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Abstract—We study the performance of D2D communication
underlaying cellular wireless network in terms of the meta
distribution of the signal-to-interference ratio (SIR), which is
the distribution of the conditional SIR distribution given the
locations of the wireless nodes. Modeling D2D transmitters and
base stations as Poisson point processes (PPPs), moments of the
conditional SIR distribution are derived in order to calculate
analytical expressions for the meta distribution and the mean
local delay of the typical D2D receiver and cellular downlink
user. It turns out that for D2D users, the total interference from
the D2D interferers and base stations is equal in distribution
to that of a single PPP, while for downlink users, the effect of
the interference from the D2D network is more complicated. We
also derive the region of transmit probabilities for the D2D users
and base stations that result in a finite mean local delay and
give a simple inner bound on that region. Finally, the impact
of increasing the base station density on the mean local delay,
the meta distribution, and the density of users reliably served is
investigated with numerical results.

Index Terms—Poisson point process, Meta distribution, Mean
local delay, Success probability, D2D communication, Cellular
network.

I. INTRODUCTION

A. Motivation

THE goal of fifth generation (5G) cellular wireless net-
works is to overcome the fundamental challenges of

existing cellular networks, including higher data rates, lower
latency, and reduced energy consumption [1]. Device-to-device
(D2D) communication is an important technology, which is
used in LTE-Advanced and will be adopted in the next-
generation cellular wireless networks to cope with 5G re-
quirements [2]. D2D communication provides opportunities
for proximity-based services, for example media sharing and
local advertisement [3], [4]. Underlay D2D communication
promises increased spectrum efficiency, reduced latency, and
large throughput [5], [6]. On the other hand, due to the
coexistence of D2D and cellular communications in the same
spectrum, the underlaid D2D signals become a new source of
interference [4]. To analyze the trade-offs involved, the meta
distribution of the signal-to-interference ratio (SIR), which is
a key performance metric in wireless networks [7], needs to
be studied. The meta distribution provides detailed information
about the distribution of the success probabilities of individual
links in each network realization [7] while the standard (mean)
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success probability is the average of the success probabilities
of the individual links in each network realization. As such,
the meta distribution is a much sharper and refined metric
than the standard success probability, which is easily obtained
as the average over the meta distribution. Another important
performance metric in wireless networks is delay. One of the
main components of the delay is the local delay. To analyze the
delay in D2D networks, the mean local delay and the trade-
offs involved need to be studied for both D2D and cellular
users.

B. Related Work

The analytical tractability, in particular the simple form of
the probability generating functional (PGFL) of the Poisson
point process (PPP) have made the PPP by far the most
popular spatial model [8], [9]. There exists a growing body of
literature using the PPP to model the irregular spatial structure
of D2D users and base stations (BSs) [3], [4], [10], [11]. In [4],
underlaid D2D communication in a single cell is considered.
Analytical expressions of the coverage probabilities of both
D2D and cellular links and the sum rate of D2D users
are derived, and power control algorithms are proposed to
maximize these performance metrics. In [10] cognitive and
energy-harvesting D2D communication in cellular networks
is investigated where BSs, cellular users, and cognitive D2D
transmitters form independent homogeneous PPPs. Using the
PGFL of the PPP, the outage probability for a D2D receiver
and a cellular user are derived for this network. Mode selection
and power control in D2D underlaid cellular networks with
Poisson distributed users and BSs are studied in [11], where
the mode selection decision considers both D2D link and
cellular link quality. The network performance in terms of
the signal-to-interference-plus-noise-ratio (SINR) and outage
probability for both cellular and D2D users is investigated. The
authors in [3] focus on spectrum access and mode selection in
D2D communications in cellular networks where users form
a PPP and BSs a triangular lattice.

The standard success (or coverage) probability provides
limited information on the network performance since it is,
in fact, just the mean of a certain random variable, namely
the conditional success probability (or SIR distribution) given
the underlying point processes. The meta distribution, in con-
trast, provides the entire distribution of that random variable
and thus a much sharper characterization of the network
performance. It is a function of two parameters—the target
reliability and the target SIR (or data rate)—in contrast to the
standard success probability or coverage, which is a function
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of the target SIR only. Using this metric, questions such as
“What fraction of users in the network attain the desired
link reliability for a given target SIR?” can be answered.
The standard success probability, in contrast, answers only
questions like “What fraction of users achieve the given target
SIR?”.

The meta distribution is introduced in and derived for Pois-
son bipolar and cellular networks exactly and approximately
in [7]. To derive the analytical expressions for the meta distri-
bution, moments of the conditional success probability are first
calculated. Specifically, the variance of the success probability
and the mean local delay are studied. [12] focuses on the
analysis of the meta distribution of the SIR for both the cellular
network uplink and downlink with fractional power control.
The moments of the meta distribution for both scenarios are
calculated. The exact analytical expression, bounds, and the
beta approximation of the meta distribution are also provided.
The mean local delay is in itself an important performance
metric. It is the mean number of transmission attempts for a
node to successfully transmit a packet to its target receiver.
The general framework for the mean local delay can be traced
back to [13], where the mean local delay is derived for ad hoc
networks with slotted ALOHA. It shows that in some cases
the mean local delay exhibits an interesting phase transition
phenomenon called wireless contention phase transition, i.e.,
the mean local delay is finite when certain model parameters
are below a threshold and infinite above. To prevent this
phenomenon different solutions are also discussed. In [14]–
[16], local delay analyses have been carried out for different
scenarios. In [14], the local delay is studied in static and highly
mobile Poisson networks with ALOHA for different cases
of nearest-neighbor communication. The mean local delay in
static Poisson ALOHA networks is also analyzed in [15]. First,
the results are derived for the interference-free case, then,
both interference and noise are considered in the analyses. In
[16], the mean local delay is studied for different scenarios,
including the interference-free case, the noise-free case, and
the case where both noise and interference are considered.
In that paper, optimum ALOHA transmit probability which
minimizes the mean local delay is also derived. The effect
of power control and medium access (MAC) protocols on
the local delay are investigated in [17]–[19]. With mean and
peak power constraints at each node, in [17], for Rayleigh
fading, an ALOHA-type (on-off) power control strategy is
introduced to minimize the mean local delay. This is also
done in [18] for different fading statistics. In [19], the mean
local delay is studied for different MAC protocols. Optimal
parameters which minimize the mean local delay are also
derived. Moreover, the local delay is derived for out-of-
band D2D networks with distributed caching in [20], [21].
When device locations have a PPP distribution, for distributed
caching network, the mean local delay is derived in [20] and
[21]. In [20] users are static while in [21] the effect of user
mobility is investigated.

C. Contributions and Paper Organization
The standard coverage (or success) probability gives only

limited information about wireless networks (not just Poisson

networks). Fundamentally, the conditional success probability
is a random variable (which we denote by Ps), and merely
characterizing the mean of this random variable means that a
significant amount of valuable information is lost. For exam-
ple, if 50% of the users achieve 5% reliability and 50% achieve
99% reliability, the mean (standard) coverage probability is
52%. If 100% of the users achieve 52% reliability, the mean
(standard) coverage probability is also 52%. However, the two
scenarios are very different in terms of the user experiences.

Related, the wireless industry talks about the performance
of the “5% user”, which is the performance level that 95% of
the users achieve. The meta distribution directly reveals that
information, while the standard coverage/success probability
does not reveal any information about it. In the first case above,
the “5% user” achieves a reliability of a mere 5%, while in
the second case it achieves 52%. This is a huge difference
in wireless network performance that is completely hidden if
only the standard mean success probability is considered.

In this paper, we focus on the meta distribution and the
mean local delay in in-band D2D networks. After calculating
the moments of the conditional success probability, we give
accurate approximations of the meta distribution by matching
first and second moments of a beta distribution. Furthermore,
we derive the mean local delay, which is the −1-st moment
of the conditional success probability, for both D2D and
downlink receivers. Finally, the effect of increasing the base
station density on the mean local delay, meta distribution, and
the density of users reliably served is investigated.

The rest of the paper is organized as follows: In the next
section the system model is introduced. Moments of the
conditional success probability, the meta distribution, and the
mean local delay for D2D receivers, downlink users, and
overall (combined) users are calculated in Section III. Section
IV presents numerical results; it verifies the accuracy of the
beta approximation results by Monte-Carlo simulation and
explores the effect of increasing the BS intensity. A summary
and conclusions are provided in Section V.

II. SYSTEM MODEL

A. Network Model

We consider underlay D2D communication within a cellular
network, where the D2D transmitters are distributed according
to a homogeneous PPP ΦD of intensity λD and the base
stations form an independent homogeneous PPP ΦC of in-
tensity λC. Moreover, we assume that each D2D transmitter
has a dedicated receiver located at distance d in a random
direction, i.e., the D2D users form a Poisson bipolar network
[9]. For the cellular network, our focus is on the downlink with
nearest-BS association where downlink cellular users form
an arbitrary stationary and ergodic point process of intensity
λU � λC, such that each BS has at least one user in its cell.
We assume an ALOHA-type channel access scheme for both
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Fig. 1. A realization of the network model for λC = 2 BS/km2 and λD =
λU = 50 UE/km2. The black squares represent the BSs, the blue dots
represent the cellular UEs, blue lines indicate the downlink connections, and
green triangles represent D2D transmitters. For clarity we omit plotting D2D
receivers, each of which is randomly located at distance d from its transmitter.
The UEs are assumed to form a homogeneous PPP.

D2D and cellular networks1; D2D transmitters and BSs are
active independently with probability pD and pC, respectively,
and they transmit with constant powers PD and PC. As in [7],
[22]–[24], the effect of thermal noise is neglected, i.e., our
focus is on the interference-limited regime.

A realization of this network model is shown in Fig. 1.

B. Channel Model

The channel (power) gain between receiver x and trans-
mitter y is given by hxy`(x − y) where hxy models the
small-scale (multipath) fading and `(x − y) represents the
large-scale path loss. We assume that all fading coefficients
hxy are iid exponential with unit mean (Rayleigh fading) and
`(x) = ‖x‖−α, where α is the path loss exponent. In order to
distinguish between D2D transmitters and BSs, the superscript
c is used for the fading coefficients in channels sourced at the
BSs.

C. Interference and SIR

Due to the stationarity of the PPPs, we can condition on
having a user at the origin, which becomes the typical user
under expectations over the point processes [9]. To analyze the
typical D2D receiver, we further condition on that user at the
origin to be a D2D receiver, and vice versa when analyzing
the typical cellular user.

1ALOHA does not imply that BSs randomly choose to be active or
not in a given RB. BS use a certain RB if the load in the cell is such
that the RB is needed, and this event can be assumed to be reasonably
independent from one cell to the next. As a result, the BS activity in the
RB considered follows ALOHA. Moreover, our analysis also applies to other
channel access schemes, including CDMA (with orthogonal spreading codes),
FHMA (frequency hopping multiple access), and OFDMA. For instance,
consider FHMA, where the entire frequency band is divided into N sub-bands,
and each transmitter independently chooses one of the sub-bands uniformly
at random. In this case, the results revert back to ones which are derived for
ALOHA simply by letting p = 1/N .

The total interference for the typical D2D receiver2 at time
t is given by

I0,D2D(t) = PD

∑
x∈ΦD\{x0}

1(x ∈ ΦD(t))hx(t)‖x‖−α

+ PC

∑
x∈ΦC

1(x ∈ ΦC(t))hc
x(t)‖x‖−α, (1)

where hx(t) is the fading from D2D transmitter located at x to
the typical D2D receiver at time t and hc

x(t) denotes the fading
from BS located at x to the typical D2D receiver, respectively.
ΦD(t) and ΦC(t) are the D2D transmitters and BSs that
transmit at time instant t. 1(.) is the indicator function. The
SIR at this receiver follows as

SIR0,D2D(t) =
PDh0(t)d−α

I0,D2D(t)
. (2)

Similarly, conditioning on the user at the origin to be a cellular
user, the interference at the typical cellular user is

I0,Cellular(t) = PD

∑
x∈ΦD

1(x ∈ ΦD(t))hx(t)‖x‖−α

+ PC

∑
x∈ΦC\{x0}

1(x ∈ ΦC(t))hc
x(t)‖x‖−α, (3)

where x0 is the serving BS, which is the nearest BS to the
origin. As in (2), the SIR is

SIR0,Cellular(t) =
PCh

c
0(t)‖x0‖−α

I0,Cellular(t)
. (4)

D. The Meta Distribution

The meta distribution F̄Ps
(x) is the complementary cumu-

lative distribution function (CCDF) of the random variable

Ps(θ) , P(SIR0 > θ | Φ, tx), (5)

which is the CCDF of the conditional SIR of the typical user
given the points processes and conditioned on the desired
transmitter to be active. Hence the meta distribution is formally
given by [7]

F̄Ps
(x) , P0(Ps(θ) > x), x ∈ [0, 1] . (6)

Here P0 is the Palm measure (conditioning on the receiver at
the origin 0 and on the corresponding transmitter to be active).
Since all point processes in the model are ergodic, the meta
distribution can be interpreted as the fraction of the active links
whose conditional success probabilities are greater than x.

We denote the b-th moment of Ps by Mb, i.e., Mb ,
E0(P bs ), b ∈ C. The exact meta distribution can be calculated
by applying the Gil-Pelaez theorem [25] after deriving the
imaginary moments of Ps(θ), i.e., Mjt, j ,

√
−1, t ∈ R+.

A much simpler alternative approach is to approximate the
meta distribution with the beta distribution, which requires
only the first and second moments. In [7], it is shown that for
both Poisson bipolar and cellular networks, this approximation
is very accurate. In this paper, we verify the accuracy by
simulation, for both typical D2D and downlink receivers.

2Strictly speaking, this receiver only becomes typical once the expectation
over the point processes is taken.
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E. The Mean Local Delay

Generally, the per-link delay consists of four types of
delays, namely the processing delay, the queueing delay,
the transmission delay, and the propagation delay. In most
wireless networks, the processing delay and the propagation
delay are negligible compared to the queueing delay and the
transmission delay. The main component of the transmission
delay is the retransmission delay which is closely related to
the number of retransmissions of a packet. This type of delay
is often called local delay [26].

Specifically, the local delay, denoted by L, is defined as
the number of transmission attempts needed until a packet is
successfully received (decoded) over a wireless link. Thus, the
mean local delay can be written as

E [L] = E [E [L | Φ]]
(a)
=E

[
1

Ps

]
= M−1. (7)

In the above equation, the inner expectation is obtained by av-
eraging over the fading and the ALOHA. (a) in (7) is obtained
since, conditioned on Φ, L is geometrically distributed with
parameter Ps, i.e., letting LΦ = (L | Φ), we have

P (LΦ = k) = (1− Ps)
k−1Ps, k ∈ N, (8)

where Ps is the conditional success probability given in (5).
This follows from the fact that the transmission success events
are conditionally independent given Φ. As we see in (7),
the mean local delay is the −1-st moment of the conditional
success probability, i.e., M−1.

III. ANALYTICAL RESULTS

In this section, exact analytical expressions for the b-th
moments Mb, b ∈ C, are derived, followed by closed-form
approximations of the meta distribution for both typical D2D
and downlink receivers.

A. Meta Distribution for the Typical D2D Receiver

The first main result yields the b-th moment of Ps for the
typical D2D receiver, for any b ∈ C.

Theorem 1 (Moments for D2D receivers). For the typical
D2D receiver, the b-th moment of the conditional success
probability is

Mb,D2D

= exp

(
− πθδd2 πδ

sin(πδ)
b

[
pDλD 2F1(1− b, 1− δ; 2; pD)

+ pCλC

(
PC

PD

)δ
2F1(1− b, 1− δ; 2; pC)

])
, b ∈ C. (9)

Proof: We first express the conditional success probability
by substituting (2) in (5).

Ps,D2D(θ) = P
(
h0(t) >

θdα

PD
I0,D2D(t) | ΦD,ΦC, tx

)
(a)
=E

[
exp

{
− θdα

∑
x∈ΦD\{x0}

1(x ∈ ΦD(t))hx(t)‖x‖−α
}

· exp
{
− θdαPC

PD

∑
x∈ΦC

1(x ∈ ΦC(t))hc
x(t)‖x‖−α

}]
(b)
=

∏
x∈ΦD\{x0}

(
pD

1 + θdα‖x‖−α
+ 1− pD

)

·
∏
x∈ΦC

(
pC

1 + θdα PC

PD
‖x‖−α

+ 1− pC

)
, (10)

where (a) follows from the unit mean exponential distribution
of h0(t), and (b) is obtained by taking the expectation with
respect to hx(t), hc

x(t), and the ALOHA channel access
scheme. Next we take the expectation over the point processes
to obtain the b-th moment.

Mb,D2D = E
[
Ps,D2D(θ)

b
]

= E

[ ∏
x∈ΦD\{x0}

(
pD

1 + θdα‖x‖−α
+ 1− pD

)b]

· E

[ ∏
x∈ΦC

(
pC

1 + θdα PC

PD
‖x‖−α

+ 1− pC

)b ]
(a)
= exp

(
−λD

∫ [
1−

(
pD

1 + θdα‖x‖−α
+ 1− pD

)b]
dx

)
×

exp

−λC

∫ 1−

(
pC

1 + θdα PC

PD
‖x‖−α

+ 1− pC

)bdx


(b)
= exp

(
− πθδd2 πδ

sin(πδ)
b

[
pDλD 2F1(1− b, 1− δ; 2; pD)

+ pCλC

(
PC

PD

)δ
2F1(1− b, 1− δ; 2; pC)

])
, (11)

where (a) follows from Slivnyak’s theorem [9] and the PGFL
of the general PPP of intensity measure Λ, which is given by

E

[∏
x∈Φ

f(x)

]
= exp

{
−
∫
R2

[1− f(x)]Λ(dx)

}
. (12)

In step (b) we use∫
R2

[
1−

(
p

1 + θ′‖x‖−α
+ 1− p

)b]
dx

= πθ′
δ πδ

sin(πδ)

∞∑
k=1

(
b

k

)(
δ − 1

k − 1

)
pk

= πθ′
δ πδ

sin(πδ)
pb 2F1(1− b, 1− δ; 2; p), (13)

where δ = 2/α and θ′ = θdα. (13) is obtained by using
Appendix A and Eqns. (3) and (4), all from [7]. The term
∞∑
k=1

(
b
k

)(
δ−1
k−1

)
pk, called diversity polynomial in [27], is ex-

pressed in terms of the Gaussian hypergeometric function 2F1

in (13).
From this result we observe that from a D2D receiver view,

the network behaves as a Poisson bipolar network, where the
moments have exponential form. Let Φ and Φ′ be two PPPs
interfering nodes with intensities λ and λ′ and transmit powers
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P and P ′. The interferences stemming from these two sets are
equal in distribution if λP δ = λ′P ′δ . With this in mind, BSs
with intensity λC and transmit power PC can be modeled by
a PPP with intensity λC(PC

PD
)δ and power PD. This can also

be derived by using Corollary 5.4 of [9]. Using this result
and assuming that both sets of transmitters (BSs and D2D
transmitters) have the same transmit probability, the above
equations revert back to the known results for Poisson bipolar
networks [7]. Moreover, Mb,D2D can be factorized into a term
without BS interference (λC = 0) and a term without D2D
interference (λD = 0).

Applying the Gil-Pelaez theorem [25] to the imaginary
moments Mjt, t ∈ R, the exact meta distribution of the typical
D2D receiver is

F̄Ps,D2D(x) =
1

2
+

1

π

∫ ∞
0

=
(
e−jt log xMjt,D2D

)
t

dt, (14)

where =(z) is the imaginary part of z ∈ C. While this
expression is exact, it is too unwieldy to gain direct insight
from it, and it is cumbersome to evaluate numerically. Hence
we proceed by approximating the meta distribution by a beta
distribution by matching first and second moments, which are
easily obtained from the general result in (9):

M1,D2D = exp

(
−πθδd2 πδ

sin(πδ)

[
pDλD + pCλC

(
PC

PD

)δ ])
,

(15)

M2,D2D = exp

(
− πθδd2 πδ

sin(πδ)

[
(2pD + (δ − 1)pD

2)λD

+
(
2pC + (δ − 1)pC

2
)
λC

(
PC

PD

)δ ])
. (16)

By matching the mean and variance of the beta distribution
with M1,D2D and M2,D2D −M2

1,D2D, the approximate meta
distribution of the typical D2D receiver follows as

F̄Ps,D2D
(x) ≈ 1− Ix

(
M1,D2Dβ

1−M1,D2D
, β

)
, x ∈ [0, 1], (17)

where

β ,
(M1,D2D −M2,D2D) (1−M1,D2D)

M2,D2D −M2
1,D2D

and Ix(a, b) is the regularized incomplete beta function

Ix(a, b) ,

x∫
0

ta−1(1− t)b−1
dt

B(a, b)
(18)

and B(a, b) denotes the beta function.

B. Meta Distribution for the Typical Downlink Receiver

In the following, the b-th moment of Ps for the typical
downlink receiver is derived, for any b ∈ C.

Theorem 2 (Moments for downlink receivers). The b-th
moment of the conditional success probability for the typical
downlink receiver is

Mb,Cellular =(
1 +

λD

λC
θδ
(
PD

PC

)δ
πδ

sin(πδ)
pDb 2F1(1− b, 1− δ; 2; pD)

−
∞∑
k=1

(
b

k

)
(−pCθ)

k δ

k − δ 2F1(k, k − δ; k − δ + 1;−θ)

)−1

,

b ∈ C. (19)

Proof: We first express the conditional success probability
for the typical downlink receiver.

Ps,Cellular(θ)

= P
(
hc

0(t) >
θ‖x0‖α

PC
I0,Cellular(t) | ΦD,ΦC, tx

)
=
∏
x∈ΦD

(
pD

1 + θPD

PC
‖x0‖α‖x‖−α

+ 1− pD

)

·
∏

x∈ΦC\{x0}

(
pC

1 + θ‖x0‖α‖x‖−α
+ 1− pC

)
. (20)

Then the b-th moment is obtained by taking the expectation
with respect to the point processes.

Mb,Cellular

= E

[ ∏
x∈ΦD

(
pD

1 + θPD

PC
‖x0‖α‖x‖−α

+ 1− pD

)b
∏

x∈ΦC\{x0}

(
pC

1 + θ‖x0‖α‖x‖−α
+ 1− pC

)b ]

= EΦC

[
EΦD

[ ∏
x∈ΦD

(
pD

1 + θPD

PC
‖x0‖α‖x‖−α

+ 1− pD

)b ]
∏

x∈ΦC\{x0}

(
pC

1 + θ‖x0‖α‖x‖−α
+ 1− pC

)b ]

= EΦC

[
exp

{
− λDπθ

δ

(
PD

PC

)δ
‖x0‖2

πδ

sin(πδ)
pDb

· 2F1(1− b, 1− δ; 2; pD)

}
∏

x∈ΦC\{x0}

(
pC

1 + θ‖x0‖α‖x‖−α
+ 1− pC

)b ]
(a)
=

(
1 +

λD

λC
θδ
(
PD

PC

)δ
πδ

sin(πδ)
pDb 2F1(1− b, 1− δ; 2; pD)

−
∞∑
k=1

(
b

k

)
(−pCθ)

k δ

k − δ 2F1(k, k − δ; k − δ + 1;−θ)

)−1

,

where (a) is calculated by doing the same calculation as which
was done in [22] to obtain the PGFL of a relative distance
process (RDP), which is defined as

R , {x ∈ ΦC \ {x0} : ‖x0‖/‖x‖}. (21)
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To derive (a) we also need the nearest-neighbor distance
distribution of PPP [28].

As in Poisson cellular networks, the moments of the condi-
tional success probability for downlink users have the form of
a fraction, but the term representing the co-tier interference is
different from the cross-tier interference term since cellular
interference is different in structure (interferers are further
away than the serving BS) than the D2D interference. As
λD → 0 or PD → 0, equation (19) reverts to the result
for Poisson cellular networks (when BSs are active with
probability p) which is known from [7, Eqn. (25)]. For b ∈ N,
the infinite sum in (19) becomes finite and has only b terms.

It is worth mentioning that including thermal noise sim-
ply adds a constant term to the analytical results. When
σ2 is the variance of the thermal noise, for D2D users,
Ps,D2D and Mb,D2D are multiplied by exp

{
− θd

α

PD
σ2
}

and

exp
{
− θd

α

PD
bσ2
}

. Similarly, for downlink users, Ps,Cellular is

multiplied by exp
{
− θ‖x0‖α

PC
σ2
}

. Moreover, without noise, the
support of the conditional success probabilities are [0, 1], while
considering the thermal noise reduces the support of Ps,D2D

to
[
0, exp

{
− θd

α

PD
σ2
}]

. For downlink users, the support of
Ps,Cellular remains [0, 1] since the link distance can be arbi-
trarily small.

As in (14), the exact meta distribution of the typical
downlink receiver is

F̄Ps,Cellular
(x) =

1

2
+

1

π

∫ ∞
0

=
(
e−jt log xMjt,Cellular

)
t

dt. (22)

Using the first and the second moments of the conditional
success probability

M1,Cellular =

(
1 +

λD

λC
θδ
(
PD

PC

)δ
πδ

sin(πδ)
pD

+ pCθ
δ

1− δ 2F1(1, 1− δ; 2− δ;−θ)

)−1

, (23)

M2,Cellular =

(
1 +

λD

λC
θδ
(
PD

PC

)δ
πδ

sin(πδ)
[2pD + (δ − 1)pD

2]

+ 2pCθ
δ

1− δ 2F1(1, 1− δ; 2− δ;−θ)

− (pCθ)
2 δ

2− δ 2F1(2, 2− δ; 3− δ;−θ)

)−1

, (24)

the beta approximation of the meta distribution for the typical
downlink receiver follows as

F̄Ps,Cellular
(x) ≈ 1− Ix

(
M1,Cellularβ

′

1−M1,Cellular
, β′
)
, (25)

where β′ is given by

β′ =
(M1,Cellular −M2,Cellular) (1−M1,Cellular)

M2,Cellular −M2
1,Cellular

. (26)

In D2D communications, when D2D transmitters and BSs
transmit with the same access probability (pD = pC) and

same power (PD = PC), interference coming from both
D2D transmitters and BSs can be modeled by a single PPP
with intensity λD + λC. However, when D2D users and BSs
transmit with different powers, the effect of the interference
coming from BSs on the SIR of the typical D2D receiver
depends on the power of the desired D2D transmitter. When
the desired D2D transmitter uses more power, the effect of the
BSs interference on the SIR of the typical D2D receiver will be
smaller. Therefore, if we model BSs with a PPP with intensity
λ′ and transmit power PD, λ′ decreases as the D2D desired
transmit power increases. This is the same for downlink users.

From Theorem 1 and 2, we can derive an interesting
invariance result that shows how the BS density and the
transmit powers can be traded off against each other, without
changing the meta distributions. To do this, let us write (9)
and (19) in the form

Mb,D2D = exp

(
−λD

[
k1 + k2

λC

λD

(
PC

PD

)δ])
and

Mb,Cellular =

1 + k3

[
λC

λD

(
PC

PD

)δ]−1

+ k4

−1

,

where k1, k2, k3, and k4 do not depend on the densities and
transmit powers. Clearly, if

C , λC

(
PC

PD

)δ
is held constant (and all other parameters stay the same), all
moments and thus both meta distributions remain unchanged.
For example, for δ = 1/2, the effect of doubling the BS
density can be compensated for by quadrupling the D2D
transmit power.

C. Combined Meta Distribution

The meta distribution of the typical D2D receiver
F̄Ps,D2D(x) given in (17) can be interpreted as the fraction of
active D2D receivers whose conditional success probabilities
are greater than x. F̄Ps,Cellular

(x) is the fraction of active
downlink users which have a success probability larger than
x in each realization of D2D transmitters and BSs. We define
the meta distribution of the whole network F̄Ps,total

(x) as the
fraction of active receivers that achieve the target SIR θ in each
realization with a probability that is larger than the target value
x. F̄Ps,total

(x) is provided in the following corollary.

Corollary 1 (Meta distribution of the whole network). For
the overall users, the meta distribution of the SIR is

F̄Ps,total
(x) =

λDpD

λDpD + λCpC

F̄Ps,D2D(x)

+
λCpC

λDpD + λCpC

F̄Ps,Cellular
(x). (27)

Proof: Let us consider the point process of all active
receivers (those who have active transmitters) and focus on the
typical receiver of this point process. Then (17) is the meta
distribution conditioned on that this typical receiver is a D2D
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receiver, while (25) is the meta distribution conditioned on that
this typical receiver is a cellular receiver (UE). Therefore, the
unconditioned meta distribution is

F̄Ps,total
(x)

= P (Rx is D2D) F̄Ps,D2D
(x) + P (Rx is UE) F̄Ps,Cellular

(x)

=
λDpD

λDpD + λCpC

F̄Ps,D2D
(x) +

λCpC

λDpD + λCpC

F̄Ps,Cellular
(x).

Since we have Mb =
∫ 1

0
btb−1F̄Ps

(t)dt, the b-th moment of
the conditional success probability of the whole network can
be written as

Mb,total

=
λDpD

λDpD + λCpC

Mb,D2D +
λCpC

λDpD + λCpC

Mb,Cellular. (28)

For example the standard success probability of the whole
network simply is obtained by substituting b = 1 in the above
equation. It can be interpreted as the success probability of
the (overall) typical user or as the fraction of (all) users whose
SIRs are larger than θ in each realization of D2D transmitters
and BSs.

D. The Mean Local Delay

Another important network performance metric is the mean
local delay, defined as the mean number of transmissions until
the first success (see Subsection II-E). It is finite when certain
parameters of the network, such as the SIR threshold and the
medium access probability, are below specific thresholds [13].
In these situations, the fraction of nodes that suffer from long
delays is negligible [14]. The mean local delay may exhibit
a phase transition called wireless contention phase transition
[13]. In this case, it becomes infinite at some critical value of a
network parameter, which means there is a significant number
of links with large delays [15]. From (7) and (9), the mean
local delay for the typical D2D user is given by

M−1,D2D

= exp

(
πθδd2 πδ

sin(πδ)

[
λDpD(1− pD)

δ−1

+ λC

(
PC

PD

)δ
pC(1− pC)

δ−1
])
, pD, pC < 1, (29)

where the phase transition occurs at pD = 1 or pC = 1.
To derive the mean local delay for the typical downlink

cellular user, we first define the function G(pD, pC) as

G(pD, pC) , 1− λD

λC
θδ
(
PD

PC

)δ
πδ

sin(πδ)
pD(1− pD)

δ−1

− pCθ
δ

1− δ
(1 + θ(1− pC))

−1

· 2F1

(
1, 1; 2− δ; θ(1− pC)

1 + θ(1− pC)

)
. (30)

Then we have

M−1,Cellular =
1

G(pD, pC)
, (pD, pC) ∈ S, (31)

where the region S ⊂ [0, 1]2 of finite mean local delay is
given by

S ,
{

(pD, pC) ∈ [0, 1]2 : G(pD, pC) > 0
}
. (32)

Based on the network parameters, the mean local delay
can be finite or infinite. There is a boundary for the network
parameters which separates the regions of finite and infinite
mean local delay. For example, when other parameters of the
network are fixed, for small values of p

D
the mean local delay

can be finite, but as p
D

increases, at a certain threshold the
mean local delay of downlink users becomes infinite (this
value of p

D
makes the denominator of M−1,Cellular zero). The

threshold is called the critical value, and since at the critical
value the mean local delay changes from finite to infinite we
say a phase transition or wireless contention phase transition
occurs. Here the phase transition occurs at the boundary
∂S , {pD, pC ∈ [0, 1] : G(pD, pC) = 0}. Using the following
inequality

(1 + θ(1− pC))
−1

2F1

(
1, 1; 2− δ; θ(1− pC)

1 + θ(1− pC)

)
< 1,

(33)

an inner bound of S is provided by
{pD, pC ∈ [0, 1] : f(pD, pC) < 1}, where

f(pD, pC) =
θδ

1− δ
pC +

λD

λC
θδ
(
PD

PC

)δ
πδ

sin(πδ)
pD(1− pD)

δ−1
.

(34)

In Fig. 2, ∂S and the proposed inner bound are shown for
two different sets of parameters. As we see, as θ → 0, the
inner bound becomes tighter, and the boundary of the region
∂S approaches a vertical line, since θδ � θ and thus the term
in pD becomes dominant in the function f . In other words,
for small target SIRs, BSs can transmit with any probability
as long as the D2D transmitters’ medium access probability pD

is less than the critical value. In Fig. 3, the mean local delay
(31) is illustrated as a function of pD for different values of
pC. As pD approaches its critical value pD,critical, this means
that a significant fraction of the links suffer from high delay,
which is certainly an undesirable operating regime.

In Fig. 4, the critical probability pcritical is illustrated as
a function of the SIR threshold θ for α = 3, 4 when both
D2D transmitters and BSs transmit with the same probability
(pD = pC = p). For p < pcritical(θ), the mean local delay is
finite while at p = pcritical(θ) the phase transition occurs. As
expected, the critical probability decreases as θ increases. For
low target SIRs the desired signal at the receiver is stronger
when path loss exponent is 3, so the critical probability for
α = 3 is higher than for α = 4. On the other hand, for high
thresholds, the critical probability for α = 4 is larger since
the interferers are more severely attenuated. Moreover, it can
be observed that for large target SIRs, the slope of pcritical(θ)
is −δ, which is formally stated in the next result.

Corollary 2. When pD = pC = p and θ →∞,

pcritical(θ) ∼

[(
λD

λC

(
PD

PC

)δ
+ 1

)
πδ

sin(πδ)

]−1

θ−δ. (35)
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Fig. 2. Boundaries ∂S of the region S of finite mean local delay and the
proposed inner bound.

Proof: Since G(0, 0) = 1, there exist a p > 0 such that
G(p, p) > 0, for any fixed θ. Conversely, for any fixed p > 0,
G(p, p) becomes negative as θ →∞. Therefore, pcritical → 0
as θ →∞, and we have p = o(1) necessarily if p ≤ pcritical.
Hence for any p ≤ pcritical, as θ →∞,

G(p, p) ∼ 1− λD

λC

(
PD

PC

)δ
πδ

sin(πδ)
pθδ

− δ

1− δ
pθ 2F1 (1, 1− δ; 2− δ;−θ) (36)
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Fig. 4. Critical probability pcritical(θ) and its asymptotic approximation
(35) (in dB) as a function of target SIR θ when pD = pC for λD

λC
= 50,

PC
PD

= 100, and path loss exponent 3 and 4.

= 1− λD

λC

(
PD

PC

)δ
πδ

sin(πδ)
pθδ − δpθ

∫ 1

0

t−δ(1 + θt)−1dt

(a)
= 1− λD

λC

(
PD

PC

)δ
πδ

sin(πδ)
pθδ − δpθδ

∫ θ

0

u−δ(1 + u)−1du

(b)
= 1−

(
λD

λC

(
PD

PC

)δ
+ 1

)
πδ

sin(πδ)
pθδ

In (36) the identity

2F1(a, b; c; z) ≡ (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
(37)

is applied. (a) follows from the substitution θt = u and (b)
from

∫∞
0
u−δ(1 + u)−1du = π

sin(πδ) . Finally, (35) is obtained
by equating G(pcritical, pcritical) = 0.
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IV. NUMERICAL RESULTS

In this section, we first confirm the accuracy of the beta
approximation by comparing the approximations (17) and (25)
with simulation results3. Next, the effect of the BS intensity
λC on the mean local delays of both D2D and cellular users is
investigated. Moreover, the meta distribution of the SIR is used
to study the effect of BS intensity on overall users. Finally, the
density of users served is introduced as a better network-wide
metric to investigate the effect of increasing λC.

A. Accuracy of the Beta Approxiation

Fig. 5 shows the simulated meta distribution and the beta
approximation for both D2D receivers and downlink users,
for different sets of parameters. It can be seen that the
beta distribution is an excellent approximation for the meta
distribution, and it is apparent that the standard success
probabilities provide only limited information on the network
performance. In Fig. 5(b), although M1,D2D ≈M1,Cellular, for
some reliability values x we have F̄Ps,D2D

(x) > F̄Ps,Cellular
(x)

and for others we have F̄Ps,D2D
(x) < F̄Ps,Cellular

(x).
Now that its accuracy is verified, we will use the beta

approximation to obtain the numerical results in Subsections
IV-C and IV-D.

B. Mean Local Delay as a Function of BS Density

Based on (29) and (31), increasing the BS intensity λC in-
creases the mean local delay for D2D receivers while reducing
it for the downlink users. Fig. 6 illustrates this behavior for
two different sets of access probabilities. If we just consider
the mean local delay of D2D users, it is obvious that it is
minimized at λC = 0 because there is the least interference
in this case. This can also be understood by (29), which
shows that M−1,D2D is strictly increasing in λC. On the other
hand, when we consider the mean local delay of cellular
users, we see that λC =∞ minimizes M−1,Cellular. Although
M−1,Cellular(λC) is strictly decreasing, after a while, the effect
of increasing BS intensity on M−1,Cellular is negligible and the
function becomes flat. Therefore, considering both D2D and
downlink cellular users, a finite value of λC should be chosen
that offers a good trade-off, so that the mean local delays of
both D2D and cellular users are close to optimum.

Obviously, λC = 0 and λC = ∞ are not good choices in
terms of fairness because λC = 0 means no cellular commu-
nications and λC = ∞ means no D2D communications. In
order to define the combined (overall) mean local delay for
the whole network, using (28), we write M−1,total as

M−1,total

=
λDpD

λDpD
+ λCpC

M−1,D2D +
λCpC

λDpD
+ λCpC

M−1,Cellular (38)

where the first weight is the fraction of active D2D users and
the second weight is the fraction of active downlink users,
so if we have more active D2D users, they will have priority

3In principle, the exact analytical expressions (14) and (22) could be used
for the comparison, but it turns out that simulation results are easier to obtain
than a numerical evaluation of the exact expressions.
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Fig. 5. Meta distribution as a function of reliability x for d = 50m, λD =
50 km−2, and α = 4.
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7.2 km−2.

Fig. 6. Effect of BS intensity λC on the mean local delays of D2D users (29),
downlink users (31), and total users (38) for d = 50m, λD = 50 km−2,
PC
PD

= 100, θ = −5 dB and α = 4. Optimal λC that minimizes M−1,total

is between λC,critical (the critical value of λC for finite mean local delay)
and λC,equal (the value of λC where the mean local delay for cellular and
D2D users is the same).

over downlink cellular users. In Fig. 6, the mean local delays
of D2D, downlink (cellular), and total users are shown for
different access probabilities. As we see, for these network
parameters, λC that minimizes M−1,total is between λC,critical

(the critical value of λC for finite mean local delay) and
λC,equal (the value of λC where the mean local delay for
cellular and D2D users is the same).

It is worth mentioning that an increase in λC can be
compensated for by decreasing PC or increasing PD, such
that λC(PC/PD)δ is kept constant (see the invariance result
at the end of Subsection III-B). With such compensation, the
mean local delays at both cellular and D2D users remain the
same.
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pC = 0.7, and α = 4.

C. Meta Distribution as a Function of D2D Link Distance and
BS Density

In Fig. 7, the meta distribution is shown for D2D users for
three different link distances and BS density λC = 2 km−2.
For comparison, the meta distribution of the downlink users is
also shown. The average link distance of the cellular downlink
is 1/(2

√
λC) ≈ 353 m, which is much bigger than the D2D

distances.
Fig. 8 shows the meta distribution as a function of λC for

D2D receivers, downlink users, and in combination.
From (9), it is easily seen that as λC → ∞ (while

keeping the other parameters fixed), for any b ∈ R+, we have
Mb,D2D → 0. In [7], the Markov inequality is used to obtain
an upper bound for the meta distribution. By applying this
inequality we have F̄Ps,D2D

(x) ≤ Mb,D2D

xb
→ 0 which can

be seen in Fig. 8(a). Moreover, in Fig. 8(c) we see that a local
minimum exists in each curve. In other words, there is a worst-
case BS density that minimizes the fraction of overall users
that achieve θ with reliability x.

D. Density of Users with Reliability Constraint

The meta distribution Fig. 8(c) yields the fraction of users
that are served with a reliability constraint x. This fraction can
be used to evaluate the density of users that achieve an SIR
of θ with reliability x, given by (λDpD + λCpC)F̄Ps,total

(x).
When the network parameters are the same as in Fig. 8(c),
the effect of the BS intensity on the density of users served
is illustrated in Fig. 9. While Fig. 8(c) indicates that λC =
0 results in the largest fraction of users, clearly having no
BSs is not a good choice in terms of the density of users.
As we saw earlier in Fig. 8(b), the meta distribution of the
downlink users F̄Ps,Cellular

(x) approaches a constant at some
moderate BS densities. Thus, for λC not too small, the density
of users served increases in proportion to λC, according to
pCF̄Ps,Cellular

(x). In this regime, however, there will be almost
no D2D transmissions that satisfy the reliability constraint.
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(a) Meta distribution of the D2D receivers (17) as a function of λC for
x = 0.2, 0.5, 0.9 (from top to bottom).
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(b) Meta distribution of downlink UEs (25) as a function of λC for
x = 0.2, 0.5, 0.9 (from top to bottom).
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(c) Meta distribution of combined users (27) as a function of λC for
x = 0.2, 0.5, 0.9 (from top to bottom).

Fig. 8. Meta distribution of the typical D2D receiver (17), downlink UE
(25), and total users (27) as a function of BS intensity λC for d = 50m,
λD = 50 km−2, PC

PD
= 100, θ = 0dB, pD = 0.2, pC = 0.6, and α = 4.
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Fig. 9. Density of users served as a function of BS intensity λC for x =
0.2, 0.5, 0.9 (from top to bottom) when d = 50m, λD = 50 km−2, PC

PD
=

100, θ = 0dB, pD = 0.2, pC = 0.6, and α = 4.

Lastly, we assume that a fixed fraction pC of the BSs are
active and ask what transmit probability pD maximizes the
density of users that are served with reliability at least x. This
is an important question if the cellular users are considered
primary users and the question is how many underlaid D2D
links can be established while maintaining the reliability in all
links. To answer this question, pD,opt(pC) and the resulting
user density are shown in Fig. 10 as functions of pC for
different BS densities and target SIRs. In Fig. 10(a), when
λC = 8 km−2 and θ = −5 dB, there is a discontinuity in
pD,opt. For these parameters, density of overall, D2D, and
downlink users are shown in Fig. 11. When pC = 0.25, the
local maximum inside (0, 1) happens to be a bit smaller than
the value at pD = 1, which is why pD,opt jumps to 1 for
this value of pC. Moreover, since the density of overall users
served is relatively flat, if pD was always set to the value of
the local maximum in (0, 1), the overall density would not be
affected much. Also for other values of pC, we can, without
much harm, set pD = 1 instead of pD,opt. For larger values
of θ, however, this is may no longer be the case, i.e., setting
pD,opt = 1 would result in a highly suboptimal user density.

V. SUMMARY AND CONCLUSIONS

The meta distribution is a fine-grained key performance
metric of wireless systems. In this paper, we focus on D2D
underlaid cellular wireless networks with ALOHA channel
access and provide closed-form expressions of all moments
on the conditional success probability for both cellular and
D2D users, which are then used to approximate the meta
distribution. The accuracy of the approximation is confirmed
by simulations.

We also derived the exact mean local delay in closed form
for both types of users and analyzed the set of transmit
probabilities (pD, pC) for D2D and cellular user that result
in a finite mean local delay.
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Fig. 10. pD,opt as a function of pC and the resulting user density when
d = 80m, λD = 50 km−2, PC

PD
= 400, α = 4, and x = 0.5.

The analytical results are used to study the effect of the
BS intensity on the performance of the typical receiver and
overall users in terms of the mean local delay and the meta
distribution, and to determine the network parameters that
result in the maximum density of users reliably served.

From a D2D receiver’s view, the total interference coming
from BSs and D2D transmitters can be modeled by a single
Poisson point process, and the network behaves as a Poisson
bipolar network. On the other hand, for downlink cellular
users, when there are no D2D users, the moments of the
conditional SIR distribution and thus the mean local delay
do not depend on the BS density because although increasing
λC increases the interference, the average downlink distance is
also reduced. When D2D users communicate with each other,
the effect of the interference from D2D network on downlink
cellular users is more complicated. The results show that
for both D2D receivers and downlink cellular users moments
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Fig. 11. Density of overall, D2D, and downlink users as functions of pD when
pC is fixed for d = 80m, λD = 50 km−2, λC = 8km−2, PC

PD
= 400,

α = 4, x = 0.5, θ = −5 dB.

remain unchanged if λC

(
PC

PD

)δ
is held constant and all other

parameters stay the same.
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