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Abstract

We discuss some basic applications of higher dimensional residues as presented in [7] and [8,
Chap. V].

Contents

1 Gysin maps and Leray residues: the topological picture 1

2 Residues: local aspects 2
§2.1 The Grothendieck residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
§2.2 The global residue theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
§2.3 Applications of the global residue theorem . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Poincaré residue 12
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1 Gysin maps and Leray residues: the topological picture

We begin by briefly describing the topological facts underpinning the residue construction. For
more details we refer to the original source [9].

Suppose X is a complex manifold, D ↪→ X is a smooth divisor. Denote by N(D) a tubular
neighborhood of D in X, by σ : D → N(D) the inclusion as a zero section, and by π : N → D the
natural projection. Denote by

〈•, •〉 : Hq
DR × Hq → C

the Kronecker pairing (integration). We then have ( see [4, §VIII. 12]) the Gysin long exact sequence
(we use complex coefficients)

· · · → Hk(N − D) i∗→ Hk(N) σ!→ Hk−2(D) π!→ Hk−1(N − D) →
Intuitively, the map Hk(N) � c �→ σ!(c) ∈ Hk−2(D) is given by the intersection of the k-cycle c
with D, c �→ c ∩ D. More rigorously, if we denote by τD the Thom class of the normal bundle of
D ↪→ X, then we can view τD as an element of H2(N, ∂N) and then �(c) is defined by the equality

〈τD ∧ π∗ϕ, c〉 = 〈ϕ, σ!(c)〉, ∀ϕ ∈ Hk−2(D).
∗Notes for Karen Chandler’s Absolutely fabulous seminar in algebraic geometry.
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The morphism π! is called the tube map or the Leray coboundary. If c ∈ Hm(D) is represented by
a compact smooth submanifold M ↪→ D, we then get by restriction a disk bundle π−1(M) → M .
Its boundary is a S1-bundle over M , S1 ↪→ ∂π−1(M) → M whose total space caries the homology
class of π!(c). We will refer to the composition

Hk(D) π!→ Hk+1(∂N) → Hk+1(X − D)

as the tube maps as well.
Dualizing we get a morphism

π! : Hom(Hk+1(X − D), C) = Hk+1
DR (X − D) → Hom(Hk(D), C) = Hk

DR(D)

We will refer to it as the topological Leray residue and we will denote it by ResD.
Suppose more generally that we have smooth divisors D1, · · · , Dm, 1 ≤ m ≤ dimC X, intersect-

ing transversally. We set D = ∪Di, X ′
0 = X \ D,

X ′
1 = D1 \

⋃
1<k≤m

Dk, X ′
2 = (D1 ∩ D2) \

⋃
2<k≤m

Dk, · · · , X ′
j =

⋂
1≤i≤j

Di \
⋃

j<k≤m

Dk, · · · .

Iterating the above construction we get a sequence

Hk
DR(X ′

0)
ResD1−→ Hk−1

DR (X ′
1)

ResD2−→ Hk−2
DR (X ′

2)−→· · · ResDm−→ Hk−m
DR (D1 ∩ · · · ∩ Dm)

We would like to have a better understanding of these maps at the level of differential forms, and
in particular we would like to understand how these maps interact with the Hodge structures on
the various DeRham cohomology groups. We will study two extreme cases: m = dimC X and
m = 1. The first case leads to the Grothendieck residue map and an explicit description of the
Grothendieck-Serre duality for zero dimensional schemes, while the second case leads to a classical
construction going back to Poincaré usually referred to as the Poincaré residue.

2 Residues: local aspects

§2.1 The Grothendieck residue We denote by O = OCn the sheaf of holomorphic functions
in n variables z1, · · · , zn on Cn. We denote by O0 the stalk at 0 ∈ Cn. Fix an open polydisk U
centered at 0 ∈ Cn. For every �F = (f1, · · · , fn) ∈ O(U)n we se

Di = Di(�F ) = {�z ∈ U ; fi�z) = 0}, D = D1 ∪ · · · ∪ Dn
�F−1(0) :=

⋂
Di = {�z ∈ U ; fi(�z) = 0, ∀i}.

�F defines a holomorphic map �F : U → Cn and we denote its Jacobian determinant by J�F or ∂ �F
∂�z .

Let g ∈ O(U), and �F ∈ On such that �F−1(0) = {0}. We define

ω = ω�z(g, �F ) =
g

f1 · · · fn
dz1 ∧ · · · ∧ dzn.

Observe that ω is a meromorphic n-form on U such that ω |U\D is holomorphic. For dimension
reasons we have

∂ω = 0 =⇒ dω = (∂̄ + ∂)ω = 0

so that ω is closed. We denote by [ω] its cohomology class in Hn
DR(U \D). For very small positive

real numbers δi define
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Γ = Γ�δ
(g, �F ) := {�z; |fi(�z)| = δi, 1 ≤ i ≤ n},

Γ is a compact, real n-dimensional submanifold of U \ D oriented by the n-form

d arg f1 ∧ · · · ∧ d arg fn.

It determines a homology class [Γ] ∈ Hn(U \ D) which is independent of the radii δi.
The Grothendieck residue of ω at 0 is by definition the complex number

Res0 ω :=
(

1
2πi

)n ∫
Γ

ω =
(

1
2πi

)n

〈[ω], [Γ]〉.

Example 2.1. (a) Suppose we holomorphically change the coordinates near 0, �z = �z(�u). Then ω
changes to

ω�z =
∂�z

∂�u
· ω�u.

In particular, if �F is biholomorphic, then we use F as new coordinates then

ω�z =
∂�z

∂ �F
· g(�z) · ∂f1

f1
∧ · · · ∧ ∂fn

fn

and we deduce
Res0 =

g(0)
J�F (0)

.

In this case the cycle Γ is an n-torus.

(b) Suppose fi(z) = (zi)ai , and g(z) = J�F (z) =
∏n

j=1 aj(zj)aj−1 . Then

Res0 ω(g, �F ) = Res0
( J�F (z)

f1 · · · fn
dz1 ∧ · · · ∧ dzn

) n∏
j=1

1
2πi

∫
|zj |=ε

ajdzj

zj
=

n∏
k=1

ak.

The residue depends only on the germs of g and �F at 0. It depends linearly on g. Denote by
I�F the ideal in O0 generated by the germs f1, · · · , fn. Observe that

g ∈ I�F =⇒ Res0 ω = 0.

This is clear when f = h ·fi for some i, and the general case can be reduced to this one by linearity.
Set Ui := U \ Di. Then the collection (Ui) is an open cover of U∗ := U \ 0.

Proposition 2.2. There exists a closed form ηω ∈ Ω2n−1(U∗) depending smoothly on g and �F such
that

Res0 ω =
∫

S2n−1(r)
ηω

where S2n−1(r) ⊂ U∗ is a sphere of small radius r centered at 0.

Proof We prove this only in the case n = 2. We have an open cover

U∗ = U1 ∪ U2.

Set U12 = U1∩U2 = U \D. Denote by jα the inclusion Uα ↪→ U∗, and by iα the inclusion U12 ↪→ Uα.
Denote by Ap,q(V ) the space of smooth (p, q)-forms on an open subset D ↪→ Cn.
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Figure 1: ρ2ω extends by zero to the rest of U1.

Lemma 2.3. We then have a short exact sequence of cochain complexes

0 →
(
An,∗(U∗), ∂̄

)
f=j∗1⊕j∗2−→

(
An,∗(U1), ∂̄

)
⊕

(
An,∗(U2), ∂̄

)
g=i∗1−i∗2−→

(
An,∗(U12), ∂̄

)
→ 0 (2.1)

called the Mayer-Vietoris sequence of the cover {U1, U2}.
Proof of the lemma The only non-obvious part is the surjectivity of g. Let η ∈ An,k(U12). We
want to show that there exist ηα ∈ An,k(Uα) are such that g(η1 ⊕ η2) = η, i.e.

η1 |U12 −η2 |U12= η

Choose a smooth partition of unity {ρ1, ρ2} subordinated to {U1, U2}, i.e. 0 ≤ ρα ≤ 1, supp ρα ⊂
Uα, and ρ1 + ρ2 = 1.

Note that we can extend ρ2η to a smooth form on U1 by setting ρ2η = 0 on U1 \U12 (see Figure
1. Similarly, we can extend ρ1η to a form on U2. Clearly

g(ρ2η,−ρ1η) = (ρ2η) |U12 −(−ρ1η) |U12= η.

From the above short exact sequence we obtain the long exact sequence

0 → Hn,0(U∗) → Hn,0(U1) ⊕ Hn,0(U2) → Hn,0(U12)
δ→ Hn,1(U∗) → · · ·

The meromorphic form ω defines an element ω ∈ Hn,0(U12) and we set

ηω := δω ∈ Hn,1(U∗).

In our case n = 2 and H2,1 ∼= H3(U∗). Using the partition of unity in the proof of Lemma 2.3 we
can be much more explicit about the form of ηω. More precisely

ηω = Cn

{
∂̄(ρ2ω) on U1

−∂̄(ρ1ω) on U2
= Cn

{
d(ρ2ω) on U1

−d(ρ1ω) on U2
,

where Cn is a constant to be determined a bit latter. Observe that the above definition correctly
defines a form on U∗ since on the overlap U12 we have

d(ρ2ω) − (−d(ρ1ω)
)

= d(ρ2ω) + d(ρ1ω) = d
(
(ρ1 + ρ2)ω

)
= dω = 0.
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In our very concrete situation we can take

ρ1 =
|f1|2
‖�F‖2

, ρ2 =
|f2|2
‖�F‖2

, ‖�F‖2 := |f1|2 + |f2|2

and we have

ρ1ω =
f̄1g

‖�F‖2f2

dz1 ∧ dz2, ρ2ω =
f̄2g

‖�F‖2f1

dz1 ∧ dz2.

The cycle Γ = {|fi|2 = ε2, i = 1, 2} lies on the hypersurface

Σ := {‖�F‖2 = 2ε2}, dimR Σ = 3.

Moreover, Γ divides Σ into two parts

Σ1 = {�z ∈ Σ; |f2| ≤ ε}, Σ2 = {�z ∈ Σ; |f1| ≤ ε}, ∂Σ1 = −∂Σ2 = Γ

Note that
ηω |Σ1= Cnd(ρ2ω), ηω |Σ2= −Cnd(ρ1ω)

Hence ∫
Σ

ηω = Cn

∫
Σ1

d(ρ2ω) − Cn

∫
Σ2

d(ρ1ω)

(use Stokes’ formula)

Cn

∫
Γ
(ρ2ω + ρ1ω) =

∫
Γ

ω.

Hence if we take Cn = (2πi)n we have ∫
Σ

ηω = Res0 ω.

Finally observe that Σ is homologous in U∗ to a small sphere centered at 0.
We can give an even more explicit description of ηω. As we have noticed on the overlap U12 we

have
∂̄(ρ2ω) = −∂̄(ρ1ω)

In fact both forms above are globally defined. Thus (recalling that n = 2)

ηω =
C2

2

(
∂̄(ρ2ω) − ∂̄(ρ1ω)

)
.

A simple computation shows that

ηω =
C2g

2f1f2

∑
α

(−1)α
( ∂̄|fα|2 · ‖�F‖2 − |fα|2∂̄‖�F‖2

‖�F‖4

)
dz1 ∧ dz2

=
C2g

2f1f2‖�F‖4

(
‖�F‖2f2df̄2 − |f2|2(f1df̄1 + f2df̄2) − ‖�F‖2f1df̄1 + |f1|2(f1df̄1 + f2df̄2)

)

=
C2g

2f1f2‖�F‖4

(
(f2df̄2 − f1df̄1)(|f1|2 + |f2|2) + (|f1|2 − |f2|2)(f1df̄1 + f2df̄2)

)

=
C2g

‖�F‖4f1f2

(
|f1|2f2df̄2 − |f2|2f1df̄1

)
=

C2g

‖�F‖4

(
f̄1df̄2 − f̄2df̄1

)
.

The continuous dependence of ηω on g and �F is now clear.
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Remark 2.4. Let us say a few things about the proof of Proposition 2.2 in the case n > 2. This
requires a detour in the world of sheaf cohomology and spectral sequences.

Suppose X is a locally compact space. We will be interested mostly in the case when X is an
n-dimensional complex manifold. A sheaf of Abelian groups F on X is called soft if for every closed
set C ⊂ X the restriction map F(X) → F(C) is onto. F is called fine if the sheaf HomZ(F, F) is
soft. Intuitively, the fine sheaves are the sheaves for which we can use the partition of unity trick.
More precisely, given an open cover U = (Uα)α∈A of the locally compact space X, a partition of
unity subordinated to this cover is a collection of endomorphisms ρα ∈ Hom(F(X), F(X), α ∈ A
such that

supp (ρα) ⊂ Uα, ∀α,
∑
α

ρα = 1.

We have the following implications

F fine =⇒ F soft =⇒ F acyclic.

For example the sheaves of smooth sections of a smooth vector bundle over a smooth manifold are
all fine.

A resolution of a sheaf F is an exact sequence of sheaves

0 → F → S0 d0→ S1 → · · ·
We will denote this by F ↪→ (S∗, d). The resolution is called fine if all the sheaves Si are fine. For
example, if X is a complex n-dimensional manifold, F = Ωp,0 is the sheaf of holomorphic p-forms,
Ap,q is the sheaf of smooth (p, q)-forms, then Ap,q is a fine sheaf, and Dolbeault lemma shows that

0 → Ωp,0 ↪→ Ap,0 ∂̄→ Ap,1 ∂̄→ Ap,2 → · · ·
is a fine resolution of Ωp,0. We have the following fundamental result, [6, Thm. 4.7.1].

Theorem 2.5 (Generalized DeRham theorem). If F ↪→ (S∗, d) is a fine resolution of F then
H∗(X, F), the cohomology F, is isomorphic to the cohomology of the co-chain complex

S0(X) d0→ S1(X) d1→ S2(X) d1→ · · ·
Suppose F ↪→ (S∗, d) is a fine resolution of F and U := (Uα)α∈A is an open cover of X, where

A is a linearly ordered set. The nerve of the cover U consists of the finite subsets F ⊂ A such that

UF :=
⋂

α∈F

Uα �= ∅.

We denote by N = N(U) the nerve of the cover. We can associate a simplicial complex to the nerve,
with one d-dimensional simplex for each F ∈ N such that |F | = d + 1. We will denote it by ∆(U).
For example, the nerve of the cover in Figure 1 consists of {1}, {2} and {1, 2}. The associated
simplicial complex is depicted in Figure 2. For each sheaf S on X we set

Cp(U, S) =
∏

|F |=p+1

S(UF )

We identify the elements of Cp(U, S) with families of section (sF )F⊂A, |F | = p + 1, sF ∈ S(UF ).
Since F is a sheaf we have a natural inclusion

i : S(X) → C0(U, S), S(X) � u �→
∏
α∈A

u |Uα .
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U U

U

1 2

12

Figure 2: The simplicial complex associated to the cover in Figure 1.

For the cover in Figure 1 and the sheaf S = Ωn,0 we have

C0(U, S) = Ωn,0(U1) ⊕ Ωn,0(U2), C1(U, S) = Ωn,0(U12).

For each p ≥ 0 we have a Čech coboundary map

δ : Cp(U, S) → Cp+1(U, S), δs =
∏

|T |=p+2

(δs)T ∈
∏

|T |=p+2

S(UT ) = Cp+1(U, S)

defined as follows. Let T = {t0, t1, · · · , tp+1} ∈ N, t0 < t1 < · · · < tp+1. Then for every f ∈ Cp(U, S)
we define

(δs)T =
p+1∑
i=0

(−1)i
(
sT−{ti}

) |UT
.

One can verify that the resulting sequence

0 → S(X) → C0(U, S) δ→ C1(U, S) δ→ · · · (2.2)

is a cochain complex. It is called the augmented Čech complex of the cover U with coefficients in
the sheaf S. When S is the constant sheaf Z then the resulting Čech complex coincides with the
augmented simplicial cochain complex determined by the simplicial complex ∆(U).

For example, δ : Ωn,0(U1) ⊕ Ωn,0(U2) → Ωn,0(U12) is given by

δ(ω1, ω2) = ω2 |U12 −ω1 |U12 .

We see that the sequence

0 → An,q(U∗) → Ωn,0(U1) ⊕ An,q(U2)
δ→ An,q(U12)

is precisely the Mayer-Vietoris sequence (2.1). The next result generalizes Lemma 2.3

Lemma 2.6. If S is a fine sheaf on a locally compact space X and U is an open cover then the
Čech complex is acyclic. Moreover, any partition of unity subordinated to this cover canonically
determines a cochain contraction,

k : Cp(U, S) → Cp−1(U, S), kδ + δk = 1.

For a proof of this result we refer to [1, §8] and [6, §5.2].
Suppose now that F is a sheaf on a locally compact space and F ↪→ (S∗, d) is a fine resolution.

Set
Kp,q := Cq(U, Sp),

The sheaf morphisms dp : Sp → Sp+1 induce morphisms

dI = (−1)pdp : Kp,q = Cq(U, Sp) → Cq(U, Sp+1) = Kp+1,q,
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while the Čech coboundary operator induces morphisms

dII = δ : Kp,q = Cq(U, Sp) → Cq+1(U, Sp) = Kp,q+1

such that the diagram below is anti-commutative for any p, q, dIDII = −dIIdI ,

Cp,q+1 Kp+1,q+1

Cp,q Kp+1,q

�

dI

�

dII

�

dI

�

dII

Now form the total complex (K∗, D)

Km :=
⊕

p+q=m

Kp,q, D = dI + dII : Km → Km+1.

The anti-commutativity of the above diagram implies that D2 = 0. We have a natural chain
morphism induced by restriction

r : Sm(X) → Km, Sm(X) → C0(U, Sm) = Cm,0 ↪→ Km.

K0,2 K1,2 K2,2

K0,1 K1,1 K2,1

K0,0 K1,0 K2,0

S0(X) S1(X) S2(X)

�

dI
�

dI

�

dII

�

dI

�

dII

�

dI

�

dII

�

dII

�

dI

�

dII

�

dI

�

dII

�

�

r

�

d

�

�

r

�

d

�

�

r

(2.3)

Observe that since (S∗, d) is a fine resolution of F we deduce from the generalized DeRham theorem
that the cohomology of the bottom row is isomorphic to the cohomology H∗(X, F).

Theorem 2.7 (The generalized Mayer-Vietoris principle). The morphism

r : (S∗(X), d) → (K∗, D)

is a quasi-isomorphism, i.e. it induces isomorphisms in cohomology

H∗(X, F)
∼=−→ H∗(K∗, D).

For a proof of this result we refer to [1, §8] and [6, §5.2].
We analyze how this works in the special case when X = U∗, the cover U consists of the open

sets Ui = U \ Di, F = Ωn,0, and the resolution is (Sq, d) = (An,q, ∂̄). Fix a partition of unity
subordinated to this cover and denote by k the corresponding co-chain contractions

k = kp : Kp,q = Cq(U, An,p) → Cq−1(U, An,p) = Kp,q−1, kdII + dIIk = 1
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In this case Cq(U, An,p) = 0 for q ≥ n, and we have

Kp,n−1 = Cn−1(U, An,p) = An,p(U \ D).

The meromorphic form ω defines an element ω ∈ Cn−1(U, An,0) = K0,n−1 satisfying dIIω = 0
(since K0,n = 0 and dIω = ∂̄ω = 0. Hence Dω = 0 so that ω is a D-cocycle and thus defines an
element

[ω] = Hn−1(K∗, D) ∼= Hn−1(U∗, Ωn,0) = Hn,n−1(U∗) ∼= H2n−1
DR (U∗).

Thus we can represent [ω] by a closed (2n− 1)-form ηω. To find an explicit representative we need
to use the diagram (2.3) and the contractions k.

ω

ω

ω

n-1

k

d

d

I

II

An,n-1

1

2

0 1 2

n-2

Figure 3: Tracing a zig-zag.

Observe that since kdII + dIIk = 1 we deduce that for any Čech cocycle c we have

dIIkc = c

so that on these cocycles k behaves like d−1
II . Thus d−1

II ω is well defined and we set

ω1 = −dId
−1
II ω = dIkω ∈ K1,n−2.

Now observe that dIω1 = 0,

dIIω1 = dIIdIkω = −dIdIIkω = −dIω = 0

so that ω1 is a D- cocycle as well. It is D-cohomologous to ω since

ω − ω1 = Dkω.

We set again
ω2 = −dIkωI ∈ K2,n−3

and we get a new D-cocycle cohomologous to ω1. We iterate this procedure until we get

ωn−1 ∈ Kn−1,0 = C0(U, An,n−1).
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This is a collection of holomorphic forms ηi ∈ Ωn,n−1(Ui) which agree on the overlaps. They
patch-up to a global holomorphic (n, n − 1)-form ηω ∈ Ωn,n−1(U∗). Again we can form

ηω :=
1
n

n∑
i=1

ηi

and a simple computation gives

ηω = Cng(z)dz1 ∧ · · · ∧ dzn

(∑n
j=1(−1)j−1f̄jdf̄1 ∧ · · · ∧ d̂f̄j ∧ · · · ∧ df̄n

)
‖�F‖2n

. (2.4)

§2.2 The global residue theorem Suppose now that M is a compact Kähler manifold of
complex dimension n and D1, · · · , Dn are effective divisors such that

P :=
n⋂

j=1

supp (Dj)

is a finite set. Set D := D1 + · · · + Dn. Suppose ω̃ is a holomorphic section of KM ⊗ O(D). For
each 1 ≤ j ≤ n fix a holomorphic section uj of O(Dj) such that (sj) = Dj . Then

ω =
1

u1 · · ·un
ω̃ ∈ Ωn,0(M \ D)

is a meromorphic n-form on M with polar set contained in D. For each p ∈ P fix local coordinates
(zi) and holomorphic trivializations of ej of [Dj ] near p. We deduce that near p ∈ P the form ω
has the description.

ω =
g(z)

f1 · · · fn
dz1 ∧ · · · ∧ dzn, uj := fj · ej .

For each p ∈ P define Resp ω as in the previous section. Set Ui = M \ Di so that M \ D = ∩Ui.
Denote by U the open cover U1∪· · ·∪Un of M \P . Then ω ∈ Ωn(M \D) is an (n−1)-Čech cocycle

ω ∈ Cn−1(U, Ωn
M\P )

so that it defines a homology class

[ω] ∈ Hn−1(M − P, Ωn) ∼= Hn,n−1(M\) ∼= H2n−1
DR (M \ P )

This is represented as a (n, n − 1)-form ηω ∈ Ω2n−1(M \ P ) and as above we deduce that

Resp ω =
∫

∂Bε(p)
ηω.

Theorem 2.8 (Global residue theorem).∑
p∈P

Resp ω = 0.

Proof Set Mε = M \ ⋃
p∈P Bε(p). Then

∑
p∈P

Resp ω =
∫
−∂Mε

ηω = −
∫

Mε

dηω = 0.

10



§2.3 Applications of the global residue theorem We will concentrate exclusively on the
case M = Pn. Assume the divisor Di is described as the zero locus of a homogeneous polynomial
fi of degree di in the variables [z0, z1, · · · , zn]. We identify Cn with the finite part in Pn described
by the condition z0 �= 0. We introduce affine coordinates

xj =
zj

z0
, 1 ≤ j ≤ n.

We assume none of the divisors Di contains the divisor at infinity z0 = 0. A meromorphic form on
Pn with poles along Di is a linear combination of terms

ω =
g(x)

f1(x) · · · fn(x)
dx1 ∧ · · · ∧ dxn, fi(x) =

fi(z)
(z0)di

, (z0)dg(x) = g(z),

where g is a homogeneous polynomial of degree d in [z0, · · · , zn]. The degree d of g is constrained
by requirement that ω has no pole at ∞. To find this constraint we switch to a coordinate system
near ∞

x1 =
z1

z0
=

1
y1

, · · · , xk =
zk/z1

z0/z1
=

yk

y1
, k ≥ 2.

In these coordinates ω has the local description

ω = (−1)n (y1)σ−dg̃(y)
f̃1(y) · · · f̃n(y)

dy1 ∧ · · · ∧ dyn,

where σ = d1 + · · ·+ dn − (n + 1), f̃i(y) = (y1)difi(x), g̃ = (y1)dg(x). Since {y1 = 0} � f̃1 · · · f̃n we
deduce that ω has no poles at ∞ if d ≤ σ.

In case D1, · · · , Dν meet transversally at d1 · · · dn distinct points (Pν) away from the divisor at
∞ the global residue formula implies the following classical result of Jacobi

∑
ν

g(Pν)
∂(f1,··· ,fn)
∂(x1,··· ,xn)

(Pν)
= 0. (2.5)

for every polynomial of degree d ≤ d1 + d2 + · · · + dn − (n + 1). When n = 1 we obtain Lagrange
interpolation formula

∑
f(P )=0

g(P )
f ′(P )

= 0, ∀g ∈ C[x], deg g ≤ deg f − 2. (2.6)

Corollary 2.9 (Cayley-Bacharach). Suppose two smooth plane curves C1, C2 ⊂ P2 intersect in
deg C1 ·deg C2 distinct points. Then any curve D of degree deg C1+deg C2−3 which passes through
all but one point of C1 ∩ C2 necessarily contains the remaining point as well. In particular if two
smooth plane cubics C1, C2 intersect in 9 distinct points, then any other cubic containing 8 of the
intersection points must contain the ninth point as well.

Proof Suppose Ci is described by the equation fi = 0 where fi is a homogeneous polynomial of
degree di = deg Ci in the variables [z0, z1, z

2]. Assume that E is described by the equation g = 0,
where g is a homogeneous polynomial of degree d1 + d2 − 3 = d1 + d2 − (2+1). Via a linear change
of coordinates we can assume that C1 ∩ C2 does not intersect the divisor at ∞, {z0 = 0}. The
result now follows from Jacobi’s identity (2.5).
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3 The Poincaré residue

§3.1 Residues of top degree meromorphic forms with simple poles Suppose X is a
connected complex manifold of dimension n and D ↪→ X is a smooth hypersurface. D defines a
holomorphic line bundle [D] on X, and a holomorphic section SD ∈ O(D) of [D] determined by the
condition (sD) = D uniquely up to multiplication by a nonzero holomorphic function.

The normal bundle of D ↪→ X along D is isomorphic to [D] |D so that we obtain an isomorphism

T 1,0X |D∼= T 1,0D ⊕ [D] |D .

By dualizing and then passing to determinants we deduce the adjunction formula

KX |D∼= KD ⊗ [−D] |D⇐⇒ KX |D ⊗[D] ∼= KD. (3.1)

The Poincaré residue ResD is a global incarnation of the above local construction. Observe first
that the sections of KX ⊗ D consists of meromorphic n-forms on X with at most a simple pole
along D. Then ResD is a map

ResD : H0(X, KX ⊗ D) → H0(D, KD),

defined as follows. Suppose ω ∈ Ωn,0(D) is a meromorphic form with at most a simple pole along
D, and f = 0 is a local equation of D in a coordinate patch U . Then f · ω is a holomorphic n
form. We claim that for every p ∈ D there exists a neighborhood Vp of p in U and a holomorphic
(n − 1)-form ηp ∈ Ωn−1,0(Vp) such that

fω = df ∧ ηp on Vp.

Indeed, since df(p) �= 0 we can find another coordinate system (y1, · · · , yn) near p such that f = y1

so that
fω = gdy1 ∧ · · · ∧ dyn =⇒ ηp = gdy2 ∧ · · · ∧ dyn.

Note that formally
ηp =

ω

df/f
.

Observe that if η, η′ ∈ Ωn−1,0(Vp) are two holomorphic (n − 1)-forms such that

df ∧ η = df ∧ η′ = fω

then
df ∧ (η − η′) = 0.

At this pint we want to use the following elementary result.

Lemma 3.1 (DeRham). The Koszul sequence at p

0 → OX,p
df−→ Ω1,0

X,p

df∧−→ · · · df∧−→ Ωn−1,0
X,p

df∧−→ Ωn,0
X,p → 0

is exact.
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We deduce that there exists u ∈ Ωn−2,0
X,p such that

(η − η′) = df ∧ u.

Since df |D≡ 0 it follows that η |D D ≡ η′ |D in a possible smaller neighborhood p ∈ V ′
p ⊂ Vp.

The above argument shows that forms ηp |D agree on the overlaps of their domains and thus
define a global holomorphic form ηω ∈ Ωn−1,0(D). We set

ResD ω := ηω.

We can write formally
ResD ω =

ω
df
f

|D .

Recall the Leray coboundary γ : Hn−1(D) → Hn(X \ D). The residue map satisfies the identity

〈ResD ω, c〉 =
1

2πi
〈ω, λc〉, ∀ω ∈ Ωn,0(D), c ∈ Hn−1(D).

In local coordinates, if ω = g
f dz1 ∧ · · · ∧ dzn, and along f = 0 we have ∂f

∂zk �= 0, then near f = 0 we
have

g

f
dz1 ∧ · · · ∧ dzn = (−1)k−1 g

f
dzk ∧ dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzn

= (−1)k−1 g
∂f
∂zk

1
f

( ∂f

∂z1
dz1 + · · · + ∂f

∂zk
dzk + · · · + ∂f

∂zn
dzn

)
dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzn

= (−1)k−1 df

f

g
∂f
∂zk

dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzn.

so that locally
ResD ω = (−1)k−1 g

∂f
∂zk

dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzn.

This shows that the residue map induces an injection

ResD : H0(X, KX ⊗ D) → H0(D, KD).

§3.2 Smooth plane curves Suppose C ↪→ P2 is a smooth degree d pane curve described by
the equation P = 0, where P is a homogeneous polynomial of degree d in the variables [z0, z1, z2].
We then have a Leray coboundary map

λ : H1(C) → H2(P2 − C).

Proposition 3.2. The Leray coboundary is an isomorphism.

Proof We follow the presentation in [2].

Surjectivity. Suppose σ ∈ H2(P2 −C). Then σ · [C] = 0 ∈ H2(P2). Hence [σ] = 0 in H2(P)2 so that
σ bounds a 3-chain Σ in P2. If we choose Σ carefully the intersection c = Σ cot C is a 1-cycle on C
such that τ(c) = σ.

Injectivity. Consider a cycle c ∈ H1(C) such that λ(c) = 0 ∈ H2(P2 − C). Denote by N a thin
tubular neighborhood of C ↪→ P2, and denote by π : N → C the natural projection. Then

λ(c) = ∂α, α := π−1(c).

13



Since λ(c) = 0 in H2(P2 − C) there exists a 3-chain β in P2 − C such that ∂β = λ(c). We deduce
that α − β is a 3-cycle in P2 since H3(P2) = 0 we conclude that α − β = ∂U , where U is a 4-chain
in nP2. Then U ∩ C is a 2-chain on C such that

∂(U ∩ C) = c

i.e. c is homologous to zero.

Using the Poincaré residue map we can considerably refine the above result to capture rather
subtle interactions between the geometry of C and its complement P2 − C. Arguing as in §2.3 we
deduce the following.

Proposition 3.3. The holomorphic 2-forms on P2 with a simple pole along C have the form1

ω =
g(x1, x2)
P (x1, x2)

dx1 ∧ dx2, xj = zj/z0,

where (z0)d−3g(z1/z0, z2/z0) is homogeneous polynomial of degree d − 3 in the variables z0, z1, z2.
In other words

K2
P ⊗ C = (d − 3)H.

In particular
KP2 = −3H. (3.2)

Using (3.2) in the adjunction formula (3.2) we deduce

−3[H] |C= KC − [C] |C
so that

−3〈c1([H]), C〉 = 〈c1(KC), C〉 − 〈c1(NC), C〉.
Note that 〈c1(NC), C〉 = C · C = d2 while Gauss-Bonnet theorem implies

〈c1(KC), C〉 = 2g(C) − 2.

The last equality becomes

−3d = 2g(C) − 2 − d2 ⇐⇒ g(C) =
(d − 1)(d − 3)

2
.

Hence
dimC H1(C, KC) = dim H1,0(C) = g(C) =

(d − 1)(d − 3)
2

.

On the other hand, Proposition 3.3 shows that

dimC H0(P2, KP2 ⊗ C) = dimC H0(P2, (d − 3)H)

=
(

d − 3 + 2
3 − 1

)
=

(
d − 1

2

)
=

(d − 1)(d − 2)
2

= dimC H1(C, KC).

We have thus proved the following dual to Proposition 3.2.

Proposition 3.4. If C is a smooth plane curve then the Poincaré residue map defines an isomor-
phism

ResC : H0(P2, KP2 ⊗ C) → H0(C, KC).
1The polynomials g in Proposition 3.3 are classically known as polynomials adjoint to C.
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§3.3 Abel’s theorem for smooth plane curves Suppose C is a smooth plane curve of
degree d described as above by an equation P = 0. Fix a point p0 ∈ C, and consider a family
of homogeneous polynomials Qt = Qt(z0, z1, z2) of degree n depending holomorphically on the
parameter t ∈ C. Denote by Dt the divisor {Qt = 0} ∩ C on C. For generic t it consists of
deg C · deg Qt distinct points. We would like to construct an invariant of this family of linearly
equivalent divisors.

Fix a holomorphic form ω ∈ H1,0(C) = H0(C, KC). The periods of ω are the complex numbers
〈ω, c〉 ∈ C, c ∈ H1(C, Z). More invariantly, every cycle c ∈ H1(C, Z defines a linear map

Pc : H1,0(C) → C, ω �→
∫

c
ω.

Hodge theory implies that the correspondence c �→ Pc defines an injection

H1(C, Z) ↪→ H1,0(C)∗.

Note that
rankH1(C, Z) = 2g = dimR H0(C, KC)∗.

We can invoke Hodge theory again to conclude that H1(C, Z) sits as a lattice in H0(C, KC)∗, called
the lattice of periods. We denote it by ΛC . Thus the quotient

J(C) := H0(C, KC)∗/ΛC

is a 2g-dimensional torus. It called the Jacobian of C.
For every point p ∈ C and every path γ in C from p0 to p we obtain a linear map∫

γ
: H1,0(C) → C, ω �→

∫
γ
ω.

Observe that if we choose a different such path γ′ then∫
γ
−

∫
γ′

=
∫

γ−γ′
∈ ΛC .

Thus the image of
∫
γ in H1,0(C)∗/ΛC is independent of the path γ connecting p0 to p. We will

denote this image by
∫ p
p0

. Every ω ∈ H1,0(C) defines an Abelian group

Λω := {
∫

c
ω ∈ C; c ∈ H1(C, Z)}

and a projection

H1,0(C)∗/ΛC → C/Λω, L mod ΛC �→ L(ω) mod Λω.

In particular, for every ω ∈ H1,0(C) and every p ∈ C we have an element∫ p

p0

ω ∈ C/Λω.

For every divisor D =
∑

i nipi on C and every ω ∈ H1,0(C) we set

PD =
∫ D

p0

:=
∑

i

ni

∫ pi

p0

∈ J(C), ω(D) = (PD)(ω) mod Λω =
∫ D

p0

ω mod Λω ∈ C/Λω.

Observe that PD+D′ = PD + PD′ and

PD = PD′ ⇐⇒ ω(D) = ω(D′) ∈ C/Λω, ∀ω ∈ H1,0(C).
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Theorem 3.5 (Abel). The element PDt ∈ J(C) is independent of t, that is for every ω ∈
H0(C, KC) the element ω(Dt) ∈ C/Λω is independent of t.

Before we present the proof of this theorem we discuss one important consequence. Denote by
“∼” the linear equivalence relation between divisors.

Corollary 3.6.

D ∼ D′ =⇒ ω(D) = ω(D′), ∀ω ∈ H1,0(C) ⇐⇒ PD = PD′ .

In particular if D is a principal divisor then PD = 0.2

Proof Choose a meromorphic function R such that

D − D′ = (R).

Then by Chow’s theorem (see [8]) there exist two homogeneous polynomials of identical degrees in
the variables [z0, z1, z2] such that

(R) =
Q0

Q1
|C .

Set Qt := (1 − t)Q0 + tQ1, Dt := Qt ∩ C. Then

ω(D) − ω(D′) = ω((R)) = ω(D0) − ω(D1)
Abel= 0.

Proof of Theorem 3.5. Denote by ∆ the discriminant locus of the family Dt, i.e. the set
of points t ∈ C such that Dt contains multiple points. ∆ is a finite set. Let t0 ∈ C \ ∆ and
set ν := deg C · deg Qt0 . Assume for simplicity that t0 = 0. We can find ε > 0 and ν disjoint
holomorphic paths

γj : {|s| < ε} → C

such that
Ds =

{
γj(s); 1 ≤ j ≤ ν

}
.

Assume that for |s| < ε the divisor Ds does not intersect the divisor z0 = 0. Thus we can work in
the ”finite” part of C where we can use the local coordinates

x = z1/z0, y = z2/z0.

We can then find a homogeneous degree (d − 3) polynomial g in the variables z0, z1, z2 such that

ω = ResC

( g

P
dx ∧ dy).

For each |s| < ε and 1 ≤ j ≤ ν we consider the paths

uj(t) = γj(ts), t ∈ [0, 1].

In local coordinates they are given by

uj(t) = (xj(t), yj(t)), t ∈ [0, 1].

2The converse is also true. Theorem 3.7 establishes this converse in the special case of plane cubics.
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Then
ω(Ds) − ω(D0) =

∑
j

∫
uj

ω mod Λω.

We will prove that ∑
j

∫
uj

ω = 0.

We study each of the integrals in the above sum separately. Fix j. Near uj(0) we have dP �= 0 so
we can assume ∂P

∂x �= 0 near pj(0). Then near pj(0)

ω =
g

P ′
x

dy

so that ∫
uj

ω =
∫ 1

0

g

P ′
x

ẏjdt.

Differentiating the equalities

P (xj(t), yj(t)) = 0, Q(xj(t), yj(t); t) = 0

we deduce
P ′

xẋj + P ′
yẏj = 0, Q′

xẋj + Q′
yẏj + Q′

t = 0.

Solving for ẋj and ẏj we obtain

ẏj = − Q′
tP

′
x

∂(P, Q)/∂(x, y)
=⇒ ẏj

P ′
x

= − Q′
t

∂(P, Q)/∂(x, y)
.

Set Ht := −g · Q′
t. Note that deg Ht < deg P + deg Q − 3 We deduce that

∑
j

∫
uj

ω =
∫ 1

0

(∑
j

Ht

∂(P, Q)/∂(x, y)
(pj(t))

)
dt

The integrand is zero by Jacobi’s formula (2.5). Thus the continuous function

C → J(C), t �→ PDt

is constant outside the finite set ∆. We deduce that it must be constant.

§3.4 The addition law for smooth plane cubics Consider a smooth plane cubic, i.e.
smooth plane curve C described by an equation P = 0 where P is a homogeneous polynomial
of degree 3 in the variables [z0, z1, z2]. We can linearly change the coordinates [z0, z1, z2] such that
in the finite part z0 �= 0 the polynomial P has the Legendre form (see [2, §7.3.11] or [3, §2.2])

P (1, x, y) = y2 − x(x − 1)(x − λ), x = z1/z0, y = z2/z0

that is
P (z0, z1, z2) = z0(z2)2 − z1(z1 − z0)(z1 − λz0).

The point p∞ := [0, 0, 1] lies on this curve. If we use the coordinates

u = z0/z2, v = z1/z2
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we deduce that near p∞ the curve C is described by the equation

u = v(v − u)(v − λu), p∞ = (0, 0)

which shows that the line u = 0 has a third order contact with C at p∞.
The space of holomorphic differentials on C is one dimensional and is generated by

ω =
dx

y
.

Fix a basis a, b of H1(C, Z) such that a · b = 1. The Jacobian of C is the torus

J(C) ∼= C/spanZ(〈ω, a〉, 〈ω, b〉).

For every line L in P2 we get a divisor L ∩ C and Abel’s theorem implies that

ω(L ∩ C) ∈ J(C)

is independent of L. In particular, if L is the line L∞ = {u = 0} we deduce

L∞ ∩ C = 3 · p∞
so that ω(L∞ ∩ C) = 0 ∈ J(C). We deduce that

ω(L ∩ C) = 0 ∈ J(C), for any line L.

Thus if we set
u(p) :=

∫ p

p∞
ω ∈ J(C)

we deduce that
u(p1) + u(p2) + u(p3) = 0

for any three collinear points p1, p2, p3 ∈ C.
We regard the correspondence p → u(p) as a holomorphic map

Theorem 3.7 (Abel). The map

C � p �→ u(p) ∈ J(C).

is one-to-one.

Proof We argue by contradiction. Here is briefly the strategy. Suppose u(p1) = u(p2). If we
denote by D the divisor p2 − p1 this condition implies PD = 0. We know that this would happen if
D were a principal divisor. We will show that this is indeed the case. A simple counting argument
will then show that D cannot be a principal divisor, thus yielding a contradiction.

Step 1. There exists a meromorphic form η on C with simple poles at p1 and p2 such that

Respk
η = (−1)k, k = 1, 2. (3.3)

Indeed consider the short exact sequence of sheaves

0 → KC → KC ⊗ O(p1 + p2)
Res−→ Cp1 ⊕ Cp2 → 0.
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We get a long exact sequence

0 → H0(C, KC) → H0(C, KC(p1 + p2))
r→ Cp1 ⊕ Cp2 → H1(C, KC) →

Since the sum of residues of a meromorphic form is 0 we deduce that dim coker r ≥ 1. On the other
hand

H1(C, KC) ∼= H0(C,O) ∼= C

so that we deduce dim coker r = 1. Thus for any two complex numbers a1, a2 such that a1 + a2 = 0
we can find a meromorphic form on C with simple poles at p1, p2 such that Respk

= ak.
Denote by X the space of meromorphic forms with simple poles at p1, p2 satisfying (3.3). Fix

η0 ∈ X. Then
X = η0 + H0(C, KC) = η0 + C〈ω〉.

Step 2.3 There exists a meromorphic form η ∈ X on C∫
c
η ∈ 2πiZ, ∀c ∈ H1(C, Z). (3.4)

We will present two proofs of this fact. The first proof is inspired by [5, Lecture 2] and uses in a
more visible fashion the Hodge structure on H1(C, C). The second is the classical proof based on
Riemann’s bilinear relations.

1st Proof. Fix a smooth path γ from p1 to p2. We assume that γ has no self-intersections and that
for every ε � 1 the closed set

Tε := {p ∈ C; dist (p, γ) ≤ ε}
is diffeomorphic to a disk (see Figure 4). Set Cε := C \ Tε.

pp
1 2

C

Tεγ

Figure 4: Constructing meromorphic forms on a cubic

For each c ∈ H1(C, Z) denote by ϕc the harmonic 1-form representing the Poincaré dual of c.
It is uniquely determined by the equality (see [1, Chap.I, §5])∫

C
β ∧ ϕc =

∫
c
β, ∀β ∈ H1(C, C).

Since u(p1) = u(p2) there exists c0 ∈ H1(C, Z) such that∫
γ
ω =

∫
c0

ω =
∫

C
ω ∧ ϕc0 .

Denote by α the harmonic 1-form on C such that∫
c
α =

1
2πi

∫
c
η0, ∀c ∈ H1(C, Z).

3This is the key moment in the proof.
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We have a Hodge decomposition (see [8])

α = α1,0 + α0,1, α1,0 ∈ H0(C, KC) ∼= H1,0(C), α0,1 ∈ H0(C, K−1
C ) ∼= H0,1(C).

Since
1

2πi

∫
∂Tε

η0 =
∫

∂Tε

α = 0

we deduce that α and 1
2πiη0 are cohomologous on C \ γ. Hence there exists

f : C \ γ → C :
1

2πi
η0 − α = df.

Since Resp2 η0 = 1 we deduce that f increases by 1 when we cross γ. Then∫
C

ω ∧ ϕc0 =
∫

γ
ω = lim

ε↘0

∫
∂Cε

ωf = lim
ε↘0

∫
Cε

ω ∧ df = lim
ε↘0

∫
Cε

ω ∧ (η0 − α).

Now observe that since ω and η0 are (1, 0) forms we have ω ∧ η0 = 0. Hence∫
C

ω ∧ ϕ0,1
c0 = −

∫
C

ω ∧ α0,1.

Since ω spans H1,0(C) we deduce from Hodge theory that α0,1 = −ϕ0,1
c0 . Now observe that∫

c

( 1
2πi

η0 − α1,0
)

=
∫

c
(α − α1,0) = −

∫
C

ϕc ∧ (α − α1,0) = −
∫

C
ϕc ∧ α0,1

=
∫

C
ϕc ∧ ϕ0,1

c0 =
∫

C
ϕc ∧ ϕc0 = c · c0

The above identity shows that the periods of η0 − 2πiα1,0 ∈ X are in 2πiZ.

2nd Proof. Fix an integral basis a, b of H1(C, Z) such that 〈ω, a〉 �= 0 and a ·b = 1. We assume a, b
are represented by simple closed curves which do note pass through p1, p2 and p∞. Fix a path γ
connecting p1 to p2 and denote by Ck a small circle centered at pk oriented as boundary component
of C \ {p1, p2}. Now cut C along a and b to obtain the standard cut-and-paste description of the
torus C (see Figure 5).

a

a

b

b

p p

0 1

1

C C

γ

R

α

α

ββ'

'

2

-1

-1

Figure 5: Cutting a torus

Since the rectangle in Figure 5 is simply connected the function u lifts to a holomorphic function
u : R → C. More precisely we define u(p) by integrating ω along a path inside R from p∞ to p To
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every point α on a there corresponds a point α′ on a−1 which glue to the same point on C. Now
that

u(α′) − u(α) = 〈ω, b〉.
Similarly, for every point β ∈ b there exists a point β′ ∈ b−1 which is identified with β in C. In
this case

u(β′) − u(β) = −〈ω, a〉.
Observe now that for every η ∈ X we have

2πi
(
u(p2) − u(p1)

)
= 2πi

(
Resp1(uη) + Resp2(u, η)

)
=

∫
∂R

uη

=
(∫

a
+

∫
a−1

)
(uη) +

(∫
b

+
∫
b−1

)
(uη) =

∫
a

(
u(α) − u(α′)

)
η +

∫
b

(
u(β) − u(β′)

)
η

= −〈ω, b〉
∫
a

η + 〈ω, a〉
∫
b

η.

Hence4

u(p2) − u(p1) =
1

2πi

(
−〈ω, b〉 · 〈η,a〉 + 〈ω, a〉 · 〈η, b〉

)
=

1
2πi

∣∣∣∣∣∣
〈ω, a〉 〈η,a〉

〈ω, b〉 〈η, b〉

∣∣∣∣∣∣ , ∀η ∈ X. (3.5)

The condition u(p1) = u(p2) ∈ J(C) implies that there exist two integers m, n such that

u(p2) − u(p1) =
∫

γ
ω = m

∫
a

ω + n

∫
b

ω. (3.6)

Using (3.5) we deduce

∫
ma+nb

ω = − 1
2πi

∣∣∣∣∣∣
〈ω, a〉 〈η,a〉

〈ω, b〉 〈η, b〉

∣∣∣∣∣∣ , ∀η ∈ X (3.7)

Define
η1 = η0 − 〈η0, a〉

〈ω, a〉 ω ∈ X.

By design
〈η1, a〉 = 0.

Using (3.7) we deduce

〈η1, b〉 =
2πi

〈ω, a〉〈ω, ma + nb〉 = 2mπi + n
2πi

〈ω, a〉〈ω, b〉

Now define
η2 = η1 − 2nπi

〈ω, a〉ω ∈ X.

Then
〈η2, a〉 = −2nπi, 〈ω, b〉 = 2mπi

4The identity (3.5) is a special case of Riemann’s bilinear relations.

21



so η2 satisfies (3.4).

Step 3. There exists a meromorphic function h on C with a simple zero at p1 and a simple pole
at p2. Consider the meromorphic form η2 constructed at step 2. Set

h(p) = exp(
∫ p

p∞
η2).

The condition (3.4) implies that h is well defined. Since dh
h = η2, the condition (3.3) implies that

h has a simple zero at p2 and a simple pole at p1.

Step 4. There exists no meromorphic function R on C with a simple pole and a simple zero. To
see this we write R as a quotient f/g where P and Q are homogeneous polynomials of identical
degrees n > 0. Then the zero set consists of 3n > 1 points counting multiplicities.

This concludes the proof of Theorem 3.7.

We now have a one-to-one map C → J(C), p �→ u(p). Observe that du = ω. This implies
that this map is biholomorphic. The biholomorphic map C � p �→ u ∈ J(C) has thus introduced a
group law on C by the rule

p3 = −(p1 + p2) ⇐⇒ p1, p2, p3 are colinear.

We can invert this function, and regard p as a function of u. We deduce that

u1 + u2 + u3 = 0 ⇐⇒ p(u1), p(u2), p(u3) are colinear (3.8)

Observe that u(p∞) = 0 ∈ J(C). Denote by x(u) and y(u) the coordinates of p(u) u �= 0.
Given two points p1, p2 ∈ C then the coordinates of the third intersection point of the line [p1p2]

with C are rational functions of the coordinates of p1 and p2. Hence

x(−(u1 + u2)) = R(x(u1), x(u2), y(u1), y(u2)), y(−(u1 + u2)) = S(x(u1), x(u2), y(u1), y(u2)).

The above identities are classically known as the addition laws for the (inverse of the) elliptic
integrals. The function x(u) is none other than Weierstrass ℘-function. From the equality

du = ω =
dx

y
=

x′(u)
y(u)

du

we deduce y(u) = x′(u) and the equality y2 = P3(x) := x(x − 1)(x − λ) becomes the known
differential equation satisfied by the Weierstrass function

(℘′)2 = P3(℘).
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