PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 9, September 1997, Pages 2797–2801 S 0002-9939(97)03975-0

ON THE COBORDISM INVARIANCE OF THE INDEX OF DIRAC OPERATORS

LIVIU I. NICOLAESCU

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We describe a "tunneling" proof of the cobordism invariance of the index of Dirac operators.

The goal of this note is to present a very short proof of the cobordism invariance of the index. More precisely, if \hat{D} is a Dirac operator on an odd dimensional manifold \hat{M} with boundary $\partial \hat{M} = M$ then we show that the index of its restriction D to M is zero. The novelty of this proof consists in the fact that we provide an *explicit* isomorphism between the kernel and the cokernel of D. This map can be viewed as a sort of "propagator" (see Sect. 4).

1. The setting

Consider the following collection of data.

(a) A compact, oriented, (2n + 1)-dimensional Riemann manifold $(\hat{M}^{2n+1}, \hat{g})$ with boundary $\partial \hat{M} = M^{2n}$ such that \hat{g} is a product metric near the boundary. We denote by s the longitudinal coordinate on a collar neighborhood of M. The various orientations are defined as in Figure 1.

(b) A bundle of complex self-adjoint Clifford modules $\hat{\mathcal{E}} \to \hat{M}$ (in the sense of [BGV]). The Clifford multiplication is denoted by

$$\hat{\mathbf{c}}: T^*M \to \operatorname{End}(\mathcal{E}).$$

FIGURE 1. A $spin^c$ bordism

1991 Mathematics Subject Classification. Primary 58G10; Secondary 58G20.

©1997 American Mathematical Society

Received by the editors April 22, 1996.

Set $\mathcal{E} = \hat{\mathcal{E}}|_M$. We assume that

(1)
$$\operatorname{End}\left(\mathcal{E}\right) \cong Cl(T^*M) \otimes \mathbb{C},$$

i.e. M has a $spin^c$ structure and \mathcal{E} is in fact a bundle of complex spinors associated to this $spin^c$ structure.

(c) A formally selfadjoint Dirac operator $\hat{D}: C^{\infty}(\hat{\mathcal{E}}) \to C^{\infty}(\hat{\mathcal{E}})$ such that along the neck it has the form

(2)
$$\hat{D} = \hat{\mathbf{c}}(ds) \left(\nabla_s + D\right)$$

where the operator

$$D: C^{\infty}(\hat{\mathcal{E}}|_{\{s\} \times M}) \to C^{\infty}(\hat{\mathcal{E}}|_{\{s\} \times M})$$

is formally selfadjoint and independent of s. We set $J = \hat{\mathbf{c}}(ds)$. Note that since both \hat{D} and D are symmetric we have

$$(3) \qquad \qquad \{J,D\} = 0$$

where $\{\cdot, \cdot\}$ denotes the anticommutator of two operators.

Fix a local, oriented, orthonormal frame (e^1, \dots, e^{2n}) of T^*M so that (ds, e^1, \dots, e^{2n}) is an oriented orthonormal frame of $T^*\hat{M}$. If we denote by **c** the Clifford multiplication along the boundary then we have the equality

$$J\mathbf{c}(e^i) = \hat{\mathbf{c}}(ds)\mathbf{c}(e^i) = \hat{\mathbf{c}}(e^i)$$

and we can conclude from (2) that D is a Dirac operator on M with symbol \mathbf{c} .

We can regard $J|_M$ as an endomorphism of the bundle \mathcal{E} and as such it satisfies the anticommutation relations

$$\{J, \mathbf{c}(e^i)\} = 0.$$

Using (1) we conclude that $\mathbf{i}J$ ($\mathbf{i} = \sqrt{-1}$) is a multiple of the chiral operator

$$\Gamma_{\mathcal{E}} = \mathbf{i}^n \mathbf{c}(e^1) \cdots \mathbf{c}(e^{2n}).$$

We fix the orientations such that $\mathbf{i}J = \Gamma$. Thus $\mathbf{i}J$ defines a \mathbb{Z}_2 grading on \mathcal{E}

$$\mathcal{E} = \mathcal{E}_+ \oplus \mathcal{E}_-, \quad \mathcal{E}_\pm = \ker(\pm 1 - \mathbf{i}J).$$

The anticommutation equality (3) implies that D has a block decomposition

$$D = \left[\begin{array}{cc} 0 & D_{-} \\ D_{+} & 0 \end{array} \right]$$

where

$$D_{\pm}: C^{\infty}(\mathcal{E}_{\pm}) \to C^{\infty}(\mathcal{E}_{\mp}) \text{ and } D_{-} = D_{+}^{*}.$$

Define

ind
$$D = \dim \ker D_+ - \dim \ker D_-$$

We will show that ind D = 0 by explicitly producing an isometry ker $D_+ \to \ker D_-$.

2798

FIGURE 2. Stretching the neck

2. Cauchy data spaces and their adiabatic limits

Denote by \hat{M}_t $(t \gg 0)$ the manifold obtained from \hat{M} by attaching the long cylinder $[0, t] \times M$ (see Figure 2).

The bundle $\hat{\mathcal{E}}$ and the operator \hat{D} have natural extensions $\hat{\mathcal{E}}_t$ and \hat{D}_t to \hat{M}_t . For every $r \geq 0$ denote by $L^{r,2}$ the Sobolev space of distributions in L^2 with L^2 -derivatives up to order r and set

$$\mathcal{K}_t = \{ u \in L^{1/2,2}(\hat{\mathcal{E}}_t) ; \ \hat{D}_t u = 0 \}$$

In [BW] it is shown there exists a well defined continuous restriction map

$$r_t: \mathcal{K}_t \to L^2(\hat{\mathcal{E}}_t|_{\partial \hat{M}_t}).$$

The Cauchy data space of \hat{D}_t is defined as

$$\Lambda_t = r_t(\mathcal{K}_t).$$

 Λ_t is a closed subspace of $L^2(\mathcal{E})$ and satisfies a crucial condition (also established in [BW]), namely

$$\Lambda_t^{\perp} = J\Lambda_t.$$

The family $(\Lambda_t)_{t>0}$ has an especially nice behavior as $t \to \infty$. To describe it we need a bit more terminology.

For every interval $I \subset \mathbb{R}$ we denote by \mathcal{H}_I the closed subspace of $L^2(\mathcal{E})$ spanned by the eigenvectors of D corresponding to eigenvalues in I. In [N1] we proved that there exist $E \geq 0$ and a D invariant subspace $L_{\infty} \subset \mathcal{H}_{[-E,E]}$ such that

(4)
$$JL_{\infty} = L_{\infty}^{\perp}$$

and

(5)
$$\Lambda_t \xrightarrow{t \to \infty} \Lambda_\infty = L_\infty \oplus \mathcal{H}_{(-\infty, -E]}$$
 in the gap topology of [K].

3. The cobordism invariance of the index

Denote by P_{∞} the orthogonal projection onto Λ_{∞} and denote by $R_{\infty} = 2P_{\infty} - 1$ the orthogonal reflection in Λ_{∞} . The condition (4) is equivalent to

$$(6) \qquad \{R_{\infty}, J\} = 0.$$

Since $\mathcal{H}_{[-E,E]}$ is *J*-invariant (by (3)) we obtain a splitting

$$\mathcal{H}_{[-E,E]} = \mathcal{H}^+_E \oplus \mathcal{H}^-_E$$

where \mathcal{H}_{E}^{\pm} is the ± 1 -eigenspace of $\mathbf{i}J$ on $\mathcal{H}_{[-E,E]}$. The equality (6) implies that R_{∞} switches the components \mathcal{H}_{E}^{\pm} , i.e.

$$R_{\infty}(\mathcal{H}_E^{\pm}) = \mathcal{H}_E^{\mp}.$$

This "switch" is obviously an isomorphism. Note that

$$\ker D_{\pm} \subset \mathcal{H}_E^{\pm}$$

Since L_{∞} is also D-invariant we deduce that R_{∞} maps ker D_+ isometrically onto ker D_- . Geometrically this switch is the reflection in L_{∞} . This shows ind D=0.

Remark. In [N2] we use this adiabatic limit technique to establish the cobordism invariance of the index of *arbitrary families* of Dirac operators. The extreme generality of that situation may obscure some nice phenomena in special cases such as the one discussed below.

4. An example

Consider a cobordism as in Figure 3 and \hat{D} a Dirac operator on \hat{M} with all the properties listed in Section 1. The boundary operator D consists of two pieces $D_{\pm\infty}$ corresponding to the two components of the boundary and each is equipped with the induced chiral grading

$$D_{\pm\infty} = \left[\begin{array}{cc} 0 & D_{\pm\infty}^- \\ D_{\pm\infty}^+ & 0 \end{array} \right].$$

We assume that ker $D^{-}_{\pm\infty} = \{0\}$. Set

$$\mathcal{H} = \mathcal{H}_{-\infty} \oplus \mathcal{H}_{\infty} \stackrel{def}{=} \ker D^+_{-\infty} \oplus \ker D^+_{\infty}.$$

Denote by \mathcal{L} the space of extended L^2 -solutions of \hat{D} on the manifold \hat{M}_{∞} obtained by attaching infinite half-cylinders at its ends (we refer to [APS] for the exact definition). Then the space $L_{\infty} \cap \mathcal{H}$ described in Section 3 consists of the asymptotic values of these extended solutions and we can set $L_{\infty} \cap \mathcal{H} = \mathcal{L}|_{\partial \hat{M}}$. According to the considerations in Section 3 any $u \in \mathcal{L}|_{\partial \hat{M}}$ has an unique decomposition

(7)
$$u = u_+ + u_+, \quad u_\pm \in \mathcal{H}_{\pm\infty}.$$

FIGURE 3. Cobordism

2800

In other words $\mathcal{L}|_{\partial \hat{\mathcal{M}}}$ is the graph of a linear operator (the "propagator")

$$\mathcal{P}: u_{-} \mapsto u_{+}.$$

The uniqueness of the decomposition (7) implies that the "propagator" \mathcal{P} is an isomorphism $\mathcal{P}: \mathcal{H}_{-\infty} \to \mathcal{H}_{\infty}$.

References

- [APS] M.F. Atiyah, V.K. Patodi, I.M. Singer: Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 78(1975), p.405-432. MR 53:1655b
- [BGV] N. Beline, E. Getzler, M. Vergne: Heat Kernels And Dirac Operators, Springer Vrelag, Berlin, 1992. MR 94e:58130
- [BW] B. Boos, K. Wojciechowski: Elliptic Boundary Problems For Dirac Operators, Birckhauser, Basel, 1993. MR 94h:58168
- [K] T. Kato: Perturbation Theory For Linear Operators, Springer Verlag, Berlin, 1984. MR 53:11389
- [N1] L. I. Nicolaescu : The Maslov index, the spectral flow and decompositions of manifolds, Duke Math. J., vol. 80 (1995), p. 485-533. CMP 96:06
- [N2] L. I. Nicolaescu: Generalized symplectic geometries and the index of families of elliptic problems, (to appear in Mem. A.M.S.) CMP 96:12

E-mail address: liviu@math.lsa.umich.edu

 $Current \ address:$ Department of Mathematics, McMaster University, Hamilton, Ontario, Canada L8S $4\mathrm{K1}$