Worksheet 11

1. Compute the surface integral $\iint_S (x+y+z) dS$, where S is a surface given by $\mathbf{r}(u,v) = \langle u+v, u-v, 1+2u+v \rangle$ and $0 \le u \le 2, \ 0 \le v \le 1$.

Solution: First, we know

$$\iint_{S} (x + y + z) \ dS = \iint_{D} \left[(u + v) + (u - v) + (1 + 2u + v) \right] |\mathbf{r}_{u} \times \mathbf{r}_{v}| \ dA,$$

where D is the domain of the parameters u, v given by $0 \le u \le 2$, $0 \le v \le 1$.

We have $\mathbf{r}_u = \langle 1, 1, 2 \rangle$ and $\mathbf{r}_v = \langle 1, -1, 1 \rangle$. Then, $\mathbf{r}_u \times \mathbf{r}_v = \langle 1, 1, 2 \rangle \times \langle 1, -1, 1 \rangle = \langle 3, 1, -2 \rangle$. So,

$$|\mathbf{r}_u \times \mathbf{r}_v| = |\langle 3, 1, -2 \rangle| = \sqrt{3^2 + 1^2 + (-2)^2} = \sqrt{14}.$$

Thus,

$$\iint_{S} (x+y+z) \ dS = \int_{0}^{1} \int_{0}^{2} (4u+v+1)\sqrt{14} \ du \ dv$$
$$= 11\sqrt{14}.$$

2. Let S be the portion of the graph $z = 4 - 2x^2 - 3y^2$ that lies over the region in the xy-plane bounded by x = 0, y = 0, and x + y = 1. Write the integral that computes $\iint_S (x^2 + y^2 + z) dS.$

Solution: First, we need a parametrization of the surface S. Since S is a surface given by the equation $z = 4 - 2x^2 - 3y^2$, we can choose x and y to be the parameters. So,

$$\mathbf{r}(x,y) = \langle x, y, 4 - 2x^2 - 3y^2 \rangle,$$

and the domain D of the parameters x, y is given by the region in the xy-plane bounded by x = 0, y = 0, and x + y = 1 (see picture below)

Now, $\mathbf{r}_x = \langle 1, 0, -4x \rangle$ and $\mathbf{r}_y = \langle 0, 1, -6y \rangle$. So, $\mathbf{r}_x \times \mathbf{r}_y = \langle 4x, 6y, 1 \rangle$ and $|\mathbf{r}_x \times \mathbf{r}_y| = |\langle 4x, 6y, 1 \rangle| = \sqrt{16x^2 + 36y^2 + 1}$. Thus,

$$\iint_{S} (x^{2} + y^{2} + z) dS = \iint_{D} x^{2} + y^{2} + (4 - 2x^{2} - 3y^{2}) |\mathbf{r}_{x} \times \mathbf{r}_{y}| dA$$
$$= \int_{0}^{1} \int_{0}^{-x+1} (4 - x^{2} - 2y^{2}) \sqrt{16x^{2} + 36y^{2} + 1} dy dx.$$

3. Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = y\mathbf{i} - x\mathbf{j} + z\mathbf{k}$ and S is a surface given by

$$x = 2u$$
, $y = 2v$, $z = 5 - u^2 - v^2$,

where $u^2 + v^2 \leq 1$. S has downward orientation.

Solution: We have $\mathbf{r}(u,v) = \langle 2u, 2v, 5 - u^2 - v^2 \rangle$, so $\mathbf{r}_u = \langle 2, 0, -2u \rangle$ and $\mathbf{r}_v = \langle 0, 2, -2v \rangle$ and so

$$\mathbf{r}_u \times \mathbf{r}_v = \langle 2, 0, -2u \rangle \times \langle 0, 2, -2v \rangle = \langle 4u, 4v, 4 \rangle.$$

Note that $\mathbf{r}_u \times \mathbf{r}_v = \langle 4u, 4v, 4 \rangle$ gives unit normal vectors pointing upward (z-component is positive). But, S has downward orientation so

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = -\iint_{u^{2}+v^{2} \leq 1} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \ dA.$$

Now, $\mathbf{F}(\mathbf{r}(u,v)) = \langle 2v, -2u, 5 - u^2 - v^2 \rangle$. So

$$\mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) = \langle 2v, -2u, 5 - u^2 - v^2 \rangle \cdot \langle 4u, 4v, 4 \rangle = 20 - 4u^2 - 4v^2.$$

Thus,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = -\iint_{u^{2}+v^{2} \le 1} (20 - 4u^{2} - 4v^{2}) dA.$$

$$\stackrel{\text{polar}}{=} - \int_{0}^{2\pi} \int_{0}^{1} (20 - 4r^{2}) r dr d\theta$$

$$= -18\pi.$$

4. Compute the flux of the vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ over the part of the cylinder $x^2 + y^2 = 4$ that lies between the planes z = 0 and z = 2 with normal pointing away from the origin.

Solution: We want to compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where S is the part of the cylinder $x^2 + y^2 = 4$ that lies between the planes z = 0 and z = 2 with normal pointing away from the origin.

Note that this is not a closed surface (it has no top nor bottom), otherwise, we would use Divergence Theorem. This flux integral doesn't seem to be difficult to compute directly. First, we parametrize S: let $x = 2\cos u$, $y = 2\sin u$, z = v. Then

$$\mathbf{r}(u,v) = \langle 2\cos u, 2\sin u, v \rangle$$
, domain D is $0 \le u \le 2\pi$, $0 \le v \le 2$.

Then, $\mathbf{r}_u = \langle -2\sin u, 2\cos u, 0 \rangle$ and $\mathbf{r}_v = \langle 0, 0, 1 \rangle$. So,

$$\mathbf{r}_u \times \mathbf{r}_v = \langle -2\sin u, 2\cos u, 0 \rangle \times \langle 0, 0, 1 \rangle = \langle 2\cos u, 2\sin u, 0 \rangle.$$

Now, let's check our orientation. Let's take the point where $u = \pi/2$ and v = 1, ie (x, y, z) = (0, 2, 1). At the point (0, 2, 1), the unit normal vector points in the direction of the vector $(\mathbf{r}_u \times \mathbf{r}_v)(\pi/2, 1) = \langle 0, 2, 0 \rangle$. This means the unit normal vector is pointing away from the origin. So, our parametrization of S gives the correct orientation for S. Moving on!

Now, $\mathbf{F}(\mathbf{r}(u,v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) = \langle 2\cos u, 2\sin u, v \rangle \cdot \langle 2\cos u, 2\sin u, 0 \rangle = 4$. Thus,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA$$

$$= \iint_{D} 4 dA.$$

$$= \int_{0}^{2\pi} \int_{0}^{2} 4 dv du$$

$$= 16\pi.$$

5. Find the flux of the vector field $\mathbf{F}(x, y, z) = \langle 0, z, 1 \rangle$ across the hemi-sphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$ with orientation away from the origin.

Solution: If we do this problem from scratch, we need to start by parametrizing the hemi-sphere:

$$x(\phi, \theta) = 2\sin\phi\cos\theta, \qquad y(\phi, \theta) = 2\sin\phi\sin\theta, \qquad z(\phi, \theta) = 2\cos\phi,$$

where $0 \le \phi \le \pi/2$ and $0 \le \theta \le 2\pi$. Then $\mathbf{r}(\phi, \theta) = \langle 2\sin\phi\cos\theta, 2\sin\phi\sin\theta, 2\cos\phi\rangle$, where $0 \le \phi \le \pi/2$ and $0 \le \theta \le 2\pi$. And we get

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \langle 4\sin^2\phi\cos\theta, 4\sin^2\phi\sin\theta, 4\sin\phi\cos\phi \rangle$$

We now want to check the orientation of the surface. Let $\phi = \pi/4$ and $\theta = \pi/2$, then at the point $(0, \sqrt{2}, \sqrt{2})$, we get the vector $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}(\pi/4, \pi/2) = \langle 0, 2, 2 \rangle$ points away from the origin. Thus, our parametrization gives the correct orientation of the surface.

Then, we have the flux of \mathbf{F} across the given hemi-sphere H can be compute using the formula

$$\iint_{H} \mathbf{F} \cdot d\mathbf{S} = \iint_{\substack{0 \le \phi \le \pi/2 \\ 0 \le \theta \le 2\pi}} \mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot (\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}) dA.$$

$$\mathbf{F}(\mathbf{r}(\phi,\theta)) = \langle 0, 2\cos\phi, 1 \rangle$$
 and

$$\mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot (\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}) = 8\sin^2 \phi \cos \phi \sin \theta + 4\sin \phi \cos \phi$$

Thus,

$$\iint_{H} \mathbf{F} \cdot d\mathbf{S} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \left(8 \sin^{2} \phi \cos \phi \sin \theta + 4 \sin \phi \cos \phi \right) d\phi d\theta$$

$$= \int_{0}^{2\pi} \left(\frac{8}{3} \sin^{3} \phi \Big|_{0}^{\pi/2} \sin \theta + 2 \sin^{2} \phi \Big|_{0}^{\pi/2} \right) d\theta$$

$$= \int_{0}^{2\pi} \left(\frac{8}{3} \sin \theta + 2 \right) d\theta$$

$$= -\frac{8}{3} \cos \theta \Big|_{0}^{2\pi} + 2 \cdot 2\pi$$

$$= 4\pi$$

Another Solution: If you already know that for a sphere of radius 2 with orientation away from the origin, its unit normal vector is given by $\mathbf{n} = \left\langle \frac{1}{2}x, \frac{1}{2}y, \frac{1}{2}z \right\rangle$ and

 $|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| = 4 \sin \phi$, then we could use the definition of the flux integral to compute $\iint_{H} \mathbf{F} \cdot d\mathbf{S}$ as follows:

$$\iint_{H} \mathbf{F} \cdot d\mathbf{S} = \iint_{H} \mathbf{F} \cdot \mathbf{n} \, dS$$

$$= \iint_{D} \langle 0, z, 1 \rangle \cdot \left\langle \frac{1}{2} x, \frac{1}{2} y, \frac{1}{2} z \right\rangle \, dS$$

$$= \iint_{H} \left(\frac{1}{2} yz + \frac{1}{2} z \right) \, dS$$

$$= \iint_{0 \le \phi \le \pi/2} (2 \sin \phi \cos \phi \sin \theta + \cos \phi) \, |\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| \, dA$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} (2 \sin \phi \cos \phi \sin \theta + \cos \phi) \, 4 \sin \phi \, d\phi \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} \left(8 \sin^{2} \phi \cos \phi \sin \theta + 4 \sin \phi \cos \phi \right) \, d\phi \, d\theta$$

$$= 4\pi$$