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Abstract We present a very short and complete proof of the existence of the normal cycle
of a subanalytic set. The approach is a blend of Morse theory and geometric integration
theory and relies heavily on techniques from o-minimal geometry.
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1 Introduction

The normal and conormal cycles of a (reasonably behaved) subset X of an oriented Euclidean
space V of dimension n are currents that encode subtle topological and geometric features
of the set. The normal cycle N X is a Legendrian cycle contained in the unit sphere bundle
S(T V ) associated to the tangent bundle T V , while the conormal cycle is a Lagrangian cycle
SX in the cotangent bundle T ∗V . The two objects completely determine each other in a
canonical fashion. Their precise definitions are rather sophisticated in general, but they can
be easily described in many concrete examples.

For example, if X is a compact smooth submanifold of V , then N X can be identified
with the integration current defined by the total space of the unit sphere bundle associ-
ated to the normal bundle of the embedding X ↪→ V , while SX can be identified with the
current of integration defined by the total space of the conormal bundle of the embedding
X ↪→ V .
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The normal cycle N X is intimately related to Weyl’s [28] celebrated tube formula. More
precisely, there exist canonical SO(V )-invariant forms (see [9, §0.3])

η0, . . . , ηn−1 ∈ �n−1 ( S(T V ) )

such that, for any compact submanifold X ↪→ V , the integrals

μk(X) :=
∫

N X

ηk (1.1)

can be expressed as integrals over X of universal polynomials in the curvature of the induced
metric on X . For example, if m = dim X , then μm(X) is the m-dimensional volume of X ,
and μm−2(X) coincides (up to a universal multiplicative constant) with the integral over X
of the scalar curvature. The quantity μ0(X) is the Euler characteristic of X which, according
to the Gauss–Bonnet theorem, can be expressed as the integral of a universal polynomial in
the curvature of X .

The quantities μk(X) are known as curvature measures. They are the key ingredients in
the tube formula that states that for any sufficiently small r > 0, the volume of a tube of
radius r around a compact submanifold X ↪→ V of dimension m is (see [22, §9.3.3.])

VX (r) =
m∑

k=0

μm−k(X)ωn−m+krn−m+k, (1.2)

where ωp denotes the volume of the unit p-dimensional ball.
If X is a bounded domain in V with sufficiently regular boundary ∂ X , then we have a unit

outer normal vector field

n : ∂ X → S(V ) := {v ∈ V : |v| = 1} (1.3)

and the normal cycle N X is the integration current defined by the graph of the above map;
see Example 3.1. In this case, the integrals

∫
N X ηk can be expressed as integrals over ∂ X

of universal polynomials in the second fundamental form of the hypersurface ∂ X , and they
are involved in a tube formula similar to (1.2), [22, §9.3.5]. If additionally X happens to be
convex, then the curvature measures μk(X) coincide with the Quermassintegrale constructed
by Minkowski [18].

In the groundbreaking work [5], Federer has explained how to associate curvature mea-
sures to subsets of V of positive reach. This class of subsets contains as subclasses the smooth
submanifolds of V , the bounded domains with smooth boundary and the convex bodies in
V , and in these cases Federer’s curvature measures specialize to the curvature measures
described above.

As explained in [18], the Quermasseintegrale can be extended in a canonical fashion to
finitely additive measures (valuations) defined on the collection of polyconvex subsets of
V , i.e., sets that are finite unions of convex bodies. In particular, the quantity μk(X) is well
defined for any compact P L subset of V . For most P L sets the Gauss map (1.3) is not defined
and the above definition of N X is meaningless.

In the late 70s and early 80s, Wintgen [29] and Cheeger et al. [3] have explained how to
associate to an arbitrary compact P L subset X ⊂ V a Legendrian cycle N X contained in
S(T V ) such that

μk(X) =
∫

N X

ηk .
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Their elementary construction is very intuitive and is based on elementary Morse theory
on P L-spaces. Moreover, the correspondence X �→ N X from the collection of compact
P L subsets of V to the Abelian group of Legendrian cycles in S(T V ) is a finitely additive
measure, i.e.,

N X∪Y = N X + NY − N X∩Y , (1.4)

for any P L sets X, Y . This article [3] includes the first formal definition of the normal cycle.
Roughly speaking, the normal cycle N X is designed to be an ingenious catalogue of the
Morse theoretic behavior of the restrictions to X of “typical” linear functions on V .

A few years after [3], Kashiwara and Schapira [17] have shown how to associate a normal
cycle to any bounded subanalytic subset of V . Although the Morse theoretic point of view
is still in the background, their approach is sheaf theoretic and geared towards topological
applications. Their proof is quite sophisticated as it relies on highly nontrivial results about
the derived categories of sheaves. Schürmann [26] has proposed a simpler sheaf theoretic
construction of the normal cycle, but this too requires a good familiarity with stratified spaces
and the basic operations in the derived category of sheaves.

Almost immediately following the work of Kashiwara and Schapira, Fu [9] gave another
construction of the normal cycle of a subanalytic set using methods of geometric measure
theory. His proof is technically very demanding, and the complete details are spread over
several papers and more than a hundred pages.

Very recently, Berning [1] has proposed a very ingenious and elegant elementary construc-
tion of the normal cycle of a subanalytic set using the recent advances in o-minimal topol-
ogy and basic facts about currents. Unfortunately there is a flaw in a key existence result,
[1, Lemma 6.4]; see Remark 4.1(a) for more details. The present paper grew out of our
attempts to fix that flaw.

The main goal of this article is to describe a very short complete proof of the existence
of the normal cycle of a bounded subanalytic set by relying on techniques and ideas from
o-minimal topology. We rely on several fundamental facts about currents (compactness,
slicing), but our consistent usage of recent developments in o-minimal topology drastically
reduces the analytical technicalities, making the core geometric ideas much more transparent.
The construction has a Morse theoretic flavor, and it is based on two key principles.

– A uniqueness result closely related to the uniqueness results of Fu [9, Theorem 3.2].
Loosely speaking, this uniqueness result states that there exists a unique Legendrian
cycle in �∨ × V that catalogs in a certain explicit fashion (see Remark 1.1(a)) the Morse
theoretic properties of the restrictions to X of generic linear functions on V . When it
exists, this unique cycle is called the normal cycle of X , and we denote it by N X .

– An approximation process pioneered by Fu [9]. More precisely, we show that for any
compact subanalytic set X we can find a family of bounded domains (Xε)ε>0 with
C3-boundaries such that X = ∩ε>0 Xε and the normal cycles N Xε converge in the sense
of currents to a subanalytic current satisfying the requirements of the uniqueness theorem.
Thus, the limit cycle must be the normal cycle of X .

The resulting correspondence X �→ N X , X bounded subanalytic set, satisfies the inclu-
sion-exclusion principle (1.4) and for P L sets it coincides with the normal cycle constructed
in [3]. Here is a more technical description of our main results.

Let V be an oriented real Euclidean vector space of dimension n. Denote by V∨ its dual,
and by �∨ the unit sphere in V∨. We identify the cotangent bundle T ∗ V with the product
V∨ × V . We have two canonical projections

p : V∨ × V → V∨, π : V∨ × V → V .
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Let 〈−,−〉 : V∨ × V → R denote the canonical pairing

V∨ × V � (ξ, x) �→ 〈ξ, x〉 := ξ(x) ∈ R.

The Euclidean metric (−,−) on V defines isometries (the classical lowering/raising the
indices operations)

V � x �→ x† ∈ V∨, V∨ � ξ �→ ξ† ∈ V ,

〈x†, y〉 = (x, y), 〈ξ, y〉 = (ξ†, y), ∀x, y ∈ V , ξ ∈ V∨.

Let α ∈ �1(T ∗V ) denote the canonical 1-form on the cotangent bundle. More explicitly,
if x1, . . . , xn are Euclidean coordinates on V , and ξ1, . . . , ξn denote the induced Euclidean
coordinates on V∨, then

α =
∑

i

ξi dxi .

We denote by ω ∈ �2(T ∗V ) the associated symplectic form

ω = −dα =
∑

i

dxi ∧ dξi .

In this article, we will work extensively with subanalytic objects. Our subanalytic sets are
the sets in the o-minimal structure Ran as defined Appendix A to which we refer for more
details.

We will work with special classes of currents. For the reader’s convenience, we have gath-
ered in Appendix B, the basic notations and facts involving currents that we use throughout
this article. For any closed subanalytic subset X ⊂ V∨ × V , we denote by Ck(X) the Abelian
group of subanalytic, k-dimensional currents with support on X . More precisely, Ck(X) is
the Abelian subgroup of �k(V∨ × V ) spanned by the currents of integration over oriented
k-dimensional subanalytic submanifolds contained in X . If S ∈ Ck(�

∨ × V ), and ξ ∈ �∨,
we denote by Sξ the p-slice of S over ξ ,

Sξ := 〈S, p, ξ 〉 ∈ Ck−dim �∨(�∨ × V )

If S is the current of integration along an oriented k-dimensional manifold, then for generic
ξ the slice Sξ is the current of integration along the fiber S ∩ p−1(ξ) equipped with a canon-
ical orientation. In general, the slice gives a precise meaning as a current to the intersection
of S with the fiber p−1(ξ), provided that this intersection has the “correct” dimension,
dim S − dim �∨.

If X ⊂ V is a compact subanalytic set, ξ ∈ �∨, and x ∈ X we set

Xξ>ξ(x) := {y ∈ X; ξ(y) > ξ(x) } ,

iX (ξ, x) := 1 − lim
r↘0

χ
(

Br (x) ∩ Xξ>ξ(x)

)
,

where χ denotes the Euler characteristic of a topological space. If x ∈ V \ X , we set
iX (ξ, x) := 0.

The integer iX (ξ, x) can be interpreted as a Morse index of the function −ξ : X → R

at x ; see [17, §9.5] or Appendix C. For generic ξ ∈ �∨, we have iX (ξ, x) = 0, for all but
finitely many points x ∈ X .

The first goal of this article is to give a very short proof of the following uniqueness result
closely related to the uniqueness result of Fu [9, Theorem 3.2].
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Theorem 1.1 (Uniqueness) Let X be a compact subanalytic subset of V . Then there exists
at most one subanalytic current N ∈ Cn−1(�

∨ × V ) satisfying the following conditions.

i. The current N is a cycle, i.e., ∂ N = 0.
ii. The current N has compact support.

iii. The current N is Legendrian, i.e.,

〈α ∪ η, N 〉 = 0, ∀η ∈ �n−2 (
�∨ × V

)
.

iv. For any smooth function ϕ ∈ C∞(�∨ × V ) we have

〈ϕdV�∨ , N 〉 =
∫

�∨

(∑
x∈X

ϕ(ξ, x)iX (ξ, x)

)
dV

�
∨ . (1.5)

Remark 1.1 (a) Using [6, Theorem 4.3.2.(1)] we deduce that the equality (iv) is equivalent
with the condition

Nξ =
∑
x∈X

iX (ξ, x)δ(ξ,x), for almost all ξ ∈ �∨, (∗)

where δ(ξ,x) denotes the canonical 0-dimensional current determined by the point (ξ, x).
The points x for which i(x, ξ) �= 0 should be viewed as critical points of the function
−ξ : X → R; see [17, §5.4] or Appendix C. Thus, the slice Nξ records both the
collection of critical points of −ξ |X and their Morse indices.

(b) Our sign conventions are different from the ones used in [1], [9], but they coincide with
the conventions in [3], [11].

When a cycle as in Theorem 1.1 exists, it is called the normal cycle of X , and we will
denote it by N X . In the remarkable paper [9], Fu proved the following result.

Theorem 1.2 (Existence) Every compact subanalytic set X ⊂ V has a normal cycle N X .

Remark 1.2 The conormal cycle SX ∈ Cn(T ∗ V ) of X constructed by Kashiwara and Scha-
pira [17] can be obtained from normal cycle N X using a coning procedure described explicitly
in (2.1). The equality (∗) is then a special of the micro-local index theorem [11], [17, Theorem
9.5.6].

The second goal of this article is to show that Theorem 1.2 is a consequence of Theorem
1.1. The proof takes full advantage of the subanalytic context of the problem which prohibits
many of the possible pathologies in geometric measure theory. In particular, the geometry of
the arguments is much more transparent in this context. Using Theorem 1.2 it is now easy to
give a correct proof of the existence part of [1, Theorem 6.2]; see Corollary 1.

Remark 1.3 (a) A sheaf-theoretic approach to the existence of normal cycles based on a
conceptually similar approximation method can be found in [26, §5.2.2]. The concept
of limit of currents is replaced by the concept of specialization, while the uniqueness
theorem is replaced by the injectivity of a certain morphism in Borel–Moore homology,
[26, Eq. (5.19)]. This injectivity is ultimately based on a special property of Verdier
stratifications, [17, Corollary 8.3.23].

(b) We want to point out a key technical difference between the approach in this article
and the approach in [9]. The uniqueness theorem [9, Theorem 3.2] is formulated in
terms of an integral cycle I(N, ξ, t) ∈ Cn−1(�

∨ × V ) defined for any Legendrian cycle
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N ∈ Cn−1(�
∨ × V ) and for almost all (ξ, t) ∈ �∨ × R; see [9, Definition 3.1]. The

construction of the cycle I(N, ξ, t) is quite involved, but it has a nice payoff because
it shows that I(N, ξ, t) depends continuously on N . This fact is very useful in approx-
imation problems. Our approach skips the construction of I(N, ξ, t), but we have to
pay a small technical price since the proofs of our convergence results are a bit more
involved.

(c) We believe that the arguments used in this article can yield an existence result for normal
cycles of compact sets in an o-minimal category. We chose to work in the subanalyt-
ic category only because of a lack of adequate references for a theory of slicing of
o-minimal currents. Hardt’s subanalytic work [14], [15] ought to extend with minor
changes to an o-minimal context.

Here is a brief outline of this article. We prove Theorem 1.1 in Sect. 2 relying on an
o-minimal implementation of the strategy in [7] that affords considerable simplifications.
We construct the normal cycle in Sect. 3 via an approximation method. Section 4 describes
how a combination of facts proved in this article and in [1] leads to an alternate proof of the
existence part of [1, Theorem 6.2]. In Sect. 5, we give an alternate proof to the main con-
vergence theorem in [8]. We conclude with a mostly expository Sect. 6 where we outline a
construction of the conormal cycle of a subanalytic subset of a smooth, subanalytic manifold.

We have included two appendices A and B that survey basic facts about subanalytic sets
and currents used throughout this article. In Appendix C, we present short o-minimal proofs
of some basic facts of singular Morse theory that we use in this article and in our opinion
are not widely known. In particular, we have included a very short proof of Kashiwara’s
non-characteristic deformation lemma in an o-minimal setting.

2 Uniqueness

We will prove Theorem 1.1 following a strategy that is inspired from [7]. We first give a
direct and very short proof of a subanalytic version of the general uniqueness theorem [7,
Theorem 1.1]. Then, arguing as in the proof of [7, Theorem 4.1], we show that this theorem
implies Theorem 1.1.

Theorem 2.1 Suppose S ∈ Cn(V × V ) is a subanalytic n-dimensional current satisfying
the following conditions.

i. The current S is a cycle, ∂S = 0,
ii. The current S is lagrangian, i.e., ω ∩ S = 0.

iii. The current S is conical, i.e.,

(μλ)∗S = S, ∀λ > 0,

where μλ : V∨ × V → μλ : V∨ × V is the rescaling μλ(ξ, x) = (λξ, x).
iv. If |S| denotes the support of S, then the induced map p : |S| → V∨ is proper.
v. The set p(|S|) is a conical subanalytic subset of V∨ of dimension < n = dim V∨.

Then S = 0.

Proof We argue by contradiction. Let m := dim p(|S|) so that m < n. If m = 0, we deduce
that |S| ⊂ V = p−1(0). The cycle S is subanalytic, and of dimension n = V so that
S = k[V ] for some integer k. On the other hand, conditions (iii) and (iv) imply that π(|S|)
is compact, so that k = 0, and therefore S = 0 by the constancy theorem.
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Fig. 1 A rendition of p(|S|).
The picture is not entirely
accurate since p(|S|) must be a
conical subset of V∨

Z
p(|S|)

S

p

V

V

Φ

vζ ξ

ξ

U

( ,x)

Suppose m > 0. Then we can find a m-dimensional subspace U ⊂ V∨ so that if� : V∨ →
U denotes the orthogonal projection onto U , then Z := �◦ p(|S|) is an m-dimensional tame
subset of U . Moreover, most of the fibers of the induced map �S := �|p(|S|) : p(|S|) → Z
are zero-dimensional. Set � := �S ◦ p; see Fig. 1.

From the properties of subanalytic sets, or more generally, sets in an o-minimal category,
[20, §4] or [27], we deduce that there exists a subanalytic subset Z ′ ⊂ Z whose complement
has dimension < m such that following hold.

(c1) Z ′ is a C2-manifold.
(c2) The induced map � : Y ′ := �−1(Z ′) → Z ′ is a locally (definably) trivial fibration

with (n − m)-dimensional fibers. Set Y ′
ζ := �−1(ζ ) ⊂ |S|, ζ ∈ Z ′.

(c3) If w ∈ Y ′ and near w the set Y ′ is a C2 manifold, then the differential of � at w is a
surjection � : TwY ′ → U .

(c4) The set �Z ′ := �−1(Z ′) ∩ p(|S|) ⊂ V∨ is a C2-manifold and the induced map

�Z ′
�→ Z ′ is a submersion.

(c5) For any ζ ∈ Z ′ the set �ζ := �−1(ζ ) ∩ p(|S|) is finite.1 In particular, for any ζ ∈ Z ′
the fiber Y ′

ζ is contained in the finite union of planes �ζ × V .
(c6) For any ζ ∈ Z ′ the slice 〈S, �, ζ 〉 is well defined. It is an (n − m)-cycle with support

cl(Yζ
′).

There exists a subanalytic set Y ′′ ⊂ Y ′ of dimension < n such any w = ξ ⊕ x in Y ′ \ Y ′′
belongs both to the C2-locus of Y ′, and to the C2-locus of the fiber Y ′

ζ=�(ξ) that contains w.
Consider an arbitrary point w = ξ ⊕ x ∈ Y ′ \ Y ′′ and then choose a vector ẇ1 = ξ̇1 ⊕ ẋ1

tangent at w to the fiber Y ′
ζ , ζ = �(ξ). The condition (c5) shows that Y ′

ζ is contained in
the finite union of planes �ζ × V . This implies that ξ̇1 = 0.

Using the fact that S is a lagrangian current, i.e., ω ∩ S = 0, we deduce that for any
ẇ2 = ξ̇2 ⊕ ẋ2 ∈ TwY ′ we have

0 = ω(ẇ1, ẇ2) = 〈ξ̇2, ẋ1〉 − 〈ξ̇1, ẋ2〉 = 〈ξ̇2, ẋ1〉.
If we denote by ẋ∗

1 ∈ V∨, the covector dual to ẋ1, then we deduce from the above that
ẋ∗

1 is perpendicular to p(Tw|S|). This is an m-dimensional subspace of V∨. At the point
w = ξ ⊕ x , the linear map p : TwT ′ → Tξ�Z ′ must be a surjection. Thus ẋ∗

1 ⊥ Tξ�Z ′ . We
deduce that the tangent plane to Y ′

ζ at ξ ⊕ x coincides with the plane T ξ ,

1 The definability of the Euler characteristic [27, §4.2] implies that the cardinality of �ζ is bounded from
above by a constant independent of ζ .
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T ξ := {
x ∈ V ; 〈ξ̇ , x〉 = 0, ∀ξ̇ ∈ Tξ�Z ′

}
.

As we already know, Y ′
ζ is contained in the finite union of planes �ζ × V . The above remarks

show that for any ξ ∈ �ζ , and any C2-point w of the component of Y ′
ζ contained in {ξ} × V

the tangent space TwY ′
ζ coincides with T ξ . In other words, the Gauss map of the C2-locus

of Y ′
ζ has finite range

{
T ξ ; ξ ∈ �ζ

}
. This shows that the support of the slice 〈S, �, ζ 〉 is

contained in a finite number of (n −m)-dimensional planes. The slice 〈S, �, ζ 〉 is a (n −m)-
dimensional cycle with compact support. The constancy theorem shows that it must be trivial.
This implies that dim Yζ

′ < (n − m). This contradicts (c2) and thus completes the proof of
Theorem 2.1. ��

Remark 2.1 If we denote by dξ ∈ �n(V∨) the Euclidean volume form on V∨, we see that
for a subanalytic current S ∈ Cn(V∨ × V ) the condition (v) of Theorem 2.1 is equivalent to
the condition

(p ∗ dξ) ∩ S = 0 (v′)

employed in [7, Theorem 1.1]. Indeed, clearly (v) ⇒ (v′). The implication (v′) ⇒ (v) follows
from Sard’s theorem and the fact that outside a subanalytic subset of dimension ≤ (n − 1)

the support |S| can be identified with a real analytic manifold.

Proof of Theorem 1.1 Suppose N0, N1 ∈ Cn−1(�
∨ × V ) are two subanalytic cycles satis-

fying the condition (i),(ii), (iii), (iv) of the theorem. Then the subanalytic cycles π∗ Ni ∈
Cn−1(V ), i = 0, 1, have compact support. Since the reduced homology of V is trivial we
deduce from [15] that there exist subanalytic currents Di ∈ Cn(V ) such that

∂ Di = π∗(Ni ), i = 0, 1.

The constancy theorem (Theorem B.1) shows that the currents Di are uniquely determined
by the above equality.

Let z : V → V∨×V = T ∗V denote the zero section of T ∗V , i.e., z(x) = (0, x), ∀x ∈ V .
Consider the rescaling map

μ : [0,∞) × �∨ × V → V∨ × V , (λ, ξ, x) �→ (λξ, x),

and, as in [1, Proposition 4.8], we form the currents

Si := μ∗ ( [0,∞) × Ni ) + z∗(Di ), i = 0, 1. (2.1)

As explained in [1, Proposition 4.8], the current S = S1 − S0 satisfies the assumptions
(i)–(iv) of Theorem 2.1 and also the condition (v′). Using the Remark 2.1 and Theorem 2.1,
we conclude that S = 0. ��

Remark 2.2 Let us observe that the condition (v) in Theorem 2.1 is equivalent to the condition
that the slices Sξ are trivial for almost all ξ in V∨.

3 Existence

We want to show that Theorem 1.1 ⇒ Theorem 1.2. We start by describing a simple well
known class of compact subanalytic sets that admit normal cycles.
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Example 3.1 [Normal cycles of regular domains] Suppose X is a compact subanalytic
domain in V with C2-boundary. Consider the oriented Gauss map γ : ∂ X → �∨ that
associates to each x ∈ ∂ X the unit covector γ (x) which is dual to the unit outer normal
vector at x . We get an embedding

� : ∂ X → �∨ × V , x �→ (γ (x), x),

whose image coincides with the graph of the Gauss map. Denote by [∂ X ] the integration
current defined by ∂ X equipped with the induced2 boundary orientation. Then the cycle
�∗[∂ X ] supported by the graph of the Gauss map is the normal cycle of X .

Indeed, it is obviously a subanalytic cycle, and supp �∗[X ] is compact since X is compact.
The Legendrian condition is simply a rephrasing of the fact that for any x ∈ ∂ X the covector
γ (x) is conormal to Tx∂ X .

To verify (iv) we first observe that

iX (ξ, x) = 0, ∀ξ ∈ �∨, x ∈ X \ ∂ X.

For x ∈ ∂ X denote by II x the second fundamental form of ∂ X at x . The equality (1.5) is
a consequence of the following facts. Fix a regular value ξ of γ , and a point x ∈ γ −1(ξ).
Then,

(f1) the local degree of γ at x is equal to the sign of the determinant of −II x ;
(f2) i(ξ, x) = (−1)ν+ , where ν+ is the number of positive eigenvalues of II x .

For a proof of (f1) we refer to [22, §9.2.3]. To prove (f2) we can assume that x = 0, and
near x the hypersurface ∂ X is the graph of a quadratic form

xn = q(x1, . . . , xn−1) =
ν+∑

i=1

(xi )2 −
n−1∑

j=ν++1

(x j )2,

while the interior of X is, locally, the region below the graph. Then II x = q and (f2) now
follows from standard facts of Morse theory.

Suppose now that X is a compact subanalytic set. Fix an integer p > 2n = 2 dim V . Then
there exists a subanalytic C p-function f : V → R such that f −1(0) = X ; see [20, Theorem
C.11]. Set g := f 2 so that g is C p , nonnegative, subanalytic and g−1(0) = X . The following
result should be obvious.

Lemma 3.1 Fix R > 0 sufficiently large so that X is contained in the open ball BR(0).
Then there exists c = cR > 0 such that, for any t ∈ (0, cR) the level set g−1(t) does not
intersect the sphere ∂ BR(0).

Denote by gR , the restriction of g to the ball BR(0) in the above lemma. The set �g

of critical values of gR is a subanalytic 0-dimensional subanalytic subset of R, and thus it
consists of a finite number of points.

Fix c0 ∈ (0, cR) so that the interval (0, c0) consists only of regular values of gR . Then for
any ε ∈ (0, c0) the set

Xε := {x ∈ BR(0); g(x) ≤ ε}

2 We use the outer-normal-first convention to orient the boundary.
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is a compact subanalytic domain with C2-boundary. Therefore it has a normal cycle Nε =
N Xε . The collection (Xε)ε∈(0,c0) is an increasing subanalytic family of compact subanalytic
sets such that

X =
⋂

0<ε<c0

Xε.

The collection (supp Nε)ε∈(0,c0) is a definable collection of compact, subanalytic manifolds
of class C p contained in a common compact subset of T ∗ V . We deduce that their volumes
are bounded from above. This shows that the family of currents (Nε)ε∈(0,c0) is bounded in
the mass norm. The compactness theorem [6, Theorem 4.2.17] implies that there exists a
subsequence εν ↘ 0 such that the currents Nεν converge in the flat metric to a integral
Legendrian cycle N ∈ �n−1(�

∨ × V ).
To prove that N is a subanalytic current it suffices to show that its support is contained in

a subanalytic set of dimension ≤ (n − 1). To see this we consider the subanalytic set

Z =
{
(ξ, x) ∈ �∨ × V ; ∃0 < ε ≤ c0

2
: x ∈ ∂ Xε, ξ = γ (x)

}

=
⋃

0<ε≤ c0
2

supp Nε.

Then dim Z = n and cl(Z) \ Z is a subanalytic set of dimension < n containing supp N .
We want to show that N satisfies (1.5). Since

〈ϕdV�∨ , N〉 = lim
ν→∞〈ϕdV�∨ , Nεν 〉, ∀ϕ ∈ C∞

0 (�∨ × V ),

it suffices to show that ∀ϕ ∈ C∞
0 (�∨ × V ) we have

lim
ε↘0

∫

�∨

(∑
x

ϕ(ξ, x)iXε (ξ, x)

)
dV�∨ =

∫

�∨

(∑
x

ϕ(ξ, x)iX (ξ, x)

)
dV�∨ . (3.1)

To do this, we will need to use some of the topological facts and terminology presented in
Appendix C.

Observe that supp Nε is a C p-manifold of dimension n − 1, and its projection onto V is
∂ Xε . This shows that the definable set

N =
⋃

0<ε<c0

supp Nε.

has dimension n. Hence, there exists a subanalytic set �∨
0 ⊂ �∨ such that dim(�∨ \�∨

0 ) <

dim �∨ and for any ξ ∈ �∨
0 the set p−1(ξ) ∩ N has dimension 1. This implies that for any

ξ ∈ �∨
0 there exists cξ > 0 such that, and any ε ∈ (0, cξ ) we have

dim p−1(ξ) ∩ supp Nε ≤ 0.

Thus, for ξ ∈ �∨
0 and ε ∈ (0, cξ ), the slice Nε

ξ is well defined. Let us point out that the set of
homological critical points of −ξ : Xε → R is contained in the projection on V of supp Nε

ξ .
In particular, if ξ ∈ �∨

0 , and 0 < ε < cξ , this set of homological critical points is finite.
As explained in Appendix C, there exists a subanalytic subset �∨

1 ⊂ �∨ such that
dim(�∨ \ �∨

1 ) < dim �∨ and for any ξ ∈ �∨
1 the set of homological critical points of

−ξ : X → R is finite. Set �∗ = �∨
0 ∩ �∨

1 so that dim �∨ \ �∗ < dim �∨. We have the
following fundamental equality
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lim
ε→0

∑
x∈X

ϕ(ξ, x)
(

iXε (ξ, x) − iX (ξ, x)
) = 0, ϕ ∈ C∞

0 (�∨ × V ), ξ ∈ �∗ . (3.2)

The choice ξ ∈ �∗ guarantees that for any 0 < ε < cξ the above sum consists of finitely
many terms.

Let us first show that (3.2) implies (3.1). We will achieve this using the Lebesgue domi-
nated convergence theorem so it suffices to show that there exists a constant C > 0 so that
for any ε > 0 there exists a subanalytic set �ε ⊂ �∨ such that dim �ε < dim �∨ and

∑
x∈Xε

|iXε (ξ, x)| < C, ∀ξ ∈ �∨ \ �ε. (3.3)

For every ε ∈ (0, c0), we denote by �ε ⊂ �∨ the set

�ε := {
ξ ∈ �∨; p−1(ξ) does not intersect supp Nε transversally

}
.

We deduce that dim �ε < dim �∨. Note that for any ξ ∈ �∨ \ Sε, we have

p−1(ξ) ∩ supp Nε = supp Nε
ξ

and

|iXε (ξ, ε)| = 1, ∀(ξ, x) ∈ supp Nε
ξ . (3.4)

The set

X := {
(ξ, ε) ∈ �∨ × (0, c0); ξ ∈ �∨ \ Sε

}
.

is definable, and for any (ξ, ε) ∈ X) the set supp Nε
ξ is finite. We have thus obtained a defin-

able collection of finite sets
(

supp N ε
ξ

)
(ξ,ε)∈X

, and we conclude that there exists an integer

K > 0 such that

# supp Nε
ξ < K , ∀(ξ, ε) ∈ X. (3.5)

Let ε ∈ (0, c0). Then, for any ξ ∈ �∨ \ �ε , we have

∑
x∈X

|iXε (ξ, x)| =
∑

x, (ξ,x)∈supp Nε
ξ

|iXε (ξ, x)| (3.4)= # supp Nε
ξ

(3.5)≤ K .

This proves (3.3).
Let us prove (3.2). Fix ϕ ∈ C∞

0 (�∨ × V ) and ξ ∈ �∗ . Define

Crε :=
{

x ∈ V ; (ξ, x) ∈ supp Nε
ξ

}
.

Using the terminology in Appendix C, we see that Crε is the set of numerically critical points
of the function −ξ on Xε . Consider the Ran-definable set

C̃r := {
(t, x) ∈ [0, cξ ) × V ; x ∈ Crt

}
,

and denote by τ the natural projection C̃r → [0, cξ ). Then there exists δ > 0 such that over
the interval (0, δ) the map τ is a locally trivial fibration. Its fibers will consists of the same
number � of points. Thus, we can find Ran-definable continuous maps

x1, . . . , x� : (0, δ) → V
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such that

Crt = {x1(t), . . . , x�(t) } , xi (t) �= x j (t), ∀t ∈ (0, δ), i �= j.

Set xi (0) := limt↘0 xi (t). The above limits exist since the functions xi (t) are definable and
X is compact. For x ∈ X we define

Ix := {i; xi (0) = x} ⊂ {1, . . . , �}.
The equality (3.2) is then a consequence of the following result.

Lemma 3.2

iX (ξ, x) = lim
t→0

∑
i∈Ix

iXt (ξ, xi (t) ), ∀x ∈ X. (3.6)

In particular, if Ix = ∅, then the above limit is zero.

Proof Set c = ξ(x). For r > 0 and t ∈ (0, δ), we set

Xr := X ∩ Br (x), Xt,r := Xt ∩ Br (x).

Choose r > 0 and t0 > 0 sufficiently small such that the following hold.

– The topological type of Xρ ∩ {ξ > c} is independent of ρ ∈ (0, r ].
– The set Xρ is contractible for any ρ ≤ r , and the set Xr \ {x} contains no homological

critical points of −ξ : X → R.
– xi (t) ∈ Br (x) and x j (t) �∈ Br (x) ∀i ∈ Ix , j �∈ Ix , t ∈ (0, t0).

Fix c′ < c so that the interval [c′, c) contains no critical values of ξ |Xr . We deduce from
(C.7) and (C.9)

iX (ξ, x) = χ(Xr ) − χ
(
Xr ∩ {ξ > c′} ) = χ(Xr ) − χ

(
Xr ∩ {ξ ≥ c′} )

.

The only (numerically) critical points of −ξ on Xt,r are {xi (t); i ∈ Ix }. Choose t1 < t0 such
that

〈 ξ, xi (t) 〉 > c′, ∀i ∈ Ix , 0 < t < t1.

Using again (C.7) and (C.9) for the function −ξ on Xt,r , t < t1, we deduce∑
i∈Ix

iXr (ξ, x) = χ(Xt,r ) − χ
(
Xt,r ∩ {ξ > c′} ) = χ(Xt,r ) − χ

(
Xt,r ∩ {ξ ≥ c′} )

.

The equality (3.6) is obtained by observing that

lim
t↘0

χ(Xt,r ) = χ(Xr ) and lim
t↘0

χ
(
Xt,r ∩ {ξ ≥ c′} ) = χ

(
Xr ∩ {ξ ≥ c′} )

.

��
The equality (3.2) is immediate. Set Cr0 := {x ∈ V ; Ix �= ∅}. Then∑

x∈V

ϕ(ξ, x)iX (ξ, x) −
∑
y∈V

ϕ(ξ, y)iXε (ξ, y)

=
∑

x∈Cr0

ϕ(ξ, x)iX (ξ, x) −
∑

y∈Crε

ϕ(ξ, y)iXε (ξ, y)

=
∑

x∈Cr0

⎛
⎝ϕ(ξ, x)iX (ξ, x) −

∑
i∈Ix

ϕ(ξ, xi (ε))iXε (ξ, xi (ε) )

⎞
⎠ .

123



Ann Glob Anal Geom (2011) 39:427–454 439

The equality (3.6) implies that the last term goes to zero as ε ↘ 0. This proves (3.2) and
(3.1).

From Theorem 1.1, we deduce that N must be the normal cycle of X and that N Xε

converges in the flat metric to N X as ε ↘ 0. ��

4 Normal cycles of constructible functions

Let us explain how the results proved so far lead to an alternate approach to the existence
statement in [1, Theorem 6.1]. We need to introduce some terminology.

A function f : V → Z is called constructible if its range is finite and for any n ∈ Z the
level set f −1(n) is subanalytic. If we let IS denote the characteristic function of a set S ⊂ V ,
then for any constructible function f , we can write

f =
∑
n∈Z

nI f −1(n).

We denote by C(V ) the Abelian group of constructible functions and by C0(V ) the Abe-
lian group of constructible functions with compact support. The triangulability theorem [27,
Theorem 8.2.9] implies that this group is generated by the characteristic functions of compact
subanalytic sets.

Observe that for any compact subanalytic sets X, Y ⊂ V and any x ∈ V we have

iX∪Y (ξ, x) = iX (ξ, x) + iY (ξ, x) − iX∩Y (ξ, x),

for almost all ξ ∈ �∨. The uniqueness theorem this implies that

N X∪Y = N X + NY − N X∩Y .

From Groemer’s extension theorem [18, Corollary 2.2.2] we deduce that the correspondence

compact subanalytic subset X → normal cycle N X

extends to a group morphism

C0(V ) � f �→ N f ∈ Cn−1(�
∨ × V ).

The normal cycle N f of a compactly supported constructible function f is a compactly
supported, subanalytic legendrian cycle.

In the remainder of this section, we want to compare this construction of the normal cycle
of a constructible function to the one proposed in [1].

We will need to use the o-minimal Euler characteristic function χo as defined in o-minimal
topology; see Appendix A and [27]. We will denote by χtop the usual topological Euler char-
acteristic. These two notions coincide on compact subanalytic sets, but they could be quite
different on non-compact ones. For example, if Bk is an open k-dimensional ball, then

χo(Bk) = (−1)k, χtop(Bk) = 1.

More generally, if X is locally compact, then χo(X) can be identified with the Euler charac-
teristic of the Borel-Moore homology of X .

Each of these two notions of Euler characteristic has its own advantages. The o-minimal
Euler characteristic χo is fully additive additive, i.e., for any subanalytic sets X and Y we
have

χo(X ∪ Y ) = χo(X) + χo(Y ) − χo(X ∩ Y ). (4.1)
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On the other hand, it is not a homotopy invariant as its topological cousin χtop.
The additivity condition (4.1) and the Groemer extension theorem implies that χo defines

a linear map C(V ) → Z, called the integral with respect to the Euler characteristic, and
denoted by

∫
dχ .

Suppose X is a compact subanalytic set, and ξ ∈ �∨ is such that the induced function
−ξ : X → R is a nice in the sense of Appendix C to which we refer for notations. Using
(C.7) we deduce that for every t ∈ R, and every sufficiently small ε > 0 we have∑

x∈Xξ=t

iX (ξ, x) = χtop(Xξ≥t ) − χtop(Xξ>t ) = χtop(Xξ≥t ) − χtop(Xξ>t−ε)

= χtop(Xξ≥t ) − χtop(Xξ≥t−ε) = χo(Xξ≥t ) − χo(Xξ≥t−ε)

(4.1)= χo(Xt−ε<ξ≤t )
(4.1)= χo(Xt−ε<ξ<t ) + χo(Xξ=t ).

For ε > 0 sufficiently small the induced map ξ : Xt−ε<ξ<t → (t − ε, t) is a locally trivial
fibration. We denote its fiber by Xξ=t−0. Since the o-minimal Euler characteristic of an open
interval is −1, we deduce

χo(Xt−ε<ξ<t ) = χo
(

Xξ=t−0 × (t − ε, t)
) = −χo(Xξ=t−0).

We conclude that ∑
x∈Xξ=t

iX (ξ, x) = χo(Xξ=t ) − χo(Xξ=t−0). (4.2)

Following [1], we associate to any constructible function f ∈ C0(V ) and any ξ ∈ V∨ the
integral 0-dimensional (jump) current J f (ξ) ∈ �0(R) given by

J f (ξ) :=
∑
t∈R

m f (ξ, t)δt ,

where m f (ξ, t) is the integer

m f (ξ, t) := lim
ε↘0

⎛
⎜⎝

∫

ξ=t

f dχ −
∫

ξ=t−ε

f dχ

⎞
⎟⎠

= lim
ε↘0

∫
f · (

Iξ=t − Iξ=t−ε

)
dχ.

Let us point out that when f is the characteristic function of a bounded subanalytic set X ,
then

m f (x, t) = lim
ε↘0

(
χo(Xξ=t ) − χo(Xξ=t−ε)

)
.

If we denote by I0(R) the Abelian group of integral 0-dimensional currents on R, then we
can organize the above construction as a jump map

J f : V∨ → I0(R).

This map is homogeneous and, as proved3 in [1], it is also Lipschitz with respect to the flat
metric on I0(R). It is also constructible in the sense that the function m f : V∨ × R → Z is

3 Our sign conventions are a bit different from the ones in [1]. More precisely if h f is the support map as
defined in [1], then h f (ξ) = J f (−ξ). The “culprit” for this discrepancy is the outer-normal convention used
in Example 3.1.
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constructible. Let us observe that if f = IX , where X compact subanalytic set with normal
cycle N X , then the equality (4.2) implies that for almost any ξ ∈ �∨ we have

JIX (ξ) = β∗ N X
ξ , (4.3)

where β : V∨ × V → R is the bilinear map β(ξ, x) = ξ(x).
We denote by XV , the Abelian group of constructible, homogeneous, Lipschitz continuous

maps V∨ → I0(R), so that the jump construction gives a morphism of Abelian groups

J : C0(V ) → XV , C0(V ) � f �→ J f ∈ XV .

According to [1, Theorem 3.1], this morphism is an isomorphism of Abelian groups. The in-
jectivity of J is a consequence of the injectivity of the “motivic” Radon transform of Schapira
[25]. The surjectivity is more subtle, and we refer to [1] for details.

Denote by LV the Abelian group of subanalytic, conical lagragian cycles S ∈ Cn(V∨×V ),
such that the restriction to supp S of the projection π : V∨ × V → V is proper. To any com-
pact subanalytic set X we denote by SX ∈ LV the conormal cycle constructed as in (2.1),

SX := μ∗
(

[0,∞) × N X
)

+ z∗(X),

where z : V → T ∗ V is the zero section, and μ : [0,∞) × S(T ∗ V ) → T ∗ V is the
multiplication map

[0,∞) × S(T ∗ V ) � (t, ξ, v) �→ (tξ, v) ∈ T ∗ V .

The resulting correspondence X �→ SX satisfies the inclusion–exclusion identity, i.e.,

SX∪Y = SX + SY − SX∩Y ,

for any compact subanalytic sets X, Y . Invoking the Groemer extension theorem again we
obtain a group morphism S : C0(V ) → LV .

Given S ∈ LV , the slice Sξ = 〈S, p, ξ 〉 is defined for almost every ξ ∈ V∨. In [1, §6] it
is shown that the almost everywhere defined function

V∨ \ negligible set � ξ �→ β∗ Sξ ∈ I0(R)

is the restriction of a function σS ∈ XV . We have thus obtained a morphism of Abelian
groups

σ : LV → XV , S �→ σS, σS(ξ) = β∗ Sξ , for almost any ξ ∈ V∨.

We have the following fundamental result, [1, p. 403].

Theorem 4.1 The morphism σ is injective. More precisely, if S ∈ LV and

β∗Sξ = 0, for almost all ξ ∈ V∨, (v′′)

then S = 0.

Proof For the reader’s convenience we decided to include a proof of this result. What fol-
lows is a slightly different incarnation of the strategy employed in [1, p.403]. We will show
that (v′′) implies that Sξ = 0 for almost any ξ . We then conclude using Remark 2.2 and
Theorem 2.1.
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First of all, let us observe that since S is conical and ω∩ S = 0, then α ∩ S = 0, where we
recall that α ∈ �1(T ∗V ) is the canonical 1-form and ω = −dα is the canonical symplectic
form. For any subset σ ⊂ �∨ we set

�σ :=
{
ξ ∈ V∨ \ 0; 1

|ξ |ξ ∈ σ

}
.

Since S is conical and subanalytic we can find a definable triangulation K of �∨ such that
for any top dimensional (open) face σ of there exists

– a finite collection Fσ = { f1, . . . , fν(σ )} of subanalytic, C1-maps f : �σ → V and
– a multiplicity map mσ : Fσ → Z

with the following properties

i. For any ξ ∈ �σ , the map Fσ � f �→ f (ξ) ∈ V is injective.
ii. Any f ∈ Fσ is homogeneous of degree 0.

iii. For any ξ ∈ �σ the slice Sξ is well defined and it is described by

Sξ =
∑
f ∈Fσ

mσ ( f )δ(ξ, f (ξ)).

Then

β∗Sξ =
∑
f ∈Fσ

mσ ( f )δ〈ξ, f (ξ)〉 = 0 ∈ I0(R), ∀ξ ∈ �σ . (4.4)

We fix a top dimensional face σ , and we want to prove that mσ ( f ) = 0, ∀ f ∈ Fσ .
We argue by contradiction so we assume that there exists a function f0 ∈ Fσ such that
mσ ( f0) �= 0. Then Fσ

′ = Fσ \ { f0} �= ∅, and we deduce from (4.4) that for any ξ ∈ �σ the
set

Gξ := {
g ∈ F′

σ ; 〈ξ, g(ξ)〉 = 〈ξ, f0(ξ)〉 }

is non-empty. The collection (Gξ )ξ∈�σ is a definable collection of subsets of the finite set
Fσ

′. From the definable selection theorem we deduce that there exists a definable map

γ : �σ → F′
σ , ξ �→ γξ ,

such that γξ (ξ) ∈ Gξ , ∀ξ . Since γ is definable, there exits a definable set � ⊂ �σ with the
following properties.

– dim � < dim �σ = n.
– � is closed in �σ .
– For any connected component C of �σ \ � the resulting map C � ξ �→ γξ ∈ Fσ

′. is
constant.

We will refer to the connected components of �σ \ � as chambers. Let ξ0 ∈ �σ \ �, and
denote by C0 the chamber containing ξ0. Let g0 ∈ Fσ

′ be the constant value of γ on C0. Set

u := f0(ξ0) − g0(ξ0) ∈ V ,

and denote by u† ∈ V∨ the dual covector. Since C0 is open, we deduce that

ξt = ξ0 + tu† ∈ C0 if |t | is sufficiently small.
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Hence

〈 ξt , f0(ξt ) − g0(ξt ) 〉 = 0, ∀|t | � 1.

Derivating the above equality at t = 0, we deduce

0 = 〈
ξ̇0, f0(ξ0) − g0(ξ0)

〉 + d

dt
|t=0 〈 ξ0, f0(ξt ) 〉 − d

dt
|t=0 〈 ξ0, g0(ξt ) 〉 . (4.5)

The C1-paths t �→ pt = ξt ⊕ f0(ξt ) ∈ T ∗V , t �→ qt = ξt ⊕ g0(ξt ) ∈ T ∗V are contained
in the C1-locus of the support of the current S. Since α ∩ S = 0 we deduce

0 = α( ṗ0) = d

dt
|t=0〈ξ0, f0(ξt )〉, 0 = α(q̇0) = d

dt
|t=0〈ξ0, g0(ξt )〉.

Using this in (4.5), and observing that ξ̇0 = u†, we conclude that 0 = 〈u†, u〉 = |u|2. Hence
f0(ξ0) = g(ξ0). This contradicts the injectivity assumption (i).

Corollary 1 The morphism σ is bijective.

Proof We already know that σ is injective. Theorem 1.1 and (4.3) imply that we have a
commutative diagram

C0(V ) LV

I0(R)

���J

�S

��� σ

Since J is an isomorphism, we deduce that the morphism σ must also be surjective. ��
Remark 4.1 (a) The surjectivity of σ is also claimed in [1, §6]. However, the proof is incor-

rect due to a glitch in the proof of [1, Lemma 6.4]. That lemma is an existence result
having to do with a certain cycle S with support contained in the closure of a cell �,
and such that supp ∂S ⊂ ∂� := cl(�) \ �. Loosely speaking, the lemma states that the
relative cycle determined by S in the homology of the pair (cl(�), ∂�) is trivial. The
bordism proving the vanishing of this relative homology class is a cone on S constructed
using a certain homotopy. That homotopy is defined only on �, not on cl(�), so the
homotopy formula as stated in [1, Theorem 4.3] cannot be applied.

(b) From the above discussion it follows that the morphism S is also bijective. Its inverse
can be described in terms of the local Euler obstruction, [17, §IX.7], [24].

5 Approximation

We have now developed enough technology to provide an alternate proof to the convergence
theorem in [8]. We denote by χtop the topological Euler characteristic as defined in Appendix
C. We use the ’top’-subscript to differentiate it from the o-minimal Euler characteristic χo

used in [1] and the previous section. As explained Appendix A, these two notions coincide
on compact subanalytic sets.

Theorem 5.1 Suppose that (Xk)k≥0 and X are compact subanalytic subsets of V satisfying
the following conditions.
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(a) There exists R > 0 such that

X, Xk ⊂ {x ∈ V ; |x | ≤ R } , ∀k.

(b) The sequence of currents Nk := N Xk ∈ Cn−1(�
∨ × V ) is bounded in the mass norm.

(c) For any c ∈ R and almost any ξ ∈ �∨ we have

lim
k→∞ χtop (Xk ∩ {ξ ≥ c} ) = χtop (X ∩ {ξ ≥ c} ).

Then the sequence of currents N Xk converges in the flat metric to N = N X .

Proof It suffices to show that any subsequence of (Nk) contains a sub-subsequence that
converges in the flat metric to N . To keep the notations at bay, we will denote by (Nk) the
various intervening subsequences of (Nk).

The conditions (a) and (b) imply via the compactness theorem for integral currents that
(Nk) contains a subsequence convergent in the flat metric to a subanalytic cycle N ′. To prove
that N ′ = N we will invoke Theorem 4.1, so we have to show that

β∗ Nξ = β∗ Nξ
′, for almost all ξ ∈ �∨. (5.1)

Denote by ‖−‖� the flat norm. Using the slicing lemma [19, Lemma 8.1.16], we deduce that

lim
k→∞ ‖Nk

ξ − N ′
ξ‖� = 0, for almost all ξ ∈ �∨. (5.2)

Thus, to prove (5.1) is suffices to show that β∗ Nk
ξ converges weakly to β∗ Nξ for almost any

ξ ∈ �∨.
We think of the integral currents β∗ Nk

ξ and β∗ Nξ as (signed) Borel measures on the real
axis concentrated on finite sets. If I[c,c′) denotes the characteristic function of the interval
[c, c′), c < c′, then we deduce from (C.9) that for almost any ξ ∈ �∨ and any c < c′ we
have

〈I[c,c′), β∗ Nξ 〉 = χtop
(

X ∩ {c′ ≤ ξ < c} )
,

〈I[c,∞), β∗ Nk
ξ 〉 = χtop ( Xk ∩ {ξ ≥ c} ) , ∀k ≥ 0.

Using (c) and (C.9), we deduce

lim
k→∞〈I[c,∞), β∗ Nk

ξ 〉 = 〈I[c,∞), β∗ Nξ 〉, ∀c, for almost any ξ ∈ �∨.

Since I[c,c′) = I[c,∞) − I[c′,∞) we conclude

lim
k→∞〈I[c,c′), β∗ Nk

ξ 〉 = 〈I[c,c′), β∗ Nξ 〉, ∀c < c′, for almost any ξ ∈ �∨. (5.3)

Let us show that the above equality implies that β∗ Nk
ξ converges weakly to β∗ Nξ .

For k ≥ 0, we define

hk : �∨ → [0,∞], hk(ξ) =
∑
x∈X

|iXk (ξ, x)|.

Observe that if the slice Nk
ξ is defined, then hk(ξ) = mass(β∗ Nk

ξ ). If μ := supk mass (Nk),
then ∫

�∨
hk(ξ) |dξ | ≤ μ, ∀k.
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Hence,

vol
{
ξ ∈ �∨; hk(ξ) > t

} ≤ μ

t
.

We set h∞(ξ) := supk hk(ξ), and we deduce from the above inequality that for almost any
ξ ∈ �∨ we have h∞(ξ) < ∞.

Let ϕ ∈ C∞
0 (R). Denote by L the Lipschitz constant of ϕ and fix a very small ε > 0.

Define

ϕε : R → R, ϕ(t) = ϕ(nε), if nε ≤ t < (n + 1)ε, n ∈ Z.

Using (5.3), we deduce

lim
k→∞〈ϕε, β∗ Nk

ξ 〉 = 〈ϕε, β∗ Nξ 〉.

Choose k = k(ε) > 0 such that
∣∣ 〈ϕε, β∗ Nk

ξ − β∗ Nξ 〉
∣∣ < ε, ∀k ≥ k(ε).

Now observe that ‖ϕ − ϕε‖∞ ≤ Lε. We conclude
∣∣ 〈ϕε − ϕ, β∗ Nξ 〉

∣∣ ≤ mass (β∗ Nξ )Lε,
∣∣ 〈ϕε − ϕ, β∗ Nk

ξ 〉
∣∣ ≤ h∞(ξ)Lε, ∀k.

Hence,
∣∣ 〈ϕ, β∗ Nk

ξ − β∗ Nξ 〉
∣∣ ≤ L

(
h∞(ξ) + mass (β∗ Nξ ) + 1

)
ε, ∀k ≥ k(ε).

We deduce that

lim
k→∞〈ϕ, β∗ Nk

ξ 〉 = 〈ϕ, β∗ Nξ 〉, ∀ϕ ∈ C∞
0 (R),

i.e., β∗ Nk
ξ converges weakly to β∗ Nξ for almost any ξ ∈ �∨. ��

6 Conormal cycles of subanalytic subsets of smooth subanalytic manifolds

In this mostly expository section, we want to outline a construction of the conormal cycle of
subanalytic subset of a subanalytic manifold. Fix an ambient space, i.e., a smooth, connected,
oriented subanalytic manifold X of dimension n. This means that X is a manifold definable
in the category Ran in the precise sense described in [27, Chap. 10]. The total space of the
cotangent bundle T ∗X is equipped with a natural symplectic structure, and a canonical action
of the multiplicative group R>0. In particular, for any t > 0, we have a rescaling-along-fibers
diffeomorphism μt : T ∗X → T ∗X. We denote by π the canonical projection π : T ∗X → X.

A current S ∈ �n(T ∗X) is called lagrangian if ω ∩ S = 0. It is called conic if μt∗ S =
S, ∀t > 0. It is called relatively proper if π(supp S) is a compact subset of X.

The conormal cycle of a compact subanalytic subset X ⊂ X is a subanalytic, lagrangian,
conical, relatively proper current SX which is a cycle in the sense of currents. The support of
a subanalytic, lagrangian conic current is a subanalytic, conic lagrangian subset of T ∗X in
the sense of [17, Definition 8.3.9]. Such sets were characterized in [17, Proposition 8.3.10].

Suppose now that k is a positive integer and F is a finite dimensional subspace of C∞(X)

consisting of subanalytic functions. We also assume that F is Ran-definable, i.e., it is Ran-
definable as a family of subanalytic function. We say that F is k-ample if it satisfies the
following condition.
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(Ak) For any x ∈ X, and any k-jet � at x, there exists a function f ∈ F whose k-jet at x
is �.

We will refer to such spaces as k-ample sample spaces. Fix an 1-ample sample space F.
For any f ∈ F, the graph of the differential of f is a subanalytic oriented Lagrangian sub-
manifold �d f of T ∗X. It carries a natural orientation induced from the orientation of X and
thus defines a subanalytic lagrangian current that we denote by [�d f ]. As in [17, Proposition
8.3.27], we can prove that if � ⊂ T ∗X is conic lagrangian subanalytic set such that π(�)

is compact, then for all f ∈ F outside a codimension 1 subanalytic subset �� ⊂ F the
lagrangian �d f intersects � transversally along a finite subset. In particular, if S is a conic,
lagrangian, relatively proper subanalytic cycle, then the intersection of the currents S and
[�d f ] is well defined for almost all f ∈ F. We have the following counterpart to Theorem 2.1.

Theorem 6.1 Suppose X is as above and F is a 2-ample sample space. Assume that S ∈
�n(T ∗X) is a subanalytic, conic, lagrangian current such that, there exists an open and
dense subset O ⊂ F so that, for any f ∈ O we have �d f � |S|, and the intersection current
[�d f ] · S is trivial. Then the current S is trivial.

Remark 6.1 We have to comment on the assumptions and the conclusions of this theorem.
First of all, we have a very stringent assumption, namely the 2-ampleness of the sample
space. For example if X is an Euclidean space and X = V , then the sample space used in
Theorem 2.1,

F = V∨ ⊕ {constant functions}
is 1-ample, but obviously it is not 2-ample. On the other hand, unlike Theorem 2.1, we do
not require that S be a cycle, yet we reach the same conclusion, S = 0.

To see why this is possible, we argue by contradiction and we assume that S �= 0. We can
then find a nonempty open subset |S|0 ⊂ |S| such that |S|∗ is a subanalytic, conic, lagrangian
C2 manifold and dim |S| \ |S|∗ < dim |S| = n.

If s0 ∈ |S|∗ , then the 2-ampleness condition together with the arguments in the proof of
[13, Proposition IV.5.2, p.156] show that we can find f0 ∈ F such that �d f0 intersects |S|∗
transversally at s0. For any neighborhood U of s0 ∈ |S|∗ we can find a small perturbation of
f1 ∈ F of f0 such that �d f1 intersects |S|∗ transversally, and moreover, �d f1 intersects U at
precisely one point. This point will have a nontrivial contribution to the intersection current
[�d f0 ] · S.

If X is a compact subanalytic subset, then we define its conormal cycle to be a conic,
lagrangian subanalytic cycle S = SX ∈ �n(T ∗X) with the following properties.

There exists an open and dense subanalytic subset OX ⊂ F such that for any f ∈ OX we
have:

(CC1) The Morse index m(− f, x) (see (C.4) ) is trivial for all but finitely many x ∈ X .
(CC2) dim �d f ∩ |S| = 0.
(CC3) The intersection current [�d f ] · S is given by

[�d f ] · S =
∑
x∈X

m(− f, x)δ(x,d f (x)) ∈ �0(T
∗X).

Theorem 6.1 implies that, if the conormal cycle of X exists, then it is unique. Here is a
large class of subsets whose conormal cycles exits and have simple descriptions.

Suppose that X is a compact set of the form

X = {x ∈ X; f (x) ≤ 0},
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where f : X → R is a C4-subanalytic function such that 0 is a regular value. Define SX to
be the current of integration over the lagrangian subanalytic variety of T ∗X

z(X) ∪ {
( x, td f (x) ) ∈ T ∗X; f (x) = 0, t ≥ 0

}
,

where z : X → T ∗X denotes the zero section. Elementary Morse theoretic arguments imply
that SX satisfies the conormal cycle conditions, CC1 − CC3.

Employing an approximation argument similar to the one used in the proof of Theorem
1.2 one can prove that any compact subanalytic subset of X admits a conormal cycle.

The above construction may suggest that the conormal cycle depends on the choice of
sample space F so it would be appropriate to denote it by SX

F. Note that the uniqueness
theorem implies that if F0, F1 are 2-ample sample spaces such that F0 ⊂ F1 then

SX
F0

= SX
F1

.

This proves that the conormal cycle is independent of the choice of 2-ample sample space.

Acknowledgments I would like to thank my colleague Sergei Starcenko for the many illuminating con-
versations on o-minial geometry and normal cycles. This work was partially supported by the NSF grant
DMS-1005745

Appendix A: Fast introduction to o-minimal topology

Since the subject of tame geometry is not very familiar to many geometers we devote this
section to a brief introduction to this topic. Unavoidably, we will have to omit many interest-
ing details and contributions, but we refer to [4], [20], [27] for more systematic presentations.
For every set X , we will denote by P(X) the collection of all subsets of X

An R-structure4 is a collection S = { Sn }n≥1 , Sn ⊂ P(Rn), with the following properties.

E1. Sn contains all the real algebraic subvarieties of R
n , i.e., the zero sets of finite collections

of polynomial in n real variables.
E2. For every linear map L : R

n → R, the half-plane {x ∈ R
n; L(x) ≥ 0} belongs to Sn .

P1. For every n ≥ 1, the family Sn is closed under boolean operations, ∪, ∩ and comple-
ment.

P2. If A ∈ Sm , and B ∈ Sn , then A × B ∈ Sm+n .
P3. If A ∈ Sm , and T : R

m → R
n is an affine map, then T (A) ∈ Sn .

Example A.1 (Semialgebraic sets) Denote by Ralg the collection of real semialgebraic sets.
Thus, A ∈ R

n
alg if and only if A is a finite union of sets, each of which is described by finitely

many polynomial equalities and inequalities. The celebrated Tarski–Seidenberg theorem
states that Salg is a structure.

Let S be an R-structure. Then a set that belongs to one of the Sn-s is called S-definable.
If A, B are S-definable, then a function f : A → B is called S-definable if its graph
� f := { (a, b) ∈ A × B; b = f (a) } is S-definable.

Given a collection A = (An)n≥1, An ⊂ P(Rn), we can form a new structure S(A), which
is the smallest structure containing S and the sets in An . We say that S(A) is obtained from
S by adjoining the collection A.

4 This is a highly condensed and special version of the traditional definition of structure. The model theoretic
definition allows for ordered fields, other than R, such as extensions of R by “infinitesimals”. This can come
in handy even if one is interested only in the field R.
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Definition 1 An R-structure is called o-minimal (order minimal) or tame if it satisfies the
property

T. Any set A ∈ S1 is a finite union of open intervals (a, b), −∞ ≤ a < b ≤ ∞, and
singletons {r}.

Example A.2 (a) (Tarski–Seidenberg) The collection Ralg of real semiebraic sets is a tame
structure.

(b) (Gabrielov, Hardt, Hironaka, [10,15,16]) A restricted real analytic function is a func-
tion f : R

n → R with the property that there exists a real analytic function f̃ defined
in an open neighborhood U of the cube Cn := [−1, 1]n such that

f (x) =
{

f̃ (x) x ∈ Cn

0 x ∈ R
n \ Cn .

we denote by Ran the structure obtained from Salg by adjoining the graphs of all the
restricted real analytic functions. Then Ran is a tame structure, and the Ran-definable
sets are called (globally) subanalytic sets.

The definable sets and functions of a tame structure have rather remarkable tame behavior
which prohibits many pathologies. It is perhaps instructive to give an example of function
which is not definable in any tame structure. For example, the function x �→ sin x is not
definable in a tame structure because the intersection of its graph with the horizontal axis is
the countable set πZ which violates the tameness condition T.

We list below some of the nice properties of the sets and function definable in a fixed tame
structure S. Their proofs can be found in [4], [27]. We will interchangeably refer to sets or
functions definable in a given tame structure S as definable, constructible or tame.

• (Piecewise smoothness of tame functions) Suppose A is a definable set, p is a positive
integer, and f : A → R is a definable function. Then A can be partitioned into finitely
many definable sets S1, . . . , Sk , such that each Si is a C p-manifold, and each of the
restrictions f |Si is a C p-function.

• (Triangulability) For every compact definable set A, and any finite collection of defin-
able subsets {S1, . . . , Sk}, there exists a compact simplicial complex K , and a definable
homeomorphism � : |K | → A such that all the sets �−1(Si ) are unions of relative
interiors of faces of K .

• (Dimension) The dimension of a definable set A ⊂ R
n is the supremum over all the

nonnegative integers d such that there exists a C1 submanifold of R
n of dimension d

contained in A. Then dim A < ∞, and dim(cl(A) \ A) < dim A.
• (Definable selection) Any tame map f : A → B (not necessarily continuous) admits a

tame section, i.e., a tame map s : B → A such that s(b) ∈ f −1(b), ∀b ∈ B.
• (Local triviality of tame maps) If f : A → B is a tame continuous map, then there exists

a tame triangulation of B such that over the relative interior of any face the map f is a
locally trivial fibration.

• (The o-minimal Euler characteristic) There exists a function χo : S → Z uniquely
characterized by the following conditions.

– χo(X ∪ Y ) = χo(X) + χo(Y ) − χo(X ∩ Y ), ∀X, Y ∈ S.
– If X ∈ S is compact, then χo(X) is the usual Euler characteristic of X .

• (The scissor principle) Suppose A and B are two tame sets. Then the following are
equivalent
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– The sets A and B have the same o-minimal Euler characteristic and dimension.
– There exists a tame bijection f : A → B. (The map f need not be continuous.)

• (Crofton formula, [2], [6, Theorem 2.10.15, 3.2.26].) Suppose E is an Euclidean space,
and denote by Graffk(E) the Grassmannian of affine subspaces of codimension k in E .
Fix an invariant measure μ on Graffk(E).5 Denote by Hk the k-dimensional Hausdorff
measure. Then there exists a constant C > 0, depending only on μ, such that for every
compact, k-dimensional tame subset S ⊂ E , we have

Hk(S) = C
∫

Graffk (E)

χ(L ∩ S)dμ(L).

• (Finite volume.) Any compact k-dimensional tame set has finite k-dimensional Hausdorff
measure.

• (Uniform volume bounds) If f : A → B is a proper, continuous definable map such that
all the fibers have dimensions ≤ k, then there exists C > 0 such that

Hk (
f −1(b)

)
< C, ∀b ∈ B.

Appendix B: Subanalytic currents

In this appendix, we gather without proofs a few facts about the subanalytic currents intro-
duced by Hardt in [14], [15]. Our terminology concerning currents closely follows that of
Federer [6] (see also the more accessible [19], [21]). However, we changed some notations
to better resemble notations used in algebraic topology.

Suppose X is a C2, oriented Riemann manifold of dimension n. We denote by �k(X) the
space of k-dimensional currents in X , i.e., the topological dual space of the space �k

cpt(X)

of smooth, compactly supported k-forms on X . We will denote by

〈•, •〉 : �k
cpt(X) × �k(X) → R

the natural pairing. The boundary of a current T ∈ �k(X) is the (k − 1)-current defined via
the Stokes formula

〈α, ∂T 〉 := 〈dα, T 〉, ∀α ∈ �k−1
cpt (X).

For every α ∈ �k(X), T ∈ �m(X), k ≤ m define α ∩ T ∈ �m−k(X) by

〈β, α ∩ T 〉 = 〈α ∧ β, T 〉, ∀β ∈ �n−m+k
cpt (X).

We have

〈β, ∂(α ∩ T )〉 = 〈 dβ, (α ∩ T ), 〉 = 〈α ∧ dβ, T 〉
= (−1)k〈d(α ∧ β) − dα ∧ β, T 〉 = (−1)k〈β, α ∩ ∂T 〉 + (−1)k+1〈β, dα ∩ T 〉

which yields the homotopy formula

∂(α ∩ T ) = (−1)deg α ( α ∩ ∂T − (dα) ∩ T ) . (B.1)

We have the following important result [6, §4.1.7].

5 The measure μ is unique up to a multiplicative constant.
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Theorem B.1 (Constancy theorem) Suppose S ∈ �k(V∨ × V ) is a k-dimensional cycle
whose support is contained in a k-dimensional affine subspace U ⊂ V∨ × V . Then there
exists an orientation or on U and an integer � such that S = �[U, or] where [U, or] is the
current of integration along the oriented affine plane U . In particular, if supp S is compact,
then S = 0.

We say that a set S ⊂ R
n is locally subanalytic if for any p ∈ R

n we can find an open ball
B centered at p such that B ∩ S is globally subanalytic.

Remark B.1 There is a rather subtle distinction between globally subanalytic and locally
subanalytic sets. For example, the graph of the function y = sin(x) is a locally subanalytic
subset of R

2, but it is not a globally subanalytic set. Note that a compact, locally subanalytic
set is globally subanalytic.

If S ⊂ R
n is an orientable, locally subanalytic, C1 submanifold of R

n of dimension k,
then any orientation or S on S determines a k-dimensional current [S, or S] via the equality

〈α, [S, or S]〉 :=
∫

S

α, ∀α ∈ �k
cpt(R

n).

The integral in the right-hand side is well defined because any bounded, k-dimensional
globally subanalytic set has finite k-dimensional Hausdorff measure. For any open, locally
subanalytic subset U ⊂ R

n , we denote by [S, or S] ∩ U the current [S ∩ U, or S].
For any locally subanalytic subset X ⊂ R

n , we denote by Ck(X) the Abelian subgroup of
�k(R

n) generated by currents of the form [S, or S], as above, where cl(S) ⊂ X . The above
operation [S, or S] ∩ U, U open subanalytic extends to a morphism of Abelian groups

Ck(X) � T �→ T ∩ U ∈ Ck(X ∩ U ).

We will refer to the elements of Ck(X) as subanalytic (integral) k-chains in X .
Given compact subanalytic sets A ⊂ X ⊂ R

n we set

Zk(X, A) = {
T ∈ Ck(R

n); supp T ⊂ X, supp ∂T ⊂ A
}
,

and

Bk(X, A) = {∂T + S; T ∈ Zk+1(X, A)), S ∈ Zk(A) }.
We set

Hk(X, A) := Zk(X, A)/Bk(X, A).

Hardt has proved in [15] that the assignment

(X, A) �−→ H•(X, A)

satisfies the Eilenberg–Steenrod homology axioms with Z-coefficients. This implies that
H•(X, A) is naturally isomorphic with the integral homology of the pair.

To describe the intersection theory of subanalytic chains we need to recall a fundamen-
tal result of R. Hardt, [14, Theorem 4.3]. Suppose E0, E1 are two oriented real Euclidean
spaces of dimensions n0 and respectively n1, f : E0 → E1 is a real analytic map, and
T ∈ Cn0−c(E0) a subanalytic current of codimension c. If y is a regular value of f , then the
fiber f −1(y) is a submanifold equipped with a natural coorientation and thus defines a subana-
lytic current [ f −1(y)] in E0 of codimension n1, i.e., [ f −1(y)] ∈ Cd0−d1(E0). We would like to
define the intersection of T and [ f −1(y)] as a subanalytic current 〈T, f, y〉 ∈ Cn0−c−n1(E0).
It turns out that this is possibly quite often, even in cases when y is not a regular value.
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Theorem B.2 (Slicing Theorem) Let E0, E1, T and f be as above, denote by dVE1 the
Euclidean volume form on E1, by ωn1 the volume of the unit ball in E1, and set

R f (T ) := {
y ∈ E1; codim(supp T ) ∩ f −1(y) ≥ c + n1, codim(supp ∂T ) ∩ f −1(y)

≥ c + n1 + 1 }.
For every ε > 0 and y ∈ E1 we define T •ε f −1(y) ∈ �n0−c−n1(E0) by

〈
α, T •ε f −1(y)

〉 := 1

ωn1ε
n1

〈
( f ∗dVE1) ∧ α, T ∩ (

f −1(Bε(y)
) 〉

, ∀α ∈ �
n0−c−n1
cpt (E0).

Then for every y ∈ R f (T ), the currents T •ε f −1(y) converge weakly as ε > 0 to a sub-
analytic current 〈T, f, y〉 ∈ Cn0−c−n1(E0) called the f -slice of T over y. Moreover, the
map

R f � y �→ 〈T, f, y〉 ∈ Cd0−c−d1(R
n)

is continuous in the locally flat topology.

Appendix C: Elementary Morse theory on singular spaces

Throughout this appendix, we fix an o-minimal category of sets and we will refer to the sets
and maps in this category as tame or definable. For a topological space Z , we denote by
H•(Z) the (Čech) cohomology with real coefficients, and we define its topological Euler
characteristic to be the integer

χtop(Z) =
∑
k≥0

(−1)k dim Hk(Z),

whenever the sum in the right-hand side is well defined.
Suppose X is a locally closed tame subset of V , and S is a closed tame subset of X . We

define the local cohomology of X along S (with real coefficients) to be

H•
S (X) := H•(X, X \ S).

We can now define the local cohomology sheaves H•
S = H•

X/S to be the sheaves on X
associated to the presheaves U �−→ H•

S∩U (U ).
If x ∈ X and Un(x) denotes the open ball of radius 1/n centered at x , then for every

m ≤ n we have morphisms H•
S∩Um

(Um) → H•
S∩Un

(Un), and then the stalk of H
p
S at x is the

inductive limit H•
S(x) := limn→∞ H•

S∩Un
(Un). Observe that since X is locally conical we

have

H•
S(x) = 0 for every x ∈ (X \ S). (C.1)

We set

χS(X) :=
∑

k

(−1)k dim Hk
S (X), χS(x) :=

∑
k≥0

(−1)k dim Hk
S(x).

We have a Grothendieck spectral sequence converging to H•
S (X) whose E2 term is E p,q

2 =
H p(X, H

q
S).

If it happens that the local cohomology sheaves are supported by finite sets then

H p,q(X, H
q
S) = 0, ∀p > 0,
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so that the spectral sequence degenerates at the E2-terms. In this case we have

Hq
S (X) ∼= H0( X, H

q
S

)∼= ⊕
x∈X

H
q
S(x). (C.2)

In particular

χS(X) =
∑
x∈X

χS(x). (C.3)

Suppose now that X is a compact connected tame subset of V and f : X → R is a
definable, continuous function. We will write

X f ≥c := { x ∈ X; f (x) ≥ c } , X f ≤c := { x ∈ X; f (x) ≤ c } , etc.

A real number c is said to be a regular value of f if there exists ε > 0 such that the induced
map

f : { | f − c| < ε } ⊂ X → (c − ε, c + ε)

is a locally, definably trivial fibration. A real number c is said to be a critical value of f if it
is not a critical value. The local triviality of tame maps implies that the set of critical values
of f is finite.

Fix a real number c, and consider the sheaves of local cohomology H•
f ≥c associated to

the closed subset set S = X f ≥c ⊂ X . Note that if f (x) = c, and c is a regular value, then
H•

f ≥c(x) = 0. Any number outside the range of f is automatically a regular value. A point
x ∈ X is called a homological critical point of f if

H•
f ≥c(x) �= 0, where c = f (x).

Note that in this case c must be a critical value of f . We denote by Cr f the set of homological
critical points of f . We say that f is nice if Cr f is finite.

We define the index of f at a point x ∈ V to be the integer

m( f, x) = mX ( f, x) := χ(H•
f ≥c(x)) = lim

r↘0
χ

(
H• (

Br (x) ∩ X, Br (x) ∩ X f <c
) )

, (C.4)

where c = f (x) and Br (x) denotes the open ball in V of radius r , centered at x . Note that
m( f, x) = 0 if x �∈ X . Due to the local conical structure of X we have

m( f, x) = 1 − lim
r↘0

χ
(

H•( Br (x) ∩ X f <c )
)
. (C.5)

A point x ∈ X is called a numerically critical point of f if m( f, x) �= 0. We denote by Cr#
f

the set of numerically critical points of f . Observe that Cr#
f ⊂ Cr f .

One can ask the following natural question. Given a compact tame set X , do there exist
nice continuous tame functions f : X → R? The answer is, yes, plenty of them. More
precisely one can show (see [12], [23]) that there exists a subset �X ⊂ �∨, such that
dim �X < dim �∨ = (n − 1) and for any ξ ∈ �∨ \ �X , the induced function ξ : X → R

has only a finite number of homological critical points.

Example C.1 (a) Note that if X is a compact C2-submanifold of V , f is a Morse function
on X , and x is a critical point of f with Morse index λ, then m( f, x) = (−1)λ. In this
case Cr f = Cr#

f .
(b) If X is a compact, convex, subanalytic subset of V and ξ : V → R is a linear map, then

a pointx ∈ X is critical for the restriction of ξ to X if and only if x is a minimum point
for ξ . In this case we have m(ξ, x) = 1.
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Lemma C.1 [Kashiwara] Suppose that X is a compact connected tame subset of V and
f : X → R is a nice continuous tame function that contains no homological critical points
on the level set { f = c}. Then the inclusion induced morphism H•(X f <c+ε) → H•(X f <c)

is an isomorphism for all ε > 0 sufficiently small.

Proof We first prove that the morphism H•(X f ≤c) → H•(X f <c). is an isomorphism.
Indeed, it suffices to show that the local cohomology of Z = X f ≤c along S = { f ≥ c} is
trivial. This follows from (C.2) by observing that the local cohomology sheaves H•

Z/S(x) are
trivial.

Next observe that for some ε0 > 0, the induced map f : {c < f < c + ε0} → (c, c + ε0)

is a locally trivial fibration. This implies that for any ε′ < ε′′ < ε0 the induced morphism

H•(X f <c+ε′′) → H•(X f <c+ε′′)

is an isomorphism. We conclude by observing that H•(X f ≤c) = lim−→t↘0
H•(X f <c+t ). ��

Remark B.2 Kashiwara’s lemma is valid in a much more general context, [17, Proposition
2.7.2]. The proof in the general case is much more involved.

Suppose is a compact connected tame set subset of V and f : X → R is a nice, continuous
tame function. Fix c ∈ f (X). We have H•

X f ≥c
(X f <c+ε) = H•(X f <c+ε, X f <c). From the

equality
⋂
ε>0

X f <c+ε = X f ≤c

we deduce

lim−→ε
H•

X f ≥c
(X f <c+ε) = H•

X f ≥c
(X f ≤c) = H•

X f =c
(X f ≤c) = H•(X f ≤c, X f <c). (C.6)

Using (C.1) and (C.3), we deduce that for any sufficiently small ε > 0, we have
∑

x∈Cr#
f ,

f (x)=c

m( f, x) = χtop
(

X f ≤c
) − χtop

(
X f <c

) = χtop
(

X f <c+ε

) − χtop
(

X f <c
)
. (C.7)

Suppose now that c′, c ∈ f (X), c′ < c and the interval (c, ′c) contains no critical values of
f . Then,

χtop(X f <c′) = χtop(X f <c). (C.8)

Iterating (C.7) and (C.8), we deduce that for any c, c′ ∈ f (X), c′ < c, we have

χtop(X f ≤c) − χtop(X f ≤c′) =
∑

x∈Cr#
f

c′< f (x)≤c

m( f, x). (C.9)
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