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The temporal dynamics of interference in wireless networks affects their performance but has only been studied for some cases.
This article addresses this gap by analyzing high-interference events, called pikes, concluding that they arrive in bursts in many
cases. Specifically, we show that in Poisson networks with random access and multipath fading, the pike interarrival time increases
with the interference correlation, irrespective of the source of correlation and burstiness of pikes. To demonstrate the applicability
of this theory, we conduct a measurement campaign with an automotive user in different commercial 4G cellular networks. The
experimental results indicate that interference pikes are bursty in the real world as well.
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I. INTRODUCTION

BURSTINESS is a phenomenon that occurs in many nat-
ural and human-made systems, including earthquakes [1;

2], solar flares [3], neural firings [4], human activity pat-
terns [5], emails [6], library loans [7], and in the context
of infectious diseases [8]. It means that several events occur
within a short period of time followed by a long period of
inactivity. The set of successive events is called a burst. The
opposite of burstiness is when events occur in regular, periodic
patterns. Events uniformly distributed at random are between
the two extremes: they are neither bursty nor periodic.

In the domain of computer and communication networks,
burstiness is relevant for data traffic patterns [9; 10] and
channel coding with interleaving [11–13]. Our work studies
for the first time the burstiness of high-interference events in
wireless networks — we call them pikes. To do so, we employ
measures from the theory of temporal networks and partly
identify the cause for bursty arrival of interference pikes in
our system models. Preparatory work was presented in [14].

In wireless systems, burst errors occur when communication
takes place over slow fading channels, where deep fades let
the signal power fall below a sensitivity threshold for a period
longer than the bit, symbol, or slot duration, and these errors
are counteracted by incorporating the channel characteristics
into the design of wireless communications. The channel
dynamics is typically characterized by the coherence time,
level crossing rate, correlation, and average fade duration [12].
Some examples of fading mitigation techniques include: using
the decorrelation distance of a fading channel to determine
the antenna placement in multi-antenna systems [15]; using
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the coherence time to decide the separation between symbols
of a codeword in a channel code (interleaver depth) in order
for them to have independent fading [11; 12]; and using the
second-order statistics of the fading channel like the level
crossing rate to choose symbol and slot durations [11; 16].

In interference-limited scenarios, the problem is reciprocal:
the performance is limited by events with high (interference)
power rather than low power. Similar to how channel dy-
namics is exploited, information on interference dynamics
can help in the design of robust communication systems.
For example, knowledge on the burstiness of the interference
pikes can be used for opportunistic interference management
techniques, e.g., multiuser diversity [17–19], efficient detec-
tors [20], opportunistic scheduling [21], dynamic resource
management [22], and channel coding [23]. Scientific results
on interference dynamics include the derivation of expressions
for interference correlation and interference coherence time
(i.e., the time until the interference correlation becomes very
small) [24–27]. However, a comprehensive analysis of the
temporal dynamics of interference pikes is missing so far.

The main contributions of this article are as follows:

• We formally model the burstiness of interference pikes
and employ measures to quantify it. In particular, we use
interference pikes and bursts of interference pikes, and
we provide means to quantify their dynamics, such as
burstiness and memory coefficients, average burst size,
and mean interarrival time of pikes.

• We partly identify the causes of burstiness of interference
pikes in different scenarios. Such burstiness typically
occurs when we have two overlaying factors influencing
interference power, where one is fast and the other slowly
changing over time.

• We analyze the burstiness for different interference cor-
relation scenarios that differ by the magnitude and the
causes of interference correlation.

• We show the existence of interference burstiness in the
real world by analyzing the burstiness for interference
measured by a vehicular user connected to different
commercial 4G cellular networks.

From a methodical point of view, we employ measures from
temporal network theory — burstiness, memory, and burst
size [28; 29] — to analyze the bursty arrival of interference
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pikes in both simulations and experiments; the simulations are
performed in a broad set of network scenarios that incorporate
models for node location and mobility, channel, and data traf-
fic. The following general insights are gained for our models:
• The mean interarrival time of interference pikes increases

with increasing interference correlation, irrespective of
the source of correlation and burstiness of pikes.

• The burstiness of pikes seems to be the result of the
overlay of fast and slowly changing factors contributing
to the overall interference power. In a static scenario, for
example, the burstiness is high when the channel varies
fast and data traffic varies slowly (or vice versa).

• The burstiness depends on the type of node mobility.
Brownian motion seems to foster burstiness compared to
straight movement without any change of direction.

In order to prove the existence of burstiness of interference
pikes in the real world, we perform an empirical study of the
power received by a phone in an automobile in commercial 4G
networks in different environments in two European countries.
Burstiness is observed in all scenarios measured. It is higher
on the freeway than in urban environments. It seems that a
combination of high node speed, fast channel variations, and
slow traffic lead to such observations.

The rest of the article is organized as follows: Section II
addresses related work. Section III presents the network model
with modeling assumptions. Section IV formally defines in-
terference pikes and burstiness measures. Section V is the
main part: it contains a comprehensive model-based analysis
of pikes for different network scenarios. Section VI presents
the experimental analysis of pikes in cellular networks. Sec-
tion VII discusses the results. Finally, Section VIII draws con-
clusions.

II. RELATED WORK ON BURSTINESS OF INTERFERENCE

Burstiness of interference has been considered in the lit-
erature but with exclusive focus on exploiting rather than
defining and quantifying it. Examples include the following:
The capacity region of a two-user single-carrier bursty inter-
ference channel is addressed without feedback [19; 30] and
with feedback [17]. The authors harness the burstiness of
interference by decoding an extra message in the absence
of interference. The two-user multi-carrier bursty interfer-
ence channel is categorized [18] (with feedback). A multi-
user bursty interference scenario is analyzed in terms of the
achievable rate by adapting the transmission probability of
users based on the bursty interference state [31]. The work
mentioned above considers bursty interference as a quasi-static
channel (i.e., the bursts are defined as absence or presence
of interfering links for the full duration of the codeword).
The ergodic interference channel is analyzed [21; 23], where
secure transmissions using opportunistic scheduling are stud-
ied for a bursty interference channel [21]. It has also been
identified as to when interference burstiness is beneficial in
terms of achievable rates [23] and interference mitigation
with in-band relays [32]. In addition to these information-
theoretic approaches, an adaptive beamforming strategy and
a communication rate exploiting the burstiness of interference
has been presented [33].

TABLE I: Notations and symbols

Symbol Definition/explanation
t time index

x(t) node location at slot t
Φ Poisson point process (PPP)
λ PPP intensity
v mean node speed (m/slot)
d message duration (slots)
µ average fraction of nodes transmitting
`x path loss
α path loss exponent
g fading gain
m Nakagami fading parameter
c channel coherence time (slots)
I(t) interference power in slot t (mW)
θ interference threshold (mW)
ξ scaling parameter for interference threshold
τP pike duration (slots)
τV valley duration (slots)
β burst size (slots)
δ burst size threshold (slots)
B burstiness
M memory coefficient
τ pike interarrival time (slots)

All of this work models the interference either as being con-
stant for the whole duration of a codeword (quasi-static) or as
a memoryless block-i.i.d. Bernoulli random variable that stays
constant for the duration of multiple symbols (ergodic). Thus,
the interference correlation is not considered. The interference
burstiness is defined as the presence or absence of interfering
links. The related work focuses on traffic as the sole reason
for the occurrence of interference bursts.

An optimal maximum a-posteriori symbol detection method
for bursty external interference is presented in [20]. Although
the total received interference is as a random process with
memory, the interference correlation is not used to analyze the
interference burstiness. Additionally, the causes of interference
burstiness are not discussed.

Different from all this work, this article does consider the
correlation of interference, uses a formal definition of bursti-
ness, and covers different causes of interference burstiness.

III. NETWORK MODEL

Time is divided into slots indexed by t ∈ Z. The network
consists of multiple mobile nodes communicating over a
common radio channel with a certain data traffic pattern. All
nodes act independently from each other. The main symbols
and notations used in this article are given in Table I.

A. Node placement and mobility

Each node has a location x(t) ∈ R2 in slot t. The locations
of all nodes form a two-dimensional Poisson point process
(PPP) Φ(t) with intensity λ. The use of a PPP to model node
locations is motivated by the fact that most related work on
interference analysis and modeling uses the Poisson process
to model interference sources [34–36]. In cellular networks,
the gap between PPP and more regular point processes for
the base stations (interferers) is relatively small [37] and with
stronger shadowing, the interference distribution in any point
process approaches that of a PPP [38].
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All nodes are moving in the system plane. The mean
speed over all nodes and time is denoted by v. Two mobility
models are used: random direction and discrete-time Brownian
motion. In random direction mobility, each node moves with
constant speed in a random direction sampled from a uniform
distribution over all angles and keeps this direction [39; 40].
The location of a node changes from slot t to slot t+∆t such
that ‖x(t+ ∆t)− x(t)‖ = v∆t. In Brownian motion, a node
changes its location from slot t to slot t+1 [41; 42], such that
x(t + 1) − x(t) = v ω(t), where ω(t) = [ω1(t), ω2(t)]T and
ω1(t) and ω2(t) are i.i.d. with normal distribution N (0, σ2)
with σ2 = 2/π. Hence, for a given v and ∆t, the distance
between the start point x(t) and end point x(t + ∆t) of a
node is shorter on average with Brownian motion than with
random direction. Both mobility models preserve the original
point process: at any point in time, the node locations form a
PPP with fixed intensity λ [41; 43; 44].

B. Traffic

The message duration is d ∈ N slots, which is constant
for all nodes and over time. When idle, each node starts
transmitting a message with probability u, independently of
all other nodes. The fraction of nodes starting to transmit a
message in any given slot follows as p = u

1+u(d−1) , and the
fraction of nodes transmitting in each slot is µ = pd ≤ 1. Due
to the independent transmissions, the set of transmitting nodes
in each slot t, denoted by ΦTX(t), forms a PPP of intensity λµ.
This traffic model is similar to slotted random access used
in many real-world systems, e.g., for initial communication
to request resources, establish network associations, and re-
establish failed connections to a base station [45–47].The
use of more advanced random access protocols — e.g., carrier
sense multiple access — would, in general, lead to a different
type of point process of the interferers. Although the inter-
ference dynamics of networks with carrier sensing has been
analyzed in the literature [48], a study of the resulting bursti-
ness is beyond of the scope of this article. Our objective is to
first understand the simpler case without carrier sensing and
proceed to more complex modeling assumptions in potential
future work.

C. Channel

All nodes transmit with unit power. The power attenuation
over a distance follows a non-singular distance-dependent path
loss model. The path loss from a transmitting node at x to the
origin is `x = min(1, ‖x‖−α), where the path loss exponent
α > 2 is constant over all slots. The multipath propagation
effects are modeled by Nakagami-m fading [49]. The power
received from a node located at x in slot t is `x gx(t), where
gx(t) is the fading gain. Under Nakagami-m fading, the fading
gain g follows a gamma distribution (g ∼ Γ(m,m)) which
implies E[g]=1. The parameter m determines the severeness
of fading; m = 1 corresponds to Rayleigh fading. For m→
∞, we have g → 1 almost surely, which corresponds to a
constant channel (no fading). From a temporal perspective,
we assume a “block” fading channel, where the channel state
remains constant for the duration c ∈ N slots and then changes

to an independent value. In this sense, c represents the channel
coherence time. The coherence periods are offset randomly
such that a fraction 1/c of the nodes change their channel
state in each slot. The channel is called fast fading if c = 1
and slow fading if c > 1 in this article.

D. Interference

The interference power I(t) is considered to be the aggre-
gate of the reception powers from all transmitting nodes at
time t. Without loss of generality (due to the stationarity of
the PPP), we analyze the interference at the origin, which is

I(t) =
∑

x∈ΦTX(t)

`x gx(t) (1)

with our network model. The mean interference is µI =
µλ

∫
R2 `xdx = µλ 2π

∫∞
0
`rrdr = µλπ α

α−2 (also see [50]).
Interference power correlates over time when the node loca-
tions change slowly, the channel correlates over multiple slots,
or the messages exceed one slot. The interference correlation
is dictated by the parameters of the node locations (mobility
model, speed v), the wireless channel model (block length c
and Nakagami m parameter), and the traffic model (message
length d and fraction of transmitters µ) [27]. We are interested
in the lag-1 auto-correlation, which we simply call correlation.

IV. INTERFERENCE PIKES AND BURSTINESS

A. Interference Pikes and Burstiness Claim

A continuous-valued interference power signal I(t) is dis-
cretized to a binary signal J(t) by setting a threshold θ for the
interference level that a receiver can handle. As illustrated in
Fig. 1, we set J(t) = 1 whenever I(t) > θ (high interference)
and J(t) = 0 otherwise. In short, J(t) = 1{I(t) > θ}. We
apply thresholds that are normalized to the temporal mean µI
and standard deviation σI of I(t), given as

θ = µI + ξ σI (2)

with scaling parameter ξ ∈ R+. Following the “three sigma
rule” [51], we examine different thresholds θ with ξ up to a
value of 3.

A pike is an interval P = {tn, . . . , to} of Z with J(t) = 1
for all t ∈ [tn, to] but J(tn − 1) = J(to + 1) = 0. The first
slot tn in a pike is called pike arrival. The set of all pike
arrival times forms the stationary one-dimensional stochastic
process ΦP whose intensity is denoted by λP . A valley is
an interval V = {tn′ , . . . , to′} of Z with J(t) = 0 for all
t ∈ [tn′ , to′ ] but J(tn′ − 1) = J(to′ + 1) = 1. This way, Z is
partitioned into pikes and valleys.

The pike duration τP is the cardinality of a pike, and the
valley duration τV is the cardinality of a valley. The pike
interarrival time τ is the sum of the cardinalities of a pike and
the following valley [53]. Pikes, valleys, and pike interarrival
times are indexed by integers such that Pk+1 is the pike
following Pk, Vk is the valley following Pk, and τk is the
sum of the cardinalities of Pk and Vk. Symbols without indices
refer to the typical instances of the random variables.
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Fig. 1: A continuous-valued interference power signal I(t) is transformed into a binary signal J(t) using the threshold θ.
Conceptual illustration of pike duration τP , valley duration τV , pike interarrival time τ , and burst size β (δ = 4).
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Fig. 2: Burst size β for different valley duration threshold δ.
Here the arrows indicate the pike arrivals, with pike durations
τPk on top of it. The valley durations τVk are shown in between
the arrows. Inspired by [52].

Our preparatory work [14] claims that “interference pikes
arrive in bursts” for the network model in that paper. In
simple terms, it is likely that there occur several pikes in
a short time followed by a long valley. This behavior is of
particular interest in interference-limited wireless networks,
and to understand it, we should quantify and analyze the
degree of burstiness of pike arrivals in order to find the origin
of this phenomenon. This could contribute toward a better
understanding of interference dynamics and in turn improve
the design of reliability techniques.

B. How to Quantify Burstiness?

The bursty nature of events has been analyzed in vari-
ous disciplines using different measures and methods. One
branch of science that intends to understand the roots of
bursty patterns is the theory of temporal networks [54; 55].
Here, many empirical event sequences are non-Poisson or
bursty [5; 53; 55]. Examples include activity patterns of single
neuron firings [4], solar flares [3], earthquakes [1; 2], and
email communications [6]. The arrival of events in these
systems can be characterized by the probability distribution
and the correlation of the interarrival times τ [28]. The
distribution shows the likelihood of particular τ -values, and the
correlation informs about their temporal order, e.g., whether
short τ -values tend to be followed by short ones. In this way,
the characteristics of the distribution and the correlation can
individually or jointly be a reason for bursty (or non-bursty)
event sequences. The deviation of the distribution from the

exponential distribution resulting from a Poisson process can
be characterized by a burstiness measure; and the correlation
coefficient is sometimes called memory coefficient or simply
memory [28]. We are interested in these two measures along
with a third, the burst size, as defined in the following.

A burstiness measure based on the mean τ̄ and standard
deviation στ of the interarrival time can be defined as [28]

B =
στ
τ̄ − 1
στ
τ̄ + 1

=
στ − τ̄
στ + τ̄

(3)

with value range B ∈ [−1, 1]. This measure is a normalized
form of the coefficient of variation στ/τ̄ used in statistics. The
value B = 1 corresponds to the highest burstiness, whereas
B = −1 is obtained for completely regular (periodic) arrivals.
For Poisson arrivals, B = 0 since τ̄ = στ for the exponential
distribution. For a finite number of arrivals ν, an estimator
of B is [29]

B̂ =

√
ν + 1 σ̂τ

ˆ̄τ
−
√
ν − 1

(
√
ν + 1− 2) σ̂τ

ˆ̄τ
+
√
ν − 1

(4)

provided that ν > σ2
τ/τ̄

2, where ˆ̄τ and σ̂τ are estimates of τ̄
and στ , respectively.

The memory coefficient M is defined as the Pearson corre-
lation coefficient between two consecutive τ :

M =
E[(τj − τ̄)(τj+1 − τ̄)]

σ2
τ

, (5)

which takes a value in the range [−1, 1]. A positive value
of M means short τ tend to follow short τ and vice versa,
resulting in a bursty behavior. A negative value of M means
short (long) τ tend to follow long (short) τ , resulting in a more
regular behavior. Poisson arrivals would lead to M = 0. In
case of a finite number of arrivals ν, we adopt the commonly
used estimator M̂ = 1

ν−1

∑ν−1
j=1 (τj − ˆ̄τ)(τj+1 − ˆ̄τ)/σ̂2

τ .
A sequence of consecutive pikes separated from each other

with valley durations smaller than or equal to some threshold
δ > 1 is called burst or pike train [53; 56]. The burst size
β is the number of slots from the beginning of the first pike
until the end of the last pike in a burst, where each burst ends
right before a valley that is longer than δ, as illustrated in
Fig. 2. Let L = {i ∈ Z : τVi > δ} be the indices of the valleys
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Fig. 3: Mean pike and valley duration versus correlation for basic network scenario. Here, λ = 1, α = 3, v = 0, m = 1,
c = 15, µ = 0.5 and d ∈ {2, 5, 9, 13, 17}.
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Fig. 4: Mean interarrival time τ̄ , burstiness measure B, memory coefficient M and mean burst size β̄ for the basic network
scenario. Here, λ = 1, α = 3, v = 0, m = 1, c = 15, µ = 0.5 and d ∈ {2, 5, 9, 13, 17}.

longer than δ. Assume L is ordered and denote its elements
by {bk}k∈Z. Then Bk = (Pbk+1,Pbk+2, . . . ,Pbk+1

) is the k-th
burst, and its length is βk = max{Pbk+1

} −max{Vbk}.
In summary, we consider two conceptually distinct reasons

for bursty arrivals: certain non-exponential distributions of τ
leading to high B and positive correlation of τ corresponding
to high M. As a third measure, the burst size is used to further

characterize the temporal dynamics. We apply all three mea-
sures in our analysis of wireless interference and the search
for the causes of its apparent burstiness. The computational
complexity to evaluate these metrics is O(N), where N is the
number of slots.
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Fig. 5: Interference power for basic network scenario.

V. MODEL-BASED ANALYSIS OF INTERFERENCE BURSTS

A. Simulation Setup

Our simulation takes place in the square [−a, a]2 of area
A = 4a2 with wrap-around borders. If a mobile node reaches
one side of the square, it continues moving and reappears
on the opposite side to avoid boundary effects [39; 57]. The
number of nodes is chosen from a Poisson distribution with
parameter λA. We use a node intensity λ = 1 and choose
a path loss exponent α = 3 suited for many environments.
Furthermore, we demand the area to be large enough to result
in an expected interference that is only slightly lower than
the one caused by nodes on an infinite plane. Specifically, we
request:

∫
[−a,a]2

`xdx > 0.98
∫
R2 `xdx. The fraction of the

mean interference by Poisson interferers located outside the
square is 4

√
2

3πa ≈ 0.6
a , which yields 1.2 % for a square with

a = 50, which we choose. In the following we estimate the
properties of interference pike arrivals in different scenarios.
For simplicity of mathematical notation, the hat on the cor-
responding symbols is omitted. All results are averaged over
100,000 slots and 100 realizations of Φ.

B. Analysis for a Basic Static Network

In a first simulation, all nodes are static and both channel
and traffic are correlated over multiple slots (c>1 and d>1).
Figs. 3–5 show the properties of interference pikes. The results
can be summarized as follows.

Once the interference power crosses the threshold θ, the
higher the correlation, the longer it will stay on this side
of θ on average. Hence, all durations τ̄P , τ̄V , and τ̄ increase
with increasing correlation irrespective of ξ (see Figs. 3a, 3b,
and 4a). The higher ξ, the fewer pikes occur, and, if one does
occur, the interference stays above θ for a short time only,
which results in shorter pikes (Fig. 3a) and longer valleys
(Fig. 3b), which here leads to longer τ (Fig. 4a).

The burstiness B decreases with increasing interference
correlation (Fig. 4b). From left to right, the traffic alters from
fast varying (d = 2) to slowly varying (d = 17), while the

channel always varies slowly (c = 15). For short messages,
the interference dynamics is a combination of slow fading and
fast traffic variations (Fig. 5a). It is this overlay of slow and fast
variations that causes the clustering of pikes. In contrast, for
long messages, both channel and traffic vary slowly (Fig. 5b),
resulting in a lower burstiness with high interference corre-
lation. The burstiness increases with increasing ξ (Fig. 4b)
because a high threshold separates clustered pikes by long
valleys, which represents a bursty behavior.

The memory coefficient M remains flat at M ≈ 0 (Fig. 4c).
This means that the bursty appearance of pikes is contributed
entirely to the distribution of τ .

The mean burst size β̄ (Fig. 4d for ξ = 1) is bigger for short
messages (d = 2) than for longer ones (d = 5). Interestingly,
this means that outages can be longer for short messages
although individual pikes are typically shorter. Recall that
bursts become longer with increasing δ since more pikes
become part of a single burst. Bursts become shorter with
increasing ξ given the fact that pikes become longer and
valleys shorter.

C. Interim Discussion and Next Steps

This first analysis gave some insights into the burstiness
of interference pikes. However, several issues remain unclear:
Does B always decrease with the correlation? Does B depend
on the source of correlation? Is the burstiness of pike arrivals
only attributed to the distribution of τ? Is there any memory
M in the sequence of τk-values?

To address these issues, we analyze different network sce-
narios shown in Table II. In principle, each component of the
network model — node locations, channel, and traffic — can
be classified according to its temporal dynamics: the values
can be constant, slowly varying, or fast varying over time. For
example, nodes at constant random locations (v = 0) send over
a slow fading channel (m finite, c > 1) with constant traffic
(µ = 1). Or, mobile nodes (v > 0) send over a fast fading
channel (m finite, c = 1) with fast varying traffic (µ < 1, d =
1). All cases considered are based on stochastic models except
for two extremes that are deterministic: m → ∞ (constant
channel) and µ = 1 (constant traffic). Deterministic models
leading to non-constant values are not considered.

The fundamental question is which models and param-
eters contribute to the interference correlation. In general:
Stochastic models with parameters leading to fast variations
do not contribute to the correlation of the interference power,
since a random value is chosen in each slot independent of
the previous slot in our network model, which implies no
correlation between two slots. Models with parameters leading
to slow variations (slower than a slot length) are sources of
interference correlation.

We proceed as follows: First, we analyze a single source
of correlation (locations in Scenario S1, channel in S2, and
traffic in S3). Second, we consider a combination of multiple
sources of correlation (channel and traffic in Scenario M1
and all three sources in M2). Additionally, we also analyzed
different values of path loss exponent α and node density λ.
We find that these parameters do not have much effect on the
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TABLE II: Overview of analyzed network scenarios. Parameters: Mean node speed v, Nakagami-m parameter, channel block
length c in slots, fraction of transmitting nodes µ, and message duration d in slots. Parameters marked with a dash are irrelevant
(an arbitrary positive integer value can be chosen).

Scenario Case description
Model parameters Case index [27]

Node Channel Traffic Node Channel Traffic
v m c µ d i j k

S1

Mobile nodes send over a constant
channel with constant traffic > 0 ∞ – 1 –

2

0 0

Mobile nodes send over a fast Rayleigh
channel with constant traffic > 0 1 1 1 – 1 0

Mobile nodes sent over a constant
channel with fast varying traffic > 0 ∞ – < 1 1 0 1

S2
Static nodes send over a slow Rayleigh
channel with constant traffic 0 1 > 1 1 – 0

2
0

Static nodes send over a slow Rayleigh
channel with fast varying traffic 0 1 > 1 < 1 1 0 1

S3
Static nodes send over a constant
channel with slowly varying traffic 0 ∞ – < 1 > 1 0 0

2Static nodes send over a fast Rayleigh
channel with slowly varying traffic 0 1 1 < 1 > 1 0 1

M1
Static nodes send over a slow Rayleigh
channel with slowly varying traffic 0 1 > 1 < 1 > 1 0 2 2

M2
Mobile nodes send over a slow Rayleigh
channel with slowly varying traffic > 0 1 > 1 < 1 > 1 2 2 2

correlation (which is also shown in [27]) and burstiness of
interference pikes. The plots are not shown, since they do not
add value to the manuscript. We use a threshold scaling of
ξ = 1 unless stated otherwise.

In order to establish a cross-link to our previous publications
in interference dynamics [27; 58], each case in Table II is
indexed by the triplet (i, j, k), where i represents the node
locations, j is the channel, and k is the traffic. We use i, j, k ∈
{0, 1, 2} with the following meaning [27]:
• 0→ Values remain constant.
• 1→ Values are randomly changing but uncorrelated.
• 2→ Values are randomly changing and correlated.

A value of 0 (constant) for the node locations means they are
initially chosen from a random distribution but then remain
fixed over time (v = 0), whereas for channel and traffic, it
refers to the deterministic cases of no fading and all nodes
always transmitting, respectively.

D. Analysis for a Single Source of Correlation

An analysis of the scenarios with a single source of corre-
lation (either i, j or k = 2) helps us understand the effects
of the different sources on interference pikes. The other two
models lead to constant or fast changing values (states 0 and
1), to depict the different effects of these two options.

1) Node locations as the sole correlation source
In Scenario S1, the nodes follow either of the mobility

models. Channel and traffic are either constant or fast vary-
ing at random. This scenario accounts for three cases in
(2, {0, 1}, {0, 1}) except (2, 1, 1). The interference is fully cor-
related for static nodes (v= 0), and the correlation decreases
with increasing speed. The analysis of interference pikes is
shown in Fig. 6.

The mean interarrival time τ̄ increases with increasing
correlation in all six setups (Fig. 6a). The behavior of the
burstiness B depends on the particular setup (Fig. 6b). In
case (2, 1, 0), B increases with increasing correlation. In the

other two cases (2, 0, {0, 1}), B is almost independent of the
correlation within the considered range. Pikes tend to arrive
in bursts for case (2, 1, 0) with Brownian motion and high
correlation (low v). Here the slow variations in node locations
overlay with the fast channel variations. In this case, the
pike arrivals for the two mobility models are illustrated in
Fig. 7. All other setups lead to non-bursty pike arrivals. In
case (2, 0, 0), no fast variation of any model is involved. In
case (2, 0, 1), we conjecture that the effect of the faster varying
traffic is compensated by the higher speed.

In all three cases, Brownian motion leads to a positive
memory coefficient M>0 (Fig. 6c), which means short (long)
pikes are followed by short (long) ones. In contrast, random
direction mobility always has M ≈ 0. The mean burst size β̄
for case (2, 1, 0) with Brownian motion depends on v and δ
(Fig. 6d). Bursts tend to be longer for slow nodes since slowly
changing locations cause more pikes to cluster.

2) Channel as the sole correlation source
In Scenario S2, the channel remains constant for multiple

slots and then randomly changes to an independent value,
independently for each node (slow fading). All nodes are static
and traffic is constant or fast varying. This scenario includes
the two cases (0, 2, {0, 1}). Results are shown in Fig. 8 (green
curves).

Again, the mean interarrival time τ̄ increases with increasing
interference correlation in both cases (Fig. 8a). The bursti-
ness B also increases with interference correlation but its
specific behavior depends on the traffic model (Fig. 8b). With
constant traffic (k = 0), the variation of the interference power
is caused by the channel only (Fig. 9a). The longer the channel
block size c, the more slowly the channel fades and therefore
the higher the interference correlation, essentially resulting in
non-bursty pikes. With fast varying traffic (k = 1), the set of
active nodes changes in every slot, resulting in a rapid variation
of the interference power (Fig. 9b). It is the combination of
these rapid changes in traffic with slow fading (for large c)
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Fig. 6: Mean interarrival time τ̄ , burstiness measure B, memory coefficient M and mean burst size β̄ for the three cases in
Scenario S1 with random direction mobility (red) and Brownian motion (green). Here λ = 1, α = 3 and ξ = 1. For case (2, 0, 0),
m = ∞, µ = 1 and v ∈ {1.9, 2.1, 2.3, 2.5, 2.7}. For case (2, 1, 0), m = 1, c = 1, µ = 1 and v ∈ {0.5, 0.7, 0.9, 1.1, 1.3}. For
case (2, 0, 1), m =∞, µ = 0.9, d = 1 and v ∈ {1.7, 1.9, 2.1, 2.3, 2.5}.
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Fig. 7: Pike arrivals for Brownian motion (green) and random
direction mobility (red) for case (2, 1, 0) in scenario S1.

that leads to clustering of pikes (B > 0).
The memory M in these cases is around zero or even

negative for fast varying traffic (Fig. 8c). Negative M means
that a short (long) τ is typically followed by a long (short) τ .

The bursts for fast varying traffic for a given δ tend to get
longer for increasing c (Fig. 8d). For increasing c, the pike
and valley durations tend to increase, which in turn leads to

an increased β̄. If we increase the parameter δ, more pikes are
grouped in a single burst, hence β̄ increases by definition.

3) Traffic as the sole correlation source
In Scenario S3, the traffic is slowly changing at random

with message length d > 1 and constant µ = 0.1. All
nodes are static and the channel is either constant or fast
fading. This scenario accounts for the two cases (0, {0, 1}, 2).
A constant µ results in constant mean interference, but its
correlation increases with increasing d. Results are shown in
Fig. 8 (orange curves).

As in the previous scenarios, the mean interarrival time τ̄
increases with increasing correlation in both cases (Fig. 8a).
The burstiness B depends on the channel model (Fig. 8b). A
non-fading channel (j = 0) leads to non-bursty pikes. In this
case, traffic is the sole source of variation in the interference
power. With increasing d but constant µ = 0.1, the set of
active nodes changes slowly, resulting in slow variations of
the interference power (Fig. 10a). A fast fading channel (j =
1) can lead to bursty pikes. In this case, the quickly varying
channel combined with slowly changing traffic results in a
clustering of pikes (Fig. 10b).

The memory M and mean burst size β̄ show a similar
behavior as in the previous scenario (Figs. 8c and 8d). The
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Fig. 8: Mean interarrival time τ̄ , burstiness measure B, memory coefficient M and mean burst size β̄ for Scenarios S2 (green)
and S3 (orange). Here, λ = 1, v = 0, α = 3 and ξ = 1. For case (0, 2, 0): m = 1, c ∈ {2, 5, 9, 13, 17} and µ = 1. For case
(0, 2, 1) m = 1, c ∈ {2, 5, 9, 13, 17}, µ = 0.9 and d = 1. For case (0, 0, 2): m = ∞, µ = 0.1 and d ∈ {2, 5, 9, 13, 17}. For
case (0, 1, 2): m = 1, c = 1, µ = 0.1 and d ∈ {2, 5, 9, 13, 17}.
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Fig. 9: Interference power for Scenario S2 with ξ = 1.
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Fig. 10: Interference power for Scenario S3 with ξ = 1.
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Fig. 11: Mean interarrival time τ̄ , burstiness measure B, memory coefficient M and mean burst size β̄ for case (0, 2, 2) in
Scenario M1. Here λ = 1, α = 3, v = 0, µ = 0.5, d = 9, m = 1 and c ∈ {2, 5, 9, 13, 17}.
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Fig. 12: Interference power for M1 with ξ = 1.

bursts tend to get longer for longer messages.
Comparing Scenario S2 with Scenario S3 in Fig. 8b, it

can be observed that B is similar for both cases (0, 1, 2) and
(0, 2, 1) irrespective of the source of correlation. Pikes arrive
in bursts for low correlation for case (0, 1, 2) as compared to

case (0, 2, 1).

E. Analysis for Multiple Sources of Correlation
1) Channel and traffic as correlation sources

In Scenario M1, both channel and traffic change slowly
(with c > 1 and d > 1); they thus both contribute to
the correlation. The nodes are static. This accounts for case
(0, 2, 2).

As always, the mean interarrival time τ̄ increases with
increasing correlation (Fig. 11a). The burstiness B also in-
creases with increasing correlation (Fig. 11b). Two setups can
be distinguished: If the channel is expected to change faster
than the traffic (c < d), the interference crosses the threshold
frequently (Fig. 12a), and we obtain regular arrivals of pikes
(B < 0). If the channel changes more slowly than the traffic
(c > d), the interference also changes more slowly (Fig. 12b),
and we obtain bursty arrivals of pikes (B > 0).

The memory M is about zero over the considered range
of c (Fig. 11c). Fig. 11d shows the mean burst size β̄ with
c = 17 for different δ. β̄ is the lowest for ξ = 3 because the
interference power seldom crosses the threshold (long valleys)
and also for short duration of time (short pikes).

2) Locations, channel, and traffic as correlation source
In Scenario M2, all three models contribute towards cor-

relation, which accounts for case (2, 2, 2). The channel and
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Fig. 13: Mean interarrival time τ̄ , burstiness measure B, memory coefficient M and mean burst size β̄ for case (2, 2, 2)
in Scenario M2 with random direction mobility (red) and Brownian motion (green). Here λ = 1, α = 3, ξ = 1, v ∈
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Fig. 14: Interference power for Scenario M2.
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traffic vary slowly with c > 1 and d > 1. The nodes
follow either of the two mobility models with their correlation
considered.

As in the previous scenario, the mean interarrival time τ̄
(Fig. 13a) and burstiness B (Fig. 13b) increase with increasing
correlation for both setups. Pikes arrive in bursts for Brownian
motion and in a regular fashion for random direction mobility
(except for very low speed v = 0.1). Traces of the interference
power for both models are shown in Fig. 14.

The memory M is positive for Brownian motion (Fig. 13c),
indicating that burstiness of pikes is contributed by both the
distribution of τ and memory in τk. It is zero for random
direction mobility except for very low speed (v = 0.1). Bursts
tend to be longer at low speed (high correlation) for Brownian
motion (Fig. 13d).

F. Summary of Burstiness and Memory

Fig. 15 shows for each setup the highest observed B and
the corresponding M . Some observations can be made: First,
static interferers (i = 0) result in high burstiness of pikes
when the channel or traffic have fast variations. Second, mobile
interferers (i = 2) with Brownian motion result in higher
burstiness of pikes compared to random direction mobility and
always result in positive M .

Table III presents a summary of the effect of correlation ρ on
B for all the scenarios analyzed above. Overall it is observed
that B increases with increasing correlation ρ, except for the
basic scenario. Here, ρ increases with increasing d but at the
same time the traffic changes slowly. Hence, with increasing
d, slow varying traffic overlaps with a slowly varying channel
(c = 15), resulting in decreasing B with increasing ρ.

VI. EXPERIMENTAL ANALYSIS OF INTERFERENCE BURSTS

A. Setup

Finally, we analyze the arrival of interference pikes in a
mobile phone connected to a commercial 4G cellular network.
This analysis helps us to identify whether the burstiness is
rooted in the modeling assumptions or measured interference
shows similar behavior.

We analyze the interference pikes for an automotive driving
in two European countries, Austria and Albania. Measure-
ments were conducted in two different automotive environ-
ments: freeway and urban area. In the freeway scenario F , we
drove on the Austrian Südautobahn A2 between Wolfsberg
and Klagenfurt with an average speed of 93 km/h denoted F1

(Fig. 16a), and on the Albanian freeway between Tirana and
Fier with an average speed of 77 km/h denoted F2 (Fig. 16c).
In the urban scenario U , we drove in the city of Klagenfurt
with an average speed of 27 km/h denoted U1 (Fig. 17a), in
the city of Linz with an average speed of 9 km/h denoted U2

(Fig. 17c), and in the city of Tirana with an average speed of
17.4 km/h denoted U3 (Fig. 17e). The measurements were
performed three times in each scenario.

For the measurement campaign in Austria, a Samsung S8
SM-G950F phone inside the car was connected to the Hutchi-
son Drei 4G (LTE-Advanced) network with carrier aggregation
in the downlink. For the measurement campaign in Albania,

a Samsung J600F/DS phone inside the car was connected to
the Vodafone Albania 4G (LTE-Advanced) network. For both
campaigns, the Android application CDMT [59], developed
by Lakeside Labs, was installed on the phone. It recorded
various parameters, including the reference signal received
power (RSRP), the E-UTRA absolute radio frequency channel
number (EARFCN), and GPS coordinates. The EARFCN
identifies the carrier frequency the phone is connected to at
a given time. Radio measurements for the serving cell along
with the neighboring cells were recorded once per second (so
t ∈ Z again).

B. Results

The interference power I(t) is computed from the measure-
ment traces by adding the RSRP values of all the neighboring
cells with the same EARFCN as the serving cell. The interfer-
ence traces for both the freeway and the urban scenarios are
shown in Figs. 16 and 17, respectively. It is evident from the
plots that the interference power on the freeway is about one
order of magnitude lower than that in the city.

The measured interference is transformed into the binary
signal J(t) based on the threshold θ with ξ = 0. The resulting
J(t) yields the durations τP , τV , and τ , which are then
analyzed in terms of burstiness, memory coefficient, and burst
size, averaged over all measurement campaigns.

The results given in Figs. 18 and 19 and Tables IV and V
(for ξ = 0) show the following: Burstiness of interference
pikes is observed in all scenarios. The pikes tend to be more
bursty in the measurements performed in Albania compared
to Austria. This could be the result of a denser network
deployment to provide coverage to the higher population
density in and near Tirana compared to Klagenfurt. Further-
more, in both countries, the freeway scenarios show higher
burstiness than the urban scenarios. We conjecture that the
higher burstiness on the freeway comes from a combination
of the high speed, fast channel variations (caused by the
speed), and slow traffic variations (less traffic than in the city).
Regarding the memory coefficient, there is no relevant memory
present in all measurements. There are only small negative
values in Austria and small positive values in Albania. The
average interference power is between around 8× 10−10 mW
and 5 × 10−9 mW in all scenarios, where freeway scenarios
are more on the lower side of this range. The burst lengths are
relatively high with values above 35 s in all scenarios. Further
experimental studies need to support these observations and
identify the causes of the differences.

VII. DISCUSSION OF RESULTS

In the synopsis of the model-based and experimental anal-
ysis, some insights on the burstiness of interference pikes can
be gained. From the model-based analysis, we learn that the
burstiness of interference pikes arises from the overlay of fast
and slowly changing factors contributing to the overall interfer-
ence power. For example, in a static network, the burstiness is
high when the fast (slowly) changing channel overlays slowly
(fast) changing data traffic. Additionally, we observe that the
burstiness depends on the type of mobility. For example, the
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TABLE III: The effect of different parameters on interference correlation ρ and burstiness measure B. Parameters: Mean node
speed v, Nakagami-m parameter, channel block length c in slots, fraction of transmitting nodes µ, and message duration d in
slots. Parameters marked with a dash are irrelevant (an arbitrary positive integer value can be chosen).

Scenario
Model parameters Case index [27] Interference

correlation
Burstiness
measure

Node Channel Traffic Node Channel Traffic

v m c µ d i j k ρ B

S1
> 0 ∞ – 1 –

2

0 0
Increases with
decreasing v

Increases with
increasing ρ

> 0 1 1 1 – 1 0

> 0 ∞ – < 1 1 0 1

S2
0 1 > 1 1 – 0

2
0 Increases with

increasing c
0 1 > 1 < 1 1 0 1

S3
0 ∞ – < 1 > 1 0 0

2
Increases with
increasing d

0 1 1 < 1 > 1 0 1

M1
0 1 > 1 < 1 > 1 0 2 2

Increases with
increasing c
and d = 9

M2 > 0 1 > 1 < 1 > 1 2 2 2
Increases with
decreasing v

Basic 0 1 > 1 < 1 > 1 0 2 2

Increases with
increasing d
and c = 15

Decreases with
increasing ρ

(a) Route (red) for Scenario F1. Length: 73 km.
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(b) Measured interference power for Scenario F1.

(c) Route (red) for Scenario F2. Length: 94 km.
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(d) Measured interference power for Scenario F2.

Fig. 16: Measurement route and measured interference power for freeway scenarios F for experimental analysis.
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(a) Route (red) for Scenario U1. Length: 24.6 km.

0 500 1,000 1,500 2,000

10−12

10−10

10−8

10−6

Time in seconds

In
te

rf
er

en
ce

po
w

er
in

m
W

Run 1 Run 2 Run 3

(b) Measured interference power for Scenario U1.

(c) Route (red) for Scenario U2. Length: 13 km.
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(d) Measured interference power for Scenario U2.

(e) Route (red) for Scenario U3. Length: 17.5 km.
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(f) Measured interference power for Scenario U3.

Fig. 17: Measurement route and measured interference power for urban scenarios U for experimental analysis.

burstiness is high if interferers follow a Brownian motion as
compared to random direction mobility. These insights can be
used to design the network with either high or low burstiness
of interference pikes, depending on which is preferable for
the network. The experimental analysis proves the existence
of burstiness of pikes in the real world. However, it is hard
to identify the cause of burstiness in experimental data, given
how little is known about the interfering nodes in a commercial
cellular network. As mentioned, these insights can be exploited
for the benefit of the network, e.g., to design opportunistic
interference management techniques. Furthermore, given the
pikes arrive in bursts, the first pike can be considered a warning

signal for more pikes to come after a relatively short time.
This information can be used, e.g., to change the decoding
scheme of the receiver, and/or increase the back-off time of
the transmitter.

VIII. CONCLUSIONS AND OUTLOOK

High-interference events in wireless networks can occur
in bursts. We analyzed and quantified this phenomenon by
simulations and 4G measurements in a variety of scenarios
and partly identified its roots. We conjecture that burstiness
and memory are fostered by the superposition of rapidly and
slowly changing factors contributing to interference.
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TABLE IV: Measurement results for the freeway scenario F with ξ = 0 and δ = 80

Parameter [unit] Freeway scenario
F1 F2

mean std. dev. mean std. dev.
τP [s] 5.52 1.91 9.4 1.9

τV [s] 65.84 5.17 48.9 5.4

τ [s] 71.30 5.04 57.9 7.3

B 0.14 0.01 0.336 0.003

M −0.08 0.02 0.048 0.04

β [s] 66.6 15.1 49.66 7.15

I [mW] 2.97× 10−10 2.25× 10−09 9.06× 10−10 3.31× 10−09

No. of pikes per burst 3.09 0.97 3.39 0.62

v̄ [km/h] 93 77.2

TABLE V: Measurement results for the urban scenario U with ξ = 0 and δ = 80

Parameter [unit] Urban scenario
U1 U2 U3

mean std. dev. mean std. dev. mean std. dev.
τP [s] 8.26 1.03 7.54 1.32 12 4

τV [s] 49.50 14 27.37 2.67 40.8 11.2

τ [s] 58.32 15 34.92 3.97 52.8 14.9

B 0.09 0.03 0.08 0.02 0.219 0.09

M −0.07 0.05 −0.07 0.15 0.067 0.04

β [s] 35.3 12.8 138.6 42.6 76.13 14.05

I [mW] 7.70× 10−10 4.84× 10−09 1.60× 10−09 4.98× 10−09 4.04× 10−09 9.53× 10−09

No. of pikes per burst 3.27 1.11 6.85 2.15 4.98 0.55

v̄ [km/h] 27 9 17.4
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Fig. 18: Pike arrivals in a 4G network for urban scenario with
ξ = 0.

We hope that these insights will contribute to a better
understanding of interference dynamics, which in turn could
be useful in interference management and scheduling. It is
expected that future work will include additional measure-
ments and the derivation of analytical results on the stochastic
properties of interference pikes.
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Fig. 19: Pike arrivals in a 4G network for freeway scenario
with ξ = 0.
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