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Abstract
We discuss some basic applications of higher dimensional residues as presented in [7] and [8,
Chap. V].
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1 Gysin maps and Leray residues: the topological picture

We begin by briefly describing the topological facts underpinning the residue construction. For
more details we refer to the original source [9].

Suppose X is a complex manifold, D — X is a smooth divisor. Denote by N(D) a tubular
neighborhood of D in X, by o : D — N (D) the inclusion as a zero section, and by 7 : N — D the
natural projection. Denote by

(0,0) : H},, x H — C
the Kronecker pairing (integration). We then have ( see [4, §VIII. 12]) the Gysin long exact sequence
(we use complex coefficients)

. — Hy(N — D) 5 Hy(N) S Hy_o(D) S Hy_1(N — D) —

Intuitively, the map Hy(N) 3 ¢ — o'(c) € Hy_5(D) is given by the intersection of the k-cycle ¢
with D, ¢ — ¢N D. More rigorously, if we denote by 7p the Thom class of the normal bundle of
D — X, then we can view 7p as an element of H2(NN,N) and then w(c) is defined by the equality

(tp A*p, ¢) = (p,0'(c)), Vo € H*2(D).

*Notes for Karen Chandler’s Absolutely fabulous seminar in algebraic geometry.



The morphism 7' is called the tube map or the Leray coboundary. If ¢ € H,,,(D) is represented by
a compact smooth submanifold M < D, we then get by restriction a disk bundle 7=1(M) — M.
Its boundary is a S'-bundle over M, S* «— dr—1(M) — M whose total space caries the homology
class of 7'(c). We will refer to the composition

Hy(D) = Hy11(ON) — Hy1(X — D)

as the tube maps as well.
Dualizing we get a morphism

7 : Hom(Hy41 (X — D),C) = HEH (X — D) — Hom(Hy,(D),C) = Hb (D)

We will refer to it as the topological Leray residue and we will denote it by Resp.
Suppose more generally that we have smooth divisors D1, , Dy,, 1 <m < dim¢ X, intersect-
ing transversally. We set D = UD;, X; = X \ D,

Xi=Di\ |J Dr, Xy=DinD)\ |J Di--.Xj= () Di\ U Diooe

1<k<m 2<k<m 1<i<y j<k<m

Iterating the above construction we get a sequence
Res Res R
Hpp(Xy) — Hpp (X7) — Hpg(Xy)— - =2 Hp"(Din -0 D)

We would like to have a better understanding of these maps at the level of differential forms, and
in particular we would like to understand how these maps interact with the Hodge structures on
the various DeRham cohomology groups. We will study two extreme cases: m = dim¢ X and
m = 1. The first case leads to the Grothendieck residue map and an explicit description of the
Grothendieck-Serre duality for zero dimensional schemes, while the second case leads to a classical
construction going back to Poincaré usually referred to as the Poincaré residue.

2 Residues: local aspects

§2.1 The Grothendieck residue We denote by O = O¢n the sheaf of holomorphic functions
in n variables z!,---,2" on C”. We denote by Op the stalk at 0 € C"”. Fix an open polydisk U
centered at 0 € C". For every F = (f1, -+, fn) € O(U)™ we se

Di=Di(F)={Z€U; fZ)=0},,D=DyU---UD, F10):=(\D;={F€U; fi(¥)=0, Vi}.
oF

F' defines a holomorphic map F : U — C" and we denote its Jacobian determinant by Jz or 55.
Let g € O(U), and F € O" such that F~1(0) = {0}. We define
7 g
w=wzg, F) =
(. F) fiefa

Observe that w is a meromorphic n-form on U such that w |7 p is holomorphic. For dimension

dz' A - AN d2".

reasons we have

Ow=0=dw=(0+w=0

so that w is closed. We denote by [w] its cohomology class in H},,(U \ D). For very small positive
real numbers ¢; define



' is a compact, real n-dimensional submanifold of U \ D oriented by the n-form
darg fi A --- Ndarg fp.

It determines a homology class [I'| € H, (U \ D) which is independent of the radii ;.
The Grothendieck residue of w at 0 is by definition the complex number

Rewwi= (55) [ (55) (D

Example 2.1. (a) Suppose we holomorphically change the coordinates near 0, 7 = Z(#). Then w
changes to

0z
Wr = oo Wi
In particular, if F is biholomorphic, then we use F' as new coordinates then
0z . Oh Afn
w'g:ﬁ'g(z).f/\”./\f—n
and we deduce
Resy = 9(0) .

In this case the cycle I' is an n-torus.

(b) Suppose fi(z) = (z')%, and g(z) = Jz(z) = |J a;j(27)%~1 . Then

. J WS | drd
Respw(g, F) = Res()(%dzl A A dz") H _/ | 4= H ay,.
n Z] =€

The residue depends only on the germs of g and Fato0. It depends linearly on g. Denote by
Iz the ideal in Og generated by the germs fi,---, fn. Observe that

g € Iz = Respw = 0.

This is clear when f = h- f; for some 7, and the general case can be reduced to this one by linearity.
Set U; :== U \ D;. Then the collection (U;) is an open cover of U* := U \ 0.

Proposition 2.2. There exists a closed form n, € Q**~Y(U*) depending smoothly on g and F such

that
Resgw = / Nw
Sanl (7.)

where S?"~1(r) C U* is a sphere of small radius r centered at 0.
Proof We prove this only in the case n = 2. We have an open cover
U* =U;UUs.

Set Uja = UyNUz = U\ D. Denote by j, the inclusion U, <— U*, and by i, the inclusion Ujy < Ul,.
Denote by AP4(V') the space of smooth (p, ¢)-forms on an open subset D — C™.



& 4

suppp,

Figure 1: pow extends by zero to the rest of Uj.

Lemma 2.3. We then have a short exact sequence of cochain complexes

0— (A (U),) it (A (n),0) & (4™ (1), 0) i (A (U2),0) =0 (2)

called the Mayer-Vietoris sequence of the cover {Uy,Us}.

Proof of the lemma The only non-obvious part is the surjectivity of g. Let n € A™F(Upp). We
want to show that there exist 1, € A™*(U,) are such that g(n; @ n2) =7, i.e.

m ’U12 -2 |U12: n

Choose a smooth partition of unity {p1, p2} subordinated to {Uy,Us}, i.e. 0 < po < 1, supp po C
Uy, and p1 + p2 = 1.

Note that we can extend pon to a smooth form on U; by setting pen = 0 on Uy \ Ujs (see Figure
1. Similarly, we can extend pi7n to a form on Us. Clearly

g(p2n, —p1n) = (p2n) lv1, —(=p11) [U1= 1.

From the above short exact sequence we obtain the long exact sequence
0 — H™(U*) — H™(Uy) & H™(Uy) — H™(Ur) > H™ (U*) — - -
The meromorphic form w defines an element w € H™%(Uy2) and we set
Ny i= 0w € H™ (U*).

In our case n = 2 and H>! = H3(U*). Using the partition of unity in the proof of Lemma 2.3 we
can be much more explicit about the form of n,,. More precisely

_c 8£p2w) on U _c d(pow) on U
o = L —-0(pw) on Uy ") —d(pw) on Uy ’

where C), is a constant to be determined a bit latter. Observe that the above definition correctly
defines a form on U* since on the overlap Ujo we have

A(pas) = (—d(pr)) = d(ps) + d(pres) = d((p1 + po)w) = dw = 0.



In our very concrete situation we can take

_ AP _ 1RP

— py == ||F|2 = A+ | f
(| F)|? [ )%

and we have

19 dz1 Ndzo, pow = J29

112 f2 112 f1
The cycle I' = {|fi|* = €2, i = 1,2} lies on the hypersurface

prw = dz1 N\ dzs.

Y= {||F||> = 262}, dimp ¥ = 3.
Moreover, I' divides ¥ into two parts
ir={7eX; |fal e}, Tp={7eX; il <e}, 081 =-0%, =T

Note that
Nw |51 = Crd(paw), Nuls,= —Crd(piw)

Hence

/ Nw = Cn d(PQW) — Cn d(plw)
) 21 22

Cu [ o+ 1) = [
I I

Hence if we take C,, = (27i)" we have

(use Stokes’ formula)

/ Nw = Respw.
b

Finally observe that 3 is homologous in U* to a small sphere centered at 0.
We can give an even more explicit description of 7,,. As we have noticed on the overlap Uyo we
have

I(pow) = —0(mw)
In fact both forms above are globally defined. Thus (recalling that n = 2)

no = 5 (Do) = pre)).

A simple computation shows that

Chg Z (3\fa|2 || F)? - \fa|23!\ﬁ!!2)
Ty IF4

(H 1> fodfo — | fol2(frdfi + fodfo) — || frdfi + | fi]*(frdfi + f2df2))

dz1 N\ dzy

C 3 —
L — fid 2 2 9 p p
= 7o (adfo = RARUAP +1BP) + AP ~ 1R + fodf)

Cag C2g
= [P i ARt = 10 0aR) = 2 (Rdfe — Fadf)

The continuous dependence of 7, on g and F' is now clear.



Remark 2.4. Let us say a few things about the proof of Proposition 2.2 in the case n > 2. This
requires a detour in the world of sheaf cohomology and spectral sequences.

Suppose X is a locally compact space. We will be interested mostly in the case when X is an
n-dimensional complex manifold. A sheaf of Abelian groups F on X is called soft if for every closed
set C' C X the restriction map F(X) — F(C) is onto. F is called fine if the sheaf Homz(F,F) is
soft. Intuitively, the fine sheaves are the sheaves for which we can use the partition of unity trick.
More precisely, given an open cover U = (U, )qca of the locally compact space X, a partition of
unity subordinated to this cover is a collection of endomorphisms p, € Hom(F(X),F(X), a € A
such that

supp (pa) C Ua, Vo, Y pa = 1.

«

We have the following implications
F fine = F soft = F acyclic.

For example the sheaves of smooth sections of a smooth vector bundle over a smooth manifold are
all fine.
A resolution of a sheaf F is an exact sequence of sheaves

0—F -8 gl ...

We will denote this by F < (8*,d). The resolution is called fine if all the sheaves §; are fine. For
example, if X is a complex n-dimensional manifold, ¥ = QP is the sheaf of holomorphic p-forms,
AP is the sheaf of smooth (p,q)-forms, then AP? is a fine sheaf, and Dolbeault lemma shows that

O—>Qp’0<—>Ap’Oé>Ap’1 ﬂApQ_),,.

is a fine resolution of QPY. We have the following fundamental result, [6, Thm. 4.7.1].

Theorem 2.5 (Generalized DeRham theorem). If F — (8*,d) is a fine resolution of F then
H*(X,9), the cohomology F, is isomorphic to the cohomology of the co-chain complex

SOX) % 8h(x) B g2(x) L ...

Suppose F — (8*,d) is a fine resolution of F and U := (U, )aca is an open cover of X, where
A is a linearly ordered set. The nerve of the cover U consists of the finite subsets F' C A such that

Up = (] Ua # 0.

acF

We denote by N = N(U) the nerve of the cover. We can associate a simplicial complex to the nerve,
with one d-dimensional simplex for each F' € N such that |F| = d + 1. We will denote it by A(U).
For example, the nerve of the cover in Figure 1 consists of {1},{2} and {1,2}. The associated
simplicial complex is depicted in Figure 2. For each sheaf 8§ on X we set

cr,8) = [[ 8
|Fl=p+1

We identify the elements of CP(U,8) with families of section (sp)pca, |F| =p+1, sp € 8(Up).
Since ¥ is a sheaf we have a natural inclusion

i:8(X) = C',8), 8(X)3ur [[ulu, -
a€EA



Figure 2: The simplicial complex associated to the cover in Figure 1.

For the cover in Figure 1 and the sheaf § = Q™% we have
(U, 8) = Q™) @ ™), CHU,8) = Q™0 (Uya).
For each p > 0 we have a Cech coboundary map

5:CPU8) = CTWS), ds= [ ©Gs)re ][ sUr)=cmus)
|T|=p+2 |T|=p+2

defined as follows. Let T' = {to,t1, - ,tp41} € N, to < t1 < -+ < tpy1. Then for every f € CP(U,8)

we define
p+1

(5S>T = Z(_l)i (ST*{ti}) ’UT .

i=0
One can verify that the resulting sequence

0— 8(X) — COU,8) > (U, 8) > - (2.2)

is a cochain complex. It is called the augmented Cech complez of the cover U with coefficients in
the sheaf 8. When 8 is the constant sheaf Z then the resulting Cech complex coincides with the
augmented simplicial cochain complex determined by the simplicial complex A(U).

For example, 6 : Q™0(U7) @ Q"0 (Uy) — Q0(Uys) is given by

d(wi,w2) = wa |y, —wiloy, -

We see that the sequence
0 — A™I(U*) — QO(U1) & A" (Uy) > A™(U),)

is precisely the Mayer-Vietoris sequence (2.1). The next result generalizes Lemma 2.3

Lemma 2.6. If § is a fine sheaf on a locally compact space X and U is an open cover then the
Cech complex is acyclic. Moreover, any partition of unity subordinated to this cover canonically
determines a cochain contraction,

kE:CP(U,8) — CPH(U,8), kd+dk=1.

For a proof of this result we refer to [1, §8] and [6, §5.2].
Suppose now that F is a sheaf on a locally compact space and F — (8*,d) is a fine resolution.
Set
KP4 .= C9U,8P),

The sheaf morphisms d), : 8 — $P*1 induce morphisms

dr = (=1)Pd, : KP4 = C%(U, 8P) — C9(U, 8PT) = KPH1a

7



while the Cech coboundary operator induces morphisms
dip =6 : KP9 = C9(U,87) — CITH (U, 8F) = K7t
such that the diagram below is anti-commutative for any p,q, d;D;; = —d;rdy,

d
Cpatl o FPtlatl

Now form the total complex (K*, D)

K™= @ KM, D=d;+dy:K"— K™
ptg=m

The anti-commutativity of the above diagram implies that D? = 0. We have a natural chain
morphism induced by restriction

r:8™(X)— K™, 8™(X) — C°(U,8™) =C"™0 — K™,

! J ! J !
K02 A K2 N ) I ——

Tdu Tdn Tdn

d d
KO A KLt M | e —— (2.3)

Tdn Tdn Tdn

K00 N K10 N | ——
80(xX) <5 81(X) <5 $3(X)

Observe that since (8%, d) is a fine resolution of ¥ we deduce from the generalized DeRham theorem
that the cohomology of the bottom row is isomorphic to the cohomology H*(X, F).

Theorem 2.7 (The generalized Mayer-Vietoris principle). The morphism
r: (8%(X),d) — (K*,D)
18 a quasi-isomorphism, i.e. it induces isomorphisms in cohomology

H*(X,¥F) — H*(K*, D).

For a proof of this result we refer to [1, §8] and [6, §5.2].

We analyze how this works in the special case when X = U*, the cover U consists of the open
sets U; = U\ D;; F = Q0 and the resolution is (89,d) = (A™4,0). Fix a partition of unity
subordinated to this cover and denote by k the corresponding co-chain contractions

k=k,: KP=CYU,A"P) - CT 1 (U,A™P) = KPI™' kdjr +dirk =1



In this case C?(U, A™P) =0 for ¢ > n, and we have
Kpn=t = cnm U, A™MP) = AMP(U \ D).

The meromorphic form w defines an element w € C U, A™0) = KO~ satisfying djjw = 0
(since K" = 0 and djw = 0w = 0. Hence Dw = 0 so that w is a D-cocycle and thus defines an
element

[w] — Hn_l(K*,D) ~ Hn_l(U*,Qn’O) — Hn,n—l(U*) o~ Hggl(U*)

Thus we can represent [w]| by a closed (2n — 1)-form 7,,. To find an explicit representative we need
to use the diagram (2.3) and the contractions k.

n_llh
[0}
k
n-2 ‘_Tai
1
| .
I\2
NN
1 AN
]
N
qu 1 N
1 N
0 -
1 2 An,n 1
q
—

Figure 3: Tracing a zig-zag.
Observe that since kd;r + djfk = 1 we deduce that for any Cech cocycle ¢ we have
dirtkc=c¢
so that on these cocycles k behaves like dffl. Thus dlfjlw is well defined and we set
w1 = —d[d;}w = drkw € K172,
Now observe that djw; = 0,
drjw1 = dyrdrkw = —djdrkw = —djw =0
so that wy is a D- cocycle as well. It is D-cohomologous to w since
w—wy = Dkuw.

We set again
we = —djkwy € K?n—3

and we get a new D-cocycle cohomologous to w;. We iterate this procedure until we get

Wp_1 € anl,O — CO(u"An,nfl)'



This is a collection of holomorphic forms 7; € Q™" Y(U;) which agree on the overlaps. They
patch-up to a global holomorphic (n,n — 1)-form 7, € Q»"~1(U*). Again we can form

1 n
Nw = E Z U
=1
and a simple computation gives

(Spes (17 fpdfu A= A dfy Ao A df)
|12 |

Nw = Cng(2)dz" A+ A d2" (2.4)

O

§2.2 The global residue theorem Suppose now that M is a compact Kéhler manifold of
complex dimension n and D1, --- , D, are effective divisors such that

n
P = ﬂ supp (D)
j=1
is a finite set. Set D := Dj + --- + D,,. Suppose @ is a holomorphic section of Ky ® O(D). For
each 1 < j < n fix a holomorphic section u; of O(D;) such that (s;) = D;. Then

1

=——0eQ"(M\D

W= (M\ D)
is a meromorphic n-form on M with polar set contained in D. For each p € P fiz local coordinates
(2") and holomorphic trivializations of e; of [D;] near p. We deduce that near p € P the form w

has the description.
Lo 93

fl - fn
For each p € P define Res,w as in the previous section. Set U; = M \ D; so that M \ D = NU;.
Denote by U the open cover Uy U---UU,, of M\ P. Then w € Q"(M \ D) is an (n— 1)-Cech cocycle

we Cnil(uv Q?M\P)

1 -
dz" N--- Nd2", uj = fj-ej.

so that it defines a homology class
W] € H" (M — PQ") = H"'(M\) = HZ}; (M \ P)

This is represented as a (n,n — 1)-form n,, € Q?"~1(M \ P) and as above we deduce that

Resp,w = / Nw-
0B. (p)

Theorem 2.8 (Global residue theorem).

Z Res,w = 0.

peEP

Proof Set M. = M\ U,cp B:(p). Then

ZRespw:/ nw:—/ dn, = 0.
—OM; M-

peEP

10



§2.3 Applications of the global residue theorem We will concentrate exclusively on the
case M = P™. Assume the divisor D; is described as the zero locus of a homogeneous polynomial
fi of degree d; in the variables [20, 2, ... 2"]. We identify C* with the finite part in P" described
by the condition 2° # 0. We introduce affine coordinates

== 1<j<n.

We assume none of the divisors D; contains the divisor at infinity z° = 0. A meromorphic form on
P" with poles along D; is a linear combination of terms

g9(z) 1 . O
w= e dr A Ada, - fi(r) = - (2%)%(x) = g(2),
fi(z) - ful) () (20)d (z7)%(z) (2)
where g is a homogeneous polynomial of degree d in [z, -+, 2"]. The degree d of g is constrained

by requirement that w has no pole at oco. To find this constraint we switch to a coordinate system

near oo
) 21 1 X zk/zl yk
€T :—0:—’ 5 = 0 1 :—1’ kZQ
2 Y1 2V/z Y

In these coordinates w has the local description

1\o—d

AW faly)

where o0 = dy + - +dn — (n+1), fi(y) = (¥4 fi(z), § = (y')%g(x). Since {y' =0} € fi--- fn we
deduce that w has no poles at co if d < 0.

In case D1, ---, D, meet transversally at dy - - - d,, distinct points (P,) away from the divisor at
oo the global residue formula implies the following classical result of Jacobi

P,
> s =0 29
v Ty ()
for every polynomial of degree d < dy +da+ -+ d, — (n+1). When n = 1 we obtain Lagrange
interpolation formula

P
Z g,( ) =0, Vg€ Clz], degg <degf—2. (2.6)
“ J'(P)
f(P)=0
Corollary 2.9 (Cayley-Bacharach). Suppose two smooth plane curves C1,Co C P? intersect in
deg C -deg Cy distinct points. Then any curve D of degree deg C1+deg Cy — 3 which passes through
all but one point of C1 N Co necessarily contains the remaining point as well. In particular if two
smooth plane cubics C1,Cy intersect in 9 distinct points, then any other cubic containing 8 of the
intersection points must contain the ninth point as well.

Proof Suppose C; is described by the equation f; = 0 where f; is a homogeneous polynomial of
degree d; = deg C; in the variables [z, 21, 2%]. Assume that F is described by the equation g = 0,
where g is a homogeneous polynomial of degree dy +do —3 = dy +ds — (24 1). Via a linear change
of coordinates we can assume that C; N Cy does not intersect the divisor at oo, {20 = 0}. The
result now follows from Jacobi’s identity (2.5).

L]

11



3 The Poincaré residue

83.1 Residues of top degree meromorphic forms with simple poles Suppose X is a
connected complex manifold of dimension n and D — X is a smooth hypersurface. D defines a
holomorphic line bundle [D] on X, and a holomorphic section 8p € O(D) of [D] determined by the
condition (sp) = D uniquely up to multiplication by a nonzero holomorphic function.

The normal bundle of D — X along D is isomorphic to [D] |p so that we obtain an isomorphism

X |p=T"D o [D]|p .
By dualizing and then passing to determinants we deduce the adjunction formula
Kx‘DgKD®[—D]|D<:>Kx|D®[D]gKD. (3.1)

The Poincaré residue Resp is a global incarnation of the above local construction. Observe first
that the sections of Kx ® D consists of meromorphic n-forms on X with at most a simple pole
along D. Then Resp is a map

Resp : H(X,Kx ® D) — H°(D, Kp),

defined as follows. Suppose w € Q™9(D) is a meromorphic form with at most a simple pole along
D, and f = 0 is a local equation of D in a coordinate patch U. Then f -w is a holomorphic n
form. We claim that for every p € D there exists a neighborhood V), of p in U and a holomorphic
(n — 1)-form 5, € Q" 10(V,)) such that

fw=df ANn, on V.

Indeed, since df (p) # 0 we can find another coordinate system (y!,--- ,y") near p such that f = y!

so that
fw:gdyl/\-"/\dyn:>77p:gdy2/\~-/\dy”.

Note that formally
w

Ny = —r.
Poodf/f
Observe that if n,7’ € Q"10(V}) are two holomorphic (n — 1)-forms such that
df Am=df A9 = fw

then
df A(n—n')=0.

At this pint we want to use the following elementary result.

Lemma 3.1 (DeRham). The Koszul sequence at p
0—Oxp d—f> Q;?p ﬂ) ﬂ Q}TPLO ﬂ) Q%(;) -0

1S exact.

12



We deduce that there exists u € Q}_;’O such that

(n—n') =df Au.

Since df |[p= 0 it follows that n|p D =n'|p in a possible smaller neighborhood p € V,; C V},.
The above argument shows that forms 7, |p agree on the overlaps of their domains and thus
define a global holomorphic form 7, € Q"~1%(D). We set

Resp w :=n,,.

We can write formally
w
Res DW = d_f ’ D -
T
Recall the Leray coboundary v : H,_1(D) — H,(X \ D). The residue map satisfies the identity

1
(Respw,c) = 2_7ri<w’ Ae), Yw e Q™(D), ce H, 1(D).

In local coordinates, if w = %dzl A+ Adz", and along f = 0 we have % # 0, then near f =0 we

have -
%dzl/\'--/\dz” = (—1)k_1%dzk/\dz1/\---/\dzk/\---/\dz"

1 —
= (—1)1{:_1%?(%&514--“—1- %dzk+---+ %dz”)dzl Ao NdzEA - Nd2"
92k

—1df g
— (_1)k 17E

0zF

dz' A ANdzE A A d2™

so that locally -
Respw = (—1)k—1éifdz1 Ao NdzE A Nd2™
0zk
This shows that the residue map induces an injection

Resp : H(X,Kx ® D) — H(D, Kp).

§3.2 Smooth plane curves Suppose C — P? is a smooth degree d pane curve described by
the equation P = 0, where P is a homogeneous polynomial of degree d in the variables [29, 21, 22].
We then have a Leray coboundary map

A Hy(C) — Ho(P? - O).
Proposition 3.2. The Leray coboundary is an isomorphism.

Proof We follow the presentation in [2].

Surjectivity. Suppose o € Hy(P? —C). Then o - [C] = 0 € Ho(P?). Hence [o] = 0 in Hy(P)? so that
o bounds a 3-chain ¥ in P2. If we choose X carefully the intersection ¢ = ¥ cot C is a 1-cycle on C
such that 7(c) = o.

Injectivity. Consider a cycle ¢ € Hi(C) such that A(c) = 0 € Hy(P? — C). Denote by N a thin
tubular neighborhood of C' < P2, and denote by 7 : N — C the natural projection. Then

Ac) = 0, a:=7"1(c).

13



Since A(c) = 0 in Ho(P? — C) there exists a 3-chain 3 in P? — C such that 93 = A(c). We deduce
that a — 3 is a 3-cycle in P? since H3(PP?) = 0 we conclude that a — 3 = 9U, where U is a 4-chain
in nP?2. Then U N C is a 2-chain on C such that

oUNC)=c

i.e. ¢ is homologous to zero.
O
Using the Poincaré residue map we can considerably refine the above result to capture rather
subtle interactions between the geometry of C' and its complement P? — C. Arguing as in §2.3 we
deduce the following.
Proposition 3.3. The holomorphic 2-forms on P? with a simple pole along C have the form!
gla', z?)

mdl‘l/\d.’BQ, .’L'j :Zj/ZO,
T ,T

w =

where (20)473g(21 /20, 2% /2°) is homogeneous polynomial of degree d — 3 in the variables 2°, ', 2.

In other words

Ki®C = (d-3)H.

In particular
Kp2 = —3H. (3.2)

Using (3.2) in the adjunction formula (3.2) we deduce
—3[H]|c= K¢ - [C]lc
so that
—3(ex([H)), C) = (e1(Ko), C) — (a1 (Ne), O,
Note that {¢;(N¢),C) = C - C = d? while Gauss-Bonnet theorem implies
{e1(Ke), C) = 29(C) - 2.
The last equality becomes

—3d =2g(C) -2 —d? = ¢(C) = (d-1(d=3)

Hence
dime H'(C, K¢) = dim H*(C) = ¢(C) =
On the other hand, Proposition 3.3 shows that
dime H(P?, Kp2 ® C) = dim¢e H(P?, (d — 3)H)
_(d=34+2\ [(d-1\ (d-1)(d-2) . 1
B N T L B CEL I EE B
We have thus proved the following dual to Proposition 3.2.
Proposition 3.4. If C' is a smooth plane curve then the Poincaré residue map defines an isomor-

phism
Resc : HO(P?, Kpe ® C) — H°(C, K¢).

!The polynomials g in Proposition 3.3 are classically known as polynomials adjoint to C.
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83.3 Abel’s theorem for smooth plane curves Suppose C is a smooth plane curve of
degree d described as above by an equation P = 0. Fix a point pg € C, and consider a family
of homogeneous polynomials Q; = Q4(2°, 2%, 2?) of degree n depending holomorphically on the
parameter ¢ € C. Denote by D; the divisor {Q; = 0} N C on C. For generic ¢ it consists of
deg C' - deg @) distinct points. We would like to construct an invariant of this family of linearly
equivalent divisors.

Fix a holomorphic form w € H?(C) = H°(C, K¢). The periods of w are the complex numbers
(w,c) € C, c€ Hi(C,Z). More invariantly, every cycle ¢ € H1(C,Z defines a linear map

P.: HYO(C) — C, wr—>/w.

Hodge theory implies that the correspondence ¢ — P, defines an injection
Hy(C,7Z) — HYY(0)*.

Note that
rank H,(C,7Z) = 2g = dimg H°(C, K¢)*.

We can invoke Hodge theory again to conclude that Hy(C,Z) sits as a lattice in H°(C, K¢)*, called
the lattice of periods. We denote it by Ac. Thus the quotient

J(C) = H(C, Kc)* [Ac

is a 2g-dimensional torus. It called the Jacobian of C.
For every point p € C and every path v in C' from pg to p we obtain a linear map

/:Hl’O(C)—>(C, wr—>/w.
gl g

Observe that if we choose a different such path ' then

/_/ _/ € A
Y 04 =

Thus the image of f,y in H°(C)*/A¢ is independent of the path + connecting py to p. We will
denote this image by [ If:) . Every w € HY9(C) defines an Abelian group

Ay = {/wE(C; ce Hi(C,Z)}

and a projection
HY(C)*/Ac — C/A,, L mod A¢ — L(w) mod A,.

In particular, for every w € H'9(C) and every p € C' we have an element

p
/ we C/A,.
Po

For every divisor D = ", n;p; on C and every w € H%(C) we set

D Di D
Pp :/ = an/ € J(C), w(D)=(Pp)(w) mod A, = / w mod A, € C/A,,.

po i Ppo Po
Observe that Ppp = Pp + Pp and
Pp = Pp <= w(D) =w(D') € C/A,, Ywe H(C).
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Theorem 3.5 (Abel). The element Pp, € J(C) is independent of t, that is for every w €
HY(C,K¢) the element w(Dy) € C/A,, is independent of t.

Before we present the proof of this theorem we discuss one important consequence. Denote by

“~” the linear equivalence relation between divisors.

Corollary 3.6.
D~ D' = w(D)=w(D'), Ywe H(C) <= Pp = Pp.
In particular if D is a principal divisor then Pp = 0.2
Proof Choose a meromorphic function R such that
D— D' =(R).
Then by Chow’s theorem (see [8]) there exist two homogeneous polynomials of identical degrees in

the variables [2°, 2!, 22] such that

(R):@C-

Set Q := (1 —t)Qo + tQ1, D¢ := Q¢ N C. Then

w(D) — w(D') = w((R)) = w(Dy) — w(D7y) 0.

O
Proof of Theorem 3.5. Denote by A the discriminant locus of the family D, i.e. the set
of points ¢t € C such that D, contains multiple points. A is a finite set. Let {5 € C\ A and
set v := degC - deg ()y,. Assume for simplicity that £y = 0. We can find ¢ > 0 and v disjoint
holomorphic paths
v {ls| <et = C

such that
Dy = {(s); 1<j<v}.

Assume that for |s| < e the divisor D4 does not intersect the divisor 20 = 0. Thus we can work in
the " finite” part of C' where we can use the local coordinates

=220 y=22/2"
We can then find a homogeneous degree (d — 3) polynomial ¢ in the variables z°, 2!, 22 such that
_ g
w= Resc(—d:c A dy).
P
For each |s| < e and 1 < j < v we consider the paths
wj(t) =v;(ts), tel0,1].

In local coordinates they are given by

uj(t) = (z;(t), y;(t)), te€[0,1].

2The converse is also true. Theorem 3.7 establishes this converse in the special case of plane cubics.
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Then
MDQ—MD@:EJ/W mod A,
PR

We will prove that
> [ w-o
g U

We study each of the integrals in the above sum separately. Fix j. Near u;(0) we have dP # 0 so
we can assumne %_1; # 0 near p;(0). Then near p;(0)

w==2d
prY
so that .
w= ydt
ug P

Differentiating the equalities

P(zj(t),y; (1)) = 0, Q(z;(t),y;(t);t) =0

we deduce
Plij+ Py =0, Qhij+Quy; +Q; = 0.
Solving for #; and y; we obtain

Qi Yi Qi

= — = L= .
HTTaPQoy) P a(P.Q)/0,y)
Set H, := —g - Q). Note that deg H; < deg P + deg @ — 3 We deduce that

zj: /uj Y /0 (EJ: a(P, Q??a(x’ 7) (pj(t)))dt

The integrand is zero by Jacobi’s formula (2.5). Thus the continuous function

C— J(C), t— Pp,

is constant outside the finite set A. We deduce that it must be constant.
O

83.4 The addition law for smooth plane cubics Consider a smooth plane cubic, i.e.
smooth plane curve C' described by an equation P = 0 where P is a homogeneous polynomial

of degree 3 in the variables [z, 21, 22]. We can linearly change the coordinates [2°, 2!, 22] such that

in the finite part z° # 0 the polynomial P has the Legendre form (see [2, §7.3.11] or [3, §2.2])
PlLz,y)=v* —z(z—1)(z = N), z=2Y/20 y=2%/2

that is
P29, 21, 22) = 20(2%)2 — 21 (2! - 20) (2! — A20).
The point po := [0, 0, 1] lies on this curve. If we use the coordinates
u=22/22 v=21/2"
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we deduce that near po, the curve C' is described by the equation
u = U('U - U,)(U - )\’U,), Poo = (070)

which shows that the line © = 0 has a third order contact with C' at pso.
The space of holomorphic differentials on C' is one dimensional and is generated by

dx
w= o
Fix a basis a,b of H;(C,Z) such that a - b= 1. The Jacobian of C' is the torus
J(C) = C/spang((w,a), (w,b)).

For every line L in P2 we get a divisor L N C' and Abel’s theorem implies that
w(LNC) e J(O)

is independent of L. In particular, if L is the line Lo, = {u = 0} we deduce
LooNC =3 peo

so that w(Loo NC) =0 € J(C). We deduce that

w(LNC)=0¢€ J(C), for any line L.

Thus if we set

up) = [ we ()

Poo

we deduce that
u(p1) +u(p2) +u(ps) =0

for any three collinear points p1, p2,ps € C.
We regard the correspondence p — u(p) as a holomorphic map

Theorem 3.7 (Abel). The map
Csp—u(p) e J(O).
15 one-to-one.

Proof We argue by contradiction. Here is briefly the strategy. Suppose u(p1) = u(p2). If we
denote by D the divisor po — py this condition implies Pp = 0. We know that this would happen if
D were a principal divisor. We will show that this is indeed the case. A simple counting argument
will then show that D cannot be a principal divisor, thus yielding a contradiction.

Step 1.  There exists a meromorphic form 1 on C with simple poles at p; and ps such that
Resy, n = (—1)F, k=1,2. (3.3)
Indeed consider the short exact sequence of sheaves

0— K¢ — Kc®0O(p1 +p2) ECPI ® Cp, — 0.
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We get a long exact sequence
0— H%(C,Kc) — H(C,Kc(p1 + p2)) = Cp, ® Cp, — H'(C, Kc) —

Since the sum of residues of a meromorphic form is 0 we deduce that dim cokerr > 1. On the other
hand
HY(C,K¢) = HY(C,0)=C

so that we deduce dim coker 7 = 1. Thus for any two complex numbers a1, as such that a; + a2 =0
we can find a meromorphic form on C with simple poles at p1,ps such that Res,, = aj.
Denote by X the space of meromorphic forms with simple poles at pi, py satisfying (3.3). Fix
1o € X. Then
X =no+ H°(C,K¢) = no + Clw).

Step 2.>  There ezists a meromorphic form n € X on C

/ n € 2miZ, Ve € Hy(C,Z). (3.4)

C

We will present two proofs of this fact. The first proof is inspired by [5, Lecture 2] and uses in a
more visible fashion the Hodge structure on H*(C,C). The second is the classical proof based on
Riemann’s bilinear relations.

1st Proof. Fix a smooth path v from p; to ps. We assume that v has no self-intersections and that
for every € < 1 the closed set
T.:={p e C; dist(p,y) < ¢}

is diffeomorphic to a disk (see Figure 4). Set C. := C'\ T%.

Figure 4: Constructing meromorphic forms on a cubic

For each ¢ € H1(C,Z) denote by ¢. the harmonic 1-form representing the Poincaré dual of c.
It is uniquely determined by the equality (see [1, Chap.I, §5])

/Cﬁ/\cpcz/cﬁ, VB e HY(C,C).

Since u(p1) = u(p2) there exists ¢o € H1(C,Z) such that

/w—/w_/wwm

Denote by a the harmonic 1-form on C such that

1
/a: —,/170, Ve € Hi(C,Z).
¢ 27 J,.

3This is the key moment in the proof.
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We have a Hodge decomposition (see [8])

a=a04+a% o e HYC, Ke) = HY(C), o™ € HY(C,K;") = HY(C).

1
—/ 770:/ a=70
271 Jor. T

we deduce that o and %no are cohomologous on C'\ 7. Hence there exists

Since

1

Since Res,, 19 = 1 we deduce that f increases by 1 when we cross . Then

w A = [ w=Ilim w :lim/ wAd :lim/ w A — ).
/C Peo /7 L. f fw f if i (1m0 — @)

Now observe that since w and ng are (1,0) forms we have w A ny = 0. Hence

/w/\wggl——/w/\ao’l.
C C

Since w spans H0(C) we deduce from Hodge theory that a%' = —o%!. Now observe that

1
/(—.?70 —~ a1’0> = /(a — o) = —/ pc A (a—a'?) = —/ @e Al
c 27i c C C

:/900/\902{)1:/900/\9000:0'00
C C

The above identity shows that the periods of ny — 2ria!? € X are in 27iZ.

2nd Proof. Fix an integral basis a, b of H1(C,Z) such that (w,a) # 0 and a-b = 1. We assume a, b
are represented by simple closed curves which do note pass through p;,p2 and po. Fix a path ~
connecting p; to po and denote by Cj a small circle centered at p; oriented as boundary component
of C'\ {p1,p2}. Now cut C along a and b to obtain the standard cut-and-paste description of the
torus C' (see Figure 5).

O——@ AP
Y
P 2
B R P
a/\ o

Figure 5: Cutting a torus

Since the rectangle in Figure 5 is simply connected the function u lifts to a holomorphic function
u: R — C. More precisely we define u(p) by integrating w along a path inside R from ps, to p To
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every point o on a there corresponds a point o’ on a~! which glue to the same point on C. Now
that

u(d') —u(a) = (w, b).

Similarly, for every point 3 € b there exists a point 3 € b~! which is identified with 3 in C. In
this case

u(B) —u(B) = —(w,a).

Observe now that for every n € X we have

2mi(u(p2) — u(p1)) = 2mi(Resp, (un) + Resp, (u, n)) / un
B

:(/CL+/G1>(un)+(/b+/b_l)(un):/a(u( 77+/b )7
=%%®Anﬂ%@én

(w,a) (n,a)
1 1
ol ) 2m| 0 b)  (n,b)

The condition u(p;) = u(p2) € J(C) implies that there exist two integers m,n such that

u(ps) — u(pr) ‘/w—m/w+n/ (3.6)

Hence?

u(pz) — u(p1) =

Using (3.5) we deduce

|| wa) ()

/ we L Wpex (3.7)
masnb 2T b))
Define
m=rno— Mw e X.
(w,a)
By design
<771, > =0.
Using (3.7) we deduce
27i 27i
(m,b) = <w77r(11> (w,ma + nb) = 2mmni + nﬁ(w, b)
Now define .
2nmi
ne=m———-weX
(w,a)
Then

(m2,a) = —2n7i, (w,b) = 2mni

“The identity (3.5) is a special case of Riemann’s bilinear relations.
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so 1 satisfies (3.4).

Step 3.  There exists a meromorphic function h on C' with a simple zero at p; and a simple pole
at ps. Consider the meromorphic form 7y constructed at step 2. Set

) = ool [ )

The condition (3.4) implies that h is well defined. Since 4 = 15, the condition (3.3) implies that
h has a simple zero at ps and a simple pole at p;.

Step 4. There exists no meromorphic function R on C' with a simple pole and a simple zero. To
see this we write R as a quotient f/g where P and @ are homogeneous polynomials of identical
degrees n > 0. Then the zero set consists of 3n > 1 points counting multiplicities.

This concludes the proof of Theorem 3.7.

O

We now have a one-to-one map C — J(C), p — u(p). Observe that du = w. This implies
that this map is biholomorphic. The biholomorphic map C' 3 p — u € J(C) has thus introduced a
group law on C' by the rule

p3 = —(p1 + p2) <= p1,p2,p3 are colinear.
We can invert this function, and regard p as a function of u. We deduce that
up +u2 +uz = 0 <= p(uy1),p(uz2),p(us) are colinear (3.8)

Observe that u(ps) = 0 € J(C). Denote by z(u) and y(u) the coordinates of p(u) u # 0.
Given two points p1, p2 € C then the coordinates of the third intersection point of the line [p1ps]
with C are rational functions of the coordinates of p; and po. Hence

w(=(u1 +u2)) = R(x(u1), z(uz), y(u1), y(u2)), y(=(u1 +ug)) = S(z(ur), x(u2), y(u1), y(u2))-

The above identities are classically known as the addition laws for the (inverse of the) elliptic
integrals. The function x(u) is none other than Weierstrass p-function. From the equality

_dr x/<u)du

du = w
y o y(u)

we deduce y(u) = 2/(u) and the equality y> = P3(z) := z(z — 1)(x — A) becomes the known
differential equation satisfied by the Weierstrass function

(¢')* = Ps(p).
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