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ABSTRACT. We survey the computation of the virtual dimensions of finite en-
ergy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations.
We then present some implications of these computations to 3-dimensional
topology.

Introduction

The discovery of the Seiberg-Witten equations in the fall of 1994 sent shock-
waves in the low dimensional topology community. Besides simplifying many of
the proofs relying on the Yang-Mills equations, the new theory opened previously
unsuspected avenues.

From an analytical point of view, the Seiberg-Witten theory is much nicer than
the Yang-Mills theory for various reasons: the gauge group of the new theory is
abelian and the new equations have a built-in positivity which ensures the com-
pactness of the space of gauge equivalence classes of its solutions.

From a geometric point of view, the Seiberg-Witten equations are more sensitive
to the background geometry. This sensitivity is plainly manifested in the case of
Kéihler surfaces when one can explicitly list all solutions of these equations and
derive highly nontrivial topological conclusions (see for example [3, 24]).

The Seiberg-Witten invariants are certain clever counts of solutions of the
Seiberg-Witten equations. A very useful tool of investigation, pioneered in the
study of Yang-Mills equations, is by cutting and pasting. This technique can be
generically described as follows.
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F1GURE 1. Stretching the neck.

Suppose M is closed, compact, oriented 4-manifold and N < M is an oriented
hypersurface dividing M into two manifolds with boundary

M = M; Ux Ms.
Denote U a tubular neighborhood of N — M
U=>[-2,2]x N

and fix a metric § on M\ ([—1.5,1.5] x N) and a metric g on N. For each L >> 0 we
can equip M with a metric gz which agrees with § on M \ U and such that along
[-1,1] x N we have

g =L%dt> +¢
where ¢ denotes the longitudinal coordinate. Roughly speaking, we are stretching
the tubular neighborhood until it becomes very, very long (see Figure 1).

The Seiberg-Witten equations depend on the metric gz, and, as L — oo, their
solutions split into several parts corresponding to the manifolds with cylindrical
ends in Figure 2. This is the cutting part of the program. The pasting part
investigates how can one recover the original solutions from the “disintegrated”
ones.

The solutions on these manifolds with cylindrical ends have special behavior
near oo, encoded by a finite energy condition. Before we carry out the cut-and-
paste program for computing the Seiberg-Witten invariants we need to have a
quite detailed understanding of the spaces of finite energy solutions. This is a
very involved issue but fortunately, all the ideas required by such an endeavor
were already developed in Yang-Mills theory by J. Morgan, T. Mrowka and D.
Ruberman, [15].

The asymptotic behavior of these solutions is a key issue. The solutions have
asymptotic limits but, for topological applications, we have to be much more ezxplicit
than that. This problem is made more complicated by the fact that the nature of
these asymptotic limits is extremely sensitive to the geometry of IV, a feature which
was not present in the Yang-Mills case.
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F1GURE 2. Manifolds with cylindrical ends.

Once the structure of the asymptotic limit set is settled, we can return to
the original issue: what is the structure of the set of finite energy solutions. In
particular we need to answer the following question

What is the virtual dimension of this space of solutions?

Recall that the virtual dimension is by definition the index of the linearization of
the Seiberg-Witten equations on a manifold with cylindrical ends. The computation
of this dimension is essentially an Atiyah-Patodi-Singer type problem with an added
requirement: the results have to be very explicit.

In general the computation of an Atiyah-Patodi-Singer index can be a very
demanding task even if the operators and the manifolds involved are reasonably
nice. In the present case the difficulties are amplified by the nature of the asymptotic
limits discussed above.

In the present paper we will outline the main steps involved in the computation
of such dimension in some special, yet sufficiently large class of examples. The
very explicit nature of our answers will allow us to derive several very surprising
topological conclusions.

The only topological restriction we impose to our problem is that N should be
a Seifert fibration, i.e. a 3-manifold equipped with a S'-action which has only finite
stabilizers. The reader could think of these manifolds as circle bundles over singular
Riemann surfaces. As observed by W. Thurston, these manifolds are equipped with
nice Riemann metrics, compatible in a very nice way with the fibration structure.

We gradually get rid of excess informational baggage by adiabatically collapsing
these Seifert fibration onto their bases. This means that we deform the metric on
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N so that the fibers become shorter and shorter. In the adiabatic limit all the
irrelevant information disappears and we are left with enough information to be
able to perform all the relevant computations.

The paper is divided in five parts. The first section is a fast paced survey of the
technology developed in [15]. In particular, we formulate more concretely which
are the main obstacles we need to overcome. Section 2 is a topological interlude in
which we describe some fundamental topological and geometric features of Seifert
manifolds. In particular, in this section we introduce the adiabatic Dirac operators
and describe their eta invariants in terms of some clagsical arithmetic quantities
(Dedekind sums). These Dirac operators arise naturally in the above adiabatic
limit, whence their name. The third section is a survey of the outcome of the
adiabatic analysis of [17]. More precisely, in this section we present a very detailed
and explicit description of the set of all possible asymptotic limits. The forth section
contains the virtual dimension formula. We collected the topological applications
in a fifth section.
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1. Finite energy monopoles on 4-manifolds with cylindrical ends

The geometric background is a compact, oriented, Riemann 4-manifold (M, §)
with boundary N := M such that a tubular neighborhood U of N is isometric to
a cylinder

(Uag) Zisom ((_170] x Nadt2 +g)a 9= glN
where dt denotes the outer co-normal. We can form a non-compact manifold M,
by attaching the semi-infinite cylinder [0, 00) x N.

Fix a connection! V on TM compatible with g. We do not require that V is
the Levi-Civita connection (henceforth distinguished by the symbol v ) but, for
technical reasons, we need to assume the torsion of V is traceless and that along
the neck U it has the form V = dt ® 8, + V,V = v |~. Both § and V admit
natural extensions to M.

Next, fix a spin® structure & on M, and denote by S, = Sj@S; the associated
Zo-graded bundle of complex spinors. Once we choose a hermitian connection A
on det(5) := det Sj the connection V functorially induces a connection V4 on So.
V4 is compatible with the Zg-grading and the Clifford multiplication i.e.

(1.1) Vi @(a)y)) = &(Vxa)d + (@) Vi

1In practice V is chosen so that it is compatible with an additional geometric structure on
M.
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VX € Vect (My), a € O (M), ¥ € T'(S,) where & denotes the Clifford multipli-
cation by a differential form. We can now form the Dirac operator 4 : T'(S}) —

~

I'(S,) defined as the composition
r$H B 1T M) ©§7) 3 T(E;).

A 4-dimensional (§,V)-monopole is a pair C := (¢, A) where ¢ € I'(§}) and the
hermitian connection A on det(&) satisfy the differential equations

Py = 0
12) {é(};) = o)

Above, q(dA}) denotes the traceless, symmetric endomorphism of Sj described by
the correspondence

~ ~ PO 1 ~qa ~
L§%)3 6= (b 9)0 - 51614 € TE,).
The monopole is said to have finite energy if
| at [ 19850P + lis Fa@Pds, < oo
0 N

where ip, denotes the contraction with 8; and for any object O defined over [0,00) x
N we denoted by O(#) its restriction to {t} x N. Observe that these equations are
invariant under the action of the infinite dimensional group &y := C® (M, S?).

Using the techniques of [15] one can show that if C is a finite energy 4-
dimensional monopole then modulo &, the restrictions C(t) converge as t — 00
to an asymptotic limit Co 1= (Yoo, Ao ). Yoo IS a section of S, := Sj |v and A
is a hermitian connection on det(o) := detS,. The bundle S, can be identified
with the bundle of complex spinors associated to the spin® structure o := & |n
on N. We denote by ¢ the Clifford multiplication on this bundle. The connection
V on T'N and a hermitian connection A on det(o) induce in a natural fashion a
connection V4 on S, compatible as in (1.1) with the Clifford multiplication. In
turn, V4 induces a Dirac operator? D4 := co V4. The asymptotic limit (¢, Aco)
is a 3-dimensional monopole i.e. satisfies the differential equations

Da oo = 0
1.3 =
(13) el 2
The above equations are invariant under the action of the infinite dimensional group
&y = C®(N,SY).
The 3-dimensional Seiberg-Witten equations (1.3) have a variational nature.
Its solutions are critical points of the energy functional

£ ) =5 [ (A=A AFa+Fag) + 3 [ (Dati)av,

where Ay is a fixed reference connection. Along a cylinder [a,b] x N the 4-
dimensional Seiberg-Witten equations are gauge equivalent with a gradient flow
equation

C=VEQ), C=Ct)= (1), A(t)).

2The fact that the torsion of V is traceless implies that D4 is symmetric.
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This variational aspect is essentially responsible for the existence of asymptotic
limits. The finite energy monopoles on a cylinder R x N are called tunnelings. We
see that the tunnelings are gradient flow trajectories which connect critical points.
The information carried by tunnelings can be organized in a very elegant fashion,
leading to the Seiberg-Witten-Floer (co)homology; see [13]. The knowledge of the
virtual dimensions of the spaces of tunnelings is an important step in deciphering
the structure of the Seiberg-Witten-Floer homology.

Denote by Mty (6) the space of finite energy 4-dimensional monopoles modulo
the & p-action. My (o) is defined similarly, using the equations (1.3) instead. The
space My (o) is a compact metric space and we denote by MY, i = 1,2,... its
connected components.

The correspondence € — Co, defines a map

LIM : D13 (6) = My (o).

Set 94, (8) := LIM 1 (Mfy,).

As explained in the introduction, surgery problems involving the Seiberg-Witten
invariants require a detailed understanding of the local structure of the spaces .
This local structure is easier to describe when the component 94, satisfies an ad-
ditional condition

Additional assumption The component MY, is non-degenerate.

To explain the exact meaning of this assumption we need to introduce some
notations. For every pair C = (¢, 4) € My we denote by d(C) the dimension of
the stabilizer® of C with respect to the action of ®p. Also we define the stabilized
Hessian at C as the following formally self-adjoint, first order, partial differential
operator

Hc : T(Se ®i(Al + AOT*N) — T(S, @ i(A! + A%)T*N)

[ D4y + c(ia)p —ife
Hc | ia | = —ixda+idf + q(o,7)
if id*a +  iJm(p, )

where §(¢, ¢) = % li=o q(¢+1t1p). Also, we will denote by 5%?: the operator obtained
by setting ¢ = 0 in the above description of $c. Observe that the difference
Pc := 5%c - 5%?: is a zeroth order operator.

The component IMM%; is non-degenerate if MY, is a smooth manifold and for
every C € 9t we have the equality

dim ker $¢ = dim 9% + d(C).

Given the nondegeneracy assumption, the techniques of [15] imply that, if
nonempty, the moduli space 9§, () is generically a smooth manifold. Denote by
d(6,1) its virtual (expected) dimension. This dimension can be expressed in terms
of d; := dim 91, and the Atiyah-Patodi-Singer index (over R) of a certain first
order operator on M

O : TS, ®IA'T*M) - T(S; @ i(A2 + AO)T*M), C=(¢,4) € M, (5)

3This stabilizer is either the trivial group or S' so that d(C) € {0,1}.
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The operator @é can be written as a sum O = Né + Te. N(: is the direct sum of
the operators

DTS = T1(S;) and ASD := (dy +d*) : iQY(M) = i(Q2 + QO)(M).
(Observe that ASD is the anti-selfduality operator.) 7 is a zeroth order operator
which along the neck U has the form —G o Pc, C = LIM(C) = (¢, 4) € M, and

G is the bundle morphism obtained by evaluating the symbol of N(: at dt.
More precisely, we have (see [18] and [19])

(1.4) d(6,i) =d; +iaps(Op).
A simple excision trick shows that (see [18])
iaps(0g) = iaps(Ng) — SF(H2 — Hc)

where by SF(A — B) we denote the spectral flow of the path ¢ — (1 — t)A + tB,
t € [0,1]. Hence

d(6,1) = iaps(Ng) — SF(H2 = Hic) + di
= 2iaps(P ;) +iaps(ASD) — SF(H2 = Hic) + d;

where i4ps () i) denotes the Atiyah-Patodi-Singer index over C of D i
This is still not the most convenient description because when trying to apply
the Atiyah-Patodi-Singer theorem to the operator J§ ; we are faced with another

(1.5)

problem. Namely, the local index density of fD 4 is difficult to compute since this
spin® Dirac operator does not originate from the Levi-Civita connection. It was
constructed starting with a possible non-symmetric connection V. To fix this prob-
lem denote by P 4 the Dirac operator I'(S}) — I(S;) induced by the Levi-Civita
conmection V¢ and the hermitian connection A. Using again an excision trick we

deduce
L6 d(5,i) = 2iaps@ ;) +iaps(ASD) —2SF(® ; —» D ;)
' —SF(H2 = Hc) + d;.

The local index density of ﬁ) iis

~

pair(A) =
and the local density of ASD is

1 - 1 -
Pasd = _ie(vg) - gpl (Vg)

(V9) + 1c1 (A)?

TPt 8

where e(@g ) denotes the Euler form of T'M constructed starting from V¢ using the
Chern-Weil correspondence. We then have

iaps(ASD) = /M Pasd — %(bo(N) + b1 (N) — Nsign (9))

where 7554, (g) denotes the eta invariant of the odd signature operator on (N, g).
From the GauB3-Bonnet-Chern formula (on manifolds with boundary) we de-
duce

| et = xtan)
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and the Atiyah-Patodi-Singer index theorem implies ([1])

~

1
§/ D1 (V) = Nsign(g) = 7(M) := the signature of M.
M

Hence
' 1 bo(N) + by (N
iaps(ASD) = —3 (x(M) + (M) ~ %
To compute the Atiyah-Patodi-Singer index of @ ; we need to introduce the Dirac

operator D 4 on S, — N induced by the Levi-Civita connection V9 and A. Then
we have

(dimckerD4 +n(Da))

N | =

iaps@ ;) = /M pair (A) —

1 - 1
= —/ c1(A)? — Z(dimgker® 4 +n(Da))
8 )y 2

_% (/M %pl (@g) - nsign(g)) - %nsign(g)
(F(g,A) :=4n(Da) + Nsign(9))
_ %/M er(A)? — %T(M) - é(4dimc ker® 4 + F(g, A)).

Putting all the above together we deduce

1 . 1 1
d(6,1) = 1 /M c1(A)? - Z(QX +37) — ZF(g,A) —dimcker® 4

—2SF(®4 — D4) — SF(H2 = Hc) + d;

Thus, the computation of these virtual dimensions in a specific case depends on
our ability of solving the following problems.

(1.7)

Problem 1 Describe the moduli spaces Sﬁﬁv as explicitly as possible. In particular,
describe which connected components are non-degenerate.

Problem 2 Compute the quantities F(g, A), dimcker® 4 and SF(D4 — Da) for
every C = (¢, A) € M.

Problem 3 Compute SF(%?; — Hc), VC € M.

The main difficulty in solving each of these problems is their extreme sensitivity
upon the geometry (N, g). In the remaining part of this survey we will describe one
quite general instance when all of these problems can be solved explicitly, leading
to interesting topological consequences. More precisely we will consider the case
when N is a Seifert fibered manifold.

2. Seifert manifolds

The Seifert manifold generalize the concept of circle bundle over a Riemann
surface. They can be regarded as circle bundle over 2-dimensional orbifolds. For a
detailed presentation of this concept we refer to [20] and the references therein.

A compact oriented 2-orbifold is described by a smooth compact surface X
together with an additional finite collection of singularity data
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{(pi,ai) €S X Zy; i=1,...,m}.

The points p; are assumed to be distinct and possessing neighborhoods homeomor-
phic to a cyclic quotient D/Z,,;, a; > 1 where

D:={]z| <1} CC.

The underlying topological space of this orbifold , i.e. the surface ¥ with no refer-
ence to the singularity data, is called the support of the orbifold and will be denoted
by |X].

A very constructive method of defining the Seifert fibration is via the concept
of line V-bundle. Away from the singular points p;, a line V-bundle L — ¥ is a
genuine complex line bundle. Near p; the line bundle is regarded as the quotient of
a Zq,-equivariant line bundle L — D. These equivariant line bundles are described
by an integer §; € [1, ;) where 3; describes the action of Z,, in the fiber of L over
0. Each line V-bundle has a degree deg(L) € Q satisfying

deg(L) — Z Bi €Z.

a;

When L is the quotient of a smooth line bundle L — ¥ over a smooth Riemann
surface X, equivariant under the action of a finite group G, then

1
= %a
The smooth line bundle over |X| of degree deg(L) — ", g— is called the desingular-
ization of L and is denoted by |L|.

deg(L) deg(L).

Each 2-orbifold ¥ with singularity data & = (au, ... ,a,,) has a canonical line
V-bundle Ky, with singularity data (a; — 1,... ,a,, — 1) and degree
1
degKy =29-2-) (1- a—i)

i
where g denotes the genus of |X|. Observe that |[Kx| 2= Kx.
As in the smooth case one can define the tensor product of line V-bundles and
we have

deg(L; ® Ly) = deg(Lq) + deg(Ls).

We denote by Pict(X) the set of isomorphism classes of line V-bundles over X.
Then Pict(E) is an abelian group with respect to the tensor product. We have the
following more precise result.

PROPOSITION 2.1. Define
T=74:Pic"(Z) 2 Q@ Zp, @ @ Ly,
by

L(8) — (deg L,51( mod a1),...,58,( mod ay))
and 6 : QO Zy, &--- D Zy, by

(¢, 1( mod a1),...,Bn( modan))»—><c—2%>( mod Z).
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Then
0o Pic"(S) 5 QO Zy, @ B Lo, 2 QZ =0
is a short exact sequence of abelian groups.

The line bundle with singularity data 5 = (B1,...,08m) and rational degree ¢
will be denoted by L(c, §).

A Seifert manifold is by definition the unit sphere V-bundle of a complex line
V-bundle over a 2-orbifold. More precisely, consider the 2-orbifold ¥(g, @) and the
line V-bundle

L(c,f) » %
such that if 3; # 0 then g.c.d.(8;,;) = 1. The unit sphere bundle S(L) of L is a

-

Seifert manifold we will denote by N(g; b; &, 8) where b = deg|L|. The collection
(g:b; @, B) is known as the (normalized) Seifert invariant. ¥ is known as the base
of N. Observe that N is equipped with an infinitesimally free S'-action. One can
show (see [20]) that any 3-manifold endowed with such an action can be presented
as the S'-bundle of a line V-bundle.

The basic topological invariants of a Seifert manifold are known (see [10]). We
include only one fact relevant in the sequel.

-,

THEOREM 2.2. If N = N(g;b,d,3)) (m singular points) then
H?*(N,Z)= (Pic"(2)/Z[L]) ® Z*.
Moreover, the projection m : N — X pulls back line V-bundles on X to genuine

smooth line bundles on N and the torsion subgroup Pic’/Z[L) of H?(N,Z) can be
identified with the image of the morphism

Pic’(%) LI {Smooth line bundles on N} & H?*(N,Z).

DEFINITION 2.3. Let N 5 ¥ denote a Seifert fibration over a 2-orbifold ¥
such that £ = deg(N) # 0. The canonical representative of a line bundle L -
N € 7*(Pic*(X)) is the V-line bundle L = L(c;~y) uniquely determined by the
requirements

- __degKy —2c

7*(L) = L and p(L): 50 € [0,1).

In the sequel we fix a 2-orbifold ¥ = X(g, m, &, ¥) of genus g and with singularity
data {(z1,01),... ,(m,Zm)} and a line V-bundle

such that 0 < 8; < a; and g.cd.(a;,8;) = 1,Vi=1,... ,m. £is the rational degree
of Ly. Denote by N the associated Seifert manifold N = S(Iy). We orient it as
the boundary of a complex manifold following the convention

outer normal A or (boundary) = or (manifold).

As explained in [23], the manifold N admits a locally homogeneous Riemann
metric gy. The natural S' action preserves such a metric. We denote by ¢ the
infinitesimal generator of this action. { is a nowhere vanishing Killing vector field.
This metric induces V-metric g, on the base which we normalize so that vol () = 7.
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g= has constant sectional curvature. By eventually rescaling the metric gy in the
¢ direction we can assume |{|;, = 1. Now denote by ¢ the global angular form
defined as the gn-dual of (. As shown in [16] and [17] we have a fundamental
identity

(2.1) dp =—-20x .

Here we want to stress a subtle point. The above equality describes a spe-
cial type of interaction between the Sl-action and the given (eventually rescaled)
Thurston metric. For example, it implies that the orbits of the S'-action are
geodesics. A given 3-manifold may have different Seifert structures but only one
type of locally homogeneous metrics. Some of Seifert structures may not interact
with the metric as required by (2.1) but in [17] we showed that at least one of
these Seifert structures interacts with the metric as above. We will call these struc-
tures geometric Seifert structures. For example, a lens space admits infinitely many
Seifert structures but, as shown in [21], only two (1) of them are geometric. In
the sequel we will deal exclusively with geometric Seifert structures.

Denote by CI(T*N) the bundle of Clifford algebras generated by T*N, gn).
The bundle A*T™*N is naturally a bundle of CI(T*N) modules (see [2]) and we
denote by

c:Cl(T*N) = End (A*T*N)
the corresponding Clifford multiplication. The symbol map
g:CI(T*N) - AT*N,u c(u) -1

is a bundle isomorphism with inverse known as the quantization map. This allows
us to define an action of AT*N on itself by

AT*N — End (A*T*N), w+~ c(o ! (w)).

For simplicity we continue to denote this map with ¢. We call the resulting opera-
tion the Clifford multiplication by a form.

Let (p)* denote the orthogonal complement of the real line sub-bundle of
T*N spanned by ¢. As shown in [17] the bundle (p)+ is c(*p)-invariant. The
bundle (@)1 equipped with the (almost) complex structure —c(*¢) will be called
the canonical line bundle of N and will be denoted by £ We have the isomorphism

R W*KE.

In [17], §2.2 we showed that £ determines a canonical spin® structure on N with
associated bundle of spinors

(2.2) Sean 2RO C

where € denotes generically the trivial complex line bundle. This allows us to
identify the space Spin®(NN) of spin® structures on N with the topological Picard
group, Pic’(N). The bundle of spinors corresponding to the line bundle L — N is

(2.3) SL=Scan®L=LR A '@ L.
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As above, we get a Clifford multiplication map ¢ : A*T*N — End (Sy). We “orient”
it using the conventions of [4]

c(dvy) = —id.

On T'N there are two natural gy-compatible connections. The first one is the Levi-
Civita connection V€. The other connection V°, called the adiabatic connection
in [17] and [18] is described as follows. Using the decomposition

T*N = () @ ()" = (p) @7 TS

we define V™ as the direct sum of the trivial connection on ¢ and the pullback of
the Levi-Civita connection of T'Y on ().

The line bundle £~! comes with a natural hermitian connection induced by
pullback from the Levi-Civita connection on the base. Thus a connection on
detS; = L2 ® &' can be specified by indicating a connection on L. Fix such
a connection A. Using the connection V¢ we obtain a Dirac operator D4 on Sy,
while the adiabatic connection V* induces a different Dirac operator, D 4. We will
call D4 the adiabatic Dirac operator. These two Dirac operators are related by the

equality

£
D4 can be decomposed as
Dy=27Z4+Ty

where, with respect to the decomposition (2.3), the operators Z and T have the
matrix descriptions

ivd 0
— ¢
(2.5) Zg= [ 0 -ivA ]
and
[ 0 *da

We refer to [17] for the exact definitions of Z and T. It suffices to say that Z
uses only derivatives along the fiber direction while T uses only derivatives along
horizontal directions. Moreover Z and T interact in an especially nice manner:

(2.7) {Z,T} =ZT+TZ=0.
The above equality is responsible for many dramatic simplifications.

To formulate our next results we must first define the notion of Dedekind-
Rademacher sum. For co-prime integers a, 3 such that a > 0 and z,y € R set

following [22]
e -5 ((-+222) ((52)

r=1
where
_f{z}-1 if zeR\Z
(@) ‘_{ 0 if ceZ
Despite their apparent complicated description these sums enjoy certain features
which make them computationally friendly; see [19] and [22] for details.
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The following results were proven in [19].

PROPOSITION 2.4. Consider a line V-bundle L = L(c,7) — X = X(9,m;d, %)
equipped with a hermitian connection A. Denote by L and resp. A the pullbacks of
L and Ato N =5().

If £ = deglly # 0 then the eta invariant np a of the Dirac operator Dz on Sy
is given by

(28) M= ¢~ 25(3,8%) — d(F,a:7)

where

(2.9) 25(8,d,7) = > _(8(Bi, 05 7i/ i, 0) — s(—Bi, 005 7i/ i, 0) )
i=1

= 22 S(ﬂz,azarﬁ/ﬂlao)

¢:58; =1 mod a; and

san-5 (=)

=1

PROPOSITION 2.5. Let L € 7*Pic!(X) be a line bundle on N whose first Chern
class ¢; is torsion. Denote by L = L(c,¥) — X its canonical representative and
equip L with a connection B of the form

B =By +ipy
where p = p(f/) = d—e% and By is the pullback of a constant curvature connec-
tion By on L. Denote by nr, = ni.i the eta invariant of the associated adiabatic

Dirac operator Dy on Sj.
(a) If p =0 then

e 7 = = 3 o
m =g = 25(8,4,7) - d(5,d,7)
(b) If p € (0,1) then
1 ¢
(2.10) n = 5(deg K — deg|K|)(1 = 2p) = p(1 = p) + ¢ +mp

m

Z i + 0 Zm
-2 s(ﬂiaai;,y o pa_p)_ Fp(aiaﬂi77i)-
i=1

i=1 t

where for p € (0,1) and Bg = 1 mod a we defined

Fy(a,8,7) = {22},
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We know two ways of proving Propositions 2.4 and 2.5. The first, more “bru-
tal”, method is based on the adiabatic results of Bismut-Cheeger-Dai, [4, 5, 6] and
is discussed in great detail in [18]. The second method uses the adiabatic limit in a
mild manner, but speculates in a clever way the identity (2.7). A similar idea was
employed in [4] but in our special context we can be far more explicit. For details
we refer to [18, 19]. This method allows the explicit description of the whole eta
functions of the adiabatic operators in terms of the Riemann-Hurwitz function.

By now the reader may wonder why study the above Dirac operators in the
first place. The motivation comes again from Seiberg-Witten theory.

3. Seiberg-Witten monopoles on Seifert fibrations

Suppose N is a Seifert fibration determined by the V-line bundle Ly = L(¥, /3”)

of rational degree £ # 0 over the V-surface (g, ) St < N 5 ¥ equipped with the
metric described in the previous section. As background g-compatible connection
on N we choose the adiabatic connection V*°. We want to describe the (g, V™)
monopoles on N. Recall that a monopole C = (¢, A) is said to be reducible id
d(C) > 0 or equivalently, ¢ = 0. Otherwise the monopole is called irreducible.

The (g, V*°)-monopoles were explicitly described in [16] and [17]. here are the
relevant facts.

Fact 1. If ¢; (L) is not torsion then there are no monopoles corresponding to this
spin® structure.

Assume now that ¢;(L) = & € Pic*(X)/Z[Lo) and define
. 1 1
R.={E€Pic!(X); 0< |degE — §degKg| < 5 deg Ky, E=xmod ZLy]}.

For each E € R, set v(E) = deg E — L deg Kx;. We will often identify R, with its
image in Q via v. Now set

R; ={E€R.; v(E) <0, deg|E|>0}

R ={E € Ry ; v(E) >0, deg|Kx — E| >0}
and

R.,=R_, UR}.

Fact 2. Any irreducible monopole (¢, A) is gauge equivalent to the pullback of a
pair (¢, B) where B is a connection in a V-line bundle E — S in R, and ¢ = ¢_®p_
is a section of C°(K ~'®E @ E). The connection B defines holomorphic structures
in K-! ® E and E. ¢_ is an anti-holomorphic section of K~ ® E while ¢+ is a
holomorphic section of E. Moreover, exactly one of ¢ or ¢+ is zero according to
the identity:

ar [ 19-1" = 1641") dv = u(B) #0.

Thus ¢4 = 0 iff ¥(E) > 0 and ¢_ = 0 iff ¥(E) < 0. Pairs (¢_ ® ¢, B) as above
are known as vortex pairs on ¥ corresponding to the V-line bundle E. If v(E) < 0
we say we have a holomorphic vortex on E while if v(E) > 0 we say we have an
anti-holomorphic vortex on E.
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The irreducible part (mod &y ), denoted by 99t* consists of #R,, components

m = Mr= | Men
E€R, nev(R,)

The component M, = M, ,, corresponding to a choice ¥(E) = n < 0 is diffeomor-
phic to a symmetric product of deg|E| copies of ¥. If n = v(E) > 0 the moduli
space is isomorphic to a symmetric product of deg|K — E| copies of ¥. Each
component is non-degenerate.

Fact 3. The components of the space of reducible monopoles are in an one-to-one
correspondence with R,. The component corresponding to E € R, consists of pairs
(0, A) where A is a connection of the form

A=A +ip(E)p

where Ay is the pullback of a constant curvature connection on the canonical rep-
resentative of E.

Modulo &y they form a space homeomorphic to the Jacobian J(|X|) which is
a 2g-dimensional torus. If p(E) # 0 or g = 0 the associated reducible component
is non-degenerate.

We see that the Dirac operators discussed in the previous section are precisely
those arising when describing the (g, V°°)-monopoles.

4. Virtual dimensions

We can now explain how to solve Problem1,2,3 in the special case when N
is a Seifert manifold equipped with the metric g, and the background connection
is the adiabatic connection V*°. Observe first that the solution to Problem 1 is
contained in the previous section.

Problem 2 requires some more work. The adiabatic analysis in [17] allows one
to deduce that ker® 4 = 0 and determine explicitly the spectral flow SF(®4 —
D,4). Observe that

74
(1—)Da+tDa =9 :=D4 + o5
Invoking again the adiabatic analysis in [17] we conclude that ker®; = 0 for ¢ €
[0, 1) so the only contribution to the spectral flow arises for £ = 1 and we have

_ 1+sign(4)
B 2

The kernel of D4 can be described explicitly using the decomposition Dy = Z 4 +
Ta.

To compute the eta invariant of © 4 we will use variational formulza for the eta
invariants.

Set h; := dimg ker ®; and & := %(ht +7(D:)). We denote by [&] the image of
& in R/Z. Then [€;] depends smoothly on ¢ and we have the following result

1
& — & = SF(Dy) +/0 %dt.

SF(Dy) dimg ker D 4.
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The continuous variation %[ft] is a local quantity. More precisely using Thm.
1.13.2 in [12] we deduce that

dige] ¢ 9

=——a(®
dt 27 2(Dt)
where for every u € [0,1] and j > 0 the density a;(D?) is determined from the heat
kernel asymptotics
Tr(exp(—t(D2) ~ Y _ a;(@2)I=3/2, ¢ - 0.
j20
The term ag is explicitly described in [12] (watch out the curvature conventions
there) and, after some elementary manipulations we conclude

W s [ ey,
N

dt 1672 6

The scalar curvature s(g) is explicitly computed in [17] and the end result is

tdlg] , £
/0 o = X

where x := —deg K. Thus the eta invariant of ® 4 is explicitly computable. The
eta invariant 7s;45, (g9) was computed in [21]. This solves Problem 2.

Problem 3 is analytically the most complicated one. The main reason is that
the eigenvalues changing signs in the family (1 —t)s%?: +t$c do so in a non-transverse
manner and detecting them requires a delicate perturbation analysis ¢ la [8]. For
details we refer to [18].

REMARK 4.1. The virtual dimension problem was solved by entirely different
methods in [16] in the special case when Mo, = Rx N. Although their final formulae
look quite different from ours, numerical experimentations show perfect agreement.

5. Applications

The above computations have nontrivial applications to low dimensional topol-
ogy. For the reader’s convenience we include here a brief description of the Froyshov
invariant of a rational homology sphere. For more details we refer to the original
source, [9].

Suppose N is rational homology sphere equipped with a Riemann metric g and
o is a spin® structure on N. Denote by S, the bundle of complex spinors associated
to o and set det 0 = det S,. The metric g is said to be good iff the following hold.

¢ The irreducible solutions of SW (g, o) are nondegenerate for all o.

o If § = (v» =0, A,) is the reducible solution of SW (g, o) then ker ® 4, = 0 where
D 4, denotes the Dirac operator on S, coupled with the flat connection A, on det o.
o If nonempty, the spaces of gradient flow lines (of the 3-dimensional Seiberg-Witten
energy functional) which connect irreducible solutions form smooth moduli spaces
of the correct dimension.

For any irreducible solution a of SW(g,s) denote by i(c,#) the virtual di-
mension of the space of tunnelings (= connecting gradient flow lines) from a to
. Define m = m(g, o) as the smallest nonnegative integer such that there are no
tunnelings a — 8 with i(a,6) = 2m + 1. Now set

FI'OY(Na g, U) = Sm(gaa) + 477(9,40) + nsign(g)
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where 7445, (g) denotes the eta invariant of the odd-signature operator on N deter-
mined by the metric g. Observe that 49(Da,) + Nsign(g) is precisely the quantity
F(g, A) of Problem 2.
In [9] it was shown the quantity
Froy(N,o) := inf{Froy(N, g,0); g is good}
is finite. Now define the Froyshov invariant of N by
Froy(N) := maxFroy (N, o).
g

To explain the relevance of this invariant in topology we need to introduce another,
arithmetic invariant.

Consider a negative definite integer quadratic form ¢ defined on a lattice A.
Set A' := Hom(A,Z). The quadratic form induces a morphism

Ii:A— A

and since ¢ is nondegenerate the sublattice I,(A) has finite index d, in A¥. ¢ induces
a rational quadratic form ¢' on A} defined by the equality

&, &) = %(51 » I (6462))
where (?, ?) : A¥ x A = Z denotes the natural pairing. A vector ¢ € At is called
characteristic if
(£, z) = g(z,x) mod 2, V€ A.
We define the Elkies invariant of ¢ by the equality
O(q) := rank(q) + max{q*(¢, £); ¢ characteristic vector of ¢}
Note that if ¢ is an even, negative definite form then
(5.1) ©(q) = rank(q)

since in this case £ = 0 is a characteristic vector. A result of Elkies ([7]) states that
if ¢ is a negative definite, unimodular quadratic form then ©(q) > 0 with equality
if and only if q is diagonal.

THEOREM 5.1. (Froyshov, [9]) If X is a smooth, oriented, negative definite
4-manifold bounding the rational homology sphere N then
O(gx) < Froy(N)

where qx denotes the intersection form of X. In particular, if N is an integral
homology sphere and Froy(N) < 0, then qx must be diagonal.

A large source of examples of homology spheres is the class of Brieskorn spheres.
More precisely, for every vector @ = (a1, a2, a3) € Zi with mutually coprime entries
define

z@) ={d)_ 2 =0} cC.

The Brieskorn sphere (@) is defined as the intersection of Z(&) with the unit sphere
in C2. Tt is both a homology sphere and a Seifert manifold. For example, (2,3, 5)
is the celebrated Poincaré sphere. Froyshov has shown in [9] that

Froy(¥(2,3,5)) = 8.
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In [19] we describe an algorithm which produces upper bounds for all Froy (X(a)).
Surprisingly, in each concrete computation we have performed we could also show
by ad-hoc methods that these bounds are optimal. For example, we have shown
that

Froy(¥(2,3,6k + 1)) =0, Froy(X(2,3,6k— 1)) =8.

The second equality generalizes the earlier result of Froyshov. The first equality
implies that any negative definite manifold which bounds ¥(2, 3,6k + 1) must have
diagonalizable intersection form.

As explained in [19], one can use Donaldson’s theorem on negative definite
smooth 4-manifolds to independently verify this conclusion for all Brieskorn spheres
which bound a smooth contractible 4-manifold. 3(2,3,13) and X(2, 3, 25) are such
examples. On the other hand, the Brieskorn spheres ¥(2,3,6k + 1) with k£ odd
do not bound smooth contractible manifolds (because they have nontrivial Rohlin
invariant) so this conclusion is beyond the reach of Donaldson’s theorem.

We believe the above identities seem to be special cases of a deeper phenomenon.
Let us first mention that the isolated singularity of Z (@) can be resolved leading
to a minimal smooth complex surface R(&) which bounds ¥(&). The intersection
form gz of R(@) is negative definite and thus, by Froyshov’s theorem

(5.2) ©(qa) < Froy (X(a).

In [19] we have shown that ©(gz) > Froy (¥(&) for many infinite families of
@’s such as

ge{(2,3,6k+1),(2,4k+ 1,4k +3),(3,3k + 1,3k + 2)}.

In fact, numerical experiments indicate that in (5.2) we should have equality for
all @'s. To place this fact into some conceptual perspective we need to mention a
conjecture of N. Elkies.

Define an equivalence relation ” ~ ” on the space of unimodular negative
definite forms by setting

q1 ~ @2 <= q1 ® diagonal negative definite 2 ¢, @ diagonal negative definite.

Denote by [g] the equivalence class of ¢ and by A the set of equivalence classes of
? ~ 7. Since ©(g ® diagonal) = ©(g) we deduce that © defines a map

@ : N — Z+.
N. Elkies conjectured in [7] that for every k € Z the level sets

N* = {la; ©(d) <k}

is finite. (This is known to be true for & < 24; see [11].) Loosely speaking,
this conjecture says that © should be viewed as a measure of complexity of an
unimodular, negative definite intersection form ¢: if ©(¢) < k there can only be
finitely many choices for g. Observe that © achieves its minimum on the simplest
intersection form, the diagonal form.

Using Theorem 5.1 we can now interpret the equality ©(gz) = Froy (X(a)) by
saying that the minimal resolution R(d) is “the most complicated” negative definite
smooth 4-manifold which bounds X(a)!!!
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We believe this to be the case for arbitrary isolated singularities whose links
are homology spheres. In particular, we want to formulate the following weaker
conjecture.

Conjecture Suppose the integral homology sphere N is the link of an isolated
complex singularity whose minimal resolution has diagonalizable intersection form.
Then any negative definite 4-manifold which bounds N must have diagonalizable
intersection form.

Finally, let us mention that in [20] we have used the techniques outlined in the
present survey to investigate the invariants of lens spaces obtained from Seiberg-
Witten theory. This is a difficult subject since on a rational homology sphere all
conceivable monopole counts are metric dependent . In order to obtain genuine
topological invariants, we have to correct these counts by other metric dependent
quantities, such as eta invariants. We were pleasantly surprised to see that a re-
fined version of Meng-Taubes theorem, [14], continues to hold, at least for lens
spaces. More precisely, in [20] we showed that the Seiberg-Witten theory deter-
mines the Milnor-Reidemeister-Turaev torsion and the Casson-Walker invariant of
a lens space.

Lens spaces are also links of isolated singularities. In [20] we showed that for
many infinite families of lens spaces, their Froyshov invariants are equal to the
Elkies’ invariants of their minimal resolutions.
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