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Abstract—We analyze the effect of interference on the con-
vergence rate of average consensus algorithms, which iteratively
compute the measurement average by message passing among
nodes. It is usually assumed that these algorithms convergefaster
with a greater exchange of information (i.e., by increased network
connectivity) in every iteration. However, when interference is
taken into account, it is no longer clear if the rate of convergence
increases with network connectivity. We study this problem
for randomly-placed consensus-seeking nodes connected through
an interference-limited network. We investigate the following
questions: (a) How does the rate of convergence vary with
increasing communication range of each node? and (b) How does
this result change when each node is allowed to communicate
with a few selected far-off nodes? When nodes schedule their
transmissions to avoid interference, we show that the convergence
speed scales withr2−d, where r is the communication range
and d is the number of dimensions. This scaling is the result
of two competing effects when increasingr: Increased schedule
length for interference-free transmission vs. the speed gain
due to improved connectivity. Hence, although one-dimensional
networks can converge faster with a greater communication
range despite increased interference, the two effects exactly
offset one another in two-dimensions. In higher dimensions,
increasing the communication range can actually degrade the
rate of convergence. Our results thus underline the importance of
factoring in the effect of interference in the design of distributed
estimation algorithms.

Index Terms—Average Consensus, Wireless Networks, Scaling
Laws, MAC Protocols.

I. I NTRODUCTION

A. Motivation

The advent of wireless sensor and ad hoc networks has
motivated the need for distributed information processing
algorithms, which allow each node to operate only on local
information. A well-studied algorithm that allows distributed
averaging is the average consensus algorithm, wherein the
global average of a set of initial sensor observations can
be computed based on purely local computations at each
sensor. Starting from a set of initial measurements, the average
consensus algorithm allows a set of nodes to communicate
by a (possibly time-varying) topology to iteratively compute
the global average of the initial measurements, see e.g., [1]–
[8] and the references therein. The connectivity properties of
the topologies that ensure convergence have been well-studied
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Figure 1. An example illustrating the constraints introduced by interference.
If the nodes are physically placed as shown, interference limits the number
of nodes that can communicate concurrently. Assuming a spatial re-use factor
of two, the message-passing graph can be formed as a union of three feasible
sub-graphs, each of them satisfying interference constraints. We consider this
TDMA schedulefeasible.

(e.g., [9], [10]). Of late, the focus has shifted to studying
convergence in the face of communication constraints, like
quantization [11], [12], packet drops [13] and noise [14]. A
closely associated algorithm is the gossip algorithm [2], [15].

In this paper, unlike prior work, we study the effect of
interference, which becomes important when message-passing
topologies are realized in wireless networks. We explicitly
model the effect of interference on the rate of topology
formation and hence convergence of the average consensus
algorithm. This important effect—which crucially dependson
network geometry—has been largely ignored in the literature.
In wireless networks, depending on the physical proximity of
a to d andc to b, the transmission froma to b andc to d may
interfere with one another; hence two time slots may be needed
to establish the edges

−−−→
(a, b) and

−−−→
(c, d). The network thus

has two time-scales of interest: that of establishing individual
communications among the desired set of nodes and that of
the iterations of the distributed algorithms, which occur only
when all the desired nodes have successfully communicated.
One may thus, view the underlying communication network as
constructing the desired message passing graphs from several
feasible sub-graphs, each of which satisfies half-duplex, fading
and interference constraints. The union of all these sub-graphs
is the desired message passing graph.

To illustrate this, consider the formation of a simple linear
6-node network shown in Fig. 1. Suppose the estimation
algorithm requires nearest-neighbor communication (shown as
bidirectional edges). However, due to interference constraints,
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only every third node can transmit. In this case, we see
that forming the the desired topology requires at least three
time-slots, as shown. In other words, for these interference
constraints, this topology’sfastest rate of formationis three
time slots. Clearly, a topology’s intrinsic benefitand the fastest
rate of its formation determine its true utility.

The performance of the underlying (real-time) estimation
algorithm is thereforecoupled with algorithms for channel
access and routing. In our previous work [16], we studied the
coupling with channel access for the average consensus algo-
rithm for a certain class of deterministic network topologies.
Using a simple protocol model [17] for reception, we were
able to show that the effect of increasing network connectivity
depends crucially on its dimension. In our recent work [18] we
exploited the well-known parallels between the convergence
of the average consensus algorithm and Markov chain mixing
(e.g., [2] and the references therein) to study consensus on
disk graphs [19] using the more refined physical model. We
examined the scaling behavior of the fastest rate of topology
formation with interference, captured by the shortest feasible
TDMA schedules that construct the graph.

We note here that implementing inter-node communication
in a network will require some additional overhead. For
example, one possible protocol that establishes point-to-point
communication can have nodes tag their packets with their
uniquely assigned address. A receiver reads this address and
decodes a packet only if the address is that of one of its
intended transmitters. In this work, we neglect this additional
overhead. However, we show that even when this overhead is
neglected, increased interference alone is enough to signifi-
cantly lower the rate of topology formation.

B. Main Contributions

In this paper, we study networks with short-range and net-
works with both short-range and limited long-range commu-
nication. Although remarkable improvements in convergence
rate have been reported [20]–[22] for consensus on graphs
with a few long-range edges (as in small-world graphs [23]),
it is not clear if these benefits will carry over to a wireless
setting, where long-range links come at a cost of increased
interference. Motivated by this fact, we study the average
consensus problem in graphs formed by overlaying long-range
edges onto an existing “short-range” disk graph. We derive the
scaling law for the spectral gap as well as that of the fastest
rate of topology formation in the presence of interference.To
the best of our knowledge, this is the first such attempt.

We find that the spectral gap scales quadratically in the
communication ranger, independently of the network dimen-
sion d, but the length of the shortest TDMA schedule that
constructs such graphs scales asrd. Thus when interference
is factored in, the benefit of a greater communication range
depends crucially on the network dimension:

• For one-dimensional networks (d = 1), topologies with
increased communication range can converge faster de-
spite greater interference.

• For two-dimensional networks, the rate of convergence
scalesindependentlyof the communication range.

• For three- (and higher-) dimensional networks, increasing
the communication range can actually slow down conver-
gence.

Furthermore, these results hold whether each node only com-
municates with all other nodes within its communication
range, or, additionally, with a small number of far-away nodes.
Thus our results significantly change many optimistic results
obtained by analyzing the consensus problem in an abstract
graph-theoretic setting.

The remainder of this paper is organized as follows. In
Section II, we provide some standard definitions and results
used in this paper. In Section III, we specify our system model
and formulate the problem using the terminology developed
in Section II. In Section IV, we discuss convergence results
for the disk graph model. In Section V we study the effect of
selective long-range communication and provide the relevant
scaling results. Section VI concludes the paper.

II. D EFINITIONS AND NOTATION

To make this paper self-contained, we state the following
standard definitions and facts about Markov chains and intro-
duce some notation and other relevant terminology.

1) Basic Definitions from Markov Chain Theory:Con-
sider a connected undirected graphG, with n verticesV =
{1, 2, . . . , n} and a set of edgesE. We assumeG also contains
all self-loops, i.e.,i ∈ V =⇒ (i, i) ∈ E. Let di denote the
degree of vertexi. For more information, see [24].

Definition 1. (Random walk on a graph) A random walk
X (G) = (Xk)k∈Z onV is characterized by then×n transition
probability matrixP(G) = [pij ], with pij , P(Xk+1 = i |
Xk = j), and pij > 0 only if (i, j) ∈ E, with

∑

j pij = 1
∀i ∈ V .

In the following, when the underlying graphG is clear from
the context, we drop the dependence onP(G) onG and simply
write P.

Observe thatP is always stochastic.

Definition 2. (Symmetric random walk) A random walk is
symmetric ifpij = pji.

For a symmetric random walkP is doubly stochastic.

Fact 3. A random walk onG is a Markov chain with state
spaceV . Given an initial distributionπ(0) overV , the distri-
butionπ(k + 1) after k + 1 steps satisfiesπ(k + 1) = Pπ(k)
for k = 0, 1, . . .

Definition 4. (Stationary distribution of a Markov chain) A
stationary distributionπ∗ satisfiesπ

∗ = Pπ
∗, i.e., remains

invariant with time.

Definition 5. (Reversible Markov chain) A Markov chainX =
(Xk)k∈Z is said to bereversible if for all statesi, π∗

j pij =
π∗

i pji.

Fact 6. An irreducible and aperiodic Markov chain has a
unique stationary distribution.



3

Definition 7. (Natural random walk) A natural random walk
on G is a random walk with

pij =

{

1/(2di), (i, j) ∈ E, i 6= j

1/2 i = j.

Fact 8. The natural random walk is reversible, irreducible and
aperiodic with a unique stationary distributionπ∗

i = di
P

i
di

.

WhenG is regular, a natural random walk is also symmetric
and has a uniform stationary distribution.

Definition 9. (Mixing time of a random walk) For a random
walk X with a unique stationary distributionπ∗, consider
the Total Variational (TV) distance1 (cf. [24, Chap. 4])
dTV,i(t; π0) , 1

2

∑

i |P(Xt = i, π0) − π∗
i | for an initial

distributionπ0. Then the mixing time ofX is defined as

Tmix(ǫ;P) , sup
π(0)

inf{t : dTV(t;P, π(0)) ≤ ǫ}.

2) Asymptotic Notation:We use the following asymptotic
notation. For two functionsf andg of a variablen, asn → ∞,
we write

• g = O(f) if the ratiog/f is asymptotically finite. Further,
g = o(f) if this limit is zero.

• g = Ω(f) if f = O(g). Further,g = ω(f) ⇐⇒ f =
o(g).

• g = Θ(f) if g = O(f) andg = Ω(f).

Whenf andg are random, these relations are defined to hold
with probability one.

3) Graph Sequences and the Asymptotic Regime:Consider
a sequence of (possibly random) undirected graphs(Gn),
whosenth memberGn hasn verticesVn = {1, 2, . . . , n} and
a set of edgesEn. We assume each graph contains all self-
loops. Denote the maximum and minimum node degrees ofGn

by dmax(Gn) (shortened todmax) and dmin(Gn) (shortened
to dmin) respectively. We provide some standard definitions
below.

Definition 10. (Asymptotically regular graph)Gn is asymp-
totically regular ifdmax(Gn) − dmin(Gn) = o(1).

Definition 11. (Asymptotically almost sure validity)P is true
asymptotically almost surely (a.a.s.) for a sequence of random
objects(Xn), if limn→∞ P (Xn has propertyP) = 1.

We obtain scaling results for the convergence of the aver-
age consensus algorithm in large networks by mapping the
problem to the scaling of mixing times of natural random
walks on a sequence of graphs that are connected and regular
asymptotically almost surely.

III. PROBLEM FORMULATION

A. Average Consensus and Random Walks

Consider a set of sensorsVn = {1, 2, . . . , n}. Associate with
the ith sensor an initial observationzi(0). Given a realization
of a randommessage-passinggraphGn with verticesVn and

1The TV distance between two distributionsµ andν over a countable set
S is defined as‖µ − ν‖TV , 1

2

P

i∈S
|µi − νi| (i.e., the normalizedℓ1

norm).

edgesEn, suppose that all the verticesi ∈ Vn synchronously
update their observations as

zi(k + 1) =
zi(k)

2
+

∑

j∈Ni(Gn)(zj(k) − zi(k))

2di
, (1)

for k = 0, 1, . . .. HereNi(Gn) denotes the neighborhood of
vertex i in Gn. By stacking the individual observationszi to
form the observation vectorz, the (k + 1)th update starting
from an initial observation vectorz(0) can be written as

z(k + 1) = Wnz(k), (2)

where we have defined theupdate matrixWn , (In −
∆nLn)/2, where In denotes then × n identity matrix,
∆n , diag[d−1

i ] andLn is the graph Laplacian. Notice that
Wn depends on the realization of the random graphGn, which
remains the same for all iterations. We will analyze the speed
of convergence for specific families of random graphs in the
scaling limit n → ∞, by deriving properties of interest that
hold a.a.s. for all realizations ofGn.

Without loss of generality, letzi(0) > 0, and definez′i(0) ,

zi(0)/
∑

i zi(0) as the normalized initial observation vector. In
the light of Fact 3 and Definition 7, the iterationz′(k + 1) =
Wnz

′(k) can now be interpreted as time-evolution of the node
occupancy distribution of a natural random walk overGn with
a transition probability matrixWn [2], [20].

If Gn is also connected, this equivalence with a natural
random walk ensures (from Fact 6) that the value of each
vertex asymptotically reaches1n

∑

i zi(0) = 1
T z(0)

n (a more
general result for a time-varying case was studied in [9]).
Interpreting each vertex as a sensor and the initial values
(zi(0))i∈Vn

as sensor measurements, this algorithm allows
each sensor to iteratively compute the average1

n

∑

i zi(0)
of the initial measurement set by exchanging messages as
described in (1). We will sometimes also refer toGn as the
message-passing network.

The rate of convergence of (2) to its steady state value
can be understood in terms of the mixing time of the natural
random walk described byWn. Indeed, by expressingz′i in
terms ofzi, from Definition 9 we can writeTmix(ǫ;Wn) ≡
Tmix(Wn) as

Tmix(Wn) = sup
z(0)

inf
k

{

dTV(k;W,n−1
1z0)

z0

≤ ǫ
}

= sup
z(0)

inf
k

{

‖z(k) − n−1
1z0)‖TV ≤ ǫz0

}

, (3)

wherez0 ,
∑

i zi(0).
When Gn is a.a.s. connected and regular, we know from

Fact 8 that the stationary distribution of the random walk is
uniform a.a.s., thereby implying convergence to the average
consensus point a.a.s.

In this paper, we analyze random graphs based on the disk
graph [19], which is parameterized by the disk radius (see
Section III-B). For this family of graphs, it is well-known that
the graphs are a.a.s. connected if and only if the radius remains
large enough withn (i.e., in the “supercritical” regime [25],
see, e.g., [26] for a proof). In this regime, the asymptotic
regularity property was formally shown to hold a.a.s. in [2,
Lemma 10]. In fact, in [2] these two properties were used to
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establish scaling laws for the mixing time of both the natural
and the fastest mixing reversible random walks on these graphs
to the uniform distribution.

It is well-known that the mixing time of a random walk
can be characterized by the second-largest eigenvalue ofWn.
Denoting the eigenvalues ofWn by µ1 = 1 > µ2 > · · · >
µn > 0, the asymptotic convergence of the iteration (2) is
determined byµ2. The result below formally establishes this
dependence:

Theorem 12. ( [27]). The ǫ−mixing time of a random walk
with a doubly stochastic positive definite transition matrix Wn

on a connected graphGn is bounded as

µ2 log(2ǫ)−1

2(1 − µ2)
≤ Tmix(ǫ;Wn) ≤ log n − log ǫ

1 − µ2
,

where1 − µ2 is called thespectral gapof Gn.

Remark:Observe that the spectral gap controls the mixing
time. In the scaling limitn → ∞, the scaling ofǫ also becomes
important. The logarithmic dependence onǫ−1 suggests three
meaningful possibilities:

1) Polynomial scaling:ǫ = 1/nδ for some fixedδ > 0.
2) Exponential scaling:ǫ = exp(−δ′n) for some fixedδ′ >

0.
3) Constant error:ǫ ≪ 1 is constant.

For polynomial and exponential error scaling, it is clear that
the bounds in Theorem 12 are of the same order, and are
Θ((1 − µ2)

−1 log n) and Θ((1 − µ2)
−1n) respectively. For

constant error, the upper bound scaleslog n times faster than
the lower bound, i.e.,Tmix = Ω((1−µ2)

−1) andT = O((1−
µ2)

−1 log n).
In the sequel we assume polynomial scaling, as was done

in [2]. It will become clear in the later sections that the
scaling laws for exponential scaling follow from a substitution
log n 7→ n.

Spectral Gap and Cheeger’s Inequality: Intuition suggests
that the mixing time of a Markov chain depends on how “easy”
it is to move out of any specified region in the state space. This
property can be formalized with the notion ofconductance.
The conductance of a reversible Markov chain on a state space
Ω = V on a graphGn with an equilibrium distributionπ∗ is
defined as follows [28]:

h = min
S⊂Ω,π∗(S)≤1/2

Q(S, S̄)

π∗(S)
, (4)

whereπ∗(S) ,
∑

i∈S π∗(i) and S̄ = Ω\S, andQ(S, S̄) ,
∑

i∈s,j∈S̄ π∗(i)P(Xn+1 = j|Xn = i). Viewed in graph-
theoretic terms, the numerator (4) measures the effective
weighted flow across the cut(S, S̄), while the denominator
measures the weighted capacity ofS. Intuitively, we would
expect a larger conductance to correspond to a smaller mixing
time, or equivalently from Theorem 12, a larger1−µ2 of the
underlying graphGn. This is indeed the case, as Cheeger’s
Inequality shows:

Theorem 13. [27]. The spectral gap of a reversible Markov
chain satisfies

h2

2
≤ 1 − µ2 ≤ 2h,

whereh is the conductance of the Markov chain.

Once we know howh scales withn for a (random) sequence
of graphs(Gn), we can use Theorem 13 to find the scaling law
for their spectral gap. This, in turn, permits the use Theorem
12 to derive the scaling laws for the mixing time for iterations
of the form (2) on these sequences of graphs. In the following,
motivated by the need to capture the distance-dependence
and randomness in the connectivity of the nodes, we present
random geometric graph models forGn.

B. Network Models

Each pointi ∈ {1, 2, . . . , n} is placed uniformly randomly
in a d−dimensional torusTd on [0, 1]d, i.e., the vertices form
a binomial point processΦ = {xi}, i = 1, 2, . . . n, onTd [29],
[30]. Each element of(Gn) is based on the well-known disk
graph model [19], [25]. In the following letbd(x, r) ≡ b(x, r)
denote a Euclidean ball centered atx ∈ R

d and radiusr, and
|b(x, r)| denote its volume.

1) Networks with Short-Range Communication:In this
case,Gn is the d−dimensional disk graph parameterized by
the commoncommunication ranger of each node. The neigh-
borhood of nodexi ∈ Φ that will be used for implementing
(1) is

Nxi
(r) , {xj ∈ Φ : ‖xj − xi‖ ≤ r},

where‖ · ‖ denotes the Euclidean norm. In this paper, we will
always operate in the super-critical regime, i.e.,r = ω(rc),
whererc , ( log n

n )1/d to ensure asymptotic connectivity and
regularity of (Gn) [17]. We label this family of graphs as
G sh

n (r, d) ≡ G sh
n (r), and the update matrix byWsh

n . We refer
to the points ofΦ either by their locationxi ∈ R

d or by their
index i ∈ N.

2) Networks with both Short- and Selective Long-Range
Communication:We start with a disk graphG sh

n (r) and add
long-range edges of lengths = Θ(rγ). The parameterγ
controls the distance over which long-range communication
occurs: for a givenr a node can communicate with nodes
farther away asγ → 0. We add the long edges as follows.

For somer, η > 0 and 0 < γ < 1, tile the torus with
hypercubes of side lengthηr. Let c denote one of these
hypercubes. Along each dimensionm = 1, 2, . . . d, let c+

m and
c−m denote the farthest hypercubes fromc that are less than
distances/2 away fromc along themth coordinate axis, the
distance being measured in terms of the separation between
their farthest edges. We call these hypercubes thepartner
hypercubesof c. Figure 2 illustrates the case ofd = 2. It
is easy to see that from any vertex inc, any vertex inc+

m and
c−m is at a distance of at most

√

(d − 1)η2r2 + s2/4 ≤ s√
2

for a small enoughη. Sincer = ω(rc), every tile c contains
nη2r2 nodes a.a.s. Without loss of generality, letx1 be one of
these nodes. Now add an edge betweenx1 and every vertex in
c+
m, c−m for m = 1, 2, . . . , d. Thus each of these nodes becomes

a long-range partnerof x1.
Repeat this procedure for every node inΦ, and count dupli-

cate edges only once. Thus forr = ω(rc), every node in every
tile is additionally connected tonr2|b(0, 1)|+2dnη2r2 +o(1)
nodes a.a.s., i.e.,Gn is regular a.a.s.
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ηr

ηr

r

≤ s/2
> s/2

Figure 2. An illustration of the geometric random graph models for d = 2.
The nodes are shown as black circles. InG s

n(r), an edge exists between any
two nodes iff they are at most at a distancer (the communication range) away
from each other. This is shown, for example, for the node at the center of the
circle. Gl

n contains all edges inG s
n. Additionally each node communicates

with its partner hypercubes. For example, for each node in the dark gray
square, all nodes in the lightly shaded squares are long-range partners. Note
that there are 4 such partner squares, two along each coordinate axis.

Hence an iteration of the form (2) on this graph will
converge to a uniform distribution a.a.s. We define the resultant
graph asGl

n(r, s, d) ≡ Gl
n(r, s) and the corresponding update

matrix by W
l
n. Notice that this model adds long edges

selectively to each node; it is motivated by the observationthat
a small number of long edges added to a graph can greatly
increase its spectral gap, as is the case in small-world graphs
(cf. [31, Chap. 14]).

We have adapted this idea to a wireless network. Instead of
adding a single additional edge to a node as is normally the
case in abstract graph-theoretic models, the inherent broadcast
nature of the wireless channel allows a transmitter to broadcast
its information to several receivers that are in close proximity
to one another with very little overhead. This allows mul-
tiple communication paths to form simultaneously. We now
describe the communication model.

C. Communication Model

We make the following assumptions on the communication
model:

• All edges inG sh
n andGl

n are established by wireless links
that operate in the same frequency band (normalized to
unit bandwidth).

• Each node encodes its message inK ≫ 1 nats, such
that the quantization error is negligible. These messages
are sent using a point-to-point capacity-achieving AWGN
channel code with SNR thresholdβ (i.e.,R = log(1+β)).
Transmissions are slotted withK/R channel uses allowed
per slot.

• There is no fading. The path-loss exponentα is greater
than the dimensiond of the network, so that the interfer-
ence remains finite a.s. as the network size grows.

• A packet from nodei can be received atj iff the Signal-
to-Interference-Ratio (SIR) at nodej, SIRij , is greater
than β. Therefore for any senderi and receiverj, the

link i → j will be in outage iff

‖xj − xi‖−α

∑

k∈S\{i} ‖xj − xk‖−α
< β. (5)

where S is the set of all senders that transmit in the
same slot asi. This is the well-known interference-limited
physical model [17]2.

• The medium-access scheme is TDMA with spatial re-use.
Thus, the successful formation of each edge in a graphGn is
mapped to a successful link formation in each direction. Notice
that (5) models that fact that there is a limit to the number of
edges that can be formed simultaneously, and, consequently,
on the maximum rate at which a given message-passing graph
can be established. For a given TDMA protocol, the rate of
topology formation is thus determined by itsschedule lengthin
time-slots. Since we investigate networks in the scaling limit,
we will investigate the scaling properties of the fastest TDMA
protocols that can establish a given sequence of random graphs
(Gn) (i.e., have the smallest schedule length a.a.s.)

D. Quantifying the Effective Speed of Convergence

Note that the mixing time measures the smallest number of
iterationsto achieve a specified error from the average consen-
sus point. However, when the time to realize the topology in
each iteration is non-trivial, the effectivetime taken to achieve
the same error can be quite different from that predicted by the
mixing time alone. For example, in Fig. 1, due to interference
constraints, the shortest schedule that constructs the topology
has at least three time slots. Hence thetime slotsto reach a
specified error from the asymptotic value would be three times
the number of iterations to reach this error.

Thus for a topologyGn and an update matrixWn, the
smallesteffective time to converge is theproductof the mixing
time Tmix(ǫ;Wn) of a topology and the lengthT ∗(Gn, β) of
the shortestTDMA schedule that constructs the topology in
each iteration. We call this theSlot Mixing Time:

Definition 14. (Slot Mixing Time) The Slot Mixing Time
Tslots(Gn) ≡ Tslots(Gn,Wn, β, ǫ) is defined as the product

Tslots(Gn) , Tmix(ǫ;Wn) · T ∗(Gn, β),

whereTmix(ǫ;Wn) is the ǫ−mixing time of iterations using
a message-passing graphGn and an update matrixWn and
T ∗(Gn, β) is the length of the shortest TDMA schedule that
constructsGn in time slots.

In generalTslots(Gn) depends on the realization of the
random graphGn. We will analyze the scaling ofTslots(Gn)
for the families of random geometric graphs described in
Section III-B.

E. Asymptotic Behavior

From Sections III-A and III-C we notice that the problem
involves:

2While it is possible to derive our scaling results by including both noise
and interference in the SINR model at the cost of making equations and
derivations more cumbersome, it will distract from the mainmessage of the
paper, which is to study the effect of interference on the rate of convergence.
Hence we focus on the interference-limited case.
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• The network sizen.
• The short link distancer.
• The parameterγ that controls the length of long links.

We will study the mixing time in an interference-limited
network in the regimen → ∞.

IV. CONVERGENCE INNETWORKS WITH SMALL

COMMUNICATION RANGE

A. Characterizing the Spectral Gap

The spectral gap for the disk graph is known to beΘ(r2),
independent of the network dimension [2]. Using Cheeger’s
Inequality (Theorem 12), it was shown that the mixing time
of the fastest mixingreversible random walk with a uniform
distribution onG sh

n (r), for polynomial scalingǫ = 1/nδ, δ >
0 scales as

Tmix(W
sh
n ) = Θ(r−2 log n). (6)

It was also shown therein that the mixing time for the natural
random walk onG sh

n is also Θ(r−2 log n). We will now
combine the scaling law for the mixing time with the fastest
rate of topology formation implied by the communication
model in Section III-C.

B. Interference-Limited Topology Formation

We now prove two results that follow from the assumptions
made in Section III-C.

Proposition 15. Consider a system ofn nodes on a
d−dimensional torus with a short-range communication dis-
tance r, a thresholdβ, and a path-loss exponentα > d.
Assuming the short-range network model in Section III-B1 and
the communication model described in III-C, the length of the
shortest TDMA schedule that constructsG sh

n has no fewer
than C1nrdβd/α slots a.a.s., for some positive constantC1.

Proof: Let S be the set of concurrent transmitters at
any given time. Suppose nodej is an intended receiver of
a transmitteri ∈ S. Theni’s message is decoded correctly iff
(5) is satisfied. Thus for allk ∈ S\{i},

‖xj − xk‖ ≥ β1/α‖xj − xi‖. (7)

Clearly this is true even for thefarthest intended receiver. It
is easy to show that such a receiver lies a.a.s. in a ring of
inner radiuss(1− δ̂) for some fixed̂δ > 0. We thus conclude
‖xk − xj‖ ≥ r(1 − δ̂)β1/α , rmin a.a.s.

This suggests that any TDMA protocol allowingi to pass
a message to its farthest nodej needs to set up a guard
zone of radius no smaller thanrmin aroundj. Since every
node inside this guard zone must transmit at least once to
form the required message passing graph, any TDMA protocol
that constructs the message passing graphG sh

n requires least
∑

x∈Φ 1x∈Φ∩b(0,rmin) slots. Here the indicator1x∈Φ∩b(0,rmin)

is used to indicate the existence of the pointx ∈ Φ inside the
ball b(0, rmin). The summation is over all pointsx ∈ Φ.

For r = ω(rc), each such ball hasn|b(0, rmin)| =
nrdβd/α(1 − δ)d|b(0, 1)| + o(1) ≥ C1nrdβd/α a.a.s., where
C1 = 0.5(1 − δ)d|b(0, 1)|.

Proposition 16. Consider the network model in Section III-B1
and the communication model described in III-C. The length
of the shortest TDMA schedule that constructsG sh

n has at
mostC2nrdβd/α slots a.a.s., for some positive constantC2.

Proof: The proof involves the construction of a feasible
TDMA schedule whose length isC2nrdβd/α. Let x , θr for
some fixedθ > 1. Consider the latticeL that consists of points
on the scaled integer latticexZ

2 that also lie on the torus. In
other words,L = xZ

2 ∩ T2(n). PartitionL into sublattices as
follows:

• L00 , {(ix, jx) ∈ L : i andj are even}
• L01 , {(ix, jx) ∈ L : i even, j odd}
• L10 , {(ix, jx) ∈ L : i odd, j even}
• L11 , {(ix, jx) ∈ L : i andj are odd}

With each lattice sitep ∈ L one can associate the tileτp =
p + [0, x]2 that lies within the torusT2(n). Denote byTij the
set of such tiles associated with each of the points inLij ,
i, j = 0, 1. For example,T00 , {τp : p ∈ L00}. Thus{Tij}
partition the torusT2(n).

The idea behind such a partition is to enable spatial re-use.
Consider the following four-phase MAC protocol consistingof
phases 00, 01, 10, 11. In phaseij at most one node from each
tile in Tij is allowed to transmit. The protocol ensures that
each node transmits exactly once. The next step is to show
that this protocol provides the desired connectivity to each
node everyC2nr2β2/α time slots for some positiveC2. To
this end, we first show that the interference at each intended
receiver is bounded from above and can be made smaller than
any β > 0 by a suitable choice ofθ.

Consider one such transmission in phase 00. LetS ⊂ T00∩
Vn be the set of all transmitters. Consider a transmitting node
i in tile τp wherep = (0, 0), i.e., a tile at the origin. To remain
feasible, the protocol must satisfy (5) for each successfullink.
For anyi, j, k, it is clear that

‖xk − xj‖ = ‖xk − xi − (xj − xi)‖
≥ ‖xk − xi‖ − ‖xj − xi‖
≥ ‖xk − xi‖ − r,

since ‖xj − xi‖ ≤ r. Therefore for a transmitter atxi, the
interference powerIxj

≡ ∑

k∈S\{i} ‖xk − xj‖−α at any
intended receiver atxj can be upper bounded as

Ixj
≤

∑

k∈S\{i}
(‖xk − xi‖ − r)

−α
, (8)

where the right hand side is independent ofj. By the design
of the protocol, an interfererk for any intended receiver of
the message fromi must lie in a tile distinct fromτ(0,0).
Moreover, such a tile should lie withinT00; thus the protocol
imposes a lower bound on the minimum distance between any
two concurrent transmitters. Using geometrical arguments(see
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Figure 3), the right hand side of (8) is upper bounded as
∑

k∈S\{i}
(‖xk − xi‖ − r)

−α

≤
∞
∑

l=1

8l ((2l − 1)θr − r)
−α

≤ 8r−α

(

((θ − 1)−α +

∞
∑

l=2

l((2l − 1)θ − θ)−α

)

≤ ξr−α(θ − 1)−α, (9)

for some fixedξ > 0, since the sum converges forα > 2 (in
general, forα > d, as assumed in the communication model).
The SIR condition (5) is guaranteed to be satisfied at every
intendedj, if θ is chosen such that

r−α

ξr−α(θ − 1)−α
≥ β

=⇒ θ ≥ 1 + (ξβ)
1

α .

For a suitable choice ofξ, we can setθ = 10(ξβ)
1

α .
For s = ω(sc), the number of nodes in each tile is

nx2 + o(1) a.a.s. Hence asn → ∞, the protocol constructed
requires4nx2 + o(1) ≤ C2ns2β2/α transmissions almost
surely to establish the necessary connectivity to each nodein
the network, whereC2 ≥ 400ξ2/α. By optimality, the number
of slotsT ∗ in the shortest TDMA schedule cannot exceed this
number.

Figure 3. Geometry underlying the proof of Proposition 16. The location
of a typical transmitter inτ0,0 and one of its intended receivers is shown.
The nearest interferers and their respective tiles are{τ2j,2k : (j, k) ∈
−1, 0, 1}\τ(0,0) . The signal power from any of one of these interferers at
the intended receiver is no larger than that received from the closest interferer
allowed by the protocol. The protocol ensures that this nearest distance is no
smaller thanx = θr.

The results from Propositions 15 and 16 lead to the follow-
ing corollary.

Corollary 17. If T ∗(G sh
n (r), β) denotes the length of the

shortest TDMA schedule, then asn → ∞, a.a.s.:

1) For fixedβ, T ∗(G sh
n , β) = Θ(nrd).

2) If β ≡ β(n) = Ω(1),

T ∗(G sh
n , β) = Ω(nrd{β(n)} d

α ).

Proof: Claim 1 is evident from the results of Propositions
15 and 16.

For some constantsC1 andC2, we have from Propositions
15 and 16, a.a.s. for largen and a fixedβ,

C1nrdβd/α ≤ T ∗(G sh
n , β) ≤ C2nrdβd/α.

SinceC1 (but not C2) is independent ofβ, we can write
for n → ∞, when β ≡ β(n) = Ω(1) T ∗(G sh

n ) =
Ω(nrdβ

d
α (n)).

If all nodes had independent point-to-point channels be-
tween one another, the rate of topology formation would be
Θ(1). For a wireless channel, however, Corollary 17 suggests
that this rate isΘ(1/nrd) even with optimum spatial re-use.
Thus better-connected disk graphs are penalized by a smaller
rate of topology formation. We combine the mixing time result
(6) to examine the scaling law for the effectivetimenecessary
for convergence in the next section.

C. Rate of Convergence

1) Slot Mixing Time: We now analyze the asymptotic
convergence behavior of the distributed averaging algorithm
(2) in a dense network asn → ∞. From the earlier sections,
we know the scaling laws for this regime for:

1) The number of iterationsnecessary to a.s. reach an
ǫ−ball (from (3)).

2) Theshortest TDMA schedule lengthto a.s. realizeG sh
n

in each iteration (from Corollary 17).

Thus from Definition 14, for fixedβ, the Slot Mixing Time
scales as

Tslots(G
sh
n ) , Tmix(W

sh
n ) · T ∗(G sh

n , β)

= Θ(nrd−2 log n) (10)

slots a.a.s., forǫ = 1/nδ.
From Proposition 15 and the Gaussian signaling assumption,

when we also allowβ to depend onn such thatβ(n) = Ω(1),
the time to reach this ball scales as

Ω

(

nrd−2 eR(n)d/α

R(n)
log n

)

a.a.s.

whereR(n) ≡ log(1 + β(n)).
2) Choice of Communication Range:For a fixed β the

mixing time in (10) scales polynomially inr for d > 1.
Interestingly, ford = 1, the time slots to mix scales as the
inverse ofr. This suggests that increasingr can improve the
rate of convergence. Ford = 2, however, this quantity scales
independentlyof r, suggesting that these two effects exactly
cancel each other, a rather non-intuitive result. For higher
dimensions, the scaling law has a positive exponent inr—
implying that increasingr can actually slow down mixing.

This dependence on network dimension can be understood
as follows. If the network is one-dimensional, although a
transmitter is an isotropic radiator, its effect on the network
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is seen only along the line[0, 1]. Although the throughput
provided by the optimal TDMA protocol only scales as
Θ(n−1r−1) for a given β from Corollary 17, the spectral
gap scales asΘ(r−2), offsetting this loss. Ind−dimensions,
however, while the fastest rate of topology formation scales
asΘ(n−1r−d), the spectral gap only scales asΘ(r−2). As a
result, improving spatial re-use can become more important
than increasing connectivity.

3) Effect of Increasing Transmission Rate:On the one
hand, a higher transmission rate reduces the packet transmis-
sion time; on the other, it restricts spatial re-use. Clearly the
benefit of smaller packet transmission times can be outweighed
by reduced spatial re-use for large ratesR.

V. CONVERGENCE INNETWORKS WITH SELECTIVE

LONG-RANGE CONNECTIVITY

A. Scaling of the Spectral Gap

To derive the scaling law for the mixing time, we need
to find the scaling of the spectral gap ofGl

n. As we will see,
deriving the scaling law for the conductance ofGl

n is sufficient
to establish the scaling of the spectral gap.

Proposition 18. The conductance ofGl
n with edge weights

determined byWl
n is Θ(rγ) a.a.s., independent ofd.

Proof: We adopt a modified version of the proof in [32].
From (4) we know that

h = min
S⊂Ω,π∗(S)≤1/2

Q(S, S̄)

π∗(S)
.

By the symmetry inGl
n induced by the construction in Section

III-B2, it can be shown using arguments similar to [32,
Appendix G] that the minimum occurs forπ∗(S) = 1/2,
and that the minimizing cut(S, S̄) is a hyperplane dividing
the torus into two halves. Without loss of generality, define
S , Φ ∩ {[0, 1/2)× [0, 1]}.

Also for the natural random walk, each edge weight is
1
di

= Θ
(

1
nr2

)

(for d dimensions,Θ(n−1r−d)), and the
equilibrium distribution isΘ( 1

n ). It is thus sufficient to count
the number of edges traversing this cut. The number of short
edges was shown in [32] to beΘ(n2r3) (for d dimensions
Θ(n2rd+1)). Observe that every node in a square of side
ηr has 4nη2r2 long-range partners. One quarter of these
edges traverse the cut(S, S̄); hence the potential number of
long edges that can traverse the cut from a given square is
nη2r2 × nη2r2 = Θ(n2r4). Since each edge has length at
leasts/2 − 2ηr = Θ(rγ) (sinces = Θ(rγ) and0 < γ < 1),
which is at mosts, it is clear thatΘ(rγ−1) squares from the
cut will contribute to the edges that traverse the cut (see Fig.
4). Multiplying this result by the number of rowsΘ(r−1) of
such squares, the total number of long edges traversing the cut
will be Θ(n2r4 × rγ−1 × r−1) = Θ(n2r2+γ) (for generald,
Θ(n2r2d × rγ−1 × r−d+1) = Θ(n2rd+γ)). Counting both the
short and long edges, we have ind dimensions,

Q(S, S̄) = Θ

(

n2rd+1 + n2rd+γ

n2rd

)

= Θ(rγ),

Θ(1/r)
rows

Θ(rγ/r)
Θ(r)

Θ(r)

S S̄Cut(S, S̄)

Figure 4. The geometry behind the proof of Proposition 18 ford = 2. The
tiling used for the construction ofGl

n is overlaid. By the symmetry induced
by the construction, the setS ⊂ Vn for which Q(S, S̄)/π∗(S) is minimized
corresponds to the left half of the torus as labeled (it can beargued that this
set will have the smallest weighted flow for a given frequencyof steady-
state occupancy). Since the stationary distribution for this set is1/2, finding
the scaling law for the number of edges that traverse the cut is sufficient
to provide a corresponding scaling result for the conductance. For the short-
range communication graphG s

n (i.e., the disk graph whose edge length is
O(r)) only nodes from a finite number of squares from the tiling in either
direction from the cut contribute to these edges. For long edges of length
Θ(rγ), a positive fraction of the nodes fromΘ(rγ/r) squares on either side
will contribute to these edges. Since there areΘ(1/r) such rows of squares,
the proof lies in finding the scaling law for the number of edges that traverse
the cut.

sinceγ < 1.
Notice that if a node was allowed to have only a finite num-

ber of long-range partners, the contribution of long edges to-
wards conductance is smaller, without significant interference-
reducing benefits. We elaborate on this point in Section V-C3.

We can infer the following from the above result:

Corollary 19. The spectral gap ofGl
n is Ω(r2γ) andO(rγ).

Proof: From the lower bound in Theorem 13, we have
1−µ2 = Ω(r2γ). From the upper bound in the same theorem,
we have1 − µ2 = O(rγ ).

As noted in Section III-B2, the distance between any two
(graph-theoretic) neighbors is no more thans/

√
2. Thus every

edge inGl
n(r, s, d) is also present in the disk graphG sh

n (s/2),
i.e., Gl

n(r, s, d) ⊂ G sh
n (s/2). Hence a reversible random walk

on Gl
n with a uniform equilibrium distribution can mixno

faster than the fastest mixing such random walk onG sh
n (s/2).

This key observation allows us to use a known result that
follows from [2, Thm. 8]:

Theorem 20. The spectral gap corresponding to the transition
probability matrix of the fastest mixing reversible randomwalk
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on G sh
n (rγ) with a uniform equilibrium distribution isΘ(r2γ)

a.a.s.

Since the mixing time decreases with increasing spectral
gap, from Theorem 20 we conclude that the spectral gap of
Gl

n is O(r2γ). But we know from Corollary 19 that this gap
is alsoΩ(r2γ). Thus we conclude that the spectral gap ofGl

n

is Θ(r2γ), which we formally state state below:

Theorem 21. The spectral gap of the natural random walk
on Gl

n is Θ(r2γ).

This result suggests that the improvement in spectral gap
from an increased communication radius fromr to rγ can
also be achieved (in the scaling sense) by allowing each node
to communicate with a selected number of nodes at a distance
Θ(rγ).

However, as we shall discuss in the next section, such
connectivity comes at a price of a lower rate of topology
formation. We find that this loss (as measured by the shortest
TDMA schedule length) is no smaller than the number of
nodes in the largest guard zone created in the network. Since
the longest link distance in both the disk graphG sh

n (s/2) and
Gl

n are of the same order, the similarity in the expressions for
the spectral gap scaling law suggests that we should expect
the same dependence on network dimension as in (10).

B. Convergence with Interference

We will derive bounds for the shortest feasible TDMA
schedule forGl

n. In the spirit of the earlier proofs, the
lower bound follows from the feasibility constraint (i.e.,the
schedule constructs the desired message passing graph while
satisfying the SIR constraint), while the upper bound is found
by bounding the length of the optimum schedule by that of a
specific feasible schedule. These results are presented in the
following.

Proposition 22. For a givenβ, a feasible schedule forGl
n

has C3nrγdβd/α slots a.a.s. for some positive constantC3.
Furthermore, for a givenβ, this length scales asΩ(nrγd)
slots a.a.s.

Proof: We prove this result ford = 2; the proof ford 6= 2
is similar. From the system model, it is clear that a TDMA
protocol that constructsGl

n must form at least one link of
distance at leasts/2 − 2ηr. Sinces = Θ(rγ) (i.e., s scales
“much slower” thanr), at large enoughn, the protocol must
create an guard zone of radius of at leasts/4 in the network
at least once. All nodes within this guard zone must transmit
at least once. Buts = ω(rγ

c ), which implies we operate in the
supercritical regime. From a similar argument as in Proposition
15, we can assert that any feasible TDMA protocol must have
at leastC3nsdβd/α slots whereC3 is a positive constant. The
scaling law for this length follows from the scaling ofs with
r.

Proposition 23. For a given β, the length of the shortest
feasible schedule forGl

n is no more thanC4(nsdβd/α) slots
a.a.s., for some positive constantC4. For a givenβ, this upper
bound scales asO(nrd) a.a.s.

Proof: Consider any TDMA protocol that allows each
node to communicate with every node within a distances.
Clearly this protocol will also constructGl

n and is hence
feasible. As in Proposition 16, we construct such a four-
phase (ford = 2, in general a2d phase) TDMA protocol
that operates on a tiling of the torus with squares of side
Θ(s). Using an argument similar to Proposition 16, it is clear
that the spatial re-use can be adjusted to construct the graph
in C4nsdβd/α slots a.a.s. for some constantC4 > 0. Using
s = Θ(rγ) we get the scaling law.

Corollary 24. As n → ∞, the shortest feasible schedule
for Gl

n has T ∗(Gl
n, β) = Θ(nrγd) slots a.a.s., for a fixed

β. If we also let β = β(n) = Ω(1), T ∗(Gl
n, β(n)) =

Ω(nrγd{β(n)} d
α ).

Proof: Follows from Propositions 22 and 23.

C. Rate of Convergence with Sparse Long-Range Connectivity

We repeat the analysis in Section IV-C to study the benefit
of sparse long-range connectivity for a large number of nodes.
From this analysis, we derive a result analogous to (10) for
the long-range model. We use this result to discuss the impact
of increased communication range.

1) Slot Mixing Time:From Theorem 21, the spectral gap
of Gl

n scales asΘ(r2γ). Consequently, from the mixing time
bounds in Theorem 12, we conclude that the mixing time with
W

l
n scales as

Tmix(W
l
n) = Θ(r2γ log n) a.a.s. (11)

iterations forǫ = 1/nδ. On the other hand, from Corollary
24, the shortest TDMA schedule that realizesGl

n scales as
Θ(nrdγ) slots.

Multiplying Tmix(W
l
n) andT ∗(Gl

n, β) we obtain a scaling
law analogous to (10) for a network with sparse long links.
We state this result below:

Proposition 25. As n → ∞, for ǫ = 1/nδ and with the
shortest feasible TDMA schedule, the slot mixing time of
natural random walks on a sequence of random graphs(Gl

n)
on a d−dimensional torus scales a.a.s. as

Tslots(G
l
n) , Tmix(W

l
n) · T ∗(Gl

n, β)

= Θ
(

nr(d−2)γ log n
)

, (12)

wherer is the short range communication radius, long links
are Θ(rγ) for some0 < γ < 1, and nodes use point-to-point
capacity-achieving AWGN channel codes with SNR threshold
β.

From Proposition 15 and the Gaussian signaling assumption
in Section III-C, when we also letβ ≡ β(n) = Ω(1), the time
to reach this ball scales as

Ω

(

nrγ(d−2) e
R(n)d/α

R(n)
log n

)

, a.a.s.

whereR(n) ≡ log(1 + β(n)).
2) Impact of Increasing Communication Range on the

Convergence Speed:For a fixed β, from (12) we notice
that as with short-range links, the slot mixing time scales
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polynomially in r for d > 1. The parameters that controls
the distance of long-range communication enters the scaling
law throughrγ , since s = Θ(rγ). By comparing (12) and
(10) it is clear that its role is identical to that ofr in (10).
Thus we expect the impact of an increased communication
range to have the same dependence of the network dimension
as in (10). From Proposition 22 and an analysis similar to
Section IV-C3, it follows that while one-dimensional networks
can converge faster from an increased communication range
despite greater interference, the convergence speed of two-
dimensional networks scales independently of the communi-
cation range. In higher-dimensions the increased interference
from a larger communication range can actuallylower the rate
of convergence.

From the models = Θ(rγ), which implies that a largers
can result from either a largerr (communicating with more
nearby nodes) or a smallerγ (communicating with nodes
farther away). In either case we find that (12) scales faster than
(10): when interference is accounted for, selective long-range
communications do not improve the rate of convergence.

3) The Importance of Long-Range Clusters:Here we dis-
cuss the importance of forming long links from a node to a
cluster of nodes. Briefly, we argue that adding only a few
long edges to a given node does not take full advantage of the
broadcast nature of the wireless medium: while these fewer
long edges to a node reduce the spectral gap (and can increase
mixing time as a result of Theorem 12), forming long links
from a node to acluster of nodes causes approximately the
same interference as forming a point-to-point link of the same
distance. Hence in lowering this cluster size, we do not gain
from reduced interference, but can only worsen the spectral
gap. So, when interference is factored in, allowing a node to
talk to a far-offcluster rather than a few far-off nodes allows
faster mixing for the same level of interference.

The effect of forming clusters is captured in the long-range
model in Section III-B2, which adds all the nodes from a
partner hypercube as long-range partners. This maximizes the
number of long edges contributed by each hypercube and
results in the scaling law in Proposition 18. This is key to
deriving Theorem 21.

Suppose we modify the way long edges are added in this
model by constructing a new graphG′

n(s) by assigning each
node onlyρn = O(nrd) long-range partners in each partner
hypercube. EvidentlyG′

n(s) is regular a.a.s., with node degree
nrd|b(0, 1)|+ 2dρn + o(1); so iterations as in (1) converge to
the average consensus point a.a.s. Denote the corresponding
update matrix byW′

n. We will now examine the scaling of
the spectral gap ofW′

n. Following the steps in the proof
of Proposition 18, the (edge-weighted) conductance ofG′ is
Θ(r+rγ(ρn/nrd)). Sinceρn = O(nrd), the conductance can
scale no faster thanrγ .

Therefore, unlike in the case withGl
n(s), exploiting the

inclusion G′
n(s) ⊂ Gsh

n (s/2) is not enough to conclude the
spectral gap ofW′

n to be Θ(r2γ). But the inclusion does
confirm the spectral gap to beO(r2γ). Hence, as one would
expect, iterations of the form (1) can converge no faster with
W

′
n than withW

l
n.

However, in the scaling limit, the interference resulting from

the construction ofGl
n or G′

n are the same: it is obvious
from Propositions 22 and 23 that the shortest feasible TDMA
schedule forG′

n is alsoΘ(nrγd) slots. We thus conclude that
maximizing the cluster size to include all the nodes inside a
partner hypercube speeds up convergence for the same level of
interference. However, when this cluster is enlarged to include
all nodes within a radiuss, we have a disk graph with radius
s. From the results in the previous sections, it is clear that
the interference penalty to realize this larger disk graph scales
similarly but is certainly larger than that ofGl

n(s), which has
only selective long-range links.

VI. CONCLUSIONS

We analyzed the convergence rate of average consensus
algorithms in the scaling limit of dense wireless networks
by combining results from Markov chain theory, random
geometric graphs, and wireless networks. When messages in
a topology are exchanged over wireless links, the impact
of a greater communication range depends crucially on the
network dimension. Increased communication range can speed
up convergence in one-dimensional networks despite greater
interference. In two-dimensional networks, the convergence
speed scales independently of the communication range. In
three- (and higher-) dimensional networks, forming long links
can actually slow down convergence. These results hold
whether each node only communicates over short links, or,
additionally, with a cluster of far-away nodes.

These results greatly differ from many optimistic results
about the benefit of long-range connectivity obtained by an-
alyzing the consensus problem in an abstract graph-theoretic
setting. Our results underline the need to accurately account
for the cost of interference in designing fast-converging topolo-
gies for the average consensus algorithm, or for distributed
signal processing problems, in general.
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