Seiberg-Witten invariants and surface singularities

Andras Nemethi & Liviu I. Nicolaescu math.AG/0111298, math.AG/0201120

Contents

1	Topological Invariants	1
2	Analytic invariants	3
3	The Main Problem and a Bit of History	5
4	The Main Conjecture and Evidence in its Favor	6

(X, p) (germ) of isolated surface singularity (*i.s.s.* for brevity). Assume X is Stein.

1 Topological Invariants

The link. Embed $(X, p) \hookrightarrow (\mathbb{C}^N, 0)$, and set

$$M = X \cap S_{\epsilon}^{2N-1}(0).$$

M is an oriented 3-manifold independent on the embedding and $\varepsilon \ll 1.$

Figure 1: The link of an isolated singularity

Good resolutions. A resolution of (X, p) is a pair (\tilde{X}, π) where

- \tilde{X} is a smooth complex surface;
- $\tilde{X} \xrightarrow{\pi} X$ is holomorphic;
- $\tilde{X} \setminus \pi^{-1}(p) \to X \setminus p$ is biholomorphic;

The resolution is called *good* if the exceptional divisor $E := \pi^{-1}(p)$ is a normal crossing divisor i.e its irreducible components $(E_i)_{1 \le i \le n}$ are smooth curves intersecting transversally.

FACT. Good resolutions exist but are not unique. There exists a unique minimal resolution \hat{X} , i.e. a resolution containing no -1-spheres. There exists a unique minimal good resolution. (It may have -1 spheres, but when blown down the exceptional divisor will no longer be a normal crossing divisor). Any other resolution is obtained from the minimal one by blowing-up/down -1 spheres.

Suppose \tilde{X} is a resolution of X. We set

$$\Lambda = \Lambda(X) := \operatorname{span}_{\mathbb{Z}} \{ E_i \} \subset H_2(X, \mathbb{Z}),$$
$$\Lambda_+(\tilde{X}) := \left\{ \sum_i m_i E_i \in \Lambda; \ m_i \ge 0 \right\}.$$

Theorem. (D. Mumford) The symmetric matrix $(E_i \cdot E_j)_{i,j}$ is < 0.

The dual resolution graph. Suppose (\tilde{X}, π) is a good resolution of the i.s.s. (X, p) with exceptional divisor $E = \bigcup_i E_i$. The (dual) resolution graph is a decorated graph $\Gamma = \Gamma_{\tilde{X}}$ obtained as follows.

• There is one vertex v_i for each component E_i .

• Two vertices $v_i, v_j, i \neq j$ are connected by $E_i \cdot E_j$ edges.

• Each vertex v_i is decorated by two integers, the genus g_i of E_i , and the self intersection number $e_i := E_i^2$.

We see that \tilde{X} is a plumbing of disk bundles over the Riemann surfaces E_i , with plumbing instructions contained in the graph Γ . The boundary of this plumbing is precisely the link of the singularity.

Figure 2: A plumbing and its associated dual graph

Theorem. (W.Neumann) Suppose (X_i, p) , i = 0, 1 are two i.s.s. Denote by M_i their links, and by \tilde{X}_i their minimal good resolutions. The following statements are equivalent.

- (a) The graphs $\Gamma_{\tilde{X}_i}$ are isomorphic (as weighted graphs).
- (b) The links M_i are diffeomorphic as oriented 3-manifolds.

Definition. We say that a property of an i.s.s. is *topological* if it can be described in terms of the combinatorics of the dual graph of the minimal good resolution.

The arithmetic genus. \tilde{X} resolution of (X, p), $E = \bigcup_i E_i$, the exceptional divisor. Note that every $Z = \sum_i n_i E_i \in \Lambda_+$ can be identified with a compact complex curve on \tilde{X} . The *arithmetic genus* of Z is defined by

$$p_a(Z) = 1 + \frac{1}{2} \left(Z \cdot Z + \langle K_{\tilde{X}}, Z \rangle \right),$$

where $K_{\tilde{X}} \in H^2(\tilde{X}, \mathbb{Z})$ is the canonical line bundle of \tilde{X} . When Z is a smooth curve $p_a(Z)$ is the usual genus of Z. Set

$$p_a(X) := \sup \{ p_a(Z); \ Z \in \Lambda_+ \setminus 0 \}.$$

This nonnegative integer is independent of the resolution and thus it is a *topological* invariant of (X, p). We will denote it by $p_a(X, p)$, and we will refer to it as the arithmetic genus of the singularity.

The canonical cycle. (X, p) - i.s.s. and (\tilde{X}, π) is a resolution. The canonical cycle is the cycle $Z_K = Z_K(\tilde{X}) \in \Lambda \otimes \mathbb{Q}$ defined by

$$Z_K \cdot E_j = -\langle K_{\tilde{X}}, E_j \rangle = 2 - p_a(E_j) + E_j^2, \forall i$$

Set

$$\gamma(\tilde{X}) = Z_{K_{\tilde{X}}}^2 + b_2(\tilde{X}) \in \mathbb{Q}.$$

This number is independent of the resolution \tilde{X} , and thus it is a topological invariant of (X, p). We will denote it by $\gamma(X, p)$. Note that if \tilde{X} is the minimal good resolution then $Z_{K_{\tilde{X}}}$ is a topological invariant of M.

Observe that

$$\gamma(X,p) = \left(K_{\tilde{X}}^2 - \left(2\chi(\tilde{X}) + 3\operatorname{sign}\left(\tilde{X}\right)\right)\right) + 2 - 2b_1(\tilde{X}).$$
(\gamma)

Definition. Suppose (X, p) is an i.s.s., and (\tilde{X}, π, E) is a good resolution. The singularity is called **Gorenstein** if $K_{\tilde{X}}|_{\tilde{X}\setminus E}$ is **holomorphically** trivial. The singularity is called **numerically Gorenstein** if $K_{\tilde{X}}|_{\tilde{X}\setminus E}$ is **topologically** trivial.

Observe that (X, p) is numerically Gorenstein iff

$$K_{\tilde{X}} \in H^2(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \iff Z_K \in \Lambda.$$

Example. All local complete intersection singularities are Gorenstein. Recall that the i.s.s. (X, p) is a local complete intersection singularity if near p it can is described as the zero set of a holomorphic map $F : \mathbb{C}^N \to \mathbb{C}^{N-2}$.

2 Analytic invariants

The geometric genus. (X, p) i.s.s., X Stein, \tilde{X} resolution.

X Levi pseudoconvex
$$\Longrightarrow \dim H^k(X, \mathcal{O}_{\tilde{X}}) < \infty, \ \forall k \ge 1.$$

The integer dim $H^1(\tilde{X}, \mathcal{O}_{\tilde{X}})$ is independent of the resolution, and thus it is an *analytic* invariant of (X, p). It is called the *geometric genus* and is denoted by $p_g(X, p)$. It is known that

$$p_g(X,p) \ge p_a(X,p).$$

Example. Suppose $L \to \Sigma$ is a degree d < 0 holomorphic line bundle over the Riemann surface Σ of genus g. By a theorem of Grauert there exists a natural Stein space X with an isolated singularity at $p \in X$, and a holomorphic map

$$(L,\Sigma) \xrightarrow{\pi} (X,p)$$

which makes L a good resolution of (X, p) with exceptional divisor $\Sigma \hookrightarrow L$. Then

$$p_a(X,p) = g, \quad Z_K = \left(1 + \frac{2-2g}{d}\right)\Sigma, \quad \gamma(X,p) = d\left(1 + \frac{2-2g}{d}\right)^2 + 1,$$
$$p_g(X,p) = \sum_{n\geq 0} \dim H^1\left(\Sigma, \mathcal{O}(-nL)\right) \stackrel{Serre}{=} \sum_{n\geq 0} \dim H^0\left(\Sigma, \mathcal{O}(K_{\Sigma} + nL)\right). \tag{pg}$$

We deduce that $p_g(X, p)$ depends on the complex structure on Σ , and on the complex structure on L, i.e. on the holomorphic embedding $\Sigma \hookrightarrow L$. These dependencies on analytic data become irrelevant under appropriate topological constraints.

- Σ is rational, i.e. g = 0.
- Σ is elliptic, i.e. g = 1.
- The degree of L is sufficiently negative, $\deg L \leq -g$.

In all these cases $p_g(X, p) = p_a(X, p) = g$.

Smoothings. A smoothing of an i.s.s. (X, p) is a proper flat map $(\mathfrak{X}, q) \xrightarrow{F} (\mathbb{C}, 0)$ together with an embedding $i: (X, p) \hookrightarrow (\mathfrak{X}, q)$ which induces an isomorphism $(X, p) \cong (F^{-1}(0), q)$. For $t \in \mathbb{C}^*$ sufficiently small the fiber $X_t := f^{-1}(t)$ is smooth. Its topology is independent of t. X_t is called the *Milnor fiber* of the smoothing. The Milnor number μ of the smoothing is $b_2(X_t)$.

Example. Suppose (X, p) is the complete intersection, described by the zero set of a map $F : \mathbb{C}^N \to \mathbb{C}^{N-2}$. To construct smoothings of (X, p) its suffices to pick a line through the origin $L \subset \mathbb{C}^{N-2}$ and set $\mathfrak{X} := F^{-1}(L)$.

Theorem. (Durfee-Laufer-Steenbrink-Wahl) Suppose (X, p) is a smoothable Gorenstein *i.s.s.* We denote by F its Milnor fiber. Then

$$p_g(X,p) = -\frac{1}{8} \operatorname{sign} \left(F \right) - \frac{1}{8} \gamma(X,p).$$

Motivated by the above result, we define the *virtual signature* of an i.s.s. by

$$\sigma_{virt}(X,p) := -8p_g(X,p) - \gamma(X,p).$$

For smoothable Gorenstein singularities, the virtual signature is the signature of the Milnor fiber.

3 The Main Problem and a Bit of History

The Main Problem. How much information about the analytic structure of the i.s.s. (X, p) is encoded in the topology of its link M. In particular, can we determine $p_g(X, p)$ from combinatorial data contained in the dual resolution graph of the minimal good resolution?

History. Work of the past four decades indicates that the link often contains nontrivial information about the analytic structure.

0 (D. Mumford, 1961) (X, p) is smooth at p if and only if the link is $\cong S^3$.

2 (M. Artin, 1962-66) $p_g(X, p) = 0 \iff p_a(X, p) = 0$. In this case, the link *M* is a rational homology sphere ($\mathbb{Q}HS$ for brevity).

③ (H. Laufer, 1977) Assume that (X, p) is elliptic, i.e. $p_a(X, p) = 1$, and Gorenstein. Then the condition $p_q(X, p) = 1$ is topological.

O (A. Nemethi, 1999) Assume that (X, p) is elliptic, Gorenstein, and the link M is a $\mathbb{Q}HS$. Then $p_g(X, p)$ is equal to a certain topological invariant of M, the length of the elliptic sequence defined by S.S.-T. Yau.

Remark. (a) M is a $\mathbb{Q}HS$ iff Γ is a tree and all the components E_i are rational curves. (b) The condition that M is a $\mathbb{Q}HS$ cannot be removed from **④**. To see this consider the singularities $(X_1, 0) = \{x^2 + y^3 + z^{18} = 0\}, (X_2, 0) = \{z^2 + y(x^4 + y^6) = 0\}$. They have isomorphic resolution graphs (see below), but $p_q(X_1, 0) = 3, p_q(X_2, 0) = 2$.

$$-1$$
 -2 -2
 $g=1$

 Θ (Fintushel-Stern, Neumann-Wahl, 1990) Suppose (X, p) is a Brieskorn complete intersection singularity and the link M is an *integral* homology sphere ($\mathbb{Z}HS$). Then

Casson
$$(M) = -\frac{1}{8}\sigma_{virt}(X, p).$$

Here we recall that a Brieskorn complete intersection singularity is a complete intersection singularity of the form

$$\begin{cases} a_{11}z_1^{p_1} + \cdots + a_{1n}z_n^{p_n} = 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ a_{(n-2)1}z_1^{p_1} + \cdots + a_{(n-2)n}z_n^{p_n} = 0 \end{cases}$$

Remark. If in **\bigcirc** we assume only that *M* is a $\mathbb{Q}HS$ then the obvious generalization

Casson-Walker
$$(M) = -\frac{1}{8}\sigma_{virt}(X, p)$$

is no longer true.

4 The Main Conjecture and Evidence in its Favor

The Main Conjecture. Suppose (X, p) is a rational, or Gorenstein singularity such that its link is a $\mathbb{Q}HS$. Then M is equipped with a canonical $spin^c$ structure σ_{can} , which depends only on the resolution graph Γ of the minimal good resolution, and

$$s \boldsymbol{w}_M(\sigma_{can}) = -\frac{1}{8} \sigma_{virt}(X, p),$$

where $sw_M(\sigma_{can})$ denotes the Seiberg-Witten invariant of the canonical $spin^c$ structure. In particular, if M is a $\mathbb{Z}HS$ then there is an unique $spin^c$ structure on M whose Seiberg-Witten invariant equals the Casson invariant of M so that

Casson
$$(M) = -\frac{1}{8}\sigma_{virt}(X, p).$$

Evidence. We need to describe the various terms in the Main Conjecture.

Denote by \tilde{X} the minimal good resolution of (X, p). Then

$$\Lambda = H_2(X, \mathbb{Z}), \ H^2(X, \mathbb{Z}) \cong \Lambda := \operatorname{Hom}(\Lambda, \mathbb{Z})$$

Set $H := H_1(M, \mathbb{Z})$, and denote the group operation on H multiplicatively. The intersection form on Λ defines an embedding $\Lambda \hookrightarrow \check{\Lambda}$, and we have

$$H \cong \Lambda / \Lambda.$$

H acts freely and transitively on the set $Spin^{c}(M)$ of $spin^{c}$ structures on M

$$H \times Spin^{c}(M) \ni (h, \sigma) \mapsto h \cdot \sigma \in Spi^{c}(M).$$

To define the canonical $spin^c$ structure σ_{can} let us recall that a choice of a $spin^c$ structure on M is equivalent to a choice of an almost complex structure on the stable tangent bundle $\underline{\mathbb{R}} \oplus TM$ of M. The stable tangent bundle of M is equipped with a natural complex structure induced by the complex structure on \tilde{X} . σ_{can} is the $spin^c$ structure associated to this complex structure.

* **Proposition.** σ_{can} can be described only in terms of the combinatorics of $\Gamma_{\tilde{X}}$.

Proof. Denote by $lk_M : H \times H \to \mathbb{Q}/\mathbb{Z}$ the linking form of M. An enhancement of lk_M is a function

 $q: H \to \mathbb{Q}/\mathbb{Z}$

such that

$$q(h_1h_2) - q(h_1) - q(h_2) = \mathbf{lk}_M(h_1, h_2), \ \forall h_1, h_2 \in H.$$

There is a natural bijection between $Spin^{c}(M)$ and the set of enhancements, $\sigma \mapsto q_{\sigma}$. Recalling that $H \cong \check{\Lambda}/\Lambda$ we define

$$q_{can}: \check{\Lambda}/\Lambda \to \mathbb{Q}, \ q_{can}(h) = -\frac{1}{2} (K_{\tilde{X}} \cdot \check{h} + \check{h} \cdot \check{h}) \mod \mathbb{Z}$$

for every $h \in \Lambda/\Lambda$, and every $\check{h} \in \Lambda$ which projects onto h. The expression in the right hand side depends only on Γ . σ_{can} is the $spin^c$ structure corresponding to q_{can} .

Remark. (a) q_{can} first appeared in work of Looijenga-Wahl. (b) From the above description of σ_{can} and the equality (γ) we deduce that $\gamma(X, p) - 2$ equals the Gompf invariant of the $spin^c$ structure σ_{can} .

The Seiberg-Witten invariant is a function

$$sw_M : Spin^c(M) \to \mathbb{Q}, \ \sigma \mapsto sw_M(\sigma).$$

 $sw_M(\sigma) = \#$ of Seiberg-Witten σ -monopoles + the Kreck-Stolz invariant of σ (a certain combination of eta invariants). For each $\sigma \in Spin^c(M)$ define

$$SW_{M,\sigma}: H \to \mathbb{Q}, \ SW_{M,\sigma}(h) = sw_M(h^{-1} \cdot \sigma).$$

One can give a combinatorial description of this invariant. For each $spin^c$ structure σ , the Reidemeister-Turaev torsion of (M, σ) is a function

$$\mathfrak{T}_{M,\sigma}: H \to \mathbb{Q}.$$

Denote by CW_M the Casson-Walker invariant of M, and define the modified Reidemeister-Turaev torsion of M by

$$\mathfrak{T}_{M,\sigma}^{0}: H \to \mathbb{Q}, \ \mathfrak{T}_{M,\sigma}^{0}(h) := \frac{1}{|H|} CW_{M} + \mathfrak{T}_{M,\sigma}(h), \ \forall h \in H.$$

Theorem. (L.I. Nicolaescu) For every $\sigma \in Spin^{c}(M)$ we have

$$SW_{M,\sigma} \equiv \Upsilon^0_{M,\sigma}.$$

Denote by \hat{H} the Pontryagin dual of H, $\hat{H} := \text{Hom}(H, U(1))$. The Fourier transform of $\mathcal{T}_{M,\sigma_{can}}$ is the function

$$\hat{\mathfrak{T}}_{M,\sigma_{can}}: \hat{H} \to \mathbb{C}, \ F(\chi) = \sum_{h \in H} \mathfrak{T}_{M,\sigma_{can}}(h) \bar{\chi}(h).$$

The Fourier inversion formula implies

$$\boldsymbol{sw}_{M}(\sigma_{can}) = \boldsymbol{SW}_{M,\sigma_{can}}(1) = \frac{1}{|H|} CW_{M} + \frac{1}{|H|} \sum_{\chi \in \hat{H}} \hat{\mathcal{T}}_{M,\sigma_{can}}(\chi). \tag{*}$$

Theorem.(Lescop-Rațiu) The Casson-Walker invariant can be described **explicitly** in terms of the combinatorics of Γ .

Main Technical Result. (Nemethi-Nicolaescu) $\tilde{T}_{M,\sigma_{can}}$ can be described **explicitly** in terms of the combinatorics of $\Gamma_{\tilde{X}}$.

Idea of Proof. Using surgery formulæ we produce an *explicit* holomorphic regularization R_M of $\hat{T}_{M,\sigma_{can}}$. This is an element in the group algebra $\mathbb{C}(t)[\hat{H}]$,

$$R_M = \sum_{\chi \in \hat{H}} R_{\chi}(t)\chi, \ R_{\chi} \in \mathbf{C}(t) = \text{the field of rational functions in one variable}$$
(**)

such that for every character χ

$$\lim_{t \to 1} R_{\chi}(t) = \hat{\mathbb{T}}_{M,\sigma_{can}}(\chi).$$

In applications the sum in the right-hand side of (*) is difficult to compute if the combinatorics of the graph is very involved.

Theorem. (Nemethi-Nicolaescu) The Main Conjecture is true for all the quasihomogeneous singularities whose links are $\mathbb{Q}HS$'s.

Idea of Proof. For a quasihomogeneous singularity (X, p) the resolution graph is star-shaped and the sum in (*) simplifies somewhat. Our expression for the holomorphic regularization R_M in (**) is formally identical to the Poincaré series associated to the Universal Abelian cover of (X, p) introduced by W.Neumann. The proof of the Main Conjecture in this case relies on a formula for $p_g(X, p)$ of Dolgachev-Pinkham, and on some ideas of Neumann and Zagier.