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Abstract

We provide a new look at an old result of Henri Cartan concerning the cohomology of in�nites-

imally free smooth Lie group actions.1 2

Introduction

The equivariant cohomology of a smooth manifold acted by a Lie group is a concept which
crystallized in the works of A. Borel, H. Cartan, C. Chevalley, H. Hopf, L. Koszul and A.
Weil in the late forties and early �fties.

The di�erential geometric approach to this subject was brilliantly described by Henri
Cartan in the beautiful survey [2] which continues to be the �rst source for anyone interested
in learning the basic facts of this theory. Recently, it has been the focus of intense research in
connection with many problems in di�erential geometry, representation theory and quantum
�eld theory.

A central result of [2] is Cartan's theorem which states that if a compact Lie group G
acts freely on a smooth manifold M then the G-equivariant cohomology of M (as de�ned
by Cartan) is naturally isomorphic to the DeRham cohomology of the quotient.

There are currently many proofs of this fact (e.g. [2], [4], [11]) but, in the author's view,
they all su�er of the same �sthetic \de�ciency". They involve a quite large amount of amaz-
ing combinatorics whose origin is somewhat obscure. Moreover, the resulting isomorphism
is extremely diÆcult to �gure out explicitely at cochain level.

The main goal of this paper is to provide a new, direct and more transparent proof of
the following slight generalization of Cartan's theorem.

Theorem If G is a compact Lie group acting on the smooth manifold X and N is a

closed normal subgroup of G acting freely on X then the G-equivariant cohomology of X is

naturally isomorphic with the G=N -equivariant cohomology of X=N .

11991 Mathematics Subject Classi�cation. Primary 57R91; Secondary 58A10, 58A12
2Key words and phrases: Cartan and Weil models of equivariant cohomology, algebraic connections,

Chern-Weil transgression map.
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We will actually establish a more general algebraic result (see Theorem 5.1). Moreover,
relying on a recent result of Kalkman [6] (which provides a very explicit isomorphism be-
tween the Weil model and the Cartan model of equivariant cohomology) we will o�er an
explicit description of this isomorphism (along the lines of [8]). In the course of the proof we
will provide yet another interpretation for moment map and the equivariant characteristic
classes described for example in [1] or [3]. The very simple functorial principle behind our
proof is explained in Remark 5.4. While some of the computations involved may not look
too eye pleasing, they are entirely routine and more importantly, their logical succesion is
very natural.

There are two surprising aspects of this proof which make it so attractive. They can
best be grasped by looking at a special example. Suppose P ! B is a smooth principal
G-bundle. Cartan's theorem then states that H�

G(P ), the G-equivariant cohomology of P ,
coincides with the DeRham cohomology of the base B. Naturally, one tries to construct
cochain homotopy equivalences between the complexes leading to the two cohomologies. A
geometer might even attempt this using purely geometric operations on the smooth mani-
folds involved. This approach is doomed to fail. The method we propose is to embedd the
two complexes in the same larger complex consisting of \ideal" elements and then show that
the two embeddings are homotopic with this larger space. The homotopies are described by
the Weil transgression between a genuine G-connection on P and a certain \ideal" connec-
tion which has only a formal meaning !!! The second surprise is the amazing e�ectiveness
of this method. Normally one expects that by \pushing" the geometric situation into an
\ideal" abstract framework the resulting formul� will be more involved. To our surprize,
Kalkman's isomorphism �ts perfectly in such a framework. A bonus of this proof is that
the isomorphism H�

G(P )
�= H�(B) can be explicitely described at the cochain level. More

precisely, to any Cartan representative of an element in H�
G(P ) we associate a closed form

on B. This correspondence descends to an isomorphism between the two cohomologies.
This map is obtained naturally, as a by-product of our computations.

The paper is divided into �ve section of which four are devoted to surveying the basic
\players" in Cartan's approach to equivariant theory. In the �rst part we introduce the
notion of operation which captures the essential features of the DeRham algebra of a smooth
manifold with a Lie group action.

In the �rst section we introduce the main object of study, that of operation. It formalizes
the algebra of exterior forms on a smooth manifold equipped with a Lie group action.
Section 2 introduces the Cartan and Weil models of equivariant cohomology while section
3 describes the Kalkman isomorphism between them. In section 4 we review the basics of
the Weil transgression trick in the framework of operations. In the �nal section we prove
Cartan's theorem and discuss a few consequences.

In the sequel G will always denote a compact, connected Lie group. The pre�x \s" will
refer to \super" (i.e. Z2-graded) objects as in [1]. The bracket [ � ; � ]s denotes the super-
commutator in a super-algebra. Also, we will use Einstein's summation convention (unless
otherwise indicated).
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1 Operations

As in [3] we will consider Frechet algebras. These are associative R -algebras such that
their algebraic operations are continuous with respect to a Frechet topology. The standard
example of Frechet algebra is that of the algebra of smooth functions on a smooth manifolds.

In this section we want to introduce the algebraic counterpart of the geometric notion
of smooth manifold acted on by a Lie group. This object appears in literature with various
names. We have chosen the terminology of [5] which stays closer to the original motivation.

De�nition 1.1 An operation consists of the following.
(a) A Z-graded Frechet algebra

A = �
n2Z

An

such that a �b = (�1)jaj�jbjb �a for any two homogeneous elements. (A is naturally a s-algebra
by A = Aeven �Aodd).
(b) A continuous odd derivation

d : A� ! A�+1

such that d2 = 0.
(c) A smooth action of the Lie group G on A via algebra automorphisms commuting with
d. We denote by L the derivative of this action at 1 2 G. Thus L de�nes a representation
of g into the Lie algebra of even derivations of A. (LX (X 2 g) is the Lie derivative along
the automorphisms exp(tX) of A.) Note that

[LX ; d]s = LXd� dLX = 0:

(d) A continuous G-equivariant linear map I from g (called contraction) to the space of
odd derivations of A such that 8X;Y 2 g

(d1) IX(A
n) � An�1; 8n:

(d2) [IX ;IY ]s = IXIY + IY IX = 0.
(d3) [LX ;IY ] = I[X;Y ].
(d4) (Cartan formula) [IX ; d]s = IXd+ dIX = LX .

Remark 1.2 The above contraction I extends to an algebra morphism I : �g! End (A)
thus de�ning a �g-module structure on A.

Example 1.3 The right action of a Lie group G on the smooth manifold M de�nes a
structure of operation on 
�(M). For each X 2 g we will denote by LX the Lie derivative
along the 
owm 7! m�exp(tX) while IX denotes the contraction alongX#-the in�nitesimal
generator of the above 
ow.

Example 1.4 (The Weil algebra) Consider the Lie group G and set

WG = Sg� 
 �g�

where � and S denote the exterior and respectively the symmetric algebra. Topologize WG

in the obvious fashion (as a space of polynomials) and equip it with the Z-grading

deg(�pg�) = p; deg(Sqg�) = 2q:
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Denote by h the obvious isomorphism

h : �1g� ! S1g�: (1.1)

The usual derivations d, LX and iX on 
�(G) have an algebraic counterpart on �g� which we
denote by d, LX and {X ., It is convenient to describe these operations in \local coordinates".
Choose a basis (ei) of g and denote by (�i) the dual basis of g�. Set 
i = h(�i) 2 S1g�.
Denote by Li and {j the Lie derivative along ei and respectively the contraction by ej . Then

Li�
j = �Cj

ik�
k and {j�

k = Ækj

where Ci
jk denote the structural constants of the Lie algebra g

[ej ; ek] = Ci
jkei:

To describe d in local coordinates we use the formula

(d!) = �!([X;Y ]); ! 2 g�; X; Y 2 g:

This yields

d�i = �
1

2
Ci
jk�

j�k:

This implies immediately Koszul's formula

d =
1

2
�(�k)Lk =

1

2
�kLk (1.2)

where for any algebra A and any a 2 A we denote by �(a) the left multiplication by a. For
simplicity we will very often omit the � symbol when there is very little room for confusion.

The action of G on WG induced by the coadjoint action de�nes a Lie derivative L

extending the Lie derivative on �g� according to the prescription

LXh(!) = h(LX!):

We can extend d to an odd derivation dW of WG uniquely determined by its action on
the generators

dW �i = d�i + h�i = �
1

2
Ci
jk�

j�k +
i = (
1

2
�jLj +
j{j)�

i (1.3)

dW
i = �Ci
jk�

j
k =
�
�jLj

�

i: (1.4)

Extend the contraction {X to WG by imposing {Xh(!) = 0.
We leave the reader verify that these three derivations onWG do indeed de�ne a structure

of operation. 2

Given two operations (Ai; di;L
i;Ii)i=1;2 we can de�ne a structure of operation on their

(Grothendiek) topological tensor product A1 
A2 (described e.g. in [10]) according to the
rules ("1 is the grading operator of the s-algebra A1)

d = d1 
 1+ "1 
 d2
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L = L1 
 1+ 1
L2

and
I = I1 
 1+ "1 
 I

2:

Given an operation (A; d;L;I) we can de�ne three subalgebras

Ainv = kerL = fa 2 A ; LXa = 0 8X 2 gg

Ahor = ker I and Abas = Ainv \Ahor:

Since [d;L]s = 0 we deduce dAinv � Ainv. Moreover, Cartan formula implies dAbas � Abas.
Thus we can de�ne the cohomology groups

H�
inv(A) = H�(Ainv; d) and H�

bas(A) = H�(Abas; d):

Example 1.5 Consider a smooth principal G-bundle G,!P ! B. The right action of G
on P induces a structure of operation on 
�(P ). The basic subalgebra of this operation is
then naturally isomorphic to 
�(B).

2 The Cartan-Weil descriptions

We will work in the more general setting of operations. We will de�ne two notions of
equivariant cohomology and in the next subsection we will show they coincide.

Consider a G-operation (A; d;L; I).

The Weil description We de�ne Weil's equivariant cohomology of A by

WH�
G(A)

def
= H�

bas(WG 
A)

where WG denotes the Weil algebra introduced in the previous subsection.

The Cartan description Consider the algebra

B = Sg� 
A:

Sg� is graded as usual by
deg Spg� = 2p:

G acts smoothly on B and so we can form the subalgebra of invariant elements

Binv = (Sg� 
A)G:

Now de�ne the operator

d = 1
 d�
X
i

�(
k)
 Ik = 1
 d� 
k 
 Ik: (2.1)

If we regard ! 2 Sg� 
A as a polynomial map g! A then d! is the polynomial map

X 7! d(!(X)) � IX(!(X)):
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d satis�es the following conditions (see [2])

d2 = �
k 
Lk: (2.2)

[d;L
 1+ 1
L] = 0: (2.3)

The equality (2.3) shows that Binv is d invariant. Moreover, on this subalgebra d2 = 0.
Indeed, on this subalgebra we have L
 1 = �1
L so that by (2.2) we have

d2 = �
i 
Li = 
iLi 
 1:

Now it is not diÆcult to see that 
iLi � 0 on Sg� due to the skew symmetry of the struc-
tural constants. Thus (Binv; d) is a cochain complex and we de�ne the Cartan equivariant
cohomology of A by

CH�
G(A)

def
= H�(Binv;d):

When A is the algebra of di�erential forms on a smooth manifold M on which G acts
smoothly we will use the notations WH�

G(M) and CH�
G(M) to denote the corresponding

equivariant cohomologies.

3 Weil model () Cartan model

Consider a G-operation (A; d;L;I). The main result of this subsection is the following.

Theorem 3.1 There exists a natural isomorphism

WH�
G(A)

�= CH�
G(A):

We brie
y describe the proof in [6]. For a di�erent but related approach we refer to [9].
Consider the algebra B = WG 
 A. It has a tensor product structure of G-operation

with structural derivations D, L and respectively I. For each U j
i = �j 
 ei 2 g

� 
 g de�ne
the following operators (on B)

A
j
i = �j 
 Ii

L
j
i = �j 
Li � 
j 
 Ii

In general for any T = tijU
j
i 2 g

� 
 g set

A T = tijA
j
i ; LT = tijL

j
i and DT = D + LT :

Note that (A j
i )
2 = 0, 8i; j and moreover A T A S = A SA T , 8S; T . Thus exp(A T ) is well

de�ned and invertible. A simple computation shows that for all i; j the operator exp(A j
i ) =

1 + A
j
i is an algebra automorphism of B so that exp(A T ) is an automorphism of B for all

T 2 g� 
 g.
The key step in the proof of Theorem 3.1 is contained in the following result.
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Lemma 3.2 For any T 2 g� 
 g we have

exp(A T )D exp(�A T ) = DT :

Proof of the lemma An elementary computation shows that for any i; j; k; ` we have the
following \di�erential equations"

[D; exp(A i
j)] = L

i
j exp(A

i
j) (3.1)

[L i
j; exp(A

k
l )] = 0: (3.2)

The equality (3.1) can be rephrased as

exp(A i
j)D exp(�A i

j) = DU i
j
:= D + L

i
j (3.3)

while (3.2) is equivalent to
exp(A k

` )L
i
j exp(�A

k
` ) = L

i
j: (3.4)

Using (3.4) in (3.3) we deduce (A = A
i
j + A

k
` )

exp(A )D exp(�A ) = D
A
:

Lemma 3.2 now follows by iterating the above procedure. 2

We now have a whole family of G-structures on B parameterized by g� 
 g,

BT := (B;DT ; LT = exp(A T )L exp(�A T ); IT = exp(A T )I exp(�A T ) ); T 2 g� 
 g:

Moreover an elementary computation shows that LT � L0. All these structures are isomor-
phic with the canonical tensor product structure and in particular

H�
bas(BT )

�= H�
bas(B0)

�=WH�(A):

An interesting special case arises when T = id = �i 
 ei. In this case the derivation
Did is known as the BRST (= Bechi-Rouet-Stora-Tyupin) operator and it arises in the
quantization of classical gauge theories.

We leave the reader check that

(Bid)hor = ker Iid = Sg� 
A:

Hence
(Bid)bas = (Sg� 
A)G

and it is not diÆcult to see that on this subalgebra Did = d. Thus

H�
bas(Bid) �= CH�

G(A):

Theorem 3.1 is proved. 2

Remark 3.3 Kalkman's isomorphism

� = �G = exp(A id) : B0 ! Bid (3.5)

has a particularly nice form when restricted to (B0)bas. It is uniquely determined by the
correspondences 
i 7! 
i and �j 7! 0.
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4 Algebraic connections

Among the possible actions of a Lie group on a smooth manifold the free ones play a
special role. Consider for example the case of a smooth principal G-bundle G,!P ! B.
Such actions admit connections. Recall (see [7]) that a connection on P is an equivariant
splitting

TP �= VP �HP

where VP is the bundle spanned by the in�nitesimal generators of the G actions. In fact,
for any p 2 P the correspondence

g 3 X 7! X#
p

identi�es the �ber VpP with g.
Alternatively, a splitting as above can be de�ned by a vertical projector i.e. a g-valued

1-form � 2 g
 
1(P ) which is G-invariant and satis�es

iX#� = X 8X 2 g: (4.1)

We can regard this connection as a linear map

� : g� 3 �i 7! ~�i 2 
�(P )

so that
� = ei 
 ~�i:

The condition (4.1) reads
Ij ~�

k = Ækj (4.2)

or equivalently,
IX� = X; 8X 2 g: (4.3)

The invariance implies
Lkei 
 ~�i + ei 
Lk~�

i = 0

i.e.
Lk~�

i = �Ci
kj
~�j: (4.4)

or equivalently,
�LX = LX�; 8X 2 g: (4.5)

The conditions (4.2)-(4.5) are formulated using a language which involves only the structure
of operation. Thus we can de�ne an abstract notion of algebraic connection on any G-
operation A as a G-equivariant linear map ~� : g� ! A satisfying (4.2)-(4.5).

Example 4.1 The inclusion g�,!WG de�nes an algebraic connection.

Consider now a G-operation (A; d;L;I) equipped with a connection

� : �i 7! ~�i:

De�ne
~
i = d~�i �

1

2
Ci
jk
~�j ~�k:
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The form
~
 = ei 
 ~
i 2 g
A2

is independent of the basis (ei) and it is called the curvature of the connection. An elemen-
tary computation shows that

Ik ~

i = 0 8i; k

i.e. ~
i 2 A2
hor, 8i.

The main algebraic implications of the existence of a connection derive from the following
decomposition result.

Proposition 4.2 The connection induced map

�g� 
Ahor ! A; �A 
 ! 7! ~�A!

(! 2 Ahor, A is an ordered multi-index (a1; a2; : : :) and �
A = �a1^�a2^� � �) is an isomorphism

of graded algebras.

Idea of proof The map is clearly injective. The surjectivity follows from the following
simple observation

8! 2 A; ! � ~�kIk! 2 ker Ik (no summation): 2

Thus we can uniquely represent any element ! 2 A as a polynomial

! = ~�A!A

where in the above sum A runs through all ordered multi-indices. ! is said to be horizontally
homogeneous if all the coeÆcients !A 2 Ahor have the same degree called the horizontal

degree and denoted by degh.
The component !; 2 Ahor of ! 2 A is called the horizontal component, the map ! 7! !;

will be denoted by h and will be named the horizontal projection.

Remark 4.3 It is not diÆcult to see that the horizontal projection can be explicitly de-
scribed by

h =
Y
k

�
1� ~�k 
 Ik

�
= exp(�~�k 
 Ik):

We can now de�ne the covariant derivative of the connection � as the composition

r = h Æ d:

A simple computation shows that

r~�i = ~
i (Maurer� Cartan) (4.6)

and
r~
i = 0 (Bianchi) (4.7)

Set
cw :WG ! A; �i 7! ~�i; 
i 7! ~
i:

This map is independent of the basis (ei) and it is called the Chern-Weil correspondence.
The following result explains the universal role played by the\exotic" structure of WG.
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Proposition 4.4 The Chern-Weil correspondence induced by a connection is a morphism
of G-operations. Moreover, given two connections ~�i; i = 0; 1 on A the corresponding
Chern-Weil maps cwi are homotopic as morphisms of cochain complexes.

Proof The �rst part is left to the reader. To prove the second part we use a familiar trick
from the theory of characteristic classes.

Form the algebra Â = 
�(R )
A. (If A were the algebra of di�erential forms 
�(M) on a
smooth manifoldM then Â �= 
�(R�M).) Clearly Â is a G-operation and �̂ = (1�t)~�0+t~�1
de�nes a connection on Â. Denote by 	i (i = 0; 1) the the maps 	i : Â ! A de�ned by
the localizations at t = 1


�(R )! R ; f(t) 7! f(i); dt 7! 0:

We have a �berwise integration morphismZ
I
: Â ! A

de�ned by Z
I
f(t)
 ! =

(
0 if f 2 
0(R )�R 1

0 f(t)
�
! if f 2 
1(R )

The fundamental theorem of calculus implies immediately the following homotopy formula

8!̂ 2 Â : 	1!̂ �	0!̂ = d

Z
I
!̂ +

Z
I
d̂!̂

where d̂ is the exterior derivative in Â de�ned by

d̂ = dt
@

@t

 1+ �
 d:

d is the exterior derivative in A while � is the s-grading operator in 
�(R ). From the
equalities cwi = 	i Æ ^cw we deduce Weil's transgression formula

cw1 � cw0 = d

Z
I
ĉw +

Z
I
d̂ ^cw = d

Z
I

^cw+

Z
I

^cwdW : (4.8)

Thus the map

K = K(~�1; ~�0) =

Z
I

^cw : W �
G ! A��1

is a cochain homotopy connecting cw0 to cw1. 2

Remark 4.5 (a) It is instructive to compute K(�i) and K(
j). We have

K(�i) =

Z
I
�̂i = 0:

To compute K(
j) we need to compute the curvature 
̂ of �̂. Set
_~� = ~�1 � ~�0. We have


̂ = d̂�̂ +
1

2
[�̂; �̂]
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= dt
 _~� + d~�0 +
1

2
[~�0; ~�0] + td _~� + t[~�0;

_~�] +
t2

2
[ _~�; _~�]

= dt

_~� + ~
0 + t

�
d~�1 + [~�1; ~�0]� ~
0 �

1

2
[~�0; ~�0]

�
+
t2

2
[
_~�;
_~�]

= dt

_~� + (1� t)~
0 + t

�
d~�1 + [~�1; ~�0]�

1

2
[~�0; ~�0]

�
+
t2

2
[
_~�;
_~�]:

where ~
0 is the curvature of ~�0. Set

X(t) = X(t; ~�1; ~�0) = (1� t)~
0 + t

�
d~�1 + [~�1; ~�0]�

1

2
[~�0; ~�0]

�
+
t2

2
[
_~�;
_~�]:

Thus

K(
) =

Z
I

�
X(t) + dt
 _~�

�
= ~�1 � ~�0:

More generally if P 2 Sg� and Q 2 �g� we have

K(P 
Q) =

Z
I
P (
̂)
Q(�̂)

=

Z
I

�
P (X(t) + dt
 _~�)
Q(�̂)

�
:

Using the Taylor expansion of P at X(t) we get

=

Z 1

0

 X
i

(~�i1 �
~�i0)

@P

@
i
(X(t)) 
Q(�̂)

!
dt: (4.9)

In particular, this shows that (i) K commutes with the G action and (ii) K(Wbas) � Abas.
We call such a homotopy a basic homotopy. We will use the symbol \'b" to denote the
basic homotopy equivalence relation. In particular, we say that two G-operations A;B are
b-homotopic if there exist morphisms f : A ! B and g : B ! A such that f Æ g 'b id and
g Æ f 'b id. We write this as A 'b B.

(b) The above proposition shows that we could de�ne the notion of connection as a
morphism of G-operations WG ! A. We see that WG is extremely rigid since for any
G-operation the collection [WG;A]b of classes of morphisms of G-operations modulo basic
homotopies is very small. It consists of at most one element. A G-operation W equipped
with a G-connection satisfying the above rigidity condition (i.e. [W;A]b consists of at most
one element for any G-operation A) will be called an universal G-operation. Note also the
similarity between this result and the topological one: two continuous maps f1; f2 : B ! BG
which induce isomorphic principal G-bundles are homotopic.

(c) The proof of the above proposition continues to hold in the following more general
form: any two equivariant morphisms �i : WG ! A of graded di�erential algebras are homo-
topic as cochain maps. In particular, this shows that (WG; dW ) is acyclic i.e. Hk(WG) = 0
for k > 0.



On a theorem of Henri Cartan 12

5 The basic cohomology of a G-operation with connection

As we explained in the previous subsection, the G-operations with connections represent the
algebraic counterpart of a smooth manifold M on which G acts freely. In such a case, the
(Borel) equivariant cohomology of M is naturally isomorphic with the ordinary cohomology
of the quotient

H�
G(M) �= H�(M=G):

In the subsection we will establish the algebraic counterpart of this result. In fact, we will
deal with a more general situation.

Assume we are given the following collection of data.
� A Lie group G and a closed normal subgroup N � G. Set Q = G=N . Since N is
invariant under the adjoint of G there is an induced action on n-the Lie algebra of N and
in particular, n is a Lie algebra ideal of g.
� A G-operation (A;D;L;I) equipped with a G-invariant N -connection i.e. a G-equivariant
morphism of N -operations

~� :WN ! A:

By regarding A as an N -operation we can form the subalgebra

B = AN;bas = f! 2 A ; ! is N invariant; IX! = 0; 8X 2 ng:

The G-operation structure on A induces a residual G=N -operation structure on B. Note
that we have an inclusion

j : WQ 
 B !WG 
A

such that
j(WQ 
 B)Q;bas � (WG 
A)G;bas:

The geometric intuition behind this algebraic situation is that of a smooth G-space E such
that the action of N is free. In Borel cohomology we have an isomorphism

H�
G(E)

�= H�
Q(E=N):

We will establish the algebraic analogue of this result.

Theorem 5.1 (Cartan) The inclusion j induces an isomorphism

WH�
Q(B)

�=WH�
G(A):

Proof Our proof will be a simple application of Weil's transgression trick. For di�erent
approaches we refer to [5], Chap. VIII, [4], [3] or [8].

We will construct a G-connection on WG 
 A starting from the G-equivariant N -
connection ~� 2 A1 
 n.

De�ne the linear map

� : g! A0 
 n; �(X) = �IX ~�:

� is called the moment map of the G-equivariant connection ~�. We can also regard it as an
element of g� 
A0 
 n.
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Lemma 5.2 The moment map � : g! A0 
 n is G-equivariant.

Proof Regard ~� as a G-equivariant map

g� ! n� ! A1:

For each X 2 g regard �(X) as a map

g� ! n� ! A0:

The equivariance of � is equivalent to

�(AdgX) = g�(X)Ad�g�1

where Ad� denotes the coadjoint action of G. We have

�(AdgX) = �IAdgX
~� = �gIXg

�1~� = �gIX ~�Ad�g�1 = g�(X)Ad�g�1 :

(The second equality is theG-equivariance of I while the third equality is theG-equivariance
of ~�.) 2

De�ne q : g! A0 
n as
q(X) = X + �(X):

Note that q(X) = 0 for X 2 n so that q descends to a map

q = q = g=n! A0 
n:

Set � = q+ ~�. Note that

q 2 g� 
A0 
 n �W 1
G 
A

0 
 g

and
~� 2 A1 
 n � A1 
 g:

Thus � 2 (WG 
A)
1.

Lemma 5.3 � de�nes a G-connection on WG 
A

Proof For X 2 g denote by IX the contraction by X in WG 
A. Then

IX� = q(X) + IX ~� = X:

The G-invariance of � now follows from the G-invariance of q and ~�. 2

The G-operation WG 
A admits the tautological connection

1 : WG 7!WG 
A; w 7! w 
 1:

Denote by K = K(1;�) the Weil transgression

K :WG ! WG 
A
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so that for all w 2WG

w � �w = ÆKw +KdWw

where Æ denotes the exterior derivation in WG 
A. Now de�ne

T0 :WG 
A !WG 
A; w 
 a = (�w) � a (5.1)

T1 = id : WG 
A !WG 
A

and
K :WG 
A !WG 
A; w 
 a 7! Kw � a:

Then for all x 2WG 
A

x� T0x = T1x� T0x = ÆKx+KÆx:

Both T0 and T1 are morphisms of G-operations and K is a basic homotopy. Also note that

T0(WG 
A) �WQ 
A

and
T0(WG 
A)G;bas � (WQ 
 B)Q;bas:

Moreover, along the basic subalgebras T0 Æ j = id. In (the basic) cohomology T0 is bijective
since it is homotopic to the identity. This completes the proof of Theorem 5.1. 2

Remark 5.4 The reduction theorem we have just proved generalizes as follows. Consider
a G-operation W. Then the transgression trick in the proof of Theorem 5.1 can be used to
show the statements below are equivalent.
(i) W is universal (in the sense de�ned in Remark 4.5 (b)).
(ii) Any morphism of G-operations ' :W ! A induces a b-homotopy equivalence

W 
A 'b A:

Note in particular that if W0, W1 are two universal G-operations and � : W0 ! W1 is
a morphism then any morphism � :W1 !W0 
 B induces a b-homotopy equivalence

W0 
 B 'b W1 
B: (5.2)

Indeed, by (ii) � induces a b-homotopy equivalence

W0 
W1 
 B 'b W1 
 (W0 
 B) 'b W0 
 B

(since W1 is universal) and on the other hand � : W0 ! W1 
 B induces the b-homotopy
equivalence

W0 
W1 
 B 'b W1 
 B

sinceW0 is universal. If we take W0 =WG=N andW1 =WG (note that these Weil algebras
are clearly universal G-operations) then the equivalence (5.2) is precisely the content of
Theorem 5.1.
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Corollary 5.5 Let E be a smooth G-space. If N acts freely on E then

WH�
G(E)

�= H�
Q(E=N):

It is instructive to describe the reduction isomorphism

WH�
G(E)

�=
!WH�

Q(E=N)

using the Cartan model. Denote by W~� the Weil model description of the above reduction
isomorphism (de�ned in (5.1)). We denote by C~� its correspondent in the Cartan model.
Denote by �G (resp. �Q) the Kalkman isomorphism (cf. (3.5))

WH�
G ! CH�

G (resp:WH�
Q ! CH�

Q):

We then have
C~� = �Q ÆW~� Æ �

�1
G :

To get a better feeling on the structure of C~� we will work in local coordinates. Choose
a basis (ei) of n and then extend it to a basis fei ; fag of g. Via the natural projection
g ! g=n the collection (fa) induces a basis of g=n which we continue to denote by the
same symbols. Denote the dual basis of fei ; fag by f�

i ; 'ag. We can regard (�i) as a basis
of n� and ('a) as a basis of q�. We denote the image of �i in n� by 
i and the image of
'a in Sq� by 	a. Set � = �i 
 ei, ' = 'a 
 fa, 
 = 
i 
 ei and 	 = 	a 
 fa.Then any
element in (Sg� 
 
�(E))G is a G-equivariant polynomial map P : g ! 
�(E) which we
will schematically describe it as P = P (
�	). Then

��1G P (
�	) = exp(�'a 
 Ia) exp(��
i 
 Ii)P (
�	):

The map � :WG !WG 
 
�(E) is determined from the assignments

�i 7! ~�i � ~�i(fa)'
a; 'a 7! 'a:

If we de�ne �(ei) = ei and �(fa) = fa then we can rewrite

�(� � ') = ~� + '� ~�(fa)'
a = ~� + '� ~� Æ ': (5.3)

Moreover

�(
�	) = Æ�(� � ') +
1

2
[�(� � ');�(� � ')]

= d~� + dW'+
1

2

n
[~� + '; ~� + '] + [~� Æ '; ~� Æ ']

o
� [~� + '; ~� Æ ']� Æ(~� Æ ')

= d~� +
1

2
[~�; ~�] + dW'+

1

2
[';'] + [~�; '] +

1

2
[~� Æ '; ~� Æ ']� [~� + '; ~� Æ ']� Æ(~� Æ ')

= ~
 +	+ [~�; '] +
1

2
[~� Æ '; ~� Æ ']� [~� + '; ~� Æ ']� Æ(~� Æ '): (5.4)

On the other hand

W~� Æ �
�1
G P (
�	) = exp(�'a 
 Ia) exp(��(�

j)
 Ij)P (�(
�	)): (5.5)
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Since W~� Æ �
�1
G P is a Q-basic element of WQ 
 
�(E=N) the action of �Q on this element

is determined according to Remark 3.3 by setting ' = 0 in (5.5). Using the equalities (5.3)
and (5.4) we deduce

C~�P = �Q ÆW~� Æ �
�1
G P = exp(�~�j 
 Ij)P (~
 + 	� Æ(~� Æ ') j'=0 ): (5.6)

We need to understand the term Æ(~� Æ ') j'=0. We have

Æ(~�i(fa)'
a) = d(~�i(fa))'

a + ~�idW'a

= d(~�i(fa))'
a + ~�i(fa)f	

a �Q(')g

where Q denotes a quadratic term in the ''s. Thus when setting ' = 0 we get

Æ(~�i(fa)'
a Æ ') j'=0= ~�i(fa)	

a:

Symbolically
Æ(~� Æ ') j'=0= ~�(	) = ��(	) 2 (S1q� 
 
0(E))
 n:

(Recall that � denotes the moment map of the connection.) Note that the di�erential
form components in �(	) are N -basic so they can be regarded as forms on the basis E=N .
Substituting this back in (5.6) we get

C~�P = exp(�~� 
 Ij)P (	 + �(	) + ~
):

The exponential factor is precisely the horizontal projection h~� : 

�(E)! 
�(E=N) de�ned

by the N -connection ~�. On the other hand the term ~
 + �(	) 2 (
2(E=N) � (S1q� 


0(E=N)) 
 n is already Q-basic. It is called the equivariant curvature of the connection
~� and will be denoted by ~
Q. Note that ~
Q is an element of degree 2 in ~
Q 2 (Sq� 


�(E=N))Q 
 n. Thus

(C~�P )(	) = h~�P (	 + ~
Q): (5.7)

We still need to give an accurate de�nition of the right-hand-side term above. For any
X 2 g de�ne P (X + ~
Q) imitating the Taylor expansion at X

P (X + ~
Q) = exp(~
i
Q@i)P (X)

where ~
Q = ~
i
Q 
 ei 2 (Sq� 
 
�(E))2 
 n while @i denotes the partial derivative along

the direction ei 2 n � g. Note that P (X + ~
Q) = P (X + �(X) + ~
) = P (~
) for all X 2 n
so that P (X + ~
Q) descends to a well de�ned map q! 
�(E=N). Thus the polynomial in
the right-hand-side of (5.7) should be rather viewed as an 
�(E=N)-valued polynomial on
g which descends to a polynomial on q = g=n.

In particular, to any G-invariant polynomial P 2 Sg� one can associate an equivariantly
closed element

	 7! P (	 + ~
Q) 2 (Sq� 
 
�(E=N))Q:

This element clearly depends on the connection but its equivariant cohomology class does
not. It will be denoted by P (E) 2 CH�

Q((E=N) and will be called the equivariant charac-

teristic class of E ! E=N corresponding to P . Note that when G = N this correspondence
is none other than the traditional Chern-Weil construction of the characteristic classes of a
principal G-bundle.
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