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Abstract—In the companion letter [1], we have defined and
exemplified meta distributions (MDs) as a natural extension
of the concepts of the mean and distribution of a random
variable. Here we provide an in-depth discussion of the properties
and interpretations of MDs. It includes original results on the
calculation of MDs in the monotone case and two applications
to simple Poisson wireless networks models.

Index Terms—Meta distributions, wireless networks, stochastic
geometry, point processes, interference.

I. INTRODUCTION

The examples in Part 1 [1] have revealed a certain structure

in the calculation of MDs. In this second part, we first derive

a simple formula that applies to MDs of random variables

of the form Z = f(X,Y ) for (strictly) monotone f and

complementary cumulative distributions (ccdfs) F̄X and F̄Y .

The formula leads to a simple proof that F̄JZ|Y K(z, ·) and

F̄JZ|XK(z, ·) are mutual inverses. Its application to two simple

types of Poisson networks shows interesting connections to

more complete models. Next, we offer several interpretations

of the MD, including a dual interpretation that is based on a

switch of the two parameters of the MD. Lastly we present an

extension to higher-order MDs.

II. A FORMULA FOR THE GENERAL MONOTONE CASE

In this section we present a simple formula for the MD that

applies to the monotone case.

Let f : (R+)2 7→ R
+ be strictly monotone in both ar-

guments and denote the inverse w.r.t. the first argument by

f−1
1 , f−1(·, y) and that w.r.t. the second argument by

f−1
2 , f−1(x, ·), i.e., f−1

1 (·, y) ◦ f(·, y) = 11 and f−1
2 (·, x) ◦

f(x, ·) = 11, where 11 is the identity operator on R
+.

For instance, for z = f(x, y) = x/(x + y) ∈ [0, 1], the

inverses are

f−1
1 (z, y) =

zy

1− z
; f−1

2 (z, x) =
x(1− z)

z
, z ∈ (0, 1).

z = 1 implies y = 0 and x is arbitrary, while z = 0 implies

x = 0 and y is arbitrary.

Theorem 1 If f(·, y) and f(x, ·) are both increasing,

F̄JZ|Y K(z, x) = F̄Y

(
f−1
2 (z, F̄−1

X (x))
)

(1)

F̄JZ|XK(z, x) = F̄X

(
f−1
1 (z, F̄−1

Y (x))
)
. (2)
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If f(·, y) is increasing and f(x, ·) is decreasing,

F̄JZ|Y K(z, x) = FY

(
f−1
2 (z, F̄−1

X (x))
)

(3)

F̄JZ|XK(z, x) = F̄X

(
f−1
1 (z, F−1

Y (x))
)
. (4)

If f(·, y) and f(x, ·) are both decreasing,

F̄JZ|Y K(z, x) = FY

(
f−1
2 (z, F−1

X (x))
)

(5)

F̄JZ|XK(z, x) = FX

(
f−1
1 (z, F−1

Y (x))
)
. (6)

Proof: See Appendix A.

So in Case 1, the two MDs are a composition of the three

monotone functions F̄Y ◦f−1
2 (z, ·)◦ F̄−1

X and F̄X ◦f−1
1 (z, ·)◦

F̄−1
Y , respectively. This also holds in the other two cases, with

ccdfs replaced by cdfs or vice versa.

From the theorem follows a sufficient condition for the

two MDs F̄JZ|Y K and F̄JZ|XK to be inverses in the second

argument.

Corollary 2 If f is monotone in both arguments, the two MDs

F̄JZ|Y K(z, ·) and F̄JZ|XK(z, ·) are mutual inverses, i.e., for all

z ≥ 0,

F̄JZ|Y K(z, x) = y ⇐⇒ F̄JZ|XK(z, y) = x.

Proof: By inspection and using the fact that for invertible

functions g1, g2, and g3, (g1◦g2◦g3)−1 = g−1
3 ◦g−1

2 ◦g−1
1 , we

observe that the result holds in all three cases of increasing

and decreasing f .

III. APPLICATION TO SIMPLE WIRELESS NETWORK

MODELS

Here we derive the SIR MD for two Poisson network models

using the nearest-interferer-only approximation.

A. Poisson Cellular Downlink Networks

Corollary 3 Consider a downlink cellular network where BSs

form a stationary PPP Φ ⊂ R
2 with nearest-BS association

and Rayleigh fading. If only the nearest interfering BSs is

considered, the SIR MD at an arbitrary location is

F̄JSIR|ΦK(z, x) = min

{

1,

(
1− x

xz

)δ
}

. (7)

Proof: The SIR is

SIR =
h1

h2

(
r1
r2

)−α

,



where hk are the fading random variables, r1 and r2 are

the distances to the serving and interfering BS, respectively.

Letting X = h1/h2 and Y = (r2/r1)
α, X captures the

fading, while Y captures the network geometry, and SIR =
f(X,Y ) = XY . We have

F̄X(x) =
1

1 + x
; F̄Y (y) = min{1, y−δ}.

The ccdf of Y follows from [2, Lemma 1]. Hence F̄−1
X (x) =

1/x − 1 and f−1(z, y) = z/y. Now we have all ingredients

to apply Theorem 1 and obtain

F̄JSIR|Y K(z, x) = F̄Y

(
f−1
2 (z, F̄−1

X (x))
)

= min

{

1,

(
z

1/x− 1

)−δ
}

.

Remarks:

• Since the PPP only affects the SIR via Y , F̄JSIR|ΦK,

F̄JSIR|Y K, and F̄JXY |ΦK are all equivalent.

• The MD in (7) provides an upper bound on the MD

when all interferers are considered. This bound is not

particularly tight for standard values of δ, z, x, but it

gets tight as δ ↓ 0 and provides the correct asymptotics

Θ(z−δ), z → ∞, and Θ((1/x − 1)δ), x → 1. For both

z → ∞ and x → 1, the pre-constant is 1 in (7), while it

is sinc δ , sin(πδ)/(πδ) in the full-interference case [2,

Cor. 5].

• Integration of (7) over x yields the SIR ccdf

F̄SIR(z) = 2F1(1, δ; 1 + δ,−z),

where 2F1 is the Gauss hypergeometric function. For

δ = 1/2, the SIR ccdf has the particularly simple form

F̄SIR(z) = arctan
√
z/

√
z. For comparison, in the full-

interference case, the SIR ccdf is [3]

F̄ full
SIR (z) =

(

2F1(1,−δ; 1− δ,−z)
)−1

.

• For x < 1/(1 + z), all users achieve reliability x for

an SIR threshold z due to the ccdf of X and since

multiplying with Y makes the SIR larger. Interestingly,

the complementary region x > 1/(1 + z), where the

MD is less than 1, corresponds to the separable region

defined in [2, Thm. 1] and given in [2, Cor. 4] in the full-

interference case. That theorem asserts that for (z, x) in

the separable region, the MD in the full-interference case

can be expressed as

F̄ full
JSIR|Y K(z, x) = g(x)z−δ

for any independent fading, where the function g that de-

pends on the fading statistics and the path loss exponent.

Hence we can conclude that (7) yields the upper bound

g(x) < (1/x− 1)δ.

Inverting the MD yields

F̄JSIR|XK(z, x) =
1

1 + zx1/δ
, x ∈ [0, 1), F̄JSIR|XK(z, 1) = 0.

This is the quantile function of (7), quantifying the per-

formance of user percentiles. For instance, the 5% user’s
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Fig. 1. Meta distributions F̄JSIR|ΦK(3, x) given in (8) for the simplified

Poisson downlink cellular network for δ = 2/3 and Nakagami-m fading
with various values of m.

reliability1 for z = 1 and α = 4 is 1/(1 + 0.952) ≈ 0.53,

while the 20% user’s reliability is 1/(1 + 0.82) ≈ 0.61.

Without fading, F̄X(x) → 1(x < 1) and F̄−1
X (x) does not

exist. In this case, U = 1((r2/r1)
α > z) ∈ {0, 1}, and the

MD does not offer any extra information over just F̄Y since

SIR = Y and F̄Z|Y ≡ F̄Z|Z = 1(Z > ·), where ≡ denotes an

identity. It degenerates to F̄JSIR|ΦK(z, x) = min{1, z−δ}.

For Nakagami-m fading, X has the F-distribution

FX(x) = Ix/(x+1)(m,m),

where Iy(m,m) is the incomplete regularized beta function.

The MD follows as

F̄JSIR|ΦK(z, x) = min

{

1,

(
q(x)

z(1− q(x))

)δ
}

, (8)

where q(x) = I−1
1−x(m,m). For z > 1, F̄JSIR|ΦK(z, 1/2) = z−δ

for all m > 0 since I−1
1/2(m,m) = 1/2 irrespective of m.

For m = 1/2, the F-distribution specializes to the beta

prime distribution with parameters 1/2 and 1/2, given by

F̄X(x) = 2 arctan(x−1/2)/π, leading to the closed-form

expression

F̄JSIR|ΦK(z, x) = min{1,
(
(z tan(πx/2)2

)−δ}. (9)

Fig. 1 shows cross-sections of the MDs F̄JSIR|ΦK(3, x) for

different m. It is apparent that for x = 1/2, the value for all

m is 3−2/3 ≈ 0.48.

B. Poisson Bipolar Networks

Next we consider a Poisson bipolar network where active

transmitters form a PPP Φ ⊂ R
2 of intensity λ and have a

dedicated receiver at distance 1. For general distances r, the

threshold z can simply be replaced by zrα.

Corollary 4 Consider the Poisson bipolar model with link

distance 1 and Rayleigh fading. If only the nearest interferer

is considered, the SIR MD at the typical receiver is

F̄JSIR|ΦK(z, x) = exp

(

−λπ

(
xz

1− x

)δ
)

. (10)

1This is the reliability that 95% of the users achieve but 5% do not.
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Fig. 2. Meta distributions F̄JSIR|ΦK(z, x) for the Poisson bipolar network

for λ = 1/5, δ = 1/2, and Rayleigh fading. The “nearest-interferer-only”
expression is given in (10).

Proof: Let h be the fading coefficient from the desired

transmitter and h1 that from the nearest interferer, at distance

r1 from the receiver. We apply Theorem 1 with X = h/h1,

Y = rα1 , and SIR = XY . X is distributed as in the cellular

case, while Y is Weibull distributed with ccdf F̄Y (y) =

e−λπyδ

. Combining the inverses of F̄X , f(x, y) = xy, and

using F̄Y yields the result.

In contrast to the simple expression of the SIR MD, the SIR

ccdf cannot be obtained in closed form.

In the case where all interferers are taken into account, the

SIR ccdf is

F̄ full
SIR (z) = e−λπzδ/ sinc δ,

which follows as a special case of [3, Thm. 1] by setting

b = p = 1. Hence F̄JSIR|ΦK(z, (1 + sinc δ)−1) = F̄ full
SIR

(z) and

both log F̄ full
SIR

(z) and log F̄JSIR|ΦK(z, x) are proportional to zδ.

Fig. 2 compares the MD in (10) with the MD of the

full-interference case, whose curve is obtained by applying

the Gil-Pelaez theorem to the imaginary moments given in

[3, Eqn. (6)]. By definition, (10) upper bounds the full-

interference MD, and the bound is getting tight as θλδ → 0,

i.e., as either θ → 0 or λ → 0 or δ → 0.

IV. INTERPRETATIONS OF META DISTRIBUTIONS

A. Moments as Laplace Transforms

Let Mb(z) = E(U b), where U = P(Z > z | Y ) = F̄Z|Y (z).
This way, F̄JZ|Y K(z, x) ≡ P(U > x) (see [1, Fig. 1]).

Replacing b by s, we note that for Q , − logU , the moments

correspond to the Laplace transform of Q, i.e.,

LQ(s) , E(e−sQ) ≡ E(Us). (11)

This interpretation of the moments of the conditional ccdf U
opens the door to the application of Tauberian theorems to

derive results on the asymptotic behavior of MDs, in particular

in the high-reliability regime x → 1 as in [4, Subs. II.F]. It

also shows that inverse Laplace transform techniques can be

applied to find the distribution of Q and, in turn, U , i.e., the

MD.

B. The MD as a Distribution over an Ensemble

The most fundamental interpretation of the MD is that of

the (ensemble) mean of an indicator of a conditional indicator,

or, equivalently, of the ccdf of a conditional probability.

It is generally valid, irrespective of the properties of the

underlying random elements, such as ergodicity, stationarity,

or dependence and provides information on the concentration

of a random variable when the underlying randomness is

partially averaged out. For instance, it gives the probability

that the typical link in a network achieves a certain SIR with

at least a target probability x.

C. The MD as a Spatial Distribution

The most relevant interpretation of the MD in stochastic

geometry applications is that of a spatial mean over an

arbitrary realization of the point process. By definition of

ergodicity, it is valid when the point process is ergodic2.

Accordingly, the MD characterizes the disparity in the

individual links or users and the performances of user per-

centiles3 in each network realization. To avoid drastic un-

fairness between users or links, architectural decisions for a

wireless network should not be solely based on maximizing a

global average metric but also on the uniformity of the user

experience, which is reflected in a steep MD as a function of

x or, equivalently, in a small variance of U = F̄Z|Y (z).
The MD also offers a natural way to incorporate strict

constraints. For instance, if a target reliability x is required

for each link, it provides the fraction of links that achieve

such reliability in each realization of the point process. This

allows for a compact definition of the spatial outage capacity

of a network as [4]

S(z, x) , sup
p∈(0,1],λ>0

pλF̄JSIR(p,λ)|ΦK(z, x),

where λ is the density of Φ and p is the fraction of active

transmitters. The spatial outage capacity is the maximum

density of links that a network can accommodate given an

outage constraint.

D. The Dual Interpretation

Let Uz = F̄Z|Y (z), to make explicit that U is a function of

z. The MD F̄JZ|Y K can be expressed as

F̄Uz
(x) = P(F̄Z|Y (z) > x)

= P(z < F̄−1
Z|Y (x))

= F̄Ux
(z), (12)

where Ux = F̄−1
Z|Y (x) is the random value of z that achieves

a reliability x for a given Y . U and U are dual in the sense

2If there are multiple point processes involved, such as in a cellular network
where base stations and users form point processes, the processes need to be
jointly ergodic. Otherwise it is possible to construct examples where spatial
averages do not correspond to ensembles averages, e.g., when base stations
and users form square lattice of the same intensity, in which case all users
have the same conditional SIR distribution (given the point processes).

3For instance the “user experienced data rate” in the specifications of the
International Telecommunication Union (ITU) refers to the data rate of the
5% user.
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Fig. 3. Realization of cellular uplink network where BSs form a PPP of
intensity λ = 1, marked by blue circles ◦, and users form a square lattice of
density 4, marked by red crosses ×. Channels are subject to Rayleigh fading
and path loss with exponent 2. The black number (at the top right) of each
user u is P(Su > 1 | Φ), and the blue number (at the bottom right) of each
user is the value of zu such that P(Su > zu | Φ) = 0.75.

that P(Uz > x) ≡ P(Ux > z). This dual form of the MD was

first reported in [5] and applied to a rate control problem in

Poisson bipolar networks.

Integrating the MD over z yields the mean EUx (and further

integration over x yields EZ).

Let us re-visit the cellular uplink example in [1, Subs. II.A],

where X = h and Y = R2 are exponential with mean 1
and 1/(λπ), respectively, and Z = X/Y . In this case, Ux =
F−1
Z|Y (x) = − log(x)/Y = − log(x)/R2. Fig. 3 shows the

value of z for each user so that its link achieves a reliability

of 0.75. The distribution of U3/4 = − log(3/4)/R2 follows as

P(U3/4 > z) = P(Uz > 3/4) = F̄JS|Y K(z, 3/4) = 1−(34 )
λπ/z .

Hence the dual interpretation yields the distribution of the

individual (per-user) threshold given a target reliability.

In the bipolar network in Subs. III-B, we have

F̄Z|Y (z) =
1

1 + z/Y

and thus Ux = Y (1/x− 1), with F̄Ux
(z) given in (10).

For instance, for a target reliability x = 10/11, P(U10/11 >

z) = e−10λπzδ

. The mean (for general x) is

EUx =
1− x

x

Γ(1 + 1/δ)

(λπ)1/δ
.

Similarly, there exists Vx as the counterpart to Vz , i.e., Vx =
F̄−1
Z|X(x) and P(Vz > x) ≡ P(Vx > z).

V. HIGHER-ORDER META DISTRIBUTIONS

The concept of the MD is not restricted to two classes of

randomness. For m ∈ N ∪ {∞}, let (Xj)j∈[m] be a vector of

random variables or random elements, and let {P1, . . . ,Pn+1}
be a partition of [m] for n < m, typically n ≪ m. Then

Xi , (Xj)j∈Pi
, i ∈ [n+1], splits the random vector in n+1

classes.

Definition 1 (n-th order meta distribution) For n ∈ N0,

let k denoted the k-th permutation of [n + 1] in lex-

icographic order and denote the permuted numbers by

k(1), k(2), . . . , k(n+1). Let Z = f(X1, . . . ,Xn+1). The n-th

order meta distribution of Z with index k, k ∈ [(n+ 1)!], is

F̄
(n)
JZ(k)K(z;x1, . . . , xn) ,

E1(EXk(n)
1(EXk(n−1)

1(· · ·EXk(2)
1(EXk(1)

1(Z > z)

> x1) > x2 · · · ) > xn−1) > xn). (13)

The outermost expectation could equivalently be written as

EXk(n+1)
. Lower-order MDs can be obtained by integration

over xn, xn−1, etc.

In this general notation, the MDs considered in the

previous sections and in Part 1 [1] are the first-order

MDs F̄JZ|Y K(z, x) ≡ F̄
(1)
JZ(1)K(z;x1) and F̄JZ|XK(z, x) ≡

F̄
(1)
JZ(2)K(z;x1), and the ccdf of Z is the 0-th order MD

F̄Z(z) = F̄
(0)
JZ(1)K(z).

VI. CONCLUDING REMARKS

Meta distributions provide more refined information about

the structure of random variables, in much the same way as

distributions give more insight than averages. In the compan-

ion paper [1], we have presented several simple examples of

the form Z = f(X,Y ). This case has wide applicability since

it is straightforward to extend f(X,Y ) to g(f(g1(X), g2(Y )))
by standard transformations of ccdfs. In fact, for suitable

g, g1, g2, f(X,Y ) = X + Y covers all functions of two

variables. The examples have also shown that the MD is

not necessarily more complicated than the ccdfs—in fact, the

opposite is true in several cases.

In this second part we have established that under mono-

tonicity conditions, the MDs F̄JZ|Y K(z, ·) and F̄JZ|XK(z, ·) are

mutual inverses and thus also mutual quantile functions. It

will be interesting to explore if this inverse property holds for

larger classes of functions f and ccdfs of X and Y .

Two simple stochastic geometry-based applications demon-

strated how MDs achieve a time-scale separation between fad-

ing and spatial randomness and how closed-form expressions

can be obtained that serve as bounds to more complete models

and accurately reflect their asymptotic behavior. The averaging

over the fading random variables while preserving the spatial

randomness permits the definition of a robust notion of cover-

age in a cellular network as the event {F̄SIR|Φ(z) > x} (whose

probability is the MD F̄JSIR|ΦK(z, x)). “Robust” here means

that the coverage event does not depend on the instantaneous

realization of the fading random variables as the frequently

considered event {SIR > z} does (whose probability is the

ccdf F̄SIR(z)).
We call the branch of stochastic geometry that analyzes

meta distributions deep stochastic geometry, to emphasize

that the metrics derived provide a deeper analysis of the

performance relative to the standard spatial averages (means

and ccdfs).
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The duality property of the MD is not solely of theoretical

interest but has important applications in rate control when a

fixed target link reliability is given. It gives the distribution of

the threshold parameter z over the network when the parameter

x in the MD is set to a fixed value.

Higher-order MDs constitute a natural extension of the

concept. While conceptually straightforward, it remains to be

seen whether they have any impactful applications, for instance

when the time scales of small-scale fading, shadowing, and

node locations are separated, or in spatiotemporal models

where additional time scales come into play due to queue

dynamics and scheduling. Other future work may include the

study of the effect of noise in the models, finding the necessary

condition for the inversion property in Cor. 2, identifying

the limits of the beta approximation of MDs, and exploring

whether considering dependence in the classes Xi would be

leading to new insights.

APPENDIX

A. Proof of Theorem 1

We first prove a lemma relating the inverses f−1
1 and f−1

2 .

Lemma 1 The two inverses f−1
1 (z, ·) and f−1

2 (z, ·) are mu-

tual inverses, i.e., f−1
1 (z, ·) ◦ f−1

2 (z, ·) = 11.

Proof: We need to show that, for all z ≥ 0,

f−1
1 (z, f−1

2 (z, x)) = x = f−1
2 (z, f−1

1 (z, x)).

The definitions of f−1
1 and f−1

2 imply that for all y ≥ 0,

f(f−1
1 (z, y), y) = z, (14)

and for all x ≥ 0,

f(x, f−1
2 (z, x)) = z. (15)

In particular, (14) holds for y = f−1
2 (z, x), i.e.,

f(f−1
1 (z, f−1

2 (z, x))
︸ ︷︷ ︸

x

, f−1
2 (z, x)) = z,

which, from (15), implies that x = f−1
1 (z, f−1

2 (z, x)).
Similarly, (15) holds for x = f−1

1 (z, y) and thus

f(f−1
1 (z, y), f−1

2 (z, f−1
1 (z, y))

︸ ︷︷ ︸

y

) = z.

Next, we proceed to the proof of the theorem.

Proof: We consider the three cases of increasing and

decreasing f separately.

Case 1. If f(·, y) and f(x, ·) are both increasing, we have

P(f(X,Y )>z | Y )=P(X>f−1
1 (z, Y ) | Y )= F̄X(f−1

1 (z, Y ))

P(f(X,Y )>z | X)=P(Y >f−1
2 (z,X) | Y )= F̄Y (f

−1
2 (z,X))

and thus, taking into account that the inversion of ccdfs results

in a change in the direction of the inequality,

F̄JZ|Y K(z, x) = P(F̄X(f−1
1 (z, Y )) > x)

= P(f−1
1 (z, Y ) < F̄−1

X (x))

(a)
= P(Y > f−1

2 (z, F̄−1
X (x)))

= F̄Y (f
−1
2 (z, F̄−1

X (x)))

and

F̄JZ|XK(z, x) = P(F̄Y (f
−1
2 (z,X)) > x)

= P(f−1
2 (z,X) < F̄−1

Y (x))

(a)
= P(X > f−1

1 (z, F̄−1
Y (x)))

= F̄X(f−1
1 (z, F̄−1

Y (x))),

where step (a) uses Lemma 1 for the inversion, which changes

the direction of the inequality.

Case 2. If f(·, y) is increasing but f(x, ·) is decreasing,

P(f(X,Y )>z | Y )=P(X>f−1
1 (z, Y ) | Y )= F̄X(f−1

1 (z, Y ))

P(f(X,Y )>z | X)=P(Y <f−1
2 (z,X) | Y )=FY (f

−1
2 (z,X))

and

P(F̄X(f−1
1 (z, Y )) > x) = P(f−1

1 (z, Y ) < F̄−1
X (x))

(a)
= P(Y < f−1

2 (z, F̄−1
X (x)))

= FY (f
−1
2 (z, F̄−1

X (x)))

and

P(FY (f
−1
2 (z,X)) > x) = P(f−1

2 (z,X) > F−1
Y (x))

(a)
= P(X > f−1

1 (z, F−1
Y (x)))

= F̄X(f−1
1 (z, F−1

Y (x))),

where step (a) uses Lemma 1 for the inversion, which pre-

serves the direction of the inequality in this case.

Case 3. If f(·, y) and f(x, ·) are both decreasing,

P(f(X,Y )>z | Y )=P(X<f−1
1 (z, Y ) | Y )=FX(f−1

1 (z, Y ))

P(f(X,Y )>z | X)=P(Y <f−1
2 (z,X) | Y )=FY (f

−1
2 (z,X))

and

P(FX(f−1
1 (z, Y )) > x) = P(f−1

1 (z, Y ) > F−1
X (x))

(a)
= P(Y < f−1

2 (z, F−1
X (x)))

= FY (f
−1
2 (z, F−1

X (x)))

and

P(FY (f
−1
2 (z,X)) > x) = P(f−1

2 (z,X) > F−1
Y (x))

(a)
= P(X < f−1

1 (z, F−1
Y (x)))

= FX(f−1
1 (z, F−1

Y (x))),

where step (a) uses Lemma 1 for the inversion, which changes

the direction of the inequality.
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