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Optimal contrel for a nonlinear diffusion equation.

LIVIU 1. NICOLAESCU (*)

ABSTRACT. ~ In this paper we study distributed control of problem for systems
governed by a semilinear elliptique equation of the type

0.1) —4y+f(y)=u

where f is monotone but not locally Lipschitz. We derive necessary optimality conditions.
Then using these conditions and the method of symmetric rearrangements we obtain a
bang-bang result in a special situation. At the end we deal with another concrete situation.
We use a different symmetrization technique which has proved to be useful in many other
problems such as the obstacle problem.

1. Introduction.
The aim of this paper is the study of the following control problem

(P) Min{g(y) +A(u)} with (y,u) satisfying
(1.1) —Ady+lyl*ly=nu, O<a<1)in Q
(1.2) y=u, on I'= 0

where w is a real function on I and Q ¢ R”" is a bounded open domain with
smooth boundary.

Such problem arise in chemistry (see e.g. [4]). Namely they model
reaction-diffusion phenomenons when an irreversible reaction takes place
-in Q. The reactant being consumed it is replaced through diffusion from the
ambient region so that a steady state is possible. In (1.1)-(1.2) y(x) denotes
the density of reactant at a point x € Q while u(x) denotes the density of
catalyst.

The main feature of the problem under consideration is that the

(*) Faculty of mathematics, University of Iagi, Romania.




LI e b e s

PP

5 R e R L

S h xR AR

8 N R ARG, % E TR I B

4 L. I Nicolaescu

function 8(r) = |r|*~r is not locally Lipschitz so that the results of [2] do
not apply in this situation. This problem is an intermediate between the
locally Lipschitz situation and the multivoque situation that arises e.g. in
the obstacle problem.

In section 2 we shall review some known results for equations (1.1)-
(1.2).

Section 3 is the core of the paper. Here we state and prove the main
result: Theorem 3.1.

In section 4 we give some applications of Theorem 3.1. Some of the
techniques developed there have proved to be useful in other problems
such as the obstacle problem. We shall derive a bang-bang result for this
problem.

2. Auxiliary resuits.

In this section we state some results concerning equations (1.1)-(1.2) in
a form suitable for our considerations.

Existence: Let f: R — R be an increasing continuous function such that:
i) f(0)=0;

ii) there exists A, B> 0 such that f{r) < Al|r|+ B, ¥reR. Then for
every u € LP(Q) (2<p < =) and for every x € C**(I') (0 <8< 1) there exists
a unique y € W>P(Q) satisfying (0.1)-(1.2) and the estimate

(E) [y weey < C(|ly]

where C=C(Q2, A, B, u).
The proof of this fact is a routine matter and relies on a result of
Calderon-Zygmund (see e.g. [8)):

«If F e LP(Q) than there exists y € W2P(Q) n WkP(Q) (1<p < =) such

vy F [l @ + 1)

that
-4y =F, a.e. in Q.
Moreover the following estimate holds
Ivlwee<C|Fl,, C=C(p,0Q)».

Comparison result: Let u; € LP(Q), u;€ CH(T), i =1, 2 such that u; < u,
and u; <y,. If y; (i=1,2) denotes the solution of

— A4y + fly) = s, J’ilr = ki

(where f is the same as above) then y;<y,.
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3, Necessary optimality conditions for problem (P).

We shall consider a more general problem. We state the basic
assumptions

(3.1) g (Q)—RisFrechet differentiable, locally Lipschitz and bounded
: from bellow: g(y)=0 Vye L}Q),

(32) ki L{(Q)—]-o, + »] is a proper lower semicontinuous convex
function satisfying k(1) = Cyuj, + C,, C;>0, CeR.

Here s> max {2, N/2} and ||-[|; is the norm in L*(2) (@ is assumed to have
a C®-boundary) f: R—R is a continuous increasing function such that

(3.3.1) feCYRN{0}) and lmf'(x)=-+

(3.3.2) 34, B>0: [f(n|<Alr|+ B, VreR
(3.3.3) Ve>0 3C.>0: |[f(N<C., VIHES
(3.3.4) A0)=0.

Such functions can be smoothened at the origin so that one can get a family
(f.r).>o of functions with properties:

(3.4.1) £eCiR), f()—3f@x), VreR, f(0)=0, ¥Ve>0
(3.4.2) 34,B>0: |f()|<Alr|+B, VreR, >0

flr)—+® whenever lin(} r.=0.

(f.).>0 can be obtained from f by C-interpolation with polynomials of
degrees two. For example if f(r) = |r|=? #(0<a<1) then one can take

20—1

5 er2+(1—a)e“_lr, 0sr<e
fr) = re, r=e
—fs(—r)a I’<O.

We consider the problem

(P) Minimize {g(y) + h(u)} over all (y, u) subject to
(3.5.1) —Ay+f(y)=u, in Q
(3.5.2) y=gu, on '=03Q.
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This problem has at least one optimal pair (cf. e.g.[2]). The main
result of this paper if the following

THEOREM 3.1. — Let (y*,u*) be an optimal pair for (P). Then there
exists p* € HYQ) satisfying along with y* and u* the equations

(3.5.1) —Ay* + f(y*) =u*, in Q
(3.5.20) yi=u, on I’
(3.6.1) Ap* +f'(y)p*=—Vg(y"), a.e. in [y*#0]
(3.6.2) p*=0, a.e. in [y* =0]
(3.6.3) p* € dh(u*) .

Proof of Theorem 3.1. — We shall deduce the necessary optimality
conditions by means of a method of penalization similar to that used in 2},

[71.
Let us consider the following sequence of approximating problems.

(P) Minimize g(y) + h(u) +%|[u* —u||? over all (y,u) subject to

(3.5.1.¢) —Ay+f(y)=u, in Q
(3.5.2b) y=u, on I'.

Let y“ denote the solution of (3.5.1.£)-(3.5.2).

LeMMA 3.1. — The mapping u e LHQ) — y* € L¥(Q) is Gateaux differen-
tiable.

Proof. — Let ve LXQ). For every A#0 denote
M=y and  y =4, ue LXQ).
Let p e H(Q) n H{(Q) be the solution of
(3.7 —dp+f(yp=v.

We shall prove that

(3.8) lim
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Let R, = (1/2)(y, —y) —p. Then

— AR, + (UM f.(y) — f] = fy)p =0,
(3.9) — AR, + fi(y) Ry = = (UD[£3) = f() = F )3 = )],
~ AR, + f'(y) Ry == (UN) p>-

From the mean value theorem we infer

£~ O = FI0Nn =) = [ [FU + 1= ) = £ — )]
Hence
1P| < (120 =y - | [ L1y @)+ 23206 = y() = Fiy ()] e

It is well-known that ([10])

ys = ¥l < Callolle
By Sobolev’s inequality we get that

“,VA")’HpS Collvllz for some p>2.
Let 1/g=1/2— 1/p. By the extended Holder inequality we get

1

1P <y =¥l || [ £+ 80n = ) = FU»Vde| | <Callvlle- 1Dl

0 q

By the dominated convergence theorem we deduce that ||D,[,— 0 as
A—0. Hence

amp,ll.—0, as A—0.

(3.8) can now be obtained from (3.9) by using the well-known elliptique
estimate

“RA”H‘$%”P;\“2 (see [8])- q.e.d.

LemMa 3.2. — Let (., u.) be an optimal pair for P.. Then there exists
p. € HY(Q) that satisfies along with (y., u,) the system (3.5.1.¢) +(3.5.2) and

(3.10) —Ap. + fi(y)p.=—80J)
(3.11) p. € Oh(u,) + F(u, — u*),

where F: L5(Q)— (L*(Q))* is the duality mapping of the space Li(Q).
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Proof. — We already know that u y¢ is Gateaux differentiable from
L? to L* and consequently also from L’ to L2, 4. = (D, y) v satisfies (3.7)
[(D*y) v is the directional derivative of y: along v]. For each v € L*(Q) and
each ),

8O + A+ 20) 205 + ha) + 3 (= w2 = e + 20 = u*[2).

Letting A — 0 this leads to
(Ve(y), q.) + H'(u,, V)= (Fu* —u,), v) Yve L(Q)

(#'(u., v) is the directional derivative of h along v e L'(Q)).
Let p, be the solution of (3.10). We have

(_f;(yE)ps +Aps7 qE)L‘ +hl(ue’ V) = (F(Lﬂ - us)’ V>L"

Using Green’s formula for Pe> 9.€ HHQ) n HY(Q) we get

prE-qsdx= pr-Aqsdx.
Hence ’ ’

<Ps; Aqe —f:-(ys) qs>L’ + h,(ue, V) = <F(u* - ua)a V)LJ
- <Pe, V>L’°+h’(ue’ V) = (F(Ll* - us)) V>L’
R (ue, v)Z(Fu* —u) +p,, v),.

By a well-known results on subgradients (cf. e.g. [3]) follows (3.11).
g.e.d.

LemMma 3.3. — One can choose a subsequence ¢, — 0 such that

u,—u  strongly in L¥(Q)
Yo Y*  weakly in W*(Q) and uniformly in (.

There exists also p* e H§(Q) such that
P, —p  weakly in H{(Q) and strongly in LQ).

(In fact u.— u* and Ye—y* as e—0).
Proof. — We see that (3.5.1.¢)-(5.5.2) can be restated as

(3.12.1) —4z+8(z)=u, in Q
(3.12.2) z=0, onrI
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where 8,(z) = f.(q(x) + z(x)). Here g(x) denotes the function harmonic in
0 and taking value u on I'. (The existence of a such a function follows from
a classical result of Kellog, see[8]).

Let (y, u) be an optimal pair. Hence

(3.13)  g(y) +h(u) + (12)|u, ~ w (< (%) + h(u) + (U2)lu — w7
when
— Ay + f(ud) = u, in Q
yi=up, in I'.

Denote z.=y, — g. Then z, satisfies (3.12.1)-(2.12.2).
By estimate (F) and (3.4.2) we obtain

ly*llws<C independent of «.

Hence on a subsequence (z,). (y£) converges weakly in W2 to the solution
y=y* of equations (3.5.1)-(3.5.2). From h(u) = Cyflull; + C; we get

Julls=<C

independent of . Hence we can choose a subsequence (u.) weakly
convergent in Lf(Q). We multiply (3.12.1) with z,€ H§(Q) we then
integrate and use Green’s formula. We get

lzel1En < llaec]l2 - 1212
i.e.
lzlim<C independent of «.
We can extract a subsequence denoted also with ¢, such that z, (and hence

y., as well) is weakly convergent in H{Q).
The estimate (E) combined with (3.4.2) leads us the conclusion that

wee < C(llu s + lyeJlo + 1)

L’) and (”y:n

Iy,

with C independent of ¢. Since ([lu., ,) are bounded

sequence we get that
|y.llws<C  independent of ¢

and therefore we can suppose that (y,) is W>*-weakly convergent.
Owing to the fact that s>max {N/2,2} we get from the classical
imbedding theorems for Sobolev spaces that (y,) is also uniformly
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convergent in Q. Let j the limit of the sequence (y, ). Thenz, = =3 —g¢
weakly in W2-,

Let @ be the L*-weak limit of u.. We make ¢,— 0 in (3.13). The L*
norm and 4 are weakly lower semicontinuous functions and hence

(G13) g0+ @+ 712~ "< + ha) + L fu - .

If in (3.15") we set u = u* we deduce from the optimality of u* that in fact
4=u” and u, — u* even strongly in L¥(©2). Clearly y = y* in this situation.

We multiply (3.10) with p,, then integrate and use Green’s formula.
The following inequality is obtained

o <llp k- 1 Ve (o)l
and consequently
pdlzy<C  independent of «.

since g locally Lipschitz and Y.,— Yy strongly in L*. Hence on a subsequen-
ces p.,.—p* weakly in HY(Q). g.e.d.

We know that p, —p* strongly in L? and hence strongly in L*
(Us=1/s"=1) u.,,— u* strongly in L. The duality mapping F is uniformly
continuous on bounded sets of L*. If now &»—0 in we infer (according
to[3]) that p* € h(u*). Hence (3.6.3) is proved.

The proof of the remaining part of Theorem 3.1 relies on the following
result

LemMma 3.4,

(3.14) [ Fiypdr<C  independent of <.
0

Proof. - Let 6, € CY(R) be a sequence of increasing functions such that
0,(0) =0 and 6,(r) —sgnr VreR.

It is well-known that 6,(p,) e Hi(Q) (see e.g. [91). We multiply (3.10)
with 6,(p,.). Newt we integrate and use a Green formula to get:

| IVp.2 640 dx + [ £109) pn(p) d = — [ V803 8u(p.) ax.
Q Q a
Taking into account that 0,=0 we get

| £i0IpspI drs<— [ Va(r)0.(p dx.
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Let n— . Then j fi(»)|p.|dx < C independent of ¢ since g is locally
Lipschitz. g q.e.d.

The sequence f.(z,) p. is bounded in L'. One can extract a subsequence

weakly convergent in (L*(2))* i.e. there exist a measure A € (L™(Q))* such
that for every ¢ € L¥(Q)

lim [ 16 )p.di= [ pda.

&

(3.10) may be rewritten as
Voe C)Q): [Vp, Vedx+ [fly)pdedr= [ Vg(y)pds.
Q 2 Q
If in the above equality tends to zero we get
(3.15) jvp*-v¢dx+f¢dx=—jvg(y)godx.
Q2 Q a
Lemma 3.5:
r=f'(y")p, on [y*#0]
\in distribution sense i.e.
[edr=[1'(mp*edr, VoeCl@), suppecly*#0].
02 Q
Proof. — Let ¢ € C}{(Q), supp ¢ ¢ [y* # 0]. Then there is § > 0 such that
supp o c [|y*]> &.
For every ¢>0 we denote

d=max|y(x) ~y*®)|, 2 =max{e, d}.

Owing to the fact that y,— y* uniformly on Q we get d,—0 as ¢—0.
Therefore we can chose ny>0 such that Vn=ny, A, <&/2. We have

(3.16) [FiDpasdx= [ fi(r.)p.pax, Ve, >0.
0

supp o

Let n=ng. Then '(y.)=f'(y,) on suppe. Indeed for

X € Supp <p|f’*(x)] > 4.
Since

y. (x) —y*(x)| <21, <6&/2 and therefore

v 1= [y* )] = [y*(x) = y.,(x)[ > /2.
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The equality f.(r) =f(r), V|r|=- implies the desired equality (3.16)
becomes

FLyIpasds= [ f(y)p. pdx, Vn=n,.
a

supp e

If we let ¢,— we get our lemma. g.ed.

(3.15) combined with the above lemma proves the assertion (3.6.1) of
the theorem. The only thing left to be proved is (3.6.2) i.e. p*=0 on
[y*=0].

Let us suppose the contrary that is the measure of
greater than zero. Then there is > 0 such that the set ||
has non-zero measure. We denote this set with X

*#0ln[y* =0]is
p*[>d Ay =0]
p.,—p* a.e. in X.
From Egorov’s theorem we infer the existence of a set Y ¢ X such that
mX—-Y)cm(X)2 and p.,—p* uniformly on Y.

Hence there exists ¢ >0 such that

Ve, >, |p.|>602.

Let us consider g e C5'(Q) satisfying

¢=1 onY and = on Q

F'{y)p. is bounded in L!. Hence there is C>0:
Jﬂm»mmsc
On the other hand
Jroalpdsas=an- [ppyar.
y
But

ffé(ya) dx -~ as e—0 owing to (5.4.3).
Y

We get to a contradiction that concludes the proof of Theorem 3.1.
g.e.d.




Optimal control for a nonlinear diffusion equation 13

4. Exampiles.

We shall now show how the optimality conditions look like in some
specific situation. Let us consider the problem

(P) Maximize j y(x)dx over all (y,u) subject to
0
(4.1.1) —Ay+ |yl ly=u, in Q
(4.1.2) y=u, on I
where 4 =0 and

(4.13) weUu={ve (Q)0<v<L- [v(x)dr<M<Lm(@)}.

Q

We see that (P) lies in the general frame of Theorem 3.1 by setting

)=~ [y dx

and

O’ ueUad

hwy =Iy )=y U
s U ad -

There is no difficulty in se that (P) is equivalent to the following
problem.

(Q) Maximize f y(x) dx over all (y, u)
subject to (4.1.1)-(4.1.2) and
ueK=qve Uad/fv(x)dx=M

Indeed Max P = Max Q because K c Uy.
To prove the reverse inequality let (y*, u) be an admisible pair for (P).
Then there exists v € K such that u(x) <v(x). E.g. set

u(x), xeX

v = xe\ X

b

such that f v(ix)dx=M.
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By the comparison result we infer

”

Q2

ijdx;ny“dx ie. Max(Q)BJy”dx, Ve Uy.

The above remark shows us that if (¥*, u*) is an optimal pair for (P)
then u* € K and therefore (y*, u*) is an optimal pair for (Q). We shall

henceforth focus on problem (Q).
We see that K=K, n K,

Ki={vel'(Q<sv<L)

K, = veL““(Q)/_fvdx=M

In this situation we have the relation
E)IK= alKl + SIKZ [3] .

An easy computation shows

0
g (u) =1 ve L(Q)/v(x) = { =0,
=0

H

, O<u<L

O (u) = {ve L*(Q)/A2 e R: v(x) =2} (% 1 1> _

We draw the conclusion

A,
(42)  oI(u)=1veL,(Q)Ixr: v(x) = {S)\ ,

=),

The optimality conditions can be written as:

3p*e HYQ)  such that

4.3) —Ap* + (y:)‘l_ap* =1,
(4.4) p*=0,

In view of (4.2) the relation (3.6.3) becomes

2

(4.5) I uwr(x) =
L s

u Ll
=(
u—LJ
on [y*#0]
on [y*=0].
pr<a
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From the comparision resuit we see y, >0 and p, > 0. Since p,—p™ a.e.
on a subsequence we infer p* =0.

ProposITiON 4.1. — Let u* an optimal corntrol in problem (Q).

a) If M=Lm(Q) then u*=1L.

b) f M<Lm(Q) then in (4.5 A=0 and

0, F )
(4.6) U (x) =1 (Ae)ui-a pr=2A
L, pEF>a.

Proof. — a) It follows from the comparison principle that y,.=y,
VueK.

b) We already know that p*=0. If A <0 then (4.5) would give us
u* =L but such a function is not an admisible control. Hence A =0.

Let us observe that p*#0 a.e. on [y*+#0]. Indeed from known
elliptique regularity results we infer p* € Hf, [y* #0] (cf. e.g. [6]). Let
S =[p*=0]n[y* #0]. By Stampacchia’s lemma (see [10]) it follows that
Ap* =0 a.e. on § and if m(S)>0 (4.3) wouldn’t be statisfied. Therefore
m(S)=0.

We distinguish two situations

1) A=0.
Then [p* = 0] c [y* = 0] by the previous remark. Since u* =90 a.e. on
[y* = 0] Proposition 4.1 holds true in this situation
2) 2>0.

Let A=[p*=21]. Then 4p* =0 a.e. on A by Stampacchia’s lemma.
Hence «/(y*)1-.,)=1 a.e. on A from which we infer y* = (Aa)y1-. a.€. on
A. Again using Stampacchia’s lemma we deduce 4y* =0 a.e. on A and
Proposition 4.1 follows upon inspecting (4.1.1). q.e.d.

Now we consider a further specialization: 4 =0 and Q = Bg(0).

THEOREM 4.1. — The function
x| > Rq

2

u(x) =
L, [XISR(), a)NRNzM/L
(here wy is the volume of the unit ball in Ry) is the unique radially symmetric
optimal control for problem (Q). Moreover every optimal control is bang-
bang.
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Proof. — We shall use the technique of symmetric rearrangements of
Hardy and Littlewood. We first recall some basic facts concerning
symmetric rearrangements. These are proved e.g. in [1], [9], [11],

Let u: O — R be a measurable function (Q c R is a bounded open set)
m(Q) = |Q|. The distribution function of u is the function w: [0, + o[- R,
is defined by

w(f) =m{x e Qf|u(x)| >t} .
The decreasing rearrangement of u is defined by
a(s) =inf {t=0/u(t) <s)}, 0ss=<|Q|.
Finally, the symmetric rearrangement of u is given by
u*(x) = i(Qylx|y) , xeQ*

where 0 is the ball centred at the origin of measure |[Q|. We say that the
concentration of ¢ € L'(2) is less or equal to that of ¢ e LY(Q) written ¢ < ¢
if

f #(s) ds < f@(s) ds, Vie [0, Q].
0 0

The following inequality holds true

(4.7) J u(x) dx < fu‘(x) dx .

4]

Equality takes place for example when u =0.
In the proof of theorem 4.1 we shall use a comparison results due to J.
I. Diaz[4], [5] (we state only a special form of it)

THEOREM A. - Let f be a continuous increasing function such that
f0)=0. Let g;e L'(Bg(0)), i=1,2 and g, =g Let u;e WH'(Bg(0)). be
such that

—du+flu) =g, =12.
If gf <g, then flu) = fu,).
In theorem A let f(r) =|r|*"'7. Let g, = u an admissible control and

§=u"

fudx= ju*dx=M

Br(0) Br(0)
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hence u* is an admissible control. In this case gf=g, and therefore
819" <g,. Let us denote y =y, and z = y,- the solutions to (4.1.1)-(4.1.2)
(with . = 0) corresponding to u and respectively to u. y(s) and Z(s) denote
the decreasing rearrangements of these functions. Since f is increasing and
continuous we have

(Fey)(s)=A3(s)) and (foz)(s)=F2(s)).
By theorem A:
| Fon@as< [ (Foy)s)ds, vse[o, |al].
Hence

“.8) [ o) ds < [ Kz(s)) ds.

Now we recall an inequality of Hardy and Litlewood ([1]).

(I) Let a, be L'(0, M) two nonnegative and decreasing functions and
suppose that

[ ats)ds< [ b(s)as, vie [0, M.
0 )
Then for every continuous convex function ¢: R — R we have
[ #(a) ds< [ 4(b(s)) ds, Vie [0, M].
0 0

In (1) we set a(s)=f(y(s)) and b(s)=7(2(s)), M=|2| and
¢(r)=f_1(r)=r" (¢ is convex since < ]0, 1
We get from (4.8)

fy(s) ds < jf(s) ds
0 0
or equivalently

fy(x) dx = fy"“‘(x) dx < fz*(x) dx = ]’z(x)dx

Br

i.e.
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We have thus proved:

LemMa 4.1. — If u is an optimal control then so is its symmetric
rearrangement u*.

Let u be an optimal control. By (4.6) we have

0, pr<ax
u(x) =1 (A)ai-a) > pr=2
L, pF>a

u*-its symmetric rearrangement is then equal to

L 5 IJCl € [O, Rl]
u(x) =1 (Aa)a1-q) » x| € [R1, Ry)
0, I)CIE[Rz,R].

Here R, <R, satisfy wg RY = m[p > 1], on(RY — RY) =m[p = 2] where p is
the adjoint state corresponding to u in virtue of Theorem 3.1.

We prove that either Ry =R,, or =0, o1 (Aa)yq-o =L i.c. u has the
form indicated in the statement of Theorem 4.1.

Let us suppose R; < R, and (Aa),1- < L. Let z=y, and g the adjoint
state corresponding to the optimal control u*.

According to Proposition 4.1 we get g(x) = when R, < |x| <R, and
hence z(x) = (Aa)y(-. When R, <|x|<R,. Hence Vz(x) =0 R, < |x|<R,.
z satisfies the following equation with mixed boundary values

—-Az+2z°=0, R,<|x|<R
z=0, x| =R
9z/av =0, x| =R;.

Hence z=0 on R,<|x|<R. Since z € C(Q) we get (Az)yq-. =0 that is
A=0.

We have thus proved that if u is an optimal control then so is u* and
moreover u* has the form indicated in the statement.

To prove the remaining part of the theorem is suffices to observe that if
the range of u consisted of more then three elements then so would be true
for the range of its symmetric arrangement whish is necessarilly bang-bang.

g.e.d.
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We give a nother application of general theory
(P) Minimize f y(x)dx over all (y, u) subject to
o

(4.1.1) —-Ay+f(y)=u, in Q
(4.1.2) y=u, onI'.
Here f(r)=|r|*'r, »=0 and |

(4.1.3) uek=|veL(@N0<v<L, [vix=M
g
The optimality conditions are
(4.9 Ap* e HY(Q): — Ap* +z;%T;p* =-1, a.e. in [y*>0]
p*=0, a.e. in [y*=0]
I ut(x) = 0 P2
L, pr>a.
Proceeding as in Proposition 4.1 we get A<0 and
0, pr<a
u*(x) =1 (= A8)u(i-a) » pr=2
L, pr> .

When Q = Bg(0) and ¢ = const. then one can say more. It is convenient to
consider a more general formulation

(Py) Min f H(y)dx over all (y, u) subject to
| — Ay +f(y) =u, in Q= Be(0)
y=u, onI"uek.

Here H: R—R is a continuous convex increasing function while
f: R— R denotes a concave increasing function satisfying the conditions in
section 2.

PROPOSIZION 4.2. — The problem (P,) has a least one radially symmetric
optimal control.

Proof. - We use another symmetrization method, yet very different of
that used in Theorem 4.1.




¥

T TR 1A P 2SR e o e i e a1 g e i B (AT St I Pl e DI T el o L S s e i

20 L. I. Nicolaescu

Let G = O(N) the N-th orthogonal group (g€ O(N)<gg,=1) Gis a
compact Lie group. Our symmetrization method starts from the simple
remark that a function u: Bg(0)— R is radially. symmetric if and only if

(4.10) Vge G u=u® where u8(x)=u(gx)
(gx denotes the action of G on Bg(0)). This remark is an easy consequence
of the fact that G acts transitively on SV L.

One can define on G a Haar measure y translation invariant such that

+(G)=1 (see e.g.[12]). We denote dy = dg.
Let

(4.11) uC(x)= [ us(x)dg

G

ug is radially symmetric since y in translation invariant. For example when
N=1,0=]|-R,R|

uO0(x) = 2 [u(x) + u(= x)]
and when N=2, Q= {z/|z| <R}
u99(z) = ZI; f nu(exp [i6] z) + u(exp [i6] 2) db .

By Fubini theorem we get

[ dg [wsydx=[ax [us(oydg.

Since
detgl=1 [us(x)dr = [u(x)dx.

Therefore i ’

(4.12) Jutxydx= [ ut(x)ax, ((G)=1).

If ¢ is any continuous convex (concave) function ¢: R— R then

(4.13) s [wmax)<@) [ s@)dg

G G
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ie.
(4.13") )< (=)(3ou)® (see Appendix).

Because gg' =1 then Ay® = (4)%) (4 is rotation invariant) Vy € Cx(Q) and
passing to the limit

Ay = (4y), Vy e W(Q)
Let (y, u) be an admissible pair. y, satisiies

— AyE+ f(y®) = uf, in 2
yE=pu, on I'.

We integrate with respect to ge G. We get

f~Aygdg+ ff(yg)dg=u0, in Q
’ yGG=M, on I'.
Since
[aysdg=1 [ yrag, Vy e CX@)
é é
we obtain at limit
—Ay® + ff(yg)dg=uG, in Q
;G=/4 ’ on I'.

f is concave. Using the concave part of (4.13) we infer

—Ay% + f(y%)=u, in Q
yC=u, on [

u® e K owing to (4.12). i
We infer from the comparison principle that y®=y*". H is increasing
$O

[ H® ax= [ H() dx

H is also convex. From (4.13) we get

H(y°)<[H(y)]°.
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Hence using (4.12)

[ H(ydx< [ B ax.

We draw the conclusion:

«If uis an optimal control then so is uC which is radially symmetric».
q.e.d.

Hence problem (P) has a radially optimal control.

Proposition 4.1 is useful in many other situations. Let us consider the
following control problem

(OP) Minimize f y(x)dx over all (y, u) subject to

BR(0)

—Ay+u=0
(4.14.1)
y=0 in Br(0)
(4.14.2) (—4y+u)y=0
(4.14.3) ylp=1 and

(4.144) ueK=lve XBxO<v<L, [ vy dx=m
B

(4.14.1)-(4.14.3) is the well-known obstable problem. For N=2 it models
the deformation of a circular membrane that has its boundary clamped at
height 1 above a rigid obstacle in the horizontal plane.

The membrane is subjected to a distribution of forces of density u.

If we set y=z+ 1 the state equations can be rewritten as

(4.15) —Az=f(z+D>3-u, z|r=0
where
¢, r<@,
B(ry=11-=,0], r=0,
0, r>0.

Let us consider the following approximative problems
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(OP) Minimize J y(x)dx over all (y, u) subject to
Bg

—Az+B(z+1)=—u, uek

le=0.

Here and 8,(r) = (1/e)r_.
3, is a concave increasing function. Hence by Proposition 4.2 (OP,) has

at least one radially symmetric optimal control. We denote it by u’. Let the
corresponding state be zf =y, —1. z{is also radially symmetric.

It is well-known that
w'—u*  weakly in LXQ)

&

z¥—>z* weakly in Hy@Q) (z*=y*—1)

where (u*, y*) is an optimal pair for (OP) see for instance 2]

Since y*— y* strongly in L,(Q) we get that y.;*— y* a.e. on a
subsequence. Therefore y* is radially symmetric.

Thus we have proved that (OP) admits at least one optimal pair

(y*, u*) such that state y* is radially symmetric. Since the mapping u — y*

(= solution of (4.14.1)-(4.14.2) corresponding to u) is not necessarilly one-
to-one it is to be expected that the same state can be obtained using

different controls. However one can prove

PROPOSITION 4.4. — Let (y*, u*) be an optimal pair for (OP) such that y*
is radially symmetric. Then u* is bang-bang.

Proof. - We use the necessary optimality conditions for (OP) (see [2]).

These conditions are:
«There exists p* € H}(Bg) such that

(4.16.1) —Ap*+1=0, in [y*>0]
(4.16.2) pH(—Ay*+u*)=0, a.e. in By
(4.16.3) p € dl(u*), a.e. in Bg

(4.16.3) can still be defined to

0, p*>2a
(4.16.4) ax ut(x)=
pr>a.

*

Inspecting the proof of these optimality conditions we find that p* was
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obtained as a weak H} limit of negative functions and consequently
p*=0.

Owing to this fact in (4.16.4) 2<0.
2* would be known if we knew its values on the set [p* = A]. This is
what we want to find. We distinguish two situations

A 2<0
(4.17) —Ay*+u* =0, a.e. in [p*=21].

Furthermore y* =0 a.e. in [p* =2]. Indeed, if we supposed the contrary
them m([p* = Al N [y* >0])>0.

p* e Hi[y">0] (see [6]) and therefore 4p* =0 a.e. on [p*=2]n
A [y*> 0] by Stampacchia’s lemma. This last conclusion does not agree
with (4.16.1). .

By standard regularity results ([10]) we infer y € W*#(Bg). Hence
Ay*=0a.e. in [p* = 2] since y*=0a.e. on [p* =2]. By (4.17) we deduce
u*=0 ae. in [p*=21] i.e. u* is bang-bang.

B. 2=0. Asin case A. we have y*=0a.e.inp* = 0. Recalling that
p* <0 we rewrite (4.16.4) as

0, p*#0,
(4.18) u*(x) =
undefined, p*=0.

Since f u* dx = M we get m{p* =0]>0. Since [p* = 0} c [y* = 0] we infer
Br

the coincidence set C =[y* = 0] has non-zero measure. This set has nice

properties namely:

1) [y*=0] 3B = ¢ since y~ Vo, =1
2) Since y* € W*?(Bg), Vp €1, o[ and y attains its minimum on C
we get Vy* =0 on C.
3) C is radially symmetric compact and m(C)>0.
Let r,=min {r € [0, RYC c B,{0)}. From the properties 1) and 3) above
we get that 0<ry<R.
Moreover from the definition of ry we infer

(4.19) yrx) =0, Wy x)=0, Vx| =ro,
(4.20) y*(x)>0, Vx| >1.

We knaw that p* 50 on [y* > 0] and by (4.18) we get u* =0 on [y* >0].
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Therefore y* satisfies the equation

—Ay* =0, ro<|x|<R
(4.21) y*x) =0, x| =ro
y(x) =1, lx|=R
and
(4.22) 3y*lov=0, on |x|=r.

By Hopf’s maximum principle we infer that y* obtaines its minimum at a
point Xo, |%o| =79 and in this point dy*/dv+ 0 in contradiction to (4.22).
Hence in (4.16.4) alway 5 <0 and therefore u* is bang-bang. q.e.d.

As we have previously mentioned a given state can be eventually
obtained using several controls. However Proposition 4.3 sets up severe
restrictions on the optimal controls leading to radially symmetric states.
Namely all such controls should be bang-bang.

We also see that this non-uniquenes of the controls derives from the
fact that we don’t know their behaviour on the coincidence set [y*=0].
Hence Proposition 4.3 restricts this behaviour on [y* =0].

Let us observe that if y= y* (u; € K) then every 0<u,<1 such that

(1) uy=u, on [y>0],

(i) Juldx= Juzdx.

{y=0] [y=0]

We have ue K and y =y¥.

If now suppose y =Y" a radially symmetric optimal state and u;, U, the
above two optimal controls leading to y then Proposition 4.3 says that all
uy, u, satisfuing (i)-(iii) should be bang-bang.

This additional condition leads us to the conclusion that every control
corresponding to the optimal state y* should be constant on the coinciden-
ce set [y*=0] (in a.e. sense).

Indeed if this thing did not happen then one can easily find a control v
satisfying (i)-(ii) and which is not bang-bang.

Moreover the constant value of u ony = 0 can be uniquely determined
from the value of

udx
[y"=0]

which is the same for all controls leading to y*. Hence y* can be obtained
from a unique control u* which is bang-bang and radially symmetric.
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We have thus proved:

ProposiTioN 4.5. — a) The obstacle problem (OP) admits at least one
radially symmetric optimal state y*.
b) y* is obtained from a uniquely determined control u* which is
radially symmetric and bang-bang.
¢) u* has the additional property u* =const on [y* =0].

AppENDIX. ~ Let (X,u) be a measured space that w(X) =1 and let
¢: R—R be a continuous convex function. Then for each f: X— R the
following generalized Jensen inequality holds true:

© s [ du|< [ 3(f0) a0

Proof. — Let f,: X — R be a sequence of step mappings such that fn—f
ae. and L. For step mappings (J) is another way of writing Jensen’s
inequality. Hence VneN

s [y de | < [ 6(f0)) du

Letting n— ® we get the general inequality. g.e.d.
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