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1. EULER CHARACTERISTIC AND CLASSICALMORSE THEORY

SupposeM →֒ E is an embedding of a compact, connected, smooth oriented,m-dimensional
manifoldM in the finite dimensional vector spaceE.

Every linear functionξ ∈ E∗ = HomR(E, R) defines by restriction a smooth functionξM on M .
The level setsM=t = ξ−1

M (t) can be visualized as the intersection ofM with the hyperplaneξ = t. A
point x ∈ M is critical for ξM if the hyperplaneξ = ξ(x) is tangent toM atx, i.e. TxM ⊂ ξ−1(0).

For genericξ the restrictionξM is a Morse function onM , i.e. all its critical points are nondegen-
erate. Recall that the critical pointp0 of a smooth functionf is called nondegenerate if we can find
local coordinates(x1, · · · , xm) onM nearp0 such that

xi(p0) = 0, f(x1, · · · , xm) = f(p0) − x2
1 − · · · − x2

λ + x2
λ+1 + · · · + x2

m.

The integerλ is independent of the above choices of coordinates. It is called theMorse index off at
p0 and it is denoted byλ(p0) = λ(f, p0).

Denote byCξ ⊂ M the critical set ofξM . ThenCξ is finite and we denote by

Dξ = ξ(Cξ) ⊂ R

the set of critical values.Dξ is a finite subset ofR so thatR \ Dξ is a finite union of open intervals.

M<t = {x ∈ M ; ξ < t}, χ(t) := χ(M<t)

Consider for example the situation depicted in Figure1. The critical setCξ and the discriminant set
Dξ are marked in red.

The first theorem of classical Morse theory implies that the function χ(t) is constant on each
connected component ofR \ Dξ, i.e.

χ(M<a) = χ(M<b) if the interval[a, b] does not intersect the discriminantDξ.
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FIGURE 1. The height function on a genus two surface.

Thus for everyt ∈ R the limitsχ−(t) = lims→t− χ(s) andχ+(t) = lims→t+ χ(s) are well defined
and

δ(t) = χ+(t) − χ−(t) = 0, ∀t ∈ R \ Dξ.

We deduce that
χ(M) = χ(∞) − χ(−∞) =

∑

τ∈Dξ

δ(τ).

Observe that forτ ∈ Dξ we have

δ(τ) = χ(τ + ε) − χ(τ − ε), ∀0 < ε ≪ 1,

i.e.
δ(τ) = χ(Mτ+ε) − χ(M<τ−ε) = χ

(
H•(M<τ+ε,M<τ−ε)

)
.

Let Cξ(τ) = Cξ ∩ {ξM = τ} denote the set of critical points ofξM with critical valueτ . In Figure1
We see thatCξ(τ4) consists of three critical points.

By choosingε > 0 sufficiently small we can coverCξ(τ) by finitely many disjoint open balls
B(x), x ∈ Cξ(τ) such that

B(x) ⊂ {τ − ε < ξM < ξM + ε}, B−(x) := B(x) ∩ {ξM < τ − ε/2} 6= ∅, ∀x.

The second fundamental theorem of classical Morse theory states

H•(M<τ+ε,M<τ−ε) ∼=
⊕

x∈Cξ(τ)

H•
(
B(x), B−(x)

)
,

where each pair(B(x), B−(x) ) deformation retracts to the pair(Dλ(x), ∂Dλ(x) ). Hereλ(x) denotes
the Morse index of the critical pointx andDλ denotes the closedλ-dimensional ball.

We deduce that

δ(τ) =
∑

x∈Cξ(τ)

χ(Dλ(x), ∂Dλ(x)) =
∑

x∈Cξ(τ)

χ(Dλ(x)) − χ(∂Dλ(x) =
∑

x∈Cξ(τ)

(−1)λ(x).

Hence we deduce
χ(M) =

∑

x∈Cξ

(−1)λ(x).

Let us rephrase the above equality. Denote by

〈•, •〉 : E × E∗ → R
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the natural pairing between a vector space and its dual. Consider the cotangent bundleT ∗E of E.
Recall that we have a natural pairing

〈•, •〉 : TE × T ∗E → RE := R × E,
〈
(y, x), (ξ, x)

〉
= (〈v, ξ〉, x).

This induces a pairing
TE |M ×T ∗E |M→ RM

Define theconormal bundleof the embeddingM →֒ X as the subbundleT ∗
ME of T ∗E |E defined by

the condition
(ξ, x) ∈ T ∗

ME ⇐⇒ 〈v, ξ〉 = 0, ∀v ∈ TxM.

We regardT ∗
ME as a submanifold ofT ∗E. Observe thatdim T ∗

ME = dim E = 1
2 dim T ∗E. The

total space of the cotangent bundleT ∗E caries a natural symplectic form

ω0 = dα.

If we choose linear coordinates(x1, · · · , xN ) on E and we denote by(ξ1, · · · , ξN ) the dual coordi-
nates onE∗ then

α =
∑

i

ξidxi, ω0 =
∑

i

dξi ∧ dxi.

We orient1 the total space ofT ∗E using the volume form

Ω := dξ1 ∧ · · · ∧ dξN ∧ dx1 ∧ · · · ∧ dxN =
(−1)N(N−1)/2

N !
ωN

0 .

ThenT ∗
ME is a lagrangian submanifold ofT ∗E, i.e. ω0 restricts to the trivial form onT ∗

ME. An
orientation onE induces a natural orientation onT ∗

ME defined as follows. Letp ∈ M and choose
local coordinatesx1, · · · , xN onE nearp such that

xi(p) = 0, ∀i, M = {x1 = · · · = xN−m = 0}

and the orientation ofE is defined bydx1 ∧ · · · ∧ dxN . We obtain coordinates(ξ1, · · · , ξN ) in the
fiber T ∗

p E. Then(x1, · · · , xm, ξm+1, · · · , ξN ) define local coordinates onT ∗
ME and we orient this

manifold using the volume form

dξ1 ∧ · · · ∧ dξN−m ∧ dxN−m+1 ∧ · · · ∧ dxN .

Supposeξ0 ∈ E∗. We viewξ0 as a smooth function onE. Its differential is a section ofT ∗E and its
graph

Γξ0 =
{

(dξ0 |x, x) ∈ E∗ × E = T ∗E
}
.

is a Lagrangian submanifold ofT ∗E. It carries a natural orientation induced by the orientation of E.
Observe thatp0 ∈ M is a critical point ofξ0 |M if and only if P0 := (ξ0, p0) ∈ Γξ0 ∩ T ∗

ME.
We want to prove that ifp0 is nondegenerate as a critical point of indexλ thenΓξ0 intersectsT ∗

ME

transversally2 in P0. Set for simplicityΛ = T ∗
ME andΓ = Γξ0. Sincep0 is a nondegenerate critical

point of ξ0 we can find local coordinates(x1, · · · , xN ) in E nearp0 such thatxi(p0) = 0, ∀i, such
that if we set

x⊥ = (x1, · · · , xN−m), x0 = (xN−m+1, · · · , xN )

thenM = {x⊥ = 0}

ξ0(x) = ξ0(p0) + 〈x⊥, c0〉 +
1

2
(ǫ1(x

N−m+1)2 + · · · + · · · + ǫm(xN )2)

+xN−m+1ℓ1(x⊥) + · · · + xNℓm(x⊥) + q(x⊥) + O(3),

1This differs from the two different orientation conventions in [5] and [10].
2The converse is also true
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whereǫj = ±1,
#{j; ǫj = −1} = λ,

c0 ∈ E∗ \ 0 vanishes alongTp0M , ℓi are linear functions in the variablesx⊥, q(x⊥) is quadratic in
the same variables. Then nearP0 the graph ofdξ0 admits the parametrization

ξk = c0
k +

m∑

j=1

xN−m+j ∂ℓj

∂xk
+

∂q

∂xk
+ O(2), k = 1, · · · , N − m

ξN−m+j = ǫjx
N−m+j + ℓj(x

⊥) + O(2), j = 1, · · · ,m

xi = xi, ∀i.

An oriented basis ofTP0Γξ0 is given by the vectors

Uj =













∂ξ1
∂xj

...
∂ξN

∂xj

∂x1

∂xj

...
∂xn

∂xj













, j = 1, · · · , n.

An oriented basis ofTP0Λ is given by the vectors

Vj =

{
∂ξj

if j ≤ N − m
∂xj if j > N − m

.

We want to computeΩ(U1, · · · , UN , V1, · · · , VN ). Denote bySm the diagonalm × m matrix with
entriesǫj . We deduce

Ω(U1, · · · , UN , V1, · · · , VN ) = det
















∗
... ∗

... IN−m
... 0

· · · · · · · · · · · ·

∗
... Sm

... 0
... 0

· · · · · · · · · · · ·

IN−m
... 0

... 0
... 0

· · · · · · · · · · · ·

0
... Im

... 0
... Im
















= det











∗
... ∗

... IN−m

· · · · · · · · ·

∗
... Sm

... 0
· · · · · · · · ·

IN−m
... 0

... 0











= (−1)N(N−m) det







∗
... Sm

· · · · · ·

IN−m
... 0







= (−1)N(N−m)+m(N−m) detSm = (−1)N−m det Sm = (−1)N−m(−1)λ.

Let us perform a few cosmetic changes. Observe that ifλ(−ξ0, p) denotes the index ofp as a critical
point of (−ξ0) thenλ(−ξ0, p) = m − λ(ξ0, p) so that

(−1)λ−m = (−1)λ(−ξ0,p).
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If we consider the antipodal mapa : T ∗E → T ∗E, (ξ, x) 7→ (−ξ, x) we deduce that

#(Γ−ξ0 ∩ ΛM , P a
0 ) = (−1)N+λ(ξ0,p)

and sincedimΓ = dim Λ = N we conclude

#(ΛM ∩ Γ−ξ0, P a
0 ) = (−1)λ(ξ0,p).

We obtain the following equality

χ(M) = #(ΛM ∩ Γ−ξ), for any generic linear mapξ : E → R. (1.1)

2. WEYL TUBE FORMULA

SupposeM →֒ E is as before but we assume additionally thatM is equipped with an Euclidean
metric g0. g0 induces a metricg on M . We setc = N − m = the codimension ofM in E. The
normal bundle of the embeddingM →֒ E is the quotient bundle

TME := (TE) |M /TM.

SinceTE is equipped with a metric we can identifyTME with the bundleN(M) → M , the orthog-
onal complement ofTM in (TE) |M . The metric onE defines a function

ρ : TE → R, ρ(Y, x) = |Y |g0.

We set

Dr(N) :=
{
p ∈ N(M); ρ(p) ≤ r

}
, Sr(N) := ∂Dr(N) =

{
p ∈ N(M); ρ(p) = r

}
,

Sr(TE) =
{
p ∈ TE; ρ(p) = r

}
.

We have an exponential map

exp : TE → E, exp(y, x) = x + y.

Define the tube of radiusr > 0 aroundM to be the closed set

Tr(M) :=
{
x ∈ E; dist (x,M) ≤ r

}
.

For r > 0 sufficiently small we have a diffeomorphism

exp : Dr(N)−→Tr(M). (2.1)

Let VM (r) = Vol( Tr(M) ). We would like to understand the behavior ofVM (r) asr ց 0. Denote
by dvE the volume form onE. Using the identification (2.1) we deduce

VM (r) =

∫

Tr(M)
dvE =

∫

Dr(N)
exp∗ dvE .

In more down-to-Earth terms, we are using normal (Fermi) coordinates nearM to compute the vol-
ume of the tube.

Let us first understand theN -form

ΩE = exp∗ dVE ∈ ΩN (TE).

Choose oriented, orthonormal coordinatesx = (x1, · · · , xN ) on E. They induce oriented orthonor-
mal coordinatesY = (Y 1, · · · , Y N ) in each tangent space. Then

dvE = dx1 ∧ · · · ∧ dxN , ΩE = exp∗ dvE =
N∧

j=1

(dxj + dY j).
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Denote by∂ρ the radial vector field along the fibers ofTE

∂ρ = ∇ρ =
1

ρ

∑

j

Y j∂Y j .

Then∂ρ dρ = 1 and we set
σE := ∂ρ ΩE

so that
ΩE = dρ ∧ σE.

Then

VM (r) =

∫

Dr(N)
ΩE =

∫ r

0
dt

∫

St(N)
σE.

Consider the radial projectionνt : S1(TE) → St(E) and setσE,t := ν∗
t (σE |St(TE)) We conclude

VM (r) =

∫

Dr(N)
ΩE =

∫ r

0
dt

∫

S1(N)
σE,t. (2.2)

Set

S :=
1

ρ
Y = (s1, · · · , sN ).

Observe that∂ρ dY k = sk so that

σE = ∂ρ

N∧

j=1

(dxj + dY j)

=
∑

k

(−1)k−1sk
∧

j 6=k

(
dxj + dY j

)
=

∑

k

(−1)k−1sk
∧

j 6=k

(
dxj + ρdsj + sjdρ

)

Hence

σE,t =
∑

k

(−1)k−1sk
∧

j 6=k

(
dxj + tdsj

)
=

N−1∑

j=0

tjηN−1−j ,

whereηk ∈ Ωn−1(S1(TE)) is a form independent oft of degreek in the variablesdx and of degree
N − k − 1 in the variablesds. We denote byωd the volume of the unitd-dimensional ball and byσd

the ”area” of its boundary. More explicitly

ωd =
πd/2

Γ(d/2 + 1)
, σd = dωd,

where for every positive integerj we computeΓ(j/2) inductively using the formulæ

Γ(1) = 1, Γ(1/2) = π1/2, Γ(x + 1) = xΓ(x).

We normalize

η̂k :=
1

σN−k
ηk =

1

(N − k)ωN−k
ηk.

We deduce

VM (r) =

N−1∑

j=0

∫ r

0

(∫

S1(N)
ηN−1−j

)

tjdt =

N∑

k=1

Ak(M)ωN−kt
N−k,

where

Ak(M) =

∫

S1(N)
η̂k
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Observe that ∫

S1(N)
ηk = 0, if k > m

so that

VM (r) =

m∑

k=0

Ak(M)tN−k =

m∑

j=0

Am−j(M)ωc+jt
c+j, c = N − m = codim M.

Example 2.1. (a) SupposeE = R2 with Euclidean coordinates(x, y). In each fiber ofTE we choose
polar coordinates(r, θ) so that

exp(r, θ;x, y) = (x + r cos θ, y + r sin θ), exp∗ dvE = d(x + r cos θ) ∧ d(y + r sin θ)

∂r exp∗ dvE = (cos θdy − sin θdx) + ρdθ,

so that

η̂1 =
1

2
(cos θdy − sin θdx), η̂0 =

1

2π
dθ.

⊓⊔

The integrals of the formsηk over S1(N) can be expressed in terms of the second fundamental
form of M →֒ E. This is also known as theshape operatorand it is a bilinear map

S : TM × TM → N

defined as follows. Given vector fieldsX,Y tangent toM we denote by∇E
XY the Euclidean covariant

derivative ofY alongX

∇E
Xi∂i

Y j∂j =
(
Xi∂iY

j
)
∂j .

We have an orthogonal decomposition of∇E
XY into a tangential and a normal part

∇E
XY = (∇E

XY )τ + (∇E
XY )ν .

Then
S(X,Y ) = (∇E

XY )ν .

The shape operator enjoys several nice properties (see [9, §4.2.4]).

Proposition 2.2. (a) S is symmetric in its arguments, i.e.

S(X,Y ) = S(Y,X), ∀X,Y ∈ Vect(M).

(b) For all N ∈ C∞(NM ) andX,Y ∈ Vect(M) we have

g0(S(X,Y ), N) = g0(∇
E
XN,Y ).

The shape operator is related to the Gauss mapΓM : M → Grm(E) = the Grassmanian of
m-dimensional subspaces inE

M ∋ p 7→ TpM ∈ Grm(E).

For am-dimensional vector spaceV ⊂ E the tangent space of the Grassmanian atV is described by

TV Grm(E) = Hom(V, V ⊥).

The differential atp ∈ M of the Gauss map can therefore be viewed as a map

DΓ : TpM → TΓ(p)Grm(E) = Hom(TpM,Np).

One can show that for everyX,Y ∈ TpM the linear mapDΓp(X) ∈ Hom(TpM,Np) is given by

Y 7−→ Sp(X,Y ).
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Theorema Egregiumshows that the shape operator determines the Riemann tensorof (M,g) via the
formula

Rijkℓ = g
(
S(∂i, ∂k), S(∂j , ∂ℓ)

)
− g

(
S(∂i, ∂ℓ), S(∂j , ∂k)

)

For any local coordinate system(xi) onM .
The formsηk can be explicitly expressed in terms of the shape operator. More precisely, for every

unit normal vector~ν ∈ Np we obtain a symmetric bilinear form onTpM

S~ν(X,Y ) = g0(S(X,Y ), ~ν).

Using an orthonormal basis ofTpM we can identify it with a symmetric matrix. We denote by
Pν(t) = det(1TpM + tS~ν ) its characteristic polynomial. Then

ΩE = exp∗ dvE |N= Pν(ρ)ρc−1dρd~νdVM ,

whered~ν denotes the volume form on the unit sphereS1(Np). We obtain (see the beautiful original
source [12] for details)

VM (r) =

∫

Dr(N)
ΩE =

∑

k≥0

ωc+2kr
c+2k

∫

M
Pk(R)dVM

︸ ︷︷ ︸

:=λ2k(M)

,

wherePk(R) is auniversaldegreek-polynomial in the curvature tensor(Rijkℓ). Henceµk(M) is an
intrinsic invariant of the Riemann manifold(M,g). We have an equality

λk(M,g) =
1

σc+2k

∫

S1(N)
ηm−2k.

Note that the quantityλk(M) is measured inmetersm−2k. For this reason we introduce the notation

µm−2k(M,g) = λ2k(M,g).

We can then rewrite
VM (r) =

∑

k≥0

µm−2k(M,g) · vol
(
Bc+2k(r)

)
,

whereBd(r) denotes thed-dimensional Euclidean ball of radiusr.
There are some old acquaintances amongst the quantitiesµj(M,g). For example

µm(M,g) = vol (M,g).

If m is even,m = 2m0 thenPm0dVM ∈ Ωm(M) is the Euler form determined by the metric and the
Gauss-Bonnet theorem implies

µ0(M,g) = χ(M).

In general we have

µm−2(M,g) =
1

4π

∫

M
sdVM ,

wheres : M → R denotes the scalar curvature of(M,g).
The quantitiesµk are related by the so calledreproducing formulæ. Denote byGraffc(E) the

Grassmanian ofaffinesubspaces inE of codimensionc. More precisely we have the following result
(see [3])

µk(M) := A(N,m, c, k) ·

∫

Graffc(E)
µk−c(M ∩ P )|dP |,

where|dP | is aO(E)- invariant measure onGraffc(E). If we setc = k we deduce

µk(M) := A(N,m, k) ·

∫

Graffk(E)
χ(M ∩ P )|dP |.
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We can interpretµk(M) as an average of the Euler characteristics of the intersections ofM with
codimensionk affine planes. If we takek = dimM we deduce

vol (M,g) = A(N,m)

∫

Graffm(E)
χ(M ∩ P )|dP |.

The intersection ofM with a generic codimensionm affine subspaceP is a finite set so that

χ(M ∩ P ) = |M ∩ P |.

The last formula can be rewritten as

vol (M,g) = A(N,m)

∫

Graffm(E)
|M ∩ P | |dP |.

This generalizes the classical Crofton formula for curves in R2.
As explained in [7], we can normalize the invariant measures inGraffm(E) in a very clever way

so thatA(N,m) = 1.

3. SINGULAR MORSE THEORY

To understand how to extend the previous facts to more singular situations we need to produce
more flexible definitions of the notions of critical points and critical values.

We will begin by defining the notion of regular value. This will require the notion oflocal coho-
mology

SupposeX is a locally compact metric space, andS is a closed subset. To eliminate many patho-
logical phenomenawe will assume thatX and S are locally contractible, i.e. every point admits a
basis of contractible neighborhoods. This condition implies for example thatX andS areENR’s
(Euclidean Neighborhood Retract). We denote byi : S →֒ X and j : X \ S →֒ X the natural
inclusions We define the local cohomology ofX alongS (with real coefficients) to be

H•
S(X) := H•(X,X \ S; R).

For every topological spaceY we denote byH•(Y ) its (Čech) cohomology with real coefficients.
A cohomology classc ∈ H•(X \ S) is said topropagate acrossS if it belongs to the image of the
morphism

j∗ : H•(X) → H•(X \ S).

Observe that we have a long exact sequence (called theadjunction sequence)

· · · → Hk(X)
j∗
−→ Hk(X \ S)

δ
−→ Hk+1

S (X) → · · · (3.1)

We see that a cohomology classc ∈ H•(X \ S) propagates acrossS if and only if δ(c) = 0 ∈
H•+1

S (X). We can the regard the local cohomology ofX alongS as collecting the obstructions to the
propagation acrossS of the cohomology classes in the complement ofS. If the inclusionj induces an
isomorphism in cohomology thenH•

S(X) = 0. This is the case if for exampleX \S is a deformation
retract ofX.

Observe that ifV is an open neighborhood ofS in X thenX \ V is a closed subset inX \ S and
we obtain an excision isomorphism

H•
S(X) = H•(X,X \ S) ∼= H•

(
X \ (X \ V ), (X \ S) \ (X \ V )

)
= H•(V, V \ S) = H•

S(V ).

This shows that the local cohomology reflects the local behavior of X nearS and it is blind to what
is happening further away fromS.

We can now define thelocal cohomology sheavesH•
S to be the sheaves associated to the presheaves

U 7−→ H•
S∩U (U).
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If x ∈ X andUn(x) denotes the open ball of radius1/n centered atx then for everym ≤ n we have
morphisms

H•
S∩Um

(Um) → H•
S∩Un

(Un)

and then the stalk ofHp
S atx is the inductive limit

H
•
S(x) := lim

n→∞
H•

S∩Un
(Un)

Observe that sinceX is locally contractible we have

H
•
S(x) = 0 for every x ∈ (X \ S) ∪ int (S). (3.2)

We set
χS(X) =

∑

k

(−1)k dim Hk
S(X), χS(x) :=

∑

k≥0

(−1)k dim H
k
S(x).

Example 3.1. AssumeX is the planar three arm star depicted in Figure2 andP0 is the center of the
star. AssumeS = {P0}. In this case we have

H
•
S(P0) = H•

{P0}
(X) ∼= H•(X,X \ P0)

∗

and we deduce

H
0
S(P0) = 0, H

1
S(P0) ∼= R2, χS(P0) = χ(X,X \ P0) = χ(X) − χ(X \ P0) = −2.

P

P

P

P

0

1

2

3

FIGURE 2. A planar star.

⊓⊔

An iterated application of the Mayer-Vietoris sequence shows that the local cohomology sheaves
determine the local cohomology alongS. More precisely we have a Grothendieck spectral sequence
converging toH•

S(X) whoseE2 term is

Ep,q
2 = Hp(X,Hq

S).

If it happens that the local cohomology sheaves are supported by finite sets then

Hp,q(X,Hq
S) = 0, ∀p > 0,

so that the spectral sequence degenerates at theE2-terms. In this case we have

Hq
S(X) ∼= H0(X,Hq

S) ∼=
⊕

x∈X

H
q
S(x). (3.3)

In particular

χS(X) =
∑

x∈X

χS(x). (3.4)
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Observe that if the local cohomology sheaves are trivial then so is the local cohomology. The converse
need not be true.3

Before we proceed with our search for a new definition for a regular value let us mention that if
V = ⊕n∈ZVn is a graded vector space we denote byV [µ] the shift byµ

V [µ]n = Vn+µ

We will identify R with the graded vector spaceV defined by

Vn = 0, ∀n 6= 0, V0 = R.

Then
R[−µ]n = 0, ∀n 6= µ, R[−µ]µ = R.

SupposeM is a smooth manifold andf : M → R is a smooth function. For everyc ∈ R we set
M≥c = {f ≥ c}, M<c := {f < c} etc. If c is a regular value off then the level set{f = c} is a
smooth hypersurface. Moreover, every pointx on this level surface admits a fundamental system of
neighborhoodsUn(x) such that the setUn∩{M<c} = Un \M≥c is a deformation retract ofUn. This
implies

H•
Un∩M≥c

(Un) = 0

These non-obstructions to local propagation are patched together in the next result.

Theorem 3.2(Kashiwara’s Lemma). SupposeK
f

−→ R is a continuous function on the compact
spaceK. If for everyp ∈ K we have

H
•
K≥f(p)

(p) = 0

then for everyt ∈ R the inclusion induced morphismH•(K) → H•(K<t) is an isomorphism.

For a proof of this result we refer to [6, §2.7]. The above result shows that if the interval[a, b]
contains no critical value off the for everya ≤ s < t ≤ b the inclusion induced morphism

H•(M<t) → H•(M<s)

is an isomorphism. Thus we obtain a fact we knew already that when going through regular values
the sublevel sets do not undergo changes detectable homologically.

Suppose now that the level set contains a critical pointp of indexλ. Denote byW−
p the unstable

manifold ofp. for a small coordinate ballU aroundb we haveU ∩W−
p

∼= Dλ = openλ-dimensional
disk centered atp and we have an isomorphism

H•
U≥c

(U) = H•(U,U<c) ∼= H•(Dλ,Dλ \ p) = H•
{p}(D

λ) ∼= R[−λ].

The critical pointp distinguishes itself from other points on the level set{f = f(p)} by the condition

H
•
M≥f(p)

(p) 6= 0.

We will use this as our criticality test.

Definition 3.3. SupposeM is a compact connected (subanalytic) subset in an Euclideanspace and
f : M → R is smooth function. A pointp ∈ M is said to becritical for f if

H
•
M≥f(p)

(p) 6= 0.

We set
δ(f, p) := χ(H•

M≥f(p)
(p)).

3Can you find and example?
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Observe that any relative minimum off is necessarily a critical point. SupposeM is as above and
f : M → R is a smooth function with finitely many critical pointsp1, · · · , pν with critical values
c1 ≤ · · · ≤ cν . For the simplicity of the exposition we assume that the critical values are distinct, i.e.
there is at most one critical point on each level set.

Observe that any relative minimum off is necessarily a critical point.c1 must be the absolute
minimum off so thatM<c1 = ∅. From Kashiwara’s lemma we deduce

χ(M) = χ(M<cν+ε)

and we deduce

χ(M) = χ(M<c1)
︸ ︷︷ ︸

=0

+χ(M<c2)−χ(M c1)+ · · ·+χ(M<cν )−χ(M<cν−1)+χ(M<cν+ε)−χ(M<cν )

= χ(H•(M<c2,M<c1) ) + · · · + χ(H•(M<cν ,M<cν−1) ) + χ(M cν+ε,M<cν ) )

=
ν∑

k=1

χ
(
M<ck+ε,M<ck

)
.

Due to Kashiwara’s Lemma we have

χ
(
M<ck+ε,M<ck

)
= lim

εց0
χ
(
H•

M≥ck
(M<ck+ε)

)
.

Since
⋂

ε>0

M<ck+ε = M≤ck

we deduce

H•
M≥ck

(M≤ck) = lim−→n
H•

M≥ck
(M<ck+1/n) = H•

M≥ck
(M<ck+ε), ∀0 < ε < ck+1 − ck.

Now observe that the restriction ofH•
M≥ck

onM≤ck is supported exactly at the pointpk so that

H•
M≥ck

(M≤ck)
(3.3)
= H

•
M≥ck

(pk).

Hence
χ
(
M<ck+ε,M<ck

)
= χM≥ck

(pk)

and

χ(M) =

ν∑

k=1

χM≥ck
(pk) =

ν∑

k=1

δ(f, p).

If M is a compact smooth manifold andM is a Morse function then

χf≥ci
(pi) = (−1)λi ,

whereλi denotes the Morse index ofpi.

Example 3.4. SupposeC ⊂ E is a simplicial complex linearly embedded in the Euclidean space
E. We denote byV (C) the set of vertices ofC. Supposeξ : E → R is a linear function in general
position with respect toC, i.e. its restriction to the set of vertices is one-to-one. Then the set of
critical points ofξ is contained in the set of vertices, and in fact there is at most one critical point in
each level set.

For eachp ∈ E we denote byH<
ξ,p the half space

H<
ξ,p = {v ∈ E : 〈v, ξ〉 < 〈p, ξ〉} = {ξ < ξ(p)}.
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Denote byBε(p) the open ball of radiusε centered atp. Then for every vertexp of C we have

Hξ≥ξ(p)(p) = H•(Bε(p) ∩ C, Bε(p) ∩ C ∩ H<
ξ,p ), ∀0 < ε ≪ 1.

Denote bySt(p), the star atp which is the union of all simplices inC which havep as a vertex. The
setBε(p) ∩ C = Bε(p) ∩ St(p) deformation retracts top and we deduce

χξ≥ξ(p) = χ(Bε(p) ∩ C) − χ(Bε(p) ∩ C ∩ H<
ξ,p) = 1 − χ(St(p) ∩ H<

ξ,p ).

For every simplexσ in St(p) we denote byV−(σ) the collection of verticesv of σ such thatξ(v) <
ξ(p). We denote byV+(σ) the collection of verticesv 6= p of σ such thatξ(v) ≥ ξ(p). Projecting
from the face[V+(σ)] of σ spanned byV+(σ) onto the face spanned byp andV−(σ) we obtain a
deformation retraction (see Figure3)

Dσ : σ → [p, V−(σ)] = the face ofσ spanned by{p} ∪ V−(σ)

This induces a linear deformation retraction

Dσ : σ ∩ H<
ξ,p → [p, V −

σ ] ∩ H<
ξ,p.

V (   )

V (  )

p

p

σ

σ

σ

ξ=ξ(   )

 +

−

FIGURE 3. The local homotopic structure of critical sublevel sets.

If we denote bySt−(p) the union of all simplices ofC contained inH≤
ξ,p which havep as a vertex.

If σ is a simplex inSt−(p) andv 6= p is a vertex thenξ(v) < ξ(p) sinceξ was chosen in general
position.

Hence we obtain a deformation retract ofSt(p) ∩ H<
ξ,p onto St−(p) \ p. Denote byLk−(p) =

Lk−
ξ (p) the descending link ofp defined as the simplicial subcomplex ofSt−(p) spanned by the

verticesv 6= p. ThenSt−(p) − p deformation retracts toLk−(p) and we deduce

χ(St(p) ∩ H<
ξ,p) = χ(Lk−(p)).

Observe thatLk−(p) consists of the simplices[V−(σ)], whereσ is a simplex inSt−(p), other thanp.
Hence

χ(Lk−(p)) =
∑

σ∈St−(p)\[p]

(−1)dim[V−(σ)] = −
∑

σ∈St−(p)\[p]

(−1)dim σ

so that
χξ≥ξ(p) = 1 +

∑

σ∈St−(p)\[p]

(−1)dim σ =
∑

σ∈St−(p)

(−1)dim σ =: a(ξ, p).

We deduce
χ(C) :=

∑

p∈V (C)

a(ξ, p) =
∑

p∈V (C)

(
1 − χ(Lk−

ξ (p))
)
.

The first equality was proved by T. Banchoff in [1] using a direct elementary method.
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For example, consider the simplicial complex depicted in Figure 2 where the horizontal dotted
lines depict the level sets containing the vertices. The Euler characteristic of the star is4 − 3 = 1.
Upon inspecting the figure we deduce

Lk−(P1) = Lk−(P2) = ∅, Lk−(P0) = {P1, P2}, Lk−(P3) = {P0}

so that
a(P0) = a(P1) = 1, a(P0) = −1, a(P3) = 0

so that
a(P0) + a(P1) + a(P2) + a(P3) = 1 = χ(C).

Observe thatP3 is an absolute maximum of the height function yet it is not a critical point in our
sense. In fact ifC is a convex simplex then a generic linear functionξ will have exactly one critical
point onC, the absolute minimum. The hyperplaneξ = ξ(p) passing through the absolute minimum
p will be a supporting hyperplane ofC. In particular, a point could be critical forf but it may not be
critical for −f . ⊓⊔

4. THE CHARACTERISTIC VARIETY AND THE CONORMAL CYCLE OF A SIMPLICIAL COMPLEX

SupposeX is a compact simplicial complex inside the Euclidean vectorspaceE.
The characteristic variety ofX is the closed subset of the cotangent bundleT ∗E = R∗ × E of E

which is the closure of the set
{

(ξ, p) ∈ E∗ × E; p is a critical point of(−ξ) |X
}
.

The last condition signifies thatp admits a fundamental system of neighborhoodsUn in X such that

H•(Un, Un ∩ {ξ > ξ(p)} 6= 0, ∀n.

Loosely speaking this means that the regionUn ∩ {ξ > ξ(p)} is structurally different fromUn. We
set

Chp(X) := Ch(X) ∩ T ∗
p E.

Example 4.1. SupposeE = R2 equipped with the standard Euclidean metric so we will identify
E∗ = E. AssumeX is a horizontal line segment. Denote byTr(X) the tube of radiusr aroundX

Tr(X) :=
{
x ∈ E; dist (x,X) ≤ r

}
.

For eachq ∈ ∂Tr(c) there exists a unique pointπ(q) ∈ X such that

dist (q, π(p) ) = r.

Denote byRq the ray which starts atπ(q) and goes throughq (see Figure4). We can regard it as a
ray inTπ(q)R

2 ∼= T ∗
π(q)R

2. Then

Ch(X) =
⋃

q∈∂Tr(X)

Rq.

We see thatCh(X) is homeomorphic to the ”aura”Int (Tr) ⊓⊔

Motivated by this example we introduce the subbundleDr(TE∗) → E of TE∗ of radiusr closed
disks and we set

Chr(X) = Ch(X) ∩ Dr(TE∗).

If X is as in the above example thenChr(X) ∼= Tr(X).
We have the following elementary facts.
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q

q

qR

π(  ) p

FIGURE 4. The ”aura” of a straight line segment in the plane

Proposition 4.2. (a) (0, p) ∈ Ch(X), ∀p ∈ X.

(b) If (ξ, p) ∈ Ch(X) then(tξ, p) ∈ Ch(X), ∀t ≥ 0. (We say thatCh(X) is a conic subset of the
cotangent bundle.)

(c) If σ is a simplex ofX, p is an interior point ofσ and (ξ, p) ∈ Ch(X) then the simplexσ is
contained in the hyperplaneξ = ξ(p). Equivalently this means that(ξ, p) belongs to the conormal
bundleT ∗

Int σE.
⊓⊔

Given a pointp ∈ X there exists a unique simplexσ such thatp ∈ Intσ. Suppose the simplexσ
is a face of the simplexτ (written σ � τ ). We set

Λσ,τ (p) :=
{

ξ ∈ E∗; the hyperplaneξ = ξ(p) containsτ
}

∼=
{

the set of lines throughp perpendicular toτ
}
,

Λ(p) = Λσ(p) := Λσ,σ(p),

Chp(X, τ) := Chp(X) ∩ Λσ,τ (p).

Observe thatΛσ(p) can be identified with the fiber atp of the conormal bundleT ∗
Int σE, or equivalently

with the set of lines troughp perpendicular toσ. In Figure4 if we takeσ = p andτ = the segmentX
thenChp(X, τ) is the vertical line throughp since any line throughp and perpendicular to that line
will contain the segmentX. Observe that

codim
(
Chp(X, τ) →֒ Chp(X)

)
= codim(σ →֒ τ) = dim τ − dimσ.

Note that
σ � τ1 � τ2 =⇒ Λσ,τ1 ⊇ Λσ,τ2 .

The star ofσ in X, denoted bySt(σ), is the subcomplex determined by all the simplicesτ which
admitσ as a face

St(σ) :=
⋃

τ�σ

τ.

We get a collection (arrangement) of subspaces inΛσ(p)

Aσ(p) =
{

Λσ,τ (p); τ ∈ St(σ)}.

We denote byΛ0
σ(p) the complement of this arrangement of planes. Its connectedcomponents are

open polyhedral cones. We will refer to them aschambers. We denote byCσ,p the collection of
chambers ofΛσ(p). The covectors inΛ0

σ are callednondegenerate covectors(for X atp). We set

Chp(X)0 = Chp(X) ∩ Λ0
σ(p).
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The covectors inChp(X)0 are callednondegenerate characteristic vectors(for X atp). Observe that
if p, q ∈ Int σ then

Λ0
σ(p) = Λ0

σ(q), Cσ,p = Cσ,q,

soΛ0
σ(p) is really an invariant of the embeddingIntσ →֒ X. Since every point belongs to the interior

of a single simplex so we can safely dropp or σ from the notationsΛσ(p), Cσ,p.
For every(ξ, p) ∈ T ∗E we set

m(ξ, p,X) := χ
(
H

•
X≤ξ(p)(p)

)
= lim

rց0
χ
(
Br(p) ∩ X

)
− χ

(
Br(p) ∩ X>ξ(p)

)
.

We will refer tom(ξ, p,X) as the multiplicity of the generic covector(x, p). Note that ifp ∈ X \ E
m(x, p,X) = 0 for anyξ ∈ Λp = T ∗

p E. On the other hand

m(ξ, p,X) = m(ξ, q,X), ∀p, q ∈ Intσ,

so we can use the notationmσ(ξ,X) for m(ξ, p,X), p ∈ Intσ. To provide a combinatorial descrip-
tion of these integers we need to introduce some terminology.

Given two simplicesσ ≺ τ we denote byLk(σ, τ) the maximal face ofτ which is disjoint from
σ. In other wordsLk(σ, τ) is the face ofτ ”opposite” toσ. Observe that

dimσ + dimLk(σ, τ) = dim τ + 1.

Given a simplicial complexK andσ a simplex in define thelink of σ in K to be the subcomplex

Lk(σ,K) :=
⋃

σ�τ

Lk(σ, τ). (4.1)

Fix a pointp ∈ X and denote byσ the unique simplexσ in X such thatp ∈ Int(σ). Forξ ∈ Λσ we
define

St+ξ (p) = St+ξ (σ) =
{
τ ∈ St(σ); ξ(x) ≥ ξ(p), ∀x ∈ τ

}
=

{
τ ∈ St(σ); τ ⊂ {ξ ≥ ξ(p)}

}
,

Lk+
ξ (p) = Lk+

ξ (σ) = Lk+
ξ (p,X) = Lk(σ, St+ξ (σ) )

Proposition 4.3. Supposep ∈ Intσ andξ ∈ Λ0
σ is a nondegenerate vector. Then

m(ξ, p) = 1 − χ
(
Lk+

ξ (p)
)

= (−1)dim σ
∑

τ≻ξσ

(−1)dim τ ,

whereτ ≻ξ σ signifies thatτ ≻ σ andτ ⊂ {ξ ≥ ξ(p)}

Proof For r > 0 sufficiently smallBr(p) ∩ X is a deformation retract ofSt(σ) so that

χ(Br(p) ∩ X) = χ(St(σ)) = 1.

Arguing exactly as in Example3.4 one proves thatBr(p) ∩ X{ξ>ξ(p)} is a deformation retract of
St(σ){ξ>ξ(p)} and then thatSt(σ){ξ>ξ(p)} deformation retracts onto the complement ofσ in St+ξ (σ).

Finally this complement deformation retracts ontoLk+
ξ (σ). Hence

χ
(
Br(p) ∩ X{ξ>ξ(p)}

)
= χ(Lk+

ξ (p)).

Next, observe that

χ(Lk+
ξ (p)) =

∑

τ≻ξ σ

(−1)dim Lk(σ,τ) =
∑

τ≻ξ σ

(−1)dim τ+1−dim σ = −(−1)dim σ
∑

τ≻ξ σ

(−1)dim τ .

Hence
1 − χ(Lk+

ξ (p)) = 1 + (−1)dim σ
∑

τ≻ξ σ

(−1)dim τ = (−1)dim σ
∑

τ≻ξ σ

(−1)dim τ
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⊓⊔

We see that the multiplicity of a generic covector as defined above coincides with the multiplicity
defined in [2]. The above result has an important consequence.

Corollary 4.4. Suppose the generic covectors(ξi, p), i = 0, 1 belong to the same chamberC ∈ Cp.
Then

m(ξ0, p,X) = m(ξ1, p,X).

Proof Sincex0 andξ1 belong to the same chamber we deduce

Lk+
ξ0

(σ) = Lk+
ξ1

(σ)

whence the equality of the two multiplicities.
⊓⊔

The multiplicity function we have just constructed associates to each chamber atp ∈ X an integer
and thus can be viewed as a functionmp : Cσ,p → Z. Againmp = mq for all p, q ∈ Int σ.

Example 4.5. Consider again the planar star in Figure2. We denote it byX and we denote byP0 its
center. In Figure5 this simplicial complex is described with dotted lines. We would like to describe
the chamber structure atP0. Assume for simplicity thatP0 is the origin. We identifyT ∗R2 with
TR2. The linear functionals containing an arm of the start in a level set can be identified with the line
orthogonal to that arm atP0. We get three such lines are depicted as continuous lines in Figure5.

C
C

C

C

C

C
1

2

3

5
6

-1
0

-1
0

0

-1

4

FIGURE 5. The chambers at the vertex of a three-armed star

They divide the plane into six cones denoted byC1, · · · , C6. The multiplicities of the correspond-
ing chamber are indicated in the right-hand-side of Figure5. More precisely

m(P0, Ck) =
−1 + (−1)k

2
=

{
0 if k is even
−1 if k is odd

.

⊓⊔

Proposition 4.6. SupposeX1,X2 ⊂ are two simplicial complexes such thatX1∩X1 is a subcomplex
of both. Then for every(x, p) ∈ T ∗E we have

m(ξ, p,X1 ∪ X2) = m(x, p,X1) + m(ξ, p,X2) − m(ξ, p,X1 ∩ X2).

Proof For r > 0 sufficiently small andY = X1 ∪ X2,X1,X2 or X1 ∩ X2 we have the equality

m(ξ, p, Y ) = χ(Br ∩ Y ) − χ(Br ∩ Y{ξ>ξ(p)}).

The proposition now follows from the inclusion-exclusion property of the Euler characteristic.
⊓⊔
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To define the characteristic cycle we need a brief detour in the theory of currents. For more details
we refer to [4].

SupposeV is a connected, oriented smooth manifold of dimensionn. We denote byΩk(V ) the vec-
tor space of smoothk-dimensional forms and byΩk

cpt(V ) the space of smooth, compactly supported
k-dimensional forms. They have natural structure of locallyconvex topological vector spaces with
the topology given by the uniform convergence on compacts ofthe forms and their partial derivatives.

For everyk ≥ 0 we denote byΩk(V ) the topological dual ofΩk
cpt(V ), i.e. the space of continuous

linear functionalsΩk
cpt(V ) → R. Similarly we defineΩcpt

k (V ) to be the topological dual ofΩk(V ).
ForC ∈ Ωk(V ) we denote its action onη ∈ Ωk

cpt(V ) by 〈C, η〉.
Observe that we have an embedding

D : Ωn−k(V ) →֒ Ωk(V ), ω 7−→ Dω : Ωk
cpt(V ) → R, 〈Dω, η〉 =

∫

M
ω ∧ η, ∀η ∈ Ωk

cpt(M).

We will refer toD as thePoincaŕe duality map. We have a boundary operator

∂Ωk(V ) → Ωk−1(V ), 〈∂C, η〉 = 〈C, dη〉, ∀η ∈ Ωk−1
cpt (V ).

We obtain in this fashion of chain complex(Ω•(V ), ∂). Its homology is called theBorel-Moore
homologyof V , or the homology ofV with closed supports. It will be denoted byHcl

• (V ). The
Poincaré duality map induces an isomorphism

H•(V ) → Hcl
n−•(V ).

Example 4.7. SupposeV is an oriented real vector space andP is a polyhedral region, i.e. a finite
intersection of half-spaces (closed or open). Letp = dimP . In other wordsp is the dimension of the
affine subspacespan (P ) spanned byP .

Any orientationor on span (P ) determines ap-current[P ] = [P, or] defined by

〈[P ], η〉 =

∫

P,or
η, ∀η ∈ Ωp

cpt(V ).

We will say that[P, or] is theintegration currentdefined byP and the orientationor.
Denote byF(P ) the collection of(p − 1)-dimensional faces ofP . For every faceF ∈ F(P ) the

orientationor onP induces an orientationorF onF determined by theouter-normal-firstconvention.
For example, in Figure6 where we depicted a2-dimensional polyhedron inR2 equipped with the
orientation induced from the canonical orientation ofR2. The classical Stokes formula implies

∫

[P,or]
dη =

∑

F∈F(P )

∫

[F,orF ]
η, ∀η ∈ Ωp−1

cpt (V ).

Hence
∂[P, or] =

∑

F∈F(P )

[F, orF ].

Note that if we remove fromP a finite collection of polyhedral regions of dimensions< p and we
integrate on the remaining region, the integration currentthus obtained is equal toP .

⊓⊔

For each simplexσ ∈ X and each chamberC ∈ Cσ we consider the open polyhedral subset
Ch(σ,C)0 := C × Intσ of the conormal bundle ofIntσ. Thecharacteristic varietyof X is the
closed set

Ch(X) =
⋃

σ∈X, C∈Cσ

Ch(σ,C)0.
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P

FIGURE 6. A polyhedron inR2 and its boundary.

The smooth part of the characteristic variety, denoted byCh(X)0, is filled-up by the nondegenerate
characteristic vectors

Ch(X)0 =
⋃

σ∈X, C∈Cσ

Ch(σ,C)0.

It is a finite disjoint union of oriented polyhedral regionsCh(σ,C)0 of dimensionN . Each defines a
N -dimensional currentCC(σ,C)0 and we define

CC(X) =
∑

σ∈X

( ∑

C∈Cσ

mσ(C)CC(σ,C)
)

∈ ΩN (T ∗E).

We say thatCC(X) is theconormal chainof X.
For any two setsA,B ⊂ T ∗E we use the notationA ≈ B to signify that

A ∪ S = B ∪ R,

whereS,R are unions of polyhedral sets of dimension< N . This is an equivalence relation and
we denote by[A] the equivalence class of[A]. Note that ifA, B are two orientedN -dimensional
polyhedral sets andA ≈ B thenA andB define the same integration current which we denote by
[A]. We regard the multiplicity functionmX as a function defined on a set≈ T ∗E. Its level sets carry
a natural orientation and for everyk ∈ Z we denote by[mX = k] the current defined by the≈ class
of the level setm−1

X (k). We see that we can define the conormal cycle by the formula

CC(X) =
∑

k∈Z

k[mX = k].

Proposition 4.8. SupposeX1,X2 are finite simplicial complexes in the oriented vector spaceE such
thatX1 ∩ X2 is a subcomplex of both. Then we have the following equality in ΩN (T ∗E).

CC(X1 ∪ X2) = CC(X1) + CC(X2) − CC(X1 ∩ X2).

Proof Using Proposition4.6we deduce

{mX1∪X2 = ℓ} ≈
⊔

i+j+k=ℓ

{mX1 = i} ∩ {mX2 = j} ∩ {mX1∩X2 = −k}.

We deduce the following equality of currents.

CC(X1 ∪ X2) =
∑

ℓ

ℓ[mX1∪X2 = ℓ] =
∑

i,j,k

(i + j + k)[mX1 = i,mX2 = j,mX1∩X2 = −k]

=
∑

i,j,k

i[mX1 = i,mX2 = j,mX1∩X2 = −k] +
∑

i,j,k

j[mX1 = i,mX2 = j,mX1∩X2 = −k]
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+
∑

i,j,k

k[mX1 = i,mX2 = j,mX1∩X2 = −k]

=
∑

i

i[mX1 = i] +
∑

j

[mX2 = j] −
∑

k

k[mX1∩X2 = k]

= CC(X1) + CC(X2) − CC(X1 ∩ X2).

⊓⊔

For any compact simplicial complexX ⊂ E we denote by1X its characteristic function. IfX1,X2

are simplicial complexes then we can subdivide each of them so thatX1 ∩ X2 is a subcomplex of
both. Moreover 1X1∪X2 = 1X1 + 1X2 − 1X1∩X1 = 1X1 + 1X2 − 1X11X2 . (4.2)

We can rewrite the last equality as

1 − 1X1∪X2 = (1 − 1X1)(1 − 1X2).

For every simplicial complexX we denote byF(X) the Abelian subgroup of the group ofZ-valued
functions onE spanned by the characteristic functions of subcomplexes ofX. If G is an Abelian
group, then aG-valued measure onX is a function which associates to each subcomplexK an
elementm(K) ∈ G such that the inclusion-exclusion principle is satisfied

m(K1 ∪ K2) = m(K1) + m(K2) − m(K1 ∩ K2).

A G-valuationonX is a morphism of Abelian groupsF(X) → G.

Remark4.9. The equality (4.2) shows that everyG-valuationµ onX defines aG-valued measure via
the equality

m(K) = µ(1K).

We obtain a map

ΨX,G : Hom(F(X), G) → MeasG(X) := G-valued measures onX

Observe also that the correspondenceK 7−→ 1K is aF(X)-valued measure onX. We want to prove
thatΨX,G is a bijection.

⊓⊔

Proposition 4.10. F(X) is a free Abelian group generated by the characteristic functions of the
(closed) simplices inX.

Proof We first prove that the family of functions1σ is Z-linearly independent. Suppose we have an
equality of the form

a :=
∑

σ∈X

aσ1σ =
∑

σ∈X

bσ1σ =: b, (4.3)

whereaσ, bσ ∈ Z≥0. Let

A = {σ ∈ X; aσ 6= 0}, B = {σ ∈ X; bσ 6= 0}.

We have to prove that
A = B, aσ = bσ, ∀σ ∈ A. (4.4)

Letα be an element inA maximal with respect to the order relation ”≺”. Let p be a point inInt |α|.
Then

0 < aα = a(p) = b(p)



MICROLOCAL STUDIES OF SHAPES 21

and from the equality (4.3) we deduce that the set

Bα := {σ ∈ B; α ≺ σ}

is nonempty. Letβ be a maximal element inBα. We claim thatβ = α If q ∈ Int |β| then

0 < bβ = b(q) = a(q).

Hence there must exists an element inγ ∈ A such thatγ ≻ β ≻ α. Sinceα is maximal we deduce

α = β = γ, aα = bβ.

We deduce thatmaxA, the set of maximal elements inA, is contained inB and

aσ = bσ, ∀σ ∈ maxA.

If we setA1 = A \ maxA, B1 = B \ maxA we deduce an equality
∑

σ∈A1

aσ1σ =
∑

σ∈B1

bσ1σ, |A1| < |A|, |B1| < |B|

Iterating this procedure we deduce (4.4).
Now let us prove that the family

{1σ; σ ∈ X} spansF(X). Let K be a subcomplex ofX. We
want to prove that we can write1K =

∑

σ∈K

νK(σ)1σ , νK(σ) ∈ Z.

We defineνK(σ) by descending induction

νK(σ) = 1 −
∑

τ≻σ

νK(τ) (4.5)

⊓⊔

From Proposition4.10we deduce that a valuationµ is uniquely determined by the quantities

µ(σ) := µ(1σ).

Remark4.11. SupposeK is a finite simplicial complex and thatR is a commutative ring with1. We
consider the spaceI(K) of K × K-matricesA with entries inR such that

A(σ, τ) 6= 0 =⇒ σ � τ.

Theζ-functionof K is the incidence matrix of the face relation

ζK(σ, τ) =

{
1 if σ � τ
0 if σ � τ

.

Observe thatI(K) is aR-algebra with respect to the addition and the usual multiplication if matrices.
Note thatζK ∈ I(K). ζK is an invertible element ofI(K) and, following the terminology of [11,
Chap.3], we denote byµK its inverse. It is known as theMöbius function ofK. The matrices inI(K)
act in the usual onRK . We denote byXK ∈ RK the vector

XK(σ) = 1, ∀σ.

We regard the correspondenceσ 7→ νK in the proof of Proposition4.10 as a vector inRK . The
equality (4.5) can be rewritten as

ζK · νK = XK =⇒ νK = µK · XK . (4.6)
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We can be more specific aboutµ. Observe thatζK is an upper triangular matrix with1’s along the
diagonal. In particular we deduce thatζK − 1 is a nilpotent matrix so that

µK = ζ−1
K =

(

1 + (ζK − 1)
)−1

=
∑

n≥0

(−1)n(ζK − 1)n.

Now observe that

(ζK − 1)n(σ, τ) =
∑

σ≺σ1≺···≺σn=τ

1

= the number of increasing chains of lengthn from σ to τ : σ ≺ σ1 ≺ · · · ≺ σn = τ.

We denote this number bycn(σ, τ) = cn(σ, τ ;K). Hence

µK(σ, τ) =
∑

n≥0

(−1)ncn(σ, τ).

This alternating sum can be computed directly4 or we can invoke [11, Ex. 3.8.3] to conclude that

µK(σ) = (−1)dim τ−dimσ.

Hence

νK(σ) =
∑

τ�σ

(−1)dim τ−dim σ = 1 −
∑

τ≻σ

(−1)dim τ−dimσ−1.

The last sum is precisely the Euler characteristic of the link of σ in K as defined in (4.1). Hence

νK(σ) = 1 − χ
(
Lk (σ,K)

)
(4.7)

If we denote byH•
σ(K) the local cohomology ofK alongσ then we have

νK(σ) = χσ(K) := χ
(
H•

σ(K)
)
. (4.8)

The numberχσ(K) can be computed as follows. Consider the planeP of codimension= dim σ
perpendicular toσ at its barycenterbσ. Consider a sphereS(ε, σ) of radiusε in P centered atbσ.
Then

χσ(K) = 1 − lim
εց0

χ(S(ε, σ) ∩ K). (4.9)

We deduce that ifµ is a valuation onX we have

µ(1X) =
∑

σ∈X

χσ(X)µ(1σ). (4.10)

⊓⊔

Proposition 4.12. Supposem is a G-valued measure onX. Denote byλ the valuation determined
by

λ(1σ) = m(σ).

Then for every subcomplexK of X we have

m(K) = λ(1K).

4Let Sn,k denote the number ofk-chains∅ ( T1 ( · · · ( Tk = {1, · · · , n}. ThenSn,k =
P

j>0

`

n

j

´

Sn−j,k−1. If we

setcn =
P

k
(−1)kSn,k we deduce thatcn = −

P

j>0

`

n

j

´

cn−j . The last equality implies inductively thatcn = (−1)n.
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Proof Consider again the quantityνK defined inductively in (4.5). The Möbius inversion formula
[11, Prop. 3.7.1] implies

m(K) =
∑

σ∈K

νK(σ)m(σ) = λ
( ∑

σ∈K

νK(σ)1σ

)

= λ(1K).

⊓⊔

Remark4.13. Observe that ifm is aG valued measure andϕ : G → H is a morphism of groups we
obtain a new measure

ϕ∗m(K) := ϕ(m(K)).

We denote by1 theF(X)-valued measureK 7→ 1K . The results established so far show that for any
G-valued measurem onX there exists a unique morphismϕ : F(X) → G such that

m = ϕ∗1.

⊓⊔

Example 4.14.Suppose∆ is an-dimensional simplex andm is a measure on∆. We want to compute
m(∂∆). Using (4.10) we deduce

m(∂∆) =
∑

dimσ<n

χσ(∂∆)m(σ).

∂∆ is a topological manifold and using (4.9) we deduce

χσ(∂∆) = (−1)n−1−dim σ

Hence
m(∂∆) = (−1)dim ∂∆

∑

σ∈∂∆

(−1)dim σm(σ).

⊓⊔

Given a simplicial complexX in theN -dimensional oriented real vector spaceE andσ ∈ X we
denote byCC(σ) the conormal chain ofσ. The correspondenceσ 7−→ CC(σ) is aΩN(T ∗E)-valued
measure and as such it extends to a valuation

CC : F(X) → ΩN (T ∗E).

Now observe that for every simplexσ we have∂ CC(σ) = 0 so thatCC(σ) is a Lagrangian cycle.
We deduce thatCC(X) = CC(1X) is a cycle as well. We denote byZN (T ∗E) ⊂ ΩN (T ∗E) the
subgroup ofN -cycles. Note that we have an equality

CC(X) =
∑

σ∈X

χσ(X)CC(σ). (4.11)

SupposeX is a finite simplicial complex in the orientedN -dimensional vector spaceE andX ′ is
a simplicial subdivision ofX. We write thisX < X ′. The subcomplexes ofX are subcomplexes of
X ′ and thus we have a natural map

IX′X : F(X)−→F(X ′).

The conormal cycle construction defines group morphisms

CCX : F(X) → ZN (T ∗E), CCX′ : F(X) → ZN (T ∗E)
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such that the diagram below is commutative.

F(X ′)

ZN (T ∗E)

F(X)

'''')CCX′
u

IX′X [[[[℄CCX

. (4.12)

We denote by|X| the topological space subjacent to the complexX and we set

F(|X|) = lim−→X′>X
F(X ′).

The groupF(|X|) is the subgroup ofZ-valued functions on|X| corresponding to (linearly) triangu-
lable subsets. We obtain in this fashion a morphism

CC|X| : F(|X|) → ZN (T ∗E).

Finally, we denote byT(E) the collection of compact, triangulable subsets ofE. For anyA,B ∈
T(E) we have a morphism

F(A) → F(B)

and a commutative diagram similar to (4.12). We set

F(E) = lim−→A
F(A)

and we deduce in a similar fashion the existence of a group morphism

CCE : F(E) → ZN (T ∗E).

CCE associates to each triangulable compact setA its conormal cycle inE, CCE(A). WhenE is
obvious from the context we will drop it from the notation.
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