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Abstract. We compare various topologies on the space of (possibly unbounded) Fred-
holm selfadjoint operators and explain their K-theoretic relevance.
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Introduction

The work of Atiyah and Singer on the index of elliptic operators on manifolds has singled
out the role of the space of bounded Fredholm operators in topology. It is a classifying space
for a very useful functor, the topological K-theory. This means that a continuous family
(Lx)x∈X of elliptic pseudodifferential operators of order zero parameterized by a compact
CW -complex X naturally defines an element in the group K(X), the index of the family.

In most examples arising in concrete geometric situations, the elliptic operators are partial
differential operators, and thus they are naturally unbounded. The notion of continuity has
to be defined carefully.

The operator theorists have come up with a quick fix. The family x 7→ Lx of (possibly
unbounded) Fredholm operators is called Riesz continuous if and only if the families of
bounded operators

x 7→ Lx(1 + L∗xLx)−1/2, x 7→ L∗x(1 + LxL∗x)−1/2

are continuous with respect to the operator norm. In concrete applications this approach
can be a nuisance.

For example, consider as in [9] a Floer family of elliptic boundary value problems, pa-
rameterized by z ∈ C, |z| = 1,

Fz : Dom(Fs) ⊂ L2([0, 1],C) → L2([0, 1],C),

Dom(Fz) =
{
u ∈ L2([0, 1],C);

du

dt
∈ L2([0, 1],C), u(0) ∈ R, zu(1) ∈ R}

Fzu =
du

dt
+ au.

(BVz)

Above, Dom denotes the domain of an (unbounded) operator, and a : [0, 1] → R is a smooth
function.

This family ought to be considered continuous, but using the above definition can be
quite demanding. The first technical goal of this paper is to elucidate this continuity issue.

As observed in [1, 5], for K-theoretic purposes it suffices to investigate only (possibly
Z2-graded) selfadjoint operators (super-)commuting with some Clifford algebra action.
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For example, the space of Fredholm operators on a Hilbert space H can be identified
with the space of odd, selfadjoint Fredholm operators on the Z2-graded space H ⊕ H via
the correspondence

L 7→
[

0 L∗
L 0

]
.

That is why we will focus exclusively on selfadjoint operators.
In [9] we have argued that in many instances it is much more convenient to look at the

graphs of Fredholm selfadjoint operators on a Hilbert space H. If T is such an operator
and ΓT ⊂ H ⊕H is its graph, then ΓT is a Lagrangian subspace of H ⊕H (with respect to
a natural symplectic structure) and moreover, the pair (H ⊕ 0, ΓT ) is Fredholm. As shown
in [7], the space of Fredholm pairs of Lagrangian subspaces is a classifying space for KO1.
(A similar description is valid for all the functors KOn; see [9].)

A natural question arises. Suppose that two families of subspaces determined by the
graphs of two families of Fredholm operators are homotopic inside the larger space of Fred-
holm pairs of Lagrangian subspaces. Can we conclude that the corresponding families of
Fredholm operators are also homotopic inside the smaller space of operators?

The is the second issue we want to address in this paper. We will consider various topolo-
gies on the space of closed, unbounded Fredholm operators, and analyze when the above
graph map T 7→ ΓT from operators to subspaces is a homotopy equivalence. Surprisingly, to
answer this question we only need to decide the continuity of Floer type families of bound-
ary value problems. The symplectic reduction technique developed in [9] coupled with the
Bott periodicity will take care of the rest.

The paper consists of three sections. In Section 1 we analyze two topologies on the space
of unbounded Fredholm operators: the gap topology, given by the gap distance between the
graphs, and the Riesz topology, described above. We give some simple practical criteria for
convergence in these topologies. We have included a simple example of B. Fuglede showing
that the gap topology is strictly weaker than the Riesz topology.

In the second section we prove a general criterion (Proposition 2.1) for recognizing when
a family of first order, elliptic boundary value problems, such as (BVz), is continuous with
respect to the Riesz topology.

In the last section we prove (Proposition 3.1) that a certain “component” F0 of the space
of closed, Fredholm selfadjoint operators equipped with the Riesz topology is a classifying
space for the functor KO1. Although we do not address it in this paper, similar descriptions
exist for all the functors KOn. Moreover, using the symplectic techniques of [9] we prove
(Theorem 3.3) that the map which associates to an operator T ∈ F0 its graph induces a
weak homotopy equivalence between the space F0 equipped with the Riesz topology, and
the space of Fredholm pairs of Lagrangian subspaces in an infinite dimensional symplectic
Hilbert. Here the Riesz continuity of the Floer families and the Bott periodicity play a
crucial role.

This (weak) homotopy equivalence is extremely useful in applications since the space
of lagrangians is much larger, and thus offers more freedom in constructing homotopies of
families of operators.

In a recent article, B. Booos-Bavnbeck, M. Lesch and J. Phillips [2] investigate the space
F0 equipped the gap topology, and they explicitly construct a surjection π1(F0) → Z, the so
called spectral flow. Our results show that if we equip F0 with the Riesz topology, then the
above morphism is an isomorphism, because π1(F0) ∼= Z, and any surjection Z → Z must
be an isomorphism.
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1. Topologies on the space of selfadjoint operators

Let H be a separable complex ∗ Hilbert space. Denote by S the space of densely defined,
selfadjoint operators on H, and by BS the space of bounded selfadjoint operators H → H.
Set

[BS] :=
{

T ∈ BS; ‖T‖ < 1
}
.

The Riesz map is the injection

Ψ : S → BS, A 7→ A(1 + A2)−1/2.

As explained in [2], its image consists of operators S of norm ≤ 1 such that S ± 1 are
injective. There are two natural metrics on S.

• The gap metric

γ(A0, A1) := ‖(i + A0)−1 − (i + A1)−1‖+ ‖(i−A0)−1 − (i−A1)−1‖, i :=
√−1.

• The Riesz metric
ρ(A0, A1) := ‖Ψ(A0)−Ψ(A1)‖.

Remark 1.1. According to [6, Thm. IV.2.23] we have

γ(An, A) → 0 ⇐⇒ δ(ΓAn , ΓA) → 0,

where ΓT denotes the graph of the linear operator T , and δ denotes the gap between two
closed subspaces, [6, IV§2]. ut

Lemma 1.2. The identity map (S, ρ) → (S, γ) is continuous.

Proof. Observe that for every A ∈ S we have
1

i±A
=

A∓ i

1 + A2
=

A

1 + A2
∓ 1

1 + A2
=

1
(1 + A2)1/2

Ψ(A)∓ i
1

1 + A2

and
1

1 + A2
= 1−Ψ(A)2

so that ‖Ψ(An)−Ψ(A)‖ → 0 implies ‖(i±An)−1 − (i±A)−1‖ → 0. ut

Denote by A the C∗-algebra of continuous functions f : R→ C such that the limits

f(±∞) := lim
λ→±∞

f(λ) ∈ C
exist. Denote by A0 the subalgebra of A defined by the condition

f ∈ A0 ⇐⇒ f(−∞) = f(∞).

Define P0, P± ∈ A0 by
P0(λ) ≡ 1, P±(λ) = (λ± i)−1.

The Stone-Weierstrass approximation theorem shows that the algebra P generated by P0, P±
is dense in A0.

∗To deal with real operators it suffices to complexify them.
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The functional calculus for selfadjoint operators show that any A ∈ S defines a continuous
morphism of C∗-algebras

A → BS, f 7→ f(A).

Proposition 1.3. The following statements are equivalent.
(i) γ(An, A) → 0.
(ii) ‖f(An)− f(A)‖ → 0, ∀f ∈ A0.

Proof. Clearly (ii) =⇒ (i) since P± ∈ A0 and

γ(An, A) = ‖P−(An)− P−(A)‖+ ‖P+(An)− P+(A)‖.
To prove (i) =⇒ (ii) we use an idea in [10, Chap. VIII]. Clearly if γ(An, A) → 0 then

‖P (An)− P (A)‖ → 0, ∀P ∈ P.

Fix f ∈ A0. Since P is dense in A0, for every ε > 0 we can find P ∈ P such that
‖f − P‖ ≤ ε/3 and then n(ε) > 0 such that, ∀n ≥ n(ε) such that

‖P (An)− P (A)‖ ≤ ε/3.

Then, ∀n ≥ n(ε) we have

‖f(An)− f(A)‖ ≤ ‖f(An)− P (An)‖+ ‖P (An)− P (A)‖+ ‖P (A)− f(A)‖ ≤ ε. ut

Proposition 1.4. Fix a function α ∈ A such that α(λ) ≡ 1 for λ À 1 and α(λ) ≡ 0 if
λ ¿ −1. Then the following statements are equivalent.
(i) ρ(An, A) → 0
(ii) ‖f(An)− f(A)‖ → 0, ∀f ∈ A.
(iii) γ(An, A) → 0 and ‖α(An)− α(A)‖ → 0.

Proof. Define r ∈ A by

r(λ) :=
λ

(1 + λ2)1/2
.

The equivalence (i) ⇐⇒ (ii) follows exactly as in the proof of Proposition 1.3 using Lemma
1.2, and the fact that the subalgebra spanned by A0, the constant function 1, and r is dense
in A.

The equivalence (ii) ⇐⇒ (iii) relies on Proposition 1.3, and the fact that the algebra
spanned by A0, the constant function 1, and α is dense in A. ut

From the above results we deduce the following consequence.

Corollary 1.5. The identity maps

(BS, ‖ • ‖) → (BS, ρ), (BS, ‖ • ‖)) → (BS, γ),

are are continuous, where (BF, ‖•‖) denotes the space BF equipped with the norm topology.ut

Remark 1.6 (B. Fuglede). The topological spaces (S, ρ) and (S, γ) are not homeomorphic.
Using Proposition 1.4 it is easy to construct an example of a sequence An

γ→ A such that
An does not converge to A in the Riesz metric. More precisely, consider the space

`2 =
{

(xj)n≥1; xj ∈ R,
∑

j

x2
j < ∞}

,
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with canonical Hilbert basis e1, e2, . . . . For n = 1, 2, . . . define

An : D(An) ⊂ `2 → `2, D(An) =
{

(xj)j≥1 ∈ `2;
∑

j≥1

j2|xj |2 < ∞
}

Anej =
{

jej , j 6= n
−nej , j = n

One can see that

‖(i±An)−1 − (i±A0)−1‖ =
∣∣∣ 1
i + n

− 1
i− n

∣∣∣ → 0

so that γ(An, A0) → 0. On the other hand, if α ∈ A is as in Proposition 1.4 then for all
sufficiently large n we have

‖α(An)− α(A0)‖ = 1.

This shows that the gap topology is strictly weaker than the Riesz topology. ut

We now want to present a simple criterion of ρ-convergence. For any closed densely
defined operator we denote by R(T ) ⊂ C its resolvent set.

Proposition 1.7. Suppose A ∈ S such that R(A) ∩ R 6= ∅. Suppose Sn is a sequence of
densely defined symmetric operators satisfying the following conditions.
(a) Dom(A) ⊂ Dom(Sn).
(b) There exists a sequence of positive numbers cn → 0 such that

‖Snu‖ ≤ cn(‖Au‖+ ‖u‖), ∀u ∈ Dom(A).

Then A + Sn ∈ S for all n À 0 and

ρ(A + Sn, A) → 0.

Proof. Set An := A + Sn. According to [6, Thm.IV.2.24] we have

γ(An, A) → 0

while [6, Thm. V.4.1] implies A + Sn ∈ S for all sufficiently large n. Let β ∈ R(A) ∩R and
consider a small closed interval I = [β− ε, β + ε] such that I ⊂ R(A). Then, using [6, Thm.
VI.5.10] we deduce that for n sufficiently large we have

I ⊂ R(An), ∀n À 0.

Pick now a function α ∈ A such that α(λ) ≡ 1 for λ ≥ β + ε and α(λ) ≡ 0 for λ ≤ β − ε.
Using [6, Thm. VI.5.12] we deduce

‖α(An)− α(A)‖ → 0.

We can now invoke Proposition 1.4 to conclude that ρ(An, A) → 0. ut
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2. Families of boundary value problems

The terminology involving Dirac operators used in this section is taken from [8, Chap.
10]. Consider now as in [9, App. A] the following data.

• A compact, oriented Riemannian manifold (M, g) with boundary N = ∂M such
that a tubular neighborhood of N ↪→ M is isometric to the cylinder

([0, 1]×N, dt2 + gN ),

where gN is a Riemann metric on N and t denotes the outgoing longitudinal coor-
dinate.

• An Euclidean bundle of Clifford modules E → M with Clifford multiplication

c : T ∗M → End (E).

( c(α) is skew-symmetric for any real 1-form α.) Set E0 := E |N¿
• D : C∞(E) → C∞(E) a symmetric Dirac operator, with principal symbol c, such

that near N it has the form

D = J(∂t −D0), J := c(dt),

where D0 : C∞(E0) → C∞(E0) is symmetric and independent of t.
• A sequence of symmetric endomorphisms of E independent of t near N such that
‖Tn‖C2 → 0, and (near N) the endomorphism JAn is symmetric. Set Dn := D+Tn.
Observe that near N Dn has the form

Dn := J(∂t −D0 − JTn).

Following [3], we consider the family P of admissible boundary conditions. It consists of
zero order, formally selfadjoint pseudodifferential projectors with the same principal symbol
as the Calderon projector of D0. The symbol of any P in P commutes with the symbol of
D0, so that the commutator [P, D0] is a zeroth order pseudodifferential operator. We define
a metric ν on P by setting

ν(P, Q) :=
∥∥∥P −Q

∥∥∥ +
∥∥∥[P −Q,D0]

∥∥∥,

where ‖ • ‖ denotes the norm on the space of bounded operators L2(E0) → L2(E0).
For every s ∈ [0,∞) we will denote by Hs(E) (respectively Hs(E0)) the Sobolev space

consisting of L2-sections of E (respectively E0) such that all their distributional partial
derivatives of order ≤ s are also in L2.

If we write Q = P + S, where S is a pseudodifferential operator of order ≤ −1, then

‖[P −Q, D0]‖ ≤
(
‖D0‖E0;H0,H−1 · ‖S‖E0;H−1,H0 + ‖D0‖E0;H1,H0 · ‖S‖E0;H0,H1

)
,

where we have denoted by ‖T‖E0;Hs,Hr the norm of a bounded operator T : Hs(E0) →
Hr(E0). We deduce that there exists a constat C > 0, depending only on the geometry of
M and E, such that

ν(P,Q) ≤ C
(
‖P −Q‖E0;H−1,H0 + ‖P −Q‖E0;H0,H1

)
.

Suppose now that we are given a projector P ∈ P and a sequence (Pn) ⊂ P. As in [3],
we can form the Fredholm selfadjoint operators

An : Dom(An) ⊂ L2(E) → L2(E), Dom(An) =
{

u ∈ H1(E); Pnu |N= 0
}
, Anu = Dnu,
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and

A : Dom(A) ⊂ L2(E) → L2(E), Dom(A) =
{

u ∈ H1(E); Pu |N= 0,
}
, Au = Du.

Proposition 2.1. If
lim

n→∞ ν(Pn, P ) = 0, (2.1)

then limn→∞ ρ(An, A) = 0.

Proof. The proof relies on the following technical result.

Lemma 2.2. There exists a sequence of bounded, invertible operators Un : L2(E) → L2(E)
such that
(i) 1− Un and 1− U∗

n define bounded operators Hs(E) → Hs(E), s = 0, 1.
(ii) (Un − 1), (Un − 1)∗ → 0 in the norm topology on the space of bounded operators
Hs(E) → Hs(E), s = 0, 1.
(iii) Dom(An) = U∗

n Dom(A), ∀n.

We will prove this lemma after we have finished the proof of Proposition 2.1. Set

Bn := UnAnU∗
n.

Observe that Bn ∈ S, and Dom(Bn) = Dom(A). Moreover

ρ(Bn, An) = ‖Ψ(UnAnU∗
n)−Ψ(An)‖ = ‖UnΨ(An)U∗

n −Ψ(An)‖
=

∥∥∥( (Un − 1) + 1)Ψ(An)( (Un − 1) + 1)∗ −Ψ(An)
∥∥∥ ≤ C‖(Un − 1)‖L2,L2 · ‖Ψ(An)‖ → 0

Thus it suffices to show that
ρ(Bn, A) → 0.

Observe that for all u ∈ Dom(A) we have

‖Bnu−Au‖ = ‖Un(D + Tn)U∗
n −D‖ ≤ ‖UnD(U∗

nu− u)‖+ ‖UnTnU∗
nu‖

≤ ‖Un‖L2,L2‖D(U∗
nu− u)‖L2 + C‖Tn‖C2‖u‖L2 ≤ C

(
‖(U∗

n − 1)u‖H1 + ‖Tn‖C2‖u‖L2

)

≤ C
(
‖(U∗

n − 1)‖H1,H1‖u‖H1 + ‖Tn‖C2‖u‖L2

)

(use the elliptic estimates in [3])

≤ C
{
‖(U∗

n − 1)‖H1,H1

( ‖Au‖L2 + ‖u‖L2

)
+ ‖Tn‖C2‖u‖L2

}
≤ cn(‖Au‖+ ‖u‖),

where cn → 0. Thus, the operator Sn = Bn − A satisfies all the conditions in Proposition
1.7. On the other hand, A has compact resolvent so that R(A) ∩ R 6= ∅. We deduce

ρ(A,Bn) = ρ(A, A + Sn) → 0. ut
Proof of Lemma 2.2 Following the constructions in [6, I.§6.4] define

Ûn : L2(E0) → L2(E0)

by
Ûn = PnP + (1− Pn)(1− P ) = 2PnP − (Pn + P ) + 1

= 2(P + Rn)P − (2P + Rn) + 1 = Rn(2P − 1) + 1.

Ûn is a pseudodifferential operator of order zero with principal symbol 1. Observe that

Û∗
n = PPn + (1− P )(1− Pn)
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and, as explained in [6, I.§6.4], Û∗
n is invertible and maps kerP onto kerPn. Observe

moreover that
‖Ûn − 1‖L2,L2 ≤ ‖Rn‖L2,L2‖(2P − 1)‖L2,L2 → 0. (2.2)

Next, observe that
[D0, Ûn] = [D0, Rn](2P − 1) + 2Rn[D0, P ]

defines a bounded operator L2(E0) → L2(E0) and, using (2.1) we deduce
∥∥ [D0, Ûn]

∥∥
L2,L2 → 0. (2.3)

Observe that Ûn defines in an obvious fashion a bounded operator

Ûn : L2(E |[0,1]×N ) → L2(E |[0,1]×N )

Consider now a smooth increasing function

η : [0, 1] → [0, 1]

such that η(t) ≡ 0 for t < 1/4 and η(t) ≡ 1 for t > 3/4. We can regard η as a function
on the tubular neighborhood of N ↪→ M and then extending it by 0 we can regard it as a
smooth function on M . Notice that if u is a section of E then we can regard ηu as a section
of E |[0,1]×N .

For any section of E smooth up to the boundary define

Unu = (1− η)u + Ûn(ηu).

It is clear that Unu is smooth up to the boundary. Notice also that there exists a constant
C > 0 independent of n such that

‖Unu‖2
L ≤ C‖u‖L2

for any section u smooth up to the boundary. Thus Un extends to a bounded operator
L2(E) → L2(E). Using (2.2) we deduce that

‖(Un − 1)‖L2,L2 → 0.

We want to show that Un induces a bounded operator H1(E) → H1(E) and then estimate
the norm of (Un − 1) as a bounded operator H1 → H1.

First of all observe that the elliptic estimates for D0 imply that there exists a positive
constant C such that if u is smooth up to the boundary then

C−1‖u‖H1([0,1]×N) ≤ ‖∂tu‖L2([0,1]×N) + ‖D0u‖L2([0,1]×N) ≤ C‖u‖H1([0,1]×N)

Observe that for any section u smooth up to the boundary we have

‖Unu− u‖H1(M) = ‖(1− η)u + Ûn(ηu)− u‖H1(M)

= ‖Ûn(ηu)− ηu‖H1(M) = ‖Ûn(ηu)− (ηu)‖H1([0,1]×N)

≤ C
(
‖Ûn(ηu)− (ηu)‖L2([0,1]×N) + ‖∂tÛn(ηu)− ∂t(ηu)‖L2([0,1]×N)

+‖D0Ûn(ηu)−D0(ηu)‖L2([0,1]×N)

) (2.4)

Using (2.2) we deduce

‖Ûn(ηu)− (ηu)‖L2([0,1]×N) ≤ cn‖u‖L2(M), cn → 0.

To estimate the second term in (2.4) notice first that [∂t, Ûn] = 0 so that we have

‖∂tÛn(ηu)− ∂t(ηu)‖L2([0,1]×N) = ‖Ûn∂t(ηu)− ∂t(ηu)‖L2([0,1]×N)
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≤ cn‖∂tu‖L2([0,1]×N) ≤ cn‖u‖H1(M), cn → 0.

The estimate of the third term in (2.4) requires a bit more work. Observe that

D0Ûn(ηu)−D0(ηu) = [D0, Ûn](ηu) + Ûn(D0ηu)−D0(ηu)

= η
(
[D0, Ûn]u + Ûn(D0u)−D0u

)

so that

‖D0Ûn(ηu)−D0(ηu)‖L2([0,1]×N) ≤ ‖ [D0, Ûn]u‖L2([0,1]×N) + ‖Ûn(D0u)−D0u‖L2([0,1]×N)

(use (2.2))

≤ cn(‖u‖L2([0,1]×N) + ‖D0u‖L2([0,1]×N)) ≤ c′n‖u‖H1(M), c′n → 0.

We have thus found a sequence of positive numbers cn → 0 such that

‖Unu− u‖H1(M) ≤ cn‖u‖H1(M)

for every section u smooth up to the boundary. This shows that Un induces a bounded
operator H1(M) → H1(M) and moreover,

‖Un − 1‖H1,H1 ≤ cn → 0.

One can prove a similar statement concerning U∗
n. Clearly Un is invertible being so close to

1. Since kerPn = Û∗
n(kerP ) we deduce that Dom(An) = U∗

n Dom(A). Lemma 2.2 is proved.
ut

3. Classifying spaces for K-theory

For the sake of clarity, we will consider only a special case, that of the functor KO1. To
discuss the other functors KOn one should use the bigraded Karoubi functors KOp,q as we
did in [9]. The proof is only notationally more complicate.

We will use the following notation.
• F ⊂ S is the subspace of unbounded Fredholm selfadjoint operators.
• BF ⊂ BS is the subspace of bounded, Fredholm selfadjoint operators.

The space BF has three connected components. Two of them BF±, are contractible
while the third, BF0 is a classifying space for KO1 (see [1, 3, 5]) and consists of bounded
Fredholm selfadjoint operators such that the essential spectrum contains both positive and
negative elements. We set

F0 := Ψ−1(BF0)

Note that BF0 ⊂ F0. Set

[BF0] =
{

T ∈ BF0; ‖T‖ ≤ 1
}
.

Proposition 3.1. The inclusion map ([BF0], ‖ • ‖) ↪→ (F0, ρ) is a homotopy equivalence,
so that (F0, ρ) is a classifying space for KO1.

Proof. We follow the strategy in the proof of [9, Prop. 5.1]. Corollary 1.5 shows that the
identity map (BF, ‖ • ‖) → (BF, ρ) is a homeomorphism. In particular, the map

(BF0, ‖ • ‖) ↪→ (F0, ρ)

is continuous.
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For s ∈ (0, 1] define ws : R→ R by setting

ws(λ) =





λ |λ| ≤ s−1

s−1 λ ≥ s−1

−s−1 λ ≤ −s−1

Also, we set
w0 : R→ R, w0(λ) = λ, ∀λ.

Observe that the resulting map

W : [0, 1]× R→ R, (s, λ) 7→ ws(λ)

is continuous. Define
Φs : F → F, A 7→ ws(A).

Using Proposition 1.4 we deduce that the map (F, ρ) → (BF, ‖ • ‖), A 7→ Φ1(A), is continu-
ous, and defines a retraction of F onto the subspace [BF] of bounded Fredholm, selfadjoint
operators of norm ≤ 1, and a retraction of F0 onto [BF0].

We will prove that Φ1 is a homotopy inverse for i. We already know that Φ1 ◦ i = 1[BF0],
and we want to prove that i◦Φ1 is homotopic to 1F0 = Φ0. This will be the case if we show
that the map

Φ : [0, 1]× (F, ρ) → (F, ρ), (s,A) 7→ Φs(A)
is continuous.

The only problematic issue arises at s = 0. Let A ∈ F. Suppose we have sequences
Bn ∈ F and sn ∈ (0, 1] such that

lim
n→∞ sn = 0 = lim

n→∞ ρ(A,Bn) = 0.

We have
ρ(A, Φsn(Bn) ) ≤ ρ(A,Bn) + ρ(Bn,Φsn(Bn))

so it suffices to prove that
lim
n

ρ(Bn, Φsn(Bn)) = 0.

We have
ρ(Bn,Φsn(Bn)) = ‖r(Bn)− r ◦ wsn(Bn)‖, r(λ) = λ(1 + λ2)−1/2.

We set
Tn := r(Bn), T := r(A).

From [2, Prop. 1.5] we deduce that Bn = r−1(Tn), where r−1 : (−1, 1) → R is given by
t 7→ t(1− t2)−1/2. Arguing as in the proof of [4, Thm. XII.2.9(c)] we deduce that for every
A ∈ S we have

r ◦ ws(A) = r ◦ ws ◦ r−1( r(A) ), ∀s ∈ (0, 1].
Hence

r(Bn)− r ◦ ws(Bn) = Tn − r ◦ ws ◦ r−1(Tn).
Note that

us(t) := r ◦ ws ◦ r−1(t) =





t |t| ≤ (1 + s2)−1/2

(1 + s2)−1/2 t > (1 + s2))−1/2

−(1 + s2)−1/2 t < −(1 + s2)−1/2.

As explained in [2], the image of the Riesz map Ψ : F → BF consists of operators S ∈ BF

of norm ‖S‖ ≤ 1 such that S ± 1 is injective.
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We need to prove that if Tn → T in Ψ(F), then

lim
n
‖Tn − usn(Tn)‖ = 0.

Observe that

t− us(t) =





0 |t| ≤ (1 + s2)−1/2

t− (1 + s2)−1/2 t > (1 + s2))−1/2

t + (1 + s2)−1/2 t < −(1 + s2)−1/2.

so that

sup
|t|≤1

|t− us(t)| ≤ 1− (1 + s2)−1/2 =
(1 + s2)1/2 − 1

(1 + s2)1/2
=

s2

((1 + s2)1/2 − 1)(1 + s2)1/2
≤ s2

2
.

Hence

‖Tn − usn(Tn)‖ ≤ s2
n

2
→ 0 as sn → 0. ut

Remark 3.2. In the proof of [9, Prop. 5.1] we erroneously claimed that the map

F 3 B 7→ ws(B) ∈ (BF, ‖ • ‖),
is continuous with respect to the gap topology on F. Proposition 1.4 and Remark 1.6
shows that this is not the case, but we can restore the continuity by working with the Riesz
topology on F. ut

Observe that H ⊕H is a symplectic space with complex structure

J =
[

0 −1H

1H 0

]

and Λ0 := H ⊕ 0 is a Lagrangian subspace. Define FL0 the set of Lagrangian subspaces
Λ ⊂ H⊕H such that (Λ0, Λ) is a Fredholm pair. We topologize FL0 using the gap distance
δ. The space (FL0, δ) is also a classifying space for KO1 (see [7]).

There is a natural 1− 1 map

Γ : F0 → FL0, A 7→ ΓA.

According to Lemma 1.2 the map Γ : (F0, ρ) → (FL0, δ) is continuous.

Theorem 3.3. The map
Γ : (F0, ρ) → (FL0, δ)

is a weak homotopy equivalence.

Proof. Fix A0 ∈ F0. We have to show that for every n > 0 the induced map

Γ∗ : πn(F0, A0) → πn(FL0, ΓA0)

is an isomorphism. Observe first that, according to Bott periodicity,

πn(FL0,ΓA0) ∈ G :=
{

0,Z,Z2

}
.

The groups in the family G have a remarkable property. If G ∈ G and ϕ : G → G is a
surjective morphism then ϕ is an isomorphism.

In [9, §5.3], using the symplectic reduction morphism it is shown that the morphism Γ∗
is surjective provided the (general) Floer families are ρ-continuous. This continuity was
established in Proposition 2.1. Theorem 3.3 is proved. ut
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Remark 3.4. Note a curious thing. It is clear that the space FL0 contains subspaces of
H ⊕H which are note the graphs of any linear operator, e.g, 0 ⊕H. On the other hand,
FL0, contains subspaces which are graphs of operators of operators T ∈ F\F0. For example,
the diagonal subspace in H⊕H is the graph of the identity map H → H which is Fredholm,
but not in F0.
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