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Abstract
The problem of reconstructing a distribution with bounded support from its moments is practically relevant in many
fields, such as chemical engineering, electrical engineering, and image analysis. The problem is closely related to a
classical moment problem, called the truncated Hausdorff moment problem (THMP). We call a method that finds
or approximates a solution to the THMP a Hausdorff moment transform (HMT). In practice, selecting the right
HMT for specific objectives remains a challenge. This study introduces a systematic and comprehensive method
for comparing HMTs based on accuracy, computational complexity, and precision requirements. To enable fair
comparisons, we present approaches for generating representative moment sequences. The study also enhances
existing HMTs by reducing their computational complexity. Our findings show that the performances of the
approximations differ significantly in their convergence, accuracy, and numerical complexity and that the decay
order of the moment sequence strongly affects the accuracy requirement.

1. Introduction

In the analysis of large-scale wireless network performance, a critical metric, known as the meta
distribution (MD), has emerged as a cornerstone in revealing the performance of individual links [5, 7, 8].
MDs play a key role of dissecting the impact of different sources of randomness on network performance.
Quantities that affect the quality of the service of the users, such as signal power, signal-to-interference
ratio (SIR), instantaneous rate, or energy, are inherently random, and we call them performance random
variables (PRVs) [28]. Because of the nature of wireless networks, the PRVs strongly depend on user
locations and are also time-varying, in other words, different sources of randomness. In this context,
the MD emerges as a powerful tool to disentangle the different sources of randomness by analyzing the
distribution of conditional probabilities.

However, calculating MDs is far from trivial. In some simplified network models, closed-form
expressions can be obtained [7], but in more complete models, directly deriving analytic expressions is
most likely impossible [5, 26, 29]. Thankfully, with the tool of stochastic geometry, the moments of the
underlying conditional probabilities can be calculated [5, 26, 29]. Thus, we take a detour to calculate
the distribution from its integer moments, which is a classical moment problem, called the Hausdorff
moment problem (HMP) [9, 14, 21, 23]. The HMP seeks to ascertain whether a particular sequence
corresponds to the integer moments of a valid random variable [9, 21, 23], in other words, the existence
of a solution (as a random variable) whose integer moments match a given sequence. The existence
condition is that the given sequence is completely monotonic (c.m.) [9, 21, 23]. When this criterion is
met, a solution exists, and it is unique [9, 21, 23]. The HMP is also relevant in many fields other than the
MDs in wireless networks, such as the density of states in a harmonic solid (see, e.g., [16]), and particle
size distributions (see, e.g., [11]). From a probability theory perspective, the existence of a solution is



2 Probability in the Engineering and Informational Sciences

the primary concern, however, in practical applications, we know a priori that solutions exist, since the
sequences are derived from random variables. Therefore, the target is to find the solution–in other words,
to invert the mapping from a probability distribution to its moments. Given any tolerance greater than 0,
we can approximate the solution within this tolerance (as measured by a suitable distance metric) using
finitely many integer moments. Related, in practical scenarios, it is possible that only a finite number of
integer moments can be calculated. Both aspects lead us to consider the truncated HMP (THMP).

The THMP diverges from the HMP in its objective. The former seeks solutions or approximations
when the given finite-length sequence is from a valid moment sequence [21, 23], while the latter
focuses on the existence and uniqueness of the solution for a given infinite-length sequence [23]. Further
complicating matters, the THMP usually yields infinitely many solutions when the given sequence is
valid [21, 23]. More importantly, solutions or approximations to the THMP are approximations to the
HMP. We call a method that finds a solution or approximates a solution to the THMP a Hausdorff
moment transform (HMT).

In the context of practical applications, such as MDs, the density of states in a harmonic solid, and
particle size distributions, the sequences applied to the THMP can theoretically be extended to any length,
therefore, our primary focus centers on the ultimate behavior of the HMTs as the lengths of the sequences
increases. Various HMTs to the THMP have been proposed in the literature [4, 14, 16, 18, 22, 23, 24],
but there is a gap between developing the HMTs and applying them to solve practical problems. More
specifically, the choice of the appropriate HMT is not clear. Different HMTs may exhibit varying
effectiveness in different scenarios, giving rise to the need for a method of comparison that allows fair
evaluation1 and informed decision-making.

In this study, we bridge this gap by introducing a systematic and comprehensive method of comparison
for HMTs, based on their accuracy, computational complexity, and precision requirements. This way,
the most suitable HMT for given objectives can be chosen. The key point to make fair comparisons is to
generate representative moment sequences. Generating random moment sequences is non-trivial since
the probability that an unsorted sequence of length 𝑛 with each element independent and identically
distributed (i.i.d.) uniformly on [0, 1] is a moment sequence is approximately 2−𝑛2 [1, Eq. 1.2] and the
probability that a sorted sequence of length 𝑛 with each element i.i.d. uniformly on [0, 1] is a moment
sequence is approximately 𝑛!2−𝑛2 . We provide three different ways to solve it: One is to generate random
integer moment sequences that are uniformly distributed in the moment space; the other two are based
on analytic expressions, either of moments or of the cdfs. Moreover, our contributions extend to the
enhancement of existing HMTs on the implementation front, improving them with heightened efficiency
and practical applicability. In particular, we write some of the HMTs as linear transforms, which
significantly lower their computational complexity and enables carrying out the most computationally
intensive tasks offline.

2. Preliminaries

2.1. The Hausdorff moment problem

Without loss of generality, we assume the support of the distributions is [0, 1]. The THMP can be
formulated as follows. Let [𝑛] ≜ {1, 2, ..., 𝑛} and [𝑛]0 ≜ {0}∪ [𝑛]. Given a sequence m ≜ (𝑚𝑘)𝑛𝑘=0, 𝑛 ∈
N, find or approximate an 𝐹 such that∫ 1

0
𝑥𝑘 𝑑𝐹 (𝑥) = 𝑚𝑘 , ∀𝑘 ∈ [𝑛]0, (2.1)

where 𝐹 is right-continuous and increasing with 𝐹 (0−) = 0 and 𝐹 (1) = 1, i.e., 𝐹 is a cumulative
distribution function (cdf).

1[11] has compared some HMTs but merely based on specific chemical engineering problems, which may not be applicable to other problems.
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Although in practical applications, we are not concerned with the existence and uniqueness of the
solutions to the THMP, we still find it valuable to examine these conditions to account for scenarios
where the moments may not be exact.

Let F𝑛 be the family of 𝐹 that solves (2.1). The existence and uniqueness of solutions can be verified
by the Hankel determinants, defined by

𝐻𝑙 ≜



��������
𝑚0 . . . 𝑚𝑙/2
...

. . .
...

𝑚𝑙/2 . . . 𝑚𝑙

�������� , even 𝑙,

��������
𝑚1 . . . 𝑚 (𝑙+1)/2
...

. . .
...

𝑚 (𝑙+1)/2 . . . 𝑚𝑙

�������� , odd 𝑙,

(2.2)

𝐻𝑙 ≜



��������
𝑚1 − 𝑚2 . . . 𝑚𝑙/2 − 𝑚𝑙/2+1

...
. . .

...

𝑚𝑙/2 − 𝑚𝑙/2+1 . . . 𝑚𝑙−1 − 𝑚𝑙

�������� , even 𝑙,

��������
𝑚0 − 𝑚1 . . . 𝑚 (𝑙−1)/2 − 𝑚 (𝑙+1)/2

...
. . .

...

𝑚 (𝑙−1)/2 − 𝑚 (𝑙+1)/2 . . . 𝑚𝑙−1 − 𝑚𝑙

�������� , odd 𝑙.

(2.3)

A solution exists if 𝐻𝑙 and 𝐻𝑙 are non-negative for all 𝑙 ∈ [𝑛] [25]. Furthermore, the solution is unique,
i.e., |F𝑛 | = 1, if and only if there exists an 𝑙 ∈ [𝑛] such that 𝐻𝑙 = 0 or 𝐻𝑙 = 0 [25]. If the solution
is unique, 𝐻𝑘 = 𝐻𝑘 = 0 for all 𝑘 > 𝑙, and the distribution is discrete and uniquely determined by the
first 𝑙 moments [25]. Example 2.1 shows an example with 𝑛 = 2. A more interesting and relevant case
is when the Hankel determinants 𝐻𝑘 and 𝐻𝑘 are positive for all 𝑙 ∈ [𝑛], which is both a necessary and
sufficient condition for the problem to have infinitely many solutions, i.e., |F𝑛 | = ∞. In the following,
we focus on this case by assuming the positiveness of all the Hankel determinants.

Example 2.1 (Two sequences with 𝑛 = 2).

1. For m = (1, 1/2, 1/2), we have

𝐻1 = 𝑚1 = 1/2 > 0, 𝐻1 = 𝑚0 − 𝑚1 = 1/2 > 0,

𝐻2 =

����𝑚0 𝑚1
𝑚1 𝑚2

���� = 1/4 > 0, 𝐻2 = 𝑚1 − 𝑚2 = 0.

The uniquely determined discrete distribution has only two jumps, one at 0 and one at 1. Hence the
probability density function (pdf) is 1

2𝛿(𝑥) +
1
2𝛿(𝑥 − 1).

2. For m = (1, 1/2, 1/3), we have

𝐻1 = 𝑚1 = 1/2 > 0, 𝐻1 = 𝑚0 − 𝑚1 = 1/2 > 0,

𝐻2 =

����𝑚0 𝑚1
𝑚1 𝑚2

���� = 1/12 > 0, 𝐻2 = 𝑚1 − 𝑚2 = 1/6 > 0.
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There are infinitely many solutions since all Hankel determinants are positive, such as 𝑓 (𝑥) = 1 and
𝑓 (𝑥) = 1

2𝛿
(
𝑥 −

(
3 +

√
3
)
/6

)
+ 1

2𝛿
(
𝑥 −

(
3 −

√
3
)
/6

)
.

2.2. Adjustment

Here, we introduce a mapping to restore properties of probability distributions.
Some approximations are essentially functional approximations which may not preserve the prop-

erties of cdfs, such as monotonicity and ranges restricted to [0, 1]. An example can be found in
Figure 5. Besides, for practical purposes, the numerical evaluation of approximations are necessarily to
be restricted to a finite set of [0, 1]. Here, we consider a finite set U𝑛 with cardinality (𝑛 + 1), and let
(𝑢0, 𝑢1, 𝑢2, ..., 𝑢𝑛) be the sequence of all elements in U𝑛 in ascending order, where 𝑢0 = 0 and 𝑢𝑛 = 1.
If there is no further specification, we assume U𝑛 is the uniform set { 𝑖

𝑛
, 𝑖 ∈ [𝑛]0}. Definition 2.2 intro-

duces a tweaking mapping to adjust the values of the approximations so that they adhere to the properties
of cdfs after adjustments.

Definition 2.2 (Tweaking mapping). We define 𝑇 that maps 𝐹 : U𝑛 ↦→ R to 𝐹̂ : U𝑛 ↦→ [0, 1] such that

1. 𝑇 (𝐹) (𝑢𝑖) = min (1,max (0, 𝐹 (𝑢𝑖))), ∀𝑖 ∈ [𝑛]0.
2. 𝑇 (𝐹) (0) = 0 and 𝑇 (𝐹) (1) = 1.
3. 𝑇 (𝐹) (𝑢𝑖+1) = max(𝐹 (𝑢𝑖), 𝐹 (𝑢𝑖+1)), ∀𝑖 ∈ [𝑛 − 1]0.

The tweaking mapping in Definition 2.2 eliminates the out-of-range points and keeps the partial
monotonicity. Let 𝐹 : U𝑛 ↦→ R be an approximation of a solution to the truncated HMP. After tweaking,
we obtain monotone and bounded approximations over a discrete set, denoted as 𝐹̂ = 𝑇 (𝐹). Next, we
interpolate the discrete points to obtain continuous functions. Specifically, we apply monotone cubic
interpolation to 𝐹̂. Monotone cubic interpolation preserves monotonicity. For convenience, we refer
to the function after interpolation as 𝐹̂ as well, and we call the original function 𝐹 the raw function
and the tweaked and interpolated function 𝐹̂ the polished function. We use 𝐹̂ |U𝑛

to emphasize that the
polished function 𝐹̂ is originally sampled over U𝑛. The polished function is continuous, monotone and
[0, 1] ↦→ [0, 1].

2.3. Distance metrics

In this part, we introduce two distance metrics between two functions 𝐹1, 𝐹2 : [0, 1] ↦→ [0, 1] are.

Definition 2.3 (Maximum and total distance). The maximum distance between functions 𝐹1 and 𝐹2 is
defined as the L∞-norm of 𝐹1 and 𝐹2 over [0, 1], i.e.,

𝑑M (𝐹1, 𝐹2) ≜ ∥𝐹1 − 𝐹2∥L∞ [0,1] ,

= max
𝑥∈[0,1]

|𝐹1 (𝑥) − 𝐹2 (𝑥) |.

The total distance between functions 𝐹1 and 𝐹2 is defined as the L1-norm of 𝐹1 and 𝐹2 over [0, 1], i.e.,

𝑑 (𝐹1, 𝐹2) ≜ ∥𝐹1 − 𝐹2∥L1 [0,1] ,

=

∫ 1

0
|𝐹1 (𝑥) − 𝐹2 (𝑥) |𝑑𝑥.

We mainly focus on the total distance and use the maximum distance as a secondary metric. As
the maximum and total distance are designed to be applied to the polished functions, the exact value
of the total distance and maximum distance of the linear/monotone cubic interpolation of the polished
functions can be calculated.
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(a) 𝑚𝑘 = 1/(𝑘 + 1) , 𝑘 ∈ [𝑛]0.
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Figure 1. The infima and suprema from the CM inequalities for 𝑛 = 4, 6, 8, 10. 𝑥 is discretized to
U50 = {𝑖/50, 𝑖 ∈ [50]0}..

3. Solutions and approximations

3.1. The Chebyshev-Markov (CM) inequalities

[23] provides a method for obtaining inf𝐹∈F𝑛
𝐹 (𝑥0) and sup𝐹∈F𝑛

𝐹 (𝑥0) for any 𝑥0 ∈ [0, 1]. The most
important step of the method is the construction of a discrete distribution in F𝑛 where the maximum
possible mass is concentrated at 𝑥0. The details of the method can be found in [14, 23] and explicit
expressions can be found in [27, 31]. The inequalities established by the infima and suprema in [27,
Thm. 1] are also known as the CM inequalities. In contrast, the infima and suprema in [20] are for
distributions where the support can be an arbitrary Borel subset of R. As a result, they are loose for
distributions with support [0, 1].

Figure 1 shows two examples of the infima and suprema for different 𝑛. The convergence of the infima
and suprema as 𝑛 increases is apparent. The discontinuities of the derivatives in Figure 1 coincide with the
roots of the orthogonal polynomials [27, Thm. 1]. For Figure 1b, 𝐻9 = 0 indicates a discrete distribution.
The infima and suprema get drastically closer from 𝑛 = 8 to 𝑛 = 10 because 𝑛 = 10 is sufficient to
characterize a discrete distribution with 5 jumps while 𝑛 = 8 is not. In fact, the infima and suprema
match almost everywhere (except at the jumps) for 𝑛 = 10, but Figure 1b only reveals the mismatch at
0.5 and 0.8 since only 0.5 and 0.8 are jumps that fall in the sampling set U50 = {𝑖/50, 𝑖 ∈ [50]0}.

While all solutions to the THMP lie in the band defined by the infima and suprema, the converse
does not necessarily hold. Figure 2 gives an example, where 𝐹 lies in the band but is not a solution to
the THMP. Its corresponding 𝑚1 and 𝑚2 are 2/3 and 1/2, respectively, rather than 1/2 and 1/3 that
define the band.

In the following subsections, we propose a method based on the Fourier-Chebyshev (FC) series and
a CM method based on the average of the infima and suprema from the CM inequalities and compare
them against the existing methods. We also improve and concretize some of the existing methods.
In particular, we provide a detailed discussion of the existing Fourier-Jacobi (FJ) approximations and
fully develop the one mentioned in [23]. Besides, among all the discussed methods, the maximum
entropy (ME) method by design yields solutions to the THMP, while the other methods by design obtain
approximations of a solution to the THMP.
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Figure 2. The infima and suprema from the CM inequalities for 𝑚𝑛 = 1/(𝑛 + 1) and 𝐹 (𝑥) = 𝑥2..
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Figure 3. 𝐹BM,10, 𝐹̂BM,10 and 𝐹, where 𝐹̄ = exp(− 𝑥
1−𝑥 ) (1−𝑥)/(1−log(1−𝑥)). The ◦ denote 𝐹BM,10 |U11 ..

3.2. Well-established methods

3.2.1. Binomial mrixture (BM) method
A piecewise approximation of the cdf based on binomial mixtures2 was proposed in [18]. For any
positive integer 𝑛, the approximation3 by the BM method is defined as follows.

Definition 3.1 (Approximation by the BM method).

𝐹BM,𝑛 (𝑥) ≜
{∑⌊𝑛𝑥⌋

𝑘=0 ℎ𝑘 , 𝑥 ∈ (0, 1],
0, 𝑥 = 0,

(3.1)

where ℎ𝑘 =
∑𝑛

𝑖=𝑘

(𝑛
𝑖

) ( 𝑖
𝑘

)
(−1)𝑖−𝑘𝑚𝑖 .

Note that 𝐹BM,𝑛 → 𝐹 as 𝑛 → ∞ for each 𝑥 at which 𝐹 is continuous [17, 18].

2Due to the continuous nature of the MDs, we do not consider other methods which find a solution to the THMP as a discrete distribution, such
as Gauss quadrature.

3In this section, the term “approximations” is used when the outputs are not always solutions to the THMP.
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Let 𝐹̂BM,𝑛 denote the monotone cubic interpolation of 𝐹BM,𝑛 |U𝑛+1 [6]. As shown in Figure 3, 𝐹BM,𝑛

is piecewise constant, and for a continuous 𝐹, 𝐹̂BM,𝑛 provides a better approximation than 𝐹BM,𝑛. Note
that 𝐹BM,𝑛 is a solution to the THMP only when 𝑛 = 1 and 𝐹̂BM,𝑛 is not necessarily a solution for any
positive integer 𝑛.

3.2.2. ME method
The ME method [12, 16, 25] is also widely used to solve the THMP. For any positive integer 𝑛, the
solution by the ME method is defined as follows.

Definition 3.2 (Solution by the ME method).

𝑓ME,𝑛 (𝑥) ≜ exp

(
−

𝑛∑︁
𝑘=0

𝜉𝑘𝑥
𝑘

)
, (3.2)

where the coefficients 𝜉𝑘 , 𝑖 ∈ [𝑛]0, are obtained by solving the equations∫ 1

0
𝑥𝑖 exp

(
−

𝑛∑︁
𝑘=0

𝜉𝑘𝑥
𝑘

)
𝑑𝑥 = 𝑚𝑖 , 𝑖 ∈ [𝑛]0. (3.3)

A unique solution of (3.3) exists if and only if the Hankel determinants of the moment sequence are
all positive. It can be obtained by minimizing the convex function [25]

Γ(𝜉1, . . . , 𝜉𝑛) ≜
𝑛∑︁

𝑘=1
𝜉𝑘𝑚𝑘 + log

(∫ 1

0
exp

(
−

𝑛∑︁
𝑘=1

𝜉𝑘𝑥
𝑘

))
(3.4)

and solving ∫ 1

0
exp

(
−

𝑛∑︁
𝑘=0

𝜉𝑘𝑥
𝑘

)
𝑑𝑥 = 𝑚0 = 1 (3.5)

for 𝜉0. The corresponding cdf is given by

𝐹ME,𝑛 (𝑥) =
∫ 𝑥

0
exp

(
−

𝑛∑︁
𝑘=0

𝜉𝑘𝑣
𝑘

)
𝑑𝑣. (3.6)

Since (3.4) is convex, it can, in principle, be solved by standard techniques such as the interior point
method. As the cdf given by (3.6) is a solution to the THMP, its error can be bounded by the infima
and suprema from the CM inequalities, which, however, requires additional computation. 𝐹ME,𝑛 → 𝐹

in entropy and thus in L1 as 𝑛 → ∞ [25]. But due to ill-conditioning of the Hankel matrices [10], the
ME method becomes impractical when the number of given moments is large, as solving (3.4) may not
be feasible.

3.3. Improvements and concretization of existing methods

3.3.1. Gil-Pelaez (GP) method
The main part of this study focuses on the HMP and THMP, which are based on integer moments. How-
ever, for the purpose of performance evaluation in Section 4.5, here we also consider the reconstruction
problem involving complex moments. By the Gil-Pelaez theorem [3], 𝐹 at which 𝐹 is continuous4 can

4If 𝐹 is not continuous at some point 𝑥0, the result obtained by the Gil-Pelaez theorem is the average of 𝐹 (𝑥0 ) and 𝐹 (𝑥−0 ) .
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be obtained from the imaginary moments by

𝐹 (𝑥) = 1
2
− 1

𝜋

∫ ∞

0
𝑟 (𝑠, 𝑥)𝑑𝑠, 𝑥 ∈ [0, 1], (3.7)

where 𝑟 (𝑠, 𝑥) ≜ ℑ(𝑒− 𝑗𝑠 log 𝑥𝑚 𝑗𝑠)/𝑠, 𝑗 ≜
√
−1, and ℑ(𝑧) is the imaginary part of the complex number 𝑧.

Since the integral in (3.7) cannot be analytically calculated, only numerical approximations can be
obtained. An accurate evaluation is exacerbated by the facts that the integration interval is infinite and
that the integrand may diverge at 0. We define the approximate value obtained through the trapezoidal
rule as follows.

Definition 3.3 (Approximation by the GP method).

𝐹GP(Δs,𝜐) (𝑥) ≜
1
2
− Δ𝑠

2𝜋

𝑁∑︁
𝑖=1

(𝑟 (𝑠𝑖 , 𝑥) + 𝑟 (𝑠𝑖−1, 𝑥)) , 𝑥 ∈ [0, 1], (3.8)

where 𝑁 ≜ ⌊ 𝜐
Δ𝑠
⌋ and 𝑠𝑖 ≜ 𝑖Δ𝑠.

Note that as Δ𝑠 → 0 and 𝜐 → ∞, 𝐹GP,Δs,𝜐 → 𝐹 for each 𝑥 at which 𝐹 is continuous.
We evaluate 𝐹GP(Δs,𝜐) over the set U100 for different Δ𝑠 and 𝜐. Figure 4 shows the average of the

total and maximum distance of 𝐹 and polished 𝐹̂GP(Δs,𝜐) as the step size Δ𝑠 and upper integration limit
𝜐 change. As the step size Δ𝑠 decreases to 0.1 and as the upper integration limit 𝜐 increases to 1000,
the average of the total distance decreases to less than 10−3, which indicates that the approximate cdf
obtained by numerically evaluating the integral of Gil-Pelaez method is very close to the exact cdf and
thus can be used as a reference. Both the integration upper limit and step size are critical in evaluating
the integral. A general rule for selecting the upper integration limit is to examine the magnitude of
𝑚 𝑗𝑠 . For example, if |𝑚 𝑗𝑠 | ≤ 1/𝑠, the error resulting from fixing the upper integration limit at 1000 is∫ ∞

1000 𝑟 (𝑠, 𝑥)𝑑𝑠 <
∫ ∞

1000 1/𝑠2𝑑𝑠 = 10−3. However, it is not always possible to determine the rate of decay
of the magnitude of the imaginary moments with only numerical values. So it is difficult to come up
with a universal rule for the integration range that is suitable for all moment sequences.

For the GP method, we propose a dynamic way to adjust the values of the upper limit and step size.
We start at 𝐹GP(0.1,1000) . If the cdf determined by the previous selections exceeds [0, 1], we decrease
the step size to 1/3 of the previous one and increase the upper limit to 3 times the previous one, and
then recalculate the cdf. We repeat this process until the range of the cdf is in [0, 1]. In some cases, the
updated step size and upper limit may cause memory problems. In the averaging process described in
Section 4.5, we discard those cases if we detect that the required memory is larger than the available
memory.

3.3.2. FJ method
Equipped with a complete orthogonal system on [0, 1], denoted as (𝑇𝑘 (𝑥))∞𝑘=0, we can expand a function
𝑙 defined on [0, 1] to a generalized Fourier series as [24]

𝑙 (𝑥) =
∞∑︁
𝑘=0

𝑐𝑘𝑇𝑘 (𝑥). (3.9)

The Jacobi polynomials 𝑃 (𝛼,𝛽)
𝑛 are such a class of orthogonal polynomials defined on [−1, 1]. They are

orthogonal w.r.t. the weight function 𝜔 (𝛼,𝛽) (𝑥) ≜ (1 − 𝑥)𝛼 (𝑥 + 1)𝛽 [24], i.e.,∫ 1

−1
𝜔 (𝛼,𝛽) (𝑥)𝑃 (𝛼,𝛽)

𝑛 (𝑥)𝑃 (𝛼,𝛽)
𝑚 (𝑥) 𝑑𝑥 =

2𝛼+𝛽+1 (𝑛 + 1) (𝛽) 𝛿𝑚𝑛

(2𝑛 + 𝛼 + 𝛽 + 1) (𝑛 + 𝛼 + 1) (𝛽)
, (3.10)
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Figure 4. Average of the total and maximum distances between 𝐹 and polished 𝐹̂GP(Δs,𝜐) which are
averaged over 100 randomly generated beta mixtures as described in Section 4.4. .

where 𝛿𝑚𝑛 is the Kronecker delta function, and 𝑎 (𝑏) ≜ Γ (𝑎+𝑏)
Γ (𝑎) is the Pochhammer function. For

𝛼 = 𝛽 = 0, they are the Legendre polynomials; for 𝛼 = 𝛽 = ±1/2, they are the Chebyshev polynomials.
The shifted Jacobi polynomials

𝑅
(𝛼,𝛽)
𝑛 (𝑥) ≜ 𝑃

(𝛼,𝛽)
𝑛 (2𝑥 − 1) =

𝑛∑︁
𝑗=0

(
𝑛 + 𝛼

𝑗

) (
𝑛 + 𝛽

𝑛 − 𝑗

)
(𝑥 − 1)𝑛− 𝑗𝑥 𝑗 , (3.11)

are defined on [0, 1]. Letting 𝜂
(𝛼,𝛽)
𝑛 ≜ (𝑛+1) (𝛽)

(2𝑛+𝛼+𝛽+1) (𝑛+𝛼+1) (𝛽)
, the corresponding orthogonality condition

w.r.t. the weight function 𝑤 (𝛼,𝛽) (𝑥) ≜ (1 − 𝑥)𝛼𝑥𝛽 is∫ 1

0
𝑤 (𝛼,𝛽) (𝑥)𝑅 (𝛼,𝛽)

𝑛 (𝑥)𝑅 (𝛼,𝛽)
𝑚 (𝑥) 𝑑𝑥 = 𝜂

(𝛼,𝛽)
𝑛 𝛿𝑚𝑛. (3.12)

When applying the FJ series to solve (2.1), the usual approach is to expand the target function (cdf
or pdf) as

𝑤 (𝛼,𝛽) (𝑥)
∞∑︁
𝑘=0

𝑐𝑘𝑅
(𝛼,𝛽)
𝑘

(𝑥), (3.13)

so that the moments can be utilized in the orthogonality conditions. However, an approximation obtained
by the 𝑛-th partial sum of the expansion is usually not a solution to the THMP, for two reasons. First,
the remaining Fourier coefficients 𝑐𝑚, 𝑚 > 𝑛, may not all be zero. Second, the approximations may not
preserve the properties of probability distributions.

Convergence is a major concern when approximating a function by an FJ series. While no conditions
are known that are both sufficient and necessary, there exist sufficient conditions and there exist necessary
conditions, both of which depend on the values of 𝛼, 𝛽 and the properties of the approximated functions
[13, 19]. For the THMP, a basic question is whether 𝛼, 𝛽 should depend on the moment sequence or
not and whether to approximate pdfs or cdfs. In the following, we will discuss in detail three different
ways which have been proposed in [4, 22, 23], respectively. In particular, [4] set 𝛼, 𝛽 depending on the
moment sequences and only approximate pdfs. In the other two ways, cdfs and pdfs are approximated,
respectively, and both fix 𝛼 = 𝛽 = 0 [22, 23].
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In the FJ method based on the FJ series [4], 𝛼, 𝛽 are chosen such that the first two Fourier coefficients
𝑐1 and 𝑐2 are zero, i.e., 𝛼 + 1 = (𝑚1 − 𝑚2) (1 − 𝑚1)/(𝑚2 − 𝑚2

1) and 𝛽 + 1 = (𝛼 + 1)𝑚1/(1 − 𝑚1). For
any positive integer 𝑛, the approximation by the FJ method is defined as follows.

Definition 3.4 (Approximation by the FJ method [4]).

𝑓FJ,𝑛 (𝑥) ≜ 𝑤 (𝛼,𝛽) (𝑥)
𝑛∑︁

𝑘=0
𝑐𝑘𝑅

(𝛼,𝛽)
𝑘

(𝑥), (3.14)

where, by the orthogonality condition,

𝑐𝑚 =
1

𝜂
(𝛼,𝛽)
𝑚

𝑚∑︁
𝑗=0

(
𝑚 + 𝛼

𝑗

) (
𝑚 + 𝛽

𝑚 − 𝑗

) 𝑚− 𝑗∑︁
𝑘=0

(
𝑚 − 𝑗

𝑘

)
(−1)𝑘𝑚𝑚−𝑘 . (3.15)

The corresponding cdf is

𝐹FJ,𝑛 (𝑥) =
(𝛼 + 1) (𝛽+1)

Γ(𝛽 + 1)

∫ 𝑥

0
𝑤 (𝛼,𝛽) (𝑡)𝑑𝑡 −

𝑛∑︁
𝑘=1

𝑐𝑘

𝑘
𝑤 (𝛼+1,𝛽+1) (𝑥)𝑅 (𝛼+1,𝛽+1)

𝑘−1 (𝑥). (3.16)

𝐹FJ,1 = 𝐹FJ,2 correspond to the beta approximation [5], where 𝑚1 and 𝑚2 are matched with the
corresponding moments of a beta distribution.

There are three drawbacks of the FJ method. First, as 𝛼, 𝛽 vary significantly for different moment
sequences, the convergence properties of the FJ method vary strongly as well. So it is impossible to
give a conclusive answer to whether such approximations converge or not. It is a critical shortcoming
of the FJ method that it only converges in some cases. Second, as 𝛼 and 𝛽 are generally not zero, the
approximate pdf is always 0 or ∞ at 𝑥 = 0 and 𝑥 = 1, which holds only for a limited class of pdfs. Last
but not least, it is possible that, as a functional approximation, the FJ method leads to non-monotonicity
in the approximate cdf. We address this by applying the tweaking mapping in Definition 2.2 to 𝐹FJ,𝑛 |U𝑛

.

3.3.3. Fourier-Legendre (FL) method
[22, 23] suggest fixing 𝛼 = 𝛽 = 0 in advance. The resulting polynomials are Legendre polynomials with
weight function 1. To expand a function 𝑙 by the FL series, a necessary condition for convergence is that
the integral

∫ 1
0 𝑙 (𝑥) (1 − 𝑥)−1/4𝑥−1/4 𝑑𝑥 exists [24]. Furthermore, if 𝑙 ∈ L 𝑝 with 𝑝 > 4/3, the FL series

converges pointwise [19]. There still remains the question whether we should approximate the pdf or the
cdf. In the following, we will discuss the two cases. The two have been discussed separately in [22, 23],
but the concrete expressions of the coefficients are missing. Besides, to the best of our knowledge, their
convergence properties have not been compared.

We denote the corresponding pdf of 𝐹 as 𝑓 and 𝑅
(0,0)
𝑘

as 𝑅𝑘 .

Approximating the pdf [22]
The 𝑛-th partial sum of the FL expansion of the pdf is

𝑛∑︁
𝑘=0

𝑐𝑘𝑅𝑘 (𝑥), (3.17)

where, by the orthogonality condition,

𝑐𝑚 = (2𝑚 + 1)
𝑚∑︁
𝑗=0

(
𝑚

𝑗

) (
𝑚

𝑚 − 𝑗

) 𝑚− 𝑗∑︁
𝑘=0

(
𝑚 − 𝑗

𝑘

)
(−1)𝑘𝑚𝑚−𝑘 . (3.18)
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Figure 5. The upper two plots are for the FJ method [4] with 𝑛 = 20, and the lower two plots are for
the FL series with 𝑛 = 20. The cdf is given in (3.21). .

It does not always hold that 𝑓 ∈ L 𝑝 [0, 1] with 𝑝 > 4/3. Thus, the series does not converge for some
𝑓 , for example, the pdf of Beta(1, 𝛽) with 0 < 𝛽 ≤ 1/4 or Beta(𝛼, 1) with 0 < 𝛼 ≤ 1/4. Worse yet, it
is possible that the FL series diverges everywhere, e.g., the FL series of 𝑓 (𝑥) = (1 − 𝑥)−3/4/4.

So similar to the FJ method, approximating the pdf does not guarantee convergence.

Approximating the cdf [23]
The 𝑛-th partial sum of the FL expansion of the cdf is

𝑛∑︁
𝑘=0

𝑐𝑘𝑅𝑘 (𝑥), (3.19)

where, by the orthogonality condition,

𝑐𝑚 = (2𝑚 + 1)
𝑚∑︁
𝑗=0

(
𝑚

𝑗

) (
𝑚

𝑚 − 𝑗

) 𝑚− 𝑗∑︁
𝑘=0

(
𝑚 − 𝑗

𝑘

)
(−1)𝑘 1 − 𝑚𝑚−𝑘+1

𝑚 − 𝑘 + 1
. (3.20)

Since 𝐹 is always bounded and thus 𝐹 ∈ L 𝑝 [0, 1] for any 𝑝 ≥ 1, pointwise convergence holds [19].

Comparisons of the FJ method and approximating the pdf via the FL series
In Figures 5 and 6, where

𝐹 (𝑥) = 1 −
exp

(
− 𝑥2

50(1−𝑥 )2

)
1 + 𝑥2

50(1−𝑥 )2

, (3.21)
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Figure 6. The upper two plots are for FJ method [4] with 𝑛 = 40, and the lower two plots are for the
FL series with 𝑛 = 40. The cdf is given in (3.21). .
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Figure 7. Reconstructed cdfs of 𝐹 (𝑥) = 1 −
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1 − 𝑥2 based on 10 moments. The blue curve shows
the reconstructed cdf from approximating the pdf, the red curve shows the reconstructed cdf from
approximating the cdf, and the green curve shows 𝐹. .

we approximate the pdf by the FJ method and by the FL series. We observe that in both cases, the FL
approximations are much better than the FJ ones. Also, the FL approximations do better as 𝑛 increases.

Comparisons of approximating the pdf and cdf by the FL series
Figure 7 shows the approximate cdfs by using the FL series to approximate the pdf and then integrate

and to directly approximate the cdf, respectively. We observe that approximating cdfs leads to a more
accurate result.



Probability in the Engineering and Informational Sciences 13

Considering that a pdf may not be in L 𝑝 [0, 1] with 𝑝 > 4/3 but a cdf always is, in the following,
we use the FL series to approximate the cdf and call it the FL method. For any positive integer 𝑛, the
approximation by the FL method is defined as follows.

Definition 3.5 (Approximation by the FL method).

𝐹FL,𝑛 (𝑥) ≜
𝑛∑︁

𝑚=0
𝑐𝑚𝑅𝑚 (𝑥), (3.22)

where 𝑐𝑚, 𝑚 ∈ [𝑛]0, are given by (3.20).

Since it is a functional approximation, we apply the tweaking mapping in Definition 2.2 to 𝐹FL,𝑛−1 |U𝑛
.

3.4. New methods

3.4.1. FC method
Similar to the idea in Section 3.3.3 that we fix 𝛼 and 𝛽 in advance, here we use the FC series for
approximation, i.e., we set 𝛼 = 𝛽 = −1/2. To guarantee convergence, similar to the FL method, we also
focus on approximating the cdf and call it the FC method. For any positive integer 𝑛, the approximation
by the FC method is defined as follows.

Definition 3.6 (Approximation by the FC method).

𝐹FC,𝑛 (𝑥) ≜
{
𝑥−

1
2 (1 − 𝑥)−

1
2
∑𝑛

𝑚=0 𝑐𝑚𝑅
(− 1

2 ,−
1
2 )

𝑚 (𝑥), 𝑥 ∈ (0, 1),
𝑥, 𝑥 ∈ {0, 1},

(3.23)

where, by the orthogonality condition,

𝑐𝑚 = 𝑐′𝑚

𝑚∑︁
𝑗=0

(
𝑚 − 1/2

𝑗

) (
𝑚 − 1/2
𝑚 − 𝑗

) 𝑚− 𝑗∑︁
𝑘=0

(
𝑚 − 𝑗

𝑘

)
(−1)𝑘 1 − 𝑚𝑚−𝑘+1

𝑚 − 𝑘 + 1
, (3.24)

𝑐′0 = 1/𝜋 and 𝑐′𝑚 = 2
(

Γ (𝑚+1)
Γ (𝑚+1/2)

)2
, 𝑚 ∈ [𝑛].

As 𝐹 and 𝑥
1
2 (1 − 𝑥)

1
2 are of bounded variation, the function 𝐹𝑥

1
2 (1 − 𝑥)

1
2 approximated by the

FC series has bounded variation, thus uniform convergence holds [15]. To preserve the properties of
probability distributions, we apply the tweaking mapping in Definition 2.2 to 𝐹FC,𝑛−1 |U𝑛

.

3.4.2. CM method
As the CM inequalities provide the infima and suprema at the points of interest among the family of
solutions given a sequence of length 𝑛, it is important to analyze the distribution of the unique solution
given the sequence of an infinite length. Here, we explore this distribution at point 𝑥 = 0.5 by simulating
the distribution of infima and suprema of a sequence of length 8 within the initial ranges define by the
infima and suprema given the first three elements in the sequence. For example, let

¯
𝐹3 and 𝐹̄3 denote

the infimum and supremum defined by the CM inequalities at point 0.5 given a sequence (𝑚1, 𝑚2, 𝑚3),
and let

¯
𝐹8 and 𝐹̄8 denote the infimum and supremum defined by the CM inequalities at point 0.5 given

a sequence (𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6, 𝑚7, 𝑚8). We focus on the relative position of
¯
𝐹8 and 𝐹̄8 within the

range defined by
¯
𝐹3 and 𝐹̄3, i.e., the normalized 𝑥 = (

¯
𝐹8 − ¯

𝐹3) /
(
𝐹̄3 − ¯

𝐹3
)

and 𝑥 =
(
𝐹̄8 − ¯

𝐹3
)
/
(
𝐹̄3 − ¯

𝐹3
)
.

The average is calculated as
(
𝐹̄8 + ¯

𝐹8
)
/2.

Figure 8 and Figure 9 show the normalized histograms with beta distribution fit. From both of them,
we can observe that there is symmetry between the distribution of the infima and suprema, and their
average is concentrated in the middle. In particular, in Figure 9, we observe that its average concentrates
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Figure 8. The normalized histogram of infima, suprema, and average and the corresponding beta
distribution fit for 50 realizations of moment sequences of length 3 generated by Algorithm 1, each of
which has been further extended 50 times to length 8 by Algorithm 1. The two parameters of the beta
distribution fit are based on the first two empirical moments. .

more in the middle compared to Figure 8, since the first three moments come from the uniform
distribution. This finding indicates that the unique solution of a moment sequence of infinite length is
likely to be centered within the infima and suprema defined by its truncated sequence. Therefore, it is
sensible to consider their average as an approximation to a solution to the THMP and we call it the CM
method. For any positive integer 𝑛, the approximation by the CM method is defined as follows.

Definition 3.7 (Approximation by the CM method).

𝐹CM,n (𝑥) ≜
1
2

(
sup
𝐹∈F𝑛

𝐹 (𝑥) + inf
𝐹∈F𝑛

𝐹 (𝑥)
)
, (3.25)

where sup𝐹∈F𝑛
𝐹 (𝑥) and inf𝐹∈F𝑛

𝐹 (𝑥) are given by the CM inequalities.

From Figure 10, we observe that the average is very close to the original cdf, and it is slightly better
than the beta approximation. It is worth noting that by averaging, the error can be bounded: For all
𝑥 ∈ [0, 1] and for all 𝐹 ∈ F𝑛,

|𝐹CM,n (𝑥) − 𝐹 (𝑥) | ≤ 1
2

(
sup
𝐹∈F𝑛

𝐹 (𝑥) − inf
𝐹∈F𝑛

𝐹 (𝑥)
)
. (3.26)

Although 𝐹CM,n lies within the band defined by the infima and suprema from the CM inequalities,
it is not necessarily one of the infinitely many solutions to the THMP. Moreover, it is almost never a
solution. For example, 𝐹CM,1 is a solution only when 𝑚1 = 1/2.

3.5. The methods as linear transforms

The calculation of the coefficients in the BM method and methods based on the FJ series, such as the
FL and FC method, where the coefficients 𝛼 and 𝛽 are fixed, can be written as linear transforms of
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Figure 9. The normalized histogram of infima, suprema, and average and the corresponding beta
distribution fit for 1000 realizations of moment sequences of length 8 generated by Algorithm 1, each of
which has the same first three elements as (1/2, 1/3, 1/4). The two parameters of the beta distribution
fit are based on the first two empirical moments. .
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Figure 10. The infima and suprema from the CM inequalities, their average, and the beta approximation
given (𝑚𝑘)6

𝑘=0. .

the given sequence, with the transform matrix being fixed for each method. This can be pre-computed
offline, accelerating the calculation.5 We discuss the BM and FL method in detail.

5The FJ method can also be written as a linear transform but doing so is meaningless due to the undetermined coefficients 𝛼 and 𝛽.
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As we recall, for the BM method [6], we can write h ≜ (ℎ𝑙)𝑛𝑙=0 as a linear transform of m ≜ (𝑚𝑙)𝑛𝑙=0,
i.e.,

h = Am, (3.27)

where m and h are column vectors and the transform matrix A ∈ Z(𝑛+1)×(𝑛+1) is given by

𝐴𝑖 𝑗 ≜

(
𝑛

𝑗

) (
𝑗

𝑖

)
(−1) 𝑗−𝑖1( 𝑗 ≥ 𝑖), 𝑖, 𝑗 ∈ [𝑛]0, (3.28)

where 1 is the indicator function. The transform matrix needs to be calculated only once for each 𝑛,
which can be done offline. The matrix-vector multiplication requires (𝑛+1) (𝑛+2)

2 multiplications.
Similarly, for the FL method, by reorganizing (3.20), we can express c ≜ (𝑐𝑙)𝑛𝑙=0 as a linear

transformation of m̂ ≜ (𝑚𝑙)𝑛+1
𝑙=1 , i.e.,

c = Â(1 − m̂), (3.29)

where c and m̂ are understood as column vectors, 1 is the 1-vector of size 𝑛+1, and the transform matrix
Â ∈ Z(𝑛+1)×(𝑛+1) is given by

𝐴̂𝑘𝑙 ≜
(−1) (𝑘−𝑙) (2𝑘 + 1)

𝑙 + 1

𝑙∑︁
𝑗=0

(
𝑘

𝑗

) (
𝑘

𝑘 − 𝑗

) (
𝑘 − 𝑗

𝑘 − 𝑙

)
1(𝑙 ≤ 𝑘), 𝑘, 𝑙 ∈ [𝑛]0. (3.30)

Â is a lower triangular matrix. As for the BM method, the transform matrix needs to be calculated only
once for the desired level of accuracy, and the above matrix-vector multiplication requires (𝑛+1) (𝑛+2)

2
multiplications. Further details about the accuracy requirements are provided in Section 4.6.

4. Generation of moment sequences and performance evaluation

To compare the performance of different HMTs, moment sequences and corresponding functions serving
as the ground truth are needed. Generating representative moment sequences is non-trivial since the
probability that a sequence uniformly distributed on [0, 1]𝑛 is a moment sequence is about 2−𝑛2

[1, Eq. 1.2]. In this section, we provide three different ways to solve it: The first method generates
uniformly distributed integer moment sequences, while the other two generate moments from either
analytic expressions of moments or analytic expressions of cdfs. In these two cases, the parameters
are randomized. We use the exact cdf as the reference function if it is given by analytic expressions.
Otherwise, we use the GP approximations as the reference functions.

4.1. Moment sequences and their rates of decay

As discussed in Section 3.1, the CM method can fully recover discrete distributions with a finite number
of jumps, while other methods, such as the ME method, cannot. This indicates that different HMTs
may have different performance for different types of distributions, classified by the decay order of the
sequence. We first provide some examples of moment sequences from common distributions.

Example 4.1 (Beta distributions). For 𝑋 ∼ Beta(𝛼, 𝛽),

𝑚𝑛 =

𝑛−1∏
𝑟=0

𝛼 + 𝑟

𝛼 + 𝛽 + 𝑟
=

Γ(𝛼 + 𝑛)
Γ(𝛼)

Γ(𝛼 + 𝛽)
Γ(𝛼 + 𝛽 + 𝑛) . (4.1)
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By Stirling’s formula, as 𝑛 → ∞,

𝑚𝑛 ∼ 𝑒𝛽
Γ(𝛼 + 𝛽)
Γ(𝛼)

√︄
𝛼 + 𝑛 − 1

𝛼 + 𝛽 + 𝑛 − 1
(𝛼 + 𝑛 − 1)𝛼+𝑛−1

(𝛼 + 𝛽 + 𝑛 − 1)𝛼+𝛽+𝑛−1 , (4.2)

∼ 𝑒𝛽
Γ(𝛼 + 𝛽)
Γ(𝛼)

(𝛼 + 𝑛 − 1)𝛼+𝑛−1

(𝛼 + 𝛽 + 𝑛 − 1)𝛼+𝛽+𝑛−1 , (4.3)

∼ 𝑛−𝛽 , as
(
1 + 𝛽

𝑥

) 𝑥
→ 𝑒𝛽 , 𝑥 → ∞. (4.4)

Thus, 𝑚𝑛 = Θ(𝑛−𝛽).

Example 4.2. Let the density function be 𝑓 (𝑥) = 2𝑥/𝑠21[0,𝑠] (𝑥) with 0 < 𝑠 < 1. Then 𝑚𝑛 =

2𝑠𝑛/(𝑛 + 2) = 𝑂 (exp(− log(1/𝑠)𝑛)) = Ω(exp(−𝑠1𝑛)) for all 𝑠1 > log(1/𝑠).

Given the examples shown above and that the performance of different HMTs is likely to be dependent
on the rate of decay (or type of decay) of the moment sequences, we would like to develop a method to
categorize different moment sequences based on their tail behavior. To this end, we introduce six types
of moment sequences based on their rates of decay.

Definition 4.3 (Rate of decay). 1) Sub-power-law decay: In this case, for all 𝑠 > 0, 𝑚𝑛 = Ω(𝑛−𝑠).
2) Power-law decay: In this case, there exists 𝑠 > 0 such that 𝑚𝑛 = Θ(𝑛−𝑠).
3) Soft power-law decay: In this case, 𝑚𝑛 ≠ Θ(𝑛−𝑠), ∀𝑠 ≥ 0 but there exist 𝑠1 > 𝑠2 ≥ 0 such that

𝑚𝑛 = Ω(𝑛−𝑠1 ) and 𝑚𝑛 = 𝑂 (𝑛−𝑠2 ).
4) Intermediate decay: In this case, for all 𝑠1 ≥ 0,𝑚𝑛 = 𝑂 (𝑛−𝑠1 ) and for all 𝑠2 > 0,𝑚𝑛 = Ω(exp(−𝑠2𝑛)).
5) Soft exponential decay: In this case, 𝑚𝑛 ≠ Θ(exp(−𝑠𝑛)), ∀𝑠 > 0 but there exists 𝑠1 > 𝑠2 > 0,

𝑚𝑛 = Ω(exp(−𝑠1𝑛)) and 𝑚𝑛 = 𝑂 (exp(−𝑠2𝑛)).
6) Exponential decay: In this case, there exists 𝑠 > 0 such that 𝑚𝑛 = Θ(exp(−𝑠𝑛)).

4.2. Uniformly random (integer) moment sequences

4.2.1. Generation
Let Λ denote the set of probability measures on [0, 1]. For 𝜆 ∈ Λ we denote by

𝑚𝑛 (𝜆) ≜
∫ 1

0
𝑥𝑛 𝑑𝜆, 𝑛 ∈ N0, (4.5)

its 𝑛-th moment. Trivially, 𝑚0 (𝜆) = 1, ∀𝜆 ∈ Λ. The set of all moment sequences is defined as

M ≜ {(𝑚1 (𝜆), 𝑚2 (𝜆), ...) , 𝜆 ∈ Λ}. (4.6)

The set of the projection onto the first 𝑛 coordinates of all elements in M is denoted by M𝑛.
Now we recall how to establish a one-to-one mapping from the moment space intM onto the set

(0, 1)N [1], where intM denotes the interior of the set M. For a given sequence (𝑚𝑘)𝑘∈[𝑛−1] ∈ M𝑛−1,
the achievable lower and upper bounds for 𝑚𝑛 are defined as

𝑚−
𝑛 ≜ min{𝑚𝑛 (𝜆), 𝜆 ∈ Λ with 𝑚𝑘 (𝜆) = 𝑚𝑘 for 𝑘 ∈ [𝑛 − 1]}, (4.7)

𝑚+
𝑛 ≜ max{𝑚𝑛 (𝜆), 𝜆 ∈ Λ with 𝑚𝑘 (𝜆) = 𝑚𝑘 for 𝑘 ∈ [𝑛 − 1]}. (4.8)

Note that 𝑚−
1 = 0 and 𝑚+

1 = 1. 𝑚−
𝑛 and 𝑚+

𝑛, 𝑛 ≥ 2, can be obtained by taking the infimum and supremum
of the range obtained from solving the two linear inequalities 0 ≤ 𝐻𝑛 and 0 ≤ 𝐻𝑛.
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We now consider the case where (𝑚𝑘)𝑘∈[𝑛−1] ∈ intM𝑛−1, i.e., 𝑚+
𝑛 > 𝑚−

𝑛 . The canonical moments
are defined as

𝑝𝑛 ≜
𝑚𝑛 − 𝑚−

𝑛

𝑚+
𝑛 − 𝑚−

𝑛

. (4.9)

(𝑚𝑘)𝑘∈[𝑛] ∈ intM𝑛 if and only if 𝑝𝑛 ∈ (0, 1) [1, 2]. In this way, 𝑝𝑛 represents the relative position of
𝑚𝑛 among all the possible 𝑛-th moments given the sequence (𝑚𝑘)𝑘∈[𝑛−1] . The following lemma shows
the relationship between the distribution on the moment space M𝑛 and the distribution of 𝑝𝑘 , 𝑘 ∈ [𝑛].

Lemma 4.4. [1, Thm. 1.3] For a uniformly distributed random vector (𝑚𝑘)𝑘∈[𝑛] on the moment space
M𝑛, the corresponding canonical moments 𝑝𝑘 , 𝑘 ∈ [𝑛], are independent and beta distributed as

𝑝𝑘 ∼ Beta(𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 1), 𝑘 ∈ [𝑛] .

Since M𝑛 is a closed convex set, its boundary has Lebesgue measure zero. Therefore, although (4.9)
only defines the mapping on intM𝑛, the 𝑝𝑘 are still well defined.

Lemma 4.4 provides a method to generate uniformly random moment sequences. The details are
summarized in the following algorithm.

Algorithm 1 Algorithm for random moment sequences by canonical moments
Input: The number of moments 𝑁
Output: (𝑚𝑛)𝑛∈[𝑁 ]

1: Set 𝑚−
1 = 0, 𝑚+

1 = 1 and 𝑘 = 1.
2: for 𝑘 ≤ 𝑁 do
3: 𝑝𝑘 ∼ Beta(𝑛 − 𝑘 + 1, 𝑛 − 𝑘 + 1), 𝑚𝑘 = 𝑝𝑘 (𝑚+

𝑘
− 𝑚−

𝑘
) + 𝑚−

𝑘
and 𝑘 = 𝑘 + 1.

4: Calculate 𝑚−
𝑘

and 𝑚+
𝑘

based on 0 ≤ 𝐻𝑘 and 0 ≤ 𝐻𝑘 .
5: end for

4.2.2. Usage
Figure 11a shows an example of the reconstructed cdfs (only raw versions) of each method where
moments are generated by Algorithm 1 and 10 moments are used. But since a reference function serving
as the ground truth is missing, we cannot compare the performance of each method. It is natural to
look for a way to reconstruct a solution to the HMT via (infinitely many) integer moments. However, no
known reconstruction methods exists for integer moments. To address this problem, we take a detour to
approximate the characteristic function first, and then apply the Gil-Pelaez theorem to reconstruct the
cdf [3]. Let 𝑋 ∈ [0, 1] denote the random variable and (𝑚𝑛)∞𝑛=0 denote its moments. The characteristic
function of 𝑋 is

𝜙𝑋 (𝑠) = E[exp( 𝑗 𝑠𝑋)], 𝑠 ∈ R+. (4.10)

Written in terms of its Taylor expansion,

𝜙𝑋 (𝑠) = E
[ ∞∑︁
𝑘=0

( 𝑗 𝑠𝑋)𝑘
𝑘!

]
. (4.11)
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Figure 11. An example of the reconstructed cdf of each method. The 10 moments are randomly generated
by the canonical moments and the moments are 0.5256, 0.3893, 0.3188, 0.2747, 0.2442, 0.2215,
0.2038, 0.1895, 0.1775 and 0.1674. The polished curves are obtained after the tweaking mapping
in Definition 2.2 as well as the monotone cubic interpolation for 𝐹̂BM,10 |U11 , 𝐹̂ME,10 |U10 , 𝐹̂FJ,10 |U10 ,
𝐹̂FL,9 |U10 , 𝐹̂FC,9 |U10 , and 𝐹̂CM,10 |U10 ..

By the dominated convergence theorem, we can change the order of expectation and summation, i.e.,
for any 𝑠 ∈ [0,∞)

E

[ ∞∑︁
𝑘=0

( 𝑗 𝑠𝑋)𝑘
𝑘!

]
=

∞∑︁
𝑘=0

𝑗 𝑘𝑠𝑘𝑚𝑘

𝑘!
. (4.12)

The imaginary moments of 𝑋 , 𝑚 𝑗𝑠 , are the characteristic function of log(𝑋). When applied to
𝑋 ∼ exp(1), the expansion in (4.12) yields the gamma function, which is consistent with the analytic
continuation property of the moments.

The truncated sum

𝜙𝑋 (𝑠) =
𝑁∑︁
𝑘=0

𝑗 𝑘𝑠𝑘𝑚𝑘

𝑘!
(4.13)

approximates the characteristic function 𝜙𝑋 (𝑠), and, in turn, the integral

𝐹̂𝑋 (𝑥) ≜
1
2
− 1

𝜋

∫ ∞

0

ℑ(𝑒− 𝑗𝑠𝑥𝜙𝑋 (𝑠))
𝑠

𝑑𝑠, 𝑥 ∈ [0, 1], (4.14)

is an approximation of the exact cdf

𝐹𝑋 (𝑥) =
1
2
− 1

𝜋

∫ ∞

0

ℑ(𝑒− 𝑗𝑠𝑥𝜙𝑋 (𝑠))
𝑠

𝑑𝑠, 𝑥 ∈ [0, 1] . (4.15)

Therefore, by evaluating (approximating) 𝐹̂𝑋, we obtain an approximation of the exact cdf 𝐹𝑋.
Figure 11b shows the reconstructions by the above method and all the HMTs. We observe that all

the HMTs approximate well. However, even though the series converges for 𝑠 ∈ [0,∞), the evaluation
of each element with alternating signs could cause serious numerical problems, as 𝑠 increases. For
each 𝑠, we need at least 𝑁 = ⌈𝑠𝑒⌉ to approximate 𝜙𝑋 (𝑠) so that the absolute error is within

√︁
2/(𝜋𝑁).
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Meanwhile, an accurate evaluation of 𝐹̂𝑋 usually requires the calculation of the integrand up to 𝑠 = 1000.
This requires the calculation of 𝑁 = 2719 moments, which is time-consuming and not practical for the
performance evaluation purposes in Section 4.5.

4.3. Generating moments by analytic expressions

As we need to generate moment sequences of variable lengths, it is natural to directly start with the
infinite sequences (𝑚𝑛)∞𝑛=0 and truncate them to the desired length.

We first recall the definition of completely monotonic functions.

Definition 4.5 (Completely monotonic function [30]). A function 𝑓 is said to be c.m. on an interval 𝐼
if 𝑓 is continuous on 𝐼 and has derivatives of all orders on int 𝐼 (the interior of 𝐼) and for all 𝑛 ∈ N,

(−1)𝑛 𝑓 (𝑛) (𝑥) ≥ 0, 𝑥 ∈ int 𝐼 . (4.16)

The sequence ( 𝑓 (𝑘))∞
𝑘=0 is c.m. if 𝑓 is c.m. on [0,∞) [30]. Thus, we can use c.m. functions to

generate moment sequences.
Based on the six types of moment sequences discussed in Section 4.1, we define six classes of

c.m. functions that decay at different rates.

Definition 4.6 (Six classes of c.m. functions). Based on the definition of rate of decay in Definition 4.3,
we define the following c.m. functions.

• Sub-power-law decay Ω(𝑛−𝑠): 𝐹1 (𝑛; 𝑎, 𝑠) ≜ 𝑎𝑠 (log(𝑛 + 1) + 𝑎)−𝑠 .
• Power-law decay Θ(𝑛−𝑠): 𝐹2 (𝑛; 𝑎, 𝑠) ≜ 𝑎𝑠 (𝑛 + 𝑎)−𝑠 .
• Soft power-law decay: 𝐹3 (𝑛; 𝑎, 𝑏, 𝑠) ≜ 𝑎𝑠𝑏(𝑛 + 𝑎)−𝑠 (log(𝑛 + 1) + 𝑏)−1.
• Intermediate decay: 𝐹4 (𝑛; 𝑎, 𝑠) ≜ exp(𝑠

√
𝑎 − 𝑠

√
𝑛 + 𝑎).

• Soft exponential decay: 𝐹5 (𝑛; 𝑎, 𝑠) ≜ exp(−𝑠𝑛)𝑎(𝑛 + 𝑎)−1.
• Exponential decay Θ(exp(−𝑠𝑛)): 𝐹6 (𝑛; 𝑠) ≜ exp(−𝑠𝑛).

𝑠 ∈ R+ is referred to as the rate, and 𝑎 ∈ R+ and 𝑏 ∈ R+ (if present) are referred to as the other parameters.

For moment sequences (𝑚𝑖,𝑛)∞𝑛=0, 𝑖 = 1, ..., 𝑁 , the convex combination 𝑚𝑛 =
∑𝑁

𝑖=1 𝑐𝑖𝑚𝑖,𝑛, where∑𝑁
𝑖=1 𝑐𝑖 = 1, 𝑐𝑖 > 0, remains c.m. Hence, (𝑚𝑛)∞𝑛=0 is also a moment sequence.
Now, we introduce our algorithm to generate (𝑚𝑛)𝑘𝑛=0 with a desired rate of decay 𝑠 and flexibility in

the other parameters, i.e., 𝑎 and/or 𝑏. Since the c.m. functions are analytic, the c.m. function of integer
moments can be easily extended to complex moments by analytic continuation. To obtain complex
moments 𝑚𝑧 , we just need to replace 𝑛 in steps 2 and 3 of Algorithm 2 with 𝑧 ∈ C.

Algorithm 2 Algorithm for moment sequences by c.m. functions
Input: A desired rate of decay (including the type of decay and the rate 𝑠), the number of mixed decays

𝑁 , the other rates 𝑠𝑖 , 2 ≤ 𝑖 ≤ 𝑁 , the other parameters 𝑎𝑖 , 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , the weights 𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑁 ,
and the number of moments 𝑘 .

Output: (𝑚𝑛)𝑘𝑛=0
1: Based on the type of decay, set 𝐹0 to be one of 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6 in Definition 4.6. Suppose 𝐹0

has three parameters 𝑎𝑖 , 𝑏𝑖 , 𝑠. If it is not the case, we will ignore 𝑎𝑖 and/or 𝑏𝑖 in the following steps.
2: Set 𝑚𝑖,𝑛 = 𝐹0 (𝑛; 𝑎𝑖 , 𝑏𝑖 , 𝑠𝑖), 𝑖 ∈ [𝑁], 𝑛 ∈ [𝑘]0.
3: Set 𝑚𝑛 =

∑𝑁
𝑖=1 𝑐𝑖𝑚𝑖,𝑛, 𝑛 ∈ [𝑘]0.

To deterministically generate moments by Algorithm 2, we need to fix 𝑠 > 0, 𝑁 ∈ N, 𝑠𝑖 > 𝑠, 2 ≤ 𝑖 ≤ 𝑁

for the exponential decay and 𝑠𝑖 = 𝑠 for the others, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 > 0 and
∑𝑁

𝑖=1 𝑐𝑖 = 1.
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To randomly generate moments by Algorithm 2, we first choose 𝑠 ∼ Uniform(0, 10) except for the
exponential and soft exponential cases, where 𝑠 ∼ − log (Uniform(0, 1)). We set 𝑠𝑖 = 𝑠 except that
𝑠1 = 𝑠, 𝑠𝑖 ∼ − log (Uniform(0, exp(−𝑠))) , 2 ≤ 𝑖 ≤ 𝑁 for the exponential decay. Next, we randomly
generate 𝑁 from the set {1, 2, ..., 10}. Then we choose 𝑎𝑖 , 𝑏𝑖 ∼ Uniform(0, 10), 1 ≤ 𝑖 ≤ 𝑁 . Finally we
choose 𝑐𝑖 ∼ Uniform(0, 10) and normalize them so that the sum is 1. In this way, we have at least 2𝑁
degrees of freedom.

Similar to Section 4.2.1, the exact cdf is unknown. We use the GP approximations as a reference
when making comparisons.

4.4. Generating moments by known distributions

Beta distributions are continuous probability distributions supported on [0, 1]. Here, we use the beta
mixture model to randomly generate distributions. The pdf of 𝑁 beta mixtures is

𝑓beta (𝑥, a, b, c) ≜
𝑁∑︁
𝑖=1

𝑐𝑖𝑥
𝑎𝑖−1 (1 − 𝑥)𝑏𝑖−1, (4.17)

where a ≜ (𝑎𝑖)𝑁𝑖=1, b ≜ (𝑏𝑖)𝑁𝑖=1, c ≜ (𝑐𝑖)𝑁𝑖=1, a, b, c ≻ 0 and
∑𝑁

𝑖=1 𝑐𝑖 = 1. The 𝑛-th moment is

𝑚𝑛 =

𝑁∑︁
𝑖=1

𝑐𝑖

𝑛−1∏
𝑟=0

𝑎𝑖 + 𝑟

𝑎𝑖 + 𝑏𝑖 + 𝑟
, (4.18)

and the cdf is

𝐹beta (𝑥, a, b, c) =
𝑁∑︁
𝑖=1

𝑐𝑖

∫ 𝑥

0
𝑡𝑎𝑖−1 (1 − 𝑡)𝑏𝑖−1 𝑑𝑡. (4.19)

By randomly choosing a, b, c, we are able to randomly generate the distribution and thus randomly
generate the imaginary and integer moment sequences by definition. We first randomly generate 𝑁

from the set {1, 2, ..., 10}.6 Then we choose 𝑎𝑖 , 𝑏𝑖 ∼ Uniform(0, 10), 1 ≤ 𝑖 ≤ 𝑁 . Finally we choose
𝑐𝑖 ∼ Uniform(0, 10) and normalize them so that the sum is 1.

4.5. Performance evaluation

Using the moments randomly generated in Section 4.3, we compare the performance of the different
Hausdorff moment transforms. Since the actual cdfs are not available in this case, we use the cdfs
obtained by the GP method as the reference.7

For all methods except the GP, BM, FL, and FC methods, we consider 𝐹method,n |U𝑛
. For the GP

method, we consider 𝐹GP |U150 , for the BM method, we consider 𝐹BM,n |U𝑛+1 , and for the FL and FC
methods, we consider 𝐹method,n−1 |U𝑛

. We apply the tweaking mapping in Definition 2.2 followed by
monotone cubic interpolation.

In Figure 12, we plot the average of the total distance versus the number of moments (𝑚0 is not
counted) for different methods and different types of decays. For practical purposes regarding accuracy
requirements in moments and basic operations and the difficulty in finding roots of polynomials, the
number of moments of the FJ, FL, FC, and ME methods is limited to 50, the number of moments of the

6In order to increase the likelihood of generating moment sequences that can span the entire space, we randomly generate 𝑁 , instead of a
fixed value. Specifically, for a small number of realizations, such as 100, the span behavior is observed to vary with different values of 𝑁 . Thus,
randomizing 𝑁 serves to increase the likelihood of achieving the desired outcome.

7As the GP method utilizes imaginary moments, it naturally processes the complete information to recover the exact distribution. However, the
HMTs that produce solutions to the THMP, such as the ME method, may not be close to the exact one as they only utilize a finite number of integer
moments. The gap does not necessarily indicate that an HMT performs poorly—the method may simply assume a different continuation of the
moments sequence.
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(a) Sub power-law decay
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(b) Power-law decay
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(c) Soft power-law decay
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(d) Intermediate decay
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(e) Exponential decay
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(f) Soft exponential decay

Figure 12. The average of the total distance versus the number of moments for different methods and
different types of decays. Averaging is performed over 100 randomly generated moment sequences. .
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(a) Original implementation.
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(b) Linear transform.

Figure 13. The average computation time versus the number of moments. Averaging is performed over
100 randomly generated moment sequences of power-law decay..
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CM method is limited to 30, and the number of moments of the BM method is limited to 150. We observe
that the average of the total distance of all the methods except the FJ and the ME methods decreases
as the number of moments increases. In most cases, the average of the total distance of the FJ method
does not decrease since it is not guaranteed to converge. As for the ME method, although it converges
in entropy, it suffers from the problem of finding the minimum in (3.4). Even if some of the curves in
Figure 12 show a decreasing trend, we cannot rely on this method as long as we cannot make sure the
results we get from solving (3.4) are the minima, i.e., the size of the gradient is less than the value of the
optimality tolerance. In terms of their best possible performance, we also observe that the CM method is
great for all types of decays, especially the exponential and soft exponential decays. For the exponential
decay, the moments are from discrete distributions that have no more than 10 jumps. Thus, the raw CM
method of order 20 is able to fully characterize the distributions by identifying jump locations and jump
heights. Our comparisons are made based on the decay type. However, in practice, it is impossible to
determine the decay type given the values of the moments. Thus, for practical purposes, it is preferable
to utilize methods that work well overall. Among all the methods, the FL and FC methods have overall
good performance and the FL method even outperforms the CM method in the power-law decay.

Figure 13 shows computation time versus the number of moments for the power-law decay and it
is similar for the other types. In Figure 13a, the computation time of the FL, FC, and BM method
is based on the original implementation, whereas in Figure 13b, it is based on the linear transform
with the pre-calculated transform matrices. In Figure 13b, for all methods except the CM method, the
computation time increases quadratically with the number of moments. This is consistent with the order
of matrix-vector multiplication for the FL, FC and BM method. Furthermore, with the linear transform,
the computation time for the FL, FC and BM method in Figure 13a is significantly reduced compared
to that in Figure 13a. Even for small values of 𝑛, such as 10, 20, and 30, the CM method’s computation
time is at least ten times longer than that of the other methods for the same number of moments. As 𝑛
increases, the computation time of the CM method is expected to grow even more, making it unsuitable
for time-sensitive applications.

As shown in Example 4.1, the moment sequences generated by Section 4.4 exhibit power-law decay.
Its results are similar to those in Figure 12b.

4.6. Accuracy requirements for HMTs

The accuracy requirements apply to both of the coefficients of the moments and the HMTs, such as the
transform matrices for the BM and FL method. Here we just mention some typical requirements.

Accuracy requirements for transform matrices: For the BM method of order 𝑛, as max ∥A∥ ∼
√

27
2𝜋

3𝑛
𝑛

,
𝑛 → ∞, about 𝑛/2− log10 𝑛 decimal digits are needed [6]. For the FL method of order 𝑛, as max ∥Â∥ ≤(2𝑛
𝑛

) ( 𝑛
𝑛/3

)
∼ 3𝑛+124𝑛/3

4𝜋𝑛 , 𝑛 → ∞, about 0.9𝑛 decimal digits are sufficient.
Accuracy requirements for moments in Definition 4.6: For the power-law decay, about 𝑠 log10

𝑛+𝑎
𝑎

decimal digits are needed. For exponential decay, about 𝑠𝑛/2 decimal digits are needed.
The calculation can be carried out in the logarithm domain which may reduce the accuracy require-

ment. Moreover, the matrix multiplication of the FL method is pre-calculated, i.e., Â1 and Âm̂ are done
separately.

5. Conclusion

The truncated Hausdorff moment problem is both fundamental and practically relevant. While several
theoretical methods for its solutions have been proposed, a systematic study and comparison of their
performance and details in their numerical implementation has been missing. This work provides these
important missing pieces by discussing advantages and drawbacks of different methods, comparing
convergence properties, and proposing a tweaking method to ensure the resulting functions satisfy
the properties of probability distributions. In addition, two new methods are introduced that compare
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favorably with known ones. For a fair comparison, three methods for the random generation of moment
sequences are discussed or proposed, so that the distances between approximated and actual distributions
can be averaged over many realizations of moment sequences. It turns out that the decrease of the
distances as a function of the number of moments depends strongly on the type of decay of the moment
sequences. For this reason, we introduced a classification of the decay order in six classes. Our work
also reveals the trade-off between performance and computational cost. If high accuracy is desired (at
higher computational effort), the FC and FL methods are good choices, with the FC method having the
advantage of uniform convergence; if computational resources are limited, the BM method is preferred.
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