose we are given a short exact sequence of sheaves

0-F -F >3 50
Since we work with sheaves of vector spaces we get a short exact sequence of c-soft sheaves
0-FRXS->FTRS—>F"'®S—-0

The conclusion follows from the fact that the c-soft sheaves are I'.-injective objects.
O

Let X denote a locally compact space of finite dimension and let K denote a fixed field. We denote
by D%(X ) the derived category of bounded from below complexes of sheaves of K-vector spaces.
We denote by Dyt (Jx) subcategory of KT (Shg X) of complexes of injective sheaves. We know
that Dﬂz (Jx) is equivalent to the derived category Dﬁg (X). When X = = is the space consisting of
a single vector space then D% (#) is equivalent to the category of bounded from below complexes of
K-vector spaces with trivial differentials.

To every object I* € D% (Jx) we associate the vector space

[Co(X,I°),K] = [[o(X, ), [K]].
We get a (contravariant) functor

Dt (Ix)® = Vecty, I° > [[o(X,I°),K].
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We will prove that this functor is representable. More precisely we have the following result.

Theorem 6.7 (Poincaré-Verdier. The absolute case). Suppose X is a finite dimensional, locally com-
pact space. Then there exists D* € Dﬁg (Jx) and a natural isomorphism of vector spaces

[I*°,D*](= Hong(jX)(I', D)) = [Te(X, I°),K]
as I* varies through D" (Jx).
Proof Fix a finite soft resolution (8°, d) of Kx
0->K—-8 ... 5850, n=dimX.
Define the complex (8¥*, d"), where
(U, (8")™) = Hom(I'.(U,8 ™),K),

d' = (=1)™d* : Hom(T(U, 8 ™), K) — Hom(T'.(U, §~™ 1), K)

For every integers p and ¢ we have according to Proposition 6.4 natural isomorphisms
(X, IP®87)Y =~ Hom(I”, (8")9).
Taking the direct sum over all p + ¢ = —m we obtain a canonical isomorphism of vector spaces
{rc(x, I'e®s )V}m ~ Hom™(I*, (8")").

Lemma 6.8. The above isomorphisms induce isomorphisms of complexes

T ({FC(X,I' ®8° )V}',5) i(Hom'(I°, (SV)'),d).

Proof Suppose L :I'.(X,IP®87) — K, p+ ¢ = —m. We have to show that
US(L) = d¥(L) in Hom™TL(I*,(8)*).
We have
(L) € Hom(I?, (8¥)9), d¥(L)=u@®ve Hom(I"" (8')9) ®Hom(I?,(8")7™1).
More precisely
dU(L) = d% o U(L) + (1) 1U(L) o dje = (—1)™*! (\I/(L) odpe + (—l)pd*.\I/(L))
U(SL) = (—1)™ W (L o dregse)
= (—1)™*+! (\IJ(L o (dre ®@1ge)) + (—1)P¥(Lo (1fe ® ds.))).

This proves the desired claim.
O
From the quasi-isomorphism xK v 8* we get a quasi-isomorphism I* vw»> I* ® 8*7 and since
the complexes are c-soft we obtain quasi-isomorphisms
Fo(X, 1) vwo To( X, I°®8%) = T (X, I*) «m T'o(X, I°®8°).
Using the isomorphism in Lemma 6.8 we obtain a quasi-isomorphism

Hom* (I°, (8")*) wo [u(X, I*).

TWe are tacitly using the fact that I* consists of K-flat objects.
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Taking H° of both sides we obtain an isomorphism
[I.a (SV).] - [FC(Xv I.)a K]

We have obtained the duality theorem with D* = (8Y)*.
o

The complex D* is called the dualizing complex. It is a bounded complex of injective objects
uniquely determined up to homotopy. Moreover, the above proof shows that we can choose D* such
DP = 0if p ¢ |[—dim X,0]. The cohomology sheaves HP(D*) are uniquely determined up to
isomorphism. We have the following result.

Proposition 6.9. For any integer p, the cohomology sheaf HP(D*) is the sheaf associated to the
presheaf
U — Hom(H!(U, K), K).

Proof We want to prove that we have an isomorphism
H?(X,5)" ~ H"? Hom(%, D*) (6.2)
natural in F € Sh(X). To do this, we choose an injective resolution ¥ v~ I*. Notice that
HP(X,9) = HT.(X,I°) = H'T(X, I[p]*).
From the duality formula we have
HY(X, )" = [To(X, Ip]°), K] = [I[p]*, D*] = [I*, D*[-p]]
Using the quasi-isomorphism JF «w~» [* we deduce from Theorem 1.2 that we have an isomorphism
[1°, D [—p]] = [F, D*[~p]] = H” Hom(, D).
This concludes the proof of (6.2).
Let us now choose J = K;; in (6.2), U — X open subset. If we denote by ¢ the natural inclusion
then K;; = 4771 (K). We deduce
HP(X,Ky) =~ H P Hom(iyi 'K, D*).
The computations in Example 2.18(a) show that
HP(X,Ky) = HP(U,K).
Hence
HP(U,K)" ~ H™P Hom(iyi 'K, D*) O v Hom (i~ 'K, i~1D*)
= H PHom(yK,D* |y) = H (U, D*).
Since the isomorphism (6.2) is natural in ¥ we deduce that the isomorphism
HP(U,K)Y =~ H™P(U,D*)

is compatible with the inclusions of open sets.
i

From now on we will use the notation wx = wx k for the dualizing complex of the finite di-
mensional locally compact space X. We will always assume that wx is concentrated in dimensions
—dimX,.--,-1,0.

Fix a sheaf F € Shk (X). We get a left exact functor

Hom(F, —) : Shg(X) — Vectx .
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This is the composition of two functors
Hom(ff, —) : ShE(X) - ShK(X), F(X, —) : ShK(X) i VectK .

For any injective sheaf J € Shg(X) the sheaf Hom(F,7J) is flabby (see [5, Lemme 11.7.3.2] or [8,
Prop. 2.4.6]),i.e. I'(X, —) acyclic.
Thus the derived functor of Hom(JF, —) exists and we have an isomorphism
RHom(JF,—) =~ RI'(X, —) o RHom(J, —).

For any (bounded) complex 8* we can compute the Hom(JF, —)-hypercohomology of S8° using the
second hypercohomology spectral sequence whose E-term is

EP? = Exti(F, HP(8)).
If we let 8° = w and we use the dualizing complex wx we obtain a complex whose E term is
EP? = Ext!(F, HP(wx))
and converges to
H™ Hom pp (vt (Fe(X, F), K) = H™(X, F)".

Suppose X is a topological manifold. In this case we deduce that HP(wx) = 0 for p # —n. The
sheaf H ™" (wy) is called the orientation sheaf of X. Itis alocally constant sheaf which we denote by
ory. This sheaf, viewed as a complex concentrated in dimension 0 is quasi-isomorphic to wx|[—n]
so that

wy = orx|[n].

In this case we have
Ext!(F,orx) if p=-n
D,q _ )
E (X)_{ 0 if p#-n -

The spectral sequence degenerates at F» and we obtain a natural in F isomorphism
H' (X, F) = H;(T"(X,F)" ~ Ext?(F, ory). (6.3)
Remark 6.10 (Yoneda’s trace). Using the isomorphism
wx,wx] = [[(X,wx), K]

we obtain a linear map
f e(X,wx) > K
X

corresponding to the identity map 1 € [wx,wx]. This is called Yoneda’s trace. Let us disect this
construction.
Fix a soft resolution 8 of K. Then

wxy =28 ~28®SY.

Then
[To(X,wx), K] = [T(X,8®8"),K]

The trace §  1s uniquely determined by the requirement
J u@L = L(u), YueT:(X,8), Le8(X)=Hom(I'.(X,8),K).
X

Given
P e [I', wx]
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we obtain Yg € [[o(X, I*), K] as the composition

(X, I%) -2 T(X, wy) 25 K.

The correspondence
[[*wx] 3P~ Yo € [I(X,I°),K]
is precisely the duality isomorphism.

O

Example 6.11 (Classical Poincaré duality). Suppose I° is an injective resolution of the constant sheaf
K. Then

[I*[=p], wx] = [I*, wx[p]] = RHom(K, wx[p]) = RT'(X,wx[p]).
On the other hand we have
[I*[=pl, wx] = [Ce(X, I*[-p]), K]
Passing to (hyper)cohomology (i.e. applying the functor Hy) we deduce

H™P(X,wyx) =~ H?(X,K)".
Now suppose X is a manifold so that wx = orx[n]. We deduce the classical Poincaré duality
H"P(X,oryx) = HP(X,K)".

In this case we have an integration map
J :I'e(X,orx[n]) - K.
X

Every element in H" P(X, orx) can be represented as an element of
®e[I'[p], orx[n]| =[I", orx[n—p]].
As explained in Example 1.18 we get a cup product map
du: HP(X,K) —» H)(X,orx[n]), a—®Ua,
and then Yoneda’s map Y¢ : HY (X, K) — K has the form

Hf(X,K)aar—)J duaek.
X
Now set p = n — k. The above discussion shows that we have a perfect pairing
H*(X,orx) x H" (X, K) - K, (®,a)— J dua.
X

O

Example 6.12 (Alexander duality). Suppose Z is a closed subset of an oriented topological manifold
X. From Proposition 2.20 we deduce that for every sheaf F on X we have

HY(X,9) = Hom pgnx) [Kz, Fp]]-
The shifted dualizing complex w$ [—n] is a resolution of K and thus letting F = K
H7(X,K) = Hom pygnx)[Kz, wx[p - nl]] = H P(X,K,)" = H P(Z,K)".
An element ® € HY (X, K) is represented by a homotopy class of morphisms

¢ :Ky[n—p] > wx
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and we get a cup product map
du: H'P(Z,K) = H' P(X,K,) — H(X,wx).
The isomorphism
HZ(X,K) = H;"*(Z,K)
can be given the Yoneda description

HY (X, K)5® — J odu : H! P(Z,K) » K.
X

We deduce that if Z has soft dimension < r then

rt
Hg(X,K);éO:>r§p<n.

7. THE GENERAL POINCARE-VERDIER DUALITY

The Poincaré-Verdier duality discussed in the previous section has a relative version, which deals
with continuous families of locally compact spaces. In the sequel R will denote a commutative
noetherian ring with 1. We assume gldim R < oo. For every locally compact space X we set

Homy := Homgp,(x), D*(Rx) := D*(Shg(X)),
and by Jx = Jx « the full subcategory of Shx(X') consisting of injective sheaves of R-modules.

Theorem 7.1 (Relative Poincaré-Verdier duality). Suppose f : X — S is a continuous map between
two finite dimensional, locally compact spaces. Then there exists a functor of triangulated categories®

/' D" (®) > D" (R)
and an isomorphism
Homp+(zg)(RAF, §) = Homps(x,)(F, £'9)
natural in F € DT (Rx) and G € D+ (Rg). Briefly, f' is the right adjoint of R f.

To understand the strategy, let us first think naively and forget that &, G are complexes of sheaves
and think of them as genuine sheaves. Then for every open set U < X we have

(U, f'G) = Hom(Ry, f'G) = Hom(fiRy, ).

We see a first difficulty: the sheaf fiR;; is often trivial so that the above construction would produce
the trivial sheaf. Take for example the canonical projection 7 : R? — R, (z,y) ~— . Then for every
x € R and every open set z € V R the sheaf Ry will not have sections on 7~ (V) with compact
vertical support. The problem is that the sheaf R is too rigid”. We need to “’soften it up”.

Thus we would have to replace R with a soft resolution, R ~ L which we can think of as an
“approximation of 1. This operation is very similar to the regularization procedure in analysis. In that
context one chooses a sequence of compactly supported functions (,,) converging as distributions
to the Dirac §, which is a unit with respect to the convolution. Then the operators ¢, * approximate
the identity, but their ranges consist of better behaved objects. It would be nice if given any sheaf
the tensor product ¥ ® L is a soft resolution of F. This will not happen but, if we replace F by a soft
resolution F and if by any chance £ is also flat then the tensor product F ® £ would be a resolution
of F. If F ® L were soft as well then we have produced our soft approximation of any sheaf. This
heuristic discussion” may perhaps shed some light on the significance of the following result.

8In particular, f' commutes with the shift and maps distinguished triangles to distinguished triangles.
In hindsight all things make perfect sense.
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Lemma 7.2. Suppose K is a flat c-soft sheaf of Abelian groups on X. Then the following hold.

(i) For any sheaf G € Shy(X) the tensor product § ®z K € Shy(X) is c-soft.
(ii) The functor
Shx(X) 35— f5(9) = fi(3®z K) € Shg(S)
is exact.
Proof () If§ = Zy,U < X openthen § ® K = Ky is c-soft. In general we choose a resolution
of G A A
-—>9_]—>9_]+1—>---—>90—>9—>07
where each G/ is a direct sum of sheaves of the form Z;, U open. Taking ® K we get a resolution
> G§7RK->G7TQK > 5 5°QK - GQK — 0,

where each G~/ ® K is c-soft. The finite dimensionality of X will then force § ® K to be soft.
For (ii) observe that QK is exact, and maps sheaves to c-soft sheaves. Next, fi is exact on c-soft
sheaves.
]

As suggested in the above heuristic discussion functor f; can be “approximated” by functors of the
type f!K . We will prove that
fi* - Shy(X) — Shx(5)
has a right adjoint. In particular, we have to prove that for every § € Shg(S) the functor
Shy(X) 3 F +— Homg(f{*(F),5) € Ab”?

is representable. The next result is the heart of the proof of the duality theorem. It explains when a
contravariant functor form the category of sheaves on a space to the category of Abelian groups is
representable. It is in essence a more sophisticated version of the acyclic models theorem.

Theorem 7.3 (Representability Theorem). Suppose we are given a functor
F : Shg(X) — Ab®.
Then F' is representable if and only if it is continuous, i.e. it transforms injective limits in Shq, to

projective limits in Ab.

Proof The necessity follows from the discussion on limits in §4.

Assume now that F' transforms inductive limits to projective limits. For simplicity we take R = Z.
We want to show it is representable. Let us first guess what could be its representative. It has to be a
sheaf G on X such that for any other sheaf & we have a natural isomorphism

Hom(F,G) =~ F(9).
If we take J = Z;; we deduce
S(U) = F(Zy).
For any open sets V' < U we have a natural morphism Z,, — Z;; and thus an induced morphism
lv: F(Zy) = F(Zy).
In particular, the correspondence U — F'(Z;) is a presheaf which we denote by G. By construction
S(U) = F(Zy).
Let us show that G is in fact a sheaf.
Consider a collection of open sets (U,) and set U = | J, Uy. Suppose fo € F'(Zy;,) are such that

fa|Uaﬁ: fﬁ|Uaﬂ °



60 LIVIU I. NICOLAESCU

Observe that we have an exact sequence of sheaves

D Zv,,— D Zy,—Ly — 0.

a?/a o
Since F' transforms inductive limits into projective limits it will transform direct sums into direct
products, and kernels into cokernels. Hence we obtain a short exact sequence

0— SU)—[[S$(Ua)— [ [$(Uasn).
« o,

which shows that G is a sheaf.
Next, we need to construct an isomorphism
Ty : Hom(F,G) —» F(F)

functorial in F. Let us explain the strategy. We first construct the isomorphism 75 for sheaves ¥ in a
full subcategory M of Sh(X ). We will refer to M as the category of models. Next we will show that
every sheaf & can be described as an inductive limit
F = limiﬂ, 972‘ e M.
T
Then we use the natural isomorphisms

Hom(¥, §) = Hom(lim F;, §) = lim Hom(5F;, G)

l

1 I
I I

The models will be the sheaves Z7;, U open, n > 0. We define
Ty : Hom(Ztr, §) = S(U)" = F(Zy)"

to be the tautological isomorphism.
For an arbitrary sheaf J we define a category

% =Yg = {(Zi, fu); U open, fu € Hom(Zg, )},
where
Homsy ( (23, fu), (Z, fv) ) = {T € Hom(Z{,, Z1); Lt ——=17 , fvoT= fU}~
A |
F
For every t = (Zf;, fu) € ¥ we set F; = Zg; and
¢¢ = fu € Hom(F, F).
Clearly if s = (Z7}, fv) € ¥ and
7 € Homy (s, t) € Hom(Zy, Zt7)

we have a tautological morphism 7 : F; — J; and a tautological commutative diagram

Fs =2y —=1{ =

M ifU=¢t

F.
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We want to show that

F

12

liny
P

that is, for any sheaf 8 and any morphisms o5 € Hom(Jy, 8), s € X such that

010 =05 < S"SL>3'} , V¢ € Homyx(s, t),

A

S

there exists a unique morphism ¢ : ¥ — § such that the diagrams below are commutative

F T §
assT /
Fs
The definition of ¢ is tautological. We need to describe a family of morphisms
oy - ST(U) - S(U)7

one for each open set U.

61

(7.1)

(7.2)

For every fiy € F(U) we get an element s = (Zy;, fr) € X and the commutativity of (7.2) forces

us to set
ou(fv) = os(1), 1€ (U, Zy) = Hom(Zy, Zyy).

This proves the uniqueness of o. The commutativity of the diagrams (7.1) implies that o is a mor-

phism of sheaves of sets. To prove that o is a morphism of sheaves of groups consider

[ 1 € F(U).
We obtain objects

Sk:(Zqu[k]‘)ezv k:1727 8:(Z2)(f[1]7f5))627 t:(ZUafllf—i_f(%)ez

Consider the morphisms
0 € Homy(t,s), 7 € Homyx(sg, s),
defined by
Ly -5 T, o (2,2),

and
71,72

ZU HZ%]; T+ (1‘,0),(0,{1})

We obtain a commutative diagram

Fop = Ly —> 7% = F, <Ly = 5

Ts
Osy. ot

3(U)
Hence
U(fllj) = 031(1) = 0'5(1,0), U(fIQJ) = 0-82(1) = 05(07 1)
= U(fllf) + J(f(2]) = 05(170) + O-S(O’ 1) = 0-8(1’ 1)
On the other hand

05(1,1) = 0v(1) = o (fir + f0)
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We can now use the additivity of o to prove that all the diagrams (7.2) are commutative so that

F =lim ;.
-
SEY
This completes the proof of the representability theorem.

Consider a flat soft sheaf K € Shy(X) and the functor
Fg x : Shy(X) 3 F > Homg(f*(F),5) € Ab.

Since the functor f!K is exact, we deduce that the functor Fg x maps cokernels into kernels. To prove
that it maps injective limits to projective limits it suffices to show that it maps direct sums to direct
products which is obvious because both ® K and f; map direct sums to direct sums. This proves that
Fjg i is representable and we denote by f ['((9) its representative.

Observe that since f!K is exact we deduce from the isomorphism

Homg ( f%(F),5) = Homx (7, f(9))
that G is injective iff f1-(G) is injective.
Lemma 7.4. The constant sheaf Z y admits a resolution
0—>ZX—>K0—>---—>KT—>O
where all K7-s are flat, c-soft sheaves.

This resolution will be a suitable truncation of the Godement resolution of xZ, [7, Prop. VI.1.3].
Let K be a complex as in Lemma 7.4. For G* € K*(Jgx) we denote by f,G € K+ (Jx x) the
total complex associated to the double complex f ;(,q gr

fk(8°) = Tot(fi—,3").
The functor
K*(Js®) 29— fkGe K™ (Ixn)
induces a morphism of triangulated categories
[+ D¥(Rg) > DT (Rx)

which by its very construction is a right adjoint of Rf, : DT (Rx) — Dt (Rg).
o

Example 7.5 (Absolute Verdier duality with integral coefficients). Suppose X is admissible, gldim R <
o0 and ¢ denotes the collapse map ¢ : X — {pt}. We deduce that for every 8§ € D*(Rx) we have an
isomorphism

RHomg(T'.(X,8),R) = Re,Dx8 = RH(X,Dx38).
Suppose R = Z, and $ is an injective resolution of the constant sheaf Z. Using the injective resolution

Dz: 0-Z-Q—->Q/Z—0

we deduce that

H*(RHomyz(T'(X,2),7)) = Ext*(I'.(X,Z), Dz).
The hyper-Ext terms can be computed using a spectral sequence which degenerates at its Fo-term

Byt =Ext!(H; (X, Z),Z),
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or in tabular form,

p=0 p=1 p=2
q=0 |Hom(H?,Z) Ext(HY,Z) 0

q=—1|Hom(H},Z) Ext(H!,Z) 0

q=—2|Hom(H? Z) Ext(H2,Z) 0
: : 0

This leads to the split short exact sequence
0 — Ext(HP*Y(X,Z),Z) - H P(X,DxZ) — Hom(H?(X,Z),7) — 0.

Since DxZ =~ wx we can use the above short exact sequence to compute the hypercohomology
sheaves of wx. We can rewrite the above results in a form similar to Proposition 6.9. More precisely,
for any sheaf F on X we have an isomorphism

RHom(T'.(X, ¥),Z) ~ RHom(F, wx).
If we take J = Z;; we deduce
RHom(RT'.(U,Z),Z) = RT'(U,wx).
In particular
H*(U,wx) = Ext*(RT(U,Z),Z).

The last hyper-Ext can be computed via the above short exact sequence.
The middle term in the above sequence is known as the Borel-Moore homology with coefficients
in Z an it is denoted by H,(X,Z). Observe that if X is a n-dimesional manifold then

H,(X,Z) = H?"(X,wx) ~ H?(X,orx[n]) @ H"P(X,orx).
In particular
H,(X,Z) ~ H°(X,orx) = RHom(Z,ory).

An orientation on a manifold is a choice of an isomorphism Z — orx. This determines an element
[X] in the top dimensional Borel-Moore cohomology group. We can identify it with the manifold
itself. Note that X need not be compact. For example, for X = R with the canonical orientation we
obtain a cycle with non-compact support [R]| € H; (R, Z).

i

8. SOME BASIC PROPERTIES OF f'

Suppose f : X — S is a continuous map between two finite dimensional, locally compact spaces
and R is a commutative noetherian ring with 1 such that gldim R < oo. The functor f' enjoys several
properties dual to the properties of the functor Rf;. For simplicity we will restrict ourself to the
derived categories of bounded complexes.

Observe first that there exist two natural morphisms

I— f'Rfi, RAS 1T
The first is obtained from the isomorphism

Hom(R fi, Rfi) = Hom(I, f'Rf))
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while the second is obtained from the isomorphism
Hom(Rfif',1) = Hom(f', f'),
Observe next that if
x-Ly 4z
is a sequence of continuous maps between finite dimensional, locally compact spaces then
(gof) =fog.
Proposition 8.1 (Base Change Formula). Suppose we are given a Cartesian square

X xgY >y

X

7 S

of continuous maps and finite dimensional, locally compact spaces. Then the following hold.
(i) There is an isomorphism of functors
f' o Rgy = R(mx)x 0Ty (8.1)
(ii) There is a morphism of functors
7T)_(1 o f! — 7r§/ og L (8.2)

Proof The isomorphism (8.1) is dual to the base change isomorphism involving Rf; while the
morphism (8.2) is dual to the morphism (3.3). Let us supply the details. The proof is based on the
Yoneda’s Principle.

Proposition 8.2 (Yoneda’s Principle). Suppose C is a (small) category. The functor
Y : € — Funct (C?,Set), X —— Home(—, X),
is fully faithful, i.e. for every objects Xo, X1 € C the induced map
Y : Home(Xy, X1) — Hompunct(Hom@(—, Xo), Home(—, X1) )

is a bijection. In particular, the functors Home(—, Xo) and Home(—, X1) are isomorphic if and
only if the objects Xo, X1 are isomorphic. m|

Returning to our problem observe that the base change formula for R fi; implies have an isomor-
phism
Homy (97" o RAF, ) = Homy (R(my ) o 75 F, )
natural in F € Shy(X), § € Shg(Y). Using the fact that —* is the right adjoint of — ! and —' is

the right adjoint of — we obtain the desired conclusion from the Yoneda’s principle.
O

Proposition 8.3 (Dual Projection formula). Given a continuous map f : X — S there exists a
morphism

o L R
F80®@=f 81— f(S0o®x81)
natural in 8¢, 81 € D*(Rg).
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Proof For 8¢, 81,8 € D?(Rg) we have

Homy ('S0 @ /181, 1'S) = Homs( RA(F'So@n f181). 8)

(use the projection formula for RF7)

L
~ Homg ((Rfif'80) ®81, )
The natural morphism
RAf -1

induces a morphism
L L
Hom(8y ®81,8) — Homg ((Rf1f'80) ®81,8).

L
If we take 8 = S ® 81 we obtain via the above chain of maps a natural morphism

o B o L
[8o®xf 81— f(So®81).

O
Proposition 8.4. Let f : X — S be a continuous map between admissible spaces.
(a) We have an isomorphism

RHom(RfS,F) = Rf,R Hom(G, f'F). (8.3)
natural in ¥ € D*(Rg) and G € D*(Rx).
(b) We have an isomorphism

f'R Hom(8o,81) = R Hom(f 'S0, f'$1) (8:4)

natural in 8¢, 81 € D*(Rg).
Proof Observe first that for any sheaves 8y, 81 on X we have a natural morphism
f« Hom(8g, 81) — Hom(fi3, fi81)
Indeed, for every open set U — .S we have
f« Hom(8g, 81)(U) = Hom(So |17y, 81 |p-11))-

Any morphism ¢ in f, Hom(8,81)(U) maps a section u; of 81 properly supported over U to a
section of 81 which is also properly supported over U since

supp ¢(ug) < supp us.
Since the soft dimension of X and S is finite so is the flabby dimension since
flabby dimension < soft dimension + 1.

Thus every bounded complex of sheaves on X admits bounded flabby resolutions and thus we can
pass to derived functors'’ to obtain a

Rf.R Hom(So,81) — R Hom(Rf S0, RfiS1) (8.5)
In particular for F € D?(Rg) and G € D?(Rx) we have a canonical morphism
Rf.RHom(S, f'F) - RHom(RAHS, Rfif'F).

10The flabby sheaves are adapted to Hom and fi. The soft ones are not adapted to Hom.
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Using the canonical morphism Rf f'F — F we obtain a morphism
Rf+RHom(S, f'F) — RHom(Rf,S,F).

We want to show that this map is a quasi-isomorphism of complexes of sheaves. Let V be an open
subset of S. Then

HY(RT(V, Rf«RHom(S, f'F))) = Hompyx L (Sl FF-10))
(use the Poincaré-Verdier duality)
= Hom i,y ((RAG) |v, F[j] v ) = H’ (RT(V, R Hom(Rfi§,F) ).
(b) We use again the Yoneda Principle. Let § € D’(Rx). Then
Hom (8, f'R Hom(8y, 81) )
(use the Poincaré-Verdier duality)
~ HomS(ngS, R Hom(8, 81) )

(use the adjunction isomorphism (2.16))

L
= Homg ( RflS ®So, 81)
(use the projection formula)
L
~ Homg (RA(S® f7'80), 81)
(use the the Poincaré-Verdier duality)
L
~ Homys (8& '8, f'81)
(use the adjunction isomorphism (2.16))
~ Homg (8, R Hom(f '8, f'81) ).

O

Definition 8.5. (a) For every continuous map f : X — S between finite dimensional locally compact
spaces and every commutative Noetherian ring R with 1 of finite global dimension, we define the
relative dualizing complex of X rel S with coefficients in R to be the object

wy/s = f'Rg € D' (Rx).

Since R has finite global dimension, the dualizing complex is quasi-isomorphic to a bounded complex
of injective sheaves. In particular , if S is a point and f is the collapse map X - {pt} then

!
wx = wyy =cR

is called the (absolute) dualizing complex of X .
(b) For X and R as above and any F € D°(Rx) we define DxJ € D*(Rx) as

]D)ng = RHOH](?, wx).
We say that D x JF is the Poincaré-Verdier dual of F.

In the sequel we assume that the coefficient ring has finite global dimension.
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Remark 8.6. There exists a natural morphism of functors
HDb(UQX) - ]D)g(
induced by the evaluation map
DY(Rx) 3 F* — R Hom(R Hom(F*, wx),wx).

In general this morphism is not an isomorphism but becomes so when restricted to full subcategory
of Db(R x ) consisting of cohomologically constructible complexes.
i

Proposition 8.7. For every continuous map f : X — S between admissible spaces we have an
isomorphism

Dxf'F = f'Ds7,

natural in F € D*(Rg). In particular; there exists a natural morphism

f 19— Dy f'DgT.

Proof Observe first that f'wg =~ wx. We have

8.4
RHomy (f'F,wx) = RHomy (f%F, flws) 0 f'RHomg(F,ws) = fDsT.

9. ALTERNATE DESCRIPTIONS OF f!

There are some basic situations when the functor f' can be given alternate descriptions.
Suppose ¢ = iy : U — X denotes the inclusion of an open subset. Using (2.6) we obtain an
isomorphism
Homy (417, §) =~ Homy (F,i 19)
natural in F € Shx(U), and G € Shr(X). We conclude that

.l PO
iy =g

Proposition 9.1. Suppose j : X — S denotes the inclusion of a locally closed subset in a locally
compact space. Assume R has finite global dimension. Then
j' =L o RDx (%), VF e D*(Rg).
Proof LetJ e D*(Rg), G e DP(Rx). Then for every closed subset Z — S we have
FZ(_) = @(EZ» - )
Using the adjunction isomorphism (2.2) and the Poincaré-Verdier duality (in this case j) is exact so
that Rji = 51))
Homy (G, j'F) = Homg(;1S, F) = Homg(ji§, RT x (%))
~ Homy (754G, j 7' RT x (%)) = Homx (G, j 7' RTx ()).

This proves that

§'F =~ jT'RT x ().
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Using the dual projection formula for a continuous map between admissible spaces f : X — S
we obtain a morphism

L L
wx/s@F7(8) = F(R)DFH(8) » f(Rs ®S) = f(8), V8 € D'(Rs).
We will describe below one instance when this morphism is an isomorphism.

Definition 9.2. A map f : X — S between admissible spaces is called a topological submersion of
relative dimension { if for every x € X there exists an open neighborhood V' in X suchthat U = f(V)
is an open neighborhood of s = f(x) in S and there exists a homeomorphism A : V — U x R such
that the diagram below is commutative.

vV s U xR

Loosely speaking a topological submersion is a fibration, where the fibers are topological mani-
folds of dimension /.

Definition 9.3. The space S is called locally contractible if every point s € S admits a basis of
contractible, open neighborhoods.

Proposition 9.4. Assume f : X — S is a topological submersion of relative dimension ¢, and S is
locally contractible. Then the following hold.

(a) J{k(wx/g) = 0fork # —{ and J‘C*E(wX/S) is locally isomorphic to xR.
(b) The canonical morphism of functors

L
FR)®F(=) = f1(=)
is an isomorphism.
Proof Denote by B the unit open ball centered at the origin of R’. For every point z € X we
can find a basis of product like open neighborhoods, i.e. open neighborhoods W with the following

property. There exists an open, path connected contractible neighborhood V of s = f(z) € S, and a
homeomorphism

h:BxV ->W
such that if
tw: WX and iy :V — S
denote the natural inclusions and
hw i=iwoh:BxV > W — X

then the diagram below is commutative.

h
BxV —2s X

Ve—¢§
iy
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Let § € D?(Rg). Then
RT(W, f'8) = RHomy (R, iy} f'S) = RHompxy (R, hiy! £'8)
(hyy = hiy)
>~ RHompxv (R, hiy f'8) = RHompxy (R, 7i},8) = RHompxy (R, mii;,'8)
~ RHomV(RﬂV!fR, S|y )
Using Corollary 3.8 we deduce
Ry \Rpxy = RIc(B,Rp) @Ry,
Hence we deduce
RT(W, '8) = RHomy ( RTo(B,Rp) ® Ry, S|v)
~ RHomy ( RT.(B,Rp), R Hom(Ry, 8))

Above we regard RI'.(B,Rp) as a complex of constant, free, finite rank sheaves on V. Using the
special adjunction formula we obtain an isomorphism

RHomy ( RTw(B,Ry,), R Hom(Ry,8) ) = RHom( RTo(B,R5),R) & R Hom(Ry, 8 ).
Using the Poincaré-Verdier duality on B we deduce further
RHom(RI.(B,Rp),R) = RT(B,wp).
Hence

RT(W, f'8) =~ RT(B,wp) éRF(V, 8) = RI'(B x V,wB(I;@S).

Assume R = Z and S is an oriented manifold. The orientation is given by an isomorphism
org = Zg.
In particular, we obtain an isomorphism
wg = org[dim S| = Zg[dim S].
We deduce
DsZg = @(Zs,ws) ~ Zg|dim S| = Zg = (DgZg)[— dim S| = (DgZ[dim S]).
Using Proposition 8.7 we deduce
wy/s = f'Zg = f'Dg(Zs[dim S]) = Dx f ' Zg[dim S|
(use the fact that f~! is an exact functor)
~ DxZx[dim S] = Hom(Zx,wx[—dim S] ) = wx[—dim S].

Example 9.5.

Suppose
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10. DUALITY AND CONSTRUCTIBILITY

The results established so far simplify somewhat when restricted to the special class of con-
structible sheaves defined in §5. For the reader’s convenience we reproduce here the definition of
these sheaves.

Suppose X is a locally compact space of finite soft dimension and R is a ring of finite global
dimension. An object F € D?(Shr(X)) is called cohomologically constructible (c.c. for brevity) if
for any point x € X the following conditions are satisfied.

(@) Lim,_ RI'(U,%) and Lim__ RI'.(U, ¥) exist and the canonical maps
@st RF(U’ 97) - Em RF{I} (Xv 3:) - LimUax RFC(U7 EF)

are isomorphisms.
(b) The complexes F,, and RI', (X, F) are perfect.

Proposition 10.1. Assume F € Db(R x ) is cohomologically constructible. Then the following hold.

(i) DxJF is cohomologically constructible.
(ii) The natural morphism F—D xD x F is an isomorphism.
(iii) For any x € X we have

RT(,y(X,Dx¥) = RHom(F,, R), (10.1a)
(DxF), = RHom(RT (X, F), R). (10.1b)

Proof We have
RT(U,Dx3) ~ RHom(T'.(U, F), R).

Applying the functor Lig;USm and using Proposition 4.15 we deduce
Lig;Uam RT'(U,DxT) =~ RHom(!fimUax [.(U,3),R) = RHom(RT'(;1(X, F),R).

This proves (10.1b) and thus exists and it is perfect..
Suppose K is a compact neighborhood of . We have

RPK(X, Dxff") = RHOHI(EK,D)(?) = RHom(ff"K,wX)

(Verdier duality)
RHom(RI'.(X,Fk),R) = RHom(RI'(X, Fk), R).

Applying the functor Lim and Proposition 4.15 we get
o RT(U,DxF) ~Lim _ RIkx(X,DxF) =~ RHom(

— K3z

Lim, Lim _ RI(X,5k),R)

RHom((Lim,_ RI'(U,¥),R) = RHom(F;, R).

This proves (10.1b) and completes the proof of (i) and (iii).
We now know that DxF and DxDxF are both cohomologically constructible. Using (10.1b) we
deduce

(10.1a)

(DxDxF), = RHom(RI (X, Dx F),R) RHom( RHom(RI(,3(X,5),R), R) = F,

where at the last step we have used the fact that RT"(,, (X, J) is perfect.
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Corollary 10.2. Suppose f : X — S is a continuous map between finite dimensional locally compact
spaces, and R is a commutative Noetheriang ring with 1 of finite global dimension. Then, for every
constructible F € D*(Shx(S)) we have

f'F =~ Dxf'DgT.
Proof Using Proposition 8.7 we deduce
f'D2F ~ Dy f'DgT.

Since & is constructible we have ID%CF ~ 7.

Corollary 10.3. Suppose f : X — S is as above. Then
wx/s = ]DX(f_lws).
Moreover for very § € D*(Shg(9))

F18 = FI8@Dy(f 'ws).
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