Name:	
Instructor:	

Math 20550, Last Year Exam 3 April 23, 2019

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points. You will receive 4 extra points.

PLE	ASE	MARK YOUR ANS	SWERS WIT	H AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box	ζ.
Multiple Choice		
11.		
12.		
13.		
Extra Points.	4	
Total:		

Name: ______
Instructor: _____

Multiple Choice

- **1.**(6 pts)Use cylindrical coordinates to evaluate $\iiint_E (x^2 + y^2) \ dV$, where $E = \{(x, y, z) \mid \sqrt{x^2 + y^2} \le z \le 2\}.$
- (a) $\frac{3\pi}{4}$ (b) $\frac{\pi}{4}$ (c) $\frac{4\pi}{9}$ (d) $\frac{16\pi}{5}$ (e) $\frac{4\pi}{3}$

- **2.**(6 pts) Evaluate $\int_C xy \ ds$, where C is given by $\vec{r}(t) = \langle 4\cos t, 4\sin t, 3t \rangle$ for $0 \le t \le \frac{\pi}{2}$.
- (a) 10
- (b) 40
- (c) 5
- (d) 0
- (e) -40

Name: Instructor:

3.(6 pts) Find the total mass of the laminated (i.e., thin) region D having density $\rho(x,y) = \sqrt{x^2 + y^2}$, where

$$D = \{(x, y) \mid x^2 + y^2 \le 4, y \ge 0\}.$$

- (a) $\frac{4\pi}{3}$ (b) $\frac{8\pi}{3}$ (c) $\frac{3\pi}{2}$ (d) $\frac{4}{3}$ (e) $\frac{2\pi}{3}$

4.(6 pts) Use spherical coordinates to evaluate $\iiint_E e^{(x^2+y^2+z^2)^{3/2}} dV$, where $E = \{(x, y, z) \mid y \ge 0, z \ge 0, x^2 + y^2 + z^2 \le 1\}.$

- (a) $4\pi e$
- $(b) \quad 0$
- (c) $\frac{\pi}{3}e$ (d) $\frac{\pi}{3}(e-1)$ (e) $\frac{4\pi}{3}(e-1)$

Name: _____ Instructor:

5.(6 pts) Let $\vec{F} = \langle xz, xyz, -y^2 \rangle$. Compute curl \vec{F} .

- (a) $\langle -y(2+x), x, yz \rangle$ (b) 0
- (c) z + xy
- (d) $\langle x, -y(2+x), yz \rangle$ (e) $\langle -y(2+x), -x, yz \rangle$

6.(6 pts) Use a double integral to find the area enclosed by one loop of the four-leaved rose $r = \sin(2\theta)$. The region inside the loop is described in polar coordinates by $0 \le \theta \le \frac{\pi}{2}$ and $0 \le r \le \sin(2\theta)$.

- (a)
- (b) 0 (c) $-\frac{\pi}{2}$ (d) $\frac{\pi}{8}$ (e) $\frac{\pi}{4}$

Name: Instructor:

7.(6 pts) Find the work $\int_C \vec{F} \cdot d\vec{r}$ done by the force field $\vec{F} = \langle xy, yz, zx \rangle$ in moving a particle along the curve \tilde{C} given by $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ for $-1 \leq t \leq 1$.

- (a) $\frac{1}{4}$ (b) $\frac{5}{7}$ (c) $\frac{1}{2}$ (d) $\frac{10}{7}$ (e) $\frac{27}{28}$

8.(6 pts)Use Green's theorem to evaluate $\int_C \left((3y - e^{x^2})dx + (7x + \sqrt{y^{99} + y + 100})dy \right)$ where C is the circle $x^2 + y^2 = 9$ with the counter-clockwise orientation.

- (a) 3π
- (b)
- 36π (c) 0 (d) -36π (e)

Name: _____

Instructor:

9.(6 pts) Let x = 2u and y = -3v. Then $\int_{-3}^{3} \int_{-2}^{2} f(x,y) dx dy$ can be written as:

(a)
$$\frac{1}{6} \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$$

(b)
$$6 \int_{-3}^{3} \int_{-2}^{2} f(2u, -3v) du dv$$

(c)
$$6 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$$

(c)
$$6 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$$
 (d) $-4 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$

(e)
$$-6 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$$

10.(6 pts)Which of the following vector fields cannot be written as curl \vec{F} ?

(a)
$$\langle -x - y + 1, xy - 1, -xz + y + z \rangle$$
 (b) $\langle -y, -z, -x \rangle$

(b)
$$\langle -y, -z, -x \rangle$$

(c)
$$\langle -y\cos(z), -z\cos(x), -x\cos(y) \rangle$$
 (d) $\langle 2yz, xyz, 3xy \rangle$

(d)
$$\langle 2yz, xyz, 3xy \rangle$$

(e)
$$\langle 1 - 2z, 1 - 2x, 1 - 2y \rangle$$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.)Let $\vec{F} = \langle y^2 + 1, 2xy + 2y + e^{3z}, 3ye^{3z} + 3z^2 \rangle$.

- (a) Find curl \vec{F} .
- (b) Find f such that $\nabla f = \vec{F}$.
- (c) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is any smooth curve beginning at (1,0,0) and ending at (0,1,0).

Name:	
Instructor:	

12.(12 pts.)Let E be the tetrahedron enclosed by the coordinate planes x=0, y=0, z=0 and the plane 2x+y+z=2. Assume the density function is $\rho(x,y,z)=1$. Write an iterated integral (with limits) for the moment of the solid E about the yz-plane. (You do NOT need to compute this iterated integral.)

Name:	
Instructor:	

13.(12 pts.) Use the transformation $x = \sqrt{3}u - v$, $y = \sqrt{3}u + v$ to evaluate the integral $\iint_R (x^2 - xy + y^2) dA$, where R is the region bounded by the ellipse $x^2 - xy + y^2 = 3$.