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M20550 Calculus III Tutorial
Worksheet 7

1. Using spherical coordinates, compute the volume, V (R) of a sphere of radius R.

Solution: This is equivalent to just computing∫∫∫
Sphere

dV

(intuitively, we are summing up the volumes of infinitely many infinitesimally small
boxes of volume ”dV ” inside the sphere.) Recall that the standard spherical coordi-
nates are

(x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

for (ρ, θ, φ) ∈ [0, R] × [0, 2π) × (0, π) and the volume element of the sphere with
respect to these coordinates is given by dV = ρ2sinφdθdφdρ. So,

V (R) =

∫ R

0

∫ π

0

∫ 2π

0

ρ2sinφdθdφdρ

=2π

∫ R

0

∫ π

0

ρ2sinφdφdρ

=4π

∫ R

0

ρ2dρ

=
4

3
πR3

2. Now compute the surface area, A(R), of a sphere of radius R. Hint: Recall the Funda-
mental Theorem of Calculus:

d

dx

[∫ x

a

f(t)dt

]
= f(x).

And recall the common problem from single variable calculus where you have to find the
volume of a water tank of height h by integrating the cross sectional area, A(y), over
the height.

V olume(Tank) =

∫ h

0

A(y)dy

We have a similar formula for the volume of the sphere;

V (R) =

∫ R

0

A(ρ)dρ.
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Solution: Let A(ρ) be the surface area of the sphere of radius ρ, we wish to find
A(R). Observe ∫ R

0

A(ρ)dρ = V (R) =
4

3
πR3

So by the fundamental theorem of calculus, we get

A(R) =
d

dR

[∫ R

0

A(ρ)dρ

]
=
dV (R)

dR
= 4πR2.

Another way to solve this problem is to realize through geometric intuition or by
reasoning similar to the argument above that

A(R) =

∫ π

0

∫ 2π

0

R2sinφdθdφ.

3. Let E3 be the solid region that lies above the cone z =
√
x2 + y2 and below the plane

z = 2. Write the triple integral

∫∫∫
E3

xz dV in spherical coordinates (you don’t need to

evaluate it).

Solution:
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4. Find the mass of the solid between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4
whose density is δ(x, y, z) = x2 + y2 + z2.

Solution: Let E be the solid in consideration. Now, to find the mass, we simply
integrate the density function over the entire solid to get;∫ 2

1

∫ π

0

∫ 2π

0

δ(ρ)ρ2sinφdθdφdρ =

∫ 2

1

A(ρ)δ(ρ)dρ

=

∫ 2

1

4πρ2ρ2dρ

=4π
ρ5

5

∣∣∣∣2
1

=4π(
32

5
− 1

5
)

=
124π

5
.

Note: The fact that the density only depended on ρ simplified our work here.

5. In this problem, we are going to calculate the same integral in two different ways by
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changing coordinates. Compute the following integral;∫ 1

0

∫ 1

0

x3ydxdy

first, by making the coordinate change u = x2, v = xy, and then as you normally would.
(Don’t forget to multiply by the Jacobian!)

Solution:

We first compute the Jacobian;

∂(x, y)

∂(u, v)
=

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣∣ 1
2
√
u

0
−v
u

3
2

1√
u

∣∣∣∣∣ =
1

2u

(note: u is always positive so we don’t need to take the absolute value) now, we know
by the change of variables formula that∫ 1

0

∫ 1

0

x3ydxdy =

∫ 1

0

∫ √u
0

uv
1

2u
dvdu =

∫ 1

0

v2

4

∣∣∣∣v=
√
u

v=0

du =

∫ 1

0

u

4
du =

1

8
.

If we compute this integral in the usual way, we get;∫ 1

0

∫ 1

0

x3ydxdy =

∫ 1

0

y

4
dy =

1

8
.

6. Let R be the parallelogram enclosed by the lines x+ 3y = 0, x+ 3y = 2, x+ y = 1, and
x+ y = 4. Evaluate the following integral by making appropriate change of variables∫∫

R

x+ 3y

(x+ y)2
dA.

Solution: Observe the set of equations:

x+ 3y = 0 x+ 3y = 2

x+ y = 1 x+ y = 4

So, if we let
u = x+ 3y and v = x+ y,
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then the transformation of R, denote S, is given by the region bounded by the lines

u = 0 u = 2

v = 1 v = 4

So, S is the region bounded by the rectangle [0, 2]× [1, 4] in the uv-plane.

Next, we need to compute the Jacobian

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣ .
In order to compute these partials, we need to write x and y in terms of u and v.
We have

x+ 3y = u (eq 1)

x+ y = v (eq 2)

(eq 1)− (eq 2) is equivalent to 2y = u− v =⇒ y =
1

2
u− 1

2
v. And (eq 1)− 3(eq 2)

gives −2x = u− 3v =⇒ x = −1

2
u+

3

2
v. So,

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
−1

2

3

2

1

2
−1

2

∣∣∣∣∣∣∣∣∣ =

(
−1

2

)(
−1

2

)
−
(

3

2

)(
1

2

)
= −1

2
.

Note that since
∂(x, y)

∂(u, v)
=

∂(u, v)

∂(x, y)

−1

, we could have solved for the latter Jacobian

instead and taken its reciprocal since it was a bit faster to compute in this case.

And so, we get ∫∫
R

x+ 3y

(x+ y)2
dA =

∫∫
S

u

v2

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dA
=

∫ 4

1

∫ 2

0

u

v2

∣∣∣∣−1

2

∣∣∣∣ du dv
=

∫ 4

1

1

4
u2v−2

∣∣∣∣u=2

u=0

dv

=

∫ 4

1

v−2 dv

= −1

v

∣∣∣∣4
1

= −1

4
+ 1 =

3

4
.
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7. Evaluate the line integral

∫
C

(z−2xy) ds along the curve C given by r(t) = 〈sin t, cos t, t〉 ,

0 ≤ t ≤ π

2
.

Solution:

∫
C

(z − 2xy) ds is a line integral with respect to arc length (because of

the ds at end). Since r(t) = 〈sin t, cos t, t〉, we get x(t) = sin t, y(t) = cos t, z(t) = t.
So, z − 2xy = t− 2 sin t cos t. And r′(t) = 〈cos t,− sin t, 1〉. So,

ds = |r′(t)|dt =
√

(x′)2 + (y′)2 + (z′)2 dt =
√

cos2 t+ (− sin t)2 + 12 dt =
√

2 dt.

Thus, for 0 ≤ t ≤ π

2
,

∫
C

(z − 2xy) ds =

∫ π/2

0

(t− 2 sin t cos t)
√

2 dt

=
√

2

[
1

2
t2 − sin2 t

]π/2
0

=
√

2

[
π2

8
− 1

]
.

8. Find

∫
C

2xy3 ds where C is the upper half of the circle x2 + y2 = 4.

Solution: First, let’s parametrize the curve C. C is the upper half of the circle
x2 + y2 = 4. So, we can let

x(t) = 2 cos t, y(t) = 2 sin t for 0 ≤ t ≤ π.

Then, x′(t) = −2 sin t and y′(t) = 2 cos t. Therefore,

ds =
√

(x′)2 + (y′)2 dt =
√

(−2 sin t)2 + (2 cos t)2 dt =
√

4 sin2 t+ 4 cos2 t dt = 2 dt.

Thus, for 0 ≤ t ≤ π, ∫
C

2xy3 ds =

∫ π

0

2 (2 cos t) (2 sin t)3 2 dt

=

∫ π

0

64
(
sin3 t

)
(cos t) dt

= 16
[
sin4 t

]π
0

= 0.


