KNOTS AND THEIR CURVATURES

LIVIU I. NICOLAESCU

ABSTRACT. Idiscuss an old result of John Milnor stating roughly that if a closed curve in space is not
too curved then it cannot be knotted.
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1. THE TOTAL CURVATURE OF A POLYGONAL CURVE

An (oriented) polygonal knot (or curve) is a closed curve C in R®, without selfintersections, ob-
tained by successively joining n distinct points

3
D1, Pn pn+1 =D eR
via straight line segments

[P1pa)s - [Pp—1Pn]s [Py P1]-
The points p, are called the vertices of the polygonal knot C'. We denote by V¢ the set of vertices.
To each oriented edge [p;, p; 1], 1 < i < n, we associate the unit vector

1 .,
"YA ': —_— . pp .
’ ’pipi-l—l‘ S

Denote by S? the unit sphere in R3 centered at the origin. We obtain in this fashion a map

v =7¢:Ve — 8% v(p:) =
This is known as the Gauss map of the polygonal knot C.
Let a; € [0, 7) be the angle between -, and -y, ;; see Figure 1. We obtain in this fashion a map

a=ac: VC’ - [Oaﬂ-)) a(pl) = ;.
We define the fotal curvature of C' to be the positive real number
1 1 &
K(C) > ac(p) = %X;a (1.1)
1=
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FIGURE 1. A planar polygonal knot.

Observe that if C'is a convex, planar polygonal curve then K (C) = 1.

We can give a simple geometric interpretation to the total curvature. The points «; and «;,; on
S? determine a great circle (think Equator) on the sphere obtained by intersecting the sphere with the
plane II; through the origin and containing these two points. This great circle is divided into two arcs
by the points «y; and v, , ;. We let o; denote the shorter of the two arcs. Note that

a; = length(o;).

The collection of curves ; trace a closed curve o on S? called the gaussian image of C. We deduce

K(C) = % length(o¢).

2. A PROBABILISTIC INTERPRETATION OF THE TOTAL CURVATURE
Every unit vector u € S? determines a linear map
Ly :R* =R, Ly(x)=u-z,
where - denotes the dot product in R3. This induces by restriction a continuous map
ly = Ly|lc: C — R.
A vertex p of C' is a local minimum of ¢, if
lyu(p) < ly(x), forall z € C situated in a neighborhood of p.

We now define

1, if pis alocal mini |4
et S X Vo — R, S2x Vo3 (u,p) — pe(up) =3 i plSE.l ocal minimum of £,,,
0, otherwise.
We set
pe 8% = R, uc(u) = the number of vertices of C' that are local minima of /,,.
Let us point out that that pc(u) = co) for some u’s. Observe that
po(w) = Y po(u,p). @.1)
pEVC

Let us have a look at the function uc. First let us call a unit vector u € S? nondegenerate (with
respect to C) if the restriction £,, : Vo — R, i.e., the function /,, takes different values on different
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vertices of C. Otherwise, we say that u is degenerate (with respect to C'). We denote by A¢ C S>
the collection of degenerate vectors.

Note that u is degenerate if and only if there exist p;, p; € Ve such that w - (p; — pj), i.e., uis
perpendicular to the line ¢;; determined by p; and p;. In other words, u belongs to the great circle

E;CcS 2 obtained by intersecting S? with the plane through origin perpendicular to /; ;. Thus

Ac= ] Ej

1<i<j<n
In particular, the set A¢ has zero area, i.e., most vectors u € S 2 are nondegenerate. Set
S% = 8%\ Ac.
Let us point out that
u e S% = uc(u) < oco.

The set S% is the complement of finitely many great circles, and thus consists of the interiors of
finitely many spherical polygons,

S2 =P U---UP,.
Let us observe that if ug, u; € .S% belong to the interior of the same polygon P then

ILLC(UO7P) - MC(ulap)7 Vp € Ve.
To see this we choose a continuous path w : [0, 1] — Py such that
u(0) = ug, u(l) = u;.

We set £y := £y,(1), we consider a vertex p of C' and we denote by p’ and p” its neighbors. Since the
vector u(t) is nongenerate the quantities

d; = t(p) — U(p) and d = £,(p") — L(p)
are nonzero for any ¢ € [0, 1]. In particular, the signs of these quantities are independent of ¢. Observe

that p is a local minimum for ¢, if and only if both df, and djj are positive, that is, if and only if d}
and d’l’ are positive. Thus p is a local minimum for ¢; if and only if it is a local minimum for ¢y, i.e.,

po(wo, p) = po(ul, p).

This shows that the function ¢ is constant and finite on each of the regions Pj;, and in particular, it is
integrable.

Now define ) .
C = —————5_ dA'u, = dAU7
k(C) area (59) /52 po(u) I g pio(u)

where dA denotes the area element on S2. In other words k(C) is the average number of local
minima of the collection of function

{lu:C—R; ues*}.
We have the following beautiful result due to Milnor [2]
Theorem 2.1. For any polygonal curve C C R3 we have K (C) = k(C).

Proof. The proof is based on one of the oldest tricks in the book, namely, changing the order of
summation (or integration) in a double sum (or integral). We have

W(0) = 3= [ netwdan =1 [ ( 3 mu,p)) == 3 [ neup)dd..

peEVe pEVe
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Let Vo = {py,...,p,}. We want to compute the integral

/ pe(w, p;) dAy.
52

Above, for almost all u we have uc(u, p;) = 0, 1. Note that p; is a local minimum of /,, if and only
if u belongs to the lune L; C S? defined as follows.

i+1

S N

FIGURE 2. A planar section of a dihedral angle and the associated lune with opening

Bi = a.

Consider the planes 7; and ;1 perpendicular to the lines p;p,; ., and respectively p; p;; see
Figure 2. The planes 7; and m;_; determine four dihedral angles. Let let D; denote the dihedral angle
characterized by the inequalities

u < Di<:>u-pi <u *Pi—1, W Piyq-

Then L; = D; N S?%. The area of the lune L; is twice the measure B; of the dihedral angle D; (can
you argue why?) and upon inspecting Figure 2 we see that §; = «; Hence

1 1 o
e o (uw, p;) dAqy = Earea(Li) = ﬁ

Hence
1 n
O

Remark 2.2. For a different probabilistic interpretation of K (C') we refer to the paper of Istvan Fary
[1]. o
3. THE TOTAL CURVATURE OF A SMOOTH CLOSED CURVE

Suppose now that C'is a C? closed curve in R? without self-intersections. In other words we can
find a twice continuously differentiable map = : R — R3, ¢ +— =(¢) that is 1-periodic,

r(t+n)=r(), VteR, neZ,
its restriction to [0, 1) is injective, and
7(t) #0, VteR,

where the dot indicates a ¢-derivative, such that C' coincides with the image of r. The parametrization
r induces an orientation on C. We set py = 7(0).
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For every p = r(t) € C we denote by «~(p) the unit vector tangent to C' at p and pointing in the
same direction as the velocity vector 7(t) at p. More formally,

= ——7(t).
We the resulting C''-map

~o:C — 82

is called the Gauss map of the oriented closed curve C'. Its image o is a C'! curve on S? called the
gaussian image of C.
We denote by ds the arclength element along C, ds = |7 (t)|dt so that

1
L¢ :=length(C) = / ds —/ |7(t)]|dt.
C 0

For every p € C' \ {p,} we denote by s(p) the length of the arc of C' connecting p,, to p following
the orientation given by r. Set s(p,) = 0. We can use the quantity s to indicate the position of a
point on C. Thus we can view r as a function of s, 7 = r(s). Note that

=1 =)
We approximate C' by a sequence of inscribed polygonal curves C,,, obtained inductively as follows.
e The polygonal curve C has 2% vertices Do, P1s- - - Pok_1, Pok = Py oriented following the
orientation of C, and s(p;) — s(p;_1) = g—f

e V¢, C Vg, and new vertices of Uy, 11 are the midpoints of the arcs of C' formed by the
consecutive vertices of C,,.

Observe that the set
Voo = |J Ve,
n>1

can be identified with the dense subset of [0, L¢]
_m
oo
Note that if p € Vo, then p € V¢, for all n > 1. Denote by p, ,, the vertex i of C,, that coincides
with p, and by p; ,, its succesor. We set

Voo:{se[O,L], s Lc; m,n € Z>o, n>k, m§2"}.

Sin ‘= S(pi,n)7 Si+ln = 8(pi+1,n)'

Note that
1
= r(s; —7r(s; ,
YChn (p) ’T(si—‘rl,n) — T(Si,n)’ ( ( Z+1,n) ( Z7n))
so that
1
i =1 ; - ; .
nl—>Holo Yo, (p) nl—>Holo ‘7‘<3i+1,n) — T(Si,n)‘ (T(SH‘LH) T(sl,n) )VC(p)
. 1
= lim ——————(7(sit1.0) — 7(5in) ) = 7c(P).

N—=00 Si+1,n — Si,n
Thus the gaussian images of C}, are curves converging to the gaussian image of C, so we could expect
that
lim length(oc,) = length(o¢).

n—oo
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In fact something more precise is true. We set

1 1
K(C) = —lengthoc = —
©) 2m cngthoc 27 /C
The quantitity & (C') is called the total curvature of C and it is a measure of the total “bending” of C.

Theorem 3.1. (a) K(C),) < K(Cp1), Vn > 1 and
lim K(C,)=K(C).

n—oo

dy
o |ds. (3.1)

(b) There exists ng > 0 such that for any n > ng and any u € S 2 we have
pe, (w) < pe,., (w) = pc(w) == the number of local minimal of Ly,|c.

Moreover

lim ue, (u) dAu:/ po(u) dAy,.
2

n—oo 52 S

The proof is not very hard, but it is rather technical and we refer for details to [2]. In particular we
deduce that for any closed C? curve we have

K(C)=k(C), (3.2)
where the left-hand side is the bending measure (3.1) and it is a purely geometric quantity, while
x(C) is a probabilistic quantity

1

k(C) = y /52 po(u) dAy,. (3.3)

4. TOTAL CURVATURE AND KNOTTING

The topologists refer to closed C? curves in R? as knots. In the 40s K Borsuk ask the following
question

Is it true that if a knot C'is “not too bent”, then it is not really knotted? More precisely, he sked to
prove that if K(C') < 2 then C is not knotted.

In 1949, while an undergraduate at Princeton, J. Milnor gave a proof to this conjecture in the
beautiful paper [2] that served as inspiration for this talk. At about the same time, in Europe, 1. Fary
gave a different but related proof of this fact. We want to prove a slightly weaker result.

Theorem 4.1 (Milnor-Fary). If C is a knot and K (C) < 2, then C'is not knotted.

Proof. Here is briefly Milnor’s strategy. He introduced an invariant m(C') of a knot C, called crooked-
ness and he showed that if m(C) = 1 then C is not knotted. A simple argument based on (3.2) then
shows that K (C) < 2 implies that m(C) = 1.

The crookedness m(C) is the integer

m(C) := min pc(w).
ueS?

Lemma 4.2. If m(C) = 1 then C'is not knotted.
Proof of the lemma. Since m(C) = 1 there exists u € S such that the function L.,|¢ has a unique
local minimum, which has to be a global minimum. In particular this function must have a unique

local maximum, because between two local maxima there must be a local minimum.
By a suitable choice of coordinates we can assume that u is the basic vector k, so that

Ly(zi+yi+ zk) = z
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1.e., L4, is the altitude function.

N\

Tl

1 2 3 4 5

)
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FIGURE 3. Unknotting a curve with small crookedness.

By removing two small caps, i.e., small connected neighborhoods of the minimum and the maxi-
mum points we obtain two disjoint arcs in R? as depicted in Figure 3-2. The restriction of the altitude
along each of these arcs is a continuous injective function. These two arcs start at the same altitude
2o and end at the same altitude z; > zp. For ¢ € [z, 1] these two arcs intersect the horizontal plane
{z = t} in two points p; and ¢;. Denote by S; line segment connecting p; to ¢;. The union of these
segments spans a ribbon between the two arcs which shows that they can be untwisted, as in Figure
3-3,4,5. To unknot C' we let the boundary of the caps follow the boundaries of the two arcs as they
are untwisted. a

We can now complete the proof of Theorem 4.1. We observe that

K(C) = = /S o) dA, > 4i m(C) dAy = m(C).

- E ™ Js?
Thus if K(C) < 2 then the positive integer m(C) is strictly less than 2 so that m(C) = 1. From
Lemma 4.2 we deduce that C' is not knotted. O
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