BASIC GROUP THEORY

18.904

1. DEFINITIONS

Definition 1.1. A group (G,-) is a set G with a binary operation
G x G- G,

and a unit e € G, possessing the following properties.

(1) Unital: for g € G, we have g-e=e-g=g.
(2) Associative: for g; € G, we have (g1 - ¢2) - g3 = g1 - (92 - g3)-

(3) Inverses: for g € G, there exists g~ € G so that g-g~! !

=g -g=ce.

For a group G, a subgroup H is a subset of G which is closed under the multipli-
cation in G, and is closed under taking inverses. A subgroup is a group embedded
in G. We write “H < G”.

The cardinality of a finite group is its order. If the underlying set of a group G
is infinite, the group is said to have infinite order. Sometimes the order of a group
is written |G]|.

A set of elements S of G is said to generate G if every element of G may be
expressed as a product of elements of S, and inverses of elements of S. That is to
say, given g € G, there exists s; € S and ¢; € {1} so that

g= st sy
If a group G is a generated by a single element, it is said to be cyclic. Every element
of a cyclic group G is of the form g™ for some n € Z.

An arbitrary subset S of G will generate a subgroup of G. We say that this
subgroup (S) is the subgroup gemerated by S. It is the smallest subgroup of G
containing S. Every element of G generates a cyclic subgroup.

A group is abelian if it is commutative: for all g, h € G we have

g-h="h-g.

Cyclic groups are necessarily abelian (why)?

For an abelian group A it is sometimes customary to use additive notation instead
of multiplicative notation for the binary operation. The following chart explains
the difference.
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Multiplicative Additive

T AXxA— A +:AxA— A
g-h g+h
e=1 e=0
g ! -9

g-g =1 9-9=0

gn—g.g ..... ng::g+g+--~+g

—_— —_—

When using multiplicative notation it is common to omit the multiplication sign:

gh:=g-h.

2. EXAMPLES

Many of the examples below are abelian. Abelian groups are the least interesting

groups.

Examples:

1)

The trivial group: {1}. The group contains one element. The operation is
given by 1-1=1.

The additive integers: (Z,4). This group is cyclic, generated by 1. It is
also generated by —1. Could we choose any other element to generate it?

The additive real numbers: (R, +). This group contains Z as a subgroup.
How many generators does this group have?

The multiplicative real numbers: R* := (R\{0},-).

The additive complex numbers: (C,+). This group contains R as a sub-
group.

The multiplicative complex numbers: C* := (C\{0},-).

tains R* as a subgroup.

The group ({£1},-). This group contains two elements, with identity 1,
and (—1) - (—1) = 1. Note that (—1)~! = —1. This is a cyclic subgroup of
R* of order 2, generated by —1.

The integers modulo m: (Z/m,+). The set Z/m is the set

{[O]a [1}7 [2]7 T [m - 1]}
of equivalence classes of integers modulo m. This is a cyclic group under
addition of order m. The generator is 1.

(a) Why is addition well defined?

(b) What are the inverses?

(c¢) Suppose that [k] generates Z/m. What is the relationship of k& to m?
The symmetric group on n letters: ¥,,. Let S = {1,...n} be a set with
n elements. The group ¥, = Aut(S) is the group of bijective set-maps
(”automorphisms”) of S. An element o of ¥, is a permutation

c: 85— 8.

The group multiplication is composition.

(a) Why does this form a group?

(b) What is the order of ¥,7

(¢) Is X, Abelian? Check out n = 2,3 explicitly.

This group con-
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(10) The general linear group: GL,(R). This is the group of n x n matrices
with real entries and non-zero determinant. The group operation is matrix
multiplication. Why do we require the determinant to be non-zero?

(11) The circle: S*. This is a group under multiplication when viewed as a
subset of the complex plane.

St={zeC* : |z|=1}
={e : r € R}
Naturally, S! is a subgroup of C*.

(12) The cyclic group of order m: C,,. This is the abstract group with one
generator g and elements

Cm = {139792a937 e 7gm71}~
We impose the relation g™ = 1, so that g¥ = ¢gF¥*™ for any k in Z. This
ggoy}p can be viewed non-abstractly as a subgroup of S' generated by g =
e T m.
{e2mik/m ¢ S . ke 7).
(13) The infinite cyclic group: Cw. This is the abstract group with one generator
g and distinct elements

Co={.,97%97 " Lg.9%.9°,...}.
This group can be viewed non-abstractly as a subgroup of S' generated by
_ ,2mi€
g=e ,
{e*™he ¢ S1 ke Z}
where £ is any irrational real number (why do we make this restriction?).

3. HOMOMORPHISMS

Definition 3.1. Let G, H be groups. A map f : G — H is a homomorphism if it
preserves the product:

f(g192) = f(g1) - f(g2)-
Facts about homomorphisms f : G — H (verify these).

(1) fla) = fla)~".
(2) f(e) =e.
(3) The image im f C H is a subgroup.
The kernel of the homomorphism f is the subgroup

ker f={g : flg) =€} <G.
(Verify that this is a subgroup.)

If f is injective, then it is said to be a monomorphism. If f is surjective, then it
is said to be an epimorphism. If f is bijective, then the set-theoretic inverse f 1 is
necessarily a homomorphism, and we say that f is an isomorphism. We then write
G=H.

(Verify that f is a monomorphism if and only if ker f = e.)

Homomorphisms from G to G are called endomorphisms. Endomorphisms which
are isomorphisms are called automorphisms.

Examples of homomorphisms.

(1) log : (R=%,.) — (R,+). Since this map is a bijection, it has an inverse. It
is the homomorphism exp : (R, +) — (RZ°,.).
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(2) det : GL,(R) — R*. The kernel is the subgroup of matrices with deter-
minant 1. This subgroup is called the special linear group and denoted
SL,(R).

(3) Let n be any integer. The map A, : Z — Z given by \,(m) = nm is a

monomorphism if n # 0.

The map f : Z — Cy given by f(n) = ¢g"™ is an isomorphism.

Similarly, there is an isomorphism Z/n = C,.

There is a monomorphism ¢ : Z/n — Z/(nm) given by ¢([k]) = [mk]. (What

is wrong with just defining ¢([k]) = [K]?).

There is an epimorphism v : Z/(nm) — Z/n given by v([k]) = [k].

If H is a subgroup of G, the inclusion ¢ : H — G is a monomorphism.

Given an element g € GG, we can form an associated automorphism of G via

the assignment h — ghg~! (verify this is an automorphism). This mapping

is sometimes referred to as conjugation by g.

—~
O Ot
o — —

A,.\,.\
N —

4. COSETS

A subgroup H naturally partitions a group into equal pieces. These partitions
are called cosets.

Definition 4.1. Let H be a subgroup of a group G, and let g € G. The (right)
coset gH is the subset of G given by

gH ={gh : he H}.

You can similarly talk about left cosets Hg, and the discussion that follows is
equally valid for left cosets. Left cosets and right cosets generally differ unless G is
abelian.

Facts about cosets (which you should verify):

(1) A coset gH is not a subgroup unless g € H.

(2) The set-map H — gH given by h — gh is a bijection. Therefore, the H
cosets all have the same cardinality as H.

(3) g1H = goH if and only if g1 = goh for some h € H. Otherwise g1 H and
g2 H are distinct.

(4) Define an equivalence relation ~ on G by declaring that g1 ~ go if and only
if there exists an h € H so that g1h = go. Then the equivalence classes of
this equivalence relation are in one to one correspondence with the cosets

of G.

Let G/H denote the set of cosets. We see that for a collection of representatives
gx of the equivalence classes of (4) above, the group G breaks up into the disjoint
union

G= U g)\H.
A
The following proposition is immediate.
Proposition 4.2. Suppose G is finite. Then we have
G| = |H|-|G/H]|.

Consequently, the order of any subgroup of G must divide the order of G.
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For abelian groups G for which we are using additive notation, it is typical to
write H cosets as g + H instead of gH. For instance, for the subgroup

mL={mk : keZ}<Z

(m # 0) we write the cosets as n +mZ. Look familiar? The elements of the group
Z/m of integers modulo m correspond to the cosets Z/mZ.

5. NORMAL SUBGROUPS

We would like to make G/H a group. How would we do this? The most natural
multiplication on cosets would be

(5.1) (91H) - (92H) = (9192)H.

However there is a problem in that this is not well defined in general (convince
yourself that this is so). If G is abelian, then this multiplication is well defined,
and G/H is a group. We have already seen an example of this: the cosets Z/mZ
form a group.

If G is non-abelian, there is a criterion on H that suffices to make G/H a group.

Definition 5.2. A subgroup N of G is said to be normal if any of the following
equivalent conditions hold (verify that these are equivalent).
(1) For all g € G, we have gN = Ng (left cosets are the same as right cosets).
(2) For all g € G and h € N, we have ghg' € N (N is invariant under
conjugation).
(3) The multiplication formula of Equation (5.1) is well defined and gives G/N
the structure of a group.

If N is a normal subgroup of GG, one sometimes writes N < G. The resulting
group of cosets G/N is called the quotient group. There is a natural quotient
homomorphism

q:G— G/N
g—gN
which is surjective. The kernel of ¢ is N (why?).

It turns out that every epimorphism is essentially given as a quotient homomor-
phism. Prove the following theorem.

Theorem 5.3 (First Isomorphism Theorem). Let f : G — H be a homomorphism.
Then the subgroup ker f is normal, and there is a natural isomorphism G/ ker f =
im f making the following diagram commute.

G—q>G/kerf

-]

N
im f



