THE ANATOMY OF A SINGULARITY

LIVIU I. NICOLAESCU

Contents

1.	Some basic facts	1
2.	The Milnor fibration and the Gauss-Manin connection	2
3.	The spectrum of a singularity	8

1. Some basic facts

Denote by $\mathcal{O} = \mathcal{O}_{N+1}$ the ring of germs of holomorphic functions $f = f(z_0, \dots, z_N)$ defined in a neighborhood of $\vec{0} \in \mathbb{C}^{N+1}$. We denote by $\mathfrak{m} \subset \mathcal{O}$ the maximal ideal of \mathcal{O} ,

$$f \in \mathfrak{m} \iff f(\vec{0}) = 0.$$

Let $f \in \mathfrak{m}$. Assume $\vec{0}$ is an isolated critical point of f, i.e. $\vec{0}$ is an isolated point of the variety

$$\partial_{z_i} f = 0, \quad \forall i = 0, \cdots, N.$$

We define the Jacobian ideal of f to be the ideal $J_f \subset \mathcal{O}$ generated by $\partial_{z_i} f$, $i = 0, \dots, N$. From the analytical Nullstellensatz we deduce

$$\sqrt{J_f} = \mathfrak{m} \iff \exists k > 0 : \mathfrak{m}^k \subset J_f \iff A_f := \dim_{\mathbb{C}} \mathfrak{O}/J_f < \infty.$$

The finite dimensional commutative \mathbb{C} -algebra A_f is called the local algebra of the critical point $\vec{0}$ of f. Its dimension is called the *Milnor number* of f at $\vec{0}$ and it is denoted by $\mu = \mu(f, \vec{0})$. It has a natural structure of $\mathbb{C}\{t\}$ -algebra

$$t \cdot (g \mod J_f) = (fg) \mod J_F, \ \forall g \in \mathcal{O}$$

For every positive integer N we denote by $j_N(f)$ the N-th jet of f. It can be identified with a polynomial of degree N in n + 1 complex variables.

Two germs $f, g \in \mathfrak{m}$ are called *right-equivalent* and we write this $f \sim_r g$ if g is obtained from g by a change in variables.

Theorem 1.1 (Finite determinacy). (a) (Mather-Tougeron) Let $f \in \mathfrak{m}$ have an isolated singularity at 0. Then

$$f \sim_r j_{\mu+1}(f)$$

(b) (Mather-Yau) Let $f, g \in \mathfrak{m}$ have isolated singularities at 0. Then

 $f \sim_r g \iff A_f \cong A_g$ as $\mathbb{C}\{t\}$ – algebras.

Date: January, 2005.

Notes for a Felix Klein Seminar.

LIVIU I. NICOLAESCU

Example 1.2 (Brieskorn singularities). Consider three integers $p, q, r \ge 2$ and consider the function

$$f = f_{p,q,r}(x, y, z) = az^p + by^q + cz^r.$$

Then $\mu = (p-1)(q-1)(r-1)$. The local algebra $A_{p,q,r}$ is generated by the monomials $e_{ijk} = x^i y^j z^k$ where $0 \le i < p, \ 0 \le j < q, \ 0 \le k < r$. We see that this algebra is isomorphic to the \mathbb{C} -group algebra of the Abelian group $\mathbb{Z}/p \times \mathbb{Z}/q \times \mathbb{Z}/r$. The singularity described by $f_{2,2,n+1}$ is called the A_n singularity. It has Milnor number n.

Example 1.3. Consider the polynomial

$$D_4 = D_4(x, y, z) = x^2 y - y^3 + z^2$$

 $\vec{0}$ is an isolated critical point of D_4 , the local algebra has dimension 4, and we can explicitly determine a basis

$$e_0 = 1, e_1 = x, e_2 = y, e_3 = y^2$$

It is easy to compute the multiplication table of the local algebra $\mathcal{A}_{D_4} = \mathcal{O}_3/J_{D_4}$.

	$e_1 = x$	$e_2 = y$	$e_3 = y^2$
$e_1 = x$	$3e_3$	0	0
$e_2 = y$	0	e_3	0
$e_3 = y^2$	0	0	0

Note that the D_4 -singularity is weighted homogeneous. We recall that a function $f = f(z_1, \dots, z_N)$ is called weighted homogeneous if there exist integers, i.e. there exists integers m_1, \dots, m_N, m such that

$$f(t^{m_1}z_1, t^{m_N}z_N) = t^m D_4(z_1, \cdots, z_N), \ \forall t \in \mathbb{C}^*.$$

The rational numbers $w_i = m_i/m$ are called the *weights*. The weights of the D_4 singularity are

$$w_1 = w_2 = \frac{1}{3}, \ w_3 = \frac{1}{2}.$$

A weighted homogeneous polynomial satisfies the *Euler identity*

$$f = \sum_{i} w_i \frac{\partial f}{\partial z_i}.$$

Note that for such a function we have $f \in J_f$ so the $\mathbb{C}\{t\}$ module of A_f is very simple: t acts trivially.

2. The Milnor Fibration and the Gauss-Manin connection

Let $f \in \mathfrak{m}$ have an isolated singularity at 0. Set $\mu = \mu(f, 0)$. According to Milnor, for $\varepsilon > 0$ sufficiently small we can find an open neighborhood $X = X_{\varepsilon}$ of $0 \in \mathbb{C}^{N+1}$ so that $f(X_{\varepsilon}) = \mathbb{D}_{\varepsilon} = \{|z| < \varepsilon\} \subset \mathbb{C}$ such that the induced map

$$f: X^* := X \setminus f^{-1}(0) \to \mathbb{D}_{\varepsilon}^*$$

is a local trivial fibration called the Milnor fibration. Its typical fiber X_f is smooth 2Ndimensional manifold with boundary called the Milnor fiber. Its boundary is a (2N - 1)manifold called the *link of the singularity*. The Milnor fiber which has the homotopy type of a wedge of μ spheres of dimension N,

$$X_f \simeq \underbrace{S^N \lor \cdots \lor S^N}_{\mu}$$

The Milnor fibration defines a monodromy map

$$\mathfrak{M}_f: \pi_1(\mathbb{D}^*_{\varepsilon}) \to \operatorname{Aut}_{\mathbb{Z}}(H_N(X_f, \mathbb{Z})),$$

where H_{\bullet} denotes *reduced homology*. We denote by $[\mathcal{M}_f]_{\mathbb{Z}}$ its \mathbb{Z} -conjugacy class and by $[\mathcal{M}_f]_{\mathbb{C}}$ its \mathbb{C} -conjugacy class. The complex conjugacy class is completely determined by the complex Jordan normal form of \mathcal{M}_f .

Theorem 2.1 (Monodromy Theorem, Griffith-Deligne). All the eigenvalues of \mathcal{M}_f are roots of 1 and its Jordan cells have dimension $\leq (N+1)$.

Example 2.2. (a) Consider the germ $f : (\mathbb{C}, 0) \to (\mathbb{C}, 0), f(z) = z^n$. Then the Milnor fiber f^{-1} can be identified with the group \mathfrak{R}_n of *n*-th roots of 1,

$$\mathfrak{R}_n = \{1, \rho, \cdots, \rho^{n-1}; \ \rho = e^{\frac{2\pi i}{n}} \}.$$

The Milnor number is (n-1). This is equal to the rank of the reduced homology $\tilde{H}_0(f^{-1}(0), \mathbb{Z})$ which can be identified with the subgroup of the group algebra $\mathbb{Z}[\mathfrak{R}_n]$

$$\widetilde{H}_0(f^{-1}(1), \mathbb{Z}) \cong \left\{ \sum_{k=0}^{n-1} a_k \rho^k \in \mathbb{Z}[\mathfrak{R}_n]; \ \sum_{k=0}^{n-1} a_k = 0 \right\}.$$

As basis in this group we can choose the "polynomials"

$$e_k := \rho^k - \rho^{k-1}, ; \ k = 1, \cdots, n-1.$$

Then

$$\mathcal{M}_f(e_k) = \begin{cases} e_{k+1} & \text{if } k < n-1 \\ -(e_1 + \dots + e_{n-1}) & \text{if } k = n-1 \end{cases}$$

We deduce $\mathcal{M}_{A_{n-1}}^n = \mathbb{I}$, i.e. all the eigenvalues of the monodromy are *n*-th roots of 1. (b) (Thom-Sebastiani) If $f = f(x_1, \dots, x_p) \in \mathcal{O}_p$ and $g = g(y_1, \dots, y_q) \in \mathcal{O}_q$ have isolated singularities at the origin, then so does $f * g \in \mathcal{O}_{p+q}$

$$f * g(x, y) = f(x_1, \cdots, x_p) + g(y_1, \cdots, y_q)$$

and

$$X_{f*g} \simeq X_f * X_g :=$$
 the join of the Milnor fibers X_f and X_g

(" \simeq " denotes homotopy equivalence)

$$\mu(f * g, 0) = \mu(f, 0) \cdot \mu(g, 0), \quad [\mathcal{M}_{f * g}]_{\mathbb{C}} = [\mathcal{M}]_f \otimes [\mathcal{M}]_g$$

Note that if q = 1 and $g(y) = y^2$ then

$$X_{f*y^2} \simeq \Sigma X_f,$$

where Σ denotes the suspension operation. The operation $f \mapsto f * y^2$ is called *stabilization* and two singularities are called *stably equivalent* if they become right-equivalent after a finite number of stabilizations. Note that the singularity presented $\{z^n = 0\}$ discussed in part (a) is stably equivalent to the A_{n-1} -singularity.

A theorem of J. Mather states that two hypersurface singularities $\{f(x_1, \dots, x_p) = 0\}$ and $\{g(y_1, \dots, y_q) = 0\}$ are stably equivalent if and only if their local algebras A_f and A_g are isomorphic as \mathbb{C} -algebras.

(c) \mathcal{M}_{D_4} was computed by Arnold. It is related to the Coxeter group with the same name. The Milnor fiber X_{D_4} is a 4-manifold with boundary and the intersection form q on $\Lambda = H_2(X_{D_4}, \mathbb{Z})$ has a particularly nice form described in the Dynkin diagram below.

FIGURE 1. The Dynkin diagram D_4 .

This means that Λ has a canonical integral basis consisting of vanishing spheres, i.e. embedded 2-spheres e_0, e_1, e_2, e_3 with self intersection $-2, q(e_\alpha, e_\alpha) = -2, \forall \alpha = 0, 1, 2, 3$. Moreover

$$q(e_0, e_i) = 1, \ q(e_i, e_j) = 0, \ \forall i, j = 1, 2, 3.$$

A vanishing sphere e_{α} determines an involution R_{α} of Λ , the so called *Picard-Lefschetz* transformations associated to e_{α} . More explicitly, it is the q-orthogonal reflection in the hyperplane q-orthogonal to e_{α} , i.e.

$$R_{\alpha}(v) = v - 2\frac{q(v, e_{\alpha})}{q(e_{\alpha}, e_{\alpha})} = v + q(v, e_{\alpha}).$$

Then \mathcal{M}_{D_4} is conjugate (over \mathbb{Z}) with the Coxeter transformation

$$T_{D_4} = R_0 R_1 R_2 R_3 \in \mathrm{GL}(\Lambda).$$

From the equality $T_{D_4}^6 = \mathbb{I}$ (the Coxeter number of D_4 is 6) we deduce that all the eigenvalues of \mathcal{M}_{D_4} are 6-th order roots of 1.

Using local trivializations in the Milnor fibration $f: X^* \to \mathbb{D}^*$ we can parallel transport¹ cycles in a fiber $X_t := f^{-1}(t) \cap X$ to nearby fibers and we obtain in this fashion the locally constant sheaf H_f whose stalk at $t \in \mathbb{D}^*$ is $\tilde{H}_N(X_t, \mathbb{Z})$. It is called the sheaf of *vanishing cycles*. Its sections are families of vanishing cycles varying continuously from fiber to fiber. We will refer to these as *locally constant* vanishing cycles. We denote by \mathbb{Z} the constant sheaf on \mathbb{D}^* and we set

$$H^f := \underline{Hom}_{\mathbb{Z}}(H_f, \underline{\mathbb{Z}}),$$

where $\underline{Hom}(\mathcal{F}, \mathcal{G})$ denotes the sheaf of morphisms between two sheaves \mathcal{F}, \mathcal{G} . Consider the sheaf \mathcal{E} of smooth complex valued functions on \mathbb{D}^* . The sheaf

$$\mathcal{H}^f := \underline{Hom}_{\mathbb{Z}}(H_f, \mathcal{E}) \cong H^f \otimes_{\mathbb{Z}} \mathcal{E}$$

is a locally free sheaf of \mathcal{E} modules and thus can be interpreted as the sheaf of sections of rank μ -complex vector bundle over \mathbb{D}^* which we also denote by \mathcal{H}^f . It is called the *cohomological Milnor bundle*.

This bundle is equipped with a canonical holomorphic structure and a canonical flat connection ∇ constructed as follows.

¹This a C^{∞} but not a holomorphic construction, as one may think. That is why the fact that the Gauss-Manin connection ends up having a holomorphic (even algebraic!) nature is somewhat surprising.

Given $t_0 \in \mathbb{D}^*$, a small contractible neighborhood U of $t_0 \in \mathbb{D}_*$ and a \mathbb{Z} -basis $\{e_1, \dots, e_{\mu}\}$ of vanishing cycles in X_t , we obtain by parallel transport a trivialization of H_f over U and then by duality a local frame (e^i) of $\mathcal{H}^f |_U$. Any $s \in \Gamma(U, \mathcal{H}^f)$ can be written as $s = \sum_k s_k e^k$, $s_k = \langle s, e_k \rangle \in \mathcal{E}(U)$. s is declared holomorphic if all the components s_k are holomorphic functions. We set

$$\nabla s := \sum_k (ds_k) \otimes e_k \in \Gamma(U, T^*U \otimes \mathcal{H}^f)$$

These notions are independent of the various choices. ∇ is called the *topological Gauss-Manin connection*. We denote by \mathcal{H}_{hol}^{f} the sheaf of holomorphic sections of \mathcal{H}^{f} .

Brieskorn has constructed free, coherent sheaves of $\mathcal{O}_{\mathbb{D}}$ -modules $\mathcal{L}_0, \mathcal{L}_1 \to \mathbb{D}$, together with an *injective* morphisms of $\mathcal{O}_{\mathbb{D}}$ -modules $\varphi : \mathcal{L}_1 \hookrightarrow \mathcal{L}_0$ and *isomorphisms* $\beta_i : \mathcal{H}^f \to \mathcal{L}_i |_{\mathbb{D}^*}, i = 0, 1$ such that over \mathbb{D}^* the diagram below is commutative

Moreover, if we denote by t the local coordinate on \mathbb{D} such that $\mathcal{O}_{\mathbb{D},0} \cong \mathbb{C}\{t\}$ then there exists a natural isomorphisms of $\mathbb{C}\{t\}$ -modules

$$\rho: \left(\mathcal{L}_0/\varphi(\mathcal{L}_1)\right)_0 \to A_f.$$

The sheaves \mathcal{L}_i are also known as the *Brieskorn lattices*. Each is an extension to \mathbb{D} of the coherent sheaf \mathcal{H}^f . Note also that the quotient $\mathcal{L}_0/\varphi(\mathcal{L}_1)$ is a coherent sheaf supported at the center of \mathbb{D} .

We describe the restrictions to \mathbb{D}^* of the sheaves \mathcal{L}_i and the morphisms φ , β_i^{-1} . Denote by Ω^k sheaf of holomorphic k-forms on X, i.e. differential forms ω locally described as

$$\omega = \sum_{\alpha} \omega_{\alpha} dz_{\alpha_1} \wedge \cdots dz_{\alpha_k}.$$

Given a small open disk $U \subset \mathbb{D}^*$ we set ${}^{f}U = f^{-1}(U)$ and

$$\mathcal{L}_1(U) \approx \Omega^N({}^{f}U) \, \operatorname{mod}\Big(\, d\Omega^{N-1}({}^{f}U) + df \wedge \Omega^{N-1}({}^{f}U) \, \Big).$$

We use the symbol " \approx " instead of "=" since the above definition is only "morally correct".

The restriction of a holomorphic form $\omega \in \Omega^N(U_f)$ to fiber $X_t, t \in U$ is a closed form ω_t and we denote by $[\omega_t] \in H^N(X_t, \mathbb{C})$ the class it defines. This cohomology class depends only on the image of $\omega \in \mathcal{L}_1(U)$.

Given $\omega \in \mathcal{L}_1(U)$ we obtain a holomorphic section² $[\omega] \in \Gamma(U, \mathcal{H}^f)$ determined by the following rule: for every locally constant vanishing cycle $U \ni t \mapsto c_t \in H_n(X_t, \mathbb{Z})$

$$\langle [\omega], c \rangle(t) = \int_{c_t} [\omega |_{X_t}].$$

The resulting map

$$\mathcal{L}_1|_{\mathbb{D}^*} \ni \omega \longmapsto [\omega] \ni \mathcal{H}^f_{hol}$$

is an isomorphism whose inverse is β_1 .

²The holomorphic nature of this section is by no means obvious since the cycle c_t only varies smoothly with t.

LIVIU I. NICOLAESCU

The sheaf \mathcal{L}_0 is intimately related to the notion of Poincaré residue. Given $U \subset \mathbb{D}^*$ as above and $\omega \in \Omega^{N+1}({}^{f}U)$, we deduce from the fact that $df \neq 0$ on X^* that ω can be written as

$$\omega = df \wedge \eta, \ \eta \in \Omega^N_X({}^fU)$$

 η is uniquely determined only modulo $df \wedge \Omega^{N-1}({}^{f}U)$ and we denote by $\frac{\omega}{df}$ the image of η in $\Omega^{N} \mod df \wedge \Omega^{N-1}$. Note that

$$\omega = df \wedge \eta = df \wedge \eta' \Longrightarrow \eta |_{X_t} = \eta' |_{X_t}, \ \forall t \in U.$$

Hence $\frac{\omega}{df}$ defines on each fiber X_t a closed form $\frac{\omega}{df}|_{X_t}$. Its cohomology class does not change if we add to ω forms of the type $df \wedge d\eta$, $\eta \in \Omega_X^{N-1}$ since $\frac{df \wedge d\eta}{df} = d\eta$. We get a map

$$\Omega^{N+1}({}^{f}U) \mod df \wedge d\Omega^{N-1}({}^{f}U) \to H^{N}(X_{t}, \mathbb{C}), \ \omega \longmapsto \Big[\frac{\omega}{df} \mid_{X_{t}}\Big].$$

The cohomology class $\lfloor \frac{\omega}{df} \mid X_t \rfloor$ is called the *Poincaré residue of* ω along X_t . We will denote it by $\operatorname{Res}_f(\omega, X_t)$. Now set

$$\mathcal{L}_0({}^fU) \approx \Omega^{N+1}({}^fU) \mod df \wedge d\Omega^{N-1}({}^fU).$$

For $\omega \in \mathcal{L}_0({}^f U)$ we can integrate $\operatorname{Res}_f(\omega, X_t)$ over locally constant vanishing cycles and obtain a holomorphic section $\operatorname{Res}_f(\omega) \in \Gamma(U, \mathcal{H}^f)$. Arnold refers to this section as the geometric section determined by the top dimensional form ω . The resulting morphism of sheaves

$$\operatorname{\mathbf{Res}}_f: \mathcal{L}_0 |_{\mathbb{D}^*} \to \mathcal{H}^f_{hol}, \ \omega \mapsto \operatorname{\mathbf{Res}}_f(\omega)$$

is an isomorphism whose inverse is β_0 . The map

$$\Omega^N \ni \omega \longmapsto df \wedge \omega \in \Omega^{N+1}$$

induces a morphism

$$\mathcal{L}_1 \approx \Omega^N \, \operatorname{mod} \left(\, df \wedge \Omega^{N-1} + d\Omega^{N-1} \, \right) \longrightarrow \Omega^{N+1} \, \operatorname{mod} \left(\, df \wedge d\Omega^{N-1} \, \right) = \mathcal{L}_0.$$

This is precisely the morphism φ .

The exterior differentiation $d: \Omega^N \to \Omega^{N+1}$ induces a morphism of sheaves

$$d: \mathcal{L}_1 \mid_{\mathbb{D}^*} \to \mathcal{L}_0 \mid_{\mathbb{D}^*} .$$

This is intimately related to the (topological) Gauss-Manin connection.

Theorem 2.3 (Gelfand-Leray formula). The following diagram of sheaves and morphisms of sheaves is commutative

$$\begin{array}{c} \mathcal{L}_1 |_{\mathbb{D}^*} \xrightarrow{d} \mathcal{L}_0 |_{\mathbb{D}^*} \\ & & & \\ \beta_1 \\ & & & \\ \beta_1 \\ & & \\ \mathcal{H}^f \xrightarrow{\nabla_t} \mathcal{H}^f \end{array}$$

Hence if we start with $\omega \in \Omega^n({}^fU)$ we obtain a section $[\omega] \in \Gamma(U, \mathcal{H}^f_{hol})$ and for every locally constant vanishing cycle $t \mapsto c_t$ we have

$$\frac{d}{dt} \int_{c_t} [\omega] = \int_{c_t} \left[\frac{d\omega}{df} \right].$$

Suppose $S = S_{\theta} \subset \mathbb{D}^*$ is an angular sector

$$S = \{t \in \mathbb{D}^* \mid \arg t \mid \le \theta \}, \ \theta \in (0, \pi).$$

We fix a branch of log t on U such that log 1 = 0 and for every real number α we set $t^{\alpha} = e^{\alpha \log t}$. Define

 $\Lambda^f := \{ r \in \mathbb{R}; \ \exp(2\pi \mathbf{i} r) \text{ is an eigenvalue of the monodromy } \mathcal{M}_f \},\$

and $\Lambda^f_{\nu} = \Lambda^f \cap (\nu, \infty)$, $\forall \nu \in \mathbb{R}$. From the monodromy theorem we deduce that Λ^f consists of finitely many arithmetic progression of rational numbers. We have the following fundamental result.

Theorem 2.4 (Regularity Theorem, Deligne-Griffiths). Denote by $j = j_f$ the largest dimension of the Jordan cells of \mathcal{M}_f . Suppose $\omega \in \Omega^{N+1}(X)$ and $S_\theta \ni t \stackrel{c}{\longmapsto} c_t$ is a parallel vanishing cycle. Then there exists a real number ν and for every $\alpha \in \Lambda^f_{\nu}$ a polynomial $P_{\alpha} = P_{\alpha,\omega,c} \in \mathbb{C}[s]$ of degree $\langle j \text{ such as } t \to 0 \text{ in } S$ we have the asymptotic expansion

$$\int_{c_t} [\operatorname{\mathbf{Res}}_f \omega] \sim \sum_{r \in \Lambda^f_{\nu}} t^{\alpha} P_{\alpha}(\log t).$$

Remark 2.5. Let $\omega \in \Omega^{N+1}(X)$. We can write $\omega = gd\vec{z}$, where $d\vec{z} = dz_0 \wedge \cdots \wedge dz_N$ and g is a holomorphic function on X. Since 0 is an isolated critical point of f we deduce from the analytical Nullstellensatz that there exists an integer $\ell > 0$ such that

$$f^{\ell} \in \mathfrak{m}^{\ell} \subset J_f.$$

In other words, there exist an open neighborhood V of 0 in X and holomorphic functions a^0, \dots, a^n on V such that

$$f^{\ell} = \sum_{k} a^{k} \partial_{z_{k}} f \quad \text{on } V.$$

If we denote by A the vector field $A = \sum_k a^k \partial_{z_k}$ and we denote by ι_A the contraction by A then we can rewrite the above equality as

$$f^{\ell}d\vec{z} = df \wedge \iota_A d\vec{z}.$$

In particular, we deduce that on $V^* - V \setminus f^{-1}(0)$ we have the equality

$$gdV = f^{-\ell}gdf \wedge \iota_A d\vec{z} \iff \frac{\omega}{df} = f^{-\ell}\iota_A\omega.$$

We can assume V has the form $V = f^{-1}(\mathbb{D}_{\varepsilon}) \cap X$. Now observe that $\iota_A \omega$ defines a section

$$[g\iota_A\omega] \in \Gamma(\mathbb{D}^*_{\varepsilon}, \mathcal{L}_1) \text{ and } [f^{-\ell}\iota_A\omega] = t^{-\ell}[\iota_A\omega] \in \Gamma(\mathbb{D}^*_{\varepsilon}, \mathcal{L}_1).$$

We have

$$\int_{c_t} \operatorname{Res}_f(\omega) = t^{-\ell} \int_{c_t} [\iota_A \omega], \quad \forall 0 < |t| \ll 1.$$

This shows that we can expect these integrals will "explode" as $t \to 0$ so we can expect that the real number ν in the regularity theorem is < 0.

On the other hand, according to Malgrange, the polynomial $P_{\alpha}(s) \equiv 0$ if $\alpha \leq -1$ so that in the above theorem we can assume $\nu = -1$. Thus these integrals explode but slower than t^{-1} .

LIVIU I. NICOLAESCU

3. The spectrum of a singularity

Suppose (e_1, \dots, e_{μ}) is a basis of vanishing cycles in X_{t_0} for some t_0 . We can extend them by parallel transport over U to a trivialization $H_f|_U$. For every holomorphic function g on X we obtain μ asymptotic expansions

$$I_{\omega_g, e_k}(t) := \int_{e_k(t)} \operatorname{Res}_f(\omega_g) \sim \sum_{\alpha \in \Lambda_{-1}^f} t^{\alpha} P_{\alpha, \omega, k}(\log t), \ \omega_g = g dz^0 \wedge \dots \wedge dz^n.$$

We set

 $\nu_k(\omega) = \min\{\alpha \in \Lambda_{-1}^f; \ P_{\alpha,\omega,k} \neq 0\}$

and we define the *order* of the geometric section $s_g = \operatorname{Res}(\omega_g)$ to be

$$\nu = \nu(\omega_g) = \min\{\nu_k(\omega); \ k = 1, \cdots, \mu\}.$$

If we denote by (e^k) the basis if $H^f|_U$ dual to (e_i) then we set

$$s_{max}(\omega_g) = \sum_{k=1}^{\mu} t^{\nu} P_{\nu,\omega_g,k}(\log t) e^k \in \Gamma(U, \mathcal{H}^f_{hol}).$$

This section is independent of the basis (e_i) and moreover, it extends to a section of \mathcal{H}_{hol}^f over the entire punctured disk \mathbb{D}^* . It is called the *principal part* of the geometric section $\operatorname{\mathbf{Res}}_f(\omega)$.

Example 3.1. Consider the function $f: X = \mathbb{C} \to \mathbb{C}, z \mapsto t = z^n$. Let $\zeta := e^{\frac{2\pi i}{n}}$. For every $t = \rho e^{i\theta}$ in the sector $S = S_{\pi/2} = \{ \operatorname{\mathbf{Re}} z > 0 \}$ we set

$$t^{1/n} = \rho^{1/n} e^{\frac{i\theta}{n}}, \quad e_k(t) = t^{1/n} \left(\zeta^k - \zeta^{(k-1)}\right) \in \tilde{H}_0(f^{-1}(t), \mathbb{Z}), \quad k = 1, \cdots, n-1.$$

For $1 \le m < n$ we set $\omega_m = z^{m-1} dz = \frac{1}{m} d(z^m) \in \Omega^1(X)$. Then

$$\frac{\omega_m}{df} = \frac{z^{m-1}dz}{nz^{n-1}dz} = \frac{1}{n}z^{m-n} \in \Omega^0(X^*).$$

For $t \in S$ we have

$$\int_{e_k(t)} \frac{\omega_m}{df} = \frac{1}{n} \left((t^{1/n} \zeta^k)^{(m-n)} - (t^{1/n} \zeta^{k-1})^{(m-n)} \right) = \frac{1}{n} (\zeta^{km}) t^{\frac{(m-n)}{n}} \left(1 - \zeta^{-m} \right).$$

We conclude that

$$\nu(\omega_m) = \frac{m}{n} - 1 < 0, \ 1 \le m < n.$$

Returning to the general case, let us make the change in variables $t = e^s$, $\operatorname{Re} s < 0$ and we (ambiguously) set $e_k(s) = e_k(e^s)$. Fix $t_0 \in \mathbb{D}^*$, $\operatorname{Im} t_0 = 0$ and $s_0 = \log t_0 \in \mathbb{R}$. Set

$$\underline{\mathbf{e}}(s) = \begin{bmatrix} e_1(s), \cdots, e_{\mu}(s) \end{bmatrix}, \quad \overline{\mathbf{e}}(s) = \begin{bmatrix} e^1(s) \\ \vdots \\ e^{\mu}(s) \end{bmatrix}.$$

In the basis ($\underline{\mathbf{e}}(s_0)$) the monodromy \mathcal{M}_f is represented by a $\mu \times \mu$ matrix $M = (m_j^i)_{1 \le i,j \le \mu}$ and we have the equalities

$$\underline{\mathbf{e}}(s_0 + 2\pi \mathbf{i}) = \underline{\mathbf{e}}(s_0) \cdot M \iff e_i(s_0 + 2\pi \mathbf{i}) = \sum_j m_i^j e_j(s_0)$$

$$\bar{\mathbf{e}}(s_0) = M \cdot \bar{\mathbf{e}}(s_0 + 2\pi \mathbf{i}) \Longleftrightarrow e^i(s_0) = \sum_j m^i_j e^j(s_0 + 2\pi \mathbf{i})$$

Given $\omega \in \Omega^{N+1}(X)$ we define the row vector

$$\vec{I}_{\omega} = [I_{\omega,1}(s), \cdots, I_{\omega,\mu}(s)], \quad I_{\omega,k} = \int_{e_k(s)} \operatorname{Res}_f \omega.$$

Note that

$$\vec{I}_{\omega}(s+2\pi \mathbf{i}) = \vec{I}_{\omega}(s) \cdot M.$$

If we pick μ -forms $\omega_1, \dots, \omega_\mu \in \Omega^{n+1}(X)$ we can form the $\mu \times \mu$ period matrix

$$P(s) = \begin{bmatrix} \vec{I}_{\omega_1}(s) \\ \vdots \\ \vec{I}_{\omega_\mu}(s) \end{bmatrix}.$$

It satisfies

$$P(s+2\pi \mathbf{i}) = P(s) \cdot M.$$

Since $M \in \operatorname{GL}_{\mu}(\mathbb{Z})$ we deduce that

$$\det P(s + 2\pi \mathbf{i}) = \pm \det P(s).$$

Thus det $P(s)^2$ is a well defined meromorphic function $t \mapsto \delta(t; \omega_1, \dots, \omega_\mu)$ on \mathbb{D} with a possible pole at t = 0. We denote by $\nu(\omega_1, \dots, \omega_\mu) \in \frac{1}{2}\mathbb{Z}$ its order at t = 0 divided by 2.

Theorem 3.2 (Varchenko).

$$u(\omega_1, \cdots, \omega_\mu) \ge \max\left\{\frac{N-1}{2}\mu, \sum_{j=1}^{\mu}\nu(\omega_j)\right\}$$

with equality for a generic choice of $\{\omega_1, \dots, \omega_\mu\}$. In such a generic case we also have the equality

$$\nu(\omega_1, \cdots, \omega_\mu) = \frac{N-1}{2}\mu = \sum_{j=1}^{\mu} \nu(\omega_j)$$

We will refer to such a generic choice as a $\mathbb{C}\{t\}$ -basis and we will use the notation $\underline{\omega}$ to denote an ordered $\mathbb{C}\{t\}$ -basis.

We define a *rational divisor* on \mathbb{R} to be a finite formal linear combination of the form

$$\sum_{q \in \mathbb{Q}} n_q \cdot (q), \quad n_q \in \mathbb{Z}, \quad n_q = 0 \text{ for all but finitely may } q\text{'s.}$$

In other words, a rational divisor is an element

$$\mathbb{Z}^{(\mathbb{Q})} =$$
functions $f : \mathbb{Q} \to \mathbb{Z}$ with finite support.

For a rational number q we denote by $(q) \in \mathbb{Z}^{(\mathbb{Q})}$ the Dirac function supported at q. For any function $f : \mathbb{Q} \to \mathbb{Q}$ with finite fibers and any divisor $D \in \mathbb{Z}^{(\mathbb{Q})}$ we define

$$f^*D = \sum_{r \in \mathbb{Q}} n_{f(r)}(f(r)) = \sum_{q \in \mathbb{Q}} \sum_{f(r)=q} n_q(q).$$

A divisor will be called invariant with respect to f if $D = f^*D$.

Given a \mathbb{C} {t}-basis $\underline{\omega} = (\omega_1, \cdots, \omega_1)$ we set

$$(\underline{\omega}) = \sum_{i=1}^{\mu} (\nu(\omega_i)).$$

Following Steenbrink and Varchenko, we define for every $\alpha \in \Lambda^f$ the subsheaf S_{α} of \mathcal{H}_{hol}^f spanned over $\mathcal{O}_{\mathbb{D}^*}$ by the principal parts of the geometric sections of order α . One can show that each of them is a locally free sheaf and defines a sub-bundle of \mathcal{H}^f . The multiplication by t defines an inclusion

$$\mathbb{S}_{\alpha-1} \hookrightarrow \mathbb{S}_{\alpha}$$

Note that $S_{\alpha} = 0$ for all $\alpha \leq -1$. It is a highly nontrivial fact that $S_N = \mathcal{H}_{hol}^f$.

The spectrum of f is the divisor sp $(f) \in \mathbb{Z}^{(\mathbb{Q})}$ defined by

$$\operatorname{sp}(f) = \sum_{\alpha \in \Lambda_{-1}^f} \left(\dim_{\mathbb{C}} \mathfrak{S}_{\alpha}/t \cdot \mathfrak{S}_{\alpha-1} \right) \cdot (\alpha).$$

If we write

$$\operatorname{sp}(f) = \sum_{\alpha \in \Lambda_{-1}^{f}} n_{\alpha} \cdot (\alpha)$$

then the numbers α such that $n_{\alpha} \neq 0$ are called the *spectral numbers of* f. The integer n_{α} is called the multiplicity of α (in the spectrum of f). Since $S_N = \mathcal{H}_{hol}^f$ we deduce

$$n_{\alpha} = 0, \quad \forall \alpha \ge N.$$

Theorem 3.3 (Varchenko). Suppose $f = f(z_0, \dots, z_N) \in \mathcal{O}_{N+1}$. Then the spectrum $\operatorname{sp}(f)$ is well defined, i.e. it is indeed a rational divisor supported inside the interval (-1, N). Moreover, for any $\mathbb{C}\{t\}$ -basis $\underline{\omega}$ of f we have the equality

$$\operatorname{sp}(f) = (\underline{\omega})$$

and sp(f) is invariant with respect to the reflection in the midpoint of [-1, N].

To every divisor $D = \sum_q n_q(q) \in \mathbb{Z}^{(\mathbb{Q})}$ we associate the Laurent-Puiseux polynomial

$$S_D(T) = \sum_q n_q T^q.$$

Note that the polynomial S_D completely determines the divisor D. When D = sp(f) we set

$$S_f(T) := S_{\operatorname{sp}(f)}(T).$$

We will refer to $S_f(T)$ as the spectral polynomial of f.

Theorem 3.4 (Varchenko).

$$S_{f*g}(T) = T \cdot S_f(T) \cdot S_f(T).$$

Remark 3.5. If, following Saito, we define

$$S_f(T) = TS_f(T)$$

then the last equality has the more natural form

$$\tilde{S}_{f*g}(T) = \tilde{S}_f(T) \cdot \tilde{S}_g(T).$$

Example 3.6. Consider again the function $f(z) = z^n$ discussed in Example 3.1 so that

$$N = 0, \ \mu = n - 1, \ \frac{N - 1}{2}\mu = -\frac{n - 1}{2}.$$

Then the period matrix is given by

$$P_k^m(t) = \int_{e_k(t)} \omega_m = \frac{1}{n} (\zeta^{km}) t^{\frac{(m-n)}{n}} (1 - \zeta^{-m}).$$

and we have

$$\det P(t) = \frac{1}{n^{n-1}} \left(\prod_{m=1}^{n-1} t^{\frac{(m-n)}{n}} \left(1 - \zeta^{-m} \right) \right) \cdot \det[\zeta^{km}]_{1 \le k, m \le n-1}.$$

The last determinant is a Vandermonde determinant and it is non zero. Hence the order of det P(t) at zero is

$$\sum_{m=1}^{n-1} \left(\frac{m}{n} - 1\right) = -\frac{n-1}{2} = \frac{N-1}{2}\mu$$

Thus the collection $\{z^m dz\}_{1 \le m \le n-1}$ is a basis and we deduce

$$S_{z^n}(T) = \sum_{m=1}^{n-1} T^{\frac{m}{n}-1} = T^{-1} \sum_{m=1}^{n-1} T^{m/n} = T^{-1} \frac{T^{\frac{1}{n}} - T}{1 - T^{\frac{1}{n}}}$$

Using Theorem 3.4 we deduce that for a Brieskorn singularity $f_{a_0,\dots,a_N} = z_0^{a_0} + \dots + z_N^{a_N}$ we have

$$S_{f_{a_0,\dots,a_N}}(T) = T^{-1} \prod_{j=0}^N \frac{T^{1/a_j} - T}{1 - T^{1/a_j}}$$

More generally, if f is a quasihomogeneous function with weights w_0, \dots, w_N then

$$S_f = T^{-1} \prod_{j=0}^N \frac{T^{w_j} - T}{1 - T^{w_j}}.$$

In particular, the D_4 singularity is quasihomogeneous with weights (1/3, /1/3, 1/2) and we have

$$S_{D_4}(T) = T^{-1} \left(\frac{T^{1/3} - T}{1 - T^{1/3}} \right)^2 \frac{T^{1/2} - T}{1 - T^{1/2}} = T^{1/6} (1 + T^{1/3})^2 = T^{1/6} + 2T^{1/2} + T^{5/6}.$$

The geometric genus of the isolated singularity defined by $f \in \mathcal{O}_{N+1}$ is the number of nonpositive spectral numbers of f counted with their multiplicities. In terms of a $\mathbb{C}\{t\}$ -basis $\underline{\omega} = \{\omega_1, \dots, \omega_\mu\}$ of f, the geometric genus is the number of ω_j 's with the property that there exists a locally constant vanishing cycle c_t such that the integral of ω_j along c_t does not converge to zero as $t \to 0$ inside an angular sector. We denote the geometric genus by $p_q(f, 0)$. For example $p_q(z^n, 0) = n - 1$, $p_q(D_4, 0) = 0$.

For generic f's the geometric genus can be given a combinatorial description, similar in spirit to the above description of $p_q(z^n, 0)$.

Let $f = f(z_0, \dots, z_N)$. Set $L := \mathbb{Z}^{N+1}$, $L^+ := \mathbb{Z}^{n+1}_{\geq 0}$, $L_{\mathbb{R}} = L \otimes \mathbb{R}$. For $\alpha \in L$ we set $\overline{z}^{\alpha} := z_0^{\alpha_0} \cdots z_N^{\alpha_N}$. We can write

$$f = \sum_{\alpha \in L^+} f_\alpha \vec{z}^\alpha$$

We set

$$\operatorname{supp} f = \{ \alpha \in L_+; \ f_\alpha \neq 0 \}.$$

The (local) Newton polyhedron of f, denoted by $\Gamma_+(f)$ is the convex hull of $\operatorname{supp}(f) + L^+$. The germ f is called *convenient* if its Newton polyhedron intersects all the coordinate axes of $L_{\mathbb{R}}$. Equivalently, this means that for every $j = 0, \dots, N$, there exists $n_j \in \mathbb{N}$ such that the monomial $z_n^{n_j}$ enters into the Taylor expansion of f. We can assume without a loss of generality that f is a convenient polynomial. Indeed, according to Mather-Tougeron theorem, the analytic type of the singularity described by f does not change if we modify arbitrarily the terms in the Taylor expression of degree $> \mu + 1$. In particular, we can replace f by $j_{\mu+1}(f) + \sum_{j=0}^{N} z_j^{\mu+2}$ and not change the analytic type of the singularity. The Newton polyhedron is the intersection of finitely many half-spaces. Its boundary has

The Newton polyhedron is the intersection of finitely many half-spaces. Its boundary has compact and noncompact faces. The Newton diagram of f, denoted by $\Delta(f)$, is the union of all the compact faces. These are compact polyhedra of dimensions $\leq N$. For each face γ of the Newton diagram we set

$$f_{\gamma} = \sum_{\alpha \in \gamma} f_{\alpha} \vec{z}^{\alpha}.$$

The polynomial f is called *Newton nondegenerate* if for every face γ of $\Delta(f)$ the polynomials

$$\frac{\partial f_{\gamma}}{\partial z_j}, \ j = 0, 1, \cdots, N$$

have no common zero on $(\mathbb{C}^*)^{N+1}$. This condition is generic in the space of convenient polynomials with a fixed Newton polyhedron.

Let $\vec{w}_0 = (1, \dots, 1)$. A monomial \vec{z}^{α} is called *subdiagramatic* if $\alpha + \vec{w}_0$ does not lie in the interior of the Newton polyhedron.

Theorem 3.7 (Khovanski-Varchenko-Saito). Suppose $f \in \mathcal{O}_{N+1}$ is a Newton nondegenerate convenient polynomial. Then $p_g(f, 0)$ is equal to the number of subdiagramatic monomials.

Example 3.8. Consider the singularity D_4 . The defining polynomial $x^2y - y^3 + z^2$ is not convenient, but near 0 it is right equivalent to $cx^6 + x^2y - y^3 + z^2$, where c is a complex number. The Newton diagram of this polynomial is depicted in Figure 2. It consists of 0- dimensional, 1-dimensional and 2-dimensional faces. The 2-dimensional faces are the triangles ACD and BCD. The 1-dimensional faces are the edges of these triangles and the 0-dimensional faces are the vertices of these triangles. We have

$$f_{ACD} = cx^{6} + x^{2}y + z^{2}, \quad \frac{\partial f_{ACD}}{\partial x} = 6cx^{5} + xy, \quad \frac{\partial f_{ACD}}{\partial y} = x^{2}, \quad \frac{\partial f_{ACD}}{\partial z} = 2z.$$
$$f_{BCD} = y^{3} + x^{2}y + z^{2}, \quad \frac{\partial f_{BCD}}{\partial x} = 2xy, \quad \frac{\partial f_{BCD}}{\partial y} = 3y^{2} + x^{2}, \quad \frac{\partial f_{BCD}}{\partial z} = 2z.$$

FIGURE 2. The Newton diagram of $cx^6 + x^2y - y^3 + z^2$.

etc. One can check that for $c \neq 0$ this is Newton nondegenerate. The two top dimensional faces of the Newton diagram are contained in the planes

$$ACD \subset \Big\{\underbrace{\frac{1}{6}x + \frac{2}{3}y + \frac{1}{2}z}_{:=\ell_1(x,y,z)=1}\Big\}, \quad BCD \subset \Big\{\underbrace{\frac{1}{3}x + \frac{1}{3}y + \frac{1}{2}z}_{:=\ell_2(x,y,z)}=1\Big\}$$

the Newton polyhedron is defined by

$$\ell_1(x, y, z) \ge 1$$
 and $\ell_2(x, y, z) \ge 1$.

A subdiagramatic monomial $x^m y^n z^p$ satisfies

$$\ell_1(m, n, p) + \ell_1(1, 1, 1) \le 1$$
 or $\ell_2(m, n, p) + \ell_2(1, 1, 1) \le 1$.

Equivalently this means

$$\frac{m}{6} + \frac{2n}{3} + \frac{p}{2} + \frac{4}{3} \le 1 \text{ or } \frac{m}{3} + \frac{n}{3} + \frac{p}{2} + \frac{7}{6} \le 1, \ m, n, p \ge 0.$$

Clearly there are no such monomials so that $p_g(D_4, 0) = 0$ as expected.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556-4618. *E-mail address:* nicolaescu.1@nd.edu