18.100A Practice Midterm I – Answers.

1. Given
$$\epsilon > 0$$
, $\left| \frac{3n^2 + 1}{n^2 + 1} - 3 \right| = \frac{2}{n^2 + 1}$ and $\frac{2}{n^2 + 1} < \epsilon$ if $n^2 + 1 > 2/\epsilon$ or $n > \sqrt{2/\epsilon - 1}$.

2. The first terms of the sequence are 0, 3/2, -2/3, 5/4, -4/5.

 $\max = \sup = 3/2$, min does not exist, inf = -1. Cluster points: -1, 1.

Subsequences:
$$a_{2n} = 1 + \frac{1}{2n} \to 1$$
, $a_{2n+1} = -1 + \frac{1}{2n+1} \to -1$.
3. Using ratio test: $\left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| = \left| \frac{x^{n+1}}{2^{3n+1}\sqrt{n+1}} \frac{2^{3n}\sqrt{n}}{x^n} \right| = \frac{|x|}{8}\sqrt{\frac{n}{n+1}} \to -1$

$$\frac{|x|}{8} < 1 \Leftrightarrow |x| < 8$$
. So, $R = 8$.

At
$$x = R$$
: $\sum_{1}^{\infty} \frac{8^n}{2^{3n} \sqrt{n}} = \sum_{1}^{\infty} \frac{1}{\sqrt{n}}$ diverges.

At
$$x = -R$$
: $\sum_{1}^{\infty} \frac{(-8)^n}{2^{3n} \sqrt{n}} = \sum_{1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by Cauchy's test: terms

alternate in sign,
$$1/\sqrt{n}$$
 is decreasing, $1/\sqrt{n} \to 0$.
4. $\frac{a_{n+1}}{a_n} = \frac{c^{n+1}}{(n+1)!} \frac{n!}{c_n} = \frac{c}{n+1}$, ≤ 1 if $n > c-1$. Thus $a_{n+1} < a_n$ if $n > c-1$. Decreasing for $n \gg 1$.

5. Assume $L \neq M$. Choose $\epsilon = |L - M| > 0$. Then $|L - M| < \epsilon$ is false. Contradiction. Thus L = M.

6. $m = \max a_n$. Claim: $a_n = m$ for $n \gg 1$.

(if only claim $\lim a_n = m$, get less credit)

Proof: By hypothesis $a_N = m$ for some m. Then if n > N, $a_n \le m$ because m is maximum. AND $a_n \ge a_N = m$ because $\{a_n\}$ increasing. Thus $a_n = a_N$ if n > N.

7. $a \leq x_n \leq b$ for all n. Bounded. By Bolzano-Weierstrass theorem, $\{x_n\}$ has a convergent subsequence $x_{n_i} \to c$.

 $x_{n_i} \leq b$ for all $i \Rightarrow c \leq b$;

 $x_{n_i} \geq a \text{ for all } i \Rightarrow c \geq a.$

(Both statements by Limit Location Theorem.)

Thus $c \in [a, b]$.

- 8. a) $\sum a_n$ absolutely convergent $\Rightarrow \sum |a_n|$ convergent $\Rightarrow |a_n| \to 0$ (n-th term theorem) $\Rightarrow |a_n| < 1$ for $n \gg 1$ (Sequence location theorem) $\Rightarrow a_n^2 =$ $|a_n^2| \le |a_n|$ for $n \gg 1$ (say $n \ge N$) $\Rightarrow \sum_N^{\infty} a_n^2 \le \sum_N^{\infty} |a_n| \Rightarrow \sum_N^{\infty} a_n^2$ converges (Comparison theorem) $\Rightarrow \sum_N a_n^2$ converges (Tail-convergence theorem).
- b) $a_n = (-1)^{/} \sqrt{n}$. $\sum a_n$ converges (see sol-n for problem 3). $\sum a_n^2 = \sum 1/n$ diverges (harmonic series).
 - 9. Need to verify that 0 satisfies inf-1 and inf-2 for $T = \{\bar{m} x : x \in S\}$.

inf-1: $x \leq \bar{m}$ for all $x \in S$. Thus $0 \leq \bar{m} - x$. Conclusion: 0 is a lower bound

inf-2: b is a lower bound for T. $b \leq \bar{m} - x$ for all $\bar{m} - x \in T \Rightarrow x \leq \bar{m} - b$ for all $x \in S \Rightarrow \bar{m} - b$ is an upper bound of $S \Rightarrow \bar{m} = \sup S \leq \bar{m} - b \Rightarrow b \leq 0$.