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. Desired Message-Passing Graph
Abstract—We analyze the effect of interference on the con- ! g ng rap

vergence rate of average consensus algorithms, which itenzely (@) 2= Vgl 2 Yo VAR Vg PR Yo PAR Ve
compute the measurement average by message passing among

nodes. It is usually assumed that these algorithms converdaster

with a greater exchange of information (i.e., by increased etwork  Time

connectivity) in every iteration. However, when interference is

taken into account, it is no longer clear if the rate of convegence 1 0—0 O«—0—>0 O :
. . e . Feasible
increases with network connectivity. We study this problem

for randomly-placed consensus-seeking nodes connecteddbgh 2 O€«—@—>»O O<«—0—>0O Comm.

an interference-limited network. We investigate the follaving Graphs
questions: (a) How does the rate of convergence vary with 3 QO O<«—0@—0 O<—0

increasing communication range of each node? and (b) How dee

this result change when each node is allowed to communicate jgre 1. An example illustrating the constraints intreetiidy interference.
with a few selected far-off nodes? When nodes schedule their |t the nodes are physically placed as shown, interferenuéslithe number
transmissions to avoid interference, we show that the convgence  of nodes that can communicate concurrently. Assuming aabpetuse factor
speed scales withr?~¢, where r is the communication range of two, the message-passing graph can be formed as a unibreeffeasible
and d is the number of dimensions. This scaling is the result sub-graphs, each of them satisfying interference consstaiWe consider this

of two competing effects when increasing-: Increased schedule TDMA schedulefeasible

length for interference-free transmission vs. the speed ga . .
due to improved connectivity. Hence, although one-dimenshal  (€.9., [9], [10]). Of late, the focus has shifted to studying
networks can converge faster with a greater communication convergence in the face of communication constraints, like

range despite increased interference, the two effects exic quantization [11], [12], packet drops [13] and noise [14]. A

offset one another in two-dimensions. In higher dimensions f : : : :
increasing the communication range can actually degrade # closely associated algorithm is the gossip algorithm [25]{

rate of convergence. Our results thus underline the importace of

factoring in the effect of interference in the design of distibuted In this paper, unlike prior work, we study the effect of

estimation algorithms. interference, which becomes important when messagenggssi
Index Terms—Average Consensus, Wireless Networks, Scaling topologies are realized in wireless networks. We expjicitl

Laws, MAC Protocols. model the effect of interference on the rate of topology

formation and hence convergence of the average consensus
algorithm. This important effect—which crucially deperats
o network geometry—has been largely ignored in the litematur
A. Motivation In wireless networks, depending on the physical proximity o
The advent of wireless sensor and ad hoc networks ha$o d andc to b, the transmission from to b andc to d may
motivated the need for distributed information processirigterfere with one anotfir;bence Mime slots may be mbede
algorithms, which allow each node to operate only on loc& establish the edge&:,b) and (c,d). The network thus
information. A well-studied algorithm that allows distited has two time-scales of interest: that of establishing iicdisl
averaging is the average consensus algorithm, wherein tisgnmunications among the desired set of nodes and that of
global average of a set of initial sensor observations céme iterations of the distributed algorithms, which occalyo
be computed based on purely local computations at eaghen all the desired nodes have successfully communicated.
sensor. Starting from a set of initial measurements, theagee One may thus, view the underlying communication network as
consensus algorithm allows a set of nodes to communicatenstructing the desired message passing graphs fromasever
by a (possibly time-varying) topology to iteratively conipu feasible sub-graphs, each of which satisfies half-dupésknty
the global average of the initial measurements, see elg:, [&nd interference constraints. The union of all these sabig
[8] and the references therein. The connectivity propemie is the desired message passing graph.
the topologies that ensure convergence have been welestud To illustrate this, consider the formation of a simple linea
_ _ , _ 6-node network shown in Fig. 1. Suppose the estimation
The authors are with the Department of Electrical Engimegriuniv. of

Notre Dame, Notre Dame, IN 46556, United States of Americand: a!g.orith.m requires nearest-neighbor C(_)mmunication ($hasv
{ svanka, mhaenggi , vgupt a2} @d. edu. bidirectional edges). However, due to interference cairss,
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only every third node can transmit. In this case, we seee Forthree- (and higher-) dimensional networks, increasing
that forming the the desired topology requires at leastethre  the communication range can actually slow down conver-
time-slots, as shown. In other words, for these interfegenc  gence.

constraints, this topology'astest rate of formations three £y thermore, these results hold whether each node only com-

time slots. Clearly, a topology's intrinsic beneditdthe fastest ynicates with all other nodes within its communication

rate of its formation determine its true utility. __range, or, additionally, with a small number of far-away esd
The performance of the underlying (real-time) estimatiofin,s our results significantly change many optimistic rssul

algorithm is thereforecoupled with algorithms for channel 5pizined by analyzing the consensus problem in an abstract

access and routing. In our previous work [16], we studied ”@‘?aph-theoretic setting.

coupling with channel access for the average consensus algorne remainder of this paper is organized as follows. In

rithm for a certain class of deterministic network topoEEi  gection 11, we provide some standard definitions and results

Using a simple protocol model [17] for reception, we WerGseq in this paper. In Section 111, we specify our system nhode
able to show that the effect of increasing network connggtiv ;. 4 formulate the problem using the terminology developed

depends crucially on its dimension. In our recent work [18] Wi, section 11 In Section IV, we discuss convergence results

exploited the well-known parallels between the convergeng,, e disk graph model. In Section V we study the effect of

of the average consensus algorithm and Markov chain mixiggjective long-range communication and provide the refeva
(e.g., [2] and the references therein) to study CONSensus Ajing results. Section VI concludes the paper.
disk graphs [19] using the more refined physical model. We

examined the scaling behavior of the fastest rate of togolog
formation with interference, captured by the shortestifdas Il. DEFINITIONS AND NOTATION

TDMA schedules that construct the graph. i ) .
We note here that implementing inter-node communication '° make t_h|.s. paper self-contained, we state Fhe folloyvmg
in a network will require some additional overhead. Fostandard definitions and facts about Markov chains and-intro

example, one possible protocol that establishes poipptot dUCE SOMe notation and other relevant terminology.
communication can have nodes tag their packets with theirl) Basic Definitions from Markov Chain TheoryCon-
uniquely assigned address. A receiver reads this address $i§€r & connected undirected graph with » verticesV =
decodes a packet only if the address is that of one of its: 2, -7} and a set of edgel. We assumé also contains
intended transmitters. In this work, we neglect this addii @l Self-loops, i.e.i € V. = (i,7) € E. Let d; denote the
overhead. However, we show that even when this overhead!figree of vertex. For more information, see [24].

neglected, increased interference alone is enough tofisignhefinition 1. (Random walk on a graph) A random walk

cantly lower the rate of topology formation. X(G) = (Xy)rez onV is characterized by thex n transition
probability matrix P(G) = [pi;], with p;; = P(Xjq1 = i |

B. Main Contributions Xy = j), andp;; > 0 only if (i,7) € E, with >, p;; =1
YieV.

In this paper, we study networks with short-range and net-
works with both short-range and limited long-range commu- In the following, when the underlying gragh s clear from
nication. Although remarkable improvements in convergenehe context, we drop the dependencéRyid’) on G and simply
rate have been reported [20]-[22] for consensus on grapfiste P.
with a few long-range edges (as in small-world graphs [23]), Observe thaP is always stochastic.
it is not clear if these benefits will carry over to a wireless

setting, where long-range links come at a cost of increasggfinition 2. (Symmetric random walk) A random walk is

interference. Motivated by this fact, we study the averagymmetric ifp;; = pj;.

consensus probIetm.in graphs formed py overlaying Iong_erang For a symmetric random walR is doubly stochastic.

edges onto an existing “short-range” disk graph. We detiee t _ o

scaling law for the spectral gap as well as that of the fastdsact 3. A random walk onG is a Markov chain with state

rate of topology formation in the presence of interfererice. Spacel’. Given an initial distribution (0) overV’, the distri-

the best of our knowledge, this is the first such attempt. bution(k + 1) after k + 1 steps satisfiex (k + 1) = P (k)
We find that the spectral gap scales quadratically in tfier # =0,1,...

communication range, independently of the network dimen—D - ; T ;

) efinition 4. (Stationary distribution of a Markov chain) A
sion d, but the length of the shortest TDMA §chedu|e thaé‘[ationary distribution* satisfies©* = P#*, i.e., remains
constructs such graphs scalesrds Thus when interference ; L
) i . o invariant with time.
is factored in, the benefit of a greater communication range
depends crucially on the network dimension: Definition 5. (Reversible Markov chain) A Markov chaiki =

« For one-dimensional networkd & 1), topologies with (Xk)rez is said to bereversibleif for all statesi, m5p;; =
increased communication range can converge faster dePji-

spite greater interference. Fact 6. An irreducible and aperiodic Markov chain has a
« For two-dimensional networks, the rate of convergenggique stationary distribution.

scalesindependentlyf the communication range.



Definition 7. (Natural random walk) A natural random walkedgesFE,,, suppose that all the verticés V,, synchronously

on G is a random walk with update their observations as
12d1, .,'EE,. ] i(k : ) zi(k) — zi(k
e, Gy eBiz o 1) = 20 | Tienan(G®) =)
1/2 i=7j. 2 2d;
Fact 8. The natural random walk is reversible, irreducible andor & = 0,1,.... Here N;(G,) denotes the neighborhood of
aperiodic with a unique stationary distribution; = d_id. vertexi in G,,. By stacking the |nd|V|duthobservat|orz§t0
WhenG is regular, a natural random walk is also symmetrid®'™m the observation vectar, the (k + 1) update starting
and has a uniform stationary distribution. from an initial observation vectat(0) can be written as
Definition 9. (Mixing time of a random walk) For a random z(k +1) = Wyz(k), 2

walk X with a unique stationary distributiom™, consider \yhere we have defined thepdate matrixW,, 2 (I, —
the Total Variational (TV) distande (cf. [24, Chap. 4]) A,L,)/2, where I, denotes then x n identity matrix,

. A 1 o . * Ho'H . . .
drv,i(t;mo) = 535 [P(Xy = i,m) — 7| for an initial A 2 giag[d!] and L, is the graph Laplacian. Notice that

distributionmy. Then the mixing time oft’ is defined as W,, depends on the realization of the random gréfh which
Tmix(6;P) 2 sup inf{t : dpy (5P, 7(0)) < €} remains the same for all iterations. We will analyze the dpee
7(0) B of convergence for specific families of random graphs in the

scaling limitn — oo, by deriving properties of interest that
hold a.a.s. for all realizations df,,.

Without loss of generality, let;(0) > 0, and define:/(0) =
_ ) . _ . 2i(0)/ >, zi(0) as the normalized initial observation vector. In
« 9= 0(f)iftheratiog/ f is asymptotically finite. Further, w6 jight of Fact 3 and Definition 7, the iteratiafi(k + 1) —

g = o(f) if this limit is zero. W,.z (k) can now be interpreted as time-evolution of the node
« 9=Qf)if f=0(g) Furtherg = w(f) <= f = qccupancy distribution of a natural random walk og&r with

2) Asymptotic NotationWe use the following asymptotic
notation. For two functiong andg of a variablen, asn — oo,
we write

o(9). . a transition probability matrisW,, [2], [20].
« 9=0(f) if g=0(f) andg = Q(f). If G, is also connected, this equivalence with a natural
When f andg are random, these relations are defined to hofdndom walk ensures (from Fact 6) that the value of each
with probability one. vertex asymptotically reachesY", 2;(0) = 1T%% (a more

3) Graph Sequences and the Asymptotic Regi@ansider general result for a time-varying case was studied in [9]).
a sequence of (possibly random) undirected gra@fis), Interpreting each vertex as a sensor and the initial values
whosen'" memberG,, hasn verticesV,, = {1,2,...,n} and (z;(0));cv, as sensor measurements, this algorithm allows
a set of edged’,,. We assume each graph contains all seleach sensor to iteratively compute the averdgl®, z;(0)
loops. Denote the maximum and minimum node degre€s,0f of the initial measurement set by exchanging messages as
BY dinax(Gr) (shortened taln..) and duwin(G,) (shortened described in (1). We will sometimes also refer@, as the
to dmin) respectively. We provide some standard definitionaessage-passing network
below. The rate of convergence of (2) to its steady state value
can be understood in terms of the mixing time of the natural
random walk described b,,. Indeed, by expressing in
terms of z;, from Definition 9 we can wWrit€l,ix(e; W,,) =
Definition 11. (Asymptotically almost sure validityp is true T,,;,(W,,) as

Definition 10. (Asymptotically regular graphds,, is asymp-
totically regular ifdmax(Gr) — dmin(Gr) = o(1).

asymptotically almost surely (a.a.s.) for a sequence adoan . e (W n 1 120)
objects(X,,), if lim,_., P (X, has propertyP) = 1. Thnix(Wy,) = S?OI)’ H,gf{#o = 6}

We obtain scaling results for the convergence of the aver- = supinf {||z(k) — n"1120)|lrv < €20}, ()
age consensus algorithm in large networks by mapping the 2(0) ¥

problem to the scaling of mixing times of natural random A
wherezo = 3. 2;(0).
walks on a sequence of graphs that are connected and regul% <
asvmptoticallv almost surel hen G,, is a.a.s. connected and regular, we know from
ymp y Y Fact 8 that the stationary distribution of the random walk is

uniform a.a.s., thereby implying convergence to the awerag
I1l. PROBLEM FORMULATION consensus point a.a.s.

A. Average Consensus and Random Walks In this paper, we analyze random graphs based on the disk
) ) . graph [19], which is parameterized by the disk radius (see
Consider a set of sensors = {1,2,...,n}. Associate With gection 111-B). For this family of graphs, it is well-knowhat

b -~ : . =
the:™ sensor an initial observation (0). Given a realization he graphs are a.a.s. connected if and only if the radiusirsma
of a randommessage-passimgraphG,, with verticesV,, and large enough with: (i.e., in the “supercritical” regime [25],

see, e.g., [26] for a proof). In this regime, the asymptotic
1The TV distance between two distributiopsand v over a countable set 9., [26] P ) 9 ymp

S is defined as|y — vy 2 L g |ui — wi| (ie., the normalized; regularity property was formally shown to hold a.a.s. in [2,
norm). Lemma 10]. In fact, in [2] these two properties were used to



establish scaling laws for the mixing time of both the ndturavhereh is the conductance of the Markov chain.
and the fastest mixing reversible random walks on thesehgrap
to the uniform distribution.

It is well-known that the mixing time of a random wal
can be characterized by the second-largest eigenval¥€,of

Once we know how: scales withn for a (random) sequence

k01‘ graphsG,,), we can use Theorem 13 to find the scaling law
for their spectral gap. This, in turn, permits the use Theore

Denoting the eigenvalues GV, by jy = 1 > jp > -+ > 12 to derive the scaling laws for the mixing time for iteralti;o_

un > 0, the asymptotic convergence of the iteration (2) igf the form (2) on these sequences ofgraphs. In the following
determined byus. The result below formally establishes thismotlvated by the_ need to capture the distance-dependence
dependence: and randomness_ in the connectivity of the nodes, we present

random geometric graph models f@t,.
Theorem 12. ( [27]). The e—mixing time of a random walk
with a doubly stochastic positive definite transition ma¥,,

on a connected grapty,, is bounded as B. Network Models

1 Each pointi € {1,2,...,n} is placed uniformly randomly

M < Tix (€ W) < w7 in a d—dimensional torug; on [0, 1]d, i.e., the vertices form
2(1=p2) — Tl a binomial point proces® = {z;},i =1,2,...n, onTy [29],

wherel — o is called thespectral gapf G.,,. [30]. Each element ofG,,) is based on the well-known disk

Remark:Observe that the spectral gap controls the mixir%raph model [19], [25]. In the following ldly(z, ) = b(z, 7)

) d i
time. In the scaling limit: — oo, the scaling ot also becomes enote a Euclidean ball centeredsa R® and radius-, and

. o b(z,r)| denote its volume.
important. The logarithmic dependence on' suggests three bz, . — .
meaningful possibilities: 1) Networks with Short-Range Communicatiom this

1) Polynomial scalinge = 1/n° for some fixeds > 0 case,(, is the d—dimensional disk graph parameterized by
2) Ex yonential scalingE - exn(—é’n) for some fixe(f’ - the commorcommunication range of each node. The neigh-
0 P g =cxp borhood of noder; € ® that will be used for implementing

3) Constant errore < 1 is constant. (1) is
For polynomial and exponential error scaling, it is cleaatth
the bounds in Theorem 12 are of the same order, and areere|| - || denotes the Euclidean norm. In this paper, we will
O((1 — pu2)~tlogn) and ©((1 — u2)~'n) respectively. For always operate in the super-critical regime, i+ w(r.),
constant error, the upper bound scdlesn times faster than wherer, = (b%)l/d to ensure asymptotic connectivity and
the lower bound, i.e Trix = Q((1—p2)~') andT = O((1— regularity of (G,,) [17]. We label this family of graphs as
po) "t logn). G (r,d) = G(r), and the update matrix bW:t. We refer

In the sequel we assume polynomial scaling, as was daoethe points of® either by their location:; € R? or by their
in [2]. It will become clear in the later sections that théndex: € N.
scaling laws for exponential scaling follow from a subdtdn 2) Networks with both Short- and Selective Long-Range
logn — n. Communication:We start with a disk graple"(r) and add

Spectral Gap and Cheeger’s Inequalitptuition suggests long-range edges of length = ©(r?). The parametery
that the mixing time of a Markov chain depends on how “easyontrols the distance over which long-range communication
it is to move out of any specified region in the state spaces Thiccurs: for a givenr a node can communicate with nodes
property can be formalized with the notion obnductance farther away asy — 0. We add the long edges as follows.
The conductance of a reversible Markov chain on a state spac€or somer,n > 0 and0 < v < 1, tile the torus with
=V on a graphG,, with an equilibrium distributiont™ is  hypercubes of side lengthr. Let ¢ denote one of these

Ne,(r) & {z; € ©: ||lo; — @il <7},

defined as follows [28]: hypercubes. Along each dimension= 1,2, ...d, let ¢}, and
Q(8, 5) c,, denote the farthest hypercubes framhat are less than
h = miISl)<l/2 T 8) (4) distances/2 away fromc along them'™ coordinate axis, the

o scont : . ) i
i distance being measured in terms of the separation between

where*(S) £ Yiesm™ (i) and S = Q\S, andQ(S, S) £ their farthest edges. We call these hypercubes ghener
Yiesjes ™ (OP(Xnp1 = jlX, = i). Viewed in graph- hypercubesof c. Figure 2 illustrates the case df = 2. It
theoretic terms, the numerator (4) measures the effectigeeasy to see that from any vertexdnany vertex inc;, and
weighted flow across the cuts, S), while the denominator c;, is at a distance of at mosy/(d — 1)n2r2 + s2/4 < 7
measures the weighted capacity $f Intuitively, we would for a small enoughy. Sincer = w(r.), every tilec contains
expect a larger conductance to correspond to a smaller gixiny, %2 nodes a.a.s. Without loss of generality, dgtbe one of
time, or equivalently from Theorem 12, a larger u» of the  these nodes. Now add an edge betwegand every vertex in
underlying graphG,,. This is indeed the case, as Cheegers’ ¢ form = 1,2,...,d. Thus each of these nodes becomes
Inequality shows: along-range partnerof x;.

Repeat this procedure for every nodedinand count dupli-
cate edges only once. Thus foe w(r.), every node in every
tile is additionally connected tar?|b(0, 1)| + 2dnn*r? +o(1)
5 S1-m=<2h nodes a.a.s., i.eG,, is regular a.a.s.

Theorem 13. [27]. The spectral gap of a reversible Markov
chain satisfies



link ¢ — j will be in outage iff

[l — @l =
Zkes\{i} z; — 2w~

where S is the set of all senders that transmit in the
same slot as This is the well-known interference-limited
> s/2 physical model [17
o The medium-access scheme is TDMA with spatial re-use.
Thus, the successful formation of each edge in a gi@phs
mapped to a successful link formation in each directionidéot
that (5) models that fact that there is a limit to the number of
edges that can be formed simultaneously, and, consequently
: : on the maximum rate at which a given message-passing graph
0o ! el a® ‘e ® can be established. For a given TDMA protocol, the rate of
L : topology formation is thus determined by sishedule lengtin
Figure 2. An illustration of the geometric random graph msder d = 2. tlme__sbts' S|_nce we InveSt,lgate netwprks in the scalingt)
The nodes are shown as black circlesdfj (), an edge exists between anyWe Will investigate the scaling properties of the fastesiAD
two nodes iff they are at most at a distancgthe communication range) away protocols that can establish a given sequence of randonhgrap

from each other. This is shown, for example, for the node etcinter of the ;
circle. G1, contains all edges ii6&75. Additionally each node communicates (Gn) (i.e., have the smallest schedule length a.a.s.)

with its partner hypercubes. For example, for each node éndark gray
square, all nodes in the lightly shaded squares are lorgeraartners. Note D. Quantifying the Effective Speed of Convergence
that there are 4 such partner squares, two along each catdimis. .. .
Note that the mixing time measures the smallest number of
Hence an iteration of the form (2) on this graph wiliterationsto achieve a specified error from the average consen-
converge to a uniform distribution a.a.s. We define the tastil sus point. However, when the time to realize the topology in
graph as,,(r, s,d) = G),(r, s) and the corresponding updatesach iteration is non-trivial, the effectiviene taken to achieve
matrix by W. Notice that this model adds long edgeshe same error can be quite different from that predictechby t
selectively to each node; it is motivated by the observatiat mixing time alone. For example, in Fig. 1, due to interferenc
a small number of long edges added to a graph can greagbhstraints, the shortest schedule that constructs thaogyp
increase its spectral gap, as is the case in small-worldhgrapas at least three time slots. Hence timee slotsto reach a
(cf. [31, Chap. 14]). specified error from the asymptotic value would be threegime
We have adapted this idea to a wireless network. Insteadtaé number of iterations to reach this error.
adding a single additional edge to a node as is normally theThus for a topologyG, and an update matri¥v,,, the
case in abstract graph-theoretic models, the inherentlbasa smallesteffective time to converge is thgoductof the mixing
nature of the wireless channel allows a transmitter to brasd time 7, (¢; W,,) of a topology and the length*(G,,, 3) of
its information to several receivers that are in close prityi  the shortestTDMA schedule that constructs the topology in
to one another with very little overhead. This allows muleach iteration. We call this th8lot Mixing Time

tiple communication paths to form simultaneously. We no\%efinition 14. (Slot Mixing Time) The Slot Mixing Time

describe the communication model. ) :
Tuots(Gn) = Tuiots(Gn, Wi, B, €) is defined as the product

< p. (5)

re] "

o[

<s/2

C. Communication Model Tiots(Gn) £ Tiix(6; Wy) - T*(Gn, ),
We make the following assumptions on the communicatiahere 7,,;.(e; W,,) is the e—mixing time of iterations using
model: a message-passing graph, and an update matri¥,, and

« Alledges inGs" andG!, are established by wireless linksT™*(G.,, () is the length of the shortest TDMA schedule that
that operate in the same frequency band (normalized aonstructsi,, in time slots.
unit bandwidth).

. In general Ty,s(G,) depends on the realization of the
« Each node encodes its messagekin>> 1 nats, such g slots(Gn) dEp

random graplG,,. We will analyze the scaling dfjots(Gr)

. . ) ) o %57 the families of random geometric graphs described in
are sent using a point-to-point capacity-achieving AWGI§eCtiOn I-B

channel code with SNR threshgidi.e., R = log(1+03)).
Transmissions are slotted wifti/ R channel uses allowed Asymptotic Behavior
per slot.

o There is no fading. The path-loss exponenis greater
than the dimension of the network, so that the interfer-
ence remains finite a.s. as the network size grows. 2While it is possible to derive our scaling results by inchgliboth noise

« A packet from node can be received at iff the Signal- and interference in the SINR model at the cost of making égusmtand
derivations more cumbersome, it will distract from the maiassage of the

to-Interference-Ratio (SIR) at nOdﬁ SIRij' '_S greater paper, which is to study the effect of interference on the mdtconvergence.
than 3. Therefore for any sender and receiverj, the Hence we focus on the interference-limited case.

From Sections IlI-A and III-C we notice that the problem
involves:



o The network sizen. Proposition 16. Consider the network model in Section I1I-B1

o The short link distance. and the communication model described in 11I-C. The length

« The parametety that controls the length of long links. of the shortest TDMA schedule that construct§® has at
We will study the mixing time in an interference-limitedmostCanr? 3%/ slots a.a.s., for some positive constayt
network in the regimer — oc.

Proof: The proof involves the construction of a feasible

IV. CONVERGENCE INNETWORKS WITH SMALL TDMA schedule whose length iSynr? 3%/, Let = £ 6r for
COMMUNICATION RANGE some fixed) > 1. Consider the lattic& that consists of points
A. Characterizing the Spectral Gap on the scaled integer latticeZ? that also lie on the torus. In
other wordsL = 2Z2 N T3(n). PartitionLL into sublattices as

The spectral gap for the disk graph is known totge-2), follows:
independent of the network dimension [2]. Using Cheeger’s '
Inequality (Theorem 12), it was shown that the mixing time
of the fastest mixingreversible random walk with a uniform

A . . Lo .
distribution onG 2" (r), for polynomial scaling: = 1/n°, § > * Loo ~ {(z,x’],x) €L: ;andj are ever
" o Lo1 = {(iz,jx) € L : ieven jodd}
0 scales as A et . :
T (WE) = ©(~2 log ) () o0 (lmi)elriodd jever
it T ' o Li1 2 {(iz,jz) € L : iandj are odd

It was also shown therein that the mixing time for the natural
random walk onG:" is also ©(r~2logn). We will now
combine the scaling law for the mixing time with the fastestvith each lattice sitey € L one can associate the titg =
rate of topology formation implied by the communicatiop + [0, z]? that lies within the torugz(n). Denote byT;; the
model in Section III-C. set of such tiles associated with each of the pointdjn
i,j = 0,1. For exampleToo £ {7, : p € Loo}. Thus{T;;}

B. Interference-Limited Topology Formation partition the torusTz ().

We now prove two results that follow from the assumptions The jgea behind such a partition is to enable spatial re-use.
made in Section III-C. Consider the following four-phase MAC protocol consistofg
Proposition 15. Consider a system of. nodes on a Phases 00, 01, 10, 11. In phageat most one node from each
d—dimensional torus with a short-range communication didile in Ti; is allowed to transmit. The protocol ensures that
tancer, a threshold3, and a path-loss exponent > 4. €ach node transmits exactly once. The next step is to show
Assuming the short-range network model in Section I1I-Bd ashat this protocol provides the desired connectivity toheac

the communication model described in 111-C, the length ef tH0de everyCynr?3*/* time slots for some positivé’s. To
shortest TDMA schedule that construis™ has no fewer this end, we first show that the interference at each intended

than Cynrd 3%/« slots a.a.s., for some positive constant ~ 'eceiver is bounded from above and can be made smaller than

) any 8 > 0 by a suitable choice of.
Proof: Let S be the set of concurrent transmitters at

any given time. Suppose nodeis an intended receiver of Consider one such transmission in phase 00.4.et Ty N

a transmitteri € S. Theni's message is decoded correctly iffy;, be the set of all transmitters. Consider a transmitting node

(5) is satisfied. Thus for alt € S\{i}, i in tile 7, wherep = (0,0), i.e., a tile at the origin. To remain
/o feasible, the protocol must satisfy (5) for each succedsikl

lzs =il =5 / s =il 0 For anyi, j, kf)it is clear that y©

Clearly this is true even for thfarthestintended receiver. It

is easy to show that such a receiver lies a.a.s. in a ring of

inner radiuss(1 — &) for some fixed) > 0. We thus conclude

lze — 25| > r(1 = 0)BY* £ o, a.as.

This suggests that any TDMA protocol allowirigo pass . .
a message to its farthest nogeneeds to set up a guard_s'nce”xi — i < r. Therefore for a transmitter at;, the
zone of radius no smaller tham,;, around;j. Since every Interference power,, = 3>, g ) 2 — 4[| at any
node inside this guard zone must transmit at least once 'fended receiver at; can be upper bounded as
form the required message passing graph, any TDMA protocol I, < Z (o — ]| — 7)™, ®)
that constructs the message passing gr@h requires least T

> zed Locdnb(0,rmy,) SlOtS. Here the indicatol ,.c pni(0,r;n) ) o . )
is Used to indicate the existence of the paint @ inside the Where the right hand side is independentjoBy the design

2k — @i — (25 — 2)|

e — aill = [l — 4|

|z — ;]|

ARV

[z — @il =1,

keS\{i}

ball 5(0, i ). The summation is over all points € . of the protocol, an interfer_ek_for any in_ter_‘lded receiver of
For r = w(r.), each such ball hasb(0,rmm)| = the message from’n_ must lie in a_t|le distinct fromrg o).

Wdﬁd/a(l — 8)4|b(0, 1)| + o(1) > Cinrd 3% a.a.s., where Moreover, such a tile should lie \(vr_[hi’lﬂoo; thus the protocol

Cy = 0.5(1 — 8)4[b(0, 1)]. m mposes a lower bound on the minimum distance between any

two concurrent transmitters. Using geometrical argumésets



Figure 3), the right hand side of (8) is upper bounded as 2) If 5=p8(n) =92(1),

> (e —aill =)™ TGP, B) = A {B(n)}#).
keslil} Proof: Claim 1 is evident from the results of Propositions
<S8l 1)8r - )" 15 and 16. ~
= For some constants; andC>, we have from Propositions
0o 15 and 16, a.a.s. for large and a fixeds,
<38r <((9 - 1) + ;l((2l - 1)9 - 9) ) Cln’f‘dﬁd/a < T*(Gflhaﬁ) < anrdﬁd/o‘.
<&rmYO—-1)"7, (9) Since C; (but notCs) is independent of3, we can write
N — — * sh —
for some fixeds > 0, since the sum converges far> 2 (in fo(rn::fiﬁg(n;);’ when 5 = 5(n) Q@) (G m
general, fora. > d, as assumed in the communication model§.2 '

The SIR condition (5) is guaranteed to be satisfied at every

intendedj, if # is chosen such that If all nodes had independent point-to-point channels be-

tween one another, the rate of topology formation would be

T > 3 ©(1). For a wireless channel, however, Corollary 17 suggests
Er—e(@—1)— — that this rate is9(1/nr?) even with optimum spatial re-use.
— 0 > 1+ (55)5' Thus better—connected_ disk graphs are penal_iz_ed t_)y a smalle
_ _ ) rate of topology formation. We combine the mixing time résul
For a suitable choice of, we can set = 10(¢f)=. (6) to examine the scaling law for the effectiiime necessary
For s = w(s.), the number of nodes in each tile isfor convergence in the next section.

nz? 4+ o(1) a.a.s. Hence as — oo, the protocol constructed

requires4nz? + o(1) < Chyns?3%/® transmissions almost

su?ely to establish( t%e necessary connectivity to each imdec' Rate of Convergence

the network, wher&, > 400£2/*. By optimality, the number 1) Slot Mixing Time: We now analyze the asymptotic

of slots7* in the shortest TDMA schedule cannot exceed thgonvergence behavior of the distributed averaging algarit

number. m (2) in a dense network as — oco. From the earlier sections,
we know the scaling laws for this regime for:

1) The number of iterationsnecessary to a.s. reach an
N e—ball (from (3)).
Ta(n) ' ' ' ' 2) Theshortest TDMA schedule length a.s. realize5 s
+ ¢ 4 $ in each iteration (from Corollary 17).
T(-2,2)] o 0,2) ! ) Thus from Definition 14, for fixeds, the Slot Mixing Time
- (0, 20)— . scales as
U v 0 * S
1 (0 :}7\ = : ' TS]OtS (G’Zh) é TmiX(W’S,h) : T (Gnh7 6)
) v | 720 ! ’ ", ‘| a0 ' - @(nrd_2 logn) (10)
; e I ;
——(—22,0)( =, 0)—(0,0)2%1' 0)—(2,0) slots a.a.s., for = 1/n?.
x| ¢ . ' , From Proposition 15 and the Gaussian signaling assumption,
(0, —a). ' L, when we also allows to depend om such that3(n) = (1),
| . p ‘ the time to reach this ball scales as
(—2,—2) (] 7(0,-2) T(2,-2 R/
(0, —22) njajo
ﬂg; N l Q (m‘d_QeRT log n) a.a.s.

Figure 3. Geometry underlying the proof of Proposition 18eTocation ~ where R(n) = log(1 + 8(n)).

of a typical transmitter inrg,o and one of its intended receivers is shown. 2) Choice of Communication Rangdor a fixedﬁ the
The nearest interferers and their respective tiles @rg o, : (j,k) € )

—1,0,1}\7(0,0). The signal power from any of one of these interferers dnIXing _t'me n (10) scales _p0|yn0m'a”y ”"_f for d > 1.
the intended receiver is no larger than that received frarctbsest interferer Interestingly, ford = 1, the time slots to mix scales as the

allowed by the protocol. The protocol ensures that this estatistance is no jqverse ofr. This suggests that increasimg:an improve the
smaller thanz = 6r. . .
rate of convergence. Fat = 2, however, this quantity scales
independenthof r, suggesting that these two effects exactly
The results from Propositions 15 and 16 lead to the follovgancel each other, a rather non-intuitive result. For highe
ing corollary. dimensions, the scaling law has a positive exponent-a
implying that increasing: can actually slow down mixing.
Corollary 17. If T*(G"(r),3) denotes the length of the Tpg dependence on network dimension can be understood
shortest TDMA schedule, then as— oo, a.a.s.: as follows. If the network is one-dimensional, although a
1) For fixed 3, T*(G:*, B) = O(nrd). transmitter is an isotropic radiator, its effect on the rerkwv



is seen only along the ling0, 1]. Although the throughput or/r) | o)
provided by the optimal TDMA protocol only scales as <> <>
©(n~tr~1) for a given 3 from Corollary 17, the spectral /F
gap scales a®(r2), offsetting this loss. Ini—dimensions,
however, while the fastest rate of topology formation ssale
asO(n~1tr~%), the spectral gap only scales @r—2). As a
result, improving spatial re-use can become more importan
than increasing connectivity.

3) Effect of Increasing Transmission Rat®n the one
hand, a higher transmission rate reduces the packet tran@mi/r)
sion time; on the other, it restricts spatial re-use. Cletlie qps
benefit of smaller packet transmission times can be outveeigh
by reduced spatial re-use for large rafes
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V. CONVERGENCE INNETWORKS WITH SELECTIVE
LONG-RANGE CONNECTIVITY

B e Y e e
]

A. Scaling of the Spectral Gap ¥

To derive the scaling law for the mixing time, we need W

to find the scaling of the spectral gap 6f,. As we will see,
deriving the scaling law for the conductance(f is sufficient
to establish the scaling of the spectral gap.

it 1 ; ; Figure 4. The geometry behind the proof of Proposition 18dfet 2. The
Proposition 18. The conductance GG" with edge Welghts tiling used for the construction af’, is overlaid. By the symmetry induced

) - . y
determined by, is ©(r?) a.a.s., independent of by the construction, the sé C V;, for which Q(S, S)/7*(S) is minimized
. e . . corresponds to the left half of the torus as labeled (it camrigeed that this

Proof: We adopt a modified version of the proof in [32]set will have the smallest weighted flow for a given frequenfysteady-

From (4) we know that state occupancy). Since the stationary distribution fi #et is1/2, finding
_ the scaling law for the number of edges that traverse the sstufficient
h— Q(S, S) to provide a corresponding scaling result for the condueafror the short-

range communication grap&'s (i.e., the disk graph whose edge length is
O(r)) only nodes from a finite number of squares from the tiling iither
rection from the cut contribute to these edges. For longesdof length

Scsz,g}%g)gﬂ 7(S)

P . . . i
By the symmetry i, induced by the construction in SeCtIOI’%(M)’ a positive fraction of the nodes fro@ (7 /r) squares on either side

lI-B2, it can be shown using arguments similar to [32yill contribute to these edges. Since there @@ /r) such rows of squares,
Appendix G] that the minimum occurs far*(S) = 1/2, the proof lies in finding the scaling law for the number of esitfeat traverse
and that the minimizing cutS, S) is a hyperplane dividing ¢ ¢4t

the torus into two halves. Without loss of generality, define

S £ en{[0,1/2) x [0,1]}. sincey < 1.

Also for the natural random walk, each edge weight is Notice that if a node was allowed to have only a finite num-
7 = ©(z=) (for d dimensions,©(n~'r~%)), and the ber of long-range partners, the contribution of long edges t
equilibrium distribution is©(1). It is thus sufficient to count wards conductance is smaller, without significant intenfiee-
the number of edges traversing this cut. The number of sheetlucing benefits. We elaborate on this point in Section V-C3
edges was shown in [32] to b®(n?r3) (for d dimensions [
O(n?ritl)). Observe that every node in a square of side We can infer the following from the above result:
nr has 4nn?r? long-range partners. One quarter of thes&
edges traverse the c(f, S); hence the potential number of
long edges that can traverse the cut from a given square is Proof: From the lower bound in Theorem 13, we have
nn*r? x np*r? = ©(n?r*). Since each edge has length at — i, = Q(r27). From the upper bound in the same theorem,
leasts/2 — 2nr = ©(r7) (sinces = O(r7) and0 < v < 1), we havel — uy = O(r7). m
which is at mosts, it is clear that®(r?~!) squares from the  As noted in Section I1l-B2, the distance between any two
cut will contribute to the edges that traverse the cut (sge thraph-theoretic) neighbors is no more thﬂn/ﬁ Thus every
4). Multiplying this result by the number of rowd(r~") of edge inG. (r, s, d) is also present in the disk gragh® (s/2),
such squares, the total number of long edges traversingitheice. G! (r,s,d) C G"(s/2). Hence a reversible random walk
will be ©(n*r! x 1771 x r=1) = ©(n?r**7) (for generald, on @', with a uniform equilibrium distribution can mixo
O(n?r?? x 1= x r=d+1) = ©(n?r?*7)). Counting both the faster than the fastest mixing such random walk@j (s/2).

orollary 19. The spectral gap of:!, is Q(r?7) and O(r7).

short and long edges, we havedrdimensions, This key observation allows us to use a known result that
B n2pd+l 4 p2pd+y follows from [2, Thm. 8]:
S,5) = ©
Q5. 5) ( n2rd ) Theorem 20. The spectral gap corresponding to the transition

= O@7), probability matrix of the fastest mixing reversible randomlk



on G St (r7) with a uniform equilibrium distribution i (r27) Proof: Consider any TDMA protocol that allows each
a.a.s. node to communicate with every node within a distance

. L . L : Clearly this protocol will also construo’! and is hence
Since the mixing time decreases with increasing specttal y P oL,

tBhsible. As in Proposition 16, we construct such a four-
gap, from Theorem 20 we conclude that the spectral gap P y S, !
G! is O(r?7). But we know from Corollary 19 that this gap@nase (ford = 2, in general a2d phase) TDMA protocol

. that operates on a tiling of the torus with squares of side
2y ng

IS aISOQQ(T )'. Thus we conclude that the spec.tral gapof O(s). Using an argument similar to Proposition 16, it is clear

is ©(r7), which we formally state state below:

that the spatial re-use can be adjusted to construct théngrap
Theorem 21. The spectral gap of the natural random walkn Cyns?3%“ slots a.a.s. for some constafif > 0. Using
onG!, is ©(r?). s = O(r7) we get the scaling law. |

This result suggests that the improvement in spectral g&prollary 24. As n — oo, the shortest feasible schedule
from an increased communication radius fromo r* can for G, has T*(G!,3) = ©(nr7?) slots a.a.s., for a fixed
also be achieved (in the scaling sense) by allowing each nodlelf we also letg = g(n) = Q(1), T*(GL,B8(n)) =
to communicate with a selected number of nodes at a distater??{3(n)} = ).
o(r7).

However, as we shall discuss in the next section, such
connectivity comes at a price of a lower rate of topolog ) -
formation. We find that this loss (as measured by the short&st Rate of Convergence with Sparse Long-Range Connectivity
TDMA schedule length) is no smaller than the number of We repeat the analysis in Section IV-C to study the benefit
nodes in the largest guard zone created in the network. Sifdé&parse long-range connectivity for a large number of sode
the longest link distance in both the disk gra@h"(s/2) and From this analysis, we derive a result analogous to (10) for
G! are of the same order, the similarity in the expressions ftite long-range model. We use this result to discuss the itmpac
the spectral gap scaling law suggests that we should expekincreased communication range.

the same dependence on network dimension as in (10). 1) Slot Mixing Time: From Theorem 21, the spectral gap
of G! scales a®(r?7). Consequently, from the mixing time

bounds in Theorem 12, we conclude that the mixing time with
W, scales as

We will derive bounds for the shortest feasible TDMA

schedule forGl. In the spirit of the earlier proofs, the Taix(Wo) = ©(r*"logn) &85 (1)
lower bound follows from the feasibility constraint (i.ehe iterations fore = 1/n°. On the other hand, from Corollary
schedule constructs the desired message passing graph wii| the shortest TDMA schedule that realiz6§ scales as
satisfying the SIR constraint), while the upper bound isnbu @ (nr97) slots.

by bounding the length of the optimum schedule by that of a Multiplying ;i (W) and7*(G,, 3) we obtain a scaling
specific feasible schedule. These results are presentdeeinlaw analogous to (10) for a network with sparse long links.
following. We state this result below:

Proof: Follows from Propositions 22 and 23. ]

B. Convergence with Interference

Proposition 22. For a given 3, a feasible schedule fo?}, Proposition 25. As n — oo, for ¢ = 1/n° and with the
has C3nr7?p4/ slots a.a.s. for some positive constaif. shortest feasible TDMA schedule, the slot mixing time of
Furthermore, for a givens, this length scales a$)(nr?®) natural random walks on a sequence of random gratks)
slots a.a.s. on ad—dimensional torus scales a.a.s. as

Proof: We prove this result fod = 2; the proof ford # 2 Tuors(GL) 2 Tni(WL)-T*(GL, )
is similar. From the system model, it is clear that a TDMA _ o (d-2)v] (12)
protocol that construct&’!, must form at least one link of B (nr Ogn) ’

distance at least/2 — 2nr. Sinces = O(r”) (i.e., s scales \herer is the short range communication radius, long links
‘much slower” thanr), at large enough:, the protocol must are ©(;7) for some0 < ~ < 1, and nodes use point-to-point

create an guard zone of radius of at legst in the network capacity-achieving AWGN channel codes with SNR threshold
at least once. All nodes within this guard zone must transmjt

at least once. But = w(r), which implies we operate in the . S _
supercritical regime. From a similar argument as in Prajoosi oM Proposition 15 and the Gaussian signaling assumption
15, we can assert that any feasible TDMA protocol must halfeSection llI-C, when we also lef = 3(n) = Q(1), thetime

at leastCyns? 3%/ slots where(; is a positive constant. The {0 réach this ball scales as

scaling law for this length follows from the scaling efwith a (nw(d—% eR(n)d/«a

r - W log n) , a.a.s.

Proposition 23. For a given 3, the length of the shortestwhere R(n) = log(1 + 3(n)).

feasible schedule fof!, is no more thanCy(ns?3%/®) slots 2) Impact of Increasing Communication Range on the
a.a.s., for some positive constarit. For a giveng, this upper Convergence SpeedFor a fixed 5, from (12) we notice
bound scales a®(nr?) a.a.s. that as with short-range links, the slot mixing time scales
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polynomially in r for d > 1. The parameteg that controls the construction ofG!, or G/, are the same: it is obvious
the distance of long-range communication enters the graliitom Propositions 22 and 23 that the shortest feasible TDMA
law throughr?, sinces = ©(r?). By comparing (12) and schedule foiG’, is also®(nr??) slots. We thus conclude that
(10) it is clear that its role is identical to that efin (10). maximizing the cluster size to include all the nodes inside a
Thus we expect the impact of an increased communicatipartner hypercube speeds up convergence for the same fevel o
range to have the same dependence of the network dimensidarference. However, when this cluster is enlarged ttude
as in (10). From Proposition 22 and an analysis similar &l nodes within a radius, we have a disk graph with radius
Section IV-C3, it follows that while one-dimensional netk® s. From the results in the previous sections, it is clear that
can converge faster from an increased communication rartbe interference penalty to realize this larger disk graqaies
despite greater interference, the convergence speed of twimilarly but is certainly larger than that 6#, (s), which has
dimensional networks scales independently of the commuphily selective long-range links.
cation range. In higher-dimensions the increased intemfa
from a larger communication range can actuédhyer the rate VI]. CONCLUSIONS
of convergence.

From the modek = ©(+7), which implies that a larges We analyzed the convergence rate of average consensus

can result from either a larger (communicating with more algorithm_s _in the scaling limit of dense_wireless networks
nearby nodes) or a smaller (communicating with nodes by combining results from Markov chain theory, random

farther away). In either case we find that (12) scales faktar t geometric graphs, and wireless netyvorks. When messages in
(10): when interference is accounted for, selective lcantge a topology are excha_mggd over wireless links, .the impact
communications do not improve the rate of convergence. °f @ greater communication range depends crucially on the
3) The Importance of Long-Range Clustetsere we dis- network dlmen5|qn. Increa_lsed cpmmumcatlon range_cardspee
cuss the importance of forming long links from a node to up convergence in one-dimensional networks despite greate

cluster of nodes. Briefly, we argue that adding only a fedl'terference. In two-dimensional networks, the conveogen
long edges to a given node does not take full advantage of ed scales_ mdepe_ndentl_y of the communication range. In
broadcast nature of the wireless medium: while these fewBF€€- (and higher-) dimensional networks, forming lomdxsi
long edges to a node reduce the spectral gap (and can incr&@&e actually slow down convergence. These results hold
mixing time as a result of Theorem 12), forming long "nkgvhe_ther each_node only communicates over short links, or,
from a node to aluster of nodes causes approximately th@dditionally, with a cluster of far-away nodes.

same interference as forming a point-to-point link of thmea These results. greatly differ from many opt|m|§t|c results
distance. Hence in lowering this cluster size, we do not gaipout the benefit of long-range connectivity obtained by an-
from reduced interference, but can only worsen the spectfayZind the consensus problem in an abstract graph-theoret

gap. So, when interference is factored in, allowing a node §5tting- Our results underline the need to accurately atcou
talk to a far-offclusterrather than a few far-off nodes allowsfO" the cost of interference in designing fast-convergolo-
faster mixing for the same level of interference. gies for the average consensus algorithm, or for distribute

The effect of forming clusters is captured in the long-rangidnal processing problems, in general.

model in Section 1lI-B2, which adds all the nodes from a
partner hypercube as long-range partners. This maximiees t ACKNOWLEDGEMENTS
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node onlyp, = O(nr?) long-range partners in each partner

hypercube. Evidentl¢, (s) is regular a.a.s., with node degree

nrd|b(0,1)| 4+ 2dp,, + o(1); so iterations as in (1) converge to

the average consensus point a.a.s. Denote the corresgonditj L. Xiao and S. Boyd, “Fast linear iterations for distrted averaging,”
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