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DIRAC OPERATORS ON COBORDISMS: DEGENERATIONS

AND SURGERY

DANIEL F. CIBOTARU AND LIVIU I. NICOLAESCU

Abstract. We investigate the Dolbeault operator on a pair of pants, i.e., an

elementary cobordism between a circle and the disjoint union of two circles.
This operator induces a canonical selfadjoint Dirac operator Dt on each regular

level set Ct of a fixed Morse function defining this cobordism. We show that

as we approach the critical level set C0 from above and from below these
operators converge in the gap topology to (different) selfadjoint operators D±
that we describe explicitly. We also relate the Atiyah-Patodi-Singer index of

the Dolbeault operator on the cobordism to the spectral flows of the operators
Dt on the complement of C0 and the Kashiwara-Wall index of a triplet of finite

dimensional lagrangian spaces canonically determined by C0.

Introduction

Suppose (M, g) is compact oriented odd dimensional Riemann manifold. We let

M̂denote the cylinder [0, 1]×M and ĝ denote the cylindrical metric dt2 + g.

Let D̂ be a first order elliptic operator operator on a vector bundle over M̂ that
has the form

D̂ = σ(dt)
(
∇t −D(t)

)
, (†)

where σ denotes the principal symbol of D̂, and for every t ∈ [0, 1] the operator
D(t) on {t} ×M is elliptic and symmetric. For simplicity we assume that both
D(0) and D(1) are invertible.

A classical result of Atiyah, Patodi and Singer [2, §7] (see also [12, §17.1]) relates

the index iAPS(D̂) of the Atiyah-Patodi-Singer problem associated to D̂ to the
spectral flow SF (D(t) ) of the family of Fredholm selfadjoint operators D(t). More
precisely, they show that

iAPS(D̂) + SF
(
D(t), 0 ≤ t ≤ 1

)
= 0. (A)

We can regard the cylinder M̂ as a trivial cobordism between {0}×M and {1}×M ,

and the coordinate t as a Morse function on M̂ with no critical points.

In this paper we initiate an investigation of the case when M̂ is no longer a
trivial cobordism. We outline below the main themes of this investigation.

First, we will concentrate only on elementary cobordisms, the ones that trace a

single surgery. We regard such a cobordism as a pair (M̂, f), where M̂ is an even
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dimensional, compact oriented manifold with boundary, and f is a Morse function

on M̂ with a single critical point p0 such that

f(M̂) = [−1, 1], f(∂M) = {−1, 1}, f(p0) = 0.

We set M± := f−1(±1) so that we have a diffeomorphism of oriented manifolds

∂M = M+∪−M−. Suppose that ĝ is a Riemann metric on M̂ and D̂ : C∞(E+)→
C∞(E−) is a Dirac type operator on M̂ , where E+ ⊕ E− is a Z/2-graded bundle
of Clifford modules.

Using the unitary bundle isomorphism 1
|df |σ(df) : E+ → E− defined away from

the critical level set we can regard D̂|{f 6=0} as an operator C∞(E+) → C∞(E+).
As explained in [8] (see also Section 2 of this paper), for every t 6= 0, there is a
canonically induced symmetric Dirac operator D(t) on the slice Mt = f−1(t). We
regard D(t) as a linear operator D(t) : C∞(E+|Mt

) → C∞(E+|Mt
), so that, if ĝ

were a cylindrical metric, then formula (†) would hold.
The Riemann metric ĝ defines finite measures dVt on all the slices Mt, including

the singular slice M0. In particular, we obtain a one-parameter family of Hilbert
spaces

Ht := L2(Mt, dVt;E+).

We can now regard D(t) as a closed, densely defined linear operator on Ht.

Problem 1. Organize the family (Ht)t∈[−1,1] as a trivial Hilbert bundle over the
interval [−1, 1]

H = H × [−1, 1]→ [−1, 1].

Under reasonable assumptions on f and ĝ we can use the gradient flow of f to
address this issue. Once this problem is solved we can regard the operators D(t),
t 6= 0 as closed densely defined operators on the same Hilbert space H. We can
then formulate our next problem.

Problem 2. Investigate whether the limits

SF− := lim
ε↘0

SF (D(t),−1 ≤ t ≤ −ε), SF+ := lim
ε↘0

SF (D(t), ε ≤ t ≤ 1 ).

exist and are finite.

If Problem 2 has a positive answer we are interested in a version of (A) relating

these limits to the Atiyah-Patodi-Singer index of D̂ in the noncylindrical formula-
tion of [8, 9].

Problem 3. Express the quantity

δ := iAPS(D̂) + SF− + SF+ (B)

in terms of invariants of the singular level set M0.

The existence of the limits in Problem 2 is a consequence of a much more refined
analytic behavior of the family of operators D(t) that we now proceed to explain.
We set

Ĥ := H ⊕H, H+ := H ⊕ 0, H− := 0⊕H,

and we denote by Lag the Grassmannian of hermitian lagrangian subspaces Ĥ.

These are complex subspaces L ⊂ Ĥ satisfying L⊥ = JL, where J : H ⊕H →
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H ⊕H is the operator with block decomposition

J =

[
0 −1
1 0

]
.

Following [5] we denote by Lag− the open subset of Lag consisting of lagrangians

L such that the pair of subspaces (L, Ĥ−) is a Fredholm pair, i.e.,

L+H− is closed and dimL ∩H− <∞.

As explained in [5], the space Lag− equipped with the gap topology of [10, §IV.2]
is a classifying spaces for the complex K-theoretic functor K1.

To a closed densely defined operator T : Dom(T ) ⊂ H → H we associate its
switched graph

Γ̃T :=
{

(Th, h) ∈ Ĥ; h ∈ Dom(T )
}
.

Then T is selfadjoint if and only if Γ̃T ∈ Lag. It is also Fredholm if and only if

Γ̃T ∈ Lag−. We can now formulate a refinement of Problem 2.

Problem 2∗. Investigate whether the limits Γ̃± = limt↘0 Γ̃D(±t) exist in the gap

topology and, if so, do they belong to Lag−.

The gap convergence of the switched graphs of operators is equivalent to the
convergence in norm as t→ 0± of the (compact) resolvents Rt = (i+D(t) )−1. To

show that Γ̃± ∈ Lag− it suffices to show that the limits R± = limt→0± Rt exist.
Automatically, these limits will be compact operators which guarantees that the

limits belong to Lag−. If in addition1 Γ̃± ∩ Ĥ− = 0, then the limits in Problem 2
exist and are finite.

An even analog of Problem 2∗ was investigated in [16]. The role of the smooth
slices Mt was played there by a 1-parameter family of Riemann surfaces degenerat-
ing to a Riemann surface with single singularity of the simplest type, a node. The
authors show that the gap limit of the graphs of Dolbeault operators on Mt exists
and they described it explicitly.

In this paper we solve Problems 1, 2∗ and 3 in the symplest possible case, when

M̂ is an elementary 2-dimensional cobordism, i.e., a pair of pants (see Figure 1)

and D̂ is the Dolbeault operator on the Riemann surface M̂ . The other possibil-
ity, namely the cobordism corresponding to the case when the critical point is a
local minimum/maximum is not very complicated, but it displays an interesting
analytical phenomenon. We discuss it at length in Remark 3.3.

We solved Problem 1 by an ad-hoc intuitive method. The limits Γ̃± in Problem
2∗ turned out to be switched graphs of certain Fredholm selfadjoint operators D±,

Γ̃± = Γ̃D± .
We describe these limiting operators as realizations of two different boundary

value problems associated to the same symmetric Dirac operator D0 defined on
the disjoint union of four intervals. These intervals are obtained by removing the
singular point of the critical level set M0 and then cutting in half each of the
resulting two components. The boundary conditions defining D± are described
by some (4-dimensional) hermitian lagrangians Λ± determined by the geometry of

1The condition Γ̃± ∩ Ĥ− = 0 is not really needed, but it makes our presentation more trans-
parent. In any case, it is generically satisfied.
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the singular slice M0. The operators D± have well defined eta invariants η±. If
kerD± = 0, then we can express the defect δ in (B) as

δ =
1

2

(
η− − η+

)
. (C)

The above difference of eta invariants admits a purely symplectic interpretation
very similar to the signature additivity defect of Wall [19]. More precisely, we show
that

δ = −ω( Λ⊥0 ,Λ+,Λ−
)
, (D)

where Λ0 is the Cauchy data space of the operator D0 and ω(L0, L1, L2) denotes
the Kashiwara-Wall index of a triplet of lagrangians canonically determined by M0;
see [4, 11, 19] or Section 4.

Here is briefly how we structured the paper. In Section 1 we investigate in great
detail the type of degenerations that occur in the family D(t) as t → 0±. It boils
down to understanding the behavior of families of operators of the unit circle S1 of
the type

Lε = −i d
dθ

+ aε(θ),

where {aε}ε>0 is a family of smooth functions on the unit circle that converges in
a rather weak sense way as ε→ 0 to a Dirac measure supported at a point θ0. For
example, if we think of aε as densities defining measures converging weakly to the
Dirac measure, then the corresponding family of operators has a well defined gap
limit; see Corollary 1.5.

In Theorem 1.8 we give an explicit description of this limiting operator as an
operator realizing a natural boundary value problem on the disjoint union of the
two intervals, [0, θ0] and [θ0, 2π]. The boundary conditions have natural symplectic
interpretations. This section also contains a detailed discussion of the eta invariants
of operators of the type −i ddθ + a(θ), where a is a allowed to be the “density” of
any finite Radon measure.

In Section 2 we survey mostly known facts concerning the Atiyah-Patodi-Singer
problem when the metric near the boundary is not cylindrical. Because the various
orientation conventions vary wildly in the existing literature, we decided to go
careful through the computational details. We discuss two topics. First, we explain
what is the restriction of a Dirac operator to a cooriented hypersurface and relate
this construction to another conceivable notion of restriction. In the second part of
this section we discuss the noncylindrical version of the Atiyah-Patodi-Singer index
theorem. Here we follow closely the presentation in [8, 9].

In Section 3 we formulate and prove the main result of this paper, Theorem 3.1.
The solution to Problem 2∗ is obtained by reducing the study of the degenerations
to the model degenerations investigated in Section 1. The equality (C) follows
immediately from the noncyclindrical version of the Atiyah-Patodi-Singer index
theorem discussed in Section 2 and the eta invariant computations in Section 1. In
the last section we present a few facts about the Kashiwara-Wall triple index and
then use them to prove (D). Our definition of triple index is the one used by Kirk
and Lesch [11] that generalizes to infinite dimensions.

Let us say a few words about conventions and notation: We consistently orient
the boundaries using the outer-normal-first convention. We let i stand for

√
−1

and we let Lk,p denote Sobolev spaces of functions that have weak derivatives up
to order k that belong to Lp.
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1. A model degeneration

Let L > 0 be a positive number. Denote byH the Hilbert space L2([0, L],C). To
any measurable function a : R→ R which is bounded2 and L-periodic we associate
the selfadjoint operator

Da : Dom(Da) ⊂H →H,

where

Dom(Da) =
{
u ∈ L1,2([0, L],C); u(0) = u(L)

}
, Dau = −idu

dt
+ au. (1.1)

In this section we would like to understand the dependence of Da on the potential
a, and in particular, we would like to allow for more singular potentials such as a
Dirac distribution concentrated at an interior point of the interval. We will reach
this goal via a limiting procedure that we implement in several steps.

We observe first that Da can be expressed in terms of the resolvent Ra :=
(i + Da)−1 as Da = R−1

a − i. The advantage of this point of view is that we can
express Ra in terms of the more regular function

A(t) :=

∫ t

0

a(s)ds. (∗)

which continues to make sense even when there is no integrable function a such
that (∗) holds. For example, we can allow A(t) to be any function with bounded
variation so that, formally, a ought to be the density of any Radon measure on
[0, L].

This will allow us to conclude that when we have a family of smooth potentials
an that converge in a suitable sense to something singular such as a Dirac function,
then the operators Dan have a limit in the gap topology to a Fredholm selfadjoint
operator with compact rezolvent. We show that in many cases this limit operator
can be expressed as the Fredholm operator defined by a boundary value problem.

We begin by expressing Ra as an integral operator. We set

A(t) :=

∫ t

0

a(s)ds, ΦA(t) := iA(t)− t.

For f ∈ H the function u = Raf is the solution of the boundary value problem(
i− i d

dt

)
u+ au = f, u(0) = u(L).

An elementary computation yields the equality

u(t) = Raf =
ie−ΦA(t)

eΦA(L) − 1

∫ L

0

eΦA(s)f(s)ds+ i

∫ t

0

e−(ΦA(t)−ΦA(s)f(s)ds. (1.2)

The key point of the above formula is that Ra can be expressed in terms of the
antiderivative A(t) which typically has milder singularities than a. To analyze the
dependence of Ra on A we introduce a class of admissible functions.

2The assumption a ∈ L∞ guarantees that:1) au ∈ L2(0, L), ∀u ∈ L1,2(0, L); 2) the densely
defined operator Da is closed.
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Definition 1.1. (a) We say that A : [0, L] → R is admissible if A has bounded
variation, it is right continuous, and A(0) = 0. We denote by A or AL the class of
admissible functions.
(b) We say that a sequence {An}n≥0 ⊂ A converges very weakly to A ∈ A if there
exists null measure subset ∆ ⊂ (0, L) such that

lim
n→∞

An(t) = A(t), ∀t ∈ [0, L] \∆. ut

Remark 1.2. (a) Note that if An converges very weakly to A, then An(L) converges
to A(L).
(b) Let us explain the motivation behind the “very weak” terminology. An admis-
sible function A defines a finite Lebesgue-Stieltjes measure µA on [0, L], and the
resulting map A 7→ µA is a linear isomorphism between A and the space of finite
Borel measures on [0, L], [7, Thm. 3.29]. Thus, we can identify A with the space
of finite Borel measures on [0, L]. As such it is equipped with a weak topology.

According to [6, §4.22], a sequence of Borel measures µAn is weakly convergent
to µA if and only if µAn(O) → µA(O), for any (relatively) open subset O of [0, L].
This clearly implies the very weak convergence introduced in Definition 1.1. ut

Inspired by (1.2), we define for every A ∈ A the function ΦA(t) = iA(t)− t and
the integral kernels

SA : [0, L]× [0, L]→ C, SA(t, s) =
i

eΦA(L) − 1
e−
(

ΦA(t)−ΦA(s)
)
, ∀t, s ∈ [0, L],

KA : [0, L]× [0, L]→ C, KA(t, s) =

{
0 t < s

ie−
(

ΦA(t)−ΦA(s)
)

t ≥ s.
Observe that there exists a constant C > 0 such that

‖SA‖L∞([0,L]×[0,L]) + ‖KA‖L∞([0,L]×[0,L]) ≤ C, ∀A ∈ A. (1.3)

Thus, these kernels define bounded compact operators SA,KA : H → H; see [18,
§X.2]. Moreover, if we denote by ‖ • ‖op the operator norm on the space B(H) of
bounded linear operators H →H, then we have the estimates

‖SA‖op ≤ ‖SA‖L2([0,L]×[0,L]), ‖KA‖op ≤ ‖KA‖L2([0,L]×[0,L]). (1.4)

We can now rewrite (1.2) as

Ra = RA := SA +KA. (1.5)

Proposition 1.3. If An converges very weakly to A then SAn and KAn converge
in the operator norm topology to SA and respectively KA.

Proof. The very weak convergence implies that

SAn(t, s)
k→∞−→ SA(t, s), KAn(t, s)

k→∞−→ KA(t, s) a.e. on [0, L]× [0, L].

Using (1.3), the above pointwise convergence and the dominated convergence the-
orem we deduce

lim
n→∞

(
‖SAn − SA‖L2([0,L]×[0,L]) + ‖KAn −KA‖L2([0,L]×[0,L])

)
= 0.



DIRAC OPERATORS ON COBORDISMS: DEGENERATIONS AND SURGERY 7

The inequalities (1.4) now imply that

lim
n→∞

(
‖SAn − SA‖op + ‖SAn − SA‖op

)
= 0.

ut

We want to describe the spectral decompositions of the operators RA, A ∈ A.
To do this we rely on the fact that, for certain A’s, the operator RA is the resolvent
of an elliptic selfadjoint operator on S1. We use this to produce an intelligent guess
for the spectrum of RA in general.

Let a be a smooth, real valued, L-period function on R and form again the
operator Da defined in (1.1). We set as usual

A(t) :=

∫ t

0

a(s)ds.

The operator Da has discrete real spectrum. If u(t) is an eigenfunction correspond-
ing to an eigenvalue λ, then

−idu
dt

+ au = λu⇒ du

dt
+ i(a− λ)u = 0

so that u(t) = u(0)e−iA(t)+iλt. The periodicity assumption implies λL − A(L) ∈
2πZ so the spectrum of Da is

spec(Da) =

{
λA,n :=

2π

L

(
ωA + n

)
; n ∈ Z

}
, where ωA :=

A(L)

2π
. (1.6)

The eigenvalue λA,n is simple and the eigenspace corresponding to λA,n is spanned
by

ψA,n(t) := e
2πnit
L e−i(A(t)−A(L)t

L ).

The numbers λA,n and the functions ψA,n are well defined for any A ∈ A.

Lemma 1.4. Let A ∈ A. Then the collection {ψA,n(t); n ∈ Z} defines a Hilbert
basis of H.

Proof. Observe first that the collection

en(t) = ψA=0,n(t) = e
2πnit
L , n ∈ Z

is the canonical Hilbert basis ofH that leads to the classical Fourier decomposition.
The map

UA : H →H, H 3 f(t) 7→ e−i(A(t)−A(L)t
L )f(t)

is unitary. It maps en to ψA,n which proves our claim. ut

A direct computation shows that

RAψA,n =
1

i+ λA,n
ψA,n, ∀A ∈ A, A ∈ A.

This proves that for any A ∈ A the collection {ψA,n}n∈Z is a Hilbert basis that
diagonalizes the operator RA. Observe that RA is injective and compact. We define

TA := R−1
A − i.
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The operator TA, is unbounded, closed and densely defined with domain Dom(TA) =
Range (RA). We will present later a more explicit description of Dom(TA) for a
large class of A’s. Note that when

A =

∫ t

0

a(s)ds, a smooth and L-periodic,

the operator TA coincides with the operator Da defined in (1.1). Proposition 1.3
can be rephrased as follows.

Corollary 1.5. If the sequence (An)n≥1 ⊂ A converges very weakly to A ∈ A, then
the sequence of unbounded operators (TAn)n≥1 converges in the gap topology to the
unbounded operator TA. ut

The spectrum of TA consists only of the simple eigenvalues λA,n, n ∈ Z. The
function ψAn is an eigenfunction of TA corresponding to the eigenvalue λA,n. The
eta invariant of TA is now easy to compute. For s ∈ C we have

ηA(s) :=
∑
λ>0

1

λs

(
dim ker(λ− TA)− dim ker(λ+ TA)

)
=

∑
n∈Z\{−ωA}

signλA,n
|λA,n|s

=
Ls

2πs

∑
n∈Z\{−ωA}

sign
(
n+ ωA

)
|n+ ωA|s

.

Let

ρA := ωA − bωAc =
A(L)

2π
−
⌊
A(L)

2π

⌋
∈ [0, 1). (1.7)

If ρA = 0, then ηA(s) = 0 because in this case the spectrum of TA is symmetric
about the origin. If ρA 6= 0, then we have

ηA(s) =
Ls

2πs

(∑
n≥0

1

(n+ ρA)s
−
∑
n≥0

1

(n+ 1− ρA)s

)
=

Ls

2πs

(
ζ(s, ρA)−ζ(s, 1−ρA)

)
,

where for every ρ ∈ (0, 1] we denoted by ζ(s, ρ) the Riemann-Hurwitz zeta function

ζ(s, ρ) =
∑
n≥0

1

(n+ ρ)s
.

The above series is convergent for any s ∈ C, Re s > 1, and admits an analytic
continuation to the puctured plane C \ {s = 1}. Its value at the origin s = 0 is
given by Hermite’s formula [17, §13.21]

ζ(0, ρ) =
1

2
− ρ. (1.8)

We deduce that ηA(s) has an analytic continuation at s = 0 and we have

ηA(0) =

{
0 if ρA = 0,

1− 2ρA if ρA ∈ (0, 1).
(1.9)

Following [2, Eq.(3.1)], we introduce the reduced eta function

ξA :=
1

2

(
dim kerTA + ηA(0)

)
.

Then we can rewrite the above equality in a more compact way

ξA =
1

2
(1− 2ρA) =

1

2
− ρA. (1.10)
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Suppose we have A0, A1 ∈ A. We set As = A0 + s(A1 − A0) ∈ A. The map
[0, 1] 3 s 7→ As ∈ A is continuous in the weak topology on A and thus the family
of operators TAs is continuous with respect to the gap topology. The eigenvalues
of the family TAs can be organized in smooth families

λs,n =
2π

L
(ωs + n) =

2π

L

(
ωA0 + s

(
ω1 − ω0

)
+ n

)
, ωs := ωAs , ; ∀s ∈ [0, 1].

Assume for simplicity that ω0, ω1 6∈ Z, i.e., the operators TA0 and TA1 are invertible.
Denote by SF (A1, A0) the spectral flow of the affine family3 TAs . Then

SF (A1, A0) = #
{
n ∈ Z; −ω1 < n < −ω0

}
−#

{
n ∈ Z; −ω0 < n < −ω1

}
= #

(
Z ∩ (ω0, ω1)

)
−#

(
Z ∩ (ω1, ω0)

)
.

We conclude

SF (A1, A0) =
(
bω1c − bω0c

)
, ωi =

Ai(L)

2π
. (1.11)

Using (1.10) we deduce

SF (A1, A0) = bωA1
c − bωA0

c = ωA1
− ωA0

+
(
ξA1 − ξA0

)
. (1.12)

Remark 1.6 (The rescaling trick). Note that the rescaling

[0, L1] 3 τ 7→ t =
τ

c
∈ [0, L0], c =

L1

L0
.

induces an isometry IL1,L0 : HL0 = L2
(

[0, L0];C
)
→HL1 = L2

(
[0, L1];C

)
,

HL0 3 f(t) 7→ IL1,L0f(τ) := c−1/2f
(τ
c

)
∈HL1 .

The unbounded operator d
dt on HL0 is the conjugate to the operator c ddτ on HL1 .

If α(t) is a real bounded measurable function on [0, L0], then the bounded opera-
tor on HL0

defined by pointwise multiplication by α(t) is conjugate to the bounded
operator on HL1

defined by the multiplication by a(τ) = α(τ/c). Hence the un-
bounded operator Db on HL0 is conjugate to the unbounded operator cDc−1a on
HL1 ,

cDc−1a = IL1,L0
DαI

−1
L1,L0

. (1.13)

Its resolvent is obtained by solving the periodic boundary value problem

iu+ c

(
−i d
dτ

+ c−1a(τ)

)
u(τ) = f(τ), u(0) = u(L1).

If we set

A(τ) =

∫ τ

0

a(σ)dσ and ΦA,c(t) = c−1ΦA(τ) = c−1(iA(τ)− τ),

then we see that Rα is conjugate to the integral operator RA,c

RA,cf(τ) =
c−1ie−ΦA,c(τ)

eΦA,c(L1) − 1

∫ L1

0

eΦA,c(σ)f(s)ds+ c−1i

∫ t

0

e−(ΦA,c(τ)−ΦA(σ)f(σ)dσ.

Arguing exactly as in the proof of Proposition 1.3 we deduce that if An coverges
very weakly to A ∈ AL1

and the sequence of positive numbers cn converges to the
positive number c, then RAn,cn converges in the operator norm to RA,c.

3The quantity SF (A1, A0) is independent of the weakly continuous path As connecting A0 to
A1 since the space A equipped with the weak topology is contractible. It is thus an invariant of

the pair (A1, A0).
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For any c > 0 and A ∈ A we define the operator

TA,c = R−1
A,c − i, c > 0.

Note that TA,c = cTc−1A. Then for every c > 0 the spectrum of TA,c is

spec
(
TA,c

)
= c spec

(
Tc−1A

)
. ut

We want to give a more intuitive description of the operators RA, and TA for
a large class of A’s. We begin by introducing a nice subclass A∗ of A. Let H(t)
denote the Heaviside function

H(t) =

{
1, t ≥ 0,

0, t < 0.

Definition 1.7. We say that A ∈ A is nice if there exists a ∈ L∞(0, L), a finite
subset P ⊂ (0, L), and a function c : P→ R such that

A(t) = A∗(t) +
∑
p∈∆

c(p)H(t− p), ∀t ∈ [0, L], A∗(t) :=

∫ t

0

a(s)ds.

We denote by A∗ the subcollection of nice functions. ut

Let us first point out that A∗ is a vector subspace of A. Next, observe that
A ∈ A∗ if and only if there exists a finite subset PA ⊂ (0, L) such that the restriction
of A to [0, L]\P is Lipschitz continuous. The function A admits left and right limits
at any point t ∈ [0, L] and we define the jump function

c : PA → R, c(p) = lim
t↘p

A(t)− lim
t↗p

A(t).

Then

A∗(t) = A(t)−
∑
p∈P

c(p)H(t− p)

is Lipschitz continuous, it is differentiable a.e. on [0, L], and we define a to be the
derivative of A∗.

Let us next observe that if A ∈ A∗, then the operator TA can be informally
described as

TA = −i d
dt

+ a(t) +
∑
p∈PA

c(p)δp.

In other words, TA would like to be a Dirac type operator whose coefficients are
measures.

We will now give a precise description of TA as a closed unbounded selfadjoint
operator defined by an elliptic boundary value problem. We need to introduce some
more terminology.

For any u defined on an interval [a−, a+], a− < a+, and any x ∈ (a−, a+) we set

γ±u := u(a±), u(x+ 0) := lim
t↘x

u(t), u(x− 0) := lim
t↗x

u(t).

We will say that a± is the outgoing/incoming boundary of the interval. For any
partition of [0, L], P = {0 < t1 < · · · < tn−1 < L}, we set

t0 := 0, tn := L, Ik := [tk−1, tk], k = 1, . . . , n,
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we define the Hilbert space

HP :=

n⊕
k=1

L2(Ik,C),

and the Hilbert space isomorphism

IP : H →HP, H 3 f 7→
(
f |I1 , . . . , f |In

)
∈HP.

Let A ∈ A∗ and P = {0 < t1 < · · · < tn−1 < L} be a partition that contains the
set of discontinuities of A, P ⊃ PA. We set

a =
dA∗
dt

, ; ak = a|Ik , k = 1, . . . , n.

For j = 1, . . . , n−1 we denote by cj = cj(A) the jump of A at tj . Finally, we define
the closed unbounded linear operator

LA,P : Dom(LA,P) ⊂HP →HP,

where Dom(LA,P) consists of n-uples (uk)1≤k≤n ∈HP such that

uk ∈ L1,2(Ik), k = 1, . . . , n, (1.14a)

γ−uj+1 = e−icjγ+uj , j = 1, . . . , n− 1, (1.14b)

un(L) = u1(0). (1.14c)

and

LA,P(u1, . . . , un) =
(
−idu1

dt
+ a1u1, . . . ,−i

dun
dt

+ anun

)
. (1.15)

A standard argument shows that LA,P is closed, densely defined and selfadjoint. In
particular, the operator (LA,P + i) is invertible, with bounded inverse.

Theorem 1.8. For any A ∈ A∗ and any partition P = {0 < t1 < · · · < tn−1 < L}
that contains the set of discontinuities of A we have the equality

LA,P = IPTAI
−1
P .

Proof. For simplicity we write LA instead of LA,P. We will prove the equivalent
statement

(i+ LA)−1 = IP(TA + i)−1I−1
P = IPRAI

−1
P .

In other words, we have to prove that for any u, f ∈H if u = RAf , then

u ∈ Dom(LA) and (LA + i)IPu = IPf.

More precisely, we have to show that the collection IAu = (uk)1≤k≤n satisfies
(1.14a–1.14c) and (1.15). Using (1.2) we deduce

u(t) =
ie−ΦA(t)

eΦA(L) − 1

∫ L

0

eΦA(s)f(s)ds+ ie−ΦA(t)

∫ t

0

eΦA(s)f(s)ds. (1.16)

This implies the condition (1.14a). The condition (1.15) follows by direct compu-
tation using (1.16).

Next, we observe that

γ+uj =
ie−ΦA(tj−0)

eΦA(L) − 1

∫ L

0

eΦA(s)f(s)ds+ ie−ΦA(tj−0)

∫ tj

0

eΦA(s)f(s)ds,

γ−uj+1 =
ie−ΦA(tj+0)

eΦA(L) − 1

∫ L

0

eΦA(s)f(s)ds+ ie−ΦA(tj+0)

∫ tj

0

eΦA(s)f(s)ds,
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from which we conclude that

γ−uj+1 = e−
(

ΦA(tj+0)−ΦA(tj−0)
)
γ+uj , ∀j = 1, . . . n− 1.

This proves (1.14b). The equality (1.14c) follows directly from (1.5). ut

Remark 1.9 (Transmission operators). We would like to place the above opera-
tor LA in a broader perspective that we will use extensively in Section 4. Consider
a compact, oriented 1-dimensional manifold with boundary I. In other words, I is
a disjoint union of finitely many compact intervals

I = tnk=1Ik.

If Ik := [ak, bk], ak < bk, then we set

∂+Ik := {bk}, ∂−Ik := {ak}, ∂+I := {b1, . . . , bn}, ∂−I := {a1, . . . , an}.

In particular, we have a direct sum decomposition of (finite dimensional) Hilbert
spaces

E := L2(∂I,C) = L2(∂+I)⊕ L2(∂−I) =: E+ ⊕E−.
On the space C∞(I,C) of smooth complex valued functions on I we have a canon-
ical, symmetric Dirac D operator described on each Ik by −i ddt . We have a natural
operator

J : L2(∂I,C)→ L2(∂I,C), J |E± = ∓i1E± .

It thus defines a Hermitian symplectic structure in the sense of [1, 5, 14]. A (her-
mitian) lagrangian subspace of E is then a complex subspace L such that L⊥ = JL.
We denote by Lag(E, J) the Grassmannin of hermitian lagrangian spaces. We de-
note by Iso(E+,E−) the space of linear isometries E+ → E−. As explained in [1]
there exists a natural bijection4

Iso(E+,E−)→ Lag(E), Iso(E+,E−) 3 T 7−→ ΓT ,

where ΓT is the graph of T viewed as a subspace of E. Our spaces E± are equipped
with natural bases and through these bases we can identify Iso(E+,E−) with the
unitary group U(n). We denote by ∆ the Lagrangian subspace corresponding to
the identity operator.

Any subspace V ⊂ E defines a Fredholm operator

DV : Dom(DV ) ⊂ L2(I,C)→ L2(I,C),

where

Dom(DV ) =
{
u ∈ L1,2(I,C); u|∂I ∈ V

}
, DV u = Du.

A simple argument shows that DV is selfadjoint if and only if V ∈ Lag(E). As
we explained above, in this case V can be identified with the graph of an isometry
T : E+ → E−. We say that T is the transmission operator associated to the
selfadjoint boundary value problem.

For example, if in Theorem 1.8 we let A(t) =
∑n−1
j=1 cjH(t− tj), then we see that

the operator LA can be identified with the operator DΓT , where the transmission

4There are various conventions in the definition of this bijection. We follow the conventions in
[5].
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operator T ∈ Iso(E+,E−) is given by the unitary n× n matrix

T =



0 0 0 · · · 0 1
e−ic1 0 0 · · · 0 0
0 e−ic2 0 · · · 0 0
...

...
...

...
...

...
· · · · · ·
0 0 0 · · · e−icn−1 0


.

ut

2. The Atiyah-Patodi-Singer theorem

We review here the Atiyah-Patodi-Singer index theorem for Dirac operators on
manifold with boundary, when the metric is not assumed to be cylindrical near the
boundary. Our presentation follows closely, [8, 9], but we present a few more details
since the various orientation conventions and the terminology in [8, 9] are different
from those in [3, 13] that we use throughout this paper.

Suppose (M̂, ĝ) is a compact, oriented Riemann, and M ⊂ M̂ be a hypersurface

in M̂ co-oriented by a unit normal vector field ν along M . Let n := dimM so that

dim M̂ = n+ 1. We denote by g the induced metric on M . We first want to define
a canonical restriction to M of a Dirac operator on M̂ .

Let expĝ : TM̂ → M̂ denote the exponential map determined by the metric Ĥ.
For sufficiently small ε > 0 the map

(−ε, ε)×M 3 (t, p) 7→ expĝp
(
tν(p)

)
∈ M̂

is a diffeomorphism onto a small open tubular neighborhood Oε of M . The metric g
determines a cylindrical metric dt2+g on (−ε, ε)×M . Via the above diffeomorphism
we get a metric ĝ0 on Oε. We say that ĝ0 is the cylindrical approximation of ĝ near
M .

We denote by ∇̂ the Levi-Civita connection of the metric ĝ and by ∇̂0 the Levi-
Civita connection of the metric ĝ0. We set

Ξ := ∇̂ − ∇̂0 ∈ Ω1
(
Oε, End(TM̂ )

)
.

To get a more explicit description of Ξ we fix a local oriented, g-orthonormal frame
(e1, . . . , en) on M . Together with the unit normal vector field ν we obtain a local

oriented orthonormal frame (ν, e1, . . . , en) of TM̂ |M . We extend it by parallel
transport along the geodesics orthogonal to M to a local, oriented orthonormal

frame (ν̂, ê1, . . . , ên) of TM̂ .

Denote by ω̂ the connection form associated to ∇̂ by this frame, and by θ̂ the

connection form associated to ∇̂0 by this frame. We can represent both ω̂ and θ̂
as skew-symmetric (n+ 1)× (n+ 1) matrices

ω̂ =
(
ω̂ij
)

0≤i,j≤n, θ̂ =
(
θ̂
i

j

)
0≤i,j≤n,

where the entries are 1-forms. Then Ξ = ω̂ − θ̂.
We set ê0 := ν̂, and we denote by (êk)0≤k≤n the dual orthonormal frame of

T ∗M̂ . Then we have

ω̂ij = ω̂ikj ê
k, θ̂

i

j = θ̂
i

kj ê
k, ∇̂kêj = ω̂ikj êi, ∇̂0

kêj = θ̂
i

kj êi, ∀0 ≤ j, k ≤ n,
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where we have used Einstein’s summation convention.

Observe that ∇̂0ê0 = 0 so that θ̂
i

0 = θ̂
0

i = 0. Also,

ω̂ijk = θ̂
i

jk, ∀1 ≤ i, j, k ≤ n.
If we write

Ξ =
(
Ξi
j

)
0≤i,j≤n, Ξi

j = Ξi
jkê

k,

and we let o(1) denote any quantity that vanishes along M , then

Ξi
j = −Ξj

i , ∀0 ≤ i, j ≤ n, (2.1)

Ξi
kj = o(1), ∀1 ≤ i, j ≤ n, 0 ≤ k ≤ n. (2.2)

We set

Ξkij := Ξi
kj = ĝ

(
∇̂kêj , êi

)
, ω̂ij := ω̂ij , θ̂ij := θ̂

i

j , ωkij := ωikj , θkij := θikj .

We denote by Q the second fundamental form5 of the embedding M ↪→ M̂ ,

Q(ei, ej) = g(∇̂eiν, ej).

Along the boundary we have the equalities

Ξkj0 = Ξjk0 = −Ξk0j = Q(ej , ek) ∀1 ≤ i, j ≤ n, (2.3a)

Ξij0 = 0, ∀0 ≤ i, j ≤ n. (2.3b)

To understand the nature of the restriction to a hypersurface of a Dirac operator

we begin with a special case. Namely, we assume that M̂ is equipped with a spin

structure. We denote by Ŝ the associated complex spinor bundle so that Ŝ is Z/2-

graded is dim M̂ is even, and ungraded otherwise. We have a Clifford multiplication

ĉ : T ∗M → End(Ŝ).

The metrics ĝ and ĝ0 define connections ∇̂spin and ∇̂spin,0 on Ŝ|Oε . Using the local
frame (êi)0≤i,j≤n we can write

∇̂spink = ∂k −
1

4
ω̂kij ĉ(ê

i)ĉ(êj), ∇̂spin,0k = ∂k −
1

4
θ̂kij ĉ(ê

i)ĉ(êj),

where we again use Einstein’s summation convention.

Using the connections ∇̂spin and ∇̂spin,0 we obtain two Dirac operators D̂ and

respectively D̂0 on Ŝ|Oε

D̂ =

n∑
i=0

ĉ(êi)∇̂spini , D̂0 =

n∑
i=0

ĉ(êi)∇̂spin,0i .

Identifying Oε with (−ε, ε) × M we obtain a projection π : Oε → M . We set

S := Ŝ|M . The parallel transport given by ∇̂spin yields a bundle isomorphism

Ŝ|Oε ∼= π∗S. Using these identifications we can rewrite the operators D̂ and D̂0 as

D̂ = ĉ(ê0)
(
∇̂spin0 −D(t)

)
: C∞(π∗S)→ C∞(π∗S),

D̂0 = ĉ(ê0)
(
∂0 −D0(t)) : C∞(π∗S)→ C∞(π∗S).

The operators D(t) and D0(t) are first order differential operators

C∞(Ŝ|{t}×M )→ C∞(Ŝ|{t}×M ),

5Our definition of the second fundamental form differs by a sign and a factor from the usual

definition. With our definition the round sphere Sn ⊂ Rn+1 cooriented by the outer normal has
positive mean curvature n.
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and thus can be viewed as t-dependent operators on S.
The operator D0(t) is in fact independent of t and thus we can identify it with a

Dirac operator on C∞(S)→ C∞(M). It is called the canonical restriction of D̂ to

M , and we will denote it by RM (D̂). This operator is intrinsic to M . More precisely

when dim M̂ is even then S is the direct sum of two copies of the spinor bundle

on M and the operator RM (D̂) is the direct sum of two copies of the spin-Dirac

operator determined by the Riemann metric on M . When dim M̂ is odd then S is

the spinor bundle on M and RM (D̂) is the spin-Dirac operator determined by the
metric on the boundary and the induced spin structure. We would like to express
RM (D̂) in terms of D(t)|t=0.

Lemma 2.1. Let hM : M → R be the mean curvature of M ↪→ M̂ , i.e., the scalar
hM := trQ. Then,

D(t)|t=0 = RM (D̂)− 1

2
hM . (2.4)

Proof. Let ν∗ := ê0 ∈ C∞
(
T ∗M̂ |

∂M̂

)
, set J := ĉ(ν∗) and define

c : T ∗M → End(S)

by setting

c(α) := ĉ(ν∗(p) )ĉ(α) = J ĉ(α), ∀p ∈M, α ∈ T ∗M ⊂ (T ∗M̂)|M .
Observe first that

RM (D̂) = D0(t) = ∂0 + JD̂0.

Next we observe that

∇̂spin − ∇̂spin,0 = −1

4

∑
i,j

Ξij ĉ(ê
i)ĉ(êj).

so that

∇̂spin0 − ∇̂spin,00 = ∇̂spin0 − ∂0 = −1

4
Ξ0ijJ ĉ(ê

i)ĉ(êj) = o(1),

D̂ − D̂0 = −1

4

∑
i,j,k

Ξkij ĉ(ê
k)ĉ(êi)ĉ(êj) =: L.

We denote by L(t) the restriction of L to the slice {t} × M so that L(t) is an

endomorphism of Ŝ|{t}×M . Hence

D̂ = J∂0 − JD(t), D(t) = JD̂ + ∂0 = JD̂0 + ∂0 + JL = D0(t) + JL,

so that

D(0) = RM (D̂) + JL(t)|t=0.

Thus, we need to compute the endomorphism JL(t)|t=0. We have

JL = −1

4

∑
i,j,k

JΞkij ĉ(ê
k)ĉ(êi)ĉ(êj).

There are many cancellations in the above sum. Using (2.2) we deduce that the
terms corresponding to k = 0 vanish. Using (2.1) we deduce that the terms corre-
sponding to i, j > 0 or i = j also vanish along the boundary. Thus

JL = −1

4

∑
i 6=j,k 6=0

ΞkijJ ĉ(ê
k)ĉ(ei)ĉ(ej) + o(1)
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= −1

2

∑
i>j,k>0

ΞkijJ ĉ(ê
k)ĉ(ei)ĉ(ej) + o(1)

= −1

2

∑
i>0,k>0

Ξki0J ĉ(ê
k)ĉ(êi)ĉ(ê0) + o(1).

Using the equalities J = ĉ(ê0), J ĉ(e`) = −ĉ(êk)J for ` > 0 we deduce

JL =
1

2

∑
i,k>0

Ξki0ĉ(e
k)ĉ(êj) = −1

2

∑
j>0

Ξii0 + o(1) = −1

2
trQ.

This proves (2.4). ut

Remark 2.2. An equality similar to (2.4) was proved in [12, Lemma 4.5.1], although
in [12] the authors use different conventions for the induced Clifford multiplication
on the boundary that lead to some sign differences. That is why we chose to go
through all the above computational details. ut

If now Ê → M̂ is a hermitian vector bundle over M̂ and ∇̂E is a Hermitian
connection on Ê then we obtain in standard fashion a twisted Dirac operator D̂E :

C∞(Ŝ⊗ Ê)→ C∞(Ŝ⊗ Ê). Using the parallel transport given by ∇̂E we obtain an

isomorphism Ê|Oε ∼= π∗E, where E := Ê|M . Along Oε the operator D̂E has the
form

D̂E = J(∂t −DE(t)).

If on Oε we replace the metric ĝ with its cylindrical approximation ĝ0, then we
obtain a new Dirac operator

D̂E,0 : C∞
(
π∗(S⊗ E)

)
→ C∞(π∗

(
S⊗ E)

)
,

which near the boundary has the form J(∂t −DE0
), where

DE,0 : C∞(S⊗ E)→ C∞(S⊗ E).

We set RM (D̂E) := DE,0 and as before we obtain the identity

DE(t)|t=0 = RM (D̂E)− 1

2
hM . (2.5)

This is a purely local result so that a similar formula holds for the geometric Dirac
operators determined by a spinc structure.

We want to apply the above discussion to a very special case. Consider a compact
oriented surface Σ with, possibly disconnected, boundary ∂Σ. We think of ∂Σ as a
hypersurface in Σ cooriented by the outer normal.

Fix a Riemann metric ĝ on Σ, smooth up to the boundary. Denote by s the
arclength coordinate on a component ∂0Σ of the boundary. As before we can
identify an open neighborhood O of this component of the boundary with a cylinder
(−ε, 0]× S1. In this neighborhood the metric ĝ has the form

ĝ = dt2 + w2ds2,

where w = w(t, s) : (−ε, 0] × S1 → (0,∞) is a smooth positive function in the
variables t, s such that w(0, s) = 1, ∀s.

The metric and the orientation on Σ defines an integrable almost complex struc-
ture J : TΣ→ TΣ. More precisely, J is given by the counterclockwise rotation by
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π/2. We denote by KΣ the canonical complex line bundle determined by J . We
get a Dolbeault operator

(∂̄ + ∂̄∗) : C∞(CΣ ⊕K−1
Σ )→ C∞(CΣ ⊕K−1

Σ ).

This can be identified with the Dirac operator defined by the metric ĝ and the
spinc structure determined by the almost complex structure J . The associated
line bundle is K−1

Σ , and the connection on K−1
Σ is the connection induced by the

Levi-Civita connection of the metric ĝ.
Let us explain this identification this identification on the cylindrical neighbor-

hood O. We set

e0 = dt, e1 = wds.

Then {e0, e1} is an oriented, orthonormal frame of T ∗Σ|O. We denote by {e0, e1}
its dual frame of TΣ. We let c : T ∗Σ→ End(CΣ⊕KΣ) be the Clifford multiplication
normalized by the condition that the operator dV := c(e0)c(e1) on CΣ ⊕K−1

Σ has
the block decomposition [3, §3.2],

c(e0)c(e1) =

[
−i 0
0 i

]
. (2.6)

The Levi-Civita connection of the metric ĝ induces a natural connection on on K−1
Σ ,

and if we use the trivial connection on CΣ we get a connection ∇̃ on CΣ⊕K−1
Σ . The

associated Dirac operator is DΣ = c◦∇̃ and we have the equality DΣ =
√

2(∂̄+ ∂̄∗).
The even part of this operator is

D+
Σ =

√
2∂̄ : C∞(CΣ)→ C∞(K−1

Σ ).

We want to compute its canonical restriction to the boundary. If we denote by ∂
the trivial connection on CΣ, then

D+
Σ := c(e0)∂e0

+ c(e1)∂e1
= c(e0)

(
∂t − c(e0)c(e1)∂e1

)
so that

D+
Σ (t) = c(e0)D+

Σ + ∂t = c(e0)c(e1)∂e1

(2.6)
= −i∂e1

.

Above, the operator D+
Σ (t) is, canonically, a differential operator

D+
Σ (t) : C∞(C∂Σ)→ C∞(C∂Σ),

where C∂Σ denotes the trivial complex line bundle over ∂Σ. The boundary restric-
tion is then according to (2.5)

R∂Σ(∂̄) = D+
Σ (t) +

1

2
h = −i∂e1 +

1

2
h. (2.7)

Let us observe that along the boundary we have ∂e1
= ∂s. A simple computation

shows that the mean curvature is is the restriction to t = 0 of the function w′t.
Consider the Atiyah-Patodi-Singer operator

∂̄APS : Dom(∂̄APS) ⊂ L2(Σ)→ L2(Σ), ∂̄APSu = ∂̄u,∀u ∈ Dom(∂̄APS),

where

Dom(∂̄APS) = {u ∈ L1,2(Σ,C); u|∂Σ ∈ Λ−∂
}
,

and Λ−∂ is the closed subspace of L2(∂Σ) generated by the eigenvectors of the
operator B := R∂Σ(∂̄) corresponding to strictly negative eigenvalues.
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The index theorem of [8, 9] implies ∂̄APS is Fredholm and

iAPS(Σ, g) := index (∂̄APS) =
1

2

∫
Σ

c1(Σ, g)− ξB , ξB :=
1

2

(
dimB + ηB(0)

)
.

Above, c1(Σ, g) ∈ Ω2(Σ) is the 2-form 1
2πKgdVg, where Kg denotes the sectional

curvature of g and dVg denotes the metric volume form on Σ. From the Gauss-
Bonnet theorem for manifolds with boundary [15, §6.6] we deduce∫

Σ

c1(Σ, g) +
1

2π

∫
∂Σ

hds = χ(Σ),

where h : ∂Σ→ R is the mean curvature function defined as above. We deduce

iAPS(Σ, g) =
1

2
χ(Σ)− 1

4π

∫
Σ

hds− ξB . (2.8)

3. Dolbeault operators on two-dimensional cobordisms

When thinking of cobordisms we adopt the Morse theoretic point of view. For
us an elementary (nontrivial) 2-dimensional cobordism will be a pair (Σ, f), where
Σ is a compact, connected, oriented surface with boundary, f : Σ → R is a Morse
function with a unique critical point p0 located in the interior of Σ such that

f(Σ) = [−1, 1], f(∂Σ) = {−1, 1}, f(p0) = 0.

In more intuitive terms, an elementary cobordism looks like one of the two pair of
pants in Figure 1, where the Morse function is understood to be the altitude.

Figure 1. Elementary 2-dimensional cobordisms.

We set

∂±Σ := f−1(±1).

In the sequel, for simplicity, we will assume that ∂+Σ is connected, i.e., the pair
(Σ, f) looks like the left-hand-side of Figure 1.

We fix a Riemann metric g on Σ. For simplicity6 we assume that in an open
neighborhood O near p0 there exist local coordinates such that, in these coordinates
we have

g = dx2 + dy2, f(x, y) = −αx2 + βy2, (3.1)

where α, β are positive constants. We let ∇f denote the gradient of f with respect
to this metric and we set

Ct := f−1(t), t 6= 0.

6The results to follow do not require the simplifying assumption (3.1) but the computations
would be less transparent.



DIRAC OPERATORS ON COBORDISMS: DEGENERATIONS AND SURGERY 19

For t 6= 0 we regard Ct as cooriented by the gradient ∇f . We let ht : Ct → R be
the mean curvature of this cooriented surface. For t 6= 0 we set

Lt =

∫
Ct

ds = length (Ct), ωt :=
1

4π

∫
Ct

htds.

The singular level set C0 is also equipped with a natural measure defined by the
arclength measure on C0 \{0}. The length of C0 is finite since in a neighborhood of
the singular point p0 the level set isometric to a pair of intersecting line segments
in an Euclidean space.

Denote by W± the stable/unstable manifolds of p0 with respect to the flow Φt

generated by −∇f . The unstable manifold intersects the region {−1 ≤ f < 0} in
two smooth paths (see bottom half of Figure 2)

[−1, 0) 3 t 7→ at, bt ∈ Ct, ∀t ∈ [−1, 0),

while the stable manifold intersects the region {0 < f ≤ 1} in two smooth paths
(the top half of Figure 2)

(0, 1] 3 t 7→ at, bt ∈ Ct, ∀t ∈ (0, 1].

Observe that limt→0 at = limt→0 bt = p0. For this reason we set a0 = b0 = p0.

a

a
a

a

a

a

a

a

b

b b

b

b

b

b

b

t

t

t t

t

t
t

t

1

1

-1
-1

-1
-1

1 2

3
4

0
0

Figure 2. Cutting an elementary 2-dimensional cobordism.

As we have mentioned before, for t < 0 the level set Ct consists of two curves.
We denote by Cat the component containing the point at and by Cbt the component
containing bt. For t < 0 we set

Lat :=

∫
Cat

ds, Lbt :=

∫
Cbt

ds, ωat :=
1

4π

∫
Cat

htds, ωbt :=
1

4π

∫
Cbt

htds

so that
Lt = Lat + Lbt , ωt = ωat + ωbt , ∀t < 0.

Fix a point ā−1 ∈ Ca−1 \ {a−1} and a point b̄−1 ∈ Cb−1 \ {b−1}. For t ∈ [−1, 1]

we denote by āt (respectively b̄t) the intersection of Ct with the negative gradient
flow line through ā−1 (respectively b̄−1). We obtain in this fashion two smooth
maps ā, b̄ : [−1, 1] → Σ; see Figure 2. For t > 0 we denote by Iat the component
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of Ct \ {at, bt} that contains the point āt and by Ibt the component of Ct \ {at, bt}
that contains the point b̄t.

The regular part C∗0 = C0 \ {p0} consists of two components Ca0 and Cb0. We set

1

4π
ωa0 :=

1

4π

∫
Ca0

h0ds, ωb0 :=
1

4π

∫
Cb0

h0ds, ω0 :=
1

4π

∫
C∗0

h0ds = ωa0 + ωb0. (3.2)

Note that the limits limt→0 L
a
t , limt→0 L

b
t exist and are finite. We denote them by

La0 and respectively Lb0. We have

La0 + Lb0 = L0 := length (C)0.

Let Dt denote the restriction of ∂̄ to the cooriented curve Ct, t 6= 0. As explained
in the previous section we have

Dt =

{
−i dds + 1

2ht, t > 0,

(−i dds + 1
2ht)|Cat ⊕ (−i dds + 1

2ht)|Cbt t < 0.

If we set

ρt := ωat − bωtc, ρat := ωbt − bωat c, ρbt := ωbt − bωbt c,
then the computations in Section 1 imply

ξ(t) := ξDt =
1

2

{
1− 2ρt, t > 0

(1− 2ρat ) + (1− 2ρbt), t < 0.
(3.3)

+ Throughout this and the next section we assume that both D±1 and are invertible.

We organize the family of complex Hilbert spaces L2(Ct, ds;C), t ∈ [−1, 1] as a
trivial bundle of Hilbert spaces as follows.

First, observe that C0 \{ā0, b̄0, p0} is a disjoint union of four open arcs I1, . . . , I4
labeled as in Figure 2. Denote by `j the length of Ij so that

L0 = `1 + · · ·+ `4, La0 = `1 + `4, Lb0 = `2 + `3.

For t > 0 we can isometrically identify the oriented open arc Ct \ āt with the open
interval (0, Lt). We obtain in this fashion a canonical isomorphism

I+
t := L2(Ct, ds;C)→ L2

(
[0, Lt];C

)
.

The rescaling (0, L0) 3 t 7→ t/λt ∈ (0, Lt), λt = L0/Lt, induces as in Remark 1.6 a
Hilbert space isomorphism

R+
t : L2

(
[0, Lt];C

)
→ L2

(
[0, L0];C

)
=: H0.

Note that we have a partition P+ of [0, L0]

0 = t0 < t1 < t2 < t3 < t4 = L0, tj − tj−1 = `j , ∀j = 1, . . . , 4. (3.4)

In this notation, the points corresponding to t1 and t3 belong to the stable manifold
of the critical point p0. This defines a Hilbert space isomorphism

U+ : L2
(

[0, L0];C
)
→

4⊕
j=1

L2([tj−1, tj ];C) =

4⊕
j=1

L2(Ij , ds;C) =: H0.

For t < 0 we have

L2(Ct, ds;C) = L2(Cat , ds;C)⊕ L2(Cbt , ds;C).
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By removing the points āt and b̄t we obtain Hilbert space isomorphisms

L2(Cat , ds;C)→ L2
(

[0, Lat ];C
)
, L2(Cbt , ds;C)→ L2

(
[0, Lbt ];C

)
that add up to a Hilbert space isomorphism

I−t : L2(Ct, ds;C)→ L2
(

[0, Lat ];C
)
⊕ L2

(
[0, Lbt ];C

)
.

By rescaling we obtain a Hilbert space isomorphism

R−t : L2
(

[0, Lat ];C
)
⊕ L2

(
[0, Lbt ];C

)
→ L2

(
[0, La0 ];C

)
⊕ L2

(
[0, Lb0];C

)
.

Next observe that we have isomorphisms

Ua− : L2
(

[0, La0 ];C
)
→ L2(I1, ds;C)⊕ L2(I4, dsC),

Ub− : L2
(

[0, Lb0];C
) ∼= L2(I3, ds;C)⊕ L2(I3, ds;C),

that add up to an isomorphisms

U− : L2
(

[0, L0];C
)
→

4⊕
j=1

L2(Ij , ds;C).

For t = 0 we let J0 be the natural isomorphism

J0 : L2(C0, ds;C)→
4⊕
j=1

L2(Ij , ds;C) ∼= H0.

Now define

Jt :=


U+R

+
t I

+
t , t > 0,

U−R
−
t I
−
t , t < 0,

J0, t = 0.

We use the collection of isomorphisms Jt organizes the collection L2(Ct, ds;C) as a
trivial Hilbert H bundle over [−1, 1].

Theorem 3.1. (a) The operators Dt := JtDtJ
−1
t converge in the gap topology as

t→ 0± to Fredholm, selfadjoint operators D±0 .
(b) The eta invariants of D±0 exist, and we set

ξ± :=
1

2

(
dim kerD±0 + ηD±0

(0)
)
,

If kerD±0 = 0, then we have7

iAPS(∂̄) + lim
ε→0+

(
SF
(
Dt; ε < t ≤ 1

)
+ SF

(
Dt, −1 ≤ t < −ε

) )
= −(ξ+ − ξ−).

(3.5)

Proof. We set

St :=

{
U−1

+ DtU+, t > 0

U−1
− DtU−, t < 0.

To establish the convergence statements we show that the limits limt→0± St exist in
the gap topology of the space of unbounded selfadjoint operators on L2(0, L0;C).

7The condition kerD±0 = 0 is satisfied for an open and dense set of metrics g satisfying (3.1).
When this condition is violated the identity (3.5) needs to be slightly modified to take into account

these kernels.
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We discuss separately the cases ±t > 0, corresponding to restrictions to level sets
above/below the critical level set {f = 0}.
A. t > 0. We observe that

Dom(St) =
{
u ∈ L1,2(0, L0;C); u(L0) = u(0)

}
, St(u) = −iλt

d

ds
+

1

2
ht
(
s/λt

)
,

where we recall that the constant λt is the rescaling factor L0/Lt. We set

Kt(s) :=
1

λt

∫ s

0

ht
(
σ/λt

)
dσ.

Using the fact that λt → 1 and Proposition 1.3 we see that it suffices to show that
Kt is very weakly convergent in AL0 ; see Definition 1.1. Thus it suffices to prove
two things.

The limit limt→0+ Kt(L0) exists. (A1)

The limits limt→0+ Kt(s) exists for almost any s ∈ (0, L0). (A2)

Proof of (A1). Observe that

Kt(L0) =

∫
Ct

htds =

∫
Ct−O

htds+

∫
O∩Ct

htds,

where O is the neighborhood where (3.1) holds. The intersection of Ct with O is
depicted in Figure 3.

x

y

t

t

t

t

t>0

t>0

t<0

t<0

C

C
C

C

θ

θ+

−

Figure 3. The behavior of Ct near the critical point.

The integral
∫
Ct\O htds converges as t → 0+ to

∫
C0\O h0ds. Next, observe that

the intersection Ct ∩O consists of two oriented arcs (see Figure 3) and the integral∫
O∩Ct ht computes the total angular variation of the oriented unit normal vector
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field along these oriented arcs. (The orientation of the normal is given by the
gradient of the Morse function.) Using the notations in Figure 3 we see that this
total variation approaches −2θ+ as t→ 0+. Hence

lim
t→0+

Kt(L0) =

∫
C0\0

h0ds− 2θ+,

so that

ω+
0 = lim

t→0+
ωt =

1

4π
lim
t→0+

∫
Ct

htds = ω0 −
θ+

2π
. (3.6)

Proof of (A2). Let C∗t := Ct \ {āt} and define s = s(q) : C∗t → (0,∞) to be the
coordinate function on C∗t such that the resulting map C∗t 3 q 7→ σ(q) = s(q)/λt ∈
R is an orientation preserving isometry onto (0, Lt). In other words, σ is the
oriented arclength function measured starting at āt, and s defines a diffeomorphism
C∗t → (0, L0). Let qt : (0, L0)→ C∗t be the inverse of this diffeomorphism.

Consider the partition (3.4). Observe that there exist positive constants c and ε
such that, whenever

∀t ∈ (0, ε), ∀s ∈ [t1 − c, t1 + c] ∪ [t3 − c, t3 + c] : qt(s) ∈ O,

the numbers tj are defined by (3.4). Intuitively, the intervals [t1 − c, t1 + c] ∪ [t3 −
c, t3 + c] collect the parts of Ct that are close to the critical point p0. The length
of each of the two components of Ct that are close to p0 is bounded from below by
2c/λt.

To prove part (b) it suffices to understand the behavior of Kt(s) for s ∈ [t1 −
c, t1 + c] ∪ [t3 − c, t3 + c]. We do this for one of the components since the behavior
for the other component is entirely similar. We look at the component of Ct ∩ O

that lies in the lower half-plane in Figure 3).
Here is a geometric approach. As explained before, the difference Kt(s)−Kt(t1−

c) computes the angular variation of the oriented unit normal to Ct over the in-
terval [t1 − c, s]. A close look at Figure 3 shows that the absolute value of this
is bounded above by θ+. This proves the boundedness part of the bounded con-
vergence theorem. The almost everywhere convergence is also obvious in view
of the above geometric interpretation. The limit function is a bounded function
K0 : [0, L0]→ R that has jumps −θ+ at t1 and t3

K0(t1 + 0)−K0(t1−)) = K(t3 + 0)−K(t3 − 0) = −θ+,

while the continuous function

K0(t) + θ+H(t− t1) + θ+H(t− t3)

is differentiable everywhere on [0, L0] \ {t1, t3} and the derivative is the mean cur-
vature function h0 of C0 \ {p0}.

We can now invoke Theorem 1.8 to conclude that the operators Dt converge as
t→ 0+ to the operator

D+
0 : Dom(D+

0 ) ⊂ L2(0, L0;C)→ L2(0, L0;C),

where Dom(D+
0 ) consists of functions u ∈ L2(0, L0;C) such that, if we denote by

uj the restriction of u to Ij = (tj−1, tj), 1 ≤ j ≤ 4, then

uj ∈ L1,2(Ij), ∀j = 1, . . . , 4,
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γ−u2 = eiθ+/2γ+u1

γ−u4 = eiθ+/2γ+u3

γ+u2 = γ−u3

γ+u+ = γ−u0,

(T+)

while for u ∈ Dom(D+
0 ) we have(

D+
0 u
)
|Ij =

(
−i d
ds

+
1

2
h0(s)

)
uj , ∀j = 1, . . . , 4.

Using the point of view elaborated in Remark 1.9, we let I denote the disjoint
union of the intervals Ij , j = 1, . . . , 4. We regard D+

0 as a closed densely defined
operator on the Hilbert space L2(I,C) with domain consisting of quadruples u =
(u1, . . . , u4) ∈ L1,2(I) satisfying the boundary condition

γ−u = T+γ+u,

where

T+ : C4 ∼= L2(∂+I)→ L2(∂−I) ∼= C4,

is the transmission operator given by the unitary 4× 4 matrix

T+ =


0 0 0 1

eiθ+/2 0 0 0
0 1 0 0
0 0 eiθ+/2 0

 and D+
0

 u1

...
u4

 =

(
−i d
ds

+
1

2
h0

) u1

...
u4

 .
Using (1.10) we deduce that

ξ+ = ξD+
0

=
1

2
(1− 2ρ+), ρ+ = ω+

0 − bω
+
0 c = ω0 −

θ+

2π
−
⌊
ω0 −

θ+

2π

⌋
. (3.7)

B. t < 0. We observe that St = Sat ⊕ Sbt , where for • = a, b we have

S•t : Dom(S•t ) ⊂ L2(0, L•0;C)→ L2(0, L•0;C),

Dom(S•t ) =
{
u ∈ L1,2(0, L•0;C); u(L•0) = u(0)

}
, S•tu = −iλ•t

d

ds
+

1

2
ht
(
s/λ•t

)
,

and λ•t is the rescaling factor
L•0
L•t

. It is convenient to regard S•t as defined on the

component C•0 of C∗0 . Observe that Ca0 \ {ā0} = I1 ∪ I4 and Cb0 \ {b̄0} = I2 ∪ I3.
Arguing as in the case t > 0 we conclude that

lim
t↗0

ωat = ωa0 +
θ−
4π
, lim
t↗0

ωbt = ωa0 +
θ−
4π
, ω−0 := lim

t↗0
ωt = ω0 +

θ−
2π
, (3.8)

and that the operators Da
t and Db

t converge in the gap topology as t → 0− to
operators

Da
0 : Dom(Da

0) ⊂ L2(I1)⊕ L2(I4)→ L2(I1)⊕ L2(I4),

Db
0 : Dom(Db

0) ⊂ L2(I2)⊕ L2(I3)→ L2(I2)⊕ L2(I3),

where Dom(Da
0) consists of functions (u1, u4) ∈ L1,2(I1)⊕ L1,2(I4) such that

γ−u4 = e−iθ−/2γ+u1, γ+u4 = γ−u1,

Dom(Db
0) consists of functions (u2, u3) ∈ L1,2(I3)⊕ L1,2(I3) such that

γ−u2 = e−iθ−/4πγ+u3, γ−u3 = γ+u2,
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where θ− is depicted in Figure 3, and

Da
0(u1, u4) =

(
−idu1

ds
+

1

2
h0u1,−i

du4

ds
+

1

2
h0u4

)
,

Da
0(u2, u3) =

(
−idu2

ds
+

1

2
h0u2,−i

du3

ds
+

1

2
h0u3

)
.

The direct sum D−0 = Da
0⊕Db

0 is the closed densely defined linear operator on L2(I)
with domain of quadruples u = (u1, . . . , u4) ∈ L1,2(I,C) satisfying the boundary
condition

γ−u = T−γ+u,

where T− : C4 ∼= L2(∂+I) → L2(∂+I) ∼= C4 is the transmission operator given by
the unitary 4× 4 matrix

T− =


0 0 0 1
0 0 e−iθ−/2 0
0 1 0 0

e−iθ−/2 0 0 0

 and D−0

 u1

...
u4

 =

(
−i d
ds

+
1

2
h0

) u1

...
u4

 .
Then ξ− = ξa− + ξb−, where for • = a, b we have

ξ•− =
1

2
(1− 2ρ•−), ρ•− = ω•0 +

θ−
4π
−
⌊
ω•0 +

θ−
4π

⌋
. (3.9)

Combining (3.6) and (3.8) with the equality θ+ + θ− = π we deduce

ω+
0 − ω

−
0 = lim

t↘0
ωt − lim

t↗0
ωt = −1

2
. (3.10)

To prove (3.5) we use the index formula (2.8). We have

iAPS(∂̄) = −1

2
− ω1 + ω−1 − ξD1

+ ξD−1
.

(3.10)
= ω+

0 − ω
−
0 − ω1 + ω−1 − ξD1 + ξD−1

= (ω+
0 + ξ+)− (ω1 + ξD1

)− (ω−0 + ξ−) + (ω−1 + ξD−1
)− (ξ+ − ξ−)

(1.12)
= − lim

ε→0+
SF
(
Dt; ε < t ≤ 1

)
− lim
ε→0+

SF
(
Dt, −1 ≤ t < −ε

)
− (ξ+ − ξ−).

ut

Remark 3.2. (a) We want to outline an analytic argument proving (A2). Using
(3.1) we deduce that this component has a parametrization compatible with the
orientation given by

yt = −
(
ζt +mx2

)1/2
, |x| < dt, (3.11)

where ζt = t
β , m = α

β and dt is such that the length of this arc is 2c/λt. Observe

that there exists d∗ > 0 such that limt→0+ dt = d∗. We have

dyt = −mx
(
ζt +mx2

)−1/2
dx.

Set

y′t :=
dyt
dx

= −mx
(
ζt +mx2

)−1/2
,

y′′t :=
d2yt
dx2

= −m
(
ζt +mx2

)−1/2
+m2x2

(
ζt +mx2

)−3/2
= − mζt

(ζt +mx2)3/2
.
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The arclength is

dσ2 =
(

1 + (y′t)
2
)
dx2 =

(
1 +

m2x2

ζt +mx2

)
︸ ︷︷ ︸

=:w(t,x)2

dx2.

The mean curvature ht is found using the Frênet formulæ, [15]. More precisely,

ht(x) =
y′′t
w3 . Then

htdσ = htwdx =
y′′t

1 + (y′t)
2
dx = − mζtdx

(ζt +mx2)1/2(ζt +mx2 +m2x2)
.

We observe now that we can write htdσ = φ∗t ( ρ∞du ), where φt is the rescaling
map

x 7→ u = t−1/2x and ρ∞(u) = − mζ1
(ζ1 +mu2)1/2(ζ1 +mu2 +m2u2)

.

This allows us to conclude via a standard argument that the densities htdσ converge
very weakly as t→ 0+ to a δ-measure concentrated at the origin.

(b) The results in Theorem 3.1 extend without difficulty to Dolbeault operators
twisted by line bundles. More precisely, given a Hermitian line bundle L and a
hermitian connection A on L, we can form a Dolbeault operator ∂̄A : C∞(L) →
C∞(L⊗K−1

Σ ). Fortunately, all the line bundles on a the two-dimensional cobordism
Σ are trivializable. We fix a trivialization so that the connection A can be identified
with a purely imaginary 1-form A = ia, a ∈ Ω1(Σ). Then

∂̄A = ∂̄ + ia0,1.

The restriction of D+
A =

√
2∂̄A to the cooriented curve Ct is

DA(t) = −i∇As +
1

2
ht = −i d

ds
+

1

2
ht + at, at := a

( d

ds

)
∈ Ω0(Ct).

As in the proof of Theorem 3.1, we only need to understand the behavior of at
in the neighborhood O ∩ Ct. Suppose for simplicity t > 0 and we concentrate only
on the component of Ct ∩ O that lies in the lower half-plane of Figure 3. In the
neighborhood O we can write

a = pdx+ qdy, p, q ∈ C∞(O).

Using the parametrization (3.11) we deduce that

a|Ct∩O =
(
p−mqx(ζt +mx2)−1/2

)
dx = atds = atwdx

Hence, as t→ 0+, the measure atds converges to the measure(
p−m1/2(2H(x)− 1 )

)
dx. ut

Remark 3.3. One may ask what happens in the case of a cobordism corresponding
to a local min/max of a Morse function. In this case Σ is a disk, the regular level sets
Ct are circles and the singular level set is a point. Consider for example the case of a
local minimum. Assume that the metric near the minimum p0 is Euclidean, and in
some Euclidean coordinates near p0 we have f = x2 +y2. Then Ct is the Euclidean
circle of radius t1/2, and the function ht is the constant function ht = t−1/2. Then
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ωt = 1
2 , ξt = 1

2 and the Atiyah-Patodi-Singer index of ∂̄ on the Euclidean disk of

radius t1/2 is 0. The operator Dt can be identified with the operator

−i d
ds

+
1

2t1/2

with periodic boundary conditions on the interval [0, 2πt1/2]. Using the rescaling
trick in Remark 1.6 we see that this operator is conjugate to the operator Lt =
−t1/2i dds+ 1

2 on the interval [0, 2π] with periodic boundary conditions. The switched
graphs of these operators

Γ̃Lt =
{

(Ltu, u); u ∈ L1,2([0, 2π]; C); u(0) = u(2π)
}
⊂H ⊕H,

H = L2([0, 2π]; C),

converge in the gap topology to the subspace H+ = H ⊕ 0 ⊂ H ⊕H. This limit
is not the switched graph of any operator. However, this limiting space forms a
Fredholm pair with H− = 0⊕H and invoking the results in [5] we conclude that
the limit limε↘0 SF (Lt; ε ≤ t ≤ t0) exists and it is finite. ut

4. The Kashiwara-Wall index

In this final section we would like to identify the correction term in the right hand
side of (3.5) with a symplectic invariant that often appears in surgery formulæ. To
this aim, we need to elaborate on the symplectic point of view first outlined in
Remark 1.9.

Fix a finite dimensional complex hermitian space E, set n := dimCE,

Ê := E ⊕E, E+ := E ⊕ 0, E− := 0⊕E,

and let J : Ê → Ê be the unitary operator given by the block decomposition

J =

[
−i 0
0 i

]
.

We let Lag denote the space of hermitian lagrangians on Ê, i.e., complex subspaces

L ⊂ Ê such that L⊥ = JL. As explained in [5, 14], any such a lagragian can be
identified with the graph8 of a complex isometry T : E+ → E−, or equivalently,
with the group U(E) of unitary operators on E. In other words, the graph map

Γ : U(E)→ Lag(Ê), U(E) 7→ ΓT ⊂ Ê

is a diffeomorphism. The involution L ↔ JL on Lag corresponds via this diffeo-
morphism to the involution T ↔ −T on U(E).

We define a branch of the logarithm log : C∗ → C by requiring Im log ∈ [−π, π).
Equivalently,

log z =

∫
γz

dζ

ζ
,

8In [11] a lagrangian is identified with the graph of an isometry E− → E+ which explains why
our formulæ will look a bit different than the ones on [11]. Our choice is based on the conventions

in [5] which seem to minimize the number of signs in the Schubert calculus on Lag.
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where γz : [0, 1] → C is any smooth path from 1 to z such that γz(t) 6∈ (−∞, 0],
∀t ∈ [0, 1). In particular, log(−1) = −πi. Following [11, §6] we define

τ : U(E)× U(E)→ R, τ(T0, T1) =
1

2πi
tr log(T−1

1 T0) =
1

2πi

∑
λ∈C∗

(
log λ

)
mλ,

where mλ := dim ker(λ− T−1
1 T0). Observe that

e2πiτ(T0,T1) =
detT0

detT1
, (4.1a)

τ(T0, T1) + τ(T1, T0) = −dim ker(T0 + T1). (4.1b)

Via the graph diffeomorphism we obtain a map

µ = τ ◦ Γ : Lag ×Lag → R.

The equality (4.1b) can be rewritten as

τ(L0, L1) + τ(L1, L0) = −dim(L0 ∩ JL1) = − dim(JL0 ∩ L1). (4.2)

We want to relate the invariant τ to the eta invariant of a natural selfadjoint
operator. We associate to each pair L0, L1 ∈ Lag the selfadjoint operator

DL0,L1
: V (L0, L1) ⊂ L2(I, Ê)→ L2(I, Ê),

where

V (L0, L1) =
{
u ∈ L1,2(I, Ê); u(0) ∈ L0, u(1) ∈ L1

}
, DL0,L1

u = J
du

dt
.

This is a selfadjoint operator with compact resolvent. We want to describe its
spectrum, and in particular, prove that it has a well defined eta invariant. Let
T0, T1 : E+ → E− denote the isometries associated to L0 and respectively T1. Then
T−1

1 T0 is a unitary operator on E+ so its spectrum consists of complex numbers of
norm 1.

Proposition 4.1. For any L0, L1 ∈ Lag we have

specDL0,L1 =
1

2i
exp−1

(
spec(T−1

1 T0)
)
. (4.3)

In particular, the spectrum of DL0,L1
consists of finitely many arithmetic progres-

sions with ratio π so that the eta invariant of DL0,L1 is well defined.

Proof. Observe first that any u ∈ L2(I, Ê) decomposes as a pair

u = (u+, u−), u± ∈ L2(I,E±).

If u ∈ V (L0, L1) is an eigenvector of DL0,L1
corresponding to an eigenvalue λ, then

u satisfies the boundary value problems

− idu+

dt
= λu+, i

du

dt
= λu−, (4.4a)

u−(0) = T0u+(0), u−(1) = T1u+(1). (4.4b)

The equalities (4.4a) imply that

u+(1) = eiλu+(0), u−(1) = e−iλu−(0).

Using (4.4b) we deduce

eiλT1u+(0) = u−(1) = e−iλu−(0) = e−iλT0u+(0).
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Hence

e2iλ ∈ spec(T−1
1 T0) =⇒ λ ∈ 1

2i
exp−1

(
spec(T−1

1 T0)
)
.

Running the above argument in reverse we deduce that any

λ ∈ 1

2i
exp−1

(
spec(T−1

1 T0)
)

is an eigenvalue of DL0,L1 . ut

We let ξ(L0, L1) denote the reduced eta invariant of DL0,L1 ,

ξ(L0, L1) =
1

2

(
dim kerDL0,L1 + ηDL0,L1

(0)
)
.

If eiθ1 , . . . , eiθn , θ1, . . . , θn ∈ [0, 2π), are the eigenvalues of T−1
1 T0, then the spec-

trum of DL0,L1 is

spec
(
D(L0, L1)

)
=

n⋃
k=1

{θk
2

+ πZ
}
,

and we deduce as in Section 1 using (1.8) that

ηDL0,L1
=

∑
θk∈(0,2π)

(
1− θk

π

)
,

and

ξ(L0, L1) =
1

2

∑
θk∈(0,2π)

(
1− θk

π

)
+

1

2
dim kerDL0,L1 .

On the other hand,

1

2πi
tr log(−T−1

1 T0) =
1

2π

∑
θk∈[0,2π)

(θk − π)

= −1

2

∑
θk∈(0,2π)

(
1− θk

π

)
− 1

2
dim ker(T0 − T1).

Since kerDL0,L1
∼= ker(T0 − T1) ∼= L0 ∩ L1 we conclude

τ(T0,−T1) = τ(−T0, T1) = τ(JL0, L1) = −ξ(L0, L1). (4.5)

Following [11] (see also [4]) we associate to each triplet of lagrangians L0, L1, L2

the quantity

ω(L0, L1, L2) := τ(L1, L0) + τ(L2, L1) + τ(L0, L2),

and we will refer to it as the (hermitian) Kashiwara-Wall index (or simply the
index ) of the triplet. Observe that ω is indeed an integer since (4.1a) implies that

e2πiω(L0,L1,L2) = 1.

We set

d(L0, L1, L2) := dim(JL0 ∩ L1) + dim(JL1 ∩ L2) + dim(JL2 ∩ L0).

Using (4.2) we deduce that for any permutation ϕ of {0, 1, 2} with signature ε(ϕ) ∈
{±1} we have

ω(L0, L1, L2)− ε(ϕ)ω(Lϕ(0), Lϕ(1), Lϕ(2)) = −d(L0, L1, L2)×

{
0, ϕ even

1, ϕ odd.
(4.6)
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We want to apply the above facts to a special choice of Ê. Let I denote the disjoint
union of the intervals I1, . . . , I4 introduced in Section 3. They were obtained by
removing the points ā0, p0 and b̄0 from the critical level set C0; Figure 2. We
interpret I as an oriented 1-dimensional with boundary and we let

Ê := L2(∂I), E± = L2(∂±I).

The spaces E± have canonical bases and thus we can identify both of them with

the standard Hermitian space E = C4. Define J : Ê → Ê as before. We have a
canonical differential operator

D0 : C∞(I,C)→ C∞(I,C), D0

 u1

...
u4

 =


−idu1

dt + 1
2h0|I1

...

...

−idu1

dt + 1
2h0|I4

 ,
We set ωk := 1

4π

∫
Ik
h0ds so that

ω0 = ω1 + · · ·+ ω4, ωa0 = ω1 + ω4, ωb0 = ω2 + ω3.

We have a natural restriction map γ : C∞(I,C) → L2(∂I,C) = Ê, and we define
the Cauchy data space of D0 to be the subspace

Λ0 := γ(kerD0) ⊂ Ê.

We can verify easily that Λ0 is a Lagrangian subspace of Ê that is described by the
isometry T 0 : E+ → E− given by the diagonal matrix

T 0 = Diag
(
e2πiω1 , . . . , e2πiω4

)
.

+ In the remainder of this section we assume9 that the operators D±0 that appear
in Theorem 3.1 are invertible.

Proposition 4.2. Let D±0 be the operators that appear in Theorem 3.1. Then

ξD±0
= −ξ

(
ΓT± ,Λ0

)
= ξ
(

Λ0,ΓT±

)
= −τ(JΛ0,ΓT±) (4.7)

Proof. We need to find the spectra of T−1
0 T±. We set zk = e−2πiωk , k = 1, . . . , 4,

ρ+ = eiθ+/2 and ρ− = e−iθ−/2. Then

T ∗0T+ =


0 0 0 z1

z2ρ+ 0 0 0
0 z3 0 0
0 0 z4ρ+ 0

 , T ∗0T− =


0 0 0 z1

0 0 z2ρ− 0
0 z3 0 0

z4ρ− 0 0 0

 .
The eigenvalues of T ∗0T+ are the fourth order roots of ζ+ = ρ2

+z1 · · · z4 = ei(θ+−2πω0).
Hence

exp−1
(

spec(T ∗0T+)
)

=
i(θ+ − 2πω0)

4
+
πi

2
Z.

Using (4.3) we deduce

spec
(
DΓT+

,Λ0

)
=
π

4

{(θ+

2π
− ω0

)
+ Z

}
.

9This assumption is satisfied for a generic choice of metric on Σ.
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The eigenvalues of T ∗0T− are the square roots of z1z4ρ− = e−i(θ−/2+2πωa0 ) and

z2z3ρ− = e−i(θ−/2+2πωb0). Hence

spec
(
DΓT− ,Λ0

)
=

{
−π

2

(
θ−
4π

+ ωa0

)
+
π

2
Z
}
∪
{
−π

2

(
θ−
4π

+ ωb0

)
+
π

2
Z
}
.

The desired conclusion follows using (1.10), (3.7), (3.9) and (4.5). ut

Theorem 4.3. Under the same assumptions and notations as in Theorem 3.1 we
have

iAPS(∂̄) + lim
ε→0+

SF
(
Dt; ε < t ≤ 1

)
+ lim
ε→0+

SF
(
Dt, −1 ≤ t < −ε

)
= −ω(JΛ0,ΓT+

,ΓT−).

Proof. We have

iAPS(∂̄) + lim
ε→0+

SF
(
Dt; ε < t ≤ 1

)
+ lim
ε→0+

SF
(
Dt, −1 ≤ t < −ε

)
(3.5)
= −(ξ+ − ξ−)

(4.7)
= −τ(ΓT+ , JΛ0)− τ(JΛ0,ΓT−)

= −ω(JΛ0,ΓT+ ,ΓT−) + τ(ΓT− ,ΓT+).

To compute τ(ΓT− ,ΓT+) = τ(T−,T+) we need to compute the spectrum of T ∗+T−.
A simple computation shows that

T ∗+T− =


0 0 −i 0
0 1 0 0
−i 0 0 0
0 0 0 1


From the second and forth column we see that 1 is an eigenvalue of T ∗−T+ with
multiplicity 2. The other two eigenvalues are ±i, namely the eigenvalues of the
2× 2 minor [

0 −i
−i 0

]
.

This shows that τ(T−,T+) = 0. ut
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