Name:		
Instructor	:	

Math 20550, Practice Exam 3 April 23, 2019

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.
- Each multiple choice question is 6 points. Each partial credit problem is 12 points. You will receive 4 extra points.

1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 6. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) 8. (a) (b) (c) (d) (e) 9. (a) (b) (c) (d) (e)	PLE	ASE	MARK YO	UR ANSWERS	WITH AN X,	not a circle!
3. (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 6. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) 8. (a) (b) (c) (d) (e)	1.	(a)	(1	o) (c)	(d)	(e)
4. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 6. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) 8. (a) (b) (c) (d) (e)	2.	(a)	(l	o) (c)	(d)	(e)
5. (a) (b) (c) (d) (e) 6. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) 8. (a) (b) (c) (d) (e)	3.	(a)	(1)	o) (c)	(d)	(e)
6. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) 8. (a) (b) (c) (d) (e)	4.	(a)	(l	o) (c)	(d)	(e)
7. (a) (b) (c) (d) (e) 8. (a) (b) (c) (d) (e)	5.	(a)	(1)	o) (c)	(d)	(e)
8. (a) (b) (c) (d) (e)	6.	(a)	(1	o) (c)	(d)	(e)
	7.	(a)	(1)	o) (c)	(d)	(e)
9. (a) (b) (c) (d) (e)	8.	(a)	(l	o) (c)	(d)	(e)
	9.	(a)	(1)	o) (c)	(d)	(e)
10. (a) (b) (c) (d) (e)	10.	(a)	(1)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
13.	
Extra Points.	4
Total:	

Name: Instructor:

Multiple Choice

1.(6 pts) Find the volume of the solid that lies under $z = x^3 + y^3$ and above the region in the xy-plane bounded by $y = x^2$ and $x = y^2$.

- (a) $\frac{3}{16}$ (b) $\frac{1}{9}$ (c) $\frac{1}{16}$ (d) $\frac{1}{18}$ (e) $\frac{5}{18}$

2.(6 pts) Let E be the part of the ball $x^2 + y^2 + z^2 \le 9$ that lies in the first octant. Determine which integral computes the mass of E if the density is $\delta(x, y, z) = x^2 + y^2$.

(a)
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^4 \sin^3 \phi \, d\rho \, d\phi \, d\theta$$

(a)
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^4 \sin^3 \phi \, d\rho \, d\phi \, d\theta$$
 (b) $\int_0^{\pi/2} \int_0^{\pi/4} \int_0^3 \rho^3 \sin^2 \phi \cos \phi \, d\rho \, d\phi \, d\theta$

(c)
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^2 \cos \phi \, d\rho \, d\phi \, d\theta$$
 (d) $\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^3 \sin^2 \phi \, d\rho \, d\phi \, d\theta$

(d)
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^3 \sin^2 \phi \, d\rho \, d\phi \, d\theta$$

(e)
$$\int_0^{\pi/2} \int_0^{\pi/4} \int_0^3 \rho^4 \sin \phi \cos \phi \, d\rho \, d\phi \, d\theta$$

Name: _____ Instructor:

3.(6 pts) Which of the following computes $\iiint_E y \, dV$, where E is the solid that lies between cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ above the xy-plane and below the plane

- (a) $\int_0^{2\pi} \int_1^2 \int_0^{r\cos\phi+4} r^2 \sin\phi \,dz dr d\phi$ (b) $\int_0^{2\pi} \int_1^2 \int_0^r r \sin\phi \,dz dr d\phi$
- (c) $\int_0^{2\pi} \int_1^2 \int_0^{r\cos\phi+4} r\sin\phi \,dz dr d\phi$ (d) $\int_0^{2\pi} \int_1^2 \int_0^r r^2 \sin\phi \,dz dr d\phi$
- (e) $\int_0^{2\pi} \int_1^2 \int_0^{r \sin \phi} (r \cos \phi + 4) dz dr d\phi$

4.(6 pts) Evaluate $\int_C 4 \, ds$, where C is the helix $x = 2 \sin t$, $y = 2 \cos t$, z = 3t, $0 \le t \le 2\pi$.

- (a) $4\sqrt{13}\pi$ (b) $8\sqrt{13}$ (c) $8\sqrt{13}\pi^2$ (d) $\sqrt{13}$ (e) $8\sqrt{13}\pi$

Name: ______
Instructor: _____

5.(6 pts) Use Fundamental Theorem of line integrals to evaluate $\int_C \mathbf{F} \cdot \mathrm{d} \mathbf{r},$ where

$$\mathbf{F}(x,y) = 2x\mathbf{i} + 2y\mathbf{j}$$

and C is given by $\mathbf{r}(t) = \langle t^2 \cos(\pi t), 2^{t-1} \sqrt{t} \rangle$, $1 \le t \le 2$.

- (a) 3
- (b) 18
- (c) 24
- (d) 22
- (e) 0

6.(6 pts) Find the curl of the vector field

$$\mathbf{F}(x, y, z) = xz^2 \mathbf{i} + \cos(yz)\mathbf{j} + (x + yz)\mathbf{k}.$$

- (a) $\frac{1}{2}z^2(x^2+y^2) + xz + \frac{1}{z}\sin(yz)$ (b) $(z+y\sin(yz))\mathbf{i} + (2xz-1)\mathbf{j}$
- (c) $y + z^2$

- (d) $z^2 \mathbf{i} + y \mathbf{k}$
- (e) $(y + z\sin(yz))\mathbf{i} + (z^2 y)\mathbf{j} + (-z\sin(yz) z^2)\mathbf{k}$

7.(6 pts) Which of the following could be the vector field depicted below?

(a)
$$\mathbf{F} = x\mathbf{i} + \mathbf{j}$$

(a)
$$\mathbf{F} = x\mathbf{i} + \mathbf{j}$$
 (b) $\mathbf{F} = x\mathbf{i} - y\mathbf{j}$

(c)
$$\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$$

(d)
$$\mathbf{F} = y\mathbf{i} - x\mathbf{j}$$

(e)
$$\mathbf{F} = -x^2 \mathbf{i} - y^2 \mathbf{j}$$

8.(6 pts) Compute the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$ of the map $x=5v\sin u,\ y=4v\cos u.$

(a) 9v

- (b) $-20v\sin u\cos u$
- (c) 20v

(d) $9v^2$

(e) v

Instructor:

9.(6 pts) Evaluate the line integral $\int_C xy \, dx$, where C is the part of $y = x^2$ form (0,0)to (2,4).

- (a) 4

- (b) -4 (c) 0 (d) 2 (e) -2

10.(6 pts) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = xy\mathbf{i} + e^{x^3}\mathbf{j}$ and C is the line segment from (2,0) to (4,0).

- (a) -2 (b) 2
- (c) 4 (d) -4 (e) 0

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(12 pts.) Let $\mathbf{F} = (x + yz)\mathbf{i} + xz\mathbf{j} + (z + xy)\mathbf{k}$ be a vector field. (a) Find a function f(x, y, z) such that $\mathbf{F} = \nabla f$.

- (b) Compute $\int_C \mathbf{F} \cdot d\mathbf{t}$, where C is the curve $\mathbf{r}(t) = \langle t, e^t, te^{t^3} \rangle$, $0 \le t \le 1$.

Name:	
Instructor:	

12.(12 pts.) Use the transformation x = u + v, y = v to compute $\iint_D 2 dA$ where D is the region bounded by $x^2 - 2xy + 2y^2 = 1$.

Name:	
Instructor:	

13.(12 pts.) Use Green's Theorem to compute $\int_C (e^x - y) dx + (5x + \cos y) dy$, where C is the curve $x^2 - 2xy + 2y^2 = 1$ with positive orientation.