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Abstract—Enabling device-to-device (D2D) communications in
millimeter-wave (mm-wave) networks is of critical importance for
the next-generation mobile networks to support very high data
rates (multi-gigabits-per-second) for mobile devices. In this paper,
we provide a fine-grained performance analysis of the mm-wave
D2D communication networks. Specifically, we first establish a
general and tractable framework to investigate the performance
of mm-wave D2D networks using the Poisson bipolar model
integrated with several features of the mm-wave band. To show
what fraction of users in the network achieve a target reliability
if the required signal-to-interference-plus-noise ratio (SINR) (or
QoS requirement) is given, we derive the meta distributions of the
SINR and the data rate. Interestingly, in mm-wave D2D networks,
the standard beta approximation for the meta distribution does
not work very well when highly directional antenna arrays are
used or the node density is small. To resolve this issue, we provide
a modified approximation by using higher moments of the
conditional SINR distribution, which is shown to be closer to the
exact result. On this basis, we also derive the mean local delay and
spatial outage capacity to provide a comprehensive investigation
on the impact of mm-wave features on the performance of D2D
communication.

Index Terms—Stochastic geometry; Poisson point process;
meta distribution; mean local delay; spatial outage capacity;
millimeter wave; D2D communication.

I. INTRODUCTION

A. Motivation

With the explosive growth of mobile devices and emerging
applications, the tension between capacity requirements and
spectrum shortage becomes increasingly prominent. To miti-
gate this dilemma, the two options are to exploit new spectrum
resources or to increase the spectrum efficiency. Recently, the
wireless industry has turned its attention to the millimeter wave
(mm-wave) band, between 30 and 300 GHz, expecting to take
advantage of the huge and unexploited bandwidth to cope with
the future multi-gigabit-per-second data rate demand [2, 3].
Besides using new wireless spectrum, 5G systems will also
exploit intelligence at the device side (e.g., by allowing device-
to-device (D2D) connectivity) to provide higher spectrum
efficiency, reduced end-to-end latency and increased through-
put [3]. Generally, D2D connections can be set up between

Na Deng is with the School of Information and Communication Engineer-
ing, Dalian University of Technology (DLUT), Dalian, 116024, China (e-
mail: dengna@dlut.edu.cn). Martin Haenggi is with the Dept. of Electrical
Engineering, University of Notre Dame, Notre Dame 46556, USA (e-mail:
mhaenggi@nd.edu).

Part of this work is under submission at the 2017 IEEE Global Communi-
cations Conference (GLOBECOM’ 17) [1].

This work was supported by the Fundamental Research Funds for the
Central Universities (DUT16RC(3)119) and by the US NSF grant CCF
1525904.

two devices either directly or by relaying with or without
base station (BS) involvement. For existing communication
systems, the main challenge of implementing underlaid D2D
links is the difficulty in interference management between the
intra-D2D interference and the cross-tier interference from
other systems using the same spectrum, especially for the
autonomous case without BS involvement [4]. However, since
the mm-wave spectrum has several unique features such as
spectrum availability, high propagation loss, directivity, and
sensitivity to blockage, the situation will be different when
the D2D communication occurs in the mm-wave band. For
example, since the antenna dimension is inversely proportional
to the frequency, the mm-wave D2D users equipped with
very small and highly directional antennas cause much less
interference than the D2D users adopting omni-directional
antennas. Another important benefit is that the new spectrum
facilitates the more wide-spread use of (autonomous) D2D
communication. By operating in mm-wave band, there is no
cross-tier interference between the D2D network and the sub-
6 GHz cellular systems, especially for the autonomous type
where the cross-tier interference is quite serious and hard to
be controlled if both D2D and cellular transmissions occur
in the same band. Accordingly, both the signaling overheads
and the loads of BSs can be reduced significantly. Thus,
mm-wave D2D communication is of critical importance for
the next-generation mobile networks and deserves in-depth
investigations on how to exploit the salient properties of mm-
wave communication for D2D networks and to analyze their
performance. This is the focus of our paper.

B. Related Work

Stochastic geometry has been successfully applied to model
and analyze wireless networks in the last two decades since it
not only captures the topological randomness in the network
geometry but also leads to tractable analytical results [5–7].
Prior work on mm-wave based networks has mostly used the
Poisson point process (PPP) to model the spatial distribution
of nodes and analyzed coverage and rate while modeling the
directionality of antennas and the effect of blockages [8–10].
For D2D-based networks, there also exists a growing body of
literature using the PPP to model the irregular spatial structure
of D2D users and base stations [11, 12]. Very recently,
researchers have started to pay attention to the benefits of
combining mm-wave and D2D technologies. Specifically, [13]
studied the path loss behavior in urban environment for mm-
wave D2D links based on a ray tracing simulation. [14]
considered D2D connectivity in mm-wave networks, where



2

the probability distribution, mean, and variance of the inter-
device distance were derived, and the connectivity perfor-
mances of both the direct and indirect D2D communications
were investigated. [15] used stochastic geometry to analyze
the performance of mm-wave D2D networks with a finite
number of interferers in a finite network region. These works
investigated the mm-wave D2D networks either through pure
simulations or theoretical analysis with a finite spatial extent.
Only [16] analyzed the downlink coverage probability of
a D2D relay-assisted mm-wave cellular network where the
obstacles, BSs, and users formed independent homogeneous
PPPs.

The signal-to-interference-plus-noise ratio (SINR) is a fun-
damental metric to understand how a communication sys-
tem/network performs. When stochastic geometry is used
for the analysis, the SINR performance is most commonly
characterized as the success probability relative to an SINR
threshold and evaluated at the typical link. However, the
performance of the typical link represents an average over all
the spatial realizations of the point process (or over all the links
in a single realization if the point process is ergodic), which
provides very limited information on the individual links. To
overcome this limitation, [17] introduced the concept of the
meta distribution, which is the distribution of the conditional
success probability given the point process. Conditioned on
the PPP, the success probability of each individual link is
calculated by averaging over the fading and the random
activity of the interferers. The distribution of these conditional
success probabilities, obtained by an expectation over the
point process is the meta distribution. In contrast, the standard
success probability is the mean of the conditional success
probability. Consequently, the meta distribution provides a
much sharper characterization of the network performance
(i.e., the SINR performance). While [17] focused on the meta
distribution of the signal-to-interference ratio (SIR) in both the
Poisson bipolar networks with ALOHA channel access and the
downlink of Poisson cellular networks, [18] and [19] applied
the SIR meta distribution to study the D2D communication
underlaying cellular networks and fractional power control for
cellular networks in microwave bands, respectively. Different
from them, we focus on the meta distributions of the SINR and
the achievable rate in mm-wave D2D networks considering the
unique channel characteristics and antenna features of mm-
wave communications.

C. Contributions
The main objective of this paper is to introduce and promote

the meta distribution as a key performance metric for mm-
wave D2D networks. The desirable features of mm-wave,
which include spectrum availability, small antenna dimensions
enabling the implementation of highly directive antenna ar-
rays, natural interference suppression, and dense deployability,
motivate us to carry out a comprehensive investigation on the
performance of the network by combining the two promising
technologies, i.e., mm-wave and D2D, aiming at finding the
most efficient way to operate D2D in mm-wave frequencies.

Specifically, we first give a closed-form expression for the
moments of the conditional success probability for mm-wave

D2D networks considering the effects of blockage and the
large beamforming gain from directional antenna arrays. Next,
to show what fraction of users in the network achieve a target
reliability (or transmission effectiveness) if the SINR (or QoS)
requirement is given, we provide analytical expressions for the
exact meta distributions of the SINR and the data rate, which
are the distributions of the conditional success probability
and the conditional achievable rate given the point process,
respectively. Due to the unique features of mm-wave, the stan-
dard beta distributed approximation proposed for microwave
networks does not work very well when highly directional
antenna arrays are used or the network node density is small.
Thus, we propose a general beta distribution as a modified and
more accurate approximation for the meta distribution. On this
basis, the mean local delay and spatial outage capacity (SOC)
(first introduced in [20]) are also calculated for mm-wave D2D
links and networks, respectively. Finally, the impacts of mm-
wave features, the link distance between D2D users, and the
density of users on each performance metric are investigated
numerically, which show that the unique features of the mm-
wave band and the user density have significant effects on the
interference (i.e., when the network is interference-limited and
when it is not) and hence the performance of mm-wave D2D
networks.

D. Organization
The rest of the paper is organized as follows: Section II

introduces the system model with blockage effect and antenna
pattern gain. Section III gives a general framework for a
fine-grained analysis of mm-wave D2D networks, including
the moments of the conditional success probability, the meta
distributions of the SINR and the data rate, the mean local
delay, and the spatial outage capacity. Section IV presents
the numerical results, and Section V offers the concluding
remarks.

II. SYSTEM MODEL

A. Network Model
We consider a mm-wave D2D communication network,

where the D2D transmitters are distributed according to a
homogeneous PPP Φ with density λ. Each transmitter is
assumed to have a dedicated receiver at distance r0 in a
random orientation, i.e., the D2D users form a Poisson bipolar
network [7, Def. 5.8]. We consider a receiver at the origin that
attempts to receive from an additional transmitter located at
(r0, 0). Due to Slivnyak’s theorem [7, Thm. 8.10], this receiver
becomes the typical receiver under expectation over the PPP.
We assume that each receiver has a single antenna and its
corresponding transmitter is equipped with a square antenna
array composed of N elements. All transmitters operate at a
constant power µ and apply analog beamforming to overcome
the severe path loss in the mm-wave band. We also assume
that the direction of arrival (DoA) between the transmitter-
receiver pair is known at the transmitter and thus the beam
direction is perfectly aligned to obtain the maximum power
gain. The ALOHA channel access scheme is adopted, i.e., in
each time slot, D2D transmitters in Φ independently transmit
with probability p.
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TABLE I. Antenna parameters of a uniform planar square antenna
array [16]

Parameters Description value

w Half-power beamwidth
√

3√
N

Gm Main lobe gain N

Gs Side lobe gain 1/ sin2
(

3π

2
√

N

)

B. Blockage and Propagation Model

The generalized LOS ball model [21] is used to capture the
blockage effect in mm-wave communication since it has been
validated in [9] as a better fit with real-world scenarios than
other blockage models adopted in previous works. Specifically,
the LOS probability of the channel between two nodes with
separation d in this model is

PLOS(d) = pL1(d < R), (1)

where 1(·) is the indicator function, R is the maximum
length of a LOS channel, and the LOS fraction constant
pL ∈ [0, 1] represents the average fraction of the LOS area
within a circular ball of radius R around the receiver under
consideration. Thus, pL is the LOS probability if the distance
d is less than R. The blockage effect induces different path
loss exponents, denoted as αL and αN, for LOS and NLOS
channels, respectively. Typical values for mm-wave path loss
exponents can be found in measurement results in [22] with
approximated ranges of αL ∈ [1.9, 2.5] and αN ∈ [2.5, 4.7].

For the sake of mathematical tractability, the sectorized
antenna model is adopted to approximate the actual antenna
pattern, as in [21]. In particular, the array gains within the
half-power beam width are assumed to be the maximum power
gain (i.e., main lobe gain), and the gains of the other DoAs
are approximated to be the first minor maximum gain (i.e.,
side lobe gain) of the actual antenna pattern, which can be
formulated as

G(φ) =

{
Gm if |φ| ≤ w/2
Gs otherwise, (2)

where w ∈ (0, 2π] is the half-power beam width and correlated
with the size of antenna array, and φ ∈ [−π, π) is the angle
off the boresight direction. With the assumption of a

√
N ×√

N uniform planar square antenna array with half-wavelength
antenna spacing, the half-power beamwidth w, main lobe gain
Gm, and side lobe gain Gs are summarized in Table I.

C. SINR Analysis

We assume that the desired link between the transmitter-
receiver pair is in the LOS condition with deterministic path
loss r−αL

0 . In fact, if the receiver was associated with a NLOS
transmitter, the link would quite likely be in outage due to the
severe propagation loss and high noise power at mm-wave
bands as well as the fact that the interferers can be arbitrarily
close to the receiver. The power fading coefficient associated
with node x ∈ Φ is denoted by hx, which is an exponential

random variable with E(hx) = 1 (Rayleigh fading1) for both
LOS and NLOS to enhance the analytical tractability, and all
hx are mutually independent and also independent of the point
process Φ. ℓ(x) is the random path loss function2 associated
with the interfering transmitter location x, given by

ℓ(x) =

{
|x|−αL w.p. PLOS(|x|)
|x|−αN w.p. 1− PLOS(|x|),

(3)

where all ℓ(x)x∈Φ are independent. For the typical receiver,
the interferers outside the LOS ball are NLOS and thus can be
ignored due to the severe path loss over the large distance (at
least R). As a result, the analysis for the network originally
composed by the PPP Φ with density λ reduces to the analysis
of a finite network region, namely the disk of radius R centered
at the origin. Due to the incorporation of the blockages, the
LOS transmitters with LOS propagation to the typical receiver
form a PPP ΦL with density pLλ, while ΦN with density pNλ
is the transmitter set with NLOS propagation, where pL+pN =
1 such that Φ = ΦL ∪ ΦN.

Thus, the interference at the origin is defined as

I ,
∑
x∈Φ

µG(φx)hxℓ(x)Bx, (4)

where µ is the constant transmit power, G(φx) is the di-
rectional antenna gain function with DoA φx, and Bx is
a Bernoulli variable with parameter p to indicate whether
x transmits a message to its receiver. Since all transmitters
are oriented toward the corresponding receivers, the DoAs
between the interferers and the typical receiver are uniformly
random in [−π, π). Hence, G(φx) is equal to Gm with
probability w̄ = w

2π and Gs with probability 1 − w̄. Without
loss of generality, the noise power is set to one, and the SINR
at the typical receiver is then given by

SINR =
µGmhx0r

−αL
0

1 +
∑
x∈Φ

µG(φx)hxℓ(x)Bx
. (5)

III. A GENERAL FRAMEWORK FOR FINE-GRAINED
ANALYSIS OF MM-WAVE D2D NETWORKS

In this section, we will develop a general framework for the
fine-grained analysis of mm-wave D2D networks. The main
results include the exact analytical expression and a general
beta approximation for the meta distribution of the typical
D2D receiver, which will then be applied in the analysis of
the local delay and the SOC for mm-wave D2D networks.

A. Meta Distribution of the SINR
The meta distribution of the SINR is a two-parameter

distribution function defined as [17]

F̄Ps(θ)(x) , P!
o(Ps(θ) > x), θ ∈ R+, x ∈ [0, 1]. (6)

1Note that the LOS mm-wave links are better modeled by the Nakagami
fading. However, we resort to Rayleigh fading as it enables much better
tractability. In addition, simulation results in Sec. IV show that Nakagami
and Rayleigh fading present the same trends in terms of SINR performance.

2With the standard path loss law r−α, for α ≤ 2, the interference is infinite
almost surely unless the network considered is finite, while for α > 2, the
interference is finite but with infinite mean due to the singularity of the path
loss law at the origin [23]. Accordingly, in our system model, we assume
αN > max(αL, 2).
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which represents the complementary cumulative distribution
function (CCDF) of the link success probability Ps(θ) condi-
tioned on the point process. Here P!

o denotes the reduced Palm
probability conditioning on the typical receiver at the origin
o and its corresponding transmitter to be active, and the link
success probability Ps(θ) is a random variable given as

Ps(θ) , P(SINR > θ | Φ), (7)

where θ is the SINR threshold. Due to the ergodicity of the
point process, the meta distribution can be interpreted as the
fraction of links in each realization of the point process that
have a SINR greater than θ with probability at least x. By
such a definition, the standard success probability is the mean
of Ps(θ), obtained by integrating the meta distribution (6) over
x ∈ [0, 1]. Since a direct calculation of the meta distribution
seems infeasible, we will derive the exact analytical expression
through the moments Mb(θ) , E

[
Ps(θ)

b
]

first and then
approximate it with much simpler closed-form expressions.

Theorem 1. (Moments for mm-wave D2D network with
ALOHA) Given that the typical link is LOS and active, the
moment Mb (b ∈ C) of the conditional success probability in
mm-wave D2D networks is

Mb(θ)=exp

(
−λπR2(1− pLAL − pNAN)−

bθrαL
0

µGm

)
, (8)

where

Ai=

∞∑
n=0

(
b

n

)
(−p)n

n∑
m=0

(
n

m

)
w̄m(1−w̄)n−mFm,n−m(αi, θ), (9)

and

Fm,n−m(αi, θ)=F̃1

(
δi,m, n−m, δi+1,

−Rαi

θrαL
0

,
−GmR

αi

Gsθr
αL
0

)
. (10)

Here F̃1(·) is the hypergeometric function of two variables3

[24, Chap. 9.18] and δi = 2/αi, i ∈ {L,N}.
Proof: See Appendix A.

The first moment of the conditional success probability
is the standard success probability for the mm-wave D2D
network, denoted as ps(θ) or M1(θ). It is given as

ps(θ)=M1(θ)=exp

(
−λpπR2(pLξ

L
1 +pNξ

N
1 )−

θrαL
0

µGm

)
, (11)

where

ξi1 = w̄ 2F1

(
1, δi, δi + 1,

−Rαi

θrαL
0

)
+ (1−w̄)

× 2F1

(
1, δi, δi + 1,

−GmR
αi

Gsθr
αL
0

)
, i ∈ {L,N}. (12)

When αL = 2 and αN = 4, we have the simpler expressions

ξL1 = w̄
θr20
R2

ln

(
1+

R2

θr20

)
+(1−w̄)

Gsθr
2
0

GmR2
ln

(
1+

GmR
2

Gsθr20

)
,

ξN1 = w̄

√
θr0
R2

arctan

(
R2

√
θr0

)
+(1−w̄)

√
Gsθr0√
GmR2

arctan

(√
GmR

2

√
θGsr0

)
.

3The F̃1 function is also called the Appell function and is implemented in
the Wolfram Language as AppellF1[a, b1, b2, c, x, y].

The second moment of the conditional success probability is
given as

M2(θ) = (M1(θ))
2 exp

(
λp2πR2(pLξ

L
2 + pNξ

N
2 )
)
, (13)

where

ξi2 = w̄2
2F1

(
2, δi, δi+1,

−Rαi

θrαL
0

)
+2w̄(1−w̄)F1,1(αi, θ) +

(1−w̄)2 2F1

(
2, δi, δi+1,

−GmR
αi

Gsθr
αL
0

)
, i ∈ {L,N}. (14)

When αL = 2 and αN = 4, we have

ξL2 =
w̄2θr20

θr20 +R2
+

(1− w̄)2Gsθr
2
0

Gsθr20 +GmR2

+
2w̄(1−w̄)Gsθr

2
0

(Gm−Gs)R2
ln

(
Gsθr

2
0+GmR

2

Gsθr20+GsR2

)
,

ξN2 =
w̄2

2

(√
θr0
R2

arctan
R2

√
θr0

+
θr20

θr20+R4

)

+
(1−w̄)2

2

(√
Gsθr0
R2

arctan
R2

√
θr0

+
θr20

θr20+R4

)
+
2w̄(1−w̄)Gs

√
θr0

(Gm−Gs)R2

(
arctan

√
GmR

2

√
Gsθr0

−arctan
R2

√
θr0

)
.

The variance of the conditional success probability can be
obtained as varPs(θ) = M2(θ)−M2

1 (θ). As in [17], we also
find in mm-wave D2D networks that the same λp leads to the
same standard success probability but the variance depends
on both λ and p, not just the product, which highlights the
importance of the fine-grained analysis based on the meta
distribution. Moreover, in mm-wave D2D networks, as in
bipolar networks with standard path loss and single-antenna
nodes, we also have the following concentration property.

Corollary 1. (Concentration as p → 0) Keeping the
transmitter density t , λp fixed and letting p → 0, we have

lim
p→0,λp=t

Ps(θ) = M1(θ) = ps(θ) (15)

in mean square (and probability and distribution).

Proof: From the expression of ξi2 in (17), when p → 0,
we have ξi2 = 2ξi1 and thus M2(θ) = M2

1 (θ). In this case, the
limiting variance is zero, i.e.,

lim
p→0,λp=t

var Ps(θ) = 0. (16)

The concentration property means that in the limit of a very
dense network with very small p, all links in the network have
exactly the same success probability (or reliability).

For mm-wave networks, it is very important and interesting
to explore how the performance changes with the antenna array
size N and what happens when extremely massive antenna
arrays are used, i.e., as N → ∞. Both questions are answered
in the following corollary.

Corollary 2. (Monotonicity with N ) For b ∈ R+, Mb is
monotonically increasing with N . When N → ∞, Mb is given
by

lim
N→∞

Mb(θ) = exp
(
−λπR2(pLAL+pNAN)

)
, b ∈ C, (17)
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where

Ai=
∞∑

n=1

(
b

n

)
(−1)n+1pn 2F1

(
n, δi, δi+1,

9π2Rαi

4θrαL
0

)
. (18)

Here 2F1(·) is the Gaussian hypergeometric function [24,
Chap. 9.11], and δi = 2/αi, i ∈ {L,N}.

Proof: See Appendix B.

So when N → ∞, we obtain an upper limit of the standard
success probability M1(θ) as

lim
N→∞

M1(θ)=

exp

−λpπR2
∑

i∈{L,N}

pi2F1

(
1, δi, δi+1,

−9π2Rαi

4θrαL
0

). (19)

This corollary implies that the standard success probability
improves with increasing N and converges to its maximum
as N → ∞. Furthermore, the limit (17) also provides the
following insights: (1) As N → ∞, the effect of the noise
is totally suppressed since Gm → ∞; (2) The side lobe
interference gradually becomes the main performance-limiting
factor as N → ∞. In this regime, the node density plays
a critical role in determining the interference power in the
network. For instance, a sparse network makes the interference
in a massive MIMO network arbitrarily small while a dense
one is interference-limited.

The exact meta distribution can be obtained by the Gil-
Pelaez theorem [25] with the imaginary moments Mjt of
Ps(θ), t ∈ R, j ,

√
−1.

Corollary 3. (Exact expression) The meta distribution for
the mm-wave D2D networks is given by

F̄Ps(θ)(x)=
1

2
− 1

π

∫ ∞

0

e−λπR2(1−ℜ(ζ))

t

× sin

(
t log x+t

θrαL
0

µGm
−λπR2ℑ(ζ)

)
dt, (20)

where ζ = pLAL + pNAN is given in (9) with b = jt and
ℜ(z) and ℑ(z) denote the real and imaginary parts of z ∈ C,
respectively.

Proof: According to the Gil-Pelaez theorem, the ccdf of
Ps(θ) is given by

F̄Ps(θ)(x) =
1

2
+

1

π

∫ ∞

0

ℑ
(
e−jt log xMjt

)
t

dt, (21)

where Mjt, t ∈ R is given in (8), and ℑ(z) is the imaginary
part of z ∈ C. Letting ζ = pLAL + pNAN, we have

F̄Ps(θ)(x)

=
1

2
+

1

π

∞∫
0

ℑ
(
e−jt log xe−λπR2(1−ζ)−jtθr

αL
0 /(µGm)

) 1

t
dt

=
1

2
+
1

π

∫ ∞

0

e−λπR2(1−ℜ(ζ))

t
ℑ
(
e−jt log xejλπR

2ℑ(ζ)−jt
θr

αL
0

µGm

)
dt

=
1

2
− 1

π

∞∫
0

e−λπR2(1−ℜ(ζ))sin

(
t log x+

tθrαL
0

µGm
−λπR2ℑ(ζ)

)
1

t
dt.

B. Approximations of the Meta Distribution
Though the expression in Cor. 3 is exact and can be

calculated via numerical integration techniques, it is difficult
to gain insights directly and apply it to obtain other analytical
results. To approximate the meta distribution, we first use the
same approach adopted in [17] by matching the mean and
variance of the beta distribution with M1(θ) and M2(θ) given
in Theorem 1 to verify whether this approximation is also ac-
ceptable for mm-wave D2D networks, where the interference
characteristics are different from those in microwave networks.
The probability density function (PDF) of a beta distributed
random variable X with parameters κ and β is

fX(x) =
xκ−1(1− x)β−1

B(κ, β)
, (22)

where B(·, ·) is the beta function. The first and second moment
of X are given as

EX =
κ

κ+ β
, E(X2) =

κ+ 1

κ+ β + 1
EX. (23)

Letting EX = M1(θ) and E(X2) = M2(θ), we have

κ =
M1M2 −M2

1

M2
1 −M2

, β =
(1−M1)(M2 −M1)

M2
1 −M2

. (24)

Hence, the approximate meta distribution of the typical mm-
wave D2D receiver follows as

F̄Ps(θ)(x) ≈ 1− Ix(κ, β), (25)

where Ix(κ, β) is the regularized incomplete beta function.
To answer the question when the above approximation

provides a good match with the exact result in mm-wave
networks and when not, we compare them with different
numbers of antenna elements N and node densities in Fig.
1(a). It is observed that the standard beta distribution provides
an excellent match for the case with severe interference while
as the number of antennas increases with narrower beams
or the density of the nodes decreases, the approximations
start to deviate from the exact results. The smaller the in-
terference, the larger the deviations. However, due to the
unique features of mm-wave such as high propagation loss,
highly directional transmission, and sensitivity to blockage,
the interference behavior is different from the microwave
communications. The randomness of the interference stems
from the spatial relative locations between the interferer and
the receiver or the interfering beam directions. Due to the
randomness of the distribution of the D2D users, both strong
and weak interference scenarios will occur. Thus, for the
sake of approximating the meta distribution more accurately
even for the light interference scenarios in mm-wave bands,
we propose another approximation with a generalized beta
distribution whose PDF with parameters (κ, β, ρ) is given as

fX(x) =
xκ−1(1− x/ρ)β−1

ρκB(κ, β)
1x≤ρ, (26)

where ρ ∈ (0, 1]. Clearly, for ρ = 1, this reverts to the standard
beta approximation. The parameters can also be obtained
through the moment matching method, given as

EX =
ρκ

κ+ β
, E(Xn) = ρ

κ+ n− 1

κ+ β + n− 1
E(Xn−1), (27)
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Fig. 1. Standard beta approximation versus generalized beta approximation with pL = 0.2, r0 = 3, µ = 20, p = 0.5, αL = 2.5, αN = 4.

and the solutions to the three equations, i.e., n = 1, 2, 3 can be
easily obtained via the fsolve function in Matlab 2014 (and
later versions). Thus, the generalized beta approximation of
the meta distribution is obtained by

F̄Ps(θ)(x) ≈ (1− Ix(κ/ρ, β))1x≤ρ. (28)

From the numerical results in Fig. 1, we find that the gen-
eralized beta approximation provides an excellent match for
the distribution of the link success probability with a wider
range of application. For example, for N = 64, when a
highly directional antenna array is adopted, the generalized
beta approximation provides a more accurate match than
the standard beta distribution, especially at high reliabilities.
Moreover, from λ = 0.1 to λ = 0.001, when the node
density decreases, the deviation of the standard beta distri-
bution becomes quite significant while the generalized beta
approximation still provides an excellent match.

Furthermore, to investigate how the noise affects the meta
distribution and its approximation, we compare the meta
distributions of the SINR and the SIR, where the latter is the
noiseless case, shown in Fig. 1(b). It is seen that the meta
distribution for weak interference is truncated at x < 1 in case
(a) but not in case (b), see the two curves with λ = 0.001 in
each figure. This phenomenon indicates that when the node
density decreases, the network tends to be noise-limited, and
the effect of the noise on the meta distribution cannot be
ignored. This is also the reason why ρ < 1 in (26) leads
to a better fit for the SINR analysis. Besides, as explained for
Cor. 2, when N becomes larger, the node density becomes the
dominant factor of the interference. Thus, when N = 64, due
to the higher node density λ = 0.1, even though the noise
effect is not considered, the meta distribution is also truncated
before 1 but now because of the interference. This indicates
that for the mm-wave network with large antenna arrays and
dense deployment, the standard beta distribution does not
provide an accurate approximation of the meta distribution
especially at high reliabilities (near 1), whereas the generalized

one does.
In summary, by using higher moments of the conditional

SINR distribution, the generalized beta approximation pro-
vides an excellent match for the distribution of the link success
probability with a wider range of application scenarios (both
interference-limited and noise-limited cases) and reverts to the
standard one for ρ = 1. Such a quick and efficient approx-
imation significantly facilitates the performance evaluation,
which will play an important role for network planning and
management.

C. Meta Distribution of the Data Rate
In addition to the transmission reliability (or the success

probability), the data rate, characterized by the rate distri-
bution, is another fundamental performance metric of trans-
mission effectiveness. Denote T as the (random) data rate of
the typical link, with unit of bps. According to the Shannon
capacity formula T = W log2(1 + SINR), we have the rate
distribution P(T > τ) = M1(2

τ/W − 1). Similar to the meta
distribution of the SINR, conditioned on the point process, we
can also derive the meta distribution of the data rate F̄T (τ, x)
to present the fraction of active users in each realization of the
point process that have a rate T greater than τ with probability
at least x.

Theorem 2. (Meta distribution of data rate for mm-
wave D2D receivers) Given that the typical link is LOS and
active, the meta distribution of the data rate in mm-wave D2D
networks can be obtained through the moment Sb (b ∈ C) of
the conditional data rate, where Sb(τ) = Mb(2

τ/W − 1).

Proof: Since T = W log2(1 + SINR), we have

P(T > τ | Φ) = P(W log2(1 + SINR) > τ | Φ)
= P(SINR > 2τ/W − 1 | Φ). (29)

Therefore,

Sb(τ) = EΦ

[(
P(SINR > 2τ/W − 1 | Φ)

)b]
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= Mb(2
τ/W − 1). (30)

The first moment of the conditional data rate is the rate
distribution for the mm-wave D2D network, given as

S1(τ) = exp

(
−λpπR2(pLξ

L
1 + pNξ

N
1 )−

τ̃ rαL
0

µGm

)
, (31)

where τ̃ = 2τ/W − 1, and

ξi1 = w̄ 2F1

(
1, δi, δi + 1,

−Rαi

τ̃ rαL
0

)
+(1−w̄) 2F1

(
1, δi, δi + 1,

−GmR
αi

Gsτ̃ r
αL
0

)
, i ∈ {L,N}.

The exact meta distribution F̄T (τ, x) of the data rate can also
be calculated via the Gil-Pelaez theorem. Due to the similarity
of the meta distribution between the SINR and achievable rate,
the beta approximation also works well in some regimes, and
the generalized beta approximation is accurate in all cases we
considered.

D. The Mean and Variance of the Local Delay

The local delay is another important network performance
metric that directly affects the perceived experience of users.
It is defined as the number of transmission attempts needed
until the first success [26]. In each transmission attempt, the
transmitter is allowed to transmit with probability p, and
the transmission will be successful with probability Ps(θ)
conditioned upon Φ. Therefore, the transmission attempts are
independent (Bernoulli) trials with success probability pPs(θ)
and the conditional local delay, denoted as DΦ = (D | Φ), is
a random variable with geometric distribution given by

P(DΦ = k) = (1− pPs(θ))
k−1pPs(θ). (32)

Hence the mean conditional local delay is given by EDΦ =
1

pPs(θ)
. As a result, the mean local delay D̄ is obtained as

D̄ = E
(
(pPs(θ))

−1
)
= 1

pM−1, which characterizes the mean
number of transmission attempts needed until a packet is
successfully transmitted. The specific expression of the mean
local delay is given as follows.

Theorem 3. Letting vi = Rαi

θr
αL
0

and ṽi = viGm

Gs
, the mean

local delay D̄ of mm-wave D2D networks is

D̄ =
1

p
exp

(
θrαL

0

Gmµ
+

∑
i∈{L,N}

λpπR2pi

(
F̃ (δi, 1, 1, δi + 1, z1, z2)

+
δi(w̄ṽi+(1−w̄)vi)

δi + 1
F̃ (δi + 1, 1, 1, δi + 2, z1, z2)

))
,(33)

where 1
z1

and 1
z2

are the two different real roots of f(y) =

viṽiy
2 + (vi + ṽi − pw̄ṽi − p(1− w̄)vi)y + 1− p.

Proof: See Appendix C.

In order to better understand the distribution of the local
delay, we also derive its variance to characterize the fluctuation
of the delay (or jitter).

Theorem 4. Letting vi =
Rαi

θr
αL
0

and ṽi =
viGm

Gs
, the variance

of the local delay V (D) in mm-wave D2D networks is

V (D)=
2

p2
D̄2 exp

(
λp2πR2

∑
i∈{L,N}

pi

(
F̃ (δi, 2, 2, δi+1, z1, z2)

+
2δi(w̄ṽi + (1− w̄)vi)

δi + 1
F̃ (δi + 1, 2, 2, δi + 2, z1, z2)

+
δi(w̄ṽi+(1− w̄)vi)

2

δi + 2
F̃ (δi+2, 2, 2, δi+3, z1, z2)

))
−D̄ − D̄2, (34)

where 1
z1

and 1
z2

are the two different real roots of f(y) =

viṽiy
2 + (vi + ṽi − pw̄ṽi − p(1− w̄)vi)y + 1− p = 0.

Proof: See Appendix D.

E. Spatial Outage Capacity

The spatial outage capacity (SOC), introduced in [20], is a
new notion of capacity that can be calculated using the meta
distribution. The SOC is defined as the maximum density of
concurrently active links with a success probability greater
than a certain threshold. According to the definition, the SOC
of mm-wave D2D networks is given by

S(θ, x) , sup
λ>0,p∈(0,1]

λpF̄Ps(θ)(x), θ > 0, x ∈ (0, 1). (35)

The SOC measures the maximum density of links that satisfy
a certain reliability requirement in a mm-wave D2D network,
where the reliability requirement is applied at each individual
link given the SINR threshold θ. We denote the density of
concurrently active links that have a success probability greater
than x as

s(θ, x) , λpF̄Ps(θ)(x). (36)

With the accurate approximation of the generalized beta dis-
tribution above, s(θ, x) is approximated as

s(θ, x) ≈ λp(1− Ix(κ/ρ, β))1x≤ρ. (37)

It should be noted that both the meta distribution and the
SOC are important performance metrics: the former character-
izes a fine-grained link-level performance of all links (i.e., the
entire distribution of the random variable instead of just the
mean); while the latter characterizes a fine-grained network-
level performance (i.e., the maximum density for a network
with a certain QoS constraint applied at each individual link
instead of the standard area spectral efficiency (ASE) which
is just the mean achievable rate per unit area given that the
typical link satisfies the QoS constraint). Thus, from these two
performance metrics, we capture the performance of individual
links and obtain much sharper results than merely the SINR
and ASE at the typical user.

IV. NUMERICAL RESULTS

In this section, we will present numerical results of various
performance metrics involved in the framework in Section
III for mm-wave D2D networks. The main symbols and
parameters are summarized in Table II with default values in
the simulations.
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TABLE II. Symbols and descriptions

Symbol Description Default value
Φ, λ mm-wave device PPP and density N/A, 0.1/m2

µ The transmit power 20 dB
W mm-wave bandwidth 2GHz

r0 The link distance between the D2D users 3m

p The transmit probability in each time slot 0.5

pL/pN The probability of a link being LOS/NLOS 0.2/0.8

αL/αN The path loss exponent of the LOS/NLOS link 2.5/4

R The radius of the generalized LOS ball 200m

θ The SINR threshold 0 dB
Gm/Gs The main lobe/side lobe of the antenna pattern N/A

w The beam-width of the antenna pattern N/A

F̄Ps(θ)(x)/F̄T (x, τ) The meta distribution of the SINR/data rate N/A

Mb/M
τ
b The b-th moments of the conditional SINR/data rate distribution N/A
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Fig. 2. The standard success probability M1. Fig. 3. The variance M2 − M2
1 of the conditional success

probability.

A. The Impact of mm-Wave Features

Directional transmission and sensitivity to blockage are two
key features of mm-wave communication. In this subsection,
we focus on the impacts of the LOS probability pL and antenna
array size N on the mean and variance of the conditional
success probability Ps(θ). Moreover, we also investigate the
interference behaviors under various mm-wave D2D scenarios.

As shown in Fig. 2, increasing the number of antennas
improves the standard success probability due to the fact
that a larger antenna array can form a narrower beam, thus
causing less interference. As the number of antennas tends
to infinity, the standard success probability converges to an
upper limit (see Cor. 2), since the side-lobe leakage restricts
the performance improvement. However, for the LOS proba-
bility, a higher pL means the number of LOS links is larger,
leading to more severe interference. Thus, the standard success
probability deteriorates with the increase of pL.

Fig. 3 presents the variance of the conditional success
probability as a function of θ for different LOS probabilities
and antenna array sizes. Since the variance necessarily tends
to zero for both θ → 0 and θ → ∞, it assumes a maximum
at some finite value of θ. It can be seen that given a pL, the θ

with the maximum variance increases with N and converges
to an upper limit, similar to M1. Moreover, there is no
monotonicity of the variance with respect to N . For example,
for θ = −10 dB, the variance decreases with increasing N ,
while the opposite happens for θ = 10 dB. We also find that a
larger pL leads to smaller variance. The reason is that in LOS
environment with smaller path loss exponent, the randomness
of the relative distances of the interferers and the receiver has
a smaller effect on the variance of the interference than in the
NLOS case.

Fig. 4 shows the relationship between the standard success
probability and node density for θ = 0 dB. In order to
find whether and when mm-wave D2D networks are noise-
limited, we also plot a SNR standard success probability where
interference is neglected. As seen from the plots, the mm-
wave network tends to be interference-limited as the density
increases and for the given system parameters, there is a
critical point λc ≈ 10−4. The critical density λc is the density
where the interference starts to be the dominant term in the
interference-plus-noise sum, i.e., when P(I > 1) is high
(recall that the noise power is set to 1). Therefore, when
λ > λc, the noise-limited assumption is no longer validated.
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Moreover, the higher the density, the larger the deviations
between the SINR and SNR performance. It is well known that
D2D communication mostly applies in crowded environments
such that users in close proximity can establish reliable direct
communications. Therefore, it can be concluded that the mm-
wave D2D network is interference-limited in most cases.
Besides, the selection of the link distance between the D2D
users is also important since the interferers can be arbitrarily
close to the receivers; if the link distance is too large (e.g.,
the case r0 = 10), the standard success probability will be
seriously deteriorated.

B. Meta Distribution in mm-Wave Band
Fig. 5 shows comparisons of the exact results and beta

approximations for λp = 0.05 with different λ and p, respec-
tively. As seen from the plots, for the given system param-
eters, the approximations match the exact results extremely
well, which verifies the accuracy and the effectiveness of
the approximation. Moreover, the three curves have the same
value of λp and hence the same standard success probability,

but the corresponding meta distributions are rather different.
This shows that the standard success probability provides only
limited information on the network performance.

Fig. 6 shows the meta distributions for different SINR
thresholds, which enables a precise statement about what
fraction of links achieve an SINR threshold with a target
reliability. For example, for θ = −5 dB, about 90% of the links
have a success probability of at least 80%; while for θ = 5
dB, less than 10% of the links achieve the same reliability.

Fig. 7 shows the impacts of LOS probability and antenna
array size on the meta distribution. As seen from the plots,
adopting a large antenna array boosts the performance. For
example, the fractions of links with a success probability of
at least 60% for N = 16 and N = 64 are about 0.7 and
0.8, respectively, which are significantly higher than for N =
4 where almost no links meet the requirement. In addition,
similar to the standard success probability, the increase of pL
leads to more interferers with LOS links, thus resulting in poor
performance.

Fig. 8 and Fig. 9 illustrate the rate distribution and the
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meta distribution of the conditional achievable rate with rate
threshold τ = 2 Gbps, respectively. Due to the rich bandwidth
resource, for the given system parameters, mm-wave D2D
communication can provide multi-gigabit-per-second rates
even at moderate SINRs. This observation demonstrates the
unique advantages of mm-wave communications especially
for mobile broadband services. As a result, the load of the
base stations and the backhaul networks could be significantly
reduced. From both figures, increasing the size of the antenna
array has a positive effect on the achievable rate and its meta
distribution, i.e., increasing both the mean achievable rate and
the fraction of concurrent links achieving a required rate. The
LOS probability can also affect the path loss law of the inter-
fering links, and thus a smaller probability leads to reduced
interference. These observations help network operators find
the most efficient operating regime for D2D communication
in the mm-wave band.

To assess the impact of the fading model, we give a
comparison of two cases: one adopts the Nakagami-m fading

for LOS propagation with m = 4; and the other adopts
the Rayleigh fading, shown in Fig. 10. It is shown that the
Nakagami and Rayleigh fading present the same trends in
terms of the meta distribution under different cases of densities
and numbers of antennas, which implies the significance of the
theoretical results based on the Rayleigh fading.

C. Mean and Variance of the Local Delay

Fig. 11 and Fig. 12 give the mean and variance of the local
delay for different N and pL, respectively. It can be observed
that both statistics of the local delay appear to present similar
trends with the transmit probability p. A small p means less op-
portunity to be scheduled and thus lengthens the transmission
period, while a large p results in severe interference and thus
reduces the successful transmission probability. Thus, both of
the two cases increase the delay and jitter. Also, the optimal
p that minimizes the mean local delay does not correspond to
the smallest delay jitter, which highlights the importance of
a fine-grained analysis for the delay performance, especially
for the real-time applications which are sensitive to the delay
jitter.

Moreover, the unique features of mm-wave communication,
e.g., the antenna array size and the LOS probability, also have
significant effects on the delay performance. As seen from the
figure, a larger antenna array and a smaller LOS probability
reduce the delay while maintaining the corresponding delay
stability in a large range of the transmit probability, which
verifies the advantages of mm-wave communications in terms
of the delay performance.

D. SOC analysis

Fig. 13 explores the behavior of s(θ, x) for fixed θ = −10
dB and x = 0.9 as a function of p and λ for different N and
pL and indicates the SOC point which is the combination of
(λ, p) achieving the supremum of s(θ, x). It is observed that
for an arbitrary combination of N and pL, the SOC is always
achieved at p = 1 under the given system parameters. Besides,
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Fig. 13. Contour plots of s(θ = 1/10, x = 0.9) as a function of p and λ for different N and pL.

given λ (or p), s(θ, x) tends to increase first to reach a critical
point and then decreases as p (or λ) increases. This is because
the increase of p (or λ) leads to two opposite effects on s(θ, x),
namely an increase in the concurrently transmitting links λp
and a decrease in the fraction F̄Ps(θ)(x) of reliable links due to
the increase of interference. Therefore, there exists a maximum
as p (or λ) increases. It is also observed that larger N and
smaller pL lead to larger SOC, which can be interpreted as
follows: 1) a larger N generates narrower transmitting beams
concentrating more power to the dedicated receiver and thus
causing less interference to other concurrent links; 2) a smaller

pL makes more interfering links to be NLOS, and thus the
interference suffered by the receiver is also reduced. Both
operations increases the fraction of successful transmission
links, and thereby making the networks be able to support
more concurrent links, i.e., a larger SOC can be obtained.
As a baseline, the SOC serves a critical role that informs the
network operator whether the mm-wave D2D network satisfies
the capacity requirement.
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V. CONCLUSIONS

In this paper, we propose a general framework for a
fine-grained analysis of mm-wave D2D networks based on
the meta distribution. We first derive the moments on the
conditional success probability Ps for D2D receivers and
then provide an exact expression as well as a simple yet
accurate approximation for the meta distribution of the SINR.
These results are then extended to the meta distribution of
the achievable rate and applied to the mean and variance of
the local delay as well as the SOC. Hence, the complete
distribution of both the conditional link success probability
and the conditional link data rate in mm-wave D2D networks
can be characterized, which provides much sharper results than
merely the means (i.e., the standard success probability and
the mean achievable rate). Also, the SOC gives a network-
level performance metric based on the meta distribution with
a certain reliability constraint (or QoS requirement).

Using this framework, we fully explore the impacts of the
unique features of the mm-wave band on the performance of
D2D networks through both theoretical and numerical studies
and obtain the following useful insights: (1) the concentration
result, obtained in bipolar networks with standard path loss
and single antenna, still holds in mm-wave D2D networks, i.e.,
the variance of Ps goes to 0 as the transmit probability p → 0
while keeping the (mean) success probability constant; (2) the
standard success probability increases monotonically with the
antenna array size N and converges to a maximum as N →
∞, where the noise is totally suppressed and the side lobe
interference as well as the node density become the dominant
factors in determining the interference; (3) the sensitivity to
blockage is another important feature of the mm-wave band
that affects the interference characteristics directly and hence
the performance metrics such as the success probability, the
local delay and the SOC.

In summary, the mm-wave D2D technique is expected to
bring huge benefits for future wireless networks. However, the
salient properties of mm-wave should be carefully explored in
order to exploit them for D2D communication.
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APPENDIX A
PROOF OF THEOREM 1

Proof: Letting θ′ = θrαL
0 /Gm, we have from (5)

Ps(θ)=E (exp (−θ′(I + 1)/µ) | Φ)

=e−
θ′
µ E

∏
x∈Φ

(
p

1 + θ′g(φx)ℓ(x)
+ 1− p

)
=e−

θ′
µ

∏
i∈{L,N}

∏
x∈Φi

(
pw̄

1+θ′Gm|x|−αi
+

p(1− w̄)

1+θ′Gs|x|−αi
+1−p

)
,

Letting δi = 2/αi, i ∈ {L,N}, we have

Mb=E
[
Ps(θ)

b
]

=e−
bθ′
µ

∏
i∈{L,N}

EΦi

 ∏
x∈Φi

(
pw̄

1+ θ′Gm

|x|αi

+
p(1− w̄)

1+ θ′Gs

|x|αi

+1−p

)b


(a)
= e−

bθ′
µ

∏
i∈{L,N}

exp

(
−2πλpi

R∫
0

(
1−
(

pw̄

1+θ′Gm

rαi

+
p(1−w̄)
1+θ′Gs

rαi

+1−p

)b)
rdr

)

= e−
bθ′
µ −λπR2

exp

( ∑
i∈{L,N}

λπR2piδi

×
1∫

0

(
1− pw̄

1+ yRαi

θ′Gm

− p(1− w̄)

1 + yRαi

θ′Gs

)b

yδi−1dy

)

(b)
= e−

bθ′
µ exp

(
−
∑

i∈{L,N}

λπR2piδi

∞∑
n=1

(
b

n

)
(−1)n+1pn

×
n∑

m=0

(
n

m

)
w̄m(1−w̄)n−m

1∫
0

yδi−1dy(
1+ yRαi

θr
αL
0

)m(
1+ yGmRαi

θr
αL
0 Gs

)n−m
)

(c)
= e−

bθr
αL
0

Gmµ exp

(
−
∑

i∈{L,N}

λπR2pi

∞∑
n=1

(
b

n

)
(−1)n+1pn

n∑
m=0

(
n

m

)
w̄m

×(1−w̄)n−mF̃1

(
δi,m, n−m, δi+1,

−Rαi

θrαL
0

,
−GmR

αi

Gsθr
αL
0

))
,

where step (a) uses the probability generating functional
(PGFL) of the PPP [7], step (b) follows from the general
binomial theorem and step (c) is obtained with the help of
the formula in [24, Eq. 3.211].

APPENDIX B
PROOF OF COROLLARY 2

Proof: According to the proof of Theorem 1, the moment
Mb is given by

Mb = e−
bθr

αL
0

Gmµ −λπR2

exp

( ∑
i∈{L,N}

λπR2piδi

×
∫ 1

0

(
1− pw̄

1 + yRαi

θr
αL
0

− p(1− w̄)

1 + yRαiGm

θr
αL
0 Gs

)b

yδi−1dy

)
, (38)

where Gm = N , Gs = 1/ sin2
(

3π
2
√
N

)
and w̄ =

√
3

2π
√
N

, N >

1. It should be noted that N = 1 is the omnidirectional case
and thus w̄ = 1.

First of all, when b ∈ R+, we know that the term
e−bθr

αL
0 /(Gmµ)−λπR2

is monotonically increasing with N .
Hence, letting x = yRαi

θr
αL
0

, whether Mb is monotonically

increasing with N depends on whether f̃(N) = w̄
1+x+

1−w̄
1+ xGm

Gs

is monotonically decreasing with N . In the following, we
prove that f(N) = f̃(N2) decreases monotonically, given by

f(N)=

√
3

2πN(1+x)
+

2πN −
√
3

2πN
(
1+xN2 sin2

(
3π
2N

)) , N≥2, (39)

and f(1) = 1/(1 + x), where f(N) and f̃(N) have the same
monotonicity.
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Secondly, we prove f(N) is monotonically decreasing with
N ≥ 2. Relaxing to N ∈ [2,∞), we obtain the first-order
derivative of f(N), given as

f ′(N) = −
√
3

2πN2

(
1

1+x
− 1

1+xN2 sin2
(
3π
2N

))

−
x(2πN−

√
3) sin

(
3π
2N

)
χ(N)

2πN(1 + xN2 sin2
(
3π
2N

)
)2

, (40)

where χ(N) =
√
4N2 + 9π2 sin

(
3π
2N − φ

)
and tan(φ) =

3π
2N . Since N ≥ 2, we have N2 sin2

(
3π
2N

)
> 1 and χ(N) > 0,

thus f ′(N) < 0 and f(N) is monotonically decreasing with
N ≥ 2.

Thirdly, we can easily prove

f(1)− f(2)

=
1

1+x
−

( √
3

4π(1+x)
+

4π −
√
3

4π
(
1+x4 sin2

(
3π
4

)))>0.(41)

In summary, f(N) is monotonically decreasing with N and so
is f̃(N). Thus, Mb is monotonically increasing with N . When
N → ∞, we have w̄ → 0, Gm → ∞ and Gm/Gs → 9π2/4.
As a result, we have

lim
N→∞

Mb

=e−λπR2

exp

( ∑
i∈{L,N}

λπR2piδi

∫ 1

0

(
1− p

1+ yRαi9π2

θr
αL
0 4

)b

yδi−1dy

)
(a)
=exp

(
−
∑

i∈{L,N}

λπR2piδi

∞∑
n=1

(
b

n

)
(−1)n+1pn

∫ 1

0

yδi−1dy(
1+ y9π2Rαi

θr
αL
0 4

)n
)

(b)
=exp

(
−
∑

i∈{L,N}

λπR2pi

∞∑
n=1

(
b

n

)
(−1)n+1pn

×2F1

(
n, δi, δ+1,

−9π2Rαi

4θrαL
0

))
, (42)

where step (a) uses the general binomial theorem and step (b)
follows from the definition of the Gaussian hypergeometric
function in [24, Chap. 9.11].

APPENDIX C
PROOF OF THEOREM 3

Proof: The mean conditional local delay is given by
EDΦ = 1

pPs(θ)
, and by averaging over Φ, the mean local delay

follows as

D̄ = E
[

1

pPs(θ)

]
=

1

p
M−1(θ)

=
1

p
exp

(
θrαL

0

Gmµ
−λπR2+

∑
i∈{L,N}

λπR2pi

× δi

∫ 1

0

(
1− pw̄

1+ yRαi

θr
αL
0

− p(1−w̄)

1+
yRα

i Gm

θr
αL
0 Gs

)−1

yδi−1dy

︸ ︷︷ ︸
Ai

)
.(43)

Letting vi =
Rαi

θr
αL
0

and ṽi =
viGm

Gs
, we have

Ai= δi

∫ 1

0

(1 + viy)(1 + ṽiy)y
δi−1

(1+viy)(1+ṽiy)−p(1+(w̄ṽi+(1−w̄)vi)y)
dy

=1+δi

∫ 1

0

p(1 + (w̄ṽi + (1− w̄)vi)y)y
δi−1dy

(1+viy)(1+ṽiy)−p(1+(w̄ṽi+(1−w̄)vi)y)
.(44)

It is easy to prove that the equation of the denominator in (44)
has exactly two different real roots. Denoting them by 1

z1
and

1
z2

, we have

Ai = 1 + δi

∫ 1

0

p(1 + (w̄ṽi + (1− w̄)vi)y)y
δi−1

(1− z1y)(1− z2y)
dy

= 1 + pF̃ (δi, 1, 1, δi + 1, z1, z2)

+
pδi(w̄ṽi+(1−w̄)vi)

δi + 1
F̃ (δi+1, 1, 1, δi+2, z1, z2). (45)

Inserting (45) in (43), we obtain (33).

APPENDIX D
PROOF OF THEOREM 4

Proof: The variance of the local delay is given as

V (D) = E(D2)− D̄2

= E(E(D2
Φ))− D̄2

(a)
= E

(
2− pPs(θ)

(pPs(θ))2

)
− D̄2

=
2

p2
M−2(θ)− D̄ − D̄2, (46)

where step (a) follows from the second moment of the
geometrically distributed random variable, and M−2(θ) is
given by

M−2(θ) =E

[(
1

Ps(θ)

)2
]

= exp

(
2θrαL

0

Gmµ
−λπR2+

∑
i∈{L,N}

λπR2pi

×δi

∫ 1
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(
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αL
0
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θr
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0 Gs

)−2
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Bi

)
.(47)

Similar to the proof in the Appendix C, we have

Bi = 1+2(Ai−1)+δi

∫ 1

0

p2(1+(w̄ṽi+(1−w̄)vi)y)
2yδi−1

(1− z1y)2(1− z2y)2
dy

= 1 + 2(Ai − 1) + p2F̃ (δi, 2, 2, δi + 1, z1, z2)

+
2p2δi(w̄ṽi + (1− w̄)vi)
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F̃ (δi + 1, 2, 2, δi + 2, z1, z2)

+
p2δi(w̄ṽi + (1− w̄)vi)

2

δi + 2
F̃ (δi + 2, 2, 2, δi + 3, z1, z2).

Inserting (47) in (46), we obtain (34).
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