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DIRAC OPERATORS ON COBORDISMS: DEGENERATIONS
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ABSTRACT. We investigate the Dolbeault operator on a pair of pants, i.e., an
elementary cobordism between a circle and the disjoint union of two circles.
This operator induces a canonical selfadjoint Dirac operator Dy on each regular
level set Ct of a fixed Morse function defining this cobordism. We show that
as we approach the critical level set Cp from above and from below these
operators converge in the gap topology to (different) selfadjoint operators D4
that we describe explicitly. We also relate the Atiyah-Patodi-Singer index of
the Dolbeault operator on the cobordism to the spectral flows of the operators
D¢ on the complement of Cp and the Kashiwara-Wall index of a triplet of finite
dimensional lagrangian spaces canonically determined by Cj.

INTRODUCTION

Suppose (M, g) is compact oriented odd dimensional Riemann manifold. We let
Mdenote the cylinder [0,1] x M and § denote the cylindrical metric dt? + g.

Let D be a first order elliptic operator operator on a vector bundle over M that
has the form

D = o(dt)(V, — D(t)), (1)

where o denotes the principal symbol of lA), and for every t € [0,1] the operator
D(t) on {t} x M is elliptic and symmetric. For simplicity we assume that both
D(0) and D(1) are invertible.

A classical result of Atiyah, Patodi and Singer [2, §7] (see also [12, §17.1]) relates
the index iAps(ﬁ) of the Atiyah-Patodi-Singer problem associated to D to the
spectral flow SEF'( D(t)) of the family of Fredholm selfadjoint operators D(¢). More

precisely, they show that
iaps(D)+SF(D(t), 0<t<1)=0. (A)

We can regard the cylinder M as a trivial cobordism between {0} x M and {1} x M,
and the coordinate ¢ as a Morse function on M with no critical points.

In this paper we initiate an investigation of the case when M is no longer a
trivial cobordism. We outline below the main themes of this investigation.

First, we will concentrate only on elementary cobordisms, the ones that trace a
single surgery. We regard such a cobordism as a pair (Z/W\ , ), where M is an even
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dimensional, compact oriented manifold with boundary, and f is a Morse function
on M with a single critical point py such that

fM) = [=1,1], f(OM) ={-1,1}, f(po) = 0.
We set My := f~!(#£1) so that we have a diffeomorphism of oriented manifolds
OM = My U—M_. Suppose that g is a Riemann metric on M and D : C*(E) —

C>(E_) is a Dirac type operator on M, where E; @ E_ is a Z/2-graded bundle
of Clifford modules.

Using the unitary bundle isomorphism ﬁo(df ): Ey — E_ defined away from
the critical level set we can regard 13|{f¢0} as an operator C®(E}) — C>®(Ey).
As explained in [8] (see also Section 2 of this paper), for every t # 0, there is a
canonically induced symmetric Dirac operator D(t) on the slice M; = f~1(t). We
regard D(t) as a linear operator D(t) : C®(E|p,) — C*(E4|n,), so that, if §
were a cylindrical metric, then formula (1) would hold.

The Riemann metric ¢ defines finite measures dV; on all the slices M;, including
the singular slice My. In particular, we obtain a one-parameter family of Hilbert
spaces

H, := L*(M,,dV;; Ey).
We can now regard D(t) as a closed, densely defined linear operator on Hy.

Problem 1. Organize the family (H¢);c[—1,1) as a trivial Hilbert bundle over the
interval [—1,1]
H=H x[-1,1] — [-1,1].
Under reasonable assumptions on f and § we can use the gradient flow of f to
address this issue. Once this problem is solved we can regard the operators D(t),

t # 0 as closed densely defined operators on the same Hilbert space H. We can
then formulate our next problem.

Problem 2. Investigate whether the limits
SF_:=1lim SF(D(t),-1<t< —¢), SFy :=lmSF(D(t), e<t<1).
eNo e\

exist and are finite.

If Problem 2 has a positive answer we are interested in a version of (A) relating

these limits to the Atiyah-Patodi-Singer index of D in the noncylindrical formula-
tion of [8, 9].

Problem 3. Express the quantity
§ :=iaps(D)+ SF_ + SF, (B)
in terms of invariants of the singular level set M.

The existence of the limits in Problem 2 is a consequence of a much more refined
analytic behavior of the family of operators D(t) that we now proceed to explain.
We set

H=HoH, H. =H®0, H_ :=0& H,

and we denote by Lag the Grassmannian of hermitian lagrangian subspaces H.
These are complex subspaces L C H satisfying L+ = JL, where J : H ® H —
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H @ H is the operator with block decomposition
0 -1
J= [ R } |
Following [5] we denote by Lag™ the open subset of Lag consisting of lagrangians
L such that the pair of subspaces (L, H_) is a Fredholm pair, i.e.,

L+ H_ isclosed and dimL N H_ < co.

As explained in [5], the space Lag~ equipped with the gap topology of [10, §IV.2]
is a classifying spaces for the complex K-theoretic functor K.

To a closed densely defined operator T : Dom(T) C H — H we associate its
switched graph

Iy = {(Th, h) € H: he Dom(T) }

Then T' is selfadjoint if and only if Iy € Lag. It is also Fredholm if and only if
I'r € Lag™. We can now formulate a refinement of Problem 2.

Problem 2*. Investigate whether the limits fi = lims o r D(+t) exist in the gap
topology and, if so, do they belong to Lag™.

The gap convergence of the switched graphs of operators is equivalent to the
convergence in norm as t — 0% of the (compact) resolvents R; = (i + D(t))~*. To
show that fi € Lag™ it suffices to show that the limits RL = lim;_,q+ R; exist.
Automatically, these limits will be compact operators which guarantees that the
limits belong to Lag~. If in addition® fi NH_ = 0, then the limits in Problem 2
exist and are finite.

An even analog of Problem 2* was investigated in [16]. The role of the smooth
slices M; was played there by a 1-parameter family of Riemann surfaces degenerat-
ing to a Riemann surface with single singularity of the simplest type, a node. The
authors show that the gap limit of the graphs of Dolbeault operators on M; exists
and they described it explicitly.

In this paper we solve Problems 1, 2* and 3 in the symplest possible case, when
M is an elementary 2-dimensional cobordism, i.e., a pair of pants (see Figure 1)
and D is the Dolbeault operator on the Riemann surface M. The other possibil-
ity, namely the cobordism corresponding to the case when the critical point is a
local minimum/maximum is not very complicated, but it displays an interesting
analytical phenomenon. We discuss it at length in Remark 3.3.

We solved Problem 1 by an ad-hoc intuitive method. The limits fi in Problem
2* turned out to be switched graphs of certain Fredholm selfadjoint operators D,
'y =Tp,.

We describe these limiting operators as realizations of two different boundary
value problems associated to the same symmetric Dirac operator Dy defined on
the disjoint union of four intervals. These intervals are obtained by removing the
singular point of the critical level set My and then cutting in half each of the
resulting two components. The boundary conditions defining D4 are described
by some (4-dimensional) hermitian lagrangians Ay determined by the geometry of

IThe condition fi NH_ =0is not really needed, but it makes our presentation more trans-
parent. In any case, it is generically satisfied.
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the singular slice My. The operators Dy have well defined eta invariants ny. If
ker Dy = 0, then we can express the defect § in (B) as

5=%(nf—n+)~ (©)
The above difference of eta invariants admits a purely symplectic interpretation
very similar to the signature additivity defect of Wall [19]. More precisely, we show
that
62—w(Aé,A+,A_), (D)
where Ay is the Cauchy data space of the operator Dy and w(Lg, L1, L2) denotes
the Kashiwara-Wall index of a triplet of lagrangians canonically determined by Mp;
see [4, 11, 19] or Section 4.

Here is briefly how we structured the paper. In Section 1 we investigate in great
detail the type of degenerations that occur in the family D(t) as t — 0%. It boils
down to understanding the behavior of families of operators of the unit circle S of
the type

L. = —idie + a:(9),
where {ac}es¢ is a family of smooth functions on the unit circle that converges in
a rather weak sense way as ¢ — 0 to a Dirac measure supported at a point 6y. For
example, if we think of a. as densities defining measures converging weakly to the
Dirac measure, then the corresponding family of operators has a well defined gap
limit; see Corollary 1.5.

In Theorem 1.8 we give an explicit description of this limiting operator as an
operator realizing a natural boundary value problem on the disjoint union of the
two intervals, [0, 60] and [0y, 27]. The boundary conditions have natural symplectic
interpretations. This section also contains a detailed discussion of the eta invariants
of operators of the type —i% + a(f), where a is a allowed to be the “density” of
any finite Radon measure.

In Section 2 we survey mostly known facts concerning the Atiyah-Patodi-Singer
problem when the metric near the boundary is not cylindrical. Because the various
orientation conventions vary wildly in the existing literature, we decided to go
careful through the computational details. We discuss two topics. First, we explain
what is the restriction of a Dirac operator to a cooriented hypersurface and relate
this construction to another conceivable notion of restriction. In the second part of
this section we discuss the noncylindrical version of the Atiyah-Patodi-Singer index
theorem. Here we follow closely the presentation in [8, 9].

In Section 3 we formulate and prove the main result of this paper, Theorem 3.1.
The solution to Problem 2* is obtained by reducing the study of the degenerations
to the model degenerations investigated in Section 1. The equality (C) follows
immediately from the noncyclindrical version of the Atiyah-Patodi-Singer index
theorem discussed in Section 2 and the eta invariant computations in Section 1. In
the last section we present a few facts about the Kashiwara-Wall triple index and
then use them to prove (D). Our definition of triple index is the one used by Kirk
and Lesch [11] that generalizes to infinite dimensions.

Let us say a few words about conventions and notation: We consistently orient
the boundaries using the outer-normal-first convention. We let i stand for /—1
and we let L*P denote Sobolev spaces of functions that have weak derivatives up
to order k that belong to LP.
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1. A MODEL DEGENERATION

Let L > 0 be a positive number. Denote by H the Hilbert space L*([0, L], C). To
any measurable function a : R — R which is bounded? and L-periodic we associate
the selfadjoint operator

D, :Dom(D,) C H — H,

where
Dom(D,) = { we L'2(0,2,C); u(0) = u(L)}, Dyu= —i% bauw  (L1)

In this section we would like to understand the dependence of D, on the potential
a, and in particular, we would like to allow for more singular potentials such as a
Dirac distribution concentrated at an interior point of the interval. We will reach
this goal via a limiting procedure that we implement in several steps.

We observe first that D, can be expressed in terms of the resolvent R, :=
(i+ Dy)" ' as D, = R;' — 4. The advantage of this point of view is that we can
express R, in terms of the more regular function

A(t) ::/0 a(s)ds. (%)

which continues to make sense even when there is no integrable function a such
that () holds. For example, we can allow A(t) to be any function with bounded
variation so that, formally, a ought to be the density of any Radon measure on
[0, L].

This will allow us to conclude that when we have a family of smooth potentials
an that converge in a suitable sense to something singular such as a Dirac function,
then the operators D, have a limit in the gap topology to a Fredholm selfadjoint
operator with compact rezolvent. We show that in many cases this limit operator
can be expressed as the Fredholm operator defined by a boundary value problem.

We begin by expressing R, as an integral operator. We set

A(t) ::/O a(s)ds, ®u(t) :=1A(t) —t.

For f € H the function u = R, f is the solution of the boundary value problem

(i—ii>u+au= fy uw(0) =u(L).

dt
An elementary computation yields the equality
je—2a(t) L a(8) ot a(t)-BaCs)
““):Raf:m/o ¢ “sf(s)dSﬂ/O e~ (PO f(5)ds. (1.2)

The key point of the above formula is that R, can be expressed in terms of the
antiderivative A(t) which typically has milder singularities than a. To analyze the
dependence of R, on A we introduce a class of admissible functions.

2The assumption a € L° guarantees that:1) au € L2(0, L), Yu € LY2(0,L); 2) the densely
defined operator D, is closed.
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Definition 1.1. (a) We say that A : [0,L] — R is admissible if A has bounded
variation, it is right continuous, and A(0) = 0. We denote by A or Ay, the class of
admissible functions.

(b) We say that a sequence {4, },>0 C A converges very weakly to A € A if there
exists null measure subset A C (0, L) such that

Tim A, (t) = A(t), Ve [0,L]\ A. =

Remark 1.2. (a) Note that if A, converges very weakly to A, then A, (L) converges
to A(L).
(b) Let us explain the motivation behind the “very weak” terminology. An admis-
sible function A defines a finite Lebesgue-Stieltjes measure py on [0, L], and the
resulting map A — p4 is a linear isomorphism between A and the space of finite
Borel measures on [0, L], [7, Thm. 3.29]. Thus, we can identify A with the space
of finite Borel measures on [0, L]. As such it is equipped with a weak topology.
According to [6, §4.22], a sequence of Borel measures u 4, is weakly convergent
to pa if and only if pa, (O) = p4(0), for any (relatively) open subset O of [0, L].
This clearly implies the very weak convergence introduced in Definition 1.1. O

Inspired by (1.2), we define for every A € A the function ®4(t) = 1A(t) —t and
the integral kernels

7

W)lef(%(t)*@"“)), vt,s € [0, L],
c -

84 :[0,L] x[0,L] = C, Sa(t,s) =

Ka:[0,L] x[0,L] = C, X : s
A~[7 ]X[a }_> ) A(tvs)_ ie_(q,A(t)_(I,A(s)) t> s

Observe that there exists a constant C' > 0 such that
I8allzo(10,x[0,2)) + 1K allz=(jo,2)x[0,L)) < C, VA € A. (1.3)

Thus, these kernels define bounded compact operators Sa, K4 : H — H; see [18,
§X.2]. Moreover, if we denote by || ® ||op the operator norm on the space B(H) of
bounded linear operators H — H, then we have the estimates

Sallop < I8allz2(j0,z1x[0,L1)s 1K allop < 1K allL2(o,2)x[0,L))- (1.4)
We can now rewrite (1.2) as
R, =R4s:=54+K4. (1.5)

Proposition 1.3. If A, converges very weakly to A then Sa, and K4, converge
in the operator norm topology to S4 and respectively K 4.

Proof. The very weak convergence implies that

k—o0 k—oo

Sa,(t,s) — Sa(t,s), Ka,(t,s) — Ka(t,s) a.e. on [0,L] x [0, L].

Using (1.3), the above pointwise convergence and the dominated convergence the-
orem we deduce

nlggo( 8.4, = 8allr2(o,L1x10,L7) + 1K a, = Kallzzo,zx[0,2)) ) =0.
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The inequalities (1.4) now imply that
Tim (1S4, = Sallop + 154, = Sallop ) =0.

O

We want to describe the spectral decompositions of the operators R4, A € A.
To do this we rely on the fact that, for certain A’s, the operator R4 is the resolvent
of an elliptic selfadjoint operator on S'. We use this to produce an intelligent guess
for the spectrum of R4 in general.

Let a be a smooth, real valued, L-period function on R and form again the
operator D, defined in (1.1). We set as usual

All) = /O a(s)ds.

The operator D, has discrete real spectrum. If u(t) is an eigenfunction correspond-
ing to an eigenvalue A, then

d d
—id—?—l—au:)\uédfz—%i(a—)\)uzo
so that u(t) = u(0)e*41+A  The periodicity assumption implies AL — A(L) €

277 so the spectrum of D, is

A(L)

o2

2
spec(D,) = {)\A,n = —W(wA —l—n); n e Z}, where wy = (1.6)

L

The eigenvalue A4, is simple and the eigenspace corresponding to A4, is spanned
by

Yan(t) = B P CIORE D
The numbers A4, and the functions 4 ,, are well defined for any A € A.

Lemma 1.4. Let A € A. Then the collection {14, (t); n € Z} defines a Hilbert
basis of H .

Proof. Observe first that the collection

27w nit

en(t) =vYa—on(t) =€ L , neZ

is the canonical Hilbert basis of H that leads to the classical Fourier decomposition.
The map

A(L
(L)t)

Us:H— H, H> f(t) —» e {40

is unitary. It maps e, to ¥4, which proves our claim. a

A direct computation shows that
1

R = —
AwA,n 2+ )\A,n

¢A,n7 VA € A, Ac A

This proves that for any A € A the collection {14, }nez is a Hilbert basis that
diagonalizes the operator R4. Observe that R4 is injective and compact. We define

Ty =R, —1i.
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The operator T4, is unbounded, closed and densely defined with domain Dom(T4) =
Range (R4). We will present later a more explicit description of Dom(7T4) for a
large class of A’s. Note that when

t
A= / a(s)ds, a smooth and L-periodic,
0
the operator T4 coincides with the operator D, defined in (1.1). Proposition 1.3

can be rephrased as follows.

Corollary 1.5. If the sequence (Ap)n>1 C A converges very weakly to A € A, then
the sequence of unbounded operators (Ta, )n>1 converges in the gap topology to the
unbounded operator Ty . a

The spectrum of T4 consists only of the simple eigenvalues A4, n € Z. The
function 14, is an eigenfunction of 7'y corresponding to the eigenvalue A4 . The
eta invariant of T4 is now easy to compute. For s € C we have

na(s) =3 L (dim ker(A — T) — dimker(\ + TA)>

A>0As
B Z sign\a,  L* Z sign(n +wa)
nEZ\{—wa} Al 2 nEZ\{—wa4} In+wal
et AL |AD)
s sl = _ 1. 1.
pa == lwal = 52 = |40 e o) (7

If pg = 0, then n4(s) = 0 because in this case the spectrum of T4 is symmetric
about the origin. If p4 # 0, then we have

L 1 1 L
nals) = (Z (n+pA)s_Z (n+1 PA)S> T (C(S’pA)_C(S’l_pA))’

27s
n>0 n>0

where for every p € (0,1] we denoted by ((s, p) the Riemann-Hurwitz zeta function

1
C(sip) =D
= (n+p)

The above series is convergent for any s € C, Res > 1, and admits an analytic

continuation to the puctured plane C\ {s = 1}. Its value at the origin s = 0 is
given by Hermite’s formula [17, §13.21]

1
0.0 =5~ p (1.8)
We deduce that 74(s) has an analytic continuation at s = 0 and we have
. 0 if pa=0,
n(0) _{ 1-2ps if pac(0,1).

Following [2, Eq.(3.1)], we introduce the reduced eta function

(1.9)

1
p = §(dimkerTA —i—nA(O)).

Then we can rewrite the above equality in a more compact way

1

1
€a=5(0=2pa) =5 —pa (1.10)
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Suppose we have Ag, A; € A. We set A; = Ag + s(A1 — Ag) € A. The map
[0,1] > s = A, € A is continuous in the weak topology on A and thus the family
of operators T4, is continuous with respect to the gap topology. The eigenvalues
of the family T4, can be organized in smooth families

2 2
Asn = %(ws +n)= ;

Assume for simplicity that wo, w; & Z, i.e., the operators T4, and T4, are invertible.
Denote by SF(A1, Ag) the spectral flow of the affine family® T4,. Then

SF(A1,Ag) = #{neZ; —wyp <n< —wo}—#{nEZ; —wp < n < —wl}
= #(Zﬂ(wo,wl)) —#(Zﬁ (w17w0))-

(wAO +s(w1 —wo) —l—n), ws i=wa,,; Vs €[0,1].

‘We conclude

A;(L
SF(A1,A0) = ( Lwlj — |_w()J ), Ww; = 2(7T ) (111)
Using (1.10) we deduce
SF(Al’AO) = |_WA1J - LwAOJ =wa, —wa, T (5141 _5140 ) (1'12)
Remark 1.6 (The rescaling trick). Note that the rescaling
T Ll
0,L t=—-¢€l0,L = —.
[31]97’_> CE[,O],C LO

induces an isometry I, 1, : Hp, = L*([0,Lo};C) — Hp, = L?( [0, L1];C),
T
Hi, 5 ()= 92,0, /(r) = ¢ 2f (2 ) € Hy,.

The unbounded operator % on Hy, is the conjugate to the operator cd% on Hy,.
If a(t) is a real bounded measurable function on [0, L], then the bounded opera-
tor on H 1, defined by pointwise multiplication by a(t) is conjugate to the bounded
operator on H, defined by the multiplication by a(7) = a(7/c). Hence the un-
bounded operator Dy on Hp, is conjugate to the unbounded operator cD.-1, on
HL1 )
¢De-1q = I, 0oDaIL) 1) (1.13)
Its resolvent is obtained by solving the periodic boundary value problem

u+ c (—'deT + c_la(T)) u(t) = f(7), w(0)=wu(Ly).
If we set
A(r) = /0 a(o)do and ®a.(t) = (1) = ¢ HEA(T) — 7),

then we see that R, is conjugate to the integral operator R4 .

¢ liem®ac(D s @ >
Racf() = St [ e sy 4 o7 [ @020 o)

Arguing exactly as in the proof of Proposition 1.3 we deduce that if A,, coverges
very weakly to A € Ar, and the sequence of positive numbers ¢,, converges to the
positive number ¢, then R4, ., converges in the operator norm to R4 c.

3The quantity SF(A1, Ao) is independent of the weakly continuous path As connecting Ag to
A since the space A equipped with the weak topology is contractible. It is thus an invariant of
the pair (A1, Ao).
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For any ¢ > 0 and A € A we define the operator
Tae=Ry,—1i, ¢>0.
Note that T4 . = cT.-14. Then for every ¢ > 0 the spectrum of Ty . is
spec(TA’c) :cspec(chlA). a

We want to give a more intuitive description of the operators R4, and T4 for
a large class of A’s. We begin by introducing a nice subclass A, of A. Let H(t)
denote the Heaviside function

1, t>0
Hity={ " "=
0, t<0.

Definition 1.7. We say that A € A is nice if there exists a € L>°(0, L), a finite
subset P C (0, L), and a function ¢ : P — R such that

A(t) = Au(t) + > c(p)H(t —p), Vt€[0,L], A.(t) ;:/0 a(s)ds.

PEA

We denote by A, the subcollection of nice functions. O

Let us first point out that A, is a vector subspace of A. Next, observe that
A € A* if and only if there exists a finite subset P 4 C (0, L) such that the restriction
of A to [0, L]\ P is Lipschitz continuous. The function A admits left and right limits
at any point ¢ € [0, L] and we define the jump function

c: Py =R, ¢(p) = tl{r;) A(t) — }gr; A(t).

Then
Au(t) = A(t) =D e(p)H(t — p)
pe?P
is Lipschitz continuous, it is differentiable a.e. on [0, L], and we define a to be the
derivative of A,.
Let us next observe that if A € A,, then the operator T4 can be informally
described as p
Ta = —i% +a(t) + Z c(p)dp.
PEPA
In other words, T4 would like to be a Dirac type operator whose coeflicients are
measures.

We will now give a precise description of T4 as a closed unbounded selfadjoint
operator defined by an elliptic boundary value problem. We need to introduce some
more terminology.

For any u defined on an interval [a_,a4], a_— < ay, and any x € (a_,a4) we set

= = 1i t - =i t).
Yo = u(as). ule-+0)i=lmu(®), ule - 0) = limu(t)
We will say that as is the outgoing/incoming boundary of the interval. For any
partition of [0, L], P ={0<t; <--- <t,_1 < L}, we set
to 1= 0, ty = L, Ik = [tk—latk‘], k:].,...,n,
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we define the Hilbert space

Hy =@ L*(I,, C),
k=1
and the Hilbert space isomorphism
jy:H—)H:p, H > fl—) (f|[1,...,f|]n) EHg:.
Let Aec A, and P = {0 < 1 < -+ < tp—1 < L} be a partition that contains the
set of discontinuities of A, P D P 4. We set
dA,
a=-—s =alr, k=1,...,n.
For j =1,...,n—1 we denote by ¢; = ¢;(A) the jump of A at ;. Finally, we define
the closed unbounded linear operator
LAJ: : DOIH(LA,(?) CHyp — Hyp,

where Dom(L 4 p) consists of n-uples (ux)i1<kg<n € Ho such that

up € LY2(Iy), k=1,...,n, (1.14a)
Y_wjt1 :e*icj'eruj, ji=1...,n—1, (1.14b)
un (L) = u1(0). (1.14c¢)
and J J
Lag(us,... un) = (—i% +a1u1,...,—i% +anun>. (1.15)

A standard argument shows that L4 p is closed, densely defined and selfadjoint. In
particular, the operator (L4 » + 1) is invertible, with bounded inverse.

Theorem 1.8. For any A € A, and any partition P ={0 <t; < --- <t,_1 < L}
that contains the set of discontinuities of A we have the equality

Lagyp = j(pTAj;l.

Proof. For simplicity we write L4 instead of L4 . We will prove the equivalent
statement

(i+La)"' =3p(Ta +4)7195" = IpRATS
In other words, we have to prove that for any u, f € H if u = R f, then

u € Dom(L4) and (La + 2)Jpu =IJpf.

More precisely, we have to show that the collection Jau = (uj)i<k<n satisfies
(1.14a-1.14¢) and (1.15). Using (1.2) we deduce
qe=®a) b B 4(s) aaw) [1 ears)
u(t) = m/o e f(s)ds + ie /0 e f(s)ds. (1.16)

This implies the condition (1.14a). The condition (1.15) follows by direct compu-
tation using (1.16).
Next, we observe that

7:67(1:.:4 (tjfo)

L tj
Yiuj = m/o ) f(s)ds + iefq)A(tj*O)/O e f(s)ds,

je—2a(t;+0) L ®a(s) . P4 (t;40) Y Da(s)
R :m/o e®4) f(8)ds + te~ Al /O e” 4\ f(s)ds,
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from which we conclude that

Y_Uj41 = 6_(®A(tj+0)_¢A(tj_O))’)’+Uj, Vj =1,...n—1.

This proves (1.14b). The equality (1.14c) follows directly from (1.5). O

Remark 1.9 (Transmission operators). We would like to place the above opera-
tor L4 in a broader perspective that we will use extensively in Section 4. Consider
a compact, oriented 1-dimensional manifold with boundary I. In other words, I is
a disjoint union of finitely many compact intervals

I= I-'Z:llk'
If Iy, := [ak, bg), ax < by, then we set
O Iy = {br}, 0_Iy:={ax}, O+I:={b1,...,bn}, O_I:={aq,...,an}.

In particular, we have a direct sum decomposition of (finite dimensional) Hilbert
spaces

E :=I1*0I,C)=L*0, I)a L*(0_-I)=E, o E_.

On the space C*°(I, C) of smooth complex valued functions on I we have a canon-
ical, symmetric Dirac D operator described on each [}, by —i%. We have a natural
operator

J: L*(0I,C) — L*(01,C), J|g, = Filg,.

It thus defines a Hermitian symplectic structure in the sense of [1, 5, 14]. A (her-
mitian) lagrangian subspace of E is then a complex subspace L such that L+ = JL.
We denote by Lag(FE,J) the Grassmannin of hermitian lagrangian spaces. We de-
note by Iso(E,, E_) the space of linear isometries Ey — E_. As explained in [1]
there exists a natural bijection®

Iso(E;,E_) = Lag(E), Iso(E.,E_)>T +—Tr,

where I'r is the graph of T viewed as a subspace of E. Our spaces E 1 are equipped
with natural bases and through these bases we can identify Iso(E, E_) with the
unitary group U(n). We denote by A the Lagrangian subspace corresponding to
the identity operator.

Any subspace V C E defines a Fredholm operator

Dy : Dom(Dy) C L*(I,C) — L*(I,C),

where
Dom(Dy) = {ue€ L"*(I,C); ulos €V}, Dyu= Du.

A simple argument shows that Dy is selfadjoint if and only if V' € Lag(E). As
we explained above, in this case V' can be identified with the graph of an isometry
T: E;, — E_. We say that T is the transmission operator associated to the
selfadjoint boundary value problem.

For example, if in Theorem 1.8 we let A(t) = Z;:ll c;H(t—t;), then we see that
the operator L4 can be identified with the operator Dr,., where the transmission

4There are various conventions in the definition of this bijection. We follow the conventions in

(5]
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operator T' € Iso(E 4, E_) is given by the unitary n x n matrix

[0 0 0 - 0 1]
et 0 - 0 0
0 et 0 ... 0 0
T =
L0 0 0 ... et |

2. THE ATIYAH-PATODI-SINGER THEOREM

We review here the Atiyah-Patodi-Singer index theorem for Dirac operators on
manifold with boundary, when the metric is not assumed to be cylindrical near the
boundary. Our presentation follows closely, [8, 9], but we present a few more details
since the various orientation conventions and the terminology in [8, 9] are different
from those in [3 13] that we use throughout this paper.

Suppose (M J) is a compact, oriented Riemann, and M C M be a hypersurface
in M co-oriented by a unit normal vector field v along M. Let n := dim M so that
dim M = n+ 1. We denote by ¢ the induced metric on M. We first want to define
a canonical restriction to M of a Dirac operator on M.

Let exp? : TM — M denote the exponential map determined by the metric H.
For sufficiently small € > 0 the map

(—e,e) x M > (t,p) — expg(tu(p)) eM

is a diffeomorphism onto a small open tubular neighborhood O, of M. The metric g
determines a cylindrical metric dt?+g on (—¢,e)x M. Via the above diffeomorphism
we get a metric g on O.. We say that gg is the cylindrical approzimation of g near
M.

We denote by V the Levi-Civita connection of the metric g and by VO the Levi-
Civita connection of the metric go. We set

E:=V-V’ec Q' (0., End(TM)).

To get a more explicit description of E we fix a local oriented, g-orthonormal frame
(e1,...,e,) on M. Together with the unit normal vector field v we obtain a local

oriented orthonormal frame (v,eq,...,e,) of T M |am. We extend it by parallel
transport along the geodesics orthogonal to M to a local, oriented orthonormal
frame (0, é1,...,é,) of TM.

Denote by & the connection form associated to v by this frame, and by 0 the
connection form associated to V° by this frame. We can represent both & and 0
as skew-symmetric (n + 1) x (n + 1) matrices

L S
@ = (@] )ogi,jgn’ 0=(9; )ogi,jgn’

~

where the entries are 1-forms. Then E =& — 6.

We set &y := ©, and we denote by (ék)ogkgn the dual orthonormal frame of
T*M. Then we have
o =l e, 0, =0),e", Vie; =l e, Vie; =06, Y0<jk<n,
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where we have used Einstein’s summatio% convention.
Observe that V%, = 0 so that 0, =06, =0. Also,

d";k - 0]](?7 Vl S i,j,k S n.

If we write

—° =i A~k

= _ (= =
== (5 )ogi,jgw =) T =gk
and we let o(1) denote any quantity that vanishes along M, then

E; =8/, Y0<i,j<n, (2.1)
=o(l), V1<4,j<n, 0<k<n. (2.2)
We set
. e ~ ~d . B
Skij = =';cj = g(Vkej,ei), w” = w], Hij = Oj, Wihij = w}cj, Okij = 7]'6]-.

We denote by @ the second fundamental form® of the embedding M M ,

Q(ei7 6]‘) = g(veiy7 ej)'
Along the boundary we have the equalities
Eij = Ejk() = _EkOj = Q(ej, ek) V1 S i,j S n, (23&)
To understand the nature of the restriction to a hypersurface of a Dirac operator
we begin with a special case. Namely, we assume that M is equipped Wlth a spin
structure. We denote by S the associated complex spinor bundle so that Sis Z7/2-
graded is dim M is even, and ungraded otherwise. We have a Clifford multiplication
¢:T*M — End(S).
The metrics § and gy define connections V<P and V7m0 on §|o_. Using the local
frame (&;)o<i,j<n We can write

spin 1A ALATNACA] o spin 1. Al AN A AT
V P — 9y, — zwkijc(e ye(e), vi¥ R ZOkijc(e Ye(e?),

where we again use Einstein’s summation convention.
Using the connections V*P¥" and V*P""Y we obtain two Dirac operators D and
respectively Dy on S|o,

D= "e@)Vrm, Dy = @)V,
=0 =0

Identifying O, with (—e,e) X M we obtain a projection 7 : O, — M. We set
S := S|y. The parallel transport given by VP yields a bundle isomorphism
S|lo. = ©*S. Using these identifications we can rewrite the operators D and Dy as

D = &(eo)(ViP'™ — D(t)) : C®(n*S) — C=(x*S),
Do = ¢(e%) (9o — Do(t)) : C(n*S) — C*°(r*S).
The operators D(t) and Dy(t) are first order differential operators
Cm(§|{t}xM) - OOO(/S\|{t}><M)a

50ur definition of the second fundamental form differs by a sign and a factor from the usual
definition. With our definition the round sphere S™ C R"*t! cooriented by the outer normal has
positive mean curvature n.
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and thus can be viewed as t-dependent operators on S.

The operator Dy(t) is in fact independent of ¢ and thus we can identify it with a
Dirac operator on C°°(S) — C°°(M). Tt is called the canonical restriction of D to
M, and we will denote it by Ry, (ﬁ) This operator is intrinsic to M. More precisely
when dim M is even then S is the direct sum of two copies of the spinor bundle
on M and the operator TRM(E) is the direct sum of two copies of the spin-Dirac
operator determined by the Riemann metric on M. When dim M is odd then S is
the spinor bundle on M and Ry, (ﬁ) is the spin-Dirac operator determined by the
metric on the boundary and the induced spin structure. We would like to express
Rpr(D) in terms of D(t)]—o.

Lemma 2.1. Let hyy : M — R be the mean curvature of M — M\, i.e., the scalar
har :=trQ. Then,
~ 1
D()le=o = Rat (D) = Sht- (24)

Proof. Let v, :=é" € C‘X’(T*M\bﬁ), set J := ¢(v,) and define
c:T*"M — End(S)
by setting

cla) :==¢(vi(p))e(a) = Jeé(o), Ype M, aeT*M C (T*"M)|pm.

Observe first that R R
Ry (D) = Dy(t) = 0o + JDy.

Next we observe that

o . 1 i j
yepin _ yspin,0 — _ Z Z Ez‘jé(él)é(éj)'

4 —
0.
so that .
Vo' = Vg = VT — 0y = —Boy Je(@)e(@’) = o(1),
A 1 = A(aR\AlA\ Al AT
D—Dy= 1 Z:k:.kijc(e ye(e')e(e’l) =: L.
0.4,

We denote by L(¢) the restriction of £ to the slice {t} x M so that L(t) is an
endomorphism of S|y} . Hence

D =Jdy—JD(t), D(t)=JD+ 8y = JDo+ 8y + JL = Dy(t) + JL,
so that

D(0) = Ras (D) + JE(®)li—o-

Thus, we need to compute the endomorphism JL(t)|;—o. We have

1 . ,
JL=—1 Z JEre(eh)e@he@).
.5,k
There are many cancellations in the above sum. Using (2.2) we deduce that the
terms corresponding to k = 0 vanish. Using (2.1) we deduce that the terms corre-
sponding to ¢,7 > 0 or ¢ = j also vanish along the boundary. Thus

JL = —i > BwgJe(eh)ee)e(e’) +o(1)

i#3,k#0
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1 il i
=-3 Z Ekich(ek)c(e’)c(eJ) +0o(1)
i>75,k>0

1 n kNN A A
=5 Z ErioJe(@h)e@)e(el) + o(1).
i>0,k>0

Using the equalities J = &(&°), Je&(et) = —e(e¥)J for £ > 0 we deduce

1 o 1o 1
JL = 5 Z Erioc(e™)e(e?) = —§Z-n’o+0(1) = —itrQ.

i,k>0 >0

This proves (2.4). O

Remark 2.2. An equality similar to (2.4) was proved in [12, Lemma 4.5.1], although
in [12] the authors use different conventions for the induced Clifford multiplication
on the boundary that lead to some sign differences. That is why we chose to go
through all the above computational details. a

If now & — M is a hermitian vector bundle over M and VZ is a Hermitian
connection on E then we obtain in standard fashion a twisted Dirac operator D :
C®(S®E) — C*(S® E). Using the parallel transport given by VZ we obtain an
isomorphism E|o€ & 1*F, where FE := E|M Along O, the operator Dp has the
form R

Dg = J(0; — Dg(1)).
If on O, we replace the metric ¢ with its cylindrical approximation gy, then we
obtain a new Dirac operator

Dpo: C®(7*(S®E)) = C¥(x*(S® E)),
which near the boundary has the form J(9; — Dg,), where
Dgo:C*S®FE)—>C®S®E).
We set Ryr (EE) = Dp o and as before we obtain the identity

Dg(t)li=0 = R (D) — %hM~ (2.5)

This is a purely local result so that a similar formula holds for the geometric Dirac
operators determined by a spin® structure.

We want to apply the above discussion to a very special case. Consider a compact
oriented surface ¥ with, possibly disconnected, boundary 0%. We think of 0% as a
hypersurface in X cooriented by the outer normal.

Fix a Riemann metric § on X, smooth up to the boundary. Denote by s the
arclength coordinate on a component 9y of the boundary. As before we can
identify an open neighborhood O of this component of the boundary with a cylinder
(—¢,0] x S*. In this neighborhood the metric § has the form

g = dt* + w?ds?,
where w = w(t,s) : (—¢,0] x St — (0,00) is a smooth positive function in the
variables ¢, s such that w(0,s) =1, Vs.
The metric and the orientation on 3 defines an integrable almost complex struc-
ture J : TY — T'X. More precisely, J is given by the counterclockwise rotation by
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w/2. We denote by Ky the canonical complex line bundle determined by J. We
get a Dolbeault operator

(0+0): C=(Cy & Ky') = C®(Cy @ K5,

This can be identified with the Dirac operator defined by the metric § and the
spin® structure determined by the almost complex structure J. The associated
line bundle is Ky, ! and the connection on Ky 1is the connection induced by the
Levi-Civita connection of the metric g.

Let us explain this identification this identification on the cylindrical neighbor-
hood O. We set

e’ =dt, e = wds.

Then {e’,e!} is an oriented, orthonormal frame of T*%|n. We denote by {eg, e;}
its dual frame of TY. Welet ¢ : T*Y — End(Cysx,@® Ky) be the Clifford multiplication
normalized by the condition that the operator dV := c(e”)c(e') on Cy, @ Ky ' has
the block decomposition [3, §3.2],

c(e)e(e!) = { Y ] (2.6)

(2

The Levi-Civita connection of the metric g induces a natural connection on on Ky, L
and if we use the trivial connection on Cy, we get a connection V on Cy. ® K, L The

associated Dirac operator is Dy, = coV and we have the equality Dy = v/2(0+0%).
The even part of this operator is

D =20 : C>(Cy) — C(Kgh).

We want to compute its canonical restriction to the boundary. If we denote by 0
the trivial connection on Cy,, then

D = c(€”)0e, + c(e")de, = c(eg) (9 — c(e°)c(e')de, )
so that
DE(t) = c(€%)DF + 8, = c(e)c(e!)de, =) —id,,.
Above, the operator D; (t) is, canonically, a differential operator
D3 (t) : C®(Cps) = C=(Copy),

where Cgy, denotes the trivial complex line bundle over 9¥. The boundary restric-
tion is then according to (2.5)

Ros:(5) = D (1) + %h = 0 + %h (2.7)

Let us observe that along the boundary we have 0., = J;. A simple computation
shows that the mean curvature is is the restriction to t = 0 of the function wy.
Consider the Atiyah-Patodi-Singer operator

5APS’ : Dom(gApS) C LQ(Z) — LQ(Z), 5Apsu = 5u,Vu S Dom(éApg),
where
Dom(gAps) ={ue L1’2(E,(C); ulos € Ag },
and Ay is the closed subspace of L?(0Y) generated by the eigenvectors of the

operator B := Rgx(0) corresponding to strictly negative eigenvalues.
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The index theorem of [8, 9] implies d4pg is Fredholm and

iAps(Z,g) := index (5APS) = %/ cl(E,g) 753, fB = %(dlﬂlB#‘T}B(O))
P

Above, ¢1(2,g) € Q*() is the 2-form 5-K,dV,, where K, denotes the sectional
curvature of g and dV, denotes the metric volume form on X. From the Gauss-
Bonnet theorem for manifolds with boundary [15, §6.6] we deduce

1
[e@a+y- [ his=x®)
b T Jox

where h : 0¥ — R is the mean curvature function defined as above. We deduce

iaps(Z.9) = 53(2) - 1= [ hds— o, (2.

3. DOLBEAULT OPERATORS ON TWO-DIMENSIONAL COBORDISMS

When thinking of cobordisms we adopt the Morse theoretic point of view. For
us an elementary (nontrivial) 2-dimensional cobordism will be a pair (3, f), where
¥ is a compact, connected, oriented surface with boundary, f : ¥ — R is a Morse
function with a unique critical point py located in the interior of ¥ such that

f(2> = [_17 1]) f(@Z) = {_17 1}) f(pO) =0.
In more intuitive terms, an elementary cobordism looks like one of the two pair of
pants in Figure 1, where the Morse function is understood to be the altitude.

FIGURE 1. Elementary 2-dimensional cobordisms.

We set
0+ == fH(£1).
In the sequel, for simplicity, we will assume that 0, is connected, i.e., the pair
(X%, f) looks like the left-hand-side of Figure 1.

We fix a Riemann metric g on . For simplicity® we assume that in an open
neighborhood O near pg there exist local coordinates such that, in these coordinates
we have

g =da® +dy?, f(x,y) = —az®+ By°, (3.1)
where a, 5 are positive constants. We let V f denote the gradient of f with respect
to this metric and we set

Cy = f(t), t#0.

6The results to follow do not require the simplifying assumption (3.1) but the computations
would be less transparent.
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For t # 0 we regard C; as cooriented by the gradient Vf. We let hy : C; — R be
the mean curvature of this cooriented surface. For ¢t £ 0 we set

L; :/ ds = length (Cy), w;:= S hids.
c, 47'[' Cy

The singular level set Cj is also equipped with a natural measure defined by the
arclength measure on Cy\ {0}. The length of Cj is finite since in a neighborhood of
the singular point py the level set isometric to a pair of intersecting line segments
in an Euclidean space.

Denote by W# the stable/unstable manifolds of py with respect to the flow ®*
generated by —V f. The unstable manifold intersects the region {—1 < f < 0} in
two smooth paths (see bottom half of Figure 2)

[—1,0) St ay, by € Ct, vVt € [—1,0),

while the stable manifold intersects the region {0 < f < 1} in two smooth paths
(the top half of Figure 2)

(0, 1] St ay, by € Ct7 Vit € (O, 1]

Observe that lim;_,g a; = lim;_,9 by = pg. For this reason we set ag = by = pg.

F1GURE 2. Cutting an elementary 2-dimensional cobordism.

As we have mentioned before, for ¢ < 0 the level set C; consists of two curves.
We denote by Cf the component containing the point a; and by C? the component
containing b;. For t < 0 we set

LY = / ds, L° ::/ ds, wf:= S hyds, w? = S hyds
oy ct Am Jeg A Jey
so that
Ly =L+ LY w,=wl 4w, Vt<O.

Fix a point a1 € C%; \ {a_1} and a point b_; € C®; \ {b_1}. For t € [-1,1]
we denote by @; (respectively b;) the intersection of C; with the negative gradient
flow line through a_; (respectively b_;). We obtain in this fashion two smooth
maps @,b : [—1,1] — %; see Figure 2. For ¢ > 0 we denote by I# the component
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of Gy \ {at,b:} that contains the point a; and by I} the component of C; \ {ay, b}
that contains the point b;.
The regular part C§ = Cp \ {po} consists of two components C§ and C§. We set

1 1 1 1
—wi = — [ hods, wh:=-— [ hod = — [ hods = w§ +wf. (3.2
e 471_/03 ods, wg 477/()3 0ds, wy 477/3 ods = wg +wg. (3.2)

Note that the limits lim;_,o L, lim; Lf exist and are finite. We denote them by
L& and respectively L. We have

L3 + LY = Lo := length (C)o.

Let D; denote the restriction of @ to the cooriented curve Cy, t # 0. As explained
in the previous section we have

—’L 1ht, t >0,
D; = i1 .d 1
( zde ht)‘c @( ZE+§ht)|Cf t<0
If we set

po=wil = |we), pf = w) = (Wi p) = — |wil,
then the computations in Section 1 imply

1 —2p, t>0

) =tn.=3 {(1 o)t (1-200), t<0 (33)

< Throughout this and the next section we assume that both D1 and are invertible.

We organize the family of complex Hilbert spaces L?(Cy, ds;C), t € [-1,1] as a
trivial bundle of Hilbert spaces as follows.

First, observe that Cy\ {ao, by, po} is a disjoint union of four open arcs I, ..., I,
labeled as in Figure 2. Denote by ¢; the length of I so that

Lo="{1+ -+ Ly, L§=10+Lly, L="0o+10s

For ¢ > 0 we can isometrically identify the oriented open arc C; \ a; with the open
interval (0, L;). We obtain in this fashion a canonical isomorphism

I = I(Codsi ©) — I2([0, L C).

The rescaling (0, L) > t — t/A; € (0, L), Ay = Lo/Ly, induces as in Remark 1.6 a
Hilbert space isomorphism

R L2([0, Ly); C) — L ([0, Lo); C) =: Ho.
Note that we have a partition P4 of [0, L]
0=ty <t <ty <t3 <t4=LQ, tj—tj_l ij, ij 1,...,4. (34)

In this notation, the points corresponding to t; and t3 belong to the stable manifold
of the critical point pg. This defines a Hilbert space isomorphism

Uy« L2([0, Lo]; C EBL ti_1,t;];C @L2lj,ds(c

For t < 0 we have
L*(Cy,ds; C) = L*(C?,ds; C) @ L*(C?, ds; C).



DIRAC OPERATORS ON COBORDISMS: DEGENERATIONS AND SURGERY 21

By removing the points @; and b; we obtain Hilbert space isomorphisms
L*(C¢,ds; C) — L*([0,L§);C), L(CY,ds;C) — L*([0,L}];C)
that add up to a Hilbert space isomorphism
J; + L*(Cy,ds; C) — L*([0,L¢];C) & L*([0, LY; C).
By rescaling we obtain a Hilbert space isomorphism
Ry L2([0, L{]; C) @ L2([0, Ly}, € ) — L*([0, L§); C) @ L* ([0, Lg); C ).

Next observe that we have isomorphisms

U : L2([0,L§);C) — L*(I1,ds; C) & L*(I4, dsC),

ub - L2( [0, LY]; C) = L*(I3,ds; C) @ L*(I5,ds; C),

that add up to an isomorphisms
4
U : L*([0, Lo); C) — @ L(1;,ds; C).
j=1
For t = 0 we let Jp be the natural isomorphism
4
Jo : L*(Cy,ds; C) — @Lz(fj,ds;([:) >~ H,.
j=1
Now define
UL RIS, t>0,
Je:=QU_R; I, t<0,
do, t=0.
We use the collection of isomorphisms J; organizes the collection L?(C},ds;C) as a
trivial Hilbert H bundle over [—1,1].

Theorem 3.1. (a) The operators Dy := HtDtH;l converge in the gap topology as
t — 0% to Fredholm, selfadjoint operators Dat.
(b) The eta invariants of DE exist, and we set

1
TEE (dimkengE + npg(())) ,
If ker Doi =0, then we have’
iaps(0) +E£%1+(SF(Dt;€ <t<1)+SF(Dy, -1<t<—¢)) =—(& —&).
(3.5)

Proof. We set
u-'D,u_, t<o.

To establish the convergence statements we show that the limits lim;_, o+ S; exist in
the gap topology of the space of unbounded selfadjoint operators on L?(0, Lg; C).

{U;lﬂtu+, t>0
St =

"The condition ker Dg = 0 is satisfied for an open and dense set of metrics g satisfying (3.1).
When this condition is violated the identity (3.5) needs to be slightly modified to take into account
these kernels.
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We discuss separately the cases 4+t > 0, corresponding to restrictions to level sets
above/below the critical level set {f = 0}.

A.t > 0. We observe that

Dom(8,) = {u € LY2(0, Lo; C); u(Lo) = u(0) } 8u(u) = —i)\t% + %ht(s/)\t ),

where we recall that the constant \; is the rescaling factor Lo/L;. We set

K(s) := ;t/os hi(a /A )do.

Using the fact that Ay — 1 and Proposition 1.3 we see that it suffices to show that
K is very weakly convergent in Ap,; see Definition 1.1. Thus it suffices to prove
two things.

The limit lim; ,q+ K¢(Lg) exists. (A1)

The limits lim;_,o+ K;(s) exists for almost any s € (0, Lo). (Az)
Proof of (A1). Observe that

Kt(LO) :/ htds :/ htd8+/ h,tdS,
C, Cy—0O oncC,

where O is the neighborhood where (3.1) holds. The intersection of Cy with O is
depicted in Figure 3.

\/
G
G 0_
B <0
<0 y e+ X
G
>0

F1GURE 3. The behavior of Cy near the critical point.

The integral fct\o hids converges as t — 07 to fco\o hods. Next, observe that

the intersection C; N O consists of two oriented arcs (see Figure 3) and the integral
forwct h: computes the total angular variation of the oriented unit normal vector
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field along these oriented arcs. (The orientation of the normal is given by the
gradient of the Morse function.) Using the notations in Figure 3 we see that this
total variation approaches —20, as t — 0+4. Hence

lim K;(Lo) :/ hods — 20,
t—0+t Co\0

so that
+ . 1 . 9_‘,—
wy = lim w; = — lim hids = wg — —. (3.6)
t—0+ A 10t Jo, 2m
Proof of (Az). Let Cf := C¢ \ {a:} and define s = s(q) : Cf — (0,00) to be the
coordinate function on C} such that the resulting map C} 3 ¢ — o(q) = s(¢)/ ¢ €
R is an orientation preserving isometry onto (0,L:). In other words, o is the
oriented arclength function measured starting at a;, and s defines a diffeomorphism
C; — (0,Lg). Let g : (0, Ly) — CF be the inverse of this diffeomorphism.
Consider the partition (3.4). Observe that there exist positive constants ¢ and €
such that, whenever

Vt € (0,e), Vse€t1 —c,t1+c]Ufts —c,ts+¢]: q(s) €0,

the numbers ¢; are defined by (3.4). Intuitively, the intervals [t1 — ¢, t1 + ¢] U [t —
¢, ts + ¢] collect the parts of C; that are close to the critical point pg. The length
of each of the two components of C; that are close to pg is bounded from below by
2¢/ .

To prove part (b) it suffices to understand the behavior of K;(s) for s € [t; —
¢ty + U [ts — ¢, t3 + ¢]. We do this for one of the components since the behavior
for the other component is entirely similar. We look at the component of Cy N O
that lies in the lower half-plane in Figure 3).

Here is a geometric approach. As explained before, the difference K;(s)— Ky (t1 —
¢) computes the angular variation of the oriented unit normal to C; over the in-
terval [t1 — ¢, s]. A close look at Figure 3 shows that the absolute value of this
is bounded above by 6. This proves the boundedness part of the bounded con-
vergence theorem. The almost everywhere convergence is also obvious in view
of the above geometric interpretation. The limit function is a bounded function
Ky : [0, Lo] — R that has jumps —6 at t; and ¢3

Ko(t1 +0) — Ko(t1—)) = K(t3 +0) — K(t3 — 0) = =0,
while the continuous function
Ko(t) + 04 H(t —t) + 0, H(t — t3)

is differentiable everywhere on [0, Lo] \ {t1,¢3} and the derivative is the mean cur-
vature function hg of Cy \ {po}-

We can now invoke Theorem 1.8 to conclude that the operators D; converge as
t — 0% to the operator

Dd : Dom(DF) € L*(0, Lo; C) — L*(0, Lo; C),

where Dom(Dy) consists of functions u € L2(0, Lo; C) such that, if we denote by
u; the restriction of u to I; = (t;_1,%;), 1 < j <4, then

uj € LY4(L), Yi=1,...,4,
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youy = e+ 2y uy

Youg = e Py ug (T+)

’)’+U2 = ’)’_Ug

Y+U4 = Yo,
while for « € Dom (D7) we have

(Dgu)h, - (—ii +1h0(s))u» Vi=1,...,4.
I ds 2 7 B

Using the point of view elaborated in Remark 1.9, we let I denote the disjoint
union of the intervals I;, j = 1,...,4. We regard D as a closed densely defined

operator on the Hilbert space L?(I,C) with domain consisting of quadruples u =
(u1,...,us) € LY2(I) satisfying the boundary condition
Yy_u=Tiv, u,
where
T, :C*=[*0.1) — L*(0_I)=C*,
is the transmission operator given by the unitary 4 x 4 matrix

0 0 0 1

i0,/2 0 0 U1 i1 U
| e + o ;22
T, = 0 1 0 0 and Dy : —< 1d5+2h0)
0 0 etf+/2 0 U4 Uy
Using (1.10) we deduce that
1 n 0
¢ =&py = 5(1=2py), pr=wi = |og) =wo— 5~ {wo - %J . BT

B. t < 0. We observe that 8§; = 8¢ @ 8%, where for ® = a,b we have
87 : Dom(87) C L*(0,Ly; C) — L*(0,L§; C),

A |
Dom(8?) = {u € L"*(0,L$; C); u(Lf) =u(0)}, Sfu= —’L)\;% + §ht(s/)\; )

and A} is the rescaling factor é—é It is convenient to regard 87 as defined on the
t —

component C§ of Cg. Observe that C§ \ {ao} = I Uy and C§\ {bo} = I U I.

Arguing as in the case t > 0 we conclude that

. o . o _ , 0_
h/r(%wf:wg—&—ﬂ, }%wf:wg—i—ﬂ, Wy ::}%wt:wo—i—%, (3.8)

and that the operators D¢ and D? converge in the gap topology as ¢t — 0~ to
operators

D& : Dom(D§) C L*(I)) ® L* (1) — L*(I1) @ L*(1y),

DY : Dom(DY) € L3 (L) & L*(I3) — L*(I) @ L*(I3),
where Dom(D¢) consists of functions (ui,us) € LY2(11) & LY2(14) such that

—i0_/2
Y_ug=e " /'y+u1, Yiug =y _uy,

Dom(DY) consists of functions (ug,us) € LY2(I3) @ LY2(I3) such that

—i0_ /47

Y uy =e YUz, Y_Uz =Y Uz,
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where 6_ is depicted in Figure 3, and

.du 1 .du 1
DS(ULUA) = (—’Lidsl + ihoul, —’LT; + 5h0U4),
.dU,Q 1 .dU3 1
De =(—1—4+ = —g— 4 = .
6 (ug, ug) = ( v —|—2h0u2, i +2h0u3)

The direct sum Dy = D@D} is the closed densely defined linear operator on L2(1)
with domain of quadruples w = (u1,...,us) € LY2(I,C) satisfying the boundary
condition

y_u=T_~v,u,
where T : C* = L2(9, 1) — L?(0.1) = C* is the transmission operator given by
the unitary 4 x 4 matrix

0 0 0

0 /2 1 U1 d 1 U1
0 0 e~ 0 - .| .
T_ = 0 1 0 0 and DO : = (lds+2h0>
e-/2 0 0 0 U4 Us
Then £ = &2 + £, where for @ = a,b we have
1 0_ 0_
* _ “(1-9p° o __ o = . = | )
& = 5-200), o —ait - Wb+ | (59)
Combining (3.6) and (3.8) with the equality 04 + 6_ = 7 we deduce
+ - _ T _
wy — Wo }{% Wy }% wy 5" (3.10)

To prove (3.5) we use the index formula (2.8). We have
) 5 1
iaps(0) = 5 witwa—&p, &,

(3.10) _
= Wi —wg —wi w1 —&p, +ép_,

= (wg +€7) = (@i +&p) —(wg +€) + (watép )= (€ —¢7)
(1.12) lim, SF(Dyue<t<1)-— lim, SF(Dy, —1<t<—¢)— (& —&0).

O

Remark 3.2. (a) We want to outline an analytic argument proving (As). Using
(3.1) we deduce that this component has a parametrization compatible with the
orientation given by

1/2
yr = — (G + ma?) / , |zl < dy, (3.11)
where (; = %, m = % and d; is such that the length of this arc is 2¢/A;. Observe
that there exists d. > 0 such that lim;_,o+ dt = d.. We have

dy, = —ma ({ + mzz)_l/2 dx.

Set d
b= S = o (G ma?) 2,
&y, 12 —3/2 mGy
no_ . 2 2 92 2 _
v = g = mm (G ma?) T ma? (G ma) T = .
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The arclength is
2,2

2 _(4 "2 2_ (1 m-x 2
do ( + (y;) )dx ( +7§t+m$2 dx

=w(t,r)?
The mean curvature h; is found using the Frénet formulee, [15]. More precisely,
hi(xz) = % Then
vy midz

hido = hywde = ————dr = — .
T T ™ T T (G ma) (G + ma? + m2a?)

We observe now that we can write hido = ¢ ( poodu ), where ¢, is the rescaling
map

m(1

_ t71/2 d poo = — :
T U z and poo(u) (C1 + mu)V2(G 4+ mu? + m?u?)

This allows us to conclude via a standard argument that the densities hydo converge
very weakly as t — 0 to a d-measure concentrated at the origin.

(b) The results in Theorem 3.1 extend without difficulty to Dolbeault operators
twisted by line bundles. More precisely, given a Hermitian line bundle L and a
hermitian connection A on L, we can form a Dolbeault operator d4 : C®(L) —
C*(L®Ky 1). Fortunately, all the line bundles on a the two-dimensional cobordism
3 are trivializable. We fix a trivialization so that the connection A can be identified
with a purely imaginary 1-form A = ia, a € Q'(X). Then

5,4 =0 + ia?l.
The restriction of Dj{ = /20, to the cooriented curve C; is

1 d 1 d
_ A - R - — “ 0
Da(t) = —iVL + th i + 2ht+at, a a(ds) € Q°(Cy).

As in the proof of Theorem 3.1, we only need to understand the behavior of a;
in the neighborhood O N C}. Suppose for simplicity ¢ > 0 and we concentrate only
on the component of Cy N O that lies in the lower half-plane of Figure 3. In the
neighborhood O we can write

a = pdx + qdy, p,q € C*(0).

Using the parametrization (3.11) we deduce that
ale,no = (p —mqz(C + mx2)71/2 )d:ﬂ = aids = aywdz

Hence, as t — 07, the measure a;ds converges to the measure
(p—m1/2(2H(x)—1))dcc. O

Remark 3.3. One may ask what happens in the case of a cobordism corresponding
to a local min/max of a Morse function. In this case ¥ is a disk, the regular level sets
C} are circles and the singular level set is a point. Consider for example the case of a
local minimum. Assume that the metric near the minimum pg is Euclidean, and in
some Euclidean coordinates near py we have f = x2 + 2. Then C; is the Euclidean
circle of radius ¢!/ 2 and the function h; is the constant function h; = t=1/2 Then
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wy = 3, & = 1 and the Atiyah-Patodi-Singer index of d on the Euclidean disk of
radius t'/2 is 0. The operator D, can be identified with the operator

. d n 1

—— 4

ds = 2t1/2
with periodic boundary conditions on the interval [0, omtt/ 2]. Using the rescaling
trick in Remark 1.6 we see that this operator is conjugate to the operator L; =
—tY/ 2'iglils + 1 on the interval [0, 2] with periodic boundary conditions. The switched
graphs of these operators

Ty, = {(Lyu,u); uwe L"*([0,2n]; C); w(0)=u(2r)} C H® H,

H = L*([0,27]; C),
converge in the gap topology to the subspace H, = H &0 C H & H. This limit
is not the switched graph of any operator. However, this limiting space forms a
Fredholm pair with H_ = 0@ H and invoking the results in [5] we conclude that
the limit lim.\ o SF'(Ly; € <t <tp) exists and it is finite. O

4. THE KASHIWARA-WALL INDEX

In this final section we would like to identify the correction term in the right hand
side of (3.5) with a symplectic invariant that often appears in surgery formulee. To
this aim, we need to elaborate on the symplectic point of view first outlined in
Remark 1.9.

Fix a finite dimensional complex hermitian space FE, set n := dim¢ E,

E=E®E, E. =E®0, E_ =06 E,
and let J : E — E be the unitary operator given by the block decomposition
-1 0
J= { 0 2 } '
We let Lag denote the space of hermitian lagrangians on IA?, i.e., complex subspaces
L C E such that L+ = JL. As explained in [5, 14], any such a lagragian can be

identified with the graph® of a complex isometry T': E, — E_, or equivalently,
with the group U(FE) of unitary operators on E. In other words, the graph map

I':U(E)— Lag(E), UE)—~T; CE

is a diffeomorphism. The involution L <+ JL on Lag corresponds via this diffeo-
morphism to the involution 7" <+ —T on U(E).
We define a branch of the logarithm log : C* — C by requiring Im log € [—7, 7).

Equivalently,
d
g == / ?C

8In [11] a lagrangian is identified with the graph of an isometry E_ — E which explains why
our formulee will look a bit different than the ones on [11]. Our choice is based on the conventions
in [5] which seem to minimize the number of signs in the Schubert calculus on Lag.
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where 7, : [0,1] — C is any smooth path from 1 to z such that ~,(¢) &€ (—o0, 0],
Yt € [0,1). In particular, log(—1) = —mé. Following [11, §6] we define

1 _ 1
7:U(E) x U(E) 5 R, 7(T,T1) = 5 trlog(T; ITy) = o > (log A)m,

AeC*

where my := dimker(\ — T 'Ty). Observe that
e?mim(To,Th) — 32: 5(1)7 (4.1a)
7(To, Th) + 7(T1,Ty) = — dimker(To + T1). (4.1b)

Via the graph diffeomorphism we obtain a map

pw=7ol:Lag x Lag — R.
The equality (4.1b) can be rewritten as

7(Lo, L1) + 7(L1, Lg) = —dim(Lo N JLy) = —dim(J Lo N Ly). (4.2)

We want to relate the invariant 7 to the eta invariant of a natural selfadjoint
operator. We associate to each pair Ly, L1 € Lag the selfadjoint operator

DL07L1 : V(LoaLl) - LQ(Iv -/E\) - L2(I,E),

where
= du
V(Lo L1) = {u € L'*(I, E); u(0) € Ly, u(1) € L1}, Dy ru=J—
This is a selfadjoint operator with compact resolvent. We want to describe its
spectrum, and in particular, prove that it has a well defined eta invariant. Let
Ty, Ty : E4 — E_ denote the isometries associated to Ly and respectively 77. Then
T LT, is a unitary operator on E so its spectrum consists of complex numbers of
norm 1.

Proposition 4.1. For any Lo, L1 € Lag we have

1 _ _
spec Dr, 0, = 5; &XP 1(spec(T1 1TO)). (4.3)

In particular, the spectrum of Dr, 1, consists of finitely many arithmetic progres-
sions with ratio w so that the eta invariant of Dy, 1, is well defined.

Proof. Observe first that any u € L?(I, E) decomposes as a pair
u=(uy,u_), ux € L*(I, Ey).

If u € V(Lo, L1) is an eigenvector of Dy, 1, corresponding to an eigenvalue A, then
u satisfies the boundary value problems

Jduy du
— ’LW = )\U;_A,_, 'LE = AU_7 (44&)
u_(0) = Touy(0), u_(1) =Trus(1). (4.4b)

The equalities (4.4a) imply that
uy (1) = euy (0), u_(1) =e u_(0).
Using (4.4b) we deduce
A Tuy (0) = u_(1) = e Pu_(0) = e Thuy (0).
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Hence )
¥ € spec(Ty MTy) = \ € % exp ! (spec(TflTo)).
%
Running the above argument in reverse we deduce that any
1
A€ % exp ! (spec(TflTO) )
%

is an eigenvalue of Dy, 1. O
We let (Lo, L1) denote the reduced eta invariant of Dy 1.,

1/ .
&(Lo, L) = i(dlmkerDLo,L1 +NMDrg 1, (O))

If 01 ... et 0),...,0, € [0,27), are the eigenvalues of T, 'Tp, then the spec-
trum of Dy, 1, is

n
Or
spec(D(Lo7 Ly) ) = ,pl{Q + WZ},
and we deduce as in Section 1 using (1.8) that

MDryL, = Z (1—%)7

01¢,€(0,2ﬂ')
and
1 0 1.
&(Lo,Ly) = 3 Z (1 — ?) + idlmkerDLo,Ll.
0, €(0,27)

On the other hand,

1 _ 1
5 trlog(=T; 'T,) = o > (k)

T
9k€[0,2ﬂ')
1 0y, 1 ..
=-3 Z (1 - ?) - idlmker(TO —T).
01 €(0,27)
Since ker Dr, 1, = ker(To — T1) = Lo N Ly we conclude
7(To, =T1) = 7(=To, T1) = 7(J Lo, L1) = —§(Lo, L1). (4.5)

Following [11] (see also [4]) we associate to each triplet of lagrangians Lo, L1, Lo
the quantity

W(Lo, Ll, LQ) = 7'([117 Lo) + 7'([127 Ll) + T(Lo, LQ),
and we will refer to it as the (hermitian) Kashiwara-Wall index (or simply the

index) of the triplet. Observe that w is indeed an integer since (4.1a) implies that

eQﬂ'iw(Lo,Ll,Lg) — 1

We set

d(Lo, Ll, LQ) = dlm(JLO N Ll) + d1m(JL1 N LQ) + d1m(JL2 N Lo)
Using (4.2) we deduce that for any permutation ¢ of {0, 1,2} with signature e(y) €
{£1} we have

0, ¢ even

4.6
1, ¢ odd. (4.6)

w(L(), L1, Lg) — 6(@)M(L¢(0)7 L¢(1), L<p(2)) = —d(Lo, Ll7 Lg) X {
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We want to apply the above facts to a special choice of E. Let I denote the disjoint
union of the intervals Iy,...,I; introduced in Section 3. They were obtained by
removing the points ag, po and by from the critical level set Cpy; Figure 2. We
interpret I as an oriented 1-dimensional with boundary and we let

E:=1%*0I), Ey = L*0.1).
The spaces E4 have canonical bases and thus we can identify both of them with

the standard Hermitian space E = C*. Define J : E — E as before. We have a
canonical differential operator

-du1 1
—i5¢ + 3holn
a1 .

Dy:C™(I,C) = C=(I,C), Dy | : | =

U4 d : 1
s duy
_,Lit + §h0|14

We set wy, ::ﬁflk hods so that
wo =wy + - +wa, Wi =wi+ ws, UJg:OJQ+UJ3.

We have a natural restriction map ~ : C°°(I,C) — L?(01,C) = E, and we define
the Cauchy data space of Dy to be the subspace

Ag := ~y(ker Dy) C E.

We can verify easily that Ag is a Lagrangian subspace of E that is described by the
isometry Ty : EL — E_ given by the diagonal matrix

: 27w 2miw
Toleag(e” oo, e 4).

w In the remainder of this section we assume’ that the operators D(jf that appear
in Theorem 3.1 are invertible.

Proposition 4.2. Let QS—L be the operators that appear in Theorem 3.1. Then
Epr = —E(Try, No) =&( Ao, Ty ) = —7(JAo, 1) (4.7)

Proof. We need to find the spectra of TalTi. We set 2, = e 2™k =1,...,4,
py = €¥+/2 and p_ = e~ *-/2 Then

0 0 0 21 0 0 0 21

" | zp+ O 0 0 " . 0 0 29p— O
ToT = 0 2z 0 0|’ ToT- = 0 2z 0 0
0 0 zpt O zap— 0 0 0

The eigenvalues of T{T' are the fourth order roots of {4 = pizl cvzy = 0 —2mwo)
Hence (0 9 .
exp” " (spec(T§T)) = i(0+ — 2mwo) _4 mwo) + %Z.

Using (4.3) we deduce

spec(DpT+,AU) = %{ (9—; —w0> +Z}.

9This assumption is satisfied for a generic choice of metric on X.
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The eigenvalues of T5T_ are the square roots of zjzgp_ = e *0-/2427w6) and
2oz3p_ = e~ 40~ /2+27w0)  Hence
T (0_ T T [ 6_ T
D S S (LY L/ WU S iy R/
spec(Drr_ao ) { 2 (47r +w0> *3 } { 2 (47r +“0> *3 }
The desired conclusion follows using (1.10), (3.7), (3.9) and (4.5). O

Theorem 4.3. Under the same assumptions and notations as in Theorem 3.1 we
have

j 0)+ lim SF(Dye<t<1)+ lim SF(Dy, -1<t< —¢

iaps(0) + lim SF(Due<t<1)+ lip SF(Dr, ~L<t< )

= —LU(JAo,FT+,FT7).

Proof. We have
iaps(0) + lim SF(Dye <t <1)+ lim SF(D;, -1 <t < —¢)
e—0+ e—0+

¢ —e)"D _r(0g,, JAo) — 7(JA0,T7)

= —UJ(JA(), I‘T+7FT7) + T(F'IL s FT+).
To compute 7(I'r_,I'r, ) = 7(T—-,T) we need to compute the spectrum of T, T'_.
A simple computation shows that

@

0 0 —i 0

e |0 1 0 0
TLT-=1 50 0 o
0 0 0 1

From the second and forth column we see that 1 is an eigenvalue of T T, with
multiplicity 2. The other two eigenvalues are +%, namely the eigenvalues of the

2 x 2 minor
0 —
- 0 |
This shows that 7(T_,T) = 0. O
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