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(X, p) (germ) of isolated surface singularity (i.s.s. for brevity). Assume X is Stein.

1 Topological Invariants

The link. Embed (X, p) ↪→ (CN , 0), and set

M = X ∩ S2N−1
ε (0).

M is an oriented 3-manifold independent on the embedding and ε ¿ 1.

The link

Figure 1: The link of an isolated singularity

Good resolutions. A resolution of (X, p) is a pair (X̃, π) where

• X̃ is a smooth complex surface;
• X̃

π→ X is holomorphic;
• X̃ \ π−1(p) → X \ p is biholomorphic;
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The resolution is called good if the exceptional divisor E := π−1(p) is a normal crossing
divisor i.e its irreducible components (Ei)1≤i≤n are smooth curves intersecting transversally.

FACT. Good resolutions exist but are not unique. There exists a unique minimal resolution
X̂, i.e. a resolution containing no −1-spheres. There exists a unique minimal good resolu-
tion. (It may have −1 spheres, but when blown down the exceptional divisor will no longer
be a normal crossing divisor). Any other resolution is obtained from the minimal one by
blowing-up/down −1 spheres.

Suppose X̃ is a resolution of X. We set

Λ = Λ(X̃) := spanZ{Ei} ⊂ H2(X̃, Z),

Λ+(X̃) :=
{∑

i

miEi ∈ Λ; mi ≥ 0
}

.

Theorem. (D. Mumford) The symmetric matrix (Ei · Ej)i,j is < 0.

The dual resolution graph. Suppose (X̃, π) is a good resolution of the i.s.s. (X, p) with
exceptional divisor E =

⋃
i Ei. The (dual) resolution graph is a decorated graph Γ = ΓX̃

obtained as follows.

• There is one vertex vi for each component Ei.
• Two vertices vi, vj , i 6= j are connected by Ei · Ej edges.
• Each vertex vi is decorated by two integers, the genus gi of Ei, and the self intersection
number ei := E2

i .

We see that X̃ is a plumbing of disk bundles over the Riemann surfaces Ei, with plumbing
instructions contained in the graph Γ. The boundary of this plumbing is precisely the link
of the singularity.

Figure 2: A plumbing and its associated dual graph

Theorem. (W.Neumann) Suppose (Xi, p), i = 0, 1 are two i.s.s. Denote by Mi their links,
and by X̃i their minimal good resolutions. The following statements are equivalent.

(a) The graphs ΓX̃i
are isomorphic (as weighted graphs).

(b) The links Mi are diffeomorphic as oriented 3-manifolds.

Definition. We say that a property of an i.s.s. is topological if it can be described in terms
of the combinatorics of the dual graph of the minimal good resolution.
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The arithmetic genus. X̃ resolution of (X, p), E = ∪iEi, the exceptional divisor. Note
that every Z =

∑
i niEi ∈ Λ+ can be identified with a compact complex curve on X̃. The

arithmetic genus of Z is defined by

pa(Z) = 1 +
1
2
(
Z · Z + 〈KX̃ , Z〉),

where KX̃ ∈ H2(X̃, Z) is the canonical line bundle of X̃. When Z is a smooth curve pa(Z)
is the usual genus of Z. Set

pa(X̃) := sup
{
pa(Z); Z ∈ Λ+ \ 0

}
.

This nonnegative integer is independent of the resolution and thus it is a topological invariant
of (X, p). We will denote it by pa(X, p), and we will refer to it as the arithmetic genus of
the singularity.

The canonical cycle. (X, p) - i.s.s. and (X̃, π) is a resolution. The canonical cycle is
the cycle ZK = ZK(X̃) ∈ Λ ⊗ Q defined by

ZK · Ej = −〈KX̃ , Ej〉 = 2 − pa(Ej) + E2
j ,∀i.

Set
γ(X̃) = Z2

KX̃
+ b2(X̃) ∈ Q.

This number is independent of the resolution X̃, and thus it is a topological invariant of
(X, p). We will denote it by γ(X, p). Note that if X̃ is the minimal good resolution then
ZKX̃

is a topological invariant of M .
Observe that

γ(X, p) =
(
K2

X̃
− (

2χ(X̃) + 3sign (X̃)
))

+ 2 − 2b1(X̃). (γ)

Definition. Suppose (X, p) is an i.s.s., and (X̃, π, E) is a good resolution. The singularity
is called Gorenstein if KX̃ |X̃\E is holomorphically trivial. The singularity is called
numerically Gorenstein if KX̃ |X̃\E is topologically trivial.

Observe that (X, p) is numerically Gorenstein iff

KX̃ ∈ H2(X̃, ∂X̃; Z) ⇐⇒ ZK ∈ Λ.

Example. All local complete intersection singularities are Gorenstein. Recall that the i.s.s.
(X, p) is a local complete intersection singularity if near p it can is described as the zero set
of a holomorphic map F : CN → CN−2.

2 Analytic invariants

The geometric genus. (X, p) i.s.s., X Stein, X̃ resolution.

X̃ Levi pseudoconvex =⇒ dimHk(X̃, OX̃) < ∞, ∀k ≥ 1.
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The integer dimH1(X̃, OX̃) is independent of the resolution, and thus it is an analytic
invariant of (X, p). It is called the geometric genus and is denoted by pg(X, p). It is known
that

pg(X, p) ≥ pa(X, p).

Example. Suppose L → Σ is a degree d < 0 holomorphic line bundle over the Riemann
surface Σ of genus g. By a theorem of Grauert there exists a natural Stein space X with
an isolated singularity at p ∈ X, and a holomorphic map

(L,Σ) π−→ (X, p)

which makes L a good resolution of (X, p) with exceptional divisor Σ ↪→ L. Then

pa(X, p) = g, ZK =
(
1 +

2 − 2g

d

)
Σ, γ(X, p) = d

(
1 +

2 − 2g

d

)2
+ 1,

pg(X, p) =
∑
n≥0

dimH1
(
Σ, O(−nL)

) Serre=
∑
n≥0

dimH0
(
Σ, O(KΣ + nL)

)
. (pg)

We deduce that pg(X, p) depends on the complex structure on Σ, and on the complex
structure on L, i.e. on the holomorphic embedding Σ ↪→ L. These dependencies on analytic
data become irrelevant under appropriate topological constraints.
• Σ is rational, i.e. g = 0.
• Σ is elliptic, i.e. g = 1.
• The degree of L is sufficiently negative, deg L ≤ −g.

In all these cases pg(X, p) = pa(X, p) = g.

Smoothings. A smoothing of an i.s.s. (X, p) is a proper flat map (X, q) F→ (C, 0) together
with an embedding ı : (X, p) ↪→ (X, q) which induces an isomorphism (X, p) ∼= (F−1(0), q).
For t ∈ C∗ sufficiently small the fiber Xt := f−1(t) is smooth. Its topology is independent
of t. Xt is called the Milnor fiber of the smoothing. The Milnor number µ of the smoothing
is b2(Xt).

Example. Suppose (X, p) is the complete intersection, described by the zero set of a map
F : CN → CN−2. To construct smoothings of (X, p) its suffices to pick a line through the
origin L ⊂ CN−2 and set X := F−1(L).

Theorem. (Durfee-Laufer-Steenbrink-Wahl) Suppose (X, p) is a smoothable Gorenstein
i.s.s. We denote by F its Milnor fiber. Then

pg(X, p) = −1
8
sign (F ) − 1

8
γ(X, p).

Motivated by the above result, we define the virtual signature of an i.s.s. by

σvirt(X, p) := −8pg(X, p) − γ(X, p).

For smoothable Gorenstein singularities, the virtual signature is the signature of the Milnor
fiber.
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3 The Main Problem and a Bit of History

The Main Problem. How much information about the analytic structure of the i.s.s.
(X, p) is encoded in the topology of its link M . In particular, can we determine pg(X, p) from
combinatorial data contained in the dual resolution graph of the minimal good resolution?

History. Work of the past four decades indicates that the link often contains nontrivial
information about the analytic structure.

❶ (D. Mumford, 1961) (X, p) is smooth at p if and only if the link is ∼= S3.

❷ (M. Artin, 1962-66) pg(X, p) = 0 ⇐⇒ pa(X, p) = 0. In this case, the link M is a rational
homology sphere (QHS for brevity).

❸ (H. Laufer, 1977) Assume that (X, p) is elliptic, i.e. pa(X, p) = 1, and Gorenstein. Then
the condition pg(X, p) = 1 is topological.

❹ (A. Nemethi, 1999) Assume that (X, p) is elliptic, Gorenstein, and the link M is a QHS.
Then pg(X, p) is equal to a certain topological invariant of M , the length of the elliptic
sequence defined by S.S.-T. Yau.

Remark. (a) M is a QHS iff Γ is a tree and all the components Ei are rational curves.
(b) The condition that M is a QHS cannot be removed from ❹. To see this consider the
singularities (X1, 0) = {x2 + y3 + z18 = 0}, (X2, 0) = {z2 + y(x4 + y6) = 0}. They have
isomorphic resolution graphs (see below), but pg(X1, 0) = 3, pg(X,2 , 0) = 2.

g=1

-1 -2 -2

❺ (Fintushel-Stern, Neumann-Wahl, 1990) Suppose (X, p) is a Brieskorn complete intersec-
tion singularity and the link M is an integral homology sphere (ZHS). Then

Casson (M) = −1
8
σvirt(X, p).

Here we recall that a Brieskorn complete intersection singularity is a complete intersection
singularity of the form




a11z
p1
1 + · · · + a1nzpn

n = 0
...

...
...

...
...

...
...

a(n−2)1z
p1
1 + · · · + a(n−2)nzpn

n = 0

Remark. If in ❺ we assume only that M is a QHS then the obvious generalization

Casson-Walker (M) = −1
8
σvirt(X, p).

is no longer true.
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4 The Main Conjecture and Evidence in its Favor

The Main Conjecture. Suppose (X, p) is a rational, or Gorenstein singularity such that
its link is a QHS. Then M is equipped with a canonical spinc structure σcan, which depends
only on the resolution graph Γ of the minimal good resolution, and

swM (σcan) = −1
8
σvirt(X, p),

where swM (σcan) denotes the Seiberg-Witten invariant of the canonical spinc structure. In
particular, if M is a ZHS then there is an unique spinc structure on M whose Seiberg-
Witten invariant equals the Casson invariant of M so that

Casson (M) = −1
8
σvirt(X, p).

Evidence. We need to describe the various terms in the Main Conjecture.
Denote by X̃ the minimal good resolution of (X, p). Then

Λ = H2(X̃, Z), H2(X̃, Z) ∼= Λ̌ := Hom(Λ, Z)

Set H := H1(M, Z), and denote the group operation on H multiplicatively. The intersection
form on Λ defines an embedding Λ ↪→ Λ̌, and we have

H ∼= Λ̌/Λ.

H acts freely and transitively on the set Spinc(M) of spinc structures on M

H × Spinc(M) 3 (h, σ) 7→ h · σ ∈ Spic(M).

To define the canonical spinc structure σcan let us recall that a choice of a spinc structure
on M is equivalent to a choice of an almost complex structure on the stable tangent bundle
R ⊕ TM of M . The stable tangent bundle of M is equipped with a natural complex
structure induced by the complex structure on X̃. σcan is the spinc structure associated to
this complex structure.

∗ Proposition. σcan can be described only in terms of the combinatorics of ΓX̃ .

Proof. Denote by lkM : H × H → Q/Z the linking form of M . An enhancement of lkM is
a function

q : H → Q/Z

such that
q(h1h2) − q(h1) − q(h2) = lkM (h1, h2), ∀h1, h2 ∈ H.

There is a natural bijection between Spinc(M) and the set of enhancements, σ 7→ qσ.
Recalling that H ∼= Λ̌/Λ we define

qcan : Λ̌/Λ → Q, qcan(h) = −1
2
(
KX̃ · ȟ + ȟ · ȟ)

modZ
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for every h ∈ Λ̌/Λ, and every ȟ ∈ Λ̌ which projects onto h. The expression in the right
hand side depends only on Γ. σcan is the spinc structure corresponding to qcan.

Remark. (a) qcan first appeared in work of Looijenga-Wahl.
(b) From the above description of σcan and the equality (γ) we deduce that γ(X, p) − 2
equals the Gompf invariant of the spinc structure σcan.

The Seiberg-Witten invariant is a function

swM : Spinc(M) → Q, σ 7→ swM (σ).

swM (σ)= # of Seiberg-Witten σ-monopoles + the Kreck-Stolz invariant of σ (a certain
combination of eta invariants). For each σ ∈ Spinc(M) define

SW M,σ : H → Q, SW M,σ(h) = swM (h−1 · σ).

One can give a combinatorial description of this invariant. For each spinc structure σ, the
Reidemeister-Turaev torsion of (M, σ) is a function

TM,σ : H → Q.

Denote by CWM the Casson-Walker invariant of M , and define the modified Reidemeister-
Turaev torsion of M by

T0
M,σ : H → Q, T0

M,σ(h) :=
1
|H|CWM + TM,σ(h), ∀h ∈ H.

Theorem. (L.I. Nicolaescu) For every σ ∈ Spinc(M) we have

SW M,σ ≡ T0
M,σ.

Denote by Ĥ the Pontryagin dual of H, Ĥ := Hom
(
H, U(1)

)
. The Fourier transform of

TM,σcan is the function

T̂M,σcan : Ĥ → C, F (χ) =
∑
h∈H

TM,σcan(h)χ̄(h).

The Fourier inversion formula implies

swM (σcan) = SW M,σcan(1) =
1
|H|CWM +

1
|H|

∑

χ∈Ĥ

T̂M,σcan(χ). (∗)

Theorem.(Lescop-Raţiu) The Casson-Walker invariant can be described explicitly in
terms of the combinatorics of Γ.

Main Technical Result. (Nemethi-Nicolaescu) T̂M,σcan can be described explicitly in
terms of the combinatorics of ΓX̃ .
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Idea of Proof. Using surgery formulæ we produce an explicit holomorphic regularization
RM of T̂M,σcan . This is an element in the group algebra C(t)[Ĥ],

RM =
∑

χ∈Ĥ

Rχ(t)χ, Rχ ∈ C(t) = the field of rational functions in one variable (∗∗)

such that for every character χ

lim
t→1

Rχ(t) = T̂M,σcan(χ).

In applications the sum in the right-hand side of (∗) is difficult to compute if the com-
binatorics of the graph is very involved.

Theorem. (Nemethi-Nicolaescu) The Main Conjecture is true for all the quasihomogeneous
singularities whose links are QHS’s.

Idea of Proof. For a quasihomogeneous singularity (X, p) the resolution graph is star-shaped
and the sum in (∗) simplifies somewhat. Our expression for the holomorphic regularization
RM in (∗∗) is formally identical to the Poincaré series associated to the Universal Abelian
cover of (X, p) introduced by W.Neumann. The proof of the Main Conjecture in this case
relies on a formula for pg(X, p) of Dolgachev-Pinkham, and on some ideas of Neumann and
Zagier.
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