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A n-manifold is a space which locally \looks like" the n-dimensional Euclidean space
R
n . 1-manifolds are also called curves, while the 2-manifolds are also called surfaces. A

manifold can be obtained by gluing open subsets of Rn . Figure 1 describes how to obtain
the sphere by gluing two disks in R

2 . The higher dimensional objects are not as easy to
visualize, and this gluing procedure can produce many shapes.

Figure 1: Constructing a sphere by pasting two disks

The Big Question How many \shapes" can we produce in this fashion, and how

can we distinguish them?

The surfaces in Figure 2 look di�erent but \aren't that di�erent". The surfaces in Figure
3 look dramatically more di�erent.
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Figure 2: These two surfaces aren't that di�erent
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Figure 3: Are all these surfaces distinct?
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The meaning of the word \di�erent" has to be clari�ed. If the surfaces in Figure 2 were
made of an elastic material then we could deform one into the other. However, if they were
made of a material which is only 
exible (such as canvas) then we cannot deform1 one to
the other any longer. In more mathematical terms, we say that the two surfaces in Figure
2 are homeomorphic, but not isometric.

The �rst three surfaces in Figure 3 don't seem to be homeomorphic. However, the third
and the fourth surface are. (Can you see this? ) The point of this heuristic discussion is
that looks can be deceiving, and more robust techniques for distinguishing shapes have to
be designed. There is an even stronger argument: the higher dimensional manifolds cannot
be even visualized, so there is no hope of distinguishing them by looking at a nonexisting
picture.

You may ask whether there is a reason, other than pure intellectual curiosity, to address
these types of issues. The simple answer is yes, Nature throws these issues at us under
various guises. Perhaps one of the most famous such instances is H.Poincar�e's research
in Celestial Mechanics. One major and as yet still not completely answered questions is
whether the evolution of our solar system is periodic. This is the special case of the so
called \many-body problem". H. Poincar�e showed that a system of several material points
moving under the in
uence of the gravitational force can have a periodic motion provided
some higher dimensional shapes are di�erent.

We can now rephrase the Big Question in more technical terms.

✌ Design methods for deciding whether two manifolds are homeomorphic.

I will outline one such method relying on good old fashioned calculus. The reason
that calculus is available to such an investigation is that any point in a manifold has a
neighborhood which looks like an open set in R

n . In particular, if the manifold M is
obtained by smooth gluings of open subsets in Rn then all the basic calculus operations can
be transplanted to M . Such manifolds are called smooth. To start this program I need to
introduce a bit of modern language which we may have already encountered in any basic
di�erential geometry class. I will work most of the time on the simplest n-manifold, the
Euclidean space, so you do not get distracted by technical details.

The main characters in this program are the di�erential forms. On a n-manifold there
are di�erential forms of degrees varying from 0 to n. A di�erential form of degree k is
usually referred to as a k-form. The 0-forms are the functions of n variables, f(x1; � � � ; xn).
The 1-forms are expressions of the type

� = f1dx
1 + � � � + fndx

n

where the coeÆcients fi are 0-forms. The 2-forms are expressions of the type

� = �1 ^ dx1 + � � �+ �n ^ dxn

where �i are 1-forms, and the wedge operation \^" between di�erential forms is the asso-
ciative and addition distributive operation uniquely determined by the properties

fidx
i ^ fjdx

j = �(fifj)dx
j ^ dxi; dxi ^ dxi = 0; 8i; j;

1This is actually the content of Theorema Egregium (Gold Theorem)a fundamental result due to Gauss.
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and any functions fi; fj . For example the 2-forms in R3 can be written as

� = Pdy ^ dz +Qdz ^ dx+Rdx ^ dy = (Pdy) ^ dz + (Qdz) ^ dx+ (Rdx) ^ dy

= (Qdz �Rdy) ^ dx+ (Pdy) ^ dz

More generally, the k-forms are expressions of the type

� = �1 ^ dx1 + � � ��n + ^dxn

where �i are (k � 1)-forms. In general

p-form ^ q-form = (p+ q)� form:

The vector space of di�erential k-forms on the manifold M is denoted by 
k(M). The
di�erential forms on have a very simple mission in life: they exist to be di�erentiated and
integrated.

➊ The exterior derivative of a k-form ! is a (k + 1)-form denoted by d!. More precisely,
the exterior derivative of a function (0-form) f is the total di�erential

df =
@f

@x1
dx1 + � � �+

@f

@xn
dxn:

In general, if we write
! = !1 ^ dx1 + � � �+ !n ^ dxn

where !i are (k � 1)-forms then

d! = (d!1) ^ dx1 + � � �+ (d!n) ^ dxn:

For example, the exterior derivative of a 1-form � = Pdx+Qdy +Rdz in R3 is

d� = (dP ) ^ dx+ (dQ) ^ dy + (dR) ^ dz

= (P 0

xdx+P 0

ydy+ P 0

zdz) ^ dx+ (Q0

xdx+Q0

ydy+Q0

zdz) ^ dy+ (R0

xdx+R0

ydy+R0

zdz) ^ dz:

Using the anticommutativity of \^" we deduce

d� = (Q0

x � P 0

y)dx ^ dy + (R0

y �Q0

z)dy ^ dz + (P 0

z �R0

x)dz ^ dx:

From the classical theorem

@2f

@xi@xj
=

@2f

@xj@xi
; 8f; 8i; j;

it follows easily that the exterior derivative satis�es the fundamental identity

d(d!) = 0

for any di�erential form !. The exterior di�erential operator d de�nes a linear map d :

k(M) ! 
k+1(M) which is an example of partial di�erential operator, or p.d.o. for
brevity.
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Figure 4: A 1-chain and a 2-chain

➋ A k-form on a smooth manifold M can be integrated along a k-chain. An elementary

k-dimensional surface in a smooth manifold M is a smooth deformation of a k-dimensional
polyhedron, and a k-chain in M is an union of elementary k-dimensional surfaces. Every
k-chain c has a boundary @c which is a (k � 1)-chain. If @c = ; we say that c is a k-cycle.
The spheres in Figure 2 are 2-cycles in R3

The Fundamental Theorem of Calculus describes a relationship between these two op-
erations on forms which usually goes by the name of Stokes' Theorem.

Stokes Theorem For any (k + 1)-chain c in the smooth manifold M and any k-form !

we have Z
@c

! =

Z
c

d!:

c

c

Figure 5: A 2-chain with boundary

I will now formulate of problem which has no apparent connection to the Big Question.

PROBLEM Given a smooth manifold M and a k-form ! on it, �nd a (k � 1)-form �

such that

d� = !: (�)

A solution � of the above partial di�erential equation is called a potential of !.

✍ The equation (�) need not have a solution for all !. To see this, note that if � is a

potential of ! then

d! = d(d�) = 0:
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Thus a �rst necessary condition for existence of a potential of ! is

d! = 0: (��)

A form which admits a potential is called exact. A di�erential form ! satisfying (��) is
called closed. Thus

! is exact =) ! is closed:

✍ If (�) has a solution �0 then it has in�nitely many2. Indeed, for any (k� 2)-form �, we

get a new potential �0 + d� of !,

d(�0 + d�) = d�0 + d(d�) = !:

✍ The condition (��) may not be suÆcient. Suppose c is a k-cycle, i.e. @c = 0, and � is

a potential of !. Then Stokes Theorem implies

Z
c

! =

Z
c

d� =

Z
@c

� = 0:

This shows that the integral of ! along any k-cycle must be zero.

The integral of a closed k-form along a k-cycle is classically known as a period of that
form. We have thus shown that

! is exact =) ! is closed and all its periods are zero:

The remarkable fact is that the two conditions on the right-hand-side are also suÆcient.

DeRham Theorem. Part 1. A form ! is exact if and only if it is closed and all its

periods are zero.

What does this all have to do with shapes? To answer this, lets us note that the k-cycles
come in two 
avors (see Figure 6).

c

c

1

2

c

D

(a) (b)

Figure 6: Cycles which bound (a) and cycles which do not bound (b).

� cycles c which bound, i.e. there exists (k+1)-chain D such that c = @D. These are called
boundaries.

� cycles which do not bound. These \wrap around holes" in the manifold M .

2This is closely related to the classical fact that a function has in�nitely many antiderivatives.
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Note that if c is a boundary, c = @D, and ! is closed, d! = 0, the

Z
c

! =

Z
@D

! =

Z
D

d! = 0:

Thus the periods along boundaries are automatically trivial. We can rephrase this in a
di�erent way.

Corollary If there exists a closed form with nontrivial periods, then there must exist cycles

which do not bound. These cycles \surround holes " in the manifold M .

Thus the closed forms with nontrivial periods are indicators of \holes" in the manifold.
Remarkably, all the \holes" can be detected in this fashion!!!

DeRham Theorem. Part 2. If c is a k-cycle in the smooth manifold M which does

not bound, then there exists a closed k-form ! whose period along c is nontrivial.

This result provides a way of distinguishing two manifolds: if one manifolds has \more
holes" then another, then these two manifolds must be di�erent. The above result shows
that in order to \count the holes" it suÆces to count the closed forms with nontrivial
periods. Naturally, we need to have a systematic way of producing all such forms. Let us
introduce a bit more terminology.

We say that two closed forms !1 and !2 of identical degrees are equivalent, if they have
identical periods. We write this !1 � !2. DeRham Theorem implies

!1 � !2 () all the periods of !1 � !2 are trivial() !1 � !2 is exact:

Denote by Zk the vector space of all closed k-forms. For any ! 2 Zk we denote by V! the
space of closed k-forms equivalent to !. V! is an aÆne subspace of the in�nite dimensional
space Zk (see Figure 7). The following question immediately comes to mind.

0

V

Ζk

ω
ω[  ]

Figure 7: The space of closed k-forms.

Is there a natural way of selecting an element in V!?

Here is a possible strategy. Suppose we have a way of measuring the distance3 between
two points in Zk. Then a natural candidate would be the point in V! closest to the origin.

3This can be achieved by �xing a Riemann metric on the manifold M .
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This intuitive approach which goes back to Riemann is marred by several diÆculties4 which
all have their origin in the in�nite dimensionality of both Zk and V!. Dealing with these
diÆculties requires the use of deep analytic results in the theory of elliptic partial di�erential
equations. We have the following fundamental result.

Hodge Theorem Fix a Riemann metric on the compact manifold M .

(a) For every ! 2 Zk there exists a unique element [!] 2 V! closest to the origin of Zk.

This element is the unique solution inside V! of a �rst order partial di�erential equation

Dk� = 0: (� � �)

(b) kerDk is �nite dimensional.

The di�erential forms satisfying (� � �) are called harmonic. The dimension of kerDk

is called the k-th Betti number of M , and is denoted by bk(M). We can think of bk(M) as
the number of k-dimensional holes inside M . We have the following consequence.

Corollary If two manifolds have di�erent Betti numbers then they are not homeomorphic.

For example the �rst Betti number of the 2-sphere is zero, while the �rst Betti number
of the 2-torus is 2 so that these two surfaces cannot be homeomorphic. The �rst Betti
numbers of the 3rd and 4th surface in Figure 3 are both equal to 6 and we can conclude
that these two surfaces are homeomorphic. However, we cannot conclude in general that if
two manifolds have identical Betti numbers then they are homeomorphic, and distinguishing
then requires additional work.

What next?

Think of the above questions and partial answers as part of an ongoing story where you get
the chance to add a new chapters and characters, and where you are limited only by your
own curiosity. The points of view I have outlined have wide ranging applications and they
continue to produce remarkable discoveries. If you are curious about these kinds of issues
you could stop by my oÆce for a math chat, or open any of the references below to get a
more in depth look at this subject.
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