Multiple Choice

1.(7 pts.) Which integral gives the mass of the solid bounded by $z = x^2 + y^2$ and z = 4 with density function $\rho(x, y, z) = z^2$.

(a) $\int_0^{2\pi} \int_0^2 \int_4^{r^2} z^2 r \, dz dr d\theta$

- (b) $\int_0^{2\pi} \int_0^2 \int_{r^2}^4 z^2 r \, dz dr d\theta$
- (c) $\int_0^{2\pi} \int_0^2 \int_{x^2+y^2}^4 z^2 r \, dz dr d\theta$
- (d) $\int_0^{2\pi} \int_0^2 \int_{x^2+y^2}^4 z^2 dz dr d\theta$

(e) $\int_0^{2\pi} \int_0^2 \int_{r^2}^4 z^2 \, dz \, dr \, d\theta$

2.(7 pts.) Which integral gives the surface area of the surface S parametrized by $\mathbf{r}(u,v) = \langle u\cos(v), u\sin(v), u^5 \rangle$ where $0 \le u \le 1$ and $0 \le v \le \pi/2$.

(a)
$$\int_0^{\pi/2} \int_0^1 u^2 \sqrt{25u^8 + 1} \, du \, dv$$

(b)
$$\int_0^{\pi/2} \int_0^1 \left(-5u^5(\cos(v) + \sin(v)) + u \right) du dv$$

(c)
$$\int_0^{\pi/2} \int_0^1 u\sqrt{25u^8 + 1} \, du \, dv$$

(d)
$$\int_0^{\pi/2} \int_0^1 du dv$$

(e)
$$\int_0^{\pi/2} \int_0^1 (25u^{10} + u^2) du dv$$

3.(7 pts.) Compute the tangent plane to the surface parametrized by $\mathbf{r}(u,v) = \langle 4 - u^2 - v^2, 2u, v \rangle$ at the point (2,2,1).

(a)
$$2x + 2y + z = 9$$

(b)
$$\frac{x-2}{2} = \frac{y-2}{2} = \frac{z-1}{4}$$

(c)
$$2x + 2y + 4z = 12$$

(d)
$$\langle x, y, z \rangle = \langle 2t - 4, 2t - 4, 4t - 4 \rangle$$

(e)
$$x + y + 2z = 0$$

4.(7 pts.) Which of the integrals computes $\iiint_E z \, dV$ where E is the region bounded by the spheres $x^2 + y^2 + z^2 = 4$, $x^2 + y^2 + z^2 = 9$ and above the cone $z = \sqrt{x^2 + y^2}$.

- (a) $\int_0^{2\pi} \int_0^{\pi/4} \int_2^3 \rho^3 \sin(\varphi) \cos(\varphi) \, d\rho d\varphi d\theta$ (b) $\int_0^{2\pi} \int_0^{\pi/2} \int_2^3 \rho \cos(\varphi) \, d\rho d\varphi d\theta$
- (c) $\int_0^{2\pi} \int_0^{\pi/2} \int_2^3 \rho^3 \sin(\varphi) \cos(\varphi) d\rho d\varphi d\theta$ (d) $\int_0^{2\pi} \int_0^{\pi/4} \int_2^3 \rho \cos(\varphi) d\rho d\varphi d\theta$
- (e) $\int_0^{2\pi} \int_0^{\pi/4} \int_2^3 \rho \sin(\varphi) \, d\rho d\varphi d\theta$

5.(7 pts.) Find the absolute maximum value of $f(x,y) = x^2 + x + 2y^2$ on the disc $x^2 + y^2 \le 1$.

(a) 2 (b) $\frac{9}{4}$ (c) $\frac{3+\sqrt{2}}{2}$ (d) $\frac{11}{4}$ (e) $-\frac{1}{4}$

6.(7 pts.) Let $f(x,y) = x^3 + y^3 - 3x - 3y - 3$. Which one of the following is true?

- (a) The function has one saddle points. (b) The function has no saddle points.
- (c) The function has two local minima. (d) The function has two saddle points.
- (e) The function has two local maxima.

7.(7 pts.) Which is the largest value that the direction derivatives of $f(x, y, z) = x^2 + 2xy + z^2$ can have at the point (1, 0, 1)?

(a) $\sqrt{3}$ (b) 2 (c) $\sqrt{12}$ (d) $\sqrt{8}$ (e)

8.(7 pts.) Evaluate the integral

$$\int_0^1 \int_{e^x}^e \frac{1}{\ln y} dy dx$$

(Hint: Reverse the order of integration)

(a) e (b) 1 (c) -1 (d) e-1 (e) 0

9.(7]	pts.)	Let (C be a	a simp	ole clos	ed c	eurve 1	that 1	lies in	the	xy-plane.	Assume	that	the
area (of the	regio	n enc	elosed	by the	cur	ve is 2	2. Th	e curv	re C	is oriented	d countere	clocky	vise
when	viewe	ed fro	m abo	ove. U	Jse Stol	kes'	Theor	em t	o evalı	uate	the line in	itegral		

$$\int_C \mathbf{F} \cdot d\mathbf{r},$$

where $\mathbf{F} = \frac{z}{2}\mathbf{i} + \frac{x}{3}\mathbf{j} + \frac{y}{4}\mathbf{k}$

- $(a) \quad 0$
- (b) $\frac{1}{2}$
- (c) $\frac{2}{3}$
- (d) 1
- (e) 2

10.(7 pts.) Evaluate the line integral

$$\int_C x^2 dx + y^2 dy + z^2 dz$$

where C is parametrized by $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ for $0 \le t \le 1$.

- (a)
- (b)
- (c) -1 (d) -2
- (e)

$$\int_C (2y + \cos x^2) dx + \sin y^2 dy,$$

where C is the triangle with vertices (1,0),(0,2),(-1,0) oriented counterclockwise.

- (a)
- 1 (b)
- (c) 3
- (d) -2
- (e) 0

12.(7 pts.) Use the Fundamental Theorem of Line Integrals to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = e^{x+y^2}\mathbf{i} + (1+2ye^{x+y^2})\mathbf{j}$ and C is the curve given by $\mathbf{r}(t) = \langle t^{1/2}, t \rangle$ for $0 \le t \le 1$.

- 0 (a)
- (b) $-e^2$ (c) -e (d) e^2
- (e) e

13.(7 pts.) Compute the normal component of the acceleration at t=0 for the parametric curve $\mathbf{r}(t) = \langle e^t, \cos(t), t^2 \rangle$.

- 2 (a)
- (b) $\sqrt{3}$ (c) $\sqrt{2}$ (d) 1 (e) $\sqrt{5}$

14.(7 pts.) Find the tangent line to the intersection curve of the surfaces $x^3 + yz = 1$ and $x^2y = z$ at the point (-1, 2, 1).

(a)
$$\langle t-1, -5t+2, 7t+1 \rangle$$

(b)
$$\langle t-1, 5t+2, -3t+1 \rangle$$

(c)
$$\langle -3t - 1, -5t + 2, 7t + 1 \rangle$$

(d)
$$\langle -3t+1, -5t-2, 7t-1 \rangle$$

(e)
$$\langle 7t - 1, -3t + 2, -5t + 1 \rangle$$

15.(7 pts.) Calculate the surface integral $\iint_S \mathbf{F} d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across

$$\mathbf{F} = \langle 2ye^z, z^2 - y, 3\cos(x) \rangle,$$

S is the surface of the solid bounded by the planes y + z = 2, x = 3 and coordinate planes x = 0, y = 0, z = 0. The surface S is endowed with the **inward** orientation.

(a)
$$2 - e$$

(b)
$$-3$$

$$(c)$$
 6

$$(d)$$
 4

(e)
$$-e$$

16.(7 pts.) Find $\mathbf{r}(1)$, the position of a particle at time t=1, if the acceleration is $\mathbf{a}(t) = \langle 2t+1, 3t^2, 0 \rangle$, knowing that $\mathbf{v}(0) = \langle 1, 0, 2 \rangle$ and $\mathbf{r}(0) = \langle 0, -1, -2 \rangle$.

(a)
$$\langle \frac{13}{6}, -1, 0 \rangle$$

(b)
$$\langle -\frac{1}{6}, -\frac{1}{2}, -2 \rangle$$
 (c) $\langle \frac{13}{6}, 1, -2 \rangle$

(c)
$$\langle \frac{13}{6}, 1, -2 \rangle$$

(d)
$$\langle \frac{11}{6}, -\frac{3}{4}, 0 \rangle$$

(e)
$$\langle \frac{11}{6}, -\frac{1}{4}, 0 \rangle$$

17.(7 pts.) The position vector of a particle is given by $\mathbf{r}(t) = \langle \cos(\pi t/2), \sin(\pi t/2), t^2 \rangle$. Which of these integrals calculates the distance travelled by the particle in going from (1,0,0) to (0,1,1)?

(a)
$$\int_0^1 \sqrt{\frac{\pi}{2}(\cos(\pi t/2) + \sin(\pi t/2))} dt$$
 (b) $\int_0^1 \sqrt{\frac{\pi^2}{4} + 4t^2} dt$

(b)
$$\int_0^1 \sqrt{\frac{\pi^2}{4} + 4t^2} \, dt$$

(c)
$$\int_0^1 \sqrt{1+4t^2} \, dt$$

(d)
$$\int_0^1 \sqrt{\frac{1}{4} + 4t^2} \, dt$$

(e)
$$\int_{-\pi}^{\pi} (1 + 4 \tan^2 t) dt$$

18.(7 pts.) Find the flux of the electric field

$$\mathbf{E}(x,y,z) = \frac{x}{x^2 + y^2}\mathbf{i} + \frac{y}{x^2 + y^2}\mathbf{j} + \mathbf{k}$$

over a surface with downward orientation, whose parametric equation is given by

$$\mathbf{r}(u,v) = u\mathbf{i} + v\mathbf{j} + (1 - u^2 - v^2)\mathbf{k}$$
, with $u^2 + v^2 \le 1$.

- (a)
- (b) 4π
- (c) -3π (d) 0
- (e) 2π

19.(7 pts.) Evaluate

$$\iint_{R} \frac{1}{\sqrt{xy}} \, dA,$$

where R is the region in the xy-plane bounded by $\sqrt{x} + \sqrt{y} \le 1$, $x \ge 0$ and $y \ge 0$. (Hint: use the change of variables $x = u^2$ and $y = v^2$)

- (a) 2
- (b)
- (c) 4
- (d) 1
- (e) 16
- **20.**(7 pts.) Let S be the part of the surface z = xy, that lies above the square $0 \le x \le 1$, $0 \le y \le 1$. Which one of the following integrals equals

$$\iint_{S} z \, dS.$$

- (a) $\int_0^1 \int_0^1 xy \sqrt{1 + 4x^2 + 4y^2} \, dx \, dy$ (b) $\int_0^1 \int_0^1 xy (x^2 + y^2) \, dx \, dy$

- (c) $\int_0^1 \int_0^1 xy(x+y) \, dx \, dy$
- (d) $\sqrt{3} \int_0^1 \int_0^1 xy \, dx \, dy$
- (e) $\int_0^1 \int_0^1 xy \sqrt{1+x^2+y^2} \, dx \, dy$