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Abstract—The meta distribution of the signal-to-interference
ratio (SIR) provides fine-grained information about the perfor-
mance of individual links in a wireless network. This paper
focuses on the analysis of the meta distribution of the SIR for
both the cellular network uplink and downlink with fractional
power control. For the uplink scenario, an approximation of the
interfering user point process with a non-homogeneous Poisson
point process is used. The moments of the meta distribution
for both scenarios are calculated. Some bounds, the analytical
expression, the mean local delay, and the beta approximation of
the meta distribution are provided. The results give interesting
insights into the effect of the power control in both the uplink
and downlink. Detailed simulations show that the approximations
made in the analysis are well justified.

Index Terms—Stochastic geometry, Poisson point process, Cel-
lular network, SIR, Uplink, Downlink, Power control

I. INTRODUCTION

A. Motivation and the meta distribution

THE META distribution (of the SIR) has been proposed in
[1], where it is applied to both Poisson bipolar networks

and downlink cellular networks without power control to
answer the questions such as “What fraction of users in
a network can achieve a desired link reliability given the
required SIR threshold?” or “How is the success probability
of individual links distributed in each network realization?”
Such questions are often asked by network operators and
indeed of great significance for providing guidance to the
practical deployment of the wireless networks. However, these
questions have not been answered analytically for the uplink
in cellular networks. The uplink, compared to its downlink
counterpart, is more complex in the network structure and
requires power control to maintain the link quality and mitigate
the inter-cell interference. These differences make the analysis
of uplink in the framework of the meta distribution more
challenging. Meanwhile, since the meta distribution provides
more fine-grained information including the variance of the
conditional success probability and the mean local delay, etc.,
an examination of the effect of power control in the downlink
from the perspective of the meta distribution is also warranted.
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Formally, the meta distribution of the SIR in cellular net-
work is defined as

F̄ (θ, x) , F̄Ps(θ, x) = Po(Ps(θ) > x), (1)

where θ ∈ R+, x ∈ [0, 1], and Ps(θ) , P(SIR > θ | Φ) is the
conditional success probability averaged over the fading and
the random activities of the interferers given the point process,
Po denotes the Palm measure of the point process, given an
active receiver at the origin, and the SIR is measured at that
receiver.
Ps(θ) can be interpreted as the reliability, i.e., the success

probability of the link in consideration given the SIR threshold
θ. The meta distribution corresponds to the fraction of links
in each network realization that achieve an SIR of θ with
reliability at least x. Often operators are interested in the “5%
user performance”, which is the performance level that 95% of
the users achieve or exceed. Such information can be directly
read out from the meta distribution, while the traditional
standard (mean) success probability analysis provides virtually
no information about it.

The b-th moment of Ps(θ) (with respect to the Palm
measure) is defined as

Mb(θ) , Eo
(
Ps(θ)

b
)
, b ∈ C. (2)

By this definition and noting that the random variable
Ps(θ) ∈ [0, 1], we have

Mb (θ) =

∫ 1

0

xbdFPs(x)
(a)
=

∫ 1

0

bxb−1F̄Ps(x)dx,

with (a) following integration by parts. For the standard (mean)
success probability ps(θ) , P(SIR > θ), we easily obtain
ps(θ) ≡ M1(θ), i.e., the first moment of the conditional
success probability is the standard success probability, as
expected. Also, the variance of the conditional success proba-
bility is given by Var(Ps) =M2−M2

1 . The variance quantifies
the differences in the user experiences.

B. Related work

In the analysis of wireless networks with randomly deployed
nodes based on stochastic geometry, the Poisson point process
(PPP) is the most widely used model due to its analytical
tractability. The tractability of PPP is a consequence of the
independence between the points, which is formally captured
by Slivnyak’s theorem [2]. It also results in a simple expression
for the probability generating functional (PGFL) [2]. Most of
the existing studies focus on some performance metric as a
function of the SIR at the typical receiver in the network
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obtained by averaging over the channel fading and the point
process by utilizing the Laplace transform of the interference,
which is obtained from the PGFL. However, such a spatial
average only yields limited information about the individual
links. In particular, the (mean) success probability ps(θ) is
one of the most important performance metric of interest,
usually interpreted as the probability that the typical receiver
achieves a target SIR threshold. Informally, in stochastic
geometry, this “typical point” (the typical receiver) origins
from a selection procedure in which every point of the point
process must have the same chance of being selected, hence,
ps(θ) is in fact a result of spatial averaging over the point
process. It only quantifies the overall SIR performance of the
networks, but provides no detailed statistical information for
the performance of each individual link in the network. To
obtain fine-grained information on the SIR and reveal how
the success probabilities are distributed among the individual
links, the meta distribution of the SIR has been formally
proposed in [1].

In [1] the meta distribution is applied to study Poisson bipo-
lar networks with ALOHA channel access and the downlink of
Poisson cellular networks, and closed-form expressions of the
b-th moment of the conditional success probability for the two
network classes are derived. The concept of the conditional
success probability dates back to [3], where it is used to study
the local delay in ad hoc networks modeled by PPPs. In [4] the
conditional success probability is used to study Poisson bipolar
networks without a channel access scheme. The asymptotic
behavior of the distribution is studied and the moments are
calculated. In [5] the meta distribution is analyzed for the
scenario of D2D communication underlaid with the downlink
of Poisson cellular networks with ALOHA channel access,
and the moments of the conditional SIR distribution, the mean
local delay of both the typical D2D receiver and the typical
cellular receiver are derived. Another application of the meta
distribution is found in [6], where the spatial outage capacity,
defined as the maximum density of concurrently active links
with link reliability greater than a threshold, is proposed and
studied for Poisson bipolar networks. Recently, mm-wave D2D
networks have also been examined under the framework of the
meta distribution in [7].

For Poisson downlink cellular networks, the standard as-
sumption is to ignore the fact that there is at most one
active user per resource block per cell and condition on a
user at the origin, independently of the point process1. This,
together with nearest-BS association makes the downlink easy
to model and analyze if there is no power control, since the
interference at the typical user does not depend on the link
distances in other cells, and the interfering BSs form a PPP
conditioned on the distance of the typical link. Furthermore,
the average interfering signal power from each interfering BS
is by definition smaller than the average signal power from the
serving BS, which simplifies the derivations. These advantages
make the downlink cellular network model thoroughly studied
[8]–[12] and easier to be combined with many types of

1As a result, the performance of the typical user corresponds to the average
performance of a user population where the mean number of users in each
cell is proportional to the cell area.

emerging techniques, e.g., cooperative transmission [13]–[15],
MIMO [16]–[18], and D2D communication [19]–[21].

The uplink case is quite different: on the one hand, the
interfering user in a neighboring cell can be much closer to
a BS than the transmitting user in the cell of that BS; on the
other hand, the interfering user point process seen at the typical
BS is not a PPP and hard to model due to the correlation
between the Voronoi cells of the Poisson-Voronoi tessellation
and the channel access scheme in each cell. Moreover, due to
the different distance ratios between the desired and interfering
links compared to the downlink, it can be expected that power
control at the user leads to improved performance in the
uplink.

For the uplink, various models have been proposed to
approximate the network performance. [22] analyzes the cov-
erage performance in K-tier uplink Poisson cellular networks
with truncated channel inversion power control, but the ap-
proximation of the interfering user point process by a ho-
mogeneous PPP is not accurate since it does not capture the
correlations between the interfering points and the BSs under
consideration. [23] studies the uplink SIR distributions in a
two-tier heterogeneous cellular network by approximating the
interferer locations of a tier as a non-uniform Poisson point
process whose intensity at a location x is the intensity of
the BSs in that tier multiplied by a probability factor that
if there was a point of the active user process at x, it would
belong to the Voronoi cell of another BS (of the same tier)
rather than the reference one. A similar non-uniform PPP
approximation is also used in [24] and [25] by conditioning on
a user at the origin to analyze the full-load case (i.e., all BSs
are active). [26] models the interfering user point process as
a homogeneous PPP excluding the ball centered at the target
BS with the radius determined through matching the average
number of excluded points from that homogeneous PPP and
the non-homogeneous PPP in [24].

The approximations made in [23]–[26] are not very accu-
rate, and some of the modeling assumptions are inconsistent,
as we will discuss in Remark 1 in Section II.B. These
shortcomings are addressed in this paper.

C. Contributions

The paper makes the following contributions:
• We derive approximate analytical expressions of the b-th

moment for the Poisson cellular networks with fractional
power control for both uplink and downlink and calculate
the analytical meta distribution of the SIR for the two
scenarios.

• We investigate the effect of the fractional power control
on the mean local delay, which is the -1-st moment of
the conditional success probability.

• We show that the meta distribution of the SIR for both
the uplink and downlink Poisson cellular networks can be
accurately approximated by the beta distribution through
matching the first and second moments.

• We reveal the trade-off between the first moment of
the conditional success probability and its variance in
the medium-θ regime (from −10 dB to 10 dB) and



3

discuss the optimal operating range of the power control
exponent.

II. META DISTRIBUTION FOR THE UPLINK

A. Network model

We consider a single-tier uplink Poisson cellular network
of type I in [28], where base stations (BSs) are modeled
as Φb = Φ ∪ {o}, where Φ ⊂ R2 is a homogeneous
PPP with intensity λ. By Slivnyak’s theorem, the BS at the
origin becomes the typical BS under expectation over Φb.
Orthogonal access like OFDMA is assumed, i.e., each BS
schedules only one user on each resource block (RB). For
a given RB, each user is uniformly distributed in the Voronoi
cell of the serving BS. Formally, the user point process is
defined as Φu , {y ∈ Φb : U(V (y))}, where V (y) denotes
the Voronoi cell of BS y; U(B), B ⊂ R2, denotes a point
chosen uniformly and randomly from B, and independently
across different B.

The network model is depicted in Fig. 1. The user served by
the typical BS is the typical user, and its location is denoted
by x0. The distance from each user x to its own serving
BS is denoted by Rx; for the typical user, the subscript x0
is omitted, so R = ∥x0∥. We denote the interfering user
point process as ΦI, given by ΦI = Φu\{x0}. The distance
from the interfering user located at x to the typical BS is
denoted by Dx = ∥x∥. The standard power-law path loss
model with exponent α > 2 for signal propagation and the
standard Rayleigh fading are used. In this case, the power
fading coefficients hx associated with the user at x and the
typical BS are exponentially distributed variables with unit
mean, i.e., hx ∼ exp(1). We assume {hx} are independent
for all x ∈ Φu.

We use fractional power control at the user in the form
Px = p0R

αϵ
x , which is one of the most widely used schemes

for the uplink cellular networks. The power control exponent
ϵ ∈ [0, 1] is introduced to partially compensate for the path
loss, p0 is the baseline transmit power when there is no
power control. Noise is neglected, i.e., an interference-limited
scenario is considered.

For our network setup, the uplink SIR at the typical BS (on
a given RB) is given by

SIR , Px0hx0R
−α∑

x∈ΦI

PxhxD
−α
x

.

Thus, for the typical user, Px0 = p0R
αϵ,

SIR =
hx0

Rα(ϵ−1)∑
x∈ΦI

Rαϵ
x hxD

−α
x

. (3)

To analyze the SIR performance, we need to know the
statistical properties of ΦI and the distribution of the link
distances in the network.

B. Approximations of interferer process and link distance
distribution

An exact analysis of the network seems unfeasible, hence
there is a need for sensible approximations. Since o ∈ Φb and

 x

 o

 x

 y

R

Dx

Rx

Fig. 1. Uplink network model. The typical BS is at the origin, the typical
user served by it is x0.

the typical user is not an interferer, ΦI is a non-stationary
process with intensity depending on the distance from the
origin and whose exact statistics are hopeless to derive. We
use the approximations provided in [28] for the intensity
function of ΦI and the probability density function (pdf) of
the distribution of the link distance R, given by

λI(x) = λ
(
1− exp

(
(−12/5)λπ∥x∥2

))
, (4)

fR(r) =
5

2
πλr exp

(
−5

4
λπr2

)
, r ≥ 0. (5)

The link distances Rx in the interfering cells are identically
distributed as R, since all cells are statistically the same.
However, they are not independent since the areas and shapes
of neighboring cells are correlated, and Rx cannot be larger
than Dx, hence we characterize the distribution of Rx by
conditioning on Dx. This results in the truncated Rayleigh
distribution

fRx(r | Dx) =
(5/2)πλr exp(−(5/4)λπr2)

1− exp(−(5/4)λπD2
x)

, 0 ≤ r ≤ Dx.

(6)
This truncation reflects the correlation between Rx and Dx

that is present for x near the origin. Equipped with (4), (5)
and (6), we can derive an approximation of the b-th moment
of Ps(θ).

Remark 1: The model used here is similar but the ap-
proximations have important differences to those used by
the previous works [22], [24]–[26], which also consider the
full-load uplink scenario and single-user scheduling on each
resource block. Their network model is in accordance with the
type II model2 in [28], but they argue that their type II model is
identical to a type I model. What they are actually analyzing,
though, is neither—they are analyzing a model where the
users are placed independently of the BSs, resulting in the
performance of a user in the Crofton cell [27]. Hence, their
“typical user” is not, in fact, the typical active user.

Further, [24] and [25] approximate ΦI by a non-

2The type II user point process is defined as Φu , {y ∈ Φb : U(V (y) ∩
Φ0)} and Φ0 denotes the entire user population which is a point process
independent from Φb. The users in each cell are chosen only from the
countable set V (y) ∩ Φ0, y ∈ Φb, hence the number of users in a cell
can be more than one, but can also be zero.
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Fig. 2. Ripley’s K function. K1(r) = πr2 + 5/12e−12/5πr2 − 5/12

corresponds to (5) in [28] and K2(r) = πr2 + e−πr2 − 1 is K function of
the interfering user point process approximated by the non-homogeneous PPP
in [24] and [25]. Both K functions of the standard PPP in theory and that of
the interfering user point process at the typical BS by simulation are shown
for comparison.

homogeneous PPP with intensity

λI(x) = λ(1− exp(−λπ∥x∥2)), (7)

with the factor 1 − exp(−λπ∥x∥2) being interpreted as the
probability that a user at the point x is interfering to the
typical BS at the origin. However, wherever a user not served
by the reference BS is located, it is for sure an interferer,
so this probability is 1, trivially. Such an approximation does
not accurately reflect the pair correlation between the BS and
the points in ΦI. We can verify this by inspecting Ripley’s K
function in Fig. 2. It clearly shows that the approximation (7)
for the uplink interfering user point process underestimates the
number of the interferers in the proximity of the BS (i.e., in the
range of r from 0.4 to 1), thereby underestimating the average
aggregate interference suffered by the typical BS, while the
approximation (4) closely matches the simulation result. We
can also see that the interfering user point process outside
a large enough radius of the typical BS approaches the PPP
asymptotically and the new approximation (4) also slightly
underestimates the K function, but this has negligible effect
on the interference as the signal power decays quickly with
the distance.

Next, as a result of the Crofton cell, the distribution for
the link distance R in [24] and [25] is the standard Rayleigh
distribution

fR(r) = 2πλr exp(−λπr2), r ≥ 0. (8)

However, it is easily seen from Fig. 3 that (8) deviates
significantly from the actual link distance distribution obtained
from the simulation.

The approximations and analyses in this paper overcome
these shortcomings of prior work: the inconsistency in the
modeling of the users and, as a result, between Crofton and
typical cells, the link distance distributions, and the inaccuracy
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F
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F1(r) = 1− e−πr2

Sim, typical BS

F2(r) = 1− e−(5/4)πr2

Fig. 3. Link distance distribution comparison. F1(r) corresponds to the pdf
in (8), F2(r) corresponds to the pdf in (5), both for λ = 1.

in the intensity function of the interfering point process.

C. Moments

Theorem 1 (Moments for the uplink with FPC) The b-th
moment Mb of the conditional success probability of the
uplink Poisson cellular networks with FPC under the non-
homogeneous PPP approximation (4) for the interfering user
point process is closely approximated by

M̃b =

∫ ∞

0

exp

(
−z
(
1 +

∫ ∞

0

fb (z, x) dx

))
dz, (9)

where

fb(z, x) =

∫ x

0

B−1
1 ze−zy 1− e−zxB2/B1

1− e−zx

×
(
1−

(
1 + θy

αϵ
2 x−

α
2

)−b
)
dy,

B1 = 5/4, B2 = 12/5, and ϵ ∈ [0, 1].

Proof: The conditional coverage probability is

Ps(θ) = P
(
hx0 > θ

∑
x∈ΦI

hxD
−α
x Rαϵ

x Rα(1−ϵ)
∣∣∣ Φa,Φb

)
=
∏
x∈ΦI

1

1 + θ
(R(1−ϵ)Rϵ

x

Dx

)α . (10)

Then Mb follows as

Mb = E
∏
x∈ΦI

1(
1 + θ

Rα(1−ϵ)Rαϵ
x

Dα
x

)b
= E

∏
x∈ΦI

ERx

(
1(

1 + θ
Rα(1−ϵ)Rαϵ

x

Dα
x

)b | Dx, R

)
(a)
≈ E

∏
x∈ΦI

∫ Dx

0

(2B1)πλxe
−B1λπx

2

(1− e−B1λπD2
x)
(
1 + θxαϵD−α

x Rα(1−ϵ)
)b dx

(b)
= ER exp

(∫ ∞

0

−2λπa
(
1− e−B2λπa

2)(
1
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−
∫ a

0

2B1πλxe
−B1λπx

2

(1− e−B1λπa2)
(
1 + θxαϵa−αRα(1−ϵ)

)b dx)da
)

(c)
=

∫ ∞

0

2B1πλr exp

(∫ ∞

0

−2λπ
(
1− e−B2λπa

2)(
1

−
∫ a

0

2B1πλxe
−B1πλx

2

(1− e−B1λπa2)
(
1 + θxαϵa−αrα(1−ϵ)

)b dx)

× ada

)
e−B1λπr

2

dr, (11)

where (a) uses (6) to average over Rx; (b) follows from (4)
and the PGFL of the general PPP [2]; (c) uses (5) to average
over R.

Then by using substitution x/r = u, r/x = v and e−λπr2 =
t, after some simplification, we obtain Mb ≈ M̃b, with M̃b

given in (9).

Corollary 1 (Special case: ϵ = 1) When ϵ = 1,

M̃b = exp
(∫ 1

0

∫ 1

0

1− uB2/B1

B1(1− u)

(
A− ux−1h(x)

)
dudx

)
,

(12)
where B1 = 5/4, B2 = 12/5, A = 1− (1 + θ)−b, and

h(x) =
bθαxα/2−1

2(1 + θxα/2)b+1
.

Proof: By substituting z = ln t and ϵ = 1 into (9), after
some simplification, we obtain M̃b in the form

M̃b =

∫ 1

0

tg(t)dt, (13)

where

g(t) =

∫ ∞

0

∫ s

0

− 1

B1

1− tsB2/B1

1− ts
ln t · ty

×
(
1−

(
1 + θy

α
2 s−

α
2

)−b
)
dyds. (14)

g(t) can be expressed as

g(t)
(a)
= − ln t

∫ ∞

0

1

B1

1− tsB2/B1

1− ts

∫ 1

0

stsx

×
(
1− 1(

1 + θx
α
2

)b)dxds
(b)
= −

∫ ∞

0

1

B1

1− tsB2/B1

1− ts

(∫ 1

0

(Ats − tsxh(x)) dx

)
ds

(c)
=

1

B1
logt e

∫ 1

0

∫ 1

0

1− uB2/B1

1− u

(
A− ux−1h(x)

)
dudx,

(15)

where (a) follows from the substitution y/s = x; (b) from
integration by parts; (c) from replacing ts with u. Finally, by
inserting g(t) into (13) we obtain (12).

Fig. 4 shows the standard success probability ps = M1

and the variance of the conditional success probability as a
function of θ for α = 4 and FPC parameter ϵ = 0, 0.5, 1. The
solid and dashed curves correspond to the simulation results,
the markers correspond to the analytical results in Theorem
1. These results reveal how the FPC parameter affects M1
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Fig. 4. The first moment and variance of Ps(θ) in the uplink for different
ϵ, α = 4. The curves are the analytical results from Theorem 1; the markers
correspond to the simulation results.

and the variance. For the low-θ regime, a higher ϵ benefits
both M1 and the variance, which means it improves the
average performance of the network and also reduces the
difference between the individual links, resulting in better
fairness. Conversely, a higher FPC exponent ϵ harms the
average performance of the network in the high-θ regime,
because for large θ, assuming no power control, only users
very close to their BSs will succeed. However, with power
control, these users have to drastically reduce their transmit
powers relative to the interferers, which reduces the received
signal strength at their BSs and thus the SIR. Hence, they are
increasingly less likely to succeed as ϵ grows. The users far
away from their BSs are unlikely to benefit from the path loss
compensation due to the high SIR threshold. As a result, the
average network performance is brought down.

We can also observe from Fig. 4 that in the medium-θ
regime, there is a trade-off between M1 and the variance. In
particular, with θ ∈ [−10, 10] (dB), the variance first increases
and then decreases while M1 is monotonically decreasing,
so there is a compromise between optimizing M1 and the
variance by choosing the parameter ϵ. In the high-θ regime
(i.e., the low-reliability regime), M1 and the variance are both
monotonically decreasing, while in the low-θ regime, a better
M1 is always accompanied with a lower variance.

Fig. 4 also shows the significance of the meta distribution
as a much more refined metric than just M1. For example, if
the target SIR is -3 dB, all values of ϵ lead to a very similar
M1, so M1 alone does not tell us which ϵ to use, but if we
consider the variance, it is evident that ϵ = 1 is best.

Theoretically, ϵ can be greater than 1, which is the over-
compensation case. The analytical results are shown in Fig. 5.
It is shown that generally speaking, over-compensation of the
transmit power has no benefit to the network, especially for
the high-SIR threshold regime. This is because raising the
transmit power too much makes the receiver more likely to
experience interference from transmitters far away, and the
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Fig. 5. Uplink M̃1 and variance of Ps(θ) obtained from (9) for different
values of ϵ and α = 4.

incremental interference power dominates the increment of the
useful signal power.

Corollary 2 (Asymptotic property of ϵopt for the uplink)
Define ϵ

(1)
opt(θ) = argmax

ϵ
M̃1(θ), θ ∈ R+. Then we have

lim
θ→∞

ϵ
(1)
opt(θ) = 0.

Proof: By observing the structure of the expression (9)
for b = 1, since the exponential function is monotonically
increasing, and the integration interval is the positive real axis,
it is easy to see that to maximize M̃1, −1 −

∫∞
0
f1 (z, x) dx

should reach the maximum. Then the integrand f1(z, x) =∫ x

0
ze−zy

(
1−(1+θyϵα/2x−α/2)−1

)
dy should assume its mini-

mum since it is always positive. For the integrand of f1(z, x),
the factor e−zy is monotonically decreasing for y ∈ (0, x),
while the factor 1−

(
1 + θyϵα/2x−α/2

)−1
= yϵα/2x−α/2

θ−1+yϵα/2x−α/2 ,
which is monotonically increasing for y ∈ (0, x), when
θ → ∞, yϵα/2x−α/2

θ−1+yϵα/2x−α/2 will approach 1, the dominant term
is e−zy . Thus the integral is minimized at ϵ = 0.

Fig. 6 illustrates the result in Cor. 2. It can be seen that as
θ increases, the outage 1 − M̃1 (in dB) for ϵ = 0 is always
below the curves for the other values of ϵ, which means that
for large enough θ, M̃1 is maximized at ϵ = 0.
M−1 is the mean local delay, which quantifies the mean

number of transmission attempts needed before the first suc-
cess if the transmitter is allowed to keep transmitting [29].
According to [1], the mean local delay of downlink Poisson
cellular networks without power control exhibits a phase tran-
sition from finite to infinite when the SIR threshold reaches
a critical value. But for uplink Poisson cellular networks with
FPC, the curves in Fig. 7 and Fig. 8 show that no phase
transition may occur. For a given FPC exponent ϵ, the mean
local delay stays close to 1 for small and modest values of θ
and quickly increases at higher θ. A higher ϵ is helpful in terms
of broadening the SIR range for which the mean local delay
is below some threshold. An increase past ϵ = 1, however, is
detrimental.

θ (dB)
30 31 32 33 34 35 36 37 38 39 40

1
−
M̃

1
(d
B
)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
ǫ=0.5

ǫ=0

Fig. 6. The uplink outage 1−M̃1 for large θ and ϵ = 0, 0.1, 0.2, 0.3, 0.4, 0.5
from bottom to top.
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ǫ = 0.9
ǫ = 1.0
ǫ = 1.1

Fig. 7. Analytical results of the mean local delay M̃−1 as a function of θ
for different values of ϵ and α = 3 in the uplink.

Remark 2: For ϵ = 1, M̃−1 has a simplified expression by
Cor. 1, given by

M̃−1

= exp
(
− θ

∫ 1

0

∫ 1

0

1− uB2/B1

B1(1− u)

(
1− α

2
ux−1xα/2−1

))
dudx,

(16)

where B1 = 5/4, B2 = 12/5. Further, noticing that B2/B1 =
48/25 ≈ 2, M̃−1 can be further simplified to the closed-form
M−1 = exp (−θ · C(δ)), with δ = 2/α and C(δ) given by

C(δ)

=
1

B1

(
3

2
− 1

δ

(
2δ

1− δ
+ ln 2− ψ

(1− δ

δ

)
+ ψ

(1− δ

2δ

)))
,

(17)

where ψ(·) = lnΓ(·) is the Polygamma function. This shows
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Fig. 8. Analytical results of the mean local delay M̃−1 as a function of θ
for different values of ϵ and α = 4 in the uplink.

that no phase transition occurs at ϵ = 1.

D. Meta distribution: analytical expression and classical
bounds

Equipped with a tight approximation for Mb, the analyti-
cal meta distribution of the SIR for uplink Poisson cellular
networks can be obtained from the Gil-Pelaez theorem [30]
as

F̄ (θ, x) ≈ 1

2
+

1

π

∫ ∞

0

ℑ(e−jt log xM̃jt)

t
dt, (18)

where ℑ(z) denotes the imaginary part of the complex number
z.

As in [1], some classical bounds can also be directly
obtained as follows,

For x ∈ [0, 1], the Markov bounds of the meta distribution
are given by

1− E!t((1− Ps(θ))
b)

(1− x)b
< F̄ (θ, x) ≤ M̃b

xb
, b > 0. (19)

For x ∈ [0, 1], let Ṽ , M̃2 − M̃2
1 , the Chebyshev bounds

of the meta distribution are given by

F̄Ps(x) > 1− Ṽ

(x− M̃1)2
, x < M̃1, (20)

and

F̄Ps(x) > 1− Ṽ

(x− M̃1)2
, x > M̃1. (21)

For x ∈ [0, 1], the Paley-Zygmund bound of the meta
distribution is given by

F̄Ps(xM̃1) ≥
(1− x)2M̃2

1

M̃2 + x(x− 2)M̃2
1

, x ∈ (0, 1). (22)

The Paley-Zygmund bound can be used to roughly quantify
the fraction of links that can achieve a certain fraction of the
average performance.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-
F

p
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Analytical
Simulated
P-Z bound
Chebyshev
Markov

b=4

b=1

b=2

b=3

b=3

b=4

b=1

b=2

Fig. 9. The analytical meta distribution (18), the simulated curve, the Markov
bounds (19) for b ∈ [4], the Chebyshev bounds (20) and (21) and the Paley-
Zygmund bound (22) for α = 4, θ = 0 dB and ϵ = 0.5 in the uplink.

x
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0.4
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0.6

0.7

0.8

0.9

1

Analytical
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Best bounds
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Fig. 10. The meta distribution, the best Markov bounds (19) for b ∈ [4],
and the best bounds (given the first four moments) for α = 3, θ = 0 dB and
ϵ = 0.5 in the uplink.

Fig. 9 shows the meta distribution from both the simulation
result and the analytical expression in (18). It verifies the accu-
racy of the approximation of the moments given in Theorem 1.
The classical bounds are also illustrated in this figure. Fig. 9
also gives information about the 5% user performance: in this
case, the 5% user achieves about 10% reliability.

Given the first k moments of Ps(θ), we can establish
the tightest possible lower and upper bounds following the
procedure in [31], which has also been applied in [1]. Fig. 10
shows the best bounds and the lower and upper envelopes of
the Markov bounds for b ∈ [4].

E. Meta distribution: beta distribution approximation

Since Ps(θ) is supported on [0, 1], it is natural to approx-
imate its distribution with the beta distribution. The pdf of a
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Fig. 11. The simulated meta distribution and the beta distribution approxi-
mation for α = 4, θ = 0 dB and ϵ ∈ {0, 0.5, 1} in the uplink.

beta distributed random variable X with mean µ is

fX(x) =
x

µ(β+1)−1
1−µ (1− x)β−1

B(µβ/(1− µ), β)
,

where B(·, ·) is the beta function. The variance is given by

σ2 , varX =
µ(1− µ)2

β + 1− µ
.

Matching the mean and variance σ2 yields µ = M̃1 and

β =
(µ− M̃2)(1− µ)

M̃2 − µ2
.

Fig. 11 shows that the beta distribution is an almost
perfect approximation for the meta distribution. even if the
moments are obtained from the approximations M̃1, M̃2.
The close match between the meta distribution and the beta
distribution is very convenient, since it implies that for most
purposes, an evaluation of the Gil-Pelaez integral (18) is not
needed. Also, the beta approximation provides a simple way
to help the operator determine the most appropriate parameters
for maximizing the performance metrics, e.g., M1 and the
variance, or the performance of the 5% user.

F. Effect of peak power constraint

In practice, there usually is the maximum transmit power
constraint. We can incorporate such a constraint into our
analytical framework by considering the truncated fractional
power control (TFPC) model

Px =

{
Rαϵ

x Rx ≤ p̂
1
αϵ ,

p̂ Rx > p̂
1
αϵ ,

(23)

where we assume the transmit power over unit distance is
normalized to 1, without loss of generality. p̂ is the (normal-
ized) maximum transmit power, α is path loss exponent and
ϵ ∈ [0, 1] is the path loss compensation exponent, Rx is the

θ (dB)
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p̂ = ∞
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Fig. 12. Uplink TFPC with λ = 0.1, ϵ = 1, α = 4 and p̂ =
{0, 5, 10, 15,∞} (dB). The solid and dashed curves are the analytical results
for M̃1 and the variance, respectively. The markers are the simulation results.

link distance in the Voronoi cell of BS x. It can easily be seen
that when p̂→ ∞, TFPC degenerates to FPC.

Theorem 2 (Moments for the uplink with TPFC) The b-
th moment of the conditional success probability of the uplink
Poisson cellular networks with TFPC is closely approximated
by

M̃b =

∫ Sϵ

0

exp
(
− z
(
1 + fb,1(z) + fb,2(z)

))
dz

+

∫ ∞

Sϵ

exp
(
− z
(
1 + gb,1(z) + gb,2(z)

))
dz, (24)

where Sϵ = B1λπp̂
δ
ϵ and

fb,1(z) =

∫ ∞

0

∫ x

0

B−1
1 ze−zy 1− e−zxB2/B1

1− e−zx

×
[
1−

(
1 + θy

αϵ
2 x−

α
2

)−b]
dydx,

gb,1(z) =

∫ ∞

0

∫ x

0

B−1
1 ze−zy 1− e−zxB2/B1

1− e−zx

×
[
1−

(
1 + θS

−αϵ
2

ϵ z
αϵ
2 y

αϵ
2 x−

α
2

)−b]
dydx,

fb,2(z) and gb,2(z) are given at the top of the next page.

Proof: The expressions can be obtained by following
similar steps as in the proof of Theorem 1. A sanity check
can be performed by letting Sϵ → ∞ (i.e., p̂ → ∞), which
makes the second integral in (24) zero and fb,2 → 0, and thus
recovers (9).
Figure 12 shows the analytical and simulation results of M1

and the variance for TFPC with ϵ = 1, α = 4 and p̂ =
{0, 5, 10, 15} (dB), the results of p̂ = ∞ are also shown. We
can see that the curves of p̂ = 15 dB are already very close
to the non-truncated case p̂ = ∞.

Remark 3: For the uplink with TFPC, we have the follow-
ing scaling property.
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fb,2(z) =

∫ ∞

Sϵz

∫ x

Sϵz

B−1
1 ze−zy 1− e−zxB2/B1

1− e−zx

[(
1 + θy

αϵ
2 x−

α
2

)−b −
(
1 + θS

αϵ
2

ϵ z−
αϵ
2 x−

α
2

)−b]
dydx,

gb,2(z) =

∫ ∞

Sϵ
z

∫ x

Sϵ
z

B−1
1 ze−zy 1− e−zxB2/B1

1− e−zx

[(
1 + θS

−αϵ
2

ϵ z
αϵ
2 y

αϵ
2 x−

α
2

)−b −
(
1 + θx−

α
2

)−b]
dydx.

1) For a given θ, λ → 0 results in M̃b(ϵ) ∼ M̃b(0), which
can be verified through (24) by noting that ϵ vanishes
in lim

Sϵ→0
M̃b. This is consistent with our intuition since

when the network density λ is very low, the area of the
Voronoi cell is large (1/λ on average), resulting in a high
probability for the link distance in each cell to be greater
than p̂

1
αϵ .

2) From (24) we can see that for TPFC, given α, ϵ and θ, λ
and p̂ are connected through Sϵ, hence as long as λp̂δ/ϵ is
kept constant, different combinations of the density and
the maximum power yield the same results. In contrast,
for FPC, Mb and thus the meta distribution do not depend
on λ. This gives insight about how to balance the network
parameters for maintaing the performance for both the
overall network and the individual users.

III. META DISTRIBUTION FOR THE DOWNLINK

A. Network model

In this section, we study the effect of fractional power
control for downlink cellular networks using the framework
of the meta distribution. We use the same model as for the
uplink, namely the BSs are modeled by a homogeneous PPP
Φb ⊂ R2 with intensity λ, and the users follow the type I user
point process. We assume the standard path loss law with the
path loss exponent α > 2 and power fading coefficients {hx},
x ∈ Φb following exponential distribution with unit mean (i.e.,
Rayleigh fading) from BS x to the typical user. Denote the link
distance from the typical user to its serving BS x0 ∈ Φb by
R, the distance from the interfering BS x to the typical user
by Dx, and the interfering link distance of BS x ∈ Φb \ {x0}
by Rx. Each BS x uses fractional power control Px = Rαϵ

x ,
with the transmit power over unit distance normalized to 1,
and ϵ ∈ [0, 1] the compensation exponent. We focus on the
typical user in the typical cell as in the uplink scenario. All
the interfering BSs are further away than the serving BS of
the typical user and are approximated by a PPP with the same
intensity λ seen by the typical user beyond the distance R. Rx

and R are not independent but identically distributed, and, in
contrast to the uplink, Rx is not bounded by Dx. Hence both
of them have the same pdf fR(r) = 5

2πλr exp
(
− 5

4λπr
2
)

in
(5), and, although correlated, they are assumed independent.

The SIR for the typical user is given by

SIR , Px0hx0R
−α∑

x∈Φb\{x0}
PxhxD

−α
x

=
hx0R

α(ϵ−1)∑
x∈Φb\{x0}

Rαϵ
x hxD

−α
x

.

B. Moments

Theorem 3 (Moments for the downlink with FPC) The b-
th moment of the conditional success probability of the down-

link Poisson cellular networks with FPC is closely approxi-
mated by

M̃b =

∫ ∞

0

exp

(
−z
(∫ ∞

1

f (z, x) dx+ 1

))
dz, (25)

where f(z, x) =
∫ ∞

0

B−1
1 ze−zy

(
1−

(
1 + θy

αϵ
2 x−

α
2

)−b
)
dy,

and B1 = 5/4.

Proof: The conditional coverage probability is

Ps(θ) = P
(
hx0 > θ

∑
x∈Φb\{x0}

hxD
−α
x Rαϵ

x Rα(1−ϵ)
∣∣∣ Φa,Φb

)
=

∏
x∈Φb\{x0}

1

1 + θ
Rα(1−ϵ)Rαϵ

x

Dα
x

.

Then Mb follows as

Mb = E
∏

x∈Φb\{x0}

1(
1 + θ

Rα(1−ϵ)Rαϵ
x

Dα
x

)b
= E

∏
x∈Φb\{x0}

ERx

1(
1 + θ

Rα(1−ϵ)Rαϵ
x

Dα
x

)b
(a)
≈ E

∏
x∈Φb\{x0}

∫ ∞

0

2B1λπxe
−B1λπx

2

×
(
1 + θxαϵD−α

x Rα(1−ϵ)
)−b

dx

(b)
= ER exp

(∫ ∞

R

−2λπa
(
1−

∫ ∞

0

2B1λπxe
−B1λπx

2

(
1 + θxαϵa−αRα(1−ϵ)

)−b
dx
)
da

)
, (26)

where (a) is due to the Rayleigh distribution approximation
for Rx; (b) follows from the PGFL of the homogeneous PPP
[2] and the fact that Dx is strictly greater than R. M̃b is then
obtained by averaging over R as

M̃b

=

∞∫
0

2B1λπr exp

( ∞∫
r

−2λπa

(
1−

∞∫
0

2B1λπxe
−B1λπx

2

×
(
1 + θxαϵa−αrα(1−ϵ)

)−b
dx

)
da

)
e−B1λπr

2

dr. (27)

Then using substitution x/r = u, r/a = v and e−B1λπr
2

= t,
after some simplification, we get the final result in (25).

Fig. 13 and Fig. 14 show the downlink standard success
probability M1 = ps and the variance of the conditional
success probability as a function of θ for FPC exponents
ϵ = 0, 0.5, 1 and α = 4 and α = 3, respectively. The solid
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Fig. 13. Downlink M1 and variance of Ps(θ) obtained from simulation and
analysis for different ϵ and α = 4. The curves are the analytical results from
Theorem 3 and the markers correspond to the simulation results.
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Fig. 14. Downlink M1 and variance of Ps(θ) obtained from simulation and
analysis for different ϵ and α = 3. The curves are the analytical results from
Theorem 3 and the markers correspond to the simulation results.

and dashed curves correspond to the simulation result, and
the markers correspond to the analytical result by Theorem
3. These results show that the analytical results closely match
the simulation results and also reveal that an appropriate FPC
exponent can help mitigate the variance while maintaining the
level of M1, at least for a certain range of θ. For example, for
θ ranging from −10 dB to 0 dB, ϵ = 0.5 performs nearly the
same as ϵ = 0 in terms of M1, however the former reduces
the variance significantly compared to the latter. Hence, by
studying power control with the tool of meta distribution, we
find that FPC can bring some fairness benefits to the downlink.

Based on Theorem 3, we have the following statements for
the downlink mean local delay.

Corollary 3 (Mean local delay for the downlink) When
α > 2, the downlink mean local delay for Poisson cellular

networks with FPC is closely approximated by

M̃−1 =

∫ ∞

0

exp(cΓ(1 + ρ)y1−ρ − y)dy, (28)

where c = B−1
1 θδ/(1− δ), ρ = ϵ/δ and δ = 2/α.

Proof: By substituting b = −1 in (25), we obtain M̃−1

in the form

M̃−1

=

∫ ∞

0

exp

(
θz2

B1

∫ ∞

1

∫ ∞

0

e−zyyαϵ/2x−α/2dydx− z

)
dz

=

∫ ∞

0

exp

(
θ

B1

∫ ∞

1

x−α/2dx

∫ ∞

0

z2e−zyyαϵ/2dy − z

)
dz,

by noticing that
∫∞
1
x−α/2dx = 1

−1+α/2 and∫∞
0
z2e−zyyαϵ/2dy = z1−ϵα/2Γ(1 + ϵα/2), after the

substitution, we get the final expression in (28).

Corollary 4 (Convergence of downlink mean local delay)
When α > 2, M̃−1 is finite for any θ if 0 < ϵ ≤ δ; for ϵ = 0,
M̃−1 is finite if θ < B1(1/δ− 1); if ϵ > δ, M̃−1 is ∞ for all
θ.

Proof: In (28), since δ < 1, we have c > 0 and 1−ρ ≤ 1.
To make M̃−1 finite, 1 − ρ must be non-negative. Thus we
have 0 ≤ 1− ϵ/δ ≤ 1, which gives 0 ≤ ϵ ≤ δ. Morever, when
ϵ = 0, then ρ = 0, c must be smaller than 1 to guarantee the
convergence of the integral.

Remark 4: Cor. 4 indicates that the phase transition of the
mean local delay in downlink Poisson cellular networks only
occurs at ϵ = 0, i.e., when there is no power control. The
expression for M̃−1 at ϵ = 0 is given by

M̃−1 =
1− δ

1− δ(1 +B−1
1 θ)

=
1

1− δ
B1(1−δ)θ

, θ < B1/δ−B1.

(29)
The critical SIR threshold is θc = B1(1/δ − 1).

Remark 5: For ϵ = δ/2 and ϵ = δ, M̃−1 also admits
closed-form expressions, given by (30) and (31), respectively.

ϵ =
δ

2
: M̃−1 = 1 +

θ

2B1
· δ

√
π

1− δ
exp

(
θ2

4B2
1

·
(

δ

1− δ

)2
)

× erfc

(
− θ

2B1
· δ

1− δ

)
(30)

ϵ = δ : M̃−1 = exp

(
δ

B1(1− δ)
θ

)
(31)

Interestingly, δ
1−δ is exactly the mean interference-to-signal

ratio (MISR) of the PPP introduced in [32], hence, (29), (30)
and (31) can also be expressed as a function of the MISR.

Fig. 15 and Fig. 16 show the analytical results of M̃−1 for
different ϵ. It can be seen that for large θ, ϵ = δ is optimal
for the minimization of the mean local delay, while for small
θ, ϵ = δ/2 is optimal to minimize the mean local delay.

Remark 6: Letting ρopt(c) = argmin
ρ
M̃−1, a detailed

numerical study of (28) shows that lim
c→0

ρopt = 1/2 and
lim
c→∞

ρopt = 1. A small c can be achieved by either a small θ
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Fig. 15. Downlink mean local delay as a function of θ obtained from
analytical results for α = 3 and different ϵ, where ϵ = 0 corresponds to
(29), ϵ = 1/3 corresponds to (30) and ϵ = 2/3 corresponds to (31). A phase
transition occurs at θ ≈ −2 dB when ϵ = 0.
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Fig. 16. Downlink mean local delay as a function of θ obtained from
analytical results for α = 4 and different ϵ, where ϵ = 0 corresponds to
(29), ϵ = 1/4 corresponds to (30) and ϵ = 1/2 corresponds to (31). A phase
transition occurs at θ ≈ 1 dB when ϵ = 0.

or a small δ, while a large c can be achieved by either a large
θ or a δ close to 1.

C. Meta distribution: analytical curves, and beta approxima-
tion

Following the same methods as in the uplink analysis,
the analytical results of the downlink meta distribution for
Poisson cellular networks can be calculated by using the
Gil-Pelaez theorem, which are shown in Fig. 17. The beta
approximation of the meta distribution through matching the
mean and variance is shown in Fig. 18.
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Fig. 17. Both the simulated and the analytical meta distribution (18) for
α = 3, θ = −5 dB in downlink Poisson cellular networks.
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Fig. 18. The meta distribution (simulation result) and the beta distribution
approximation for α = 4, θ = 0 dB and ϵ ∈ {0, 0.5, 1} in the downlink.

IV. CONCLUSIONS

This paper applies the concept of the meta distribution,
which is the distribution of the conditional success probability
given the point process, to study the uplink and downlink
scenarios in Poisson cellular networks with fractional power
control. For the uplink scenario, the interfering user point
process relative to the typical BS is approximated by a non-
homogeneous PPP whose intensity function was obtained
by analyzing the pair correlation function of the interfering
points in [28]. This approximation yields analytical results
that are highly consistent with the simulation results. For
both scenarios, the general expression of the moments, the
analytical results for the mean local delay and the analytical
expression for the distribution of the conditional success
probability are provided, revealing much more detailed infor-
mation about the user performace in cellular networks than
just the standard success probability M1. Moreover, it is
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shown that both the uplink and downlink meta distributions
can be closely approximated by the beta distribution through
matching the mean and variance, which is convenient for
the network performance analysis with no need to calculate
higher-order moments. Further, the truncated fractional power
control model as an extension for the FPC model with a
maximum transmit power constraint is also evaluated for the
uplink scenario.

The study of the mean local delay does not indicate any
phase transition in the uplink. For the downlink, a phase
transition only occurs when there is no power control (ϵ = 0).
The optimum power control parameter that minimizes the
mean local delay in the downlink is between δ/2 and δ.

The investigation of the fractional power control in both
the uplink and downlink shows that compensating the path
loss sensibly improves the user fairness while maintaining
the average overall network performance. It also reveals that
the effect of FPC is mainly a concentration in the user
performance levels, which means M1 alone does not give
enough information about what parameter to use, but by virtue
of the meta distribution, we can obtain more fine-grained
information (e.g., the variance and the 5% user performance)
to find the best ϵ. Such advantages of the meta distribution are
helpful to the operators in practical network deployment and
configuration.
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