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Abstract—Device caching has recently been proposed as an
efficient way to offload traffic from congested cellular networks.
However, previous works usually ignore the fact that in practice
the user device may not be willing to help others due to the limited
battery capacity. In this paper, we introduce cooperation among
the D2D transmitters and propose two novel hybrid caching
strategies—single-point caching combined with two-point coop-
erative caching with joint transmission (SPC-CCJT) or multi-
stream transmission (SPC-CCMT)—aiming at saving the energy
cost of content deliverers. Using tools from stochastic geometry,
we propose an analytical framework of the hybrid caching
strategies by modeling the locations of the D2D transmitters as a
Gauss-Poisson process (GPP) to accurately capture the clustering
and cooperative behaviors. Firstly, we consider a probabilistic
caching placement and optimize the caching distribution to
maximize the cache hit probability. Secondly, to compare the
performance between different content delivery strategies, we
derive the success probability and per-user capacity for SPC,
CCJT, and CCMT, respectively. These results are then applied
to evaluate the offloading gain and the distribution of the content
retrieval delay for SPC-CCJT and SPC-CCMT in the GPP-
based D2D networks. It turns out that significant offloading gain
and delay improvement can be achieved by hybrid caching with
cooperation while the energy cost of each cooperator is kept low.

Index Terms—Stochastic geometry; Gauss-Poisson process;
device caching; D2D networks; hybrid caching; offloading gain.

I. INTRODUCTION

A. Motivation

The recent proliferation of new mobile devices (e.g., smart-
phones) has led to a fundamental shift of mobile traffic from
voices and messages to rich multi-media contents, such as
video streaming and application downloads, exacerbating the
growth of traffic demand [1]. To cope with this growth, tech-
niques such as millimeter wave communication (new spectral
resources), massive multiple-input multiple-output (MIMO)
(improving spectral efficiency), and cell densification (exploit-
ing spatial reuse), are developed. Despite the benefits from
these techniques, the deployment costs of many RF chains or
high-speed backhaul installation are prohibitively expensive.
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Driven by the interesting observation that a large amount
of content requests are asynchronous but redundant, wireless
edge caching, i.e., prefetching popular contents during off-
peak times at the edge of wireless networks, e.g., base stations,
helper nodes, and user devices, has drawn much attention as
a promising technique to alleviate the network congestion and
improve the users’ quality of experience [2–4].

As one of the promising caching approaches, caching files
on the user devices with short-range device-to-device (D2D)
communications has been shown to provide increased spectral
reuse and throughput gain in D2D networks [5]. This way,
multiple devices form a common virtual cache space where a
large number of files can be stored, and the storage capacity
of each individual device does not necessarily need to be
very large. Different from small cell caching, device caching
does not require special infrastructure and has the further
advantage of reducing the demand on radio resources for
cellular transmissions. Interestingly, device caching has the
unique feature that the number of caching devices is inherently
concentrated in regions with large demand [2], and accord-
ingly, the cache capacity of the virtual cache space grows with
the user density. However, an important issue challenging the
implementation of device caching is whether a user is willing
to be a helper. Although the users can be incentivized by the
network operators, a key question that can not be neglected
is the limited battery capacity of wireless devices. In practice,
the energy consumption of a caching content delivery largely
determines the willingness of the helper user. In other words,
a user may only be willing to use a fraction of its remaining
battery energy for file transfer. To cope with this issue, the
battery consumption allowed by the helping users should be
seeded into the device caching design, and efficient regimes
that can reduce the transmit power or duration of each helper
user should be exploited in order to encourage more users to
be the “helper”. Exploring this issue quantitatively is the goal
of this paper.

B. Related Work

Recently, device caching has received significant attention
as a means to offload traffic from congested cellular networks
and improve the throughput and latency without requiring
additional infrastructure. Notable progress has been made on
investigating the benefits of device caching in the offloading
and the throughput performance with various caching strate-
gies proposed, see [2, 6–9] and references therein. Although
several key insights were provided on the design of the cache
placement and content delivery, most previous works made
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several ideal assumptions which would have a great influence
on the real implementation of device caching. First of all,
they implicitly assumed that users acting as the transmitters
are by definition willing to provide content delivery service
without considering the fact that users are not obligated to
help. Secondly, they assumed the battery capacity of the helper
user to be infinite so that the file will be definitely delivered
completely as long as the D2D link is established. To address
this concern, authors in [10] recently quantified the offloading
gain of a cache-enabled D2D communication system consid-
ering a maximal permissible battery consumption. Due to the
battery limitation, some of the helper users can only transmit
a fraction of the file and the remaining part is left for the
base station (BS). Consequently, the offloading gain benefit
from device caching would be reduced, and a large number
of signaling between the BS and users would be required to
guarantee the seamless transmission, thus causing extra delay,
overhead, and system complexity. Different from [10], in this
paper, we aim to overcome this limitation through cooperation
to reduce the energy cost of each individual helper, expecting
to encourage more users to participate in the device caching
while taking full advantage of device caching in terms of
the traffic offloading from the BSs. The very recent work
[9] also investigated the benefit of the cooperation in device
caching, however, the adopted grid model does not capture
the randomness and the clustering features of the spatial
distribution of the wireless devices.

Due to the analytical tractability, prior works based on
stochastic-geometry modeling mostly used the Poisson point
process (PPP) to model the spatial distribution of nodes and
quantitatively analyzed metrics like success probability, mean
achievable rate, offloading gain, content retrieval delay, etc.,
for the respective caching strategies [8, 10–12]. Although the
PPP model has several convenient features for the analysis and
these PPP-based works have provided useful design insights,
this model is inadequate for those scenarios where the node lo-
cations exhibit correlations, especially for D2D users who are
likely to be clustered in reality. On the one hand, the content-
centric nature of D2D communication is primarily driven by
the spatiotemporal correlation in the content demand; on the
other hand, the spatial distribution of smart devices is mostly
determined by the uneven population distributions due to
some social activities and hotspots. Thus, compared with the
PPP, clustered point processes are more suitable for capturing
the clustering feature of devices. Few prior studies adopted
clustered point processes to model the caching devices, most
notably, the well-known Thomas cluster process was used
for modeling and analyzing cache-enable D2D networks in
[13], however, the performance metrics such as coverage
probability and area spectral efficiency derived therein are in
complex form involving multiple integrals. Considering the
accuracy, tractability, and practicability tradeoffs, in this paper,
we propose the Gauss-Poisson process (GPP) [14], which is
also a Poisson cluster process but not a doubly Poisson or Cox
process as the Thomas cluster process, as a model for cache-
enabled D2D networks when devices exhibit clustering. Since
the GPP includes the PPP as a special case, even if in some
cases the PPP was a sufficiently accurate model, it is included

in our analysis. More importantly, the GPP constitutes a simple
yet effective network model to analyze wireless networks that
apply cooperative techniques [15], which is at the center of
the paper.

C. Contributions
The main objective of this paper is to introduce and promote

two hybrid caching strategies for cache-enable D2D networks,
where the helper user locations exhibit correlation. The limited
battery capacity of wireless devices motivates the use of
cooperative techniques to save energy. The contributions of
the paper are:

• Novel hybrid caching schemes. We propose two hybrid
caching schemes for a D2D network where some of
the helper users transmit the file completely on their
own, while some need to finish the content delivery
jointly with an other helper user according to the users’
willingness. To reduce the energy cost of each helper
user, we introduce two new cooperative device caching
strategies, namely cooperative caching with joint trans-
mission (CCJT) and cooperative caching with multi-
stream transmission (CCMT), aiming at reducing the
transmit power and transmission duration of each helper
user, respectively. Thus, the two new hybrid caching
schemes are composed of single-point caching (SPC)
and CCJT or CCMT, called SPC-CCJT and SPC-CCMT,
respectively.

• Gauss-Poisson process-based placement. We consider
a GPP-based cache placement to capture the clustering
feature of devices. The GPP is well suited to our proposed
hybrid caching strategies and belongs to the family of
Poisson cluster processes, with the number of points
in each cluster restricted to one or two. It describes
the scenario where traditional device caching (SPC) and
cooperative device caching (CCJT or CCMT) coexist in
the same network. Based on this model, we introduce a
user-centric probabilistic caching placement where only
the users within a caching radius of the requesting user
can serve as helpers, and optimize the caching placement
to maximize the cache hit probability [7, 8], defined as
the probability to find the requested file in the local cache.

• Performance derivation. We first derive the success
probabilities (or, equivalently, the SIR distributions) and
the per-user capacity for the three (non-hybrid) caching
strategies: SPC, CCJT, and CCMT. Then, we consider
hybrid caching, where the node in each single-point
cluster of the GPP is the SPC helper while the paired
nodes in each two-point cluster of the GPP are the
cooperating helpers, and evaluate the performance of two
hybrid caching schemes in terms of an offloading metric
and the distribution of the file retrieval delay.

• Comparisons and design insights. We first provide a
detailed numerical study to compare the success probabil-
ities and per-user capacities of different content delivery
strategies. Then we investigate the benefits of hybrid
caching in terms of the offloading gain and delay per-
formance in a GPP-based network, which gives funda-
mental insights into the benefits of applying cooperation
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techniques in wireless device caching in large networks,
where the interference from all transmitting nodes and
the limited battery capacity are properly accounted for.

II. SYSTEM MODEL

In this section, we first introduce the components as well
as the assumptions of the network and describe how each
component is modeled using stochastic geometry. Then we
describe the models for the two phases of cache placement
and content delivery.

A. Network Model

We consider a hybrid cache-enabled D2D communication
network with two types of device caching: non-cooperative
caching (i.e., SPC) and cooperative caching (i.e., CCJT or
CCMT). The devices that can perform proactive caching and
provide content delivery are called content providers while the
ones requesting files are called content clients. We model the
locations of the content providers as a GPP on R2, which is
denoted by Φ and defined as follows.

Definition 1. (Gauss-Poisson process, GPP [16, Example
3.8]). The planar GPP is a Poisson cluster process on R2

where λp denotes the intensity of the parent process and each
cluster has one or two points, with probabilities p and 1− p,
respectively. If a cluster consists of one point, that point is at
the parent’s location. If it has two points, one is at the parent’s
position, and the other is uniformly distributed on the circle
with radius u centered at the parent.

According to this definition, the density of Φ, denoted by λ,
is λ = λp(2− p), and we have Φ = Φ(1)

∪
Φ(2), where Φ(1)

and Φ(2) are the unions of the one-point clusters and the two-
point clusters in Φ, respectively. Note that in this GPP-based
network model, the one-point clusters correspond to non-
cooperative caching, while the two-point clusters correspond
to cooperative caching. A single point representing a content
client is placed at the origin. We call it the typical client,
because upon expectation w.r.t. the GPP, this client becomes
the typical client for any stationary point process model of
clients.

There is also a tier of base stations (BSs) in the network,
which are connected to the core network via backhaul links
and communicate with the content clients only when their
requests cannot be satisfied by D2D links. The locations
of the BSs follow a homogeneous PPP Φb with density
λb independent of Φ. We assume that the BSs and content
providers operate over non-overlapping frequency bands to
avoid cross-tier interference. We adopt a power path loss law
ℓ(x) = ∥x∥−α, where x ∈ R2 and α > 2, and independent
Rayleigh fading where the channel power gain, denoted by hx,
is exponentially distributed with unit mean. We set all transmit
powers to unity and focus on the interference-limited regime,
thus omitting the thermal noise.

B. Content Popularity and Caching Model

We consider a static content catalog consisting of Nf files,
denoted by W , {W1,W2, . . . ,WNf

}, which are indexed in
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Fig. 1. A realization of the GPP with λp = 3, p = 0.5, u = 0.5,
Rc = 1.1, Nf = 3 and pc = (0.5, 0.3, 0.2), where points in
green, red and blue constitute 1st, 2nd and 3th D2D caching tier,
respectively; ‘3’ represents content providers belonging to one-point
clusters while ’◦’ and ‘2’ represent cooperative content providers
belonging to two-point clusters with a dashed-dot line indicating their
paired relationship; and the dashed circle is the caching region of the
typical client at the origin denoted by ‘×’.

descending order of popularity. Each file has the same size
of F bits. The popularity of Wk, denoted as pr(k), for k ∈
[Nf ] , {1, 2, . . . , Nf}, follows the Zipf distribution

pr(k) =
k−γ∑Nf

i=1 i
−γ
, (1)

where
∑Nf

k=1 pr(k) = 1, and γ > 0 is the Zipf exponent that
determines the skewness of the distribution. The larger γ, the
fewer files that are responsible for the majority of requests
[17].

We consider a cluster-based caching strategy, i.e., the cache
placement and content delivery decisions are performed by
clusters, and each cluster is considered as a caching entity. To
be specific, for a one-point cluster, the caching entity refers
to that point; while for a two-point cluster, once a content
is assigned, both points in this entity store either the same
content or different partitions of the same content depending
on the transmission (delivery) scheme adopted1. Considering
the relatively short communication distance and the limited
battery capacity, we consider a client-centric protocol, i.e., a
content provider will send a cached file to the client only if
their distance is smaller than a given value, called caching
radius, denoted by Rc. Thus, clusters with all their points
located within the caching radius of a content client are
potential caching entities and called adjacent clusters.

Furthermore, we adopt a probabilistic caching model, where
a file is independently cached at different clusters according
to a caching distribution, which is assumed the same at
all clusters. The caching distribution is defined as pc ,(
pc(1), pc(2), . . . , pc(Nf)

)
, where pc(k), k ∈ [Nf ] is the

probability that the k-th file is cached at a cluster. Each caching

1This may involve a quick handshake between the points in the same
caching entity.
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entity is assumed to store one file2 in their local cache, as in
[10, 19]. All clusters that have cached the k-th file constitute
a tier, called the k-th D2D caching tier. An example for the
D2D content distribution network with Nf = 3 is illustrated in
Fig. 1. In the next section, we will optimize this probabilistic
caching policy with known demand statistics and find the
optimal caching distribution.

C. Content Request and Delivery Model

A content client requests a file with a probability according
to the file popularity distribution, i.e., the Zipf distribution. If
it can find the requested file in the local caches of its adjacent
clusters, this request will be fulfilled by a uniformly randomly
chosen adjacent cluster via D2D links. Otherwise, the client
will be served by its nearest BS, which is assumed to access
all files through its backhaul link. Our analysis focuses on the
typical client located at the origin.

In the content delivery phase, all content providers are
assumed to be the active transmitters and the typical client
becomes the typical receiver. Conditioning on there being at
least one adjacent cluster, two cases that may occur for the
established D2D links are considered:

1) Non-cooperative Case: a transmitter x0 of a one-point
adjacent cluster sends the complete file by itself, which is
called single-point caching (SPC), with the SIR at the receiver
(client) given by

SIR =
h0ℓ(x0)∑

x∈Φ\{x0} hxℓ(x)
, (2)

where I1 =
∑

x∈Φ\{x0} hxℓ(x) is the total interference power
from other transmitters.

2) Cooperative Case: two transmitters x1, x2 of a two-
point adjacent cluster Φ0 cooperatively fulfill the complete
file transmission. The cooperative case is further divided into
two sub-cases according to the transmission scheme adopted:

• Cooperative Caching with Joint Transmission
(CCJT): a non-coherent joint transmission scheme is
adopted, with the SIR at the receiver given by

SIR =

∑
x∈Φ0

hxℓ(x)∑
x∈Φ\Φ0

hxℓ(x)
, (3)

where I2 =
∑

x∈Φ\Φ0
hxℓ(x) is the total interference

power from other transmitters.
• Cooperative Caching with Multi-stream Transmission

(CCMT): a parallel transmission scheme is adopted,
i.e., two transmitters deliver different parts of the file
concurrently over the same resource block, similar to
the caching scheme in [20]. At the typical receiver,
the successive interference cancellation (SIC) technique
is adopted to decode the signals from two transmitters
successively in the descending order of the average
received signal strength as in [21]. Specifically, suppose
that the elements of Φ0 are indexed as x(1) and x(2) with
ℓ(x(1)) > ℓ(x(2)), the signal from x(1) is decoded first,

2The generalization to the storage of multiple files is possible following
similar steps as in [18].

and if it is decoded successfully, it will be subtracted from
the received signal, then the residual received signal (the
signal from x(2)) is decoded. The SIR expressions for the
two data streams at the receiver for this caching strategy
are given by

SIR1 =
h1ℓ(x

(1))

h2ℓ(x(2)) + I2
, SIR2 =

h2ℓ(x
(2))

I2
. (4)

III. OPTIMAL CACHING POLICY

In this section, we derive the caching distribution pc that
maximizes the cache hit probability, defined as the probability
that the desired file of a client can be found in the local caches
of its adjacent clusters. As is described in Sec. II-B, due to
the limited communication distance, only if all the points of
the cluster are located within b(o,Rc), they can provide the
content for the client at o. Under such constraint, the optimal
caching distribution is given by the following theorem. We use
the notation [x]+ , max{0, x} for x ∈ R.

Theorem 1. Let

χ , 2

πR2
c

∫ Rc

min{|Rc−u|,Rc}
r arccos

r2 + u2 −R2
c

2ru
dr. (5)

The cache hit probability of hybrid caching in the GPP-based
D2D network is

phit =
∑

k∈[Nf ]

pr(k)
(
1− e−λppc(k)(p+(1−p)ϵ)πR2

c

)
, (6)

where ϵ = χ+
(
[Rc−u]+

)2
/R2

c and the optimal caching dis-
tribution that maximizes phit is obtained from the waterfilling
policy, given as

p∗c(k) =
1

λp(p+ (1− p)ϵ)πR2
c

[
ν − log(1/pr(k))

]+
, (7)

where ν is chosen such that
∑

k∈[Nf ]
p∗c(k)=1.

Proof: See Appendix A.

Note that (6) and (7) are closed-form results since χ in (5)
can be expressed in closed (but rather unwieldy) form.

When p = 1, the GPP reduces to a PPP, and the following
corollary gives a consistent result with that in [10, Eq. (4)].

Corollary 1. The cache hit probability in a PPP-based D2D
network is

phit =
∑

k∈[Nf ]

pr(k)
(
1− e−λppc(k)πR

2
c

)
, (8)

and the waterfilling policy yields the optimal caching distri-
bution, given as

p∗c(k) =
1

λpπR2
c

[
ν − log(1/pr(k))

]+
, (9)

where ν is chosen such that
∑

k∈[Nf ]
p∗c(k)=1.

Corollary 2. When λpπR
2
c

γ
p

(
2Nf log(Nf )−log(Nf !)

) → ∞, the optimal

caching distribution tends to the uniform distribution, i.e.,
p∗c(k) → 1

Nf
, k ∈ [Nf ].
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Fig. 2. Cache hit probability and optimal caching distribution for
p = 0.5, u = 1, Nf = 50.

Proof: According to the waterfilling policy, the values
log(1/pr(k)) are regarded as the bottoms of a vessel for
different files. If ζ = λp(p + (1 − p)ϵ)πR2

c units of water
are poured into the vessel, the caching probability of file k is
the depth of the water normalized by ζ, and ν is the height
of the water surface. When ζ increases to the level where all
bottoms are below the water surface, the maximum depth gap
between the files is log(pr(1)/pr(Nf)). A sufficiently large ζ
(dominated by λpπR

2
c ) makes the depth gap negligible and

thus the caching distribution tends to the uniform distribution,
which follows from

ζ −
∑

k∈[K] log(pr(k)/pr(Nf))

Nf log(pr(1)/pr(Nf))
→ ∞. (10)

Substituting the expressions of pr(k), we have
λpπR

2
c

γ
p

(
2Nf log(Nf)−log(Nf !)

) → ∞, which indicates that the

optimal caching distribution tends to the uniform distribution
when the mean number of clusters in the caching region
grows large.

Fig. 2(a) shows the cache hit probability versus the caching
radius for different λp and γ. With the increase of λp, Rc

and γ, the cache hit probability increases, which indicates
that: (1) as the number of content providers in the networks
grows, the possibility that a requested file can be found in
the local cache grows accordingly. This point highlights that
content caching is especially suitable to D2D networks where
the number of content providers is inherently concentrated
in regions with large demand; (2) as the content popularity
distribution becomes more skewed (i.e., a larger value of γ),
fewer popular contents constitute a majority of the content
requests, which also makes the possibility of device caching
larger. This is perfectly consistent with the original intention
of introducing local caching to exploit the inherent mass reuse
of a few popular contents while coping with the asynchronous
requests.

Fig. 2(b) investigates the optimal caching distribution for
different Rc, γ and λp. With the decrease of Rc and λp or
increase of γ, the probability of caching popular files increases,
which makes the distribution more concentrated in the fewer
popular files. Intuitively, when the number of content providers
within the local cache area decreases, it is efficient to let more
providers cache the more popular files, and vice versa. When
Rc is large enough, see the curve of Rc = 100, the caching
distribution is quite close to the uniform distribution. In this
regime, the skewness of the popularity distribution has little
effect on the cache placement since the number of providers
is large enough to pre-fetch each file in the content catalog
with almost the same possibility.

In Fig. 3, we compare the optimal caching policy in
Theorem 1 with the popularity-based caching policy (i.e.,
each provider stores a file from the catalog according to the
content popularity distribution) and the uniform caching policy
(i.e., each provider stores a file from the catalog uniformly),
which are commonly used in previous works, for different
Nf . It is obvious that the optimal caching policy has the
highest cache hit probability, i.e., the optimal caching policy
has more opportunity to offload traffic from cellular networks.
In addition, for small Rc, i.e., Rc ≤ 30, the gap between
the optimal caching policy and the uniform caching policy is
obviously larger than that between the optimal caching policy
and the popularity-based caching policy. As Rc increases, the
cache hit probability of the uniform caching policy tends to
that of the optimal caching policy at a faster rate than that
of the popularity-based caching policy. This is consistent with
the case of Rc = 100 in Fig. 2(b), where the optimal caching
distribution reduces to a uniform distribution.

IV. PERFORMANCE ANALYSIS

A. Success Probability
We assume that the receiver can decode successfully if

its SIR exceeds a threshold θ, and the success probabil-
ity is defined as the probability of a transmission that is
successfully decoded. In this section, we derive the com-
plementary cumulative distribution function (CCDF) of the
SIR (or, equivalently, the link success probability) at the
receiver for SPC, CCJT, and CCMT, respectively. For sim-
plicity, considering a point x of a two-point cluster, we
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Fig. 3. Comparison of different caching policies in terms of cache
hit probability for λp = 0.01, γ = 1, p = 0.5 u = 1.

let c(∥x∥,Ψ) ,
√
∥x∥2+u2+2∥x∥u cosΨ be the distance

between its cooperator and the origin, where Ψ is the angle
between the ray from x to its cooperator and the radial
direction of x.

1) SPC: In this case, the typical receiver attempts to
receive the caching file from a one-point adjacent cluster with
transmitter x0. Thus the link success probability is

PSPC(θ) = P
(
h0∥x0∥−α

I1
≥ θ

)
. (11)

The following theorem gives the success probability of SPC
for the typical receiver.

Theorem 2. Conditioned on x0 ∈ b(o,Rc) being a point in a
one-point cluster of Φ, the link success probability of SPC is

PSPC(θ) =
1

R2
c

∫ R2
c

0

LI1(θt
α/2)dt, (12)

where

LI1(s) = exp

(
2πλp

∫ ∞

0

(
p

1+sr−α
+

1− p

1+sr−α

×
∫ π

0

1

π

dψ

1+s(c(r, ψ))−α
−1

)
rdr

)
. (13)

Proof: We have

PSPC(θ)=P
(
h0∥x0∥−α

I1
>θ

)
(a)
= E∥x0∥

(
LI1(θ∥x0∥α)

)
, (14)

where (a) follows with Rayleigh fading of h0 and expecta-
tion over ∥x0∥. From Slivnyak’s theorem [16, Thm. 8.10],
conditioning on x0 does not change the distribution of the
other clusters, and the distribution of the points excluding x0
remains the same as in the original GPP Φ. Therefore, the
Laplace transform of I1 is derived as

LI1(s)= E

(∏
x∈Φ

1

1 + s∥x∥−α

)

(b)
= exp

(
λp

∫
R2

(
E
∏

y∈Φx

1

1 + s∥y∥−α
− 1

)
dx

)
(c)
= exp

(
λp

∫
R2

(
p

1 + s∥x∥−α
+

1− p

1 + s∥x∥−α

×EΨ
1

1 + s(c(∥x∥,Ψ))−α
− 1

)
dx

)

= exp

(
2πλp

∫ ∞

0

(
p

1+sr−α
+

1− p

1+sr−α

×
π∫

0

1

π

dψ

1+s(c(r, ψ))−α
−1

)
rdr

)
, (15)

where {Φx, x ∈ Φp} are the clusters of Φ, (b) follows from the
probability generating functional (PGFL) of Poisson cluster
processes [16, Cor. 4.12] and (c) follows by the definition
of the GPP. Since x0 is uniformly distributed in b(o,Rc), its
probability density function (PDF) is f∥x0∥(t) = 2t

R2
c

. Ψ is
uniformly distributed in [0, 2π] according to the definition of
the GPP.

2) CCJT: In this case, the typical receiver attempts to
receive the caching file from a two-point adjacent cluster
Φ0 and the two transmitters x1, x2 deliver the same content
jointly. Thus, the received power is the sum of the received
signal powers from the two transmitters, and the link success
probability is

PCCJT(θ) = P
(
h1ℓ(x1) + h2ℓ(x2)

I2
≥ θ

)
. (16)

The following theorem gives the success probability of CCJT
for the typical receiver.

Theorem 3. Conditioned on Φ0 being a two-point cluster of
Φ ∩ b(o,Rc), the link success probability of CCJT is

PCCJT(θ) =
1

R2
c

∫ Rc

0

2t

π−φ(t)

∫ π

φ(t)

(
LI2

(
θtα
)

1−(t/c(t, ψ))α

−
LI2

(
θ(c(t, ψ))α

)
(c(t, ψ)/t)α−1

)
dψdt, (17)

where LI2(s) = LI1(s) and

φ(t)=

{
π − arccos

t2+u2−R2
c

2tu , for t ≥ |Rc − u|
π − π[Rc−u]+/(Rc− u), for t < |Rc − u|.

(18)

Proof: See Appendix B.

Compared with SPC, CCJT is expected to provide a higher
success probability due to the summation of two desired
signals, which, in turn, implies that the content providers in
CCJT can save their energy by reducing their transmit power
while keeping the success probability no less than that of
SPC. This way, some providers whose remaining energy is
insufficient for delivering the complete file can still contribute
to the local caching through CCJT. The following corollary
investigates the relationship between the permitted fraction of
the transmit power and the link success probability.
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Corollary 3. If the transmitters in CCJT only use a frac-
tion η of their transmit power, the link success probability
PCCJT(η, θ) is an increasing function of η for an arbitrary
fixed θ.

Proof: When the transmitters in CCJT only use a fraction
η of their transmit power, the SIR is expressed as

SIR(η) =
ηh1ℓ(x1) + ηh2ℓ(x2)∑

x∈Φ(1)

hxℓ(x) +
∑

x∈Φ(2)

ηhxℓ(x)

=
h1ℓ(x1) + h2ℓ(x2)∑

x∈Φ(1)

hxℓ(x)/η +
∑

x∈Φ(2)

hxℓ(x)
. (19)

For 0 ≤ η1 < η2 ≤ 1, we have SIR(η1)< SIR(η2) and thus
P(SIR(η1)≥θ)≤ P(SIR(η2)≥θ). As a result, the link success
probability increases with η for an arbitrary fixed θ.

3) CCMT: In this case, the typical receiver attempts to
receive the caching file from a two-point adjacent cluster Φ0

and the two transmitters x1, x2 send different data streams
to the receiver simultaneously. The link success probability is
then defined as the probability that both streams are decoded
successfully, i.e.,

PCCMT(θ) = P (SIR1 ≥ θ, SIR2 ≥ θ) . (20)

The following theorem gives the success probability of CCMT
for the typical receiver.

Theorem 4. Conditioned on Φ0 being a two-point cluster of
Φ∩ b(o,Rc), the link success probability of CCMT using SIC
is

PCCMT(θ)=
1

R2
c

Rc∫
0

2t

π−φ(t)

( ϑ(t)∫
φ(t)

LI2

(
θ(θ+1)tα+θ(c(t, ψ))α)

)
1 + θ(t/c(t, ψ))α

dψ

+

π∫
ϑ(t)

LI2

(
θ(θ+1)(c(t, ψ))α)+θtα

)
1 + θ(c(t, ψ)/t)α

dψ

)
dt, (21)

where ϑ(t) = π if t ≤ u/2, otherwise ϑ(t) = π − arccos u
2t .

Proof: See Appendix C.

Fig. 4 presents the success probabilities of SPC, CCJT
and CCMT as a function of Rc (Fig. 4(a)), and u (Fig.
4(b)), respectively. Since CCMT delivers two data streams
simultaneously, it would be unfair to compare the success
probability with the same θ as SPC and CCJT. Given an SIR
threshold θ for SPC and CCJT, the rate is (approximately)
R = log(1 + θ), and the required rate for CCMT is only
R/2 per stream, which means the SIR threshold for CCMT
should be θ̃ =

√
1 + θ − 1. From Fig. 4(a), we observe that

CCJT always achieves a higher success probability than SPC
and CCMT, demonstrating the benefit of CCJT in terms of
higher transmission reliability. In addition, SPC and CCMT
have quite similar success probabilities and SPC results in a
slightly higher success probability than CCMT for a larger θ.
This is because: (1) having two transmitters in CCMT causes
inter-stream interference, which reduces the SIRs of the two
streams; (2) in the CCMT case, the transmission efficiency is
improved through parallel transmission, i.e., the transmission
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Fig. 4. The success probabilities of SPC, CCJT, and CCMT for λp =

0.05, p = 0.5, α = 4. (For CCMT, θ̃ =
√
1+θ − 1 is used.)

duration is reduced in half, at the expense of the reliability3,
and its performance relies heavily on the SIC receiver, which
was shown to be especially beneficial if very low-rate codes
are used [22].

Fig. 4(b) shows how the distance u affects the success
probability for SPC, CCJT, and CCMT. Since u is the distance
between the two cooperative transmitters, it has a more pro-
nounced effect on the performance of CCJT and CCMT than
that of SPC. A larger u means one of the two transmitters is
more likely to be far from the receiver, and the desired signal
is attenuated accordingly.

B. Per-User (Per-Client) Capacity

In addition to the transmission reliability, the per-user (per-
client) capacity is another important performance metric since

3Intuitively, although the potential benefit of coded caching is strongly
limited by the reduced transmission reliability when a high transmission
rate is required, the performance can be improved significantly if a proper
interference mitigation technique is adopted, which is left for the future work.
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it directly reflects the transmission efficiency. Under a fixed-
rate transmission based on the SIR threshold, the per-user
capacities of SPC and CCJT are given as

τSPC = κ1 log(1 + θ)PSPC(θ),

τCCJT = κ2 log(1 + θ)PCCJT(θ), (22)

where κ1 = 1 − e−λppπR
2
c and κ2 = 1 − e−λp(1−p)ϵπR2

c are
the probabilities that there is at least one adjacent cluster for
the content delivery.

In the CCMT case, the per-user capacity depends on the
number N of data streams successfully decoded by the
receiver. Accordingly, the per-user capacity in this case is
defined as the total information rate received at the receiver
[22], expressed by

τCCMT = κ2 log(1 + θ)E[N ], (23)

where E[N ] is the mean number of successively decoded
streams. The following corollary gives an exact expression of
E[N ] and the corresponding per-user capacity.

Corollary 4. The mean number of successfully decoded
streams with CCMT is

N̄CCMT(θ)=
1

R2
c

Rc∫
0

2t

π−φ(t)

(∫ ϑ(t)

φ(t)

1

1+θ(t/c(t, ψ))α

[
LI2

(
θtα
)

+LI2

(
θ(θ + 1)tα+θ(c(t, ψ))α

)]
dψ

+

∫ π

ϑ(t)

1

1+θ(c(t, ψ)/t)α

[
LI2

(
θ(c(t, ψ)α

)
+LI2

(
θ(θ+1)((c(t, ψ))α+θtα

)]
dψ

)
dt, (24)

and thus the per-client capacity is τCCMT = κ2 log(1 +
θ)N̄CCMT(θ).

Proof: See Appendix D.

Fig. 5 compares the per-user capacity curves of SPC, CCJT,
and CCMT as a function of Rc (Fig. 5(a)), and u (Fig. 5(b)).
Since the per-user capacity necessarily tends to zero for both
θ → 0 and θ → ∞, it assumes a maximum at a finite value
of θ. Fig. 5(a) shows that for Rc = 3, the per-user capacity
of SPC, CCJT, and CCMT is maximized quite exactly at
θ = 5 dB, 8 dB, and 2 dB, respectively. As Rc increases, the
maximum per-user capacity of each caching scheme decreases
due to the attenuation of the desired signal. Moreover, as
expected, we observe that the performance benefit in terms
of higher transmission efficiency of CCMT lies in the regime
where θ is relatively small (i.e., θ < 0 dB for Rc = 3) while
the benefit of CCJT lies in the opposite regime where θ is
relatively large (i.e., θ > 0 dB for Rc = 3). Since p = 0.5,
we have κ1 ≈ κ2 from the parameter setting in Fig. 5(a),
and under this condition, irrespective of θ, there is always
a cooperation scheme that achieves higher per-user capacity
than the non-cooperative transmission, thus highlighting the
significant benefit of cooperation in device caching.

Fig. 5(b) shows the impact of u on the per-user capacities of
SPC, CCJT, and CCMT. It is seen that the per-user capacities
of both CCJT and CCMT are more susceptible to the distance
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Fig. 5. The per-user capacity of SPC, CCJT, and CCMT for λp =
0.05, p = 0.5, α = 4.

between the two cooperators than that of SPC. For all the three
schemes, different u results in almost the same optimal value
of θ but rather different maximum per-user capacities. As u
increases, the number of adjacent two-point clusters decreases,
reducing κ2 significantly and, in turn, the per-user capacity.

Fig. 6 presents how the parameter p affects the per-user
capacities of SPC, CCJT, and CCMT. It is seen that for both
the two cooperative caching schemes: CCJT and CCMT, the
per-user capacity is negatively correlated to p, while for the
SPC, the situation is reversed. This indicates that κ1 and
κ2 have obvious impacts on the per-user capacity. Since p
represents the probability of a cluster having one point, as p
increases, κ1 increases while κ2 decreases significantly, which
means the more providers are available (either in coopera-
tive mode or non-cooperative mode), the higher the per-user
capacity. This figure reveals that both the non-cooperative
and the cooperative strategies have their operating regimes
where they achieve better performance. However, if we hope to
have good performance in all cases, a hybrid caching strategy
combining the non-cooperative scheme with the cooperative
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Fig. 7. The per-user capacity of CCJT vs. power ratio coefficient
η for λp = 0.05, p = 0.5, u = 1, Rc = 3, α = 4.

scheme should be exploited. Fig. 7 compares the per-user
capacities of CCJT and SPC with different transmit power
assignment for CCJT providers. An interesting observation in
this figure is that for each θ, there is always an intersection
point corresponding to a value of η, denoted by ηm. Then,
CCJT achieves a higher per-user capacity than SPC as long as
the CCJT provider permits at least ηm of its maximum transmit
power. It is shown that for the given three values of θ, ηm is
less than 0.5, which means that a CCJT provider uses less than
half of the energy consumed by a SPC provider for the same
per-user capacity. In other words, once the available energy
of a provider is larger than the minimum transmit energy
requirement, this provider can still transmit the file jointly
with a cooperator. Thus, by cooperation in the content delivery
phase, the energy consumption of each transmitter can be
significantly reduced while maintaining the same performance
as in the traditional non-cooperative case.

Intuitively, the significant benefit of cooperation plus proper
reciprocity and incentives from operators will definitely en-
courage more users to participate in the device caching and
thus offload more traffic from the congested cellular networks,
providing a much better user experience. Motivated by this, we
propose two novel hybrid caching policies for cache-enabled
D2D networks, i.e., the combination of SPC and CCJT as
well as that of SPC and CCMT, where SPC is modeling
those providers who have enough battery energy to complete
the content delivery individually while CCJT or CCMT is
modeling providers who have limited energy and may not be
willing to deliver the file by themselves. Two key performance
indicators of local caching, i.e., offloading gain and delay,
of the proposed hybrid caching policies are analyzed in the
following.

C. Offloading Gain

In this subsection, we measure the offloading gain of the hy-
brid caching schemes, which is defined as the average fraction
of each file that can be successfully delivered by the cache-
enabled D2D network and hence offloaded from the cellular

network at a given target SIR threshold. Two hybrid caching
strategies are considered, namely SPC-CCJT and SPC-CCMT.
For comparison, we first consider a conventional strategy as a
baseline where only SPC is available for content delivery and
providers of the two-point clusters will not contribute to any
offloaded traffic due to limited battery energy. Thus, in this
case, the offloading gain is given by

ρSPC =

Nf∑
k=1

pr(k)p̃f(k)PSPC(θ), (25)

where p̃f(k) = 1 − exp
(
−λppc(k)pπR2

c

)
is the probability

that there exists at least one adjacent one-point cluster storing
file k.

For hybrid caching, points of Φ(1) operate in SPC mode
while those of Φ(2) operate in CCJT or CCMT mode. From the
proof of Theorem 1, when the typical receiver requests file k
and can be served by its adjacent clusters, it is easily obtained
that the file is transmitted by the single-point cluster with
probability w1 = p

p+(1−p)ϵ and cooperatively transmitted by

the two-point cluster with probability w2 = (1−p)ϵ
p+(1−p)ϵ . Thus,

the offloading gain of SPC-CCJT is expressed as

ρSPC−CCJT =

Nf∑
k=1

pr(k)pf(k)
(
w1PSPC(θ) + w2PCCJT(θ)

)
,

(26)
where pf(k) = 1− exp

(
−λppc(k)(p+ (1− p)ϵ)πR2

c

)
is the

probability that there exists at least one adjacent cluster storing
file k. When CCMT is adopted, since the data stream from
each transmitter only accounts for half of the file, the average
fraction of the file that can be successfully delivered for such
a caching strategy is N̄CCMT(θ)/2. Thus, the offloading gain
of SPC-CCMT is given by

ρSPC−CCMT=

Nf∑
k=1

pr(k)pf(k)
(
w1PSPC(θ)+w2N̄CCMT(θ)/2

)
.

(27)
Fig. 8 illustrates the offloading gains of SPC-CCJT and

SPC-CCMT, in comparison with the conventional method
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Fig. 8. Offloading gain versus θ for λp = 0.05, p = 0.5, u = 1,
α = 4, Nf = 10, γ = 1, η = 0.5.

Fig. 9. Offloading gain versus λp for p = 0.5, u = 1, α = 4,
Nf = 10, θ = 0 dB, γ = 1, η = 0.5.

with only SPC at different SIR requirements θ. As expected,
we observe that both hybrid policies achieve a much higher
offloading gain than conventional caching since in hybrid
caching, more devices join the caching and make contributions
to the traffic offloaded from cellular networks. The perfor-
mance difference between the two hybrid caching policies
lies in the volume of the traffic offloaded. However, from the
definition of the offloading gain, this performance metric does
not take the transmission time into account. Actually, since
each stream in CCMT only accounts for half the size of the
file, it is transmitted in half of the time that SPC or CCJT
spends. Thus, from the perspective of transmission efficiency,
CCMT is better; while from the perspective of transmission
reliability, CCJT is better. The two cooperative schemes are
complementary in performance. In addition, it is shown that
the offloading performance decreases with the increase of
Rc. Although the increase of Rc increases the probability of
finding a cluster within b(o,Rc), its direct effect on the desired
signal strength is more prominent.

Fig. 9 shows the relationship between the offloading gain
and the network density as a function of λp for different
Rc. We observe that for the given system parameters, there
is always a maximum offloading performance at some finite
value of λp, highlighting the inherent trade-off between the
cache hit probability and the success probability: on the
one hand, increasing the density of providers will increase
the probability to find the requested file in the local cache;
on the other hand, increasing the density will cause more
interference and hence reduce the success probability. Interest-
ingly, changing Rc has a negligible impact on the maximum
offloading gain but results in quite different node densities that
maximize the offloading gain. This phenomenon indicates the
inherent relationship between the optimal network density and
the caching radius. Thus, considering the trade-off between
the cache hit probability and the desired signal strength, the
caching radius Rc should be set judiciously.

Fig. 10 plots the offloading performance of SPC-CCJT,
SPC-CCMT, and only SPC as a function of the popularity

exponent γ for different Nf . With the increase of γ or
decrease of Nf , the offloading gain increases, which means the
more skewed the popularity distribution, the better offloading
performance can be achieved by device caching, validating the
effectiveness of local caching to cope with the asynchronous
but redundant pattern of content requests. Considering the
limited storage capacity of devices, the cache-enabled D2D
network is especially suitable for the case when most of the
user requests are concentrated in few very popular files.

D. Delay Analysis

We characterize the delay performance of different caching
strategies through the content retrieval delay, denoted by D
and defined as the delay experienced by a client when retriev-
ing a requested content from any available source. Specifically,
if a client can find the requested file in the local caches of its
adjacent clusters, this file request will be fulfilled via D2D
links. Otherwise, this client will be served by its nearest BS
in cellular networks, and the coverage probability is given in
[23] via the Gaussian hypergeometric function 2F1 as

Pcell(θ) =
1

2F1(1,−2/α, 1− 2/α,−θ)
. (28)

The transmission delay for the BS consists of the backhaul
delay and the BS transmission delay because the BS needs to
download the file from data servers first through the backhaul
link. The backhaul delay DB is defined as the file size divided
by the data rate Rb of the backhaul link, i.e., DB = F/Rb.
From [24], Rb = C1(1+phit)

λb
+ C2, which is related to the

density of BSs and associated traffic load. Given a delay
requirement D for a requested file, the equivalence between
the SIR and delay requirements is given as

P(D≤D)=P(B log(1+SIR) ≥ F/D)=P(SIR ≥ 2
F

BD −1),
(29)

where B is the system bandwidth. Assuming that the cel-
lular bandwidth is equal to that of the D2D network [25,
Chap. 9.2.1], the corresponding delay requirement for cellular
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Fig. 11. Delay performance of SPC-CCJT, SPC-CCMT and SPC
for Rc = 3, α = 4, Nf = 10, p = 0.5, u = 1, B = 10MHz,
F = 25Mb, λb = 10−4, C1 = 30, C2 = 105.

networks is modified to D − DB. Letting θ̄ = 2
F

BD − 1,
θ̄cell = 2

F
B(D−DB) − 1, we have

PSPC(D < D)=

Nf∑
k=1

pr(k)
[
p̃f(k)PSPC(θ̄)

+
(
1− p̃f(k)

)
Pcell(θ̄cell)

]
. (30)

Similarly, for SPC-CCJT, we have

PSPC−CCJT(D<D)=

Nf∑
k=1

pr(k)
[
pf(k)

(
w1PSPC(θ̄)

+w2PCCJT(θ̄)
)
+ (1− pf(k))Pcell(θ̄cell)

]
. (31)

When CCMT is adopted, one data stream only accounts for
half the file and the SIR threshold in this strategy is θ̄MT =
2

F
2BD − 1. Thus, we have

PSPC−CCMT(D<D)=

Nf∑
k=1

pr(k)
[
pf(k)

(
w1PSPC(θ̄)

+w2PCCMT(θ̄MT)
)
+(1−pf(k))Pcell(θ̄cell)

]
.(32)

In Fig. 11, the two hybrid caching policies are compared
in terms of the delay performance, where the conventional
caching policy only with SPC serves as the baseline. It is
observed that both hybrid caching policies outperform the
baseline for lower delay requirements, i.e., D < 16 dB in
this figure, which demonstrates the benefits of the proposed
caching policies for delay-sensitive services. The reason why
SPC-CCMT achieves a lower performance than SPC-CCJT
is that the inter-stream interference causes lower success
probability even with smaller SIR requirement, and the CDF
of the delay follows directly from the success probability
which requires both transmission streams to satisfy the SIR
requirement. In addition, the singularity of the curves is due
to the backhaul delay from the cellular network, which can
be interpreted as follows. When the delay requirement is less
than the backhaul delay, the delay performance is dominated

by the transmission delay of the local caching since most of
the BS transmissions can not satisfy the delay requirement.
Conversely, when the required delay is larger than the backhaul
delay, see D > 17 dB, the delay performance curves of
the three caching strategies tend to coincide with each other
for λp = 0.05, since at this time, the cellular transmission
assumes the dominant role. As for the case of λp = 0.25,
the performance of the two hybrid caching schemes for large
delay requirement is worse than that of the SPC as a result
of two aspects: on the one hand, a large node density causes
severe interference and hence leads to very poor D2D link
performance; on the other hand, since in the SPC case, the
cache hit probability is lower than that in the hybrid case, most
content requests are actually served by the cellular network
which provides better performance than D2D links.

V. CONCLUSIONS

In this paper, we proposed a hybrid device caching strategy
that combines the conventional single-device caching with
two-device cooperative caching, where the latter is designed
for users unwilling to help transmit the complete file by
themselves due to limited battery energy. To quantify the per-
formance of the hybrid caching strategy, we adopted the GPP
as a model for the cache-enabled D2D networks where caching
strategies with and without cooperation coexist and provided a
general and tractable framework for the performance analysis.

We first considered a probabilistic caching placement and
derived the optimal caching distribution that maximizes the
cache hit probability. It turns out that there are close connec-
tions between the cache hit probability and parameters such
as the node density, caching radius, user request statistics
and the number of files in the catalog. Furthermore, using
this framework, we derived the success probability and per-
user capacity of SPC, CCJT, and CCMT. The results indicate
that CCJT is superior to SPC and CCMT in terms of higher
transmission reliability (i.e., the success probability) while
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CCMT is superior to SPC and CCJT in terms of higher trans-
mission efficiency (i.e., the per-user capacity) and particularly
beneficial in the low-SIR regime. These results were then
applied to quantify the offloading gain and delay performance
of two hybrid caching schemes: SPC-CCJT and SPC-CCMT.
It is shown that both performance metrics can be improved
significantly compared with the conventional non-cooperative
caching strategy, since cooperation reduces the energy cost
of each content provider and thus effectively copes with the
limited user allowed battery consumption in practice.

In summary, the hybrid caching strategy is expected to
bring substantial benefits for future wireless edge caching.
However, since SPC-CCMT with SIC is vulnerable to the
harsh interference environment, its reliability can hardly be
guaranteed despite the high complexity. Thus, SPC-CCJT is
preferred, due to its higher transmission reliability and lower
system complexity.

APPENDIX A
PROOF OF THEOREM 1

Proof: Since each cluster caches the same file indepen-
dently, the locations of content providers caching the k-th
file constitute a GPP Φk where the intensity of its parent
point process Φp,k is λk = λppc(k). According to Def. 1,
each cluster has one or two points independently, thus we
have Φk = Φ

(1)
k ∪ Φ

(2)
k , where Φ

(1)
k and Φ

(2)
k represent the

point sets composed by the one-point clusters and two-point
clusters in Φk, respectively. Let b(o,Rc) be the caching region
for the typical client, and #A denotes the cardinality of
the set A. Further, Ak = {Φ(1)

k ∩ b(o,Rc) = ∅} denotes
the event that no point of Φ

(1)
k is located in b(o,Rc), and

Bk = {#{Φx∩b(o,Rc)} ≤ 1 : ∀Φx ⊆ Φ
(2)
k } denotes the event

that at most one point in each cluster of Φ(2)
k within b(o,Rc).

Therefore, the cache hit probability of requesting the k-th file
is 1 − P(Ak)P(Bk). Since Φ

(1)
k is a homogeneous PPP with

density λkp, it is easy to see that P(Ak) = exp(−λkpπR2
c).

It is not straightforward to obtain the expression of P(Bk),
however, Bk can be decomposed into disjoint events depending
on the number of parent points from Φ

(2)
k located in b(o,Rc).

Letting Cn = {#{ΦCn = Φp,k ∩ Φ
(2)
k ∩ b(o,Rc)} = n}

denote the event that there only exist n parent points from
Φ

(2)
k located in b(o,Rc), we obtain

P(Bk)=
∞∑

n=0

P(Cn)P(Bk | Cn)

=
∞∑

n=0

e−λk(1−p)πR2
c
(λk(1−p)πR2

c)
n

n!
P(Bk |Cn). (33)

Obviously, we have P(Bk | C0) = 1. Since ΦCn is also a PPP,
it suffices to derive the probability ϵ̄ that x+ Vx is outside of
b(o,Rc) for an arbitrary x ∈ ΦCn and then P(Bk | Cn) = ϵ̄n,
where Vx is the vector from x to its cooperator and {x, x+Vx}
forms a two-point cluster. It is known that the PDF of the
distance from the point x to the origin is f∥x∥(r) = 2r/R2

c ,
and given ∥x∥ = r, we have that x + Vx is outside b(o,Rc)
with probability 2φx

2π from Fig. 12, where

c
R u

r

x
j

c
R

u

r

( )a ( )b

x

x
x V+

x
x V+

x

x
j

Fig. 12. Illustration for the proof of Thm. 1.

φx =

{
π−arccos

r2+u2−R2
c

2ru , for r ≥ |Rc−u|
π−π[Rc−u]+/(Rc−u), for r < |Rc−u|.

(34)

Averaging over f∥x∥(r) for φx/π, we have

ϵ̄=1−
(
[Rc−u]+

)2
R2

c

− 2

πR2
c

∫ Rc

ζ

r arccos
r2+u2−R2

c

2ru
dr, (35)

ζ = min{|Rc − u|, Rc} and P(Bk) = exp(−λk(1 − p)(1 −
ϵ̄)πR2

c). Letting ϵ = 1 − ϵ̄, and following from the total
probability law over the content popularity distribution (1),
we have the cache hit probability

phit =
∑

k∈[Nf ]

pr(k)
(
1− e−λppc(k)(p+(1−p)ϵ)πR2

c

)
. (36)

The optimal caching distribution that maximizes the cache
hit probability can be found from the following problem

max
pc

∑
k∈[Nf ]

pr(k)
(
1− e−λppc(k)(p+(1−p)ϵ)πR2

c

)
,

subject to
∑

k∈[Nf ]

pc(k) = 1, pc(k) ≥ 0, k ∈ [Nf ]. (37)

Since the objective function is the sum of Nf exponential
functions and the constraints are linear, this problem is convex.
From the Lagrange multiplier method, the optimal caching
distribution should satisfy the following conditions,

p∗c(k)=
1

λp(p+(1−p)ϵ)πR2
c

[
ν−log(1/pr(k))

]+
, k ∈ [Nf ],

(38)
where

∑
k∈[Nf ]

p∗c(k) = 1 and ν is related to the Lagrange
multiplier. In essence, this optimal distribution can be easily
obtained by common waterfilling methods, where ν is the
height of the water surface.

APPENDIX B
PROOF OF THEOREM 3

Proof: In the CCJT case, the received power, denoted by
µsum, is

µsum = h1∥x1∥−α + h2(c(∥x1∥,Ψ))−α. (39)

Since both transmitters should be located within the
caching radius, Ψ is uniformly distributed in [φ(∥x1∥), π] ∪



13

[−π,−φ(∥x1∥)], where φ(∥x1∥) is obtained through Fig. 12
as

φ(∥x1∥)=

{
π− arccos

∥x1∥2+u2−R2
c

2∥x1∥u , for ∥x1∥ ≥ |Rc − u|,
π− π[Rc − u]+/(Rc − u), for ∥x1∥ < |Rc − u|.

(40)
Since h1 and h2 are independent exponentially distributed
random variables, µsum follows a hypoexponential or Erlang
distribution, and the corresponding complementary cumulative
distribution function is given by

F̄µsum(x) =

{ ξ2
ξ2−ξ1

e−ξ1x − ξ1
ξ2−ξ1

e−ξ2x, if ξ1 ̸= ξ2,

ξ21xe
−ξ1x, if ξ1 = ξ2,

(41)

where ξ1 = ∥x1∥α and ξ2 = (c(∥x1∥,Ψ))α. The success
probability is given by

PCCJT(θ)=E
(
µsum

I2
≥θ
)
=E∥x1∥,Ψ,I2

(
F̄µsum(I2θ)

)
. (42)

Since Ψ has a continuous uniform distribution, the event ξ1 =
ξ2 occurs with probability 0. Thus, we have

PCCJT(θ)=E∥x1∥,Ψ

( ξ2
ξ2−ξ1

LI2(ξ1θ)−
ξ1

ξ2−ξ1
LI2(ξ2θ)

)
. (43)

Due to Slivnyak’s theorem, the distribution of the points
excluding Φ0 also remains the same as the original GPP Φ and
thus LI2(s) = LI1(s). The final result follows by substituting
ξ1, ξ2, with the PDF of Ψ by 1

2(π−φ(t)) and the PDF of ∥x1∥
by f∥x1∥(t) = 2t/R2

c
.

APPENDIX C
PROOF OF THEOREM 4

Proof: The receiver decodes the signals from the desired
two-point cluster successively in the descending order of the
average received signal strength, where the order is in fact
determined by Ψ with its valid range given in (40). Due to
the symmetry, it suffices to analyze the decoding order for
Ψ ∈ [φ(∥x1∥), π]. As Ψ increases from φ(∥x1∥) to π, see Fig.
12 (a), ∥x2∥ decreases monotonously and thus there is another
critical angle of ϑ(∥x1∥) to make ∥x1∥−α ≥ ∥x2∥−α when
Ψ ≤ ϑ(∥x1∥) (similar to Fig. 12 (b)). Through the geometric
relationship, we obtain

ϑ(∥x1∥) =
{
π, for ∥x1∥ ≤ u/2,
π − arccos u

2∥x1∥ , otherwise.
(44)

When Ψ ∈ [φ(∥x1∥), ϑ(∥x1∥)]∪ [−ϑ(∥x1∥), −φ(∥x1∥)], we
have ∥x1∥−α ≥ ∥x2∥−α and

p1(θ) = P
( ∥x1∥−αh1
I2 + ∥x2∥−αh2

≥ θ,
∥x2∥−αh2

I2
≥ θ
)

=EI2,∥x1∥,Ψ

(
e−∥x1∥αθI2Eh2

(
e−
(
∥x1∥/c(∥x1∥,Ψ)

)α
θh2

×1
(
c(∥x1∥,Ψ))−αh2 ≥ I2θ

)))
=E∥x1∥,Ψ

(
LI2

(
θ∥x1∥α+θ(c(∥x1∥,Ψ))α+θ2∥x1∥α

)
1 + θ(∥x1∥/c(∥x1∥,Ψ))α

)

=
1

R2
c

Rc∫
0

2t

π−φ(t)

ϑ(t)∫
φ(t)

1

1 + θ(t/c(t, ψ))α

×LI2

(
θtα+θ(c(t, ψ))α)+θ2tα

)
dψdt. (45)

When Ψ∈ [ϑ(∥x1∥), π]∪ [−π, −ϑ(∥x1∥)], we have ∥x1∥−α<
∥x2∥−α and

p2(θ) = P
( ∥x2∥−αh2
I2 + ∥x1∥−αh1

≥ θ,
∥x1∥−αh1

I2
≥ θ
)

=
1

R2
c

Rc∫
0

2t

π−φ(t)

π∫
ϑ(t)

1

1 + θ(c(t, ψ)/t)α

×LI2

(
θtα+θ(c(t, ψ))α)+θ2(c(t, ψ))α

)
dψdt.(46)

By summing the two cases, the final link success probability
for CCMT is obtained.

APPENDIX D
PROOF OF COROLLARY 4

Proof: In the CCMT case, the mean number of the
successfully decoded data streams is

N̄CCMT(θ)= 2P(SIR1 ≥ θ, SIR2 ≥ θ)

+P(SIR1 ≥ θ, SIR2 < θ), (47)

where P(SIR1 ≥ θ, SIR2 ≥ θ) is obtained by Theorem 4. As
for the probability that only one data stream is decoded suc-
cessfully, i.e., P(SIR1 ≥ θ, SIR2 < θ), we derive as follows.
When Ψ ∈ [φ(∥x1∥), ϑ(∥x1∥)]∪ [−ϑ(∥x1∥), −φ(∥x1∥)], we
have

p̃1(θ) = P
( ∥x1∥−αh1
I2 + ∥x2∥−αh2

≥ θ,
∥x2∥−αh2

I2
< θ
)

= EI2,∥x1∥,Ψ

(
e−∥x1∥αθI2Eh2

(
e−(∥x1∥/(∥x1∥,Ψ))αh2

×1
(
(c(∥x1∥,Ψ))−αh2 < I2θ

)))
= E∥x1∥,Ψ

(
1

1 + θ(∥x1∥/c(∥x1∥,Ψ))α

(
LI2

(
θ∥x1∥α

)
−LI2

(
θ∥x1∥α + θ(c(∥x1∥,Ψ))α + θ2∥x1∥α

)))

=
1

R2
c

∫ Rc

0

2t

π−φ(t)

∫ ϑ(t)

φ(t)

1

1 + θ(t/c(t, ψ))α

×
(
LI2

(
θtα
)
−LI2

(
θtα+θc(t, ψ))α)+θ2tα

))
dψdt.(48)

When Ψ ∈ [ϑ(∥x1∥), π] ∪ [−π, −ϑ(∥x1∥)], we have

p̃2(θ)=P
( ∥x2∥−αh2
I + ∥x1∥−αh1

≥ θ,
∥x1∥−αh1

I2
< θ
)

=
1

R2
c

∫ Rc

0

2t

π−φ(t)

∫ π

ϑ(t)

1

1+θ(c(t, ψ)/t)α

(
LI2

(
θ(c(t, ψ))α)

)
−LI2

(
θtα+θ(θ+1)(c(t, ψ))α)

))
dψdt. (49)

By summing the two cases, we have P(SIR1 ≥ θ,SIR2 <
θ) = p̃1(θ)+p̃2(θ). Thus, the mean number of the successfully
decoded data streams can be obtained.
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