KNOTS AND THEIR CURVATURES

LIVIU I. NICOLAESCU

ABSTRACT. I discuss an old result of John Milnor stating roughly that if a closed curve in space is not too curved then it cannot be knotted.

CONTENTS

The total curvature of a polygonal curve	1
A probabilistic interpretation of the total curvature	2
The total curvature of a smooth closed curve	4
Total curvature and knotting	6
ferences	7
	A probabilistic interpretation of the total curvature The total curvature of a smooth closed curve Total curvature and knotting

1. THE TOTAL CURVATURE OF A POLYGONAL CURVE

An (oriented) *polygonal knot* (or curve) is a closed curve C in \mathbb{R}^3 , *without selfintersections*, obtained by successively joining n distinct points

$$\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n,\ \boldsymbol{p}_{n+1}=\boldsymbol{p}_1\in\mathbb{R}^3$$

via straight line segments

$$[p_1p_2], \ldots, [p_{n-1}p_n], [p_n, p_1].$$

The points p_i are called the *vertices* of the polygonal knot C. We denote by \mathcal{V}_C the set of vertices. To each oriented edge $[p_i, p_{i+1}], 1 \le i \le n$, we associate the unit vector

$$oldsymbol{\gamma}_i := rac{1}{| \overrightarrow{oldsymbol{p}_i oldsymbol{p}_{i+1}} |} \cdot \overrightarrow{oldsymbol{p}_i oldsymbol{p}_{i+1}}.$$

Denote by S^2 the *unit* sphere in \mathbb{R}^3 centered at the origin. We obtain in this fashion a map

$$\boldsymbol{\gamma} = \boldsymbol{\gamma}_C : \boldsymbol{\mathcal{V}}_C \to \boldsymbol{S}^2, \ \boldsymbol{\gamma}(\boldsymbol{p}_i) = \boldsymbol{\gamma}_i.$$

This is known as the *Gauss map* of the polygonal knot C.

Let $\alpha_i \in [0, \pi)$ be the angle between γ_i and γ_{i+1} ; see Figure 1. We obtain in this fashion a map

$$\alpha = \alpha_C : \mathcal{V}_C \to [0, \pi), \ \alpha(\boldsymbol{p}_i) = \alpha_i.$$

We define the *total curvature* of C to be the *positive* real number

$$K(C) = \frac{1}{2\pi} \sum_{\boldsymbol{p} \in \mathcal{V}_C} \alpha_C(\boldsymbol{p}) = \frac{1}{2\pi} \sum_{i=1}^n \alpha_i.$$
(1.1)

Date: Started August 18, 2009. Completed Completed on Aug. 19, 2009. Last modified on September 1, 2009.

FIGURE 1. A planar polygonal knot.

Observe that if C is a convex, planar polygonal curve then K(C) = 1.

We can give a simple geometric interpretation to the total curvature. The points γ_i and γ_{i+1} on S^2 determine a great circle (think Equator) on the sphere obtained by intersecting the sphere with the plane Π_i through the origin and containing these two points. This great circle is divided into two arcs by the points γ_i and γ_{i+1} . We let σ_i denote the shorter of the two arcs. Note that

$$\alpha_i = \text{length}(\sigma_i).$$

The collection of curves σ_i trace a closed curve σ_C on S^2 called the *gaussian image* of C. We deduce

$$K(C) = \frac{1}{2\pi} \operatorname{length}(\sigma_C).$$

2. A PROBABILISTIC INTERPRETATION OF THE TOTAL CURVATURE

Every unit vector $oldsymbol{u} \in oldsymbol{S}^2$ determines a linear map

$$L_{\boldsymbol{u}}: \mathbb{R}^3 \to \mathbb{R}, \ L_{\boldsymbol{u}}(\boldsymbol{x}) = \boldsymbol{u} \cdot \boldsymbol{x},$$

where "." denotes the dot product in \mathbb{R}^3 . This induces by restriction a continuous map

$$\ell_{\boldsymbol{u}} = L_{\boldsymbol{u}}|_C : C \to \mathbb{R}.$$

A vertex p of C is a local minimum of ℓ_u if

$$\ell_{\boldsymbol{u}}(\boldsymbol{p}) \leq \ell_{\boldsymbol{u}}(\boldsymbol{x}), \text{ for all } \boldsymbol{x} \in C \text{ situated in a neighborhood of } \boldsymbol{p}.$$

We now define

$$\mu_C: \mathbf{S}^2 \times \mathcal{V}_C \to \mathbb{R}, \ \mathbf{S}^2 \times \mathcal{V}_C \ni (\mathbf{u}, \mathbf{p}) \mapsto \mu_C(\mathbf{u}, \mathbf{p}) = \begin{cases} 1, & \text{if } \mathbf{p} \text{ is a local minimum of } \ell_{\mathbf{u}}, \\ 0, & \text{otherwise.} \end{cases}$$

We set

 $\mu_C: \mathbf{S}^2 \to \mathbb{R}, \ \ \mu_C(\mathbf{u}) = \text{the number of vertices of } C \text{ that are local minima of } \ell_{\mathbf{u}}.$

Let us point out that that $\mu_C(u) = \infty$) for some u's. Observe that

$$\mu_C(\boldsymbol{u}) = \sum_{\boldsymbol{p} \in \mathcal{V}_C} \mu_C(\boldsymbol{u}, \boldsymbol{p}).$$
(2.1)

Let us have a look at the function μ_C . First let us call a unit vector $u \in S^2$ nondegenerate (with respect to C) if the restriction $\ell_u : \mathcal{V}_C \to \mathbb{R}$, i.e., the function ℓ_u takes different values on different

vertices of C. Otherwise, we say that u is *degenerate* (with respect to C). We denote by $\Delta_C \subset S^2$ the collection of degenerate vectors.

Note that u is degenerate if and only if there exist $p_i, p_j \in \mathcal{V}_C$ such that $u \cdot (p_i - p_j)$, i.e., u is perpendicular to the line ℓ_{ij} determined by p_i and p_j . In other words, u belongs to the great circle $E_{ij} \subset S^2$ obtained by intersecting \mathbb{S}^2 with the plane through origin perpendicular to ℓ_{ij} . Thus

$$\Delta_C = \bigcup_{1 \le i < j \le n} E_{ij}.$$

In particular, the set Δ_C has zero area, i.e., most vectors $u \in S^2$ are nondegenerate. Set

$$S_C^2 := S^2 \setminus \Delta_C.$$

Let us point out that

$$\boldsymbol{u} \in \boldsymbol{S}_C^2 \Rightarrow \mu_C(\boldsymbol{u}) < \infty.$$

The set S_C^2 is the complement of finitely many great circles, and thus consists of the interiors of finitely many spherical polygons,

$$\boldsymbol{S}_C^2 = P_1 \cup \cdots \cup P_{\nu}.$$

Let us observe that if $u_0, u_1 \in S_C^2$ belong to the interior of the same polygon P_k then

$$\mu_C(\boldsymbol{u}_0, \boldsymbol{p}) = \mu_C(\boldsymbol{u}_1, \boldsymbol{p}), \ \forall \boldsymbol{p} \in \mathcal{V}_C.$$

To see this we choose a continuous path $\boldsymbol{u}:[0,1] \rightarrow P_k$ such that

$$\boldsymbol{u}(0) = u_0, \ \boldsymbol{u}(1) = \boldsymbol{u}_1.$$

We set $\ell_t := \ell_{u(t)}$, we consider a vertex p of C and we denote by p' and p'' its neighbors. Since the vector u(t) is nongenerate the quantities

$$d_t' = \ell_t(\boldsymbol{p}') - \ell(\boldsymbol{p}) ext{ and } d_t'' = \ell_t(\boldsymbol{p}'') - \ell_t(\boldsymbol{p})$$

are nonzero for any $t \in [0, 1]$. In particular, the signs of these quantities are independent of t. Observe that p is a local minimum for ℓ_0 if and only if both d'_0 and d''_0 are positive, that is, if and only if d'_1 and d''_1 are positive. Thus p is a local minimum for ℓ_0 if and only if it is a local minimum for ℓ_1 , i.e.,

$$\mu_C(\boldsymbol{u}_0, \boldsymbol{p}) = \mu_C(\boldsymbol{u}_1, \boldsymbol{p})$$

This shows that the function μ_C is constant and finite on each of the regions P_k and in particular, it is integrable.

Now define

$$\boldsymbol{\kappa}(C) := \frac{1}{\operatorname{area}\left(\boldsymbol{S}^{2}\right)} \int_{\boldsymbol{S}^{2}} \mu_{C}(\boldsymbol{u}) \, dA_{\boldsymbol{u}} = \frac{1}{4\pi} \int_{\boldsymbol{S}^{2}} \mu_{C}(\boldsymbol{u}) \, dA_{\boldsymbol{u}}$$

where dA denotes the area element on S^2 . In other words $\kappa(C)$ is the average number of local minima of the collection of function

$$\left\{ \ell_{\boldsymbol{u}}: C \to \mathbb{R}; \ \boldsymbol{u} \in \boldsymbol{S}^2 \right\}.$$

We have the following beautiful result due to Milnor [2]

Theorem 2.1. For any polygonal curve $C \subset \mathbb{R}^3$ we have $K(C) = \kappa(C)$.

Proof. The proof is based on one of the oldest tricks in the book, namely, changing the order of summation (or integration) in a double sum (or integral). We have

$$\boldsymbol{\kappa}(C) = \frac{1}{4\pi} \int_{\boldsymbol{S}^2} \mu_C(\boldsymbol{u}) \, dA_{\boldsymbol{u}} = \frac{1}{4\pi} \int_{\boldsymbol{S}^2} \left(\sum_{\boldsymbol{p} \in \mathcal{V}_C} \mu_C(\boldsymbol{u}, \boldsymbol{p}) \right) dA_{\boldsymbol{u}} = \frac{1}{4\pi} \sum_{\boldsymbol{p} \in \mathcal{V}_C} \int_{\boldsymbol{S}^2} \mu_C(\boldsymbol{u}, \boldsymbol{p}) \, dA_{\boldsymbol{u}}.$$

Let $\mathcal{V}_C = \{ \boldsymbol{p}_1, \dots, \boldsymbol{p}_n \}$. We want to compute the integral

$$\int_{\boldsymbol{S}^2} \mu_C(\boldsymbol{u},\boldsymbol{p}_i) \, dA_{\boldsymbol{u}}.$$

Above, for almost all u we have $\mu_C(u, p_i) = 0, 1$. Note that p_i is a local minimum of ℓ_u if and only if u belongs to the lune $L_i \subset S^2$ defined as follows.

FIGURE 2. A planar section of a dihedral angle and the associated lune with opening $\beta_i = \alpha_i$.

Consider the planes π_i and π_{i-1} perpendicular to the lines $p_i p_{i+1}$ and respectively $p_{i-1} p_i$; see Figure 2. The planes π_i and π_{i-1} determine four dihedral angles. Let let D_i denote the dihedral angle characterized by the inequalities

$$\boldsymbol{u} \in D_i \iff \boldsymbol{u} \cdot \boldsymbol{p}_i \le \boldsymbol{u} \cdot \boldsymbol{p}_{i-1}, \ \boldsymbol{u} \cdot \boldsymbol{p}_{i+1},$$

Then $L_i = D_i \cap S^2$. The area of the lune L_i is twice the measure β_i of the dihedral angle D_i (can you argue why?) and upon inspecting Figure 2 we see that $\beta_i = \alpha_i$ Hence

$$\frac{1}{4\pi} \int_{\boldsymbol{S}^2} \mu_C(\boldsymbol{u}, \boldsymbol{p}_i) \, dA_{\boldsymbol{u}} = \frac{1}{4\pi} \operatorname{area}\left(L_i\right) = \frac{\alpha_i}{2\pi}$$

Hence

$$\boldsymbol{\kappa}(C) = \frac{1}{2\pi} \sum_{i=1}^{n} \alpha_i = K(C).$$

Remark 2.2. For a different probabilistic interpretation of K(C) we refer to the paper of Istvan Fáry [1].

3. The total curvature of a smooth closed curve

Suppose now that C is a C^2 closed curve in \mathbb{R}^3 without self-intersections. In other words we can find a twice continuously differentiable map $r : \mathbb{R} \to \mathbb{R}^3$, $t \mapsto r(t)$ that is 1-periodic,

$$\boldsymbol{r}(t+n) = \boldsymbol{r}(t), \ \forall t \in \mathbb{R}, \ n \in \mathbb{Z},$$

its restriction to [0, 1) is injective, and

$$\dot{\boldsymbol{r}}(t) \neq 0, \quad \forall t \in \mathbb{R},$$

where the dot indicates a *t*-derivative, such that *C* coincides with the image of *r*. The parametrization *r* induces an orientation on *C*. We set $p_0 = r(0)$.

For every $p = r(t) \in C$ we denote by $\gamma_C(p)$ the unit vector tangent to C at p and pointing in the same direction as the velocity vector $\dot{\boldsymbol{r}}(t)$ at \boldsymbol{p} . More formally,

$$\boldsymbol{\gamma}_C(\boldsymbol{p}) = \frac{1}{|\dot{\boldsymbol{r}}(t)|} \dot{\boldsymbol{r}}(t).$$

We the resulting C^1 -map

$$\boldsymbol{\gamma}_C: C \to \boldsymbol{S}^2$$

is called the Gauss map of the oriented closed curve C. Its image σ_C is a C^1 curve on S^2 called the gaussian image of C.

We denote by ds the arclength element along C, $ds = |\dot{\mathbf{r}}(t)| dt$ so that

$$L_C := \operatorname{length}(C) = \int_C ds = \int_0^1 |\dot{\boldsymbol{r}}(t)| dt.$$

For every $p \in C \setminus \{p_0\}$ we denote by s(p) the length of the arc of C connecting p_0 to p following the orientation given by r. Set $s(p_0) = 0$. We can use the quantity s to indicate the position of a point on C. Thus we can view r as a function of s, r = r(s). Note that

$$\left|\frac{d\boldsymbol{r}}{ds}\right| = 1, \ \frac{d\boldsymbol{r}}{ds} = \boldsymbol{\gamma}(s).$$

We approximate C by a sequence of inscribed polygonal curves C_n , obtained inductively as follows.

- The polygonal curve C_1 has 2^k vertices $p_0, p_1, \ldots, p_{2^{k-1}}, p_{2^k} = p_0$ oriented following the orientation of C, and $s(p_i) - s(p_{i-1}) = \frac{L_C}{2^k}$. • $\mathcal{V}_{C_n} \subset \mathcal{V}_{C_{n+1}}$ and new vertices of C_{n+1} are the midpoints of the arcs of C formed by the
- consecutive vertices of C_n .

Observe that the set

$$\mathcal{V}_{\infty} = igcup_{n\geq 1} \mathcal{V}_{C_n}$$

can be identified with the dense subset of $[0, L_C]$

$$V_{\infty} = \left\{ s \in [0, L], \ s = \frac{m}{2^n} L_C; \ m, n \in \mathbb{Z}_{\geq 0}, \ n \geq k, \ m \leq 2^n \right\}.$$

Note that if $p \in \mathcal{V}_{\infty}$, then $p \in \mathcal{V}_{C_n}$ for all $n \gg 1$. Denote by $p_{i,n}$ the vertex i of C_n that coincides with p, and by $p_{i+1,n}$ its succesor. We set

$$s_{i,n} := s(p_{i,n}), \ s_{i+1,n} := s(p_{i+1,n}).$$

Note that

$$\gamma_{C_n}(\boldsymbol{p}) = \frac{1}{|\boldsymbol{r}(s_{i+1,n}) - \boldsymbol{r}(s_{i,n})|} \big(\boldsymbol{r}(s_{i+1,n}) - \boldsymbol{r}(s_{i,n}) \big),$$

so that

$$\lim_{n \to \infty} \boldsymbol{\gamma}_{C_n}(\boldsymbol{p}) = \lim_{n \to \infty} \frac{1}{|\boldsymbol{r}(s_{i+1,n}) - \boldsymbol{r}(s_{i,n})|} (\boldsymbol{r}(s_{i+1,n}) - \boldsymbol{r}(s_{i,n})) \boldsymbol{\gamma}_C(\boldsymbol{p}).$$
$$= \lim_{n \to \infty} \frac{1}{s_{i+1,n} - s_{i,n}} (\boldsymbol{r}(s_{i+1,n}) - \boldsymbol{r}(s_{i,n})) = \boldsymbol{\gamma}_C(\boldsymbol{p}).$$

Thus the gaussian images of C_n are curves converging to the gaussian image of C, so we could expect that

$$\lim_{n \to \infty} \operatorname{length}(\sigma_{C_n}) = \operatorname{length}(\sigma_C)$$

In fact something more precise is true. We set

$$K(C) = \frac{1}{2\pi} \operatorname{length} \sigma_C = \frac{1}{2\pi} \int_C \left| \frac{d\gamma}{ds} \right| ds.$$
(3.1)

The quantitity K(C) is called the total curvature of C and it is a measure of the total "bending" of C.

Theorem 3.1. (a) $K(C_n) \leq K(C_{n+1})$, $\forall n \geq 1$ and

$$\lim_{n \to \infty} K(C_n) = K(C).$$

(b) There exists $n_0 > 0$ such that for any $n \ge n_0$ and any $u \in S^2$ we have

$$\mu_{C_n}(\boldsymbol{u}) \leq \mu_{C_{n+1}}(\boldsymbol{u}) = \mu_C(\boldsymbol{u}) := \text{ the number of local minimal of } L_{\boldsymbol{u}}|_C$$

Moreover

$$\lim_{n\to\infty}\int_{\boldsymbol{S}^2}\mu_{C_n}(\boldsymbol{u})\,dA_{\boldsymbol{u}}=\int_{\boldsymbol{S}^2}\mu_C(\boldsymbol{u})\,dA_{\boldsymbol{u}}.$$

The proof is not very hard, but it is rather technical and we refer for details to [2]. In particular we deduce that for any closed C^2 curve we have

$$K(C) = \kappa(C), \tag{3.2}$$

where the left-hand side is the bending measure (3.1) and it is a purely geometric quantity, while $\kappa(C)$ is a probabilistic quantity

$$\boldsymbol{\kappa}(C) = \frac{1}{4\pi} \int_{\boldsymbol{S}^2} \mu_C(\boldsymbol{u}) \, dA_{\boldsymbol{u}}.$$
(3.3)

4. TOTAL CURVATURE AND KNOTTING

The topologists refer to closed C^2 curves in \mathbb{R}^3 as knots. In the 40s K Borsuk ask the following question

Is it true that if a knot C is "not too bent", then it is not really knotted? More precisely, he sked to prove that if $K(C) \leq 2$ then C is not knotted.

In 1949, while an undergraduate at Princeton, J. Milnor gave a proof to this conjecture in the beautiful paper [2] that served as inspiration for this talk. At about the same time, in Europe, I. Fáry gave a different but related proof of this fact. We want to prove a slightly weaker result.

Theorem 4.1 (Milnor-Fáry). If C is a knot and K(C) < 2, then C is not knotted.

Proof. Here is briefly Milnor's strategy. He introduced an invariant m(C) of a knot C, called *crooked*ness and he showed that if m(C) = 1 then C is not knotted. A simple argument based on (3.2) then shows that $K(C) \leq 2$ implies that m(C) = 1.

The crookedness m(C) is the integer

$$m(C) := \min_{\boldsymbol{u} \in \boldsymbol{S}^2} \mu_C(\boldsymbol{u}).$$

Lemma 4.2. If m(C) = 1 then C is not knotted.

Proof of the lemma. Since m(C) = 1 there exists $u \in S^2$ such that the function $L_u|_C$ has a unique local minimum, which has to be a global minimum. In particular this function must have a unique local maximum, because between two local maxima there must be a local minimum.

By a suitable choice of coordinates we can assume that u is the basic vector k, so that

$$L_{\boldsymbol{u}}(x\boldsymbol{i} + y\boldsymbol{i} + z\boldsymbol{k}) = z$$

i.e., L_u is the altitude function.

FIGURE 3. Unknotting a curve with small crookedness.

By removing two small caps, i.e., small connected neighborhoods of the minimum and the maximum points we obtain two disjoint arcs in \mathbb{R}^3 as depicted in Figure 3-2. The restriction of the altitude along each of these arcs is a continuous injective function. These two arcs start at the same altitude z_0 and end at the same altitude $z_1 > z_0$. For $t \in [z_0, z_1]$ these two arcs intersect the horizontal plane $\{z = t\}$ in two points p_t and q_t . Denote by S_t line segment connecting p_t to q_t . The union of these segments spans a ribbon between the two arcs which shows that they can be untwisted, as in Figure 3-3,4,5. To unknot C we let the boundary of the caps follow the boundaries of the two arcs as they are untwisted.

We can now complete the proof of Theorem 4.1. We observe that

$$K(C) = \frac{1}{4\pi} \int_{S^2} \mu_C(u) \, dA_u \ge \frac{1}{4\pi} \int_{S^2} m(C) \, dA_u = m(C).$$

Thus if K(C) < 2 then the positive integer m(C) is strictly less than 2 so that m(C) = 1. From Lemma 4.2 we deduce that C is not knotted.

REFERENCES

- [1] I. Fáry: Sur la courbure totale d'une courbe gauche faisant un noed, Bull. Soc. Math. France, 77(1949), 128-138.
- [2] J.W. Milnor: On the total curvature of knots, Ann. Math., 52(1950), 248-257.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556-4618. *E-mail address*: nicolaescu.l@nd.edu *URL*: http://www.nd.edu/~lnicolae/